人教版高中数学向量练习题

合集下载

人教版高中数学必修第二册6.2.3 向量的数乘运算 同步精练(含解析)

人教版高中数学必修第二册6.2.3 向量的数乘运算 同步精练(含解析)

人教版高中数学必修第二册6.2.3向量的数乘运算同步精练【考点梳理】考点一向量数乘的定义实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作λa ,其长度与方向规定如下:(1)|λa |=|λ||a |.(2)λa (a ≠0)的方向当λ>0时,与a 的方向相同;当λ<0时,与a 的方向相反.特别地,当λ=0时,λa =0.,当λ=-1时,(-1)a =-a .考点二向量数乘的运算律1.(1)λ(μa )=(λμ)a .(2)(λ+μ)a =λa +μa .(3)λ(a +b )=λa +λb .特别地,(-λ)a =-λa =λ(-a ),λ(a -b )=λa -λb .2.向量的线性运算向量的加、减、数乘运算统称为向量的线性运算,对于任意向量a ,b ,以及任意实数λ,μ1,μ2,恒有λ(μ1a ±μ2b )=λμ1a ±λμ2b .考点三向量共线定理向量a (a ≠0)与b 共线的充要条件是:存在唯一一个实数λ,使b =λa .【题型归纳】题型一:向量的线性运算1.(2021·山东邹城·高一期中)已知向量a ,b ,实数m ,n (0m ≠,0n ≠),则下列关于向量的运算错误的是()A .()m a b ma mb -=-B .()m n a ma na -=-C .若0ma =,则0a =D .若ma na =,则m n=2.(2021·全国·高一课前预习)若a b c =+,化简()()()32232a b b c a b +-+-+的结果为()A .a-B .4b-C .cD .a b-3.(2021·四川省蒲江县蒲江中学高一阶段练习)已知m ,n 是实数,a ,b 是向量,则下列命题中正确的为()①()m a b ma mb -=-;②()m n a ma na -=-;③若ma mb =,则a b =;④若ma na =,则m n =.A .①④B .①②C .①③D .③④题型二:平面向量的混合运算4.(2021·全国·高一课时练习)若O 为ABC 所在平面内一点,且满足()(2)0OB OC OB OC OA -⋅+-=,则ABC 的形状为()A .等腰三角形B .直角三角形C .正三角形D .等腰直角三角形5.(2021·福建福州·高一期中)在五边形ABCDE 中EB a =,AD b =,M ,N 分别为AE ,BD 的中点,则MN =()A .3122a b+B .2133a b+C .1122a b+D .3144a b+6.(2020·全国·高一课时练习)在△ABC 中,P ,Q 分别是边AB ,BC 上的点,且11,.33AP AB BQ BC ==若AB a =,AC b =,则PQ =()A .1133a b+B .1133a b-+C .1133a b-D .1133a b--题型三:向量的线性运算的几何应用7.(2021·四川·宁南中学高一阶段练习(文))如图,ABC 中,AD 、BE 、CF 分别是BC 、CA 、AB 上的中线,它们交于点G ,则下列各等式中不正确...的是()A .23BG BE =B .12DG AG =;C .121332DA FC BC +=uu u r uu u r uu u r D .2CG FG=-8.(2021·四川资阳·高一期末)如图,在ABC 中,D 为线段BC 上一点,2CD DB =,E 为AD 的中点.若AE AB AC λμ=+,则λμ+=()A .14B .13C .12D .239.(2021·内蒙古·林西县第一中学高一期中(文))已知点M 是ABC 的边BC 的中点,点E 在边AC 上,且2EC AE =,则向量EM =()A .1123AC AB +B .1162AC AB +C .1126AC AB +D .1263AC AB +题型四:三角形的心的向量表示10.(2021·陕西渭滨·高一期末)已知O 为三角形ABC 所在平面内一点,0OA OB OC ++=,则:OBCABCS S=()A .12B .13C .14D .1511.(2021·山东师范大学附中高一期中)如图,O 是ABC 的重心,AB a =,AC b =,D 是边BC 上一点,且4BD DC =,则()A .271515OD a b =-+B .271515OD a b =-C .271515OD a b =--D .271515OD a b =+12.(2021·全国·高一课时练习)已知点O 、N 、P 在ABC 所在平面内,且||||||OA OB OC ==,0NA NB NC ++=,PA PB PB PC PC PA ⋅=⋅=⋅uu u r uu u r uu u r uuu r uuu r uu u r,则点O 、N 、P 依次是ABC 的()A .重心、外心、垂心B .重心、外心、内心C .外心、重心、垂心D .外心、重心、内心【双基达标】一、单选题13.(2021·全国·高一课时练习)下列运算正确的个数是()①()326a a -⋅=-;②()()223a b b a a +--=;③()()220a b b a +-+=.A .0B .1C .2D .314.(2021·全国·高一课时练习)已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足=+()OP OA AB AC λ→→→→+,()0,λ∈+∞,则点P 的轨迹一定通过ABC 的()A .内心B .外心C .重心D .垂心15.(2021·全国·高一课时练习)若23AB BC =-,则下列各式中不正确的是().A .32CB AB =B .2BA AC=C .13CA BC=-D .12AC AB =16.(2021·上海·高一课时练习)已知平面上不共线的四点,,,O A B C ,若430OA OB OC -+=,则AB BC等于()A .13B .12C .3D .217.