铁路隧道防灾安全监控与应急救援保障信息系统研究

铁路隧道防灾安全监控与应急救援保障信息系统研究
铁路隧道防灾安全监控与应急救援保障信息系统研究

铁路隧道防灾安全监控与应急救援保障信息系统研究钱生校等

生最重要。防止火灾延烧和

扩大,隧道内必须设置防灾

安全保障设施,配备限制与

控制火灾设备和安全避难设

备。按隧道长度和列车速度

划分隧道防灾等级,根据隧

道防灾等级,确定防灾安全

保障设施及设置基准。

监控报警子系统对隧道

灾害和其他隧道事故进行监

测,提供预警功能。出现突

发事故时,提供监控信息,

为行车指挥、设备维修和应

急救援等决策提供技术支

持。

安全管理控制子系统对

防灾安全保障设施进行集中

管理,分别检测,集中报

警,并对数据集中管理,实

现隧道安全设施协同运作。

同时,通过特定功能的模块图2铁路隧道防灾安全监控与应急救援保障信息系统

处理,向各有关子系统发送控制指令,使视频、音频、无线频道、控制数据在一体化软件平台上实现综合监控。

3系统网络结构

铁路隧道防灾安全监控与应急救援保障信息系统由隧道监控站计算机系统、隧道交通监控本地控制器、隧道安全监控中心、隧道外场设备和传输通道等组成(见图2)。其中,隧道交通监控本地控制器是隧道监控站与隧道外场设备的联系纽带。隧道(群)本地控制器通过工业以太网相连,形成一个冗余环网系统,并通过工业以太网与隧道监控站相连。隧道本地控制器以一对多的方式与隧道内分散的外场设备相连,系统收集、存储和管理外场设备数据,监控外场设备工作状态,报送隧道监控站,接收隧道监控站命令对外场设备进行控制,并具有本地自动控制功能,在维修或测试时,可由隧道内的本地控制器进行控制。

4结束语

建立完善的铁路隧道防灾安全监控与应急救援保障..46..系统,实现对影响隧道安全的重点因素进行时实监测。铁路隧道防灾安全监控与应急救援保障系统将隧道数据采集、监视、控制、管理及隧道日常养护综合管理系统集于一体,由隧道监控室管理,对防灾安全保障设施分别检测和集中报警,并对数据集中管理。隧道监控系统中存在很多跨子系统的联动关系,如火灾报警系统与通风照明控制、广播、智能视频、应急救援等系统。实现这些联动功能,必须建立一个监控一体化平台软件,统一数据接口标准,预留与综合安全监控信息网络等相关系统的接口,做到信息共享;建立一个统~的人机界面,统一处理和存储相关数据。实时数据库随时收集和存储人机界面所需数据,并通过特定功能的模块处理,向各有关子系统发送控制指令,使视频、音频、无线频道、控制数据在一体化软件平台上实现综合监控,为铁路隧道安全、环境保护、高效和经济运行提供安全保障。

责任编辑葛化一

收稿日期2009-07-06

铁路隧道防灾安全监控与应急救援保障信息系统研究

作者:钱生校, 刘淑芳

作者单位:钱生校(中国铁建股份有限公司,北京,100043), 刘淑芳(西南交通大学运输学院,四川,成都,610031)

刊名:

中国铁路

英文刊名:CHINESE RAILWAYS

年,卷(期):2009(10)

被引用次数:1次

本文读者也读过(2条)

1.姜学鹏.徐志胜.Jiang Xuepeng.Xu Zhisheng公路隧道事故分级及其应急救援研究[期刊论文]-灾害学

2008,23(4)

2.费东斌.FEI Dong-bin青藏铁路应急救援指挥信息系统设计与实现[期刊论文]-铁道运输与经济2008,30(4)

引证文献(2条)

1.张晟.莫俊文.吕俊超铁路隧道防灾性能化设计分析[期刊论文]-兰州交通大学学报 2011(4)

2.姚夕平一种隧道分区所的布置方式研究[期刊论文]-铁道工程学报 2010(10)

本文链接:https://www.360docs.net/doc/0614046052.html,/Periodical_zhongguotl200910012.aspx

隧道防灾救援系统技术规格书

第三节隧道防灾救援系统技术规格书 1 技术标准 TB 10020-2017 《铁路隧道防灾疏散救援工程设计规范》GB7251.1-97 《低压成套开关设备》 GB/T 14048.1-2000 《低压开关设备和控制设备》 GB4025 《低压电器基本标准》 JB4013.1 《控制电路电器和开关元件一般要求》GB/T2681-1981 《电工成套装置中的导线颜色》 GB/T2682-1981 《电工成套装置中的指示灯和按钮颜色》GB/T 4942.2-1993 《低压电器外壳防护等级》 GB9466-88 《低压成套开关设备基本试验方法》IEC73 《指示灯和按钮的色标境条件》 IEC129 《交流断路器和接地保护》 IEC439 《低压开关设备和控制设备成套装置》IEC529 《外壳防护等级》 IEC947 《低压开关设备和控制设备》 2 环境条件 (1)安装地点:隧道内; (2)环境要求:-25℃-+60℃; (3)雷暴日:≥46.6日/年; (4)安装:垂直安装与垂直面的倾斜角度不超过5度.

(5)应充分考虑铁路隧道环境的特殊性,特别是需要独立安装,不能利用隧道配电箱提供保护的设备器件,必须采取一定的防尘、防潮措施或结构设计,保证在潮湿环境中正常使用。 3 系统组成 3.1项目概述 隧道防灾救援设备监控系统主要完成隧道内防灾通风设备、电力设备、应急照明等的集中监控、故障报警及调度管理,在发生火灾时,能够根据预先生成的灾情预案进行控制,达到防灾减灾的目的,以保障列车的正常运行。 为保障隧道运行安全,根据2017 年5 月1日发布的《铁路隧道防灾救援疏散工程设计规范》(TB10020-2017),及2013 年2 月20 日发布的《铁道部关于执行<铁路隧道防灾救援疏散工程设计规范>有关要求的通知》(铁建设【2013】38 号),新建怀邵衡铁路工程隧道设计防灾救援设备监控系统,简称TRMS 系统。 其中,TRMS 系统主要由监控主机、现场控制单元(LCU)以及通信网络等组成。 1)监控主站:根据铁路部门不同的运营管理模式,防灾救援设备监控系统监控主站一般设置在综合维修工区。 2)现场控制设备:现场控制单元LCU及通信设备构成隧道现场监控子系统。 3)通信网络:分为干线网络和隧道内网,干线网基于铁路传输网SDH (Synchronous Digital Hierarchy,同步数字体系)或MSTP(Multi-Service Transfer Platform,基于SDH 的多业务传送平台)构建,隧道内网则由光纤环