(2021·全国·高一课时练习)设向量1OA e =,2OB e =,若1e 与2e 不共线,且点P 在线段AB 上,:2AP PB =,则OP =()A .121233e e -B .122133e e +C .121233e e +D .122133e e -18.(2021·安徽·定远县育才学校高一阶段练习(文))下列叙述不正确的是()A .若,a b 共线,则存在唯一的实数λ,使λa b =.B .3b a =(a 为非零向量),则,a b 共线C .若334,22m a b n a b =+=+,则//m nu r r D .若0a b c ++=,则a b c+=-19.(2021·福建浦城·高一阶段练习)如图,在△ABC 中,AN =23NC ,P 是BN 上一点,若AP =t AB +13AC ,则实数t 的值为().A .16B .13C .23D .5620.(2021·云南隆阳·高一期中)已知在平行四边形ABCD 中,点E ,F 分别在边AB ,AD 上,连接EF 交AC 于点M ,且满足4BE EA =,3AF FD =,23AM AB AC λμ=-,则1952λμ-=()A .-3B .1C .32-D .1221.(2021·河南郑州·高一期末)已知ABC 的边BC 上有一点D 满足2BD DC →→=-,则AD →可表示为()A .2AD AB AC →→→=-+B .1233AD AB AC →→→=+C .2AD AB AC→→→=-D .2133AD AB AC →→→=+22.(2021·江西宜春·高一期末)如图,在ABC 中,13AN NC =,P 是BN 上的一点,若2299AP m AB BC ⎛⎫=++ ⎪⎝⎭,则实数m 的值为()A .19B .13C .1D .3【高分突破】一:单选题23.(2021·全国·高一专题练习)已知点,O N 在△ABC 所在平面内,且||||||,0OA OB OC NA NB NC ==++=,则点,O N 依次是△ABC 的()A .重心外心B .重心内心C .外心重心D .外心内心24.(2021·湖南·常德市第二中学高一期末)在等边ABC 中,点E 在中线CD 上,且6CE ED =,则AE =()A .1377AC AB +B .13377AC AB -C .3177AC AB +D .31377AC AB -25.(2021·全国·高一课时练习)下列算式中,正确的个数为()①()7642a a -⨯=-;②()2223a b a b a -++=;③()0a b a b +-+=.A .0B .1C .2D .326.(2021·江苏省梅村高级中学高一阶段练习)在ABC 中,E 为AB 边的中点,D 为AC 边上的点,BD ,CE 交于点F .若3177AF AB AC =+,则 ACAD的值为()A .2B .3C .4D .527.(2021·全国·高一课时练习)设a ,b 都是非零向量.下列四个条件中,使||||a ba b =成立的条件是()A .a b =-B .//a b r rC .2a b=D .//a b r r且=a b28.(2020·全国·高一)点M ,N ,P 在ABC 所在平面内,满足MA MB MC ++=0,|NA NB NC ==∣,且PA PB ⋅=PB PC PC PA ⋅=⋅,则M 、N 、P 依次是ABC 的()A .重心,外心,内心B .重心,外心,垂心C .外心,重心,内心D .外心,重心,垂心二、多选题29.(2021·全国·高一课时练习)(多选)已知43AB AD AC -=,则下列结论正确的是()A .A ,B ,C ,D 四点共线B .C ,B ,D 三点共线C .||||AC DB =D .||3||BC DB =30.(2021·浙江·嘉兴市第五高级中学高一阶段练习)下列说法错误的是()A .若//,//a b b c ,则//a cB .若230OA OB OC ++=,AOCS,ABCS分别表示△AOC ,△ABC 的面积,则:1:6AOC ABC S S =△△C .两个非零向量,a b ,若a b a b -=+,则a 与b 共线且反向D .若向量a b ≠,则a 与b 一定不是共线向量31.(2021·河北承德第一中学高一阶段练习)对于非零向量a →,下列说法正确的是()A .2a →的长度是a →的长度的2倍,且2a →与a →方向相同B .3a →-的长度是a →的长度的13,且3a →-与a →方向相反C .若0λ=,则a λ→等于零D .若1aλ→=,则a λ→是与a →同向的单位向量32.(2021·湖南·高一期末)已知ABC 的重心为G ,过G 点的直线与边AB ,AC 的交点分别为M ,N ,若AM MB λ=,且AMN 与ABC 的面积之比为920,则λ的可能取值为()A .43B .32C .53D .333.(2021·福建三明·高一期中)八卦是中国文化中的基本哲学概念,如图①是八卦模型图,其平面图形记为图②中的正八边形ABCDEFGH ,其中1OA =,则下列结论中正确的是()A .//AD BCuuu r uu u r B .22OA OD ⋅=-C .0=OB OD D .22AF =-三、填空题34.(2021·全国·高一课时练习)已知D ,E ,F 分别为ABC 的边BC ,CA ,AB 的中点,BC a =,CA b =.给出下列五个命题:①AB a b =+uu u r r r ;②12BE a b =+;③1122CF a b =-+;④1122AF a b =--;⑤0AD BE CF ++=.其中正确的命题是________.(填序号)35.(2021·全国·高一课时练习)在平行四边形ABCD 中,12DE EC BF FC ==,,若AC =λA E +μAF ,其中λ,μ∈R ,则λ+μ=_______.36.(2021·上海大学附属南翔高级中学高一阶段练习)已知△ABC 中,点D 在边AB 上,且2BD DC =,设AB a =,BC b =,那么AD 等于________(结果用a 、b 表示)37.(2021·全国·高一课时练习)设平面内四边形ABCD 及任一点O ,,OA a OB b ==uu r r uu u r r .,OC c OD d ==.若a c b d+=+r r r u r且||||a b a d -=-.则四边形ABCD 的形状是_________.四、解答题38.(2021·全国·高一课时练习)在四边形ABCD 中,已知2AB a b =+,4BC a b =--,53CD a b =--,其中a ,b 是不共线的向量,试判断四边形ABCD 的形状.39.(2021·全国·高一课时练习)计算:(1)()()35326a b a b --+;(2)()()4352368a b c a b c -+---+.40.(2021·全国·高一课时练习)(1)已知32a i j →→→=+,2b i j →→→=-,求12(2)33a b a b b a →→→→→→⎛⎫⎛⎫---+- ⎪ ⎪⎝⎭⎝⎭.(2)已知向量,a b →→,且52x y a →→→+=,3x y b →→→-=,求x →,y →.41.(2021·全国·高一课时练习)如图,在ABC 中,D ,F 分别是BC ,AC 的中点,23AE AD =,AB a =,AC b =.(1)用a ,b 表示AD ,A E ,AF ,BE ,BF ;(2)求证:B ,E ,F 三点共线.42.(2021·全国·高一课时练习)如图,在ABC 中,D 是BC 边上一点,G 是线段AD 上一点,且2AG BDDG CD==,过点G 作直线与AB ,AC 分别交于点E ,F .(1)用向量AB ,AC 表示AD .(2)试问2AB AC AE AF+是否为定值?若是,求出该定值;若不是,请说明理由.【答案详解】1.D 【分析】根据向量数乘运算判断AB 选项的正确性,通过m 的特殊情况判断C 选项的正确性,根据向量运算判断D 选项的正确性.【详解】由题意,向量a ,b ,实数m ,n (0m ≠,0n ≠),由向量的运算律可得,()m a b ma mb -=-,故选项A 正确;由向量的运算律可得,()m n a ma na -=-,故选项B 正确;若0ma =,因为0m ≠,则0a =,故选项C 正确;当0a =时,ma na =,此时m 和n 不一定相等,故选项D 错误.故选:D .2.A 【分析】根据已知条件结合a b c =+,利用向量的线性运算即可求解.【详解】()()()32232a b b c a b+-+-+366222a b b c a b=+----()2222a b c b c b c b c a =--=+--=-+=-,故选:A.3.B 【分析】①②结合平面向量的数乘运算即可判断,③④举出反例即可说明.【详解】对于①:根据数乘向量的法则可得:()m a b ma mb -=-,故①正确;对于②:根据数乘向量的法则可得:()m n a ma na -=-,故②正确;对于③:由ma mb =可得()0m a b -=,当m =0时也成立,所以不能推出a b =,故③错误;对于④:由ma na =可得()0m n a -=,当0a =,命题也成立,所以不能推出m =n .故④错误;故选:B4.A 【分析】利用向量运算化简已知条件,由此确定正确选项.【详解】依题意()(2)0OB OC OB OC OA -⋅+-=,()0CB OB OA OC OA ⋅-+-=,()()220AB AC AB AC AB AC -⋅+=-=,所以AB AC c b =⇒=,所以三角形ABC 是等腰三角形.故选:A 5.C 【分析】由向量的加法运算得到MN MA AB BN =++,进而利用中点的条件,转化为向量的关系,化简整理即得.【详解】12MN MA AB BN EA AB =++=++12BD()()1122EA AB AB BD =+++12EB =+111222AD a b =+,故选:C 6.A 【分析】由已知得到11,.33AP AB BQ BC ==利用PB AB AP =-,得到23PB AB =,利用PQ PB BQ =+及BC AC AB =-和平面向量的线性运算法则运算即得.【详解】由已知可得11,.33AP AB BQ BC ==1233PB AB AP AB AB AB =-=-=,()2121111133333333PQ PB BQ AB BC AB AC AB AB AC a b =+=+=+-=+=+.故选:A.【点睛】本题考查平面向量的线性运算,是基础题,只要熟练掌握平面向量的加减数乘运算法则,并注意将有关向量转化为基底向量表示,即可得解.7.B【分析】利用向量运算对选项进行分析,由此确定正确选项.【详解】依题意ABC 中,AD 、BE 、CF 分别是BC 、CA 、AB 上的中线,所以G 是三角形ABC 的重心.所以23BG BE =,A 选项正确.12DG AG =-,B 选项错误.121332DA FC DG GC DC BC +=+==,C 选项正确.2CG FG =-,D 选项正确.故选:B8.C【分析】根据平面图形的性质以及平面向量的基本定理和线性运算,对应系数相等即可求出λμ,的值,进而求出结果.【详解】因为D 为线段BC 上一点,2CD DB =,所以2133AD AB AC =+u u u r u u u r u u u r ,且E 为AD 的中点,所以112111223336AE AD AB AC AB AC ⎛⎫==+=+ ⎪⎝⎭,又因为AE AB AC λμ=+,因此1136λμ==,,所以12λμ+=,故选:C.9.B【分析】根据向量的加法运算可得EM EC CM =+和减法运算可得CB AB AC =-,结合条件,可得答案.【详解】由2EC AE =,则23EC AC =则()212113231622EM EC CM AC CB A AB AC AB A C C =+=+=+=-+故选:B10.B【分析】题目考察三角形四心的问题,易得:O 为三角形的重心,位于中线的三等分点处,从而求出三角形面积的比例关系【详解】如图所示,由0OA OB OC ++=得:O 为三角形ABC 的重心,是中线的交点,且23AO AD =,所以,1:3OBC ABC h h =,底边为BC ,所以,1::3OBC ABC OBC ABC h SS h ==故选:B11.A【分析】由O 是ABC 的重心,可知()13OB BA BC =-+,又OD OB BD =+,45BD BC =,BC AC AB =-,化简即可.