隧道监控系统

隧道监控系统介绍: 随着国内经济的快速发展,大量的高速公路和隧道项目不断建设。高速公路和隧道系统安全的最重要的部分就是在隧道内建立一套高性能、高安全的隧道监控系统。 在一些隧道相对比较特殊的地段,为了可以实时的掌握和了解隧道内的交通承受力、车流量、地段环境情况,工程人员设计了隧道/桥梁监控系统,利用已经铺设好的道路光纤网络连接各种传感器,准确及时的掌握实时路况,保障交通安全和维护道路设施。 隧道监控系统需求: 隧道监控系统是高速公路信息化建设的重要组成部分,其中包含的检测项目有气象监测、车辆导航、诱导服务、车牌识别系统、车型分类系统的应用。隧道内场设置车辆检测器、固定枪式数字摄像机、车道指示器、隧道联络洞指示器;隧道外场设置带云台球型数字摄像机、可变限速标志、门型架可变信息标志、交通信号灯等。最终将监视各路段的行车状况实时传输至监控中心。在隧道监控系统中。由于隧道距离较长,且环境不同于隧道外的环境,因此采用双绞线不能满足远距离通讯传输的要求,同时一旦网络中断,则会导致整个通讯的中断,使系统不能正常运转,产生严重的经济损失和社会问题。在隧道监控项目中,通讯

网络采用环网式组网方案,形成光纤冗余环网,实现网络通信冗余,光纤的采用延长了传输距离。各检测控制器带有以太网通讯接口用于连接以太网交换机,通过交通监控交换机环网通讯光缆与监控管理中心交通监控系统服务器进行通信,并且使得监控中心实时掌握和控制隧道内交通状况。 隧道监控系统方案特点: ●MR-Ring环网技术在网络出现故障时,能够在20ms内恢复并切换至备用链路,提供网络通信冗余 ●使用网管型交换机,提供多种网管方式,图形化人机界面,便于用户操作 ●交换机提供光纤接口,延长传输距离,抗电磁干扰,耐腐蚀 ●交换机电源设计提供冗余电源,失电告警等功能 ●简便的安装方式,便于安装 ●工业级标准设计,标准IP防护等级,适用于隧道内、室外使用 隧道监控系统解决方案:

TFZh型铁路防灾安全监控系统考试试题及答案

TFZh型铁路防灾安全监控系统考试试题及答案 一.填空题 1. FZh型铁路防灾安全监控系统是一套架构于传输网络之上的集成系统,合武防灾系统中监测内容是:风监测、雨监测、异物监测。 2. FZh型铁路防灾安全监控系统设备主要由室外风速风向计、雨量计、异物侵限等监测设备,通信基站内的监控单元,中心的监控数据处理设备,以及防灾调度终端、工务终端、维护终端等组成。 3. 因自然环境或突发事件造成异物侵限,经过排除障碍,不影响行车时,行车调度人员可用进行临时行车的控制功能,在这个基础上,如果监测设备得到修复,调度人员可进行调度复原。 4. 在异物轨旁控制器里有电网故障、上行临时行车、下行临时行车、现场恢复、四个指示灯,正常情况下指示灯状态是全部不亮。 5. 在异物轨旁控制器有现场测试1(或实验1)、现场测试2(或实验2)、现场恢复三个钥匙,用于现场测试系统完整性。 6. 在现场测试过程中,扭动完现场测试1(或实验1)、现场测试 2(或实验2)两把钥匙后,需要再扳回到原来位置,否则无法进行调度恢复。 7. 在风雨监测点的数据远程传输单元内有两个开关电源给两个传感器供电,两个电源输出电压是直流24V。如果电源正常则电源指示灯绿灯常亮。 8.目前上海局合武使用的风雨传感器实现采集冗余功能,传感器名称为维沙拉

9.两个风雨传感器一高一低安装的目的是:防止数据采集时相互干扰。 10.风雨传感器A和B风速采集原理是:超声波式。 11. 异物监测点报警级别分为:一级报警、两级报警。系统监测到双电网同时中断时,在终端发出一级报警;系统监测到单电网中断时,向终端发出二级报警。 12. 当发生一级报警时,如果在道路可临时通行但异物设备未修复好的情况下,经工务人员同意可由行车调度人员进行上、下行临时行车操作。 13. 在大雨发生报警降级或解除时,工务人员需要到现场确认符合条件,然后通过工务终端通知调度终端进行报警确认。如果升级报警, 调度终端不需要工务通知,直接可以进行“报警确认”操作。 14. 异物二级报警不需要调度人员进行处理,工务需要确认然后现场修复系统。 15. 当上、下行临时行车命令都下达后,若维护人员现场修复电网,并扭动现场恢复按钮后,行度终端监控界面相应指示灯亮。表示现场工务人员已经确认使系统恢复,是行调终端“调度恢复”按钮变为可用的一个条件。 16. 大风数值>30m/s时对应的报警级别一级报警;风速达到 20m/s<风速<=30m/s时对应的报警级别二级报警,此阈值由路局文件提供,可以通过配置文件配置。 17. 风监测点单套采集中断报警,则可判断为该套传感器对应的电源通道故障或传感器故障。

任务2国内外高速铁路安全与防灾系统概述.