【详解】由O 是ABC 的重心,可知()13OB BA BC =-+,又OD OB BD =+,45BD BC =,BC AC AB =-,故()141735315OD OB BD BA BC BC BA BC =+=-++=-+()17272731515151515AB AC AB AB AC a b =+-=-+=-+,故选:A.12.C【分析】由||||||OA OB OC ==知O 是ABC 的外心;利用共起点向量加法将0NA NB NC ++=变形为共线的两向量关系,得到N 点在中线上的位置,从而判断为重心;由PA PB PB PC ⋅=⋅移项利用向量减法变形为0PB CA ⋅=,得出PB 为CA 边上的高,同理得PC 为AB 边上的高,故为垂心.【详解】||||||OA OB OC ==,则点O 到ABC 的三个顶点距离相等,∴O 是ABC 的外心.0NA NB NC ++=,NA NB NC ∴+=-,设线段AB 的中点为M ,则2NM NC =-,由此可知N 为AB 边上中线的三等分点(靠近中点M ),所以N 是ABC 的重心.PA PB PB PC ⋅=⋅,()0PB PA PC PB CA ∴⋅-=⋅=.即PB CA ⊥,同理由PB PC PC PA ⋅=⋅,可得PC AB ⊥.所以P 是ABC 的垂心.故选:C.【点睛】关于ABC 四心的向量关系式:O 是ABC 的外心||||||OA OB OC ⇔==222OA OB OC ⇔==;O 是ABC 的重心0OA OB OC ⇔++=;O 是ABC 的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅;O 是ABC 的内心0aOA bOB cOC ⇔++=.(其中a b c 、、为ABC 的三边)13.C【分析】利用平面向量的加法,减法,数乘运算及其运算律判断.【详解】①()326a a -⋅=-,由数乘运算知正确;②()()223a b b a a +--=,由向量的运算律知正确;③()()220a b b a +-+=,向量的加法,减法和数乘运算结果是向量,故错误.故选:C14.C【分析】取BC 的中点D ,由已知条件可知动点P 满足=+()OP OA AB AC λ→→→→+,()0,λ∈+∞,易得2AP AD λ→→=,则点,,A D P 三点共线,进而得到点P 的轨迹一定通过ABC 的重心.【详解】解:设D 为BC 的中点,则=+()2OP OA AB AC OA AD λλ→→→→→→+=+,则2OP OA AD λ→→→-=,即2AP AD λ→→=,,,A D P ∴三点共线,又因为D 为BC 的中点,所以AD 是边BC 的中线,所以点P 的轨迹一定通过ABC 的重心.故选:C.15.D【分析】根据向量的数乘的定义判断.【详解】如图,由23AB BC =-知C 在BA 延长线上,且12AC AB =,因此由向量数乘定义知ABC 三个选项均正确,D 错误.故选:D .16.C【分析】由已知可得()3OA OB OB OC --=,即3AB BC -=-,从而可得答案.【详解】解:由430OA OB OC -+=,得()3OA OB OB OC --=,即3AB BC -=-,所以3AB BC =,即3AB BC =,故选:C.17.C【分析】根据向量线性关系的几何意义得到,,OP OA OB 的线性关系,即可知正确选项.【详解】由2,,3OP OA AP AP AB AB OB OA =+==-,∴121122212()()3333OP OA OB OA e e e e e =+-=+-=+.故选:C18.A【分析】选项A :要注意0b =时不成立;选项B :由3b a =得到,a b 方向相同,从而得到,a b 共线;选项C :由条件得到2m n =,从而//m n u r r ;选项D :通过移项可知选项D 显然正确.【详解】选项A :当0b =时,满足,a b 共线,但不满足存在唯一的实数λ,使λa b =成立,此时不存在实数λ,使λa b =成立,所以选项A 错误;选项B :若3b a =,则,a b 方向相同,所以,a b 共线,所以选项B 正确;选项C :因为3342222m a b a b n ⎛⎫=+=+= ⎪⎝⎭,所以//m n u r r ,所以选项C 正确;选项D :若0a b c ++=,则a b c +=-,选项D 正确.故选:A .19.A【分析】由向量的线性运算可得56AP t AB AN =+,再由平面向量共线定理的推论即可得解.【详解】因为AN 23NC =,所以25AN AC =,所以AP =t AB 11553326AC t AB AN t AB AN +=+⨯=+,又P 是BN 上一点,所以516t +=,解得16t =.故选:A.20.D【分析】因为E ,F ,M 三点共线,故可考虑将AM 用,AE AF 表示,再结合三点共线满足的性质计算即可【详解】因为AC AB AD =+,所以2323()(23)3AM AB AC AB AB AD AB AD λμλμλμμ=-=-+=--.因为4BE EA =,3AF FD =,故45,3AB AE AD AF ==,所以5(23)4AM AE AF λμμ=--.因为E ,F ,M 三点共线,所以4(2)531λμμ--=,10191λμ-=,所以191522λμ-=.故选:D21.A【分析】由已知得出向量BC 与向量BD 的关系,再利用平面向量基本定理即可求解.【详解】因为ABC 的边BC 上有一点D 满足2BD DC →→=-,所以2BD CD →→=,则12BC BD DC BD →→→→=+=,所以22()2AD AB BD AB BC AB AC AB AB AC →→→→→→→→→→=+=+=+-=-+,故选:A22.A【分析】利用向量的线性运算将条件2299AP m AB BC ⎛⎫=++ ⎪⎝⎭化为89AP mAB AN =+,再根据B 、P 、N 三点共线,得出819m +=,解得19m =.【详解】由题意可知,13AN NC =,所以4AC AN =,又29AP mAB AC =+,即89AP mAB AN =+.因为B 、P 、N 三点共线,所以819m +=,解得19m =.故选:A .23.C【分析】由外心O 到三角形顶点距离相等、重心N 的性质:2NB NC ND +=且2AN ND =,结合题设即可判断,O N 是△ABC 的哪种心.