石家庄铁路职业技术学院教案首页

【新课内容】 任务1 高速铁路安全与防灾系统概述 高速铁路是一个纷繁复杂的巨系统,其运行安全涉及到各个环节,从合理安排列车运行图和司乘人员,到运营设备、线路的状态检测与维修保养和环境安全监控预警,以及调度指挥和运行控制等。高速铁路安全与防灾安全技术是用于全面监测各种可能对安全行车产生危害的自然灾害,通过建立实时监控网络、及时采取预防与防护措施,达到减少灾害损失、最终保证行车安全的目。以日本、法国、德国为代表的国外高速铁路,把安全技术作为高速铁路的先导型核心技术加以系统研究。针对其所处的自然环境、地理条件以及运营条件的不同,分别采取了各自不同的安全保障措施,并通过实际运用对安全对策予以不断完善和提高。 一、国内外高速铁路防灾安全监控系统概述 1.日本 日本是一个台风、暴雨、地震、滑坡及大雪等自然灾害频繁发生的国家,铁路经常遭受自然灾害的侵袭。据统计,日本铁路大约有1/3的行车事故是由各类自然灾害引发的。自然灾害严重威胁着日本铁路的行车安全,其引发的次生灾害(也称二次灾害)往往导致重大行车事故,造成的损失难以估计。因此,日本铁路部门非常重视对自然灾害的研究、防治工作,自新干线建成运营以来,经过40余年的不断研究和开发,已经从简单的观测、报警、防护逐步构建形成一整套完善的安全防灾监控系统,加强了对地震、强风、暴雨和大雪等自然灾害的检测,确保日本铁路的安全运营。按照灾害信息的种类和系统功能划分,日本铁路的安全防灾监控系统分为灾害预测系统和灾害检测系统。前者是根据监测数据对灾害发生的可能性进行预测,通过采取灾害前的预警措施和行车规定,保障行车安全;后者是针对已经发生的灾害,通过检测判断,阻止列车进入灾害区段,避免次生灾害的发生。 日本铁路制定了灾害情况下相应的行车安全规则,以及降低灾害对行车影响的措施,并已经研究及开发了很多针对不同自然灾害的自动监控系统,如地震紧急检测报警系统(UREDAS)、防灾管理控制系统、气象信息系统(MICOS)、河流信息系统。 1996年东海道新干线还开发使用了轨温监测系统。目前,日本新干线采用的是综合防灾安全监控系统,它是COSMOS综合运营管理系统的子系统。它通过设置在沿线的雨量计、风向风速仪、水位计和相应地点的地震仪等观测装置和落石、滑坡、泥石流等沿线灾害检测装置,以及轨温及异物入侵检测设备,基础设施、大型建筑物和车站灾害监测设备,沿线防护开关和防护电话等,将沿线的各类灾害信息全部送到中央调度控制室并严密监视线路的状态,一旦发生灾害,系

TFZh型铁路防灾安全监控系统维护手册

目录 1 系统整体结构 (1) 2 监测设备(现场层设备) (2) 2.1 气象监测设备 (2) 2.2 异物现场监测设备 (12) 3 基站监控单元设备 (17) 3.1 监控主机 (19) 3.2 UPS (23) 3.3 UPS切换器 (28) 3.4 继电器及电源组合 (30) 3.5 长线收发器 (33) 3.6 监控单元供电 (34) 3.7 监控单元防雷 (38) 4 问题处理 (40) 4.1 网络中断 (40) 4.2 气象数据异常或无数据 (41) 4.3 异物网黄色(或红色)报警 (42) 4.4 电源故障 (46) 4.5 防雷器故障 (55) 4.6 监控主机故障 (56)

5 日常维护 (57) 5.1 远程试验 (59) 5.2 现场试验 (60) 5.3 巡检 (62) 6 TFZH型铁路防灾安全监控系统工程信息表(见第二册) (66)

1系统整体结构 TFZh型铁路防灾安全监控系统(以下简称“防灾系统”)总体结构由现场层设备、基站层设备、中心设备与应用设备四层组成: ◆现场层设备:用于现场灾害信息采集,主要由各种灾害信息采集 传感器(风速、雨量)和异物监测设备组成。 ◆基站层设备:用于现场采集设备的处理,主要由监控单元组成。 ◆中心层设备:用于对实时数据进行存储、分析、转发等工作,主 要由应用服务器、数据库服务器等组成。 ◆应用层设备:用于对灾害数据的显示与统计工作,是人机界面的 接口,主要由各种应用终端组成。 系统整体结构图如下:

2监测设备(现场层设备) 防灾监控系统监测设备包括:风雨传感器、数据远程传输单元、双电网传感器、轨旁控制器及传输电缆。 2.1气象监测设备 2.1.1风雨传感器及数据远程传输单元的安装 风雨现场监测设备是由风速风向传感器、数据远程传输单元和传输线缆组成。风速风向传感器使用专用托架,使用M16的螺栓和螺母安装在接触网支柱上,如下图所示:

隧道施工安全监控系统

隧道施工安全监控系统 设计方案 2015年3月

目录第一章.概况3 1.1系统介绍4 1.2设计原则与依据4 第二章.系统组成及工作原理6 2.1 系统组成6 2.2 系统应用总体平台架构7 2.3 系统网络结构拓扑图7 2.4人员进出定位管理系统8 2.5 人员/车辆门禁通道系统9 2.6 有害气体监测系统11 2.7 LED显示系统12 2.8 视频监控系统13 2.9 通讯系统及后台系统15 2.10 指挥部联网-综合远程管理16 第三章.系统功能特点17 3.1 核心功能特点17 3.2 系统特点18 第四章.软件功能18 4.1 概述19 4.2 功能描述20 第五章.主要设备介绍23 第六章.工程注意事项28

隧道施工安全门禁系统 设计方案 第一章.概况 近年来,我国高速公路隧道工程建设成就显著,相继建成了秦岭终南山隧道、厦门翔安海底隧道、上海长江隧道等一大批公路隧道工程。目前,随着我国高速公路建设重心逐步向中西部地区转移, 隧道工程数量不断增多,全国仅高速公路在建特长隧道就达160余座,建设任务更加艰巨,地质条件愈加复杂,工程管理难度明显增大,质量安全管理工作面临严峻挑战。 隧道工程施工环境封闭,隐蔽工程较多,工程质量安全隐患易发难控。部分地区和项目隧道工程地质勘察不详、设计深度不足;建设管理制度不健全、措施不落实、管理不到位;现场施工组织不力、设备简陋、工艺落后,野蛮施工、偷工减料等现象屡禁不止;施工管理和现场监理缺位,隐蔽工程质量管控薄弱,工程实体质量和结构耐久性受到影响。 为切实规范隧道施工质量安全管理,提升工程质量安全管理水平,交通运输部专门下发《关于进一步加强隧道工程质量和安全监管工作的若干意见》交质监发[2013]549号,要求“推动隧道工程信息化施工。针对隧道施工的不确定性和高风险性,加强施工信息化系统建设,实行围岩与支护结构监控量测信息化、人员定位与安全管理信息化、施工质量管理信息化,及时有效指导和控制施工,降低质量安全风险。配置视频系统,实行隐蔽工程施工可视化监控管理。建立隐蔽工程施工过程照片、影像记录资料库,确保施工过程可溯、可查。长大隧道宜配置电子门禁、有毒有害气体连续监测信息管理系统”。