【详解】∵||||||OA OB OC ==,∴O 到△ABC 的三个顶点的距离相等,故O 是△ABC 的外心,如下图,若N 是△ABC 三条中线的交点,AD 是BC 上的中线,∴2NB NC ND +=,又2AN ND =,∴0NA NB NC ++=,故题设中的N 是△ABC 的重心.故选:C24.A【分析】利用向量的加、减以及数乘运算即可求解.【详解】因为66()77AE AC CE AC CD AC AD AC =+=+=+-,12AD AB =,所以1377AE AC AB =+.故选:A25.C【分析】由平面向量的线性运算和数乘运算可判断①②③的正误.【详解】对于①,()7642a a -⨯=-,①正确;对于②,()2223a b a b a -++=,②正确;对于③,()0a b a b +-+=,③错误.故选:C.26.C【分析】设AC AD λ=,可得3177AF AB AD λ=+,由B ,F ,D 三点在同一条直线上,可求得λ的值,即可得解.【详解】设AC AD λ=,因为3177AF AB AC =+,所以3177AF AB AD λ=+,因为B ,F ,D 三点在同一条直线上,所以31177λ+=,所以4λ=,所以4AC AD=.故选:C27.C【分析】根据a a 、b b 的含义,逐一分析选项,即可得答案.【详解】aa 、b b 分别表示与a 、b 同方向的单位向量,对于A :当a b =-r r 时,a b a b=-,故A 错误;对于B :当//a b r r 时,若,a b 反向平行,则单位向量方向也相反,故B 错误;对于C :当2a b =时,22a bba b b ==,故C 正确;对于D :当//a b r r 且=a b 时,若a b =-r r 满足题意,此时a b a b=-,故D 错误.故选:C28.B【分析】由三角形五心的性质即可判断出答案.【详解】解:0MA MB MC ++=,∴MA MB MC +=-,设AB 的中点D ,则2MA MB MD +=,C ∴,M ,D 三点共线,即M 为ABC ∆的中线CD 上的点,且2MC MD =.M ∴为ABC 的重心.||||||NA NB NC ==,||||||NA NB NC ∴==,N ∴为ABC 的外心;PA PB PB PC =,∴()0PB PA PC -=,即0PB CA =,PB AC ∴⊥,同理可得:PA BC ⊥,PC AB ⊥,P ∴为ABC 的垂心;故选:B .【点睛】本题考查了三角形五心的性质,平面向量的线性运算的几何意义,属于中档题.29.BD【分析】由43AB AD AC -=可得3DB BC =,从而可对ABD 进行判断,再对43AB AD AC -=变形化简可对C 进行判断【详解】因为43AB AD AC -=,所以33AB AD AC AB -=-,所以3DB BC =,因为,DB BC 有公共端点B ,所以C ,B ,D 三点共线,且||3||BC DB =,所以BD 正确,A 错误,由43AB AD AC -=,得333AC AB AD AB DB AB =-+=+,所以||||AC DB ≠,所以C 错误,故选:BD30.AD【分析】A 向量平行传递性的前提是都为非零向量;B 若,D E 分别是,AC BC 的中点,结合已知得2OE OD =-,再过,,E O B 作AC 上的高,由线段比例确定高的比例关系即可;C 由向量反向共线的性质即可判断;D 根据共线向量的定义即可判断.【详解】A :如果,a c 都是非零向量,而0b =,显然满足已知条件,但是结论不一定成立,错误;B :若,D E 分别是,AC BC 的中点,由题设有()()20OA OC OB OC +++=,即420OD OE +=,2OE OD =-,所以,,O D E 三点共线且2OE OD =,过,,E O B 作AC 上的高123,,h h h ,易知211311,32h h h h ==,则2316h h =,所以:1:6AOC ABC S S =△△,正确;C :两个非零向量,a b ,若a b a b -=+,则a 与b 共线且反向,正确;D :若向量a b ≠,则a 与b 可能是共线向量,如相反向量,错误.故选:AD31.ABD【分析】对于选项ABD 可以直接利用向量和数乘向量的定义判断,对于选项C ,a λ等于零向量,不是零,故C 错误.【详解】解:对于A :2a →的长度是a →的长度的2倍,且2a →与a →方向相同,故A 正确;对于B :3a →-的长度是a →的长度的13,且3a →-与a →方向相反,故B 正确;对于C :若0λ=,则a λ→等于零向量,不是零,故C 错误;对于D :若1a λ→=,则a λ→是与a →同向的单位向量,故D 正确.故选:ABD32.BD【分析】设AC t AN =,利用重心的性质,把AG 用AM 、AN 表示,再由M ,G ,N 三点共线得关于λ,t 的方程,再由三角形面积比得关于λ,t 的另一方程,联立即可求得实数λ的值.【详解】解:如图,()AM MB AB AM λλ==-,1AM AB λλ∴=+,即1AB AM λλ+=,设AC t AN =,则11()333t AG AB AC AM AN λλ+=+=+,M G N 、、三点共线,1=133t λλ+∴+,12t λ∴=-,所以12AC AN λ⎛⎫=- ⎪⎝⎭,AMN ∴与ABC 的面积之比为920,191sin sin 2202AM AN A AB AC A ∴=⨯⨯,即112029λλλ+⎛⎫⎛⎫-= ⎪⎪⎝⎭⎝⎭,化简得22990λλ-+=,解得32λ=或3.故选:BD33.ABC【分析】结合正八边形的特点,分为8个全等的三角形,将圆周角分为8份,每个圆心角为4π.结合向量的计算法则,即可得出结果.【详解】A.正八边形ABCDEFGH 中,//AD BC ,那么//AD BC uuu r uu u r ,故A 对; B.32cos 42OA OD OA OD π⋅=⋅=-,故B 对;C.OB 与OD uuu r 夹角为2π,故0=OB OD ,故C 对; D.222()222AF OF OA OF OA OF OA OF OA =-=-=+-⋅=+,故D 错;故选:ABC34.②③④⑤【分析】根据平面向量线性运算法则计算可得;【详解】解:因为BC a =,CA b =,所以()AB AC CB CA BC a b =+=-+-=--uu u r uuu r uu r uu r uu u r r r ,1122BE BC CE BC CA a b =+=+=+,()11112222CF CA AF CA AB b a b a b =+=+=+--=-+,()11112222AF AB a b a b ==--=--,()()()111222AD BE CF AB AC BA BC CA CB ++=+++++()()11022AB AC BA BC CA CB AB AC AB BC AC BC =+++++=+-+--=,即0AD BE CF ++=,即正确的有:②③④⑤故答案为:②③④⑤35.75【分析】利用向量的加减法及数乘化简可得AC =32AB AD λμμλ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭,又AC AB AD =+计算即可.【详解】由平面向量的加法运算,有AC AB AD =+.因为AC =λA E +μAF =λ(AD DE +)+μ(AB BF +)=λ13AD AB ⎛⎫+ ⎪⎝⎭+μ12AB AD ⎛⎫+ ⎪⎝⎭=32AB AD λμμλ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭.所以32AB AD AB AD λμμλ⎛⎫⎛⎫+=+++ ⎪ ⎪⎝⎭⎝⎭,即1312λμμλ⎧+=⎪⎪⎨⎪+=⎪⎩,,解得3545λμ⎧=⎪⎪⎨⎪=⎪⎩,,故答案为:75或1.236.23a b +【分析】根据AD AB BD =+以及23BD BC =进行线性运算,由此可求得AD 的表示.【详解】因为23AD AB A D BC B B ==++,所以23AD a b =+,故答案为:23a b +.37.菱形【分析】由a c b d +=+r r r u r 易得BA CD =,即ABCD 为平行四边形,再由||||a b a d -=-即可判断ABCD 的形状.【详解】由a c b d +=+r r r u r 得a b d c -=-r r u r r ,即OA OB OD OC -=-,∴BA CD =,于是AB 平行且等于CD ,∴四边形ABCD 为平行四边形,又||||a b a d -=-,从而||||OA OB OA OD -=-,∴||||BA DA =,即四边形ABCD 为菱形.故答案为:菱形38.四边形ABCD 是梯形【分析】根据共面向量基本定理可知,2(4)2AD AB BC CD a b BC =++=--=,即可判断四边形形状.【详解】如图所示,2453822(4)AD AB BC CD a b a b a b a b a b =++=+----=--=--,所以2AD BC =,即//AD BC ,且2AD BC =.所以四边形ABCD 是梯形.39.(1)311a b-(2)104a c+【分析】(1)利用向量运算律可化解合并(2)利用向量运算律可化解合并(1)原式=()()35326=159122=311a b a b a b a b a b --+----(2)原式=()()4352368=4122061216=104a b c a b c a b c a b c a c-+---+-+++-+40.(1)-53i →-5j →;(2)311a →-511b→.【分析】(1)利用向量的数乘及加减法计算即可;(2)解方程即可得出结果.【详解】解(1)原式12(2)33a b a b b a →→→→→→⎛⎫⎛⎫---+- ⎪ ⎪⎝⎭⎝⎭=1113⎛⎫-- ⎪⎝⎭a →+2123⎛⎫-++ ⎪⎝⎭b →=-53a →+53b →.∵32a i j →→→=+,2b i j →→→=-,∴原式=-53(3i →+2j →)+53(2i →-j →)=1053⎛⎫-+ ⎪⎝⎭i →+10533⎛⎫-- ⎪⎝⎭j →=-53i →-5j →.(2)将3x →-y →=b →两边同乘2,得6x →-2y →=2b →.与5x →+2y →=a →相加,得11x →=a →+2b →,∴x →=111a →+211b→.∴y →=3x →-b →=3121111a b →→⎛⎫+ ⎪⎝⎭-b →=311a →-511b →..41.(1)答案见解析;(2)证明见解析.【分析】(1)根据平面向量的线性运算即可求解;(2)利用平面向量共线定理可得求证.【详解】(1)如图,延长AD 到点G ,使2AG AD =,连接BG ,CG ,得到平行四边形ABGC ,则AB AC A a G b =+=+,因为D 是BC 的中点,所以()1122AD AG a b ==+,()2133AE AD a b ==+,因为F 是AC 的中点,所以1122==AF AC b ,()()11323a b a b B a E AE AB =-=+-=-,()11222BF AF AB b a b a =-=-=-;(2)由(1)知,()123BE b a =-,()122b a BF =-,所以23BE BF =,所以BE ,BF 共线,又BE ,BF 有公共点B ,所以B ,E ,F 三点共线.42.(1)1233AD AB AC =+;(2)是定值,定值为92.【分析】(1)结合图形利用向量的加法运算求解;(2)设AB AE λ=,AC AF μ=,则22AB AC AE AF λμ+=+,然后根据题意将AG 用,AB AC 表示出来,从而可用,AE AF 表示,再由,,E F G 三点共线可得结论【详解】解:(1)A AB BDD =+23AB BC =+()23AB BA AC =++1233AB AC =+.(2)设AB AE λ=,AC AF μ=,则22AB AC AE AF λμ+=+,因为2AG BD DG CD==所以23AG AD =uuu r uuu r 212333AB AC ⎛⎫=+ ⎪⎝⎭2499AB AC =+2499AE AF λμ=+,所以24199λμ+=,即922λμ+=,故292AB AC AE AF +=为定值.。