隧道防灾救援设计

隧道防灾救援设计摘要: 本文分析了隧道火灾发生的原因及特点,并以窑头岭隧道为例设计了窑头岭隧道防灾救援计划。分析了隧道防灾救援的设计思路并详细论述了隧道火灾救援措施的设置,论述了隧道火灾救援应急处理流程,从人员车辆疏散、火灾处理与维护和回复正常通车上那个阶段详细的论述了窑头岭隧道防灾救灾过程 关键词:公路长大隧道;防灾救援 1 前言 隧道在优化线路线形、大幅度缩短线路长度、降低路线标高、克服不良地质条件、提高行车舒适性等方面,显示出了巨大的优越性。随着我国经济建设和社会的发展以及高速公路建设步伐的加快,公路等级越来越高,公路建设逐渐向山区发展,公路隧道工程也得到迅猛发展,特长公路隧道不断纳入规划和建设中。 绝大多数隧道地处山区,人烟稀少,水源缺乏,交通不便;隧道为一管状结构,近似密闭状态,燃烧产生的热量不易散发,不可能自然排烟,烟雾比较大,大量高温有毒烟气很快充满隧道;同时,隧道空间狭小,道路狭窄,车辆、人员密集,一旦发生火灾等紧急事故时常伴随严重的交通阻塞,车辆、人员和物资疏散极其困难,消防人员难以接近火源点,扑救困难;如果施救不及时和方法不当,必然会造成严重的人员伤亡和财产损失,带来危害时常是毁灭性的,社会影响大。1999年发生的意大利勃朗峰隧道和奥地利陶恩隧道等重大火灾事例,充分说明了公路隧道火灾的危害性。 为确保隧道的安全和正常运营,需要科学合理地进行消防与防灾救援设计,做好预案研究。本文以窑头岭长公路隧道为例,来探讨长大公路隧道的消防与防灾救援设计。 2.隧道火灾发生的原因及特点 引起隧道火灾的原因是多种多样的,但概括起来主要集中在:隧道电气线路或电气设备短路起火;汽车化油器燃烧起火;紧急刹车时制动器起火;汽车交通事故起火和车上装载的易燃物品爆炸起火等几个方面,即:隧道内火灾事故的危险性与隧道长度和交通量成正比。因行车密度增长,使带有各种可燃物质(油、化工原料等)的车辆通过隧道的数量和频率都在增长,因此火灾事故也就增多了;隧道内的照明质量下降,行车速度的提高及隧道内线路质量的下降,隧道报警系统不完备和车辆违章驾驶,使火灾事故增多;特长公路隧道的涌现使得隧道内电气设备增多。增大了电气起火的频率;人为破坏(如故意纵火、抽烟、恐怖主义等)。 研究隧道火灾事故表明,影响火灾量级的最终造成危害的主要参数是“时间”:即发现火灾的时间;发出警报的时间;确定火源的时间;实现应急反应过程的时间。隧道火灾的特点主要表现在:失火爆发成灾的时间快,一般为2~10min;火灾的持续时间较长,它与隧道外的环境有关,一般在30min至几个小时之间。隧道火灾产生烟雾浓度大,传播迅速,毒性强;火灾温度高。隧道内一旦起火,顺风下侧的空气温度可达到1000℃以上;隧道火灾将极大的影响隧道内空气压力的分布,而隧道空气压力的变化可导致通风气流流动状态紊乱。如果风速不够大,上层的热气流将相反于压力通风的方向流动,发生“回流现象”,将影衬砌结构的整体性受到破坏,隧道火灾使衬砌混凝土强度降低,会阻碍救火工作的进行; 响隧道的安全使用。安全疏散困难,极易发生此生灾害。隧道中发生火灾时,人们情绪紧张,由于拥挤等导致发生意外伤亡。 2工程概况 窑头岭长公路隧道窑头岭隧道位于乳源县桂头镇内,隧道穿越低山丘陵区,隧道进口里程DK1963+680;出口里程DK1964+750,隧道全长1070m,隧道最大埋深78.05m,位于线路DK1964+068,隧道进出口设单面斜坡。

14隧道信息化管理课件

石林隧道标准化施工工艺隧道信息化管理 中铁一局集团有限公司 2012年5月

隧道信息化管理 1隧道信息化管理概述 为了平稳、高效推进云桂铁路的建设,尤其为确保石林隧道安全、有序施工,根据铁道部“四化”(机械化、工厂化、专业化、信息化)建设要求,按照云桂公司“科学管理、精细管理、严格管理”的总体要求,我们将信息化建设作为科学管理、精细管理的重要推手,提高认识、加强领导、积极探索完善,初步实施了信息化管理,提升了对现场的管控水平。 石林隧道信息化管理系统主要包括安全监控系统和RCPMIS系统、监控量测系统3大模块,2011年3-5月期间,在石林隧道4个洞口设置了安全监控系统,实现了进洞人员自动识别和定位;在4个洞口和6个拌合站设置了视频点,全天候监控现场动态;2011年12月,在集团公司项目经理部和分部建立了二级远程网络监控,实现信息的及时传递和对作业现场的实时监控。利用RCPMIS系统平台,初步实现了“工程进度”、“地质预报”、“围岩量测”、“物资管理”、“材料消耗”等几大模块的日、周、月报的动态管理。 石林隧道通过信息化建设和推进,初步实现了对施工现场的实时管控,为各项管理工作有序、有效进行创造了一个良好基础。 2. TSAQ-1安全监控系统 2.1 视频监控子系统 根据石林隧道现场施工的特点的特点,及整个安全监控系统的系统的实际情况,为了随时掌握隧道各个作业面和拌合站的安全状况,石林隧道安装了视频监控子系统,通过互联网,在授权的条件下通过电脑终端监控隧道口及拌合站生产情况。该系统技术水平先进、运用现代监控技术具有可设置性,可实现24小时不间断监视,可支持多种协议(TCP/IP, ARP, ICMP, FTP, DHCP, HTTP,PPPOE,DNS,组播),视频帧率、码率可根据带宽自动调节,不影响办公区正常业务使用带宽等特点。 视频监控子系统设备由M-CV-2060IR型摄像头、视频传输线和监控终端工控机两部分组成。

国外高速铁路防灾安全监控系统简介.

第七节 国外高速铁路防灾安全监控系统简介 世界各国在建设高速铁路之初,均把“安全”作为高速铁路的先导核心技术加以系统研究,并在实际运用中不断完善。通过实现基础设施高标准、技术装备高质量、运行管理自动化和安全监控实时化,来保证高速列车安全正点运行。 以日本、法国和德国为代表的高速铁路,由于其所处的自然环境、地理条件及运营方式不同,各自采用了不同特点的防灾安全保障措施。 一、日 本 日本是一个灾害多发国家,台风、暴雨、大雪、地震等自然灾害频繁。新干线自1964年10月开业至今,保持着无一乘客伤亡的优异成绩。每天运行列车750列,运送旅客75万人次以上,列车晚点平均小于1 min,首先应归功于日臻完善的防灾安全保障体系。 (一)沿线灾害监测及管制措施 1.地震监测及运行管制 日本是一个多地震国家,除在沿线(大部分在变电所)设置加速度报警检测仪及显示用地震仪外,东北、上越、长野新干线还沿海岸线设置地震监测系统,以便提前检测到40 Gal以上的地震波。东海道和山阳新干线由于距东海及关东地震区很近,则采用了更为先进的“地震P波早期监测警报系统(UrEDAS)”,利用沿线地震报警仪(设定40 Gal)和M(震级)—△(距震中心距)图,对运行管制区域进行判断和管制。图6.7.1为日本地震信息系统示意图,图6.7.2、图6.7.3为发生地震时的列车运行管制范围和过程。表6.7.1。表6.7.3为发生地震时的列车运行管制规则。 图6.7.1 日本地震信息系统示意图

图6.7.2 甲、乙、丙、丁所代表的范围 图6.7.3 日本地震发生时的处理过程框图 2.风速监测和运行管制 在易发生强风及突然大风的高架桥、河川等地安装风向风速仪,其信息在中央调度所的显示盘上或CRT上显示(Cathod Ray Tube是调度员和信息处理系统的电脑互相交换情报的人。机装置)。日本对列车运行进行管制的风速值,全部为瞬时风速值。管制标准各地区不尽相同,在设置了挡风墙的地段,对强风进行运行管制的标准可适当放宽。 表6.7.1 地震发生时列车运行规则(东海道新干线) 行 车 规 则 地震强度 停 车 限 速 运 行 甲 在规定的区间停车 在规定的区间限速70 km/h以下,特例30 km/h以下 乙 在规定的区间停车 在规定的区间限速70 km/h以下,特例30 km/h以下 丙 / 在规定的区间限速70 km/h以下,特例30 km/h以下 丁 / / 注:(1)“地震强度”是UrEDAS早期监测系统判定的地震烈度。 (2)“特例”是指下列情况之一:

【隧道方案】高速铁路电力工程隧道防灾救援工程专项施工方案

新建铁路XX至XX线XX段防灾救援工程 XX隧道救援工程 施工作业指导书 编制: 审核: 批准: XX工程指挥部 20XX年XX月

油竹山隧道防灾救援工程专项施工方案 一、编制依据 (1)隧道防灾救援疏散工程Ⅰ类变更设计施工图:供配电及监控系统图。(图号:图号:贵广贵贺施隧(防灾)-电监) (2)高速铁路电力工程施工质量验收标准》(TB10757-2010)。 (3)《高速铁路电力工程施工技术指南》(铁建设[2010]241号)。 二、适用范围及主要工程量 2.1适用范围 油竹山隧道防灾救援工程,主要包含:各种配电箱安装,控制箱安装,风机安装、防护门安、箱式变电站基础制作、安装;高、低压电缆安装及其应急照明、疏散灯具安装等。 2.2主要工程量

三、作业准备 3.1施工界面划分

3.1.1与电力专业施工界面划分为:由昌明至都匀东区高压通过高压电缆分支箱倒接。施工界面在分支箱进线、和出线端。 3.1.2与通信专业施工界面划分为:通信机房ODF配线架出线侧。 3.2内业技术准备 开工前必须组织技术人员认真学习实施性施工组织设计,阅读、审核施工图纸,澄清有关技术问题,熟悉规范和技术标准。制定施工安全保证措施,提出应急预案。对现场施工人员进行技术安全交底,对参加施工人员进行上岗前技术培训,考核合格后持证上岗。 3.3外业技术准备 对油竹山隧道救援通道进行调查,施工人员驻地及后勤安排,机具材料、车辆准备。 四、技术要求 4.1挂件放线、打孔、安装要求 4.1.1施工测量前,施工人员应熟悉设计提供的横、纵立面图等资料,熟悉沿线交通地形情况,认真调查研究,综合考虑运行、施工、交通条件和路径长度等因素,统筹兼顾,全面安排,做到经济合理、安全适用。 4.1.2应急照明干线电缆沿隧道壁水平安装时采用电缆挂钩敷设,挂钩安装间距为0.8m,安装高度为距灯具上沿200mm处,灯具安装高度为距电缆沟面3m。 4.1.3放线时确保线两端距斜井地面高度一样。因斜井洞壁不是很平滑,放线时长度不能太长以免中间有弧度,影响整体平整度。

铁路防灾系统

- 客运专线防灾安全监控系统总体技术方案(暂行)(初稿) 1.总则 1.1防灾安全监控系统是保证客运专线列车安全、高速运行的重要基础装备之一。行车调度员根据风雨雪天气、地震灾害、异物侵限等安全环境的实时监测报警、预警信息以及铁道部、铁路局的相关规章制度,指挥列车安全运行;工务维护部门按照防灾安全监控系统提供的相关灾害信息,开展基础设施的巡检、抢险及维修养护工作。 1.2防灾安全监控系统是风监测子系统、雨量监测子系统、雪深监测子系统、地震监控子系统以及异物侵限监控子系统的集成系统,并预留轨温监测子系统的接入条件。 1.3客运专线铁路应根据沿线的气象、地质条件以及线路环境、运营速度,选用相应的子系统,合理构建客运专线防灾安全监控系统。 1.4防灾安全监控系统应与客运专线同步设计、安装、调试及开通运用。 1.5防灾安全监控系统设备应布设于铁路用地界内,现场监测设备的安装不得侵入客运专线的建筑限界。 1.6防灾安全监控系统与其他系统的接口设备故障时,不应影响其他系统的正常运行。

1.7防灾安全监控系统应具有抗雷电及电气化铁路电磁干 - 2 - 扰的能力。 1.8防灾安全监控系统的构建应支持兼容子系统的接入及其所引起的系统容量、功能等方面的平滑扩展。 1.9防灾安全监控系统现场设备应满足无人值守的要求,具有较完善的故障自诊断和远程维护功能。 2.引用标准 《地面气象观测规范》(QX/T61-2007) 《中国地震动参数区划图》(GB18306-2001) 《地震台站观测环境技术要求》(GB/T 19531.1-2004)《计算机软件开发规范》(GB8566-88); 《微型计算机通用规范》(GB/T 9813-2000); 《国际电联2Mbps 接口通信标准》(ITU—TG.703、G.704);《电磁兼容试验和测量技术》(IEC61000-4-12); 《计算机信息系统雷电电磁脉冲安全防护规范》(GA267);《外壳防护等级》(GB4208-2008); 《电工电子产品环境试验》(IEC60068-2-14:1984); 《电子计算机场地通用规范》(GB2887-2000); 《铁路防雷、电磁兼容及接地工程技术暂行规定》(铁建设…2007?39号); 《CTCS-3级列控系统技术创新总体方案》(铁运…2008?73