高中数学向量专项练习(含答案)

高中数学向量专项练习(含答案)

高中数学向量专项练习一、选择题1.已知向量(1,),(1,),a x b x ==-若(2).a b b -⊥则a =( ) A .2 B .3 C .2 D .4 2.化简+++的结果是( )A .B .C .D .3.已知向量(1,2),(4,)a b m ==-,若2a b +与a 垂直,则m =( ) A .-3 B .3 C .-8 D .84.已知向量(1,1)a =-,(1,)b m =,若(2)4a b a -⋅=,则m =() A .1- B .0 C .1 D .25.设向量(12)a =-,,(1)b m =,,若向量a 与b 平行,则a b ⋅= A .27-B .21-C .23D .256.在菱形ABCD 中,对角线4AC =,E 为CD 的中点,则AE AC ⋅=( ) A .8 B .10 C .12 D .14 7.在△ABC 中,若点D 满足2BD DC =,则AD =( ) A .1233AC AB + B .5233AB AC - C .2133AC AB - D .2133AC AB + 8.在ABC ∆中,已知90BAC ∠=,6AB =,若D 点在斜边BC 上,2CD DB =,则AB AD ⋅的值为 ( ).A .6B .12C .24D .489.已知向量(1,1),(2,2),m n λλ→→=+=+若()()m n m n →→→→+⊥-,则=λ( ) A .4- B .3- C .2- D .1-10.已知向量(12)=,a ,(4)x =,b ,若向量//a b ,则实数的x 值为 A .2 B .2- C .8 D .8- 11.已知向量()()2,1,3,4==-a b ,则2+=a bA .()1,5-B .()1,5C .()1,6-D .()1,6 12.已知向量()()2,1,3,4==-a b ,则+=a bA .()1,5-B .()1,5C .()1,3--D .()1,313.ABC ∆的外接圆圆心为O ,半径为2,0OA AB AC ++=,且OA AB =,则CB 在CA 方向上的投影为A .1B .2C .3D .314.已知向量(1,2)a =,向量(,2)b x =-,且()a a b ⊥-,则实数x 等于( ) A 、4- B 、4 C 、0 D 、915.已知平面向量(1,2),(2,)a b m ==-,且//a b ,则实数m 的值为 ( ) A .1 B .4 C .1- D .4-16.C ∆AB 是边长为2的等边三角形,已知向量a 、b 满足2a AB =,C 2a b A =+,则下列结论正确的是( )A 、1b =B 、a b ⊥C 、1a b ⋅=D 、()4C a b +⊥B 17.已知菱形ABCD 的边长为a ,60ABC ∠=,则BD CD ⋅= ( ) A 、232a -B 、234a -C 、234aD 、232a 18.已知向量a ,b 满足(5,10)=-a +b ,(3,6)-=a b ,则a,b 夹角的余弦值为( )A .1313-B .1313C .21313-D .2131319.已知向量a =(1,3),b =(-2,-6),|c |=,若(a +b )·c =5,则a 与c 的夹角为( )A .30°B .45°C .60°D .120° 20.已知向量(2,1),(5,3)a b →→==-,则a b →→⋅的值为A .-1B .7C .13D .1121.如图,平行四边形ABCD 中,)2,3(),0,2(-==AD AB ,则=⋅AC BD ( )A .6-B .4C .9D .13 22.若向量(2,4)AB =,(1,3)AC =,则BC =( ) A .(1,1) B .(1,1)-- C .(3,7) D .(3,7)--的取值范围为 (A )39(,)410 (B )19(,)210 (C )33(,)54 (D )13(,)2424.已知平面向量AB ()1,2=,AC ()3,4=,则向量CB =( ) A .(4,6)-- B .(4,6) C .(2,2)-- D .(2,2) 25.已知向量(2,4)a =,(1,1)b =-,则2a b -=A . (5,7)B . (5,9)C . (3,7)D . (3,9) 26.已知向量(,2),(1,1)m a n a =-=-,且//m n ,则实数a =( ) A .-1 B .2或-1 C .2 D .-227.在ABC ∆中,,AB c =AC b =若 点D 满足2BD DC =,则AD =( ) A .2133b c + B .5233c b - C .2133c b - D .2233b c + 28.已知点(5,6)M -和向量(1,2)a =-,若3MN a =-,则点N 的坐标为( ) A .(3,6)- B .(2,0) C .(6,2) D .(2,0)- 29.在矩形ABCD 中,4,2,AB AD ==则BA BD BC ++=( ) A .12 B.6 C ..30.已知向量(1,2)a = ,(3,1)b = ,则b a -=( ). A .(2,1)- B .(2,1)- C .(2,0) D .(4,3)31.若向量)1 , ( n a =与) , 4( n b =共线且方向相同,则=n ( ) A .21B .1C .2D .2± 32.设,,a b c 是单位向量,且0,a b ⋅=则()()a c b c -⋅-的最小值是() A .1B1 C .1133.如图所示,D 是ABC 的边AB 上的中点,记,BC a BA c ==,,则向量DC ( )ACBA .12a c --B .12a c -+C .12a c - D .12a c + 34.如图,在4,30,ABC AB BC ABC AD ∆==∠=中,是边BC 上的高,则AD AC ⋅的值等于 ( )A .0B .4C .8D .4- 35.已知平面向量b a 与的夹角为3π,1,223,b a b a =+==且则( ) A .1 B .3 C .2 D .336.已知向量()()3,4,sin ,cos ,a b αα==且a 与b 共线,则tan α=( )A .34 B .34- C .43 D .43- 二、填空题37.在△ABC 中,AB =2,AC =1,D 为BC 的中点,则AD BC ⋅=_____________. 38.设(1,2)a =,(2,)b k =,若(2)a b a +⊥,则实数k 的值为( ) A .2- B .4- C .6- D .8-39.空间四边形OABC 中,OB OC =,60AOB AOC ∠=∠=︒,则cos ,OA BC <>=( ) A .21 B .22 C .12- D .040.已知向量a ,b ,c 满足||=2a ,||3b a b =⋅=,若(2)(23)0c a b c -⋅-=,则||b c -的最大值是 . 41.化简:= .42.在ABC ∆中,A B C 、、的对边分别为a b c 、、,且cos 3cos cos b C a B c B =-,2BA BC ⋅=,则ABC ∆的面积为 .43.已知向量=(1,2),•=10,|+|=5,则||= .44.如图,在ABCD 中,E 是CD 中点,BE x AB y AD =+,则x y += .EDCB45.若|a |=1,|b |=2,c =a +b ,且c ⊥a ,则a 与b 的夹角为________。