某隧道防灾救援方案设计

浅谈某隧道防灾救援方案设计 摘要:公路隧道空间狭小,灾害的发生往往会造成严重的人员伤亡和财产损失。本文以某公路隧道的防灾设计方案为例,分别简述了防灾救援原则、救援设施、救援流程等,为隧道的防灾设计提供借鉴。 关键词:公路隧道;防灾;方案 abstract : the space of highway tunnel is small, disasters often result in death and property damage . this paper take a highway tunnel disaster prevention design as a example , briefly describing disaster prevention and rescue principles , rescue facilities , rescue process and so on, to provide a reference for the tunnel disaster prevention design . keywords : highway tunnel ; disaster prevention ; program 中图分类号: u459.2 文献标识码: a 文章编号: 1、概述 公路隧道的火灾,由于其发生的时间、地点均不可预测,所以很难完全杜绝。加之隧道内空间狭小,灾害发生时常伴随严重的交通阻塞,如果施救不及时和方法不当,必然会造成严重的人员伤亡和财产损失。 公路隧道防灾设计应贯彻“以防为主、防消结合”的方针。要做到立足于防灾进行设计,同时隧道内一旦出现火灾,必须做到早发现,及早扑灭,避免小火酿成大灾。对于隧道内发生的初期火灾,

电缆隧道监控系统介绍

电缆隧道综合监测系统 1. 电缆隧道综合监测主站端 电缆隧道综合监测系统总体上分为三层:分别是系统主站层、通信传输层、数据采集设备层,各层在统一的安全框架下运行,完成电缆隧道综合检测的功能,系统典型结构如图1所示。 图1 电缆监测系统典型结构图 1.1 系统主站 主站系统采用分层分布式系统结构,分为:系统管理平台层、数据采集层、业务应用层、数据展示层。充分利用成熟的网络管理技术、数据库中间件、面向对象以及应用组件技术,遵循IEC 61970 CCAPI系列的公用信息模型(CIM)和组件接口规范(CIS),在基本的SCADA

应用的基础上,集成光纤测温及专家分析系统、局放及专家分析系统、接地电流及专家分析系统、环境监控系统等应用,完成实时的电力电缆运行状态、环境信息、监控及应用分析需求。 1.1.1 系统要求 1.1.1.1 标准性 电缆隧道综合监测系统的软硬件平台应具有良好的开放性和广泛的适应性,应基于相关国际、国家、行业及企业标准开发,可插入任何符合相关标准的应用模块或子系统,并支持模块或子系统间的数据和功能交互,系统规模和功能可按需扩展。 1.1.1.2 可靠性 电缆隧道综合监测系统建设时应充分考虑可靠性要求,通过关键硬件设备及软件采用冗余配置、集群(主备/负载均衡)技术、虚拟化技术、容灾备用等技术手段,消除单点故障,确保不因部分软硬件故障而影响系统功能的正常运行。 1.1.1.3 可用性 电缆隧道综合监测系统所采用的软硬件设备应具有良好的可管理性,可自动报告自身状态或响应状态查询指令,可响应运行控制指令(启动/停止、主备切换等)。 电缆隧道综合监测系统应提供方便易用的操作、维护和管理界面,系统功能组织合理、界面美观易懂、操作方便快捷。使用人员无需经过复杂的培训即可掌握并使用此系统。 1.1.1.4 安全性 电缆隧道综合监测系统应满足信息系统安全等级保护及电力二次系统安全防护相关标准、规范的要求。在运行过程中应确保不对电网安全运行产生负面影响,不因系统本身的故障或错误导致电网安全事故。 1.1.2 系统管理平台层 系统管理平台层主要功能包括:系统模型、图形管理、系统资源管理、安全防护管理、与其他系统交互等。 1.1. 2.1 全景数据建模 全景数据建模包括元数据管理功能和建模功能。 a)元数据管理实现对基础元数据、业务元数据的管理,其功能包括元数据的收集、存 储、编辑、发布、查询等。 b)系统具备可视化的绘图建模功能,实现对电网运行相关各类模型、图形信息的统一 维护,可提供图模一体化的图形绘制、模型建立与参数维护、模型库浏览与编辑、 模型导入与导出、模型合并与拆分、图形导入与导出等功能。 系统模型包括:电网模型、电缆隧道模型,图形包括:配网接线图、电缆接线图等,该部分为系统应用层提供模型基础;系统能够完成模型、图形的备份与恢复。

德国、法国、日本高速铁路防灾安全监控系统简介

德国高速铁路防灾安全监控系统简介 德国高速铁路属客、货混运型,且隧道约占线路长度的1/3。因此,隧道内的行车安全成为德国高速铁路安全保障的重点。德铁制定了非常严格有效的防范措施。例如:禁止无加固和防护措施的货物列车或装有危险货物的列车驶入隧道;尽可能减少客、贷列车在隧道内交会,并要求限速运行;专门制造了两列隧道救援列车,随车带有医疗卫生救助设备,并同地方政府共同组织消防、救援队,当出现意外事故时,能及时进行抢救。 此外,在高速新线上也采用了新型防灾报警系统MAS90,除可监督线路装备的运用状况外,还可识别和及时报告环境对行车安全的影响,以及移动设备发生破损的情况。该警报系统在全线南、北、中段设有中央控制单元(SZE),相互连通;每个SZE又连接若干设在沿线总站信号楼内的各种报警和记录单元(MRE),并与之进行信息和命令交换。MRE接受安装在沿线的探测报警仪器采集的信息。这些探测报警仪器主要有:HOA903型热轴探测器;LSMA隧道气流报警器(在长度大于1.5km的隧道内安装);WMA风测量仪(在所有桥梁上安装);BMA火灾报警仪;沿线设置防护开关;隧道口坍方报警信号装置(EMA);隧道两端及隧道内每1000m(早期600m)设置应急电话(NR),仅需扳动手柄就可打开电话箱,紧急呼叫的信息具有绝对优先权。德国的计算机辅助列车监控(或称行车调度LZB)系统,可起到安全调度功能。 图为德国新建高速铁路防灾报警系统配置示意图。 图德国新建高速铁路防灾报警系统配置图 探测设备:HOA—热轴探测设备;WMA—风力测量报警设备;LSMA—气流报警设备; BMA—火灾报警设备;EMA—塌方报警设备;Whz—道岔加热设备。 处理设备:ZSE—集中控制单元;MRE—报警显示和记录装置。

智能隧道交通安全监控系统

智能隧道交通安全监控系统 学校: 姓名:

一、项目摘要 本项目基于STM32平台,开发一种智能隧道交通安全监控系统,对隧道内部进行实时的智能监控和预警,保障隧道内部行车的安全,避免车祸带来的交通堵塞等。系统通过光电对管传感器、火焰传感器模块采集隧道内部车辆行驶等相关信息,系统通过LCD显示模块、无线传输、对火源的分析检测、直流电机控制风扇、蜂鸣器等进行报警。系统硬件的电源电路、光电模块、火焰传感模块、风扇电机模块均接处理器模块,处理器模块接无线模块、LCD显示模块,处理器模块还与无线模块、光电模块等双向连接。 本系统可进行实时的智能监控和预警,保障隧道内部的行车安全,成本少,功耗低,安装方便,应用性能高,在各隧道的安全检测使用上均具有很强的实用性和推广价值。 二、创新性 1.实现隧道内部安全、畅通通行; 2.替代传统的视频监控,其在隧道内部光线无法达到预期效果,而且造价高等特点,对此实现了改进。 3.为智能交通的实现做出进一步的推动。 三、项目研究的目的 1.解决隧道内部的监控问题,节省人力。 2.使隧道内部实现智能化管理,将隧道内车辆信息及时返回分析。 3.对车辆的行进情况具体分析,一旦有车祸等车辆滞留事件发生,对其及时处理并疏通来往车辆,及时对进行路线做出调整。 4.及时将隧道内部的信息发送到进入隧道前的屏幕上,让来往的车辆第一时间发现隧道的通行状况(如车祸导致的堵车等)。 5.一旦车祸发生严重,导致内部发生火宅等事故,会对隧道进行紧急封停,同时保证内部的排气工作。

四、正文 1、项目背景 由于隧道结构封闭复杂,确保隧道内部交通安全显得尤为重要,隧道实时交通安全监控系统是确保隧道安全运营的重要手段。随着我国经济社会的飞速发展,对智能化管理的高等级公路的需求越来越大。十五、十一五期间,我国公路系统进入大发展、大跨越时期。隧道因其具有改善路网,节约土地等优点,逐渐成为公路建设的重要组成部分。但由于隧道具有空间狭窄、结构封闭、视线差等缺陷,一旦发生事故,救援工作复杂困难,而且容易造成严重的交通阻塞,并有可能引发火灾,从而引发灾难性的后果,因此,保证隧道行车安全至关重要。 隧道一般是连接公路、城市道路重要的节点和组成部分。在干线公路网的建设中,它可以克服山脉地形障碍,保证最佳的道路线形,更便利行车、提高经济效益。而传统的交通安全监控主要依赖于现场的人工巡视和远程的基于闭路电视系统即电视墙CCTV系统的人工监视。这不仅需要大量人力,而且监控效果不能得到有效保证。而且隧道内部的事故等监控更是无法实现,即便使用视频监控,由于其内部的光线与环境问题的干扰,使人们即便是人工监控也无法达到预期效果。为此,我们设计出了这个智能隧道交通安全监控系统,它为提高交通效率,保障隧道交通安全,缓解交通拥挤起着巨大的作用。 2、技术路线 如图所示,在技术路线上综合集成物联网,软件工程,计算机等技术,充分利用现有资源,对隧道内部安全实现智能监控。

客运专线防灾安全监控系统总体技术方案

客运专线防灾安全监控系统总体技术方案(暂行) (初稿) 1.总则 1.1 防灾安全监控系统是保证客运专线列车安全、高速运行的重要基础装备之一。行车调度员根据风雨雪天气、地震灾害、异物侵限等安全环境的实时监测报警、预警信息以及铁道部、铁路局的相关规章制度,指挥列车安全运行;工务维护部门按照防灾安全监控系统提供的相关灾害信息,开展基础设施的巡检、抢险及维修养护工作。 1.2防灾安全监控系统是风监测子系统、雨量监测子系统、雪深监测子系统、地震监控子系统以及异物侵限监控子系统的集成系统,并预留轨温监测子系统的接入条件。 1.3 客运专线铁路应根据沿线的气象、地质条件以及线路环境、运营速度,选用相应的子系统,合理构建客运专线防灾安全监控系统。 1.4 防灾安全监控系统应与客运专线同步设计、安装、调试及开通运用。 1.5 防灾安全监控系统设备应布设于铁路用地界内,现场监测设备的安装不得侵入客运专线的建筑限界。 1.6 防灾安全监控系统与其他系统的接口设备故障时,不应影响其他系统的正常运行。

1.7防灾安全监控系统应具有抗雷电及电气化铁路电磁干扰的 能力。 1.8防灾安全监控系统的构建应支持兼容子系统的接入及其所引起的系统容量、功能等方面的平滑扩展。 1.9防灾安全监控系统现场设备应满足无人值守的要求,具有较完善的故障自诊断和远程维护功能。 2.引用标准 《地面气象观测规范》( QX/T61-2007 ) 《中国地震动参数区划图》( GB18306-2001 ) 《地震台站观测环境技术要求》 ( GB/T 19531.1-2004 ) 《计算机软件开发规范》( GB8566-88 );《微型计算机通用规范》( GB/T 9813-2000 );《国际电联 2Mbps 接口通信标准》( ITU -TG.703 、 G.704 ); 《电磁兼容试验和测量技术》( IEC61000-4-12 ); 《计算机信息系统雷电电磁脉冲安全防护规范》 ( GA267 ); 《外壳防护等级》( GB4208-2008 );《电工电子产品环境试验》( IEC60068-2-14:1984 );《电子计算机场地通用规范》 ( GB2887-2000 );《铁路防雷、电磁兼容及接地工程技术暂行规定》(铁建设〔2007 〕 39号); 《CTCS-3 级列控系统技术创新总体方案》 (铁运〔2008 〕 73号) 《客运专线列控系统临时限速技术规范( V1.0 )》(科技运〔2008 〕151 号) 除上述标准和规范外,在防灾安全监控系统设备制造、软件编

隧道风险评估报告

目录 一、编制依据 ................................... 错误!未指定书签。 二、隧道概况 ................................... 错误!未指定书签。 1、工程概况................................... 错误!未指定书签。 2、地质概况................................... 错误!未指定书签。 3、施工图设计概况............................. 错误!未指定书签。 三、风险评估对象及目标 ......................... 错误!未指定书签。 四、风险评估程序及方法 ......................... 错误!未指定书签。 1、成立风险评估小组........................... 错误!未指定书签。 2、隧道风险评估的总体程序..................... 错误!未指定书签。 3、风险评估方法 (5) 五、风险源识别及确定风险因素.................... 错误!未指定书签。 六、基本风险点清单 ............................. 错误!未指定书签。 七、风险评估内容及基本风险点归类................ 错误!未指定书签。 八、风险控制措施 ............................... 错误!未指定书签。 1、降低掉块风险措施........................... 错误!未指定书签。 2、降低塌方风险措施........................... 错误!未指定书签。 3、边仰坡垮塌风险控制措施..................... 错误!未指定书签。 4、突水突泥风险控制措施....................... 错误!未指定书签。

铁路防灾安全监控系统

铁路安全监控系统 主要功能 铁路防灾安全监控系统是专门为高速铁路遇到风、雪、雨等灾害情况实施监测的系统,由于铁路线路的特殊性,风、雪、雨等自然灾害对铁路行车的影响,会由于具体的地形地貌,铁路的防护措施等而变化,因此达到灾害等级的风、雪、雨灾害不一定会影响到铁路运行,而未达到灾害等级的风、雪、雨气候条件却有可能影响到铁路运行。因此铁路防灾安全系统的建立,不仅是对风、雪、雨气象条件的监测,而是要对实测数据、历史数据、气象预报数据、经验数据等多种数据的综合处理,提供告警预警。 技术特征 防灾安全监控系统监控单元、网络汇聚点、调度所构成防灾系统专用局域网。系统中心上联调度所,下联二级汇聚点,同时负责前端控制器接入,还负责和其他第三方系统安全互联;系统二级汇聚点,负责汇集区段前端控制器数据;调度所为系统远程中心,与CTC、雨量监测系统等进行安全互联;中心-远程中心-二级汇聚间联网采用双星形结构,双设备/双网冗余;汇聚点-前端控制器采用双网冗余接入。 系统能够接收管辖区内的各监控单元上传的风速风向、降雨量、异物侵限等监测信息和设备工作状态;对风、雨、异物侵限等灾害的监测信息进行综合分析处理,根据灾害强度,生成各类报警、预警信息以及相应的行车管制预案并在工务终端上生成文本、图形显示及音响报警;同时,将风、雪、地震、异物侵限等灾害的报警、预警信息以及相应的行车管制预案传送至调度中心防灾终端。 防灾监控数据处理设备在用户界面上图形化地、动态地集中显示全线监测点的监测信息,主要包括各类监测项目的实时变化值及防灾安全监控系统的运行状态;防灾监控数据处理设备提供完善的系统管理功能,包括基础数据维护、系统运行参数配置、用户权限管理和访问日志功能。 知识产权:归属自有 应用领域:客运专线、既有铁路 铁路防灾安全监控系统结构示意图: 1

西成客专长大隧道群区间消防设计小结

西成客专长大隧道群区间消防设计小结 发表时间:2019-07-09T17:05:00.877Z 来源:《建筑实践》2019年第07期作者:闫宏晔 [导读] 西成客专作为国内建成的第一条山区长大坡道客运专线,隧道群消防系统是全线防灾救援综合系统中的关键子系统之一,中铁第一勘察设计院集团有限公司,陕西西安 710043 [摘要] 西成客专作为国内建成的第一条山区长大坡道客运专线,隧道群消防系统是全线防灾救援综合系统中的关键子系统之一,本文通过西成客运专线长大隧道群区间水消防系统设计的论述,总结了西成客专的设计经验,提出了紧急救援站消防设计的要点和细节注意事项,以供类似工程借鉴。 [关键词]西成客运专线隧道群水消防设计 一、概述 西安至成都客运专线位于陕西省南部和四川省中北部地区,行径秦巴山地,连接关中平原、汉中盆地和成都平原。秦岭山区山峦重迭,沟壑纵横狭窄,植被茂密,本线隧道工程密集分布在秦岭山区(隧道长度125.7km、线路长度133.8km)和大巴山区(隧道长度63.3km、线路长度72km),特点是隧道长、占线路比重大,并且成群密集分布,如此越岭长大隧道群,在国内外客专建设中实属罕见。 本文简要介绍西成客专隧道群区间消防系统设计过程的相关经验总结,并就存在的问题进行讨论,以供类似工程借鉴。 二、西成客专隧道防灾救援疏散工程设计经过 (一)可研-施工图阶段 针对本线特点-隧道成群密集分布,隧道间洞口间距多为60-80m,在可行性研究-施工图阶段,围绕艰险山区隧道群防灾救援疏散问题开展专题研究工作,当时无成熟的规范可供参照执行,通过大量调研国内外隧道防灾救援工程的实例,通过数值模拟计算等手段,结合可用安全疏散时间和列车运行速度两大重要指标,合理布设疏散定点(后期规范将其定义为隧道口紧急救援站)位置,前期研究中全线布设了6座疏散定点,均位于隧道间的明线上,并设置疏散通道、救援车场、救援道路、洞外消火栓箱、消防防护装备等配套设施。 (二)施工图变更设计 《铁路隧道防灾救援疏散工程设计规范》于2012年10月颁布。根据《防灾规范》(2012版)规定隧道洞口间距不超过400m的相邻隧道统称为隧道群。长度20km及以上的隧道或隧道群应设置紧急救援站,紧急救援站之间的距离不应大于20km。根据规范要求对原设计方案进行梳理研究,不满足规范要求的进行变更设计。 本线无长度大于20km的隧道,全按隧道口紧急救援站研究。隧道群紧急救援站的位置遵循“尽量居中、利用明线、方便救援”的设置原则。结合本线隧道分布情况,综合考虑地形、地质及救援便道等因素,合理选择救援站位置。全线隧道群确定了7个紧急救援站。调整后各救援站距离均不大于20km,满足规范要求。 三、西成客专隧道群区间消防系统设计 (一)消防系统方案选择 隧道的防灾救援和安全疏散总的说来,影响隧道火灾量级和生命安全的主要参数是“时间”,即发现火灾的时间;发出警报的时间;确定火源地点的时间;实现应急反应过程的时间。根据国内外火灾试验结论:火灾时,一般在起火后2~10min内温度即达到最高,且烟雾在20~30s内即充满整个隧道断面,能见度降到1m左右。所以必须在这宝贵的时间里面实现人员的安全疏散,并以此来确定防灾救援和安全疏散的标准和原则。对于带火可继续行走的列车,原则上应该将列车拖到救援点进行救援疏散。 本线可研-施工图阶段,国内关于客运专线长大隧道区间消防系统设计尚无明确的设计规范和标准细则要求,结合西成客专特点,主要参考现行相关规范、标准和国内外类似工程的做法及经验,对消防设计系统进行了研究比选,可见下表1。 表1 西成客专隧道群消防设计方案比选 经技术经济比选,结合西成客专工程特点,最终采用了隧道口紧急救援站,设消防泵房临时高压消火栓系统。 (二)西成客专救援站消防系统主要设计内容 1、消防设施

相关文档
最新文档