高一数学向量题50道

高一数学向量题50道

高一数学向量题50道每题2分,满分:100分,考试时间:60分钟1.计算a=(3,4)a=(3,4)和b=(1,2)b=(1,2)的和a+b a+b。

2.计算u=(−1,3)u=(−1,3)和v=(2,−5)v=(2,−5)的差u−v u−v。

3.计算向量a=(2,1)a=(2,1)的模∣a∣∣a∣。

4.计算向量b=(3,4)b=(3,4)的单位向量。

5.求u=(1,2)u=(1,2)和v=(3,4)v=(3,4)的点积u⋅v u⋅v。

6.求向量a=(4,0)a=(4,0)和b=(0,3)b=(0,3)的叉积a×b a×b。

7.判断向量m=(2,3)m=(2,3)和n=(4,6)n=(4,6)是否共线。

8.求向量a=(2,−1)a=(2,−1)和b=(3,4)b=(3,4)的夹角余弦。

9.求向量c=(−1,2)c=(−1,2)和d=(5,6)d=(5,6)的模。

10.计算向量a=(3,−1)a=(3,−1)乘以标量k=2k=2的结果。

11.计算向量b=(4,−3)b=(4,−3)乘以标量k=−1k=−1的结果。

12.判断向量p=(2,2)p=(2,2)和q=(−1,−1)q=(−1,−1)之间的夹角。

13.求在平面直角坐标系中,点A(2,3)A(2,3)和点B(5,7)B(5,7)的位置向量AB AB。

14.求向量u=(1,−4)u=(1,−4)和v=(4,3)v=(4,3)的和。

15.计算向量a=(2,3)a=(2,3)和b=(3,4)b=(3,4)的内积。

16.证明向量m∥n m∥n当且仅当存在非零数k k使得m=kn m=kn。

17.求向量a=(1,2,3)a=(1,2,3)和b=(4,5,6)b=(4,5,6)的叉积。

18.求通过两点A(1,2)A(1,2)和B(4,6)B(4,6)的直线方程。

19.确认向量c=(2,4)c=(2,4),d=(3,6)d=(3,6)是否线性相关。

人教版高中数学必修四平面向量单元测试题(三套)

人教版高中数学必修四平面向量单元测试题(三套)

人教版高中数学必修四平面向量单元测试题(三套)(数学4必修)第二章 平面向量[基础训练A 组]一、选择题1.化简AC -BD +CD -AB 得( )A .AB B .DAC .BCD .02.设00,a b 分别是与,a b 向的单位向量,则下列结论中正确的是( )A .00a b =B .001a b ⋅= C .00||||2a b += D .00||2a b +=3.已知下列命题中:(1)若k R ∈,且0kb =,则0k =或0b =,(2)若0a b ⋅=,则0a =或0b =(3)若不平行的两个非零向量b a ,,满足||||b a =,则0)()(=-⋅+b a b a(4)若a 与b 平行,则||||a b a b =⋅其中真命题的个数是( )A .0B .1C .2D .3 4.下列命题中正确的是( )A .若a ⋅b =0,则a =0或b =0B .若a ⋅b =0,则a ∥bC .若a ∥b ,则a 在b 上的投影为|a|D .若a ⊥b ,则a ⋅b =(a ⋅b)25.已知平面向量(3,1)a =,(,3)b x =-,且a b ⊥,则x =( )A .3-B .1-C .1D .36.已知向量)sin ,(cos θθ=a ,向量)1,3(-=b 则|2|b a -的最大值,最小值分别是( )A .0,24B .24,4C .16,0D .4,0二、填空题 1.若OA =)8,2(,OB =)2,7(-,则31AB =_________ 2.平面向量,a b 中,若(4,3)a =-b =1,且5a b ⋅=,则向量b =____。

3.若3a =,2b =,且a 与b 的夹角为060,则a b -= 。

4.把平面上一切单位向量归结到共同的始点,那么这些向量的终点所构成的图形是___________。

5.已知)1,2(=a 与)2,1(=b ,要使b t a +最小,则实数t 的值为___________。

高中数学向量的基础题目

高中数学向量的基础题目

高中数学向量的基础题目题目一:向量的加法和减法1. 已知向量A = (2, 3) 和向量A = (-1, 4),求向量A =A + A的结果。

2. 已知向量A = (5, -2) 和向量A = (3, 1),求向量A =A - A的结果。

题目二:向量的数量积1. 已知向量A = (3, 4) 和向量A = (2, -1),求向量A和向量A的数量积。

2. 已知向量A = (1, 2) 和向量A = (4, 3),求向量A和向量A的数量积。

题目三:向量的模长和单位向量1. 已知向量A = (4, -3),求向量A的模长。

2. 已知向量A = (-2, 5),求向量A的单位向量。

题目四:向量的夹角和垂直判断1. 已知向量A = (2, 3) 和向量A = (-1, 4),求向量A和向量A的夹角。

2. 已知向量A = (1, 2) 和向量A = (4, 3),判断向量A和向量A是否垂直。

题目五:向量的投影1. 已知向量A = (3, 4) 和向量A = (1, -1),求向量A在向量A上的投影。

2. 已知向量A = (2, 5) 和向量A = (3, 1),求向量A在向量A上的投影。

题目六:平面向量的共线性和线性组合1. 已知向量A = (2, 3) 和向量A = (4, 6),判断向量A和向量A是否共线。

2. 已知向量A = (1, 2) 和向量A = (3, 1),求实数A和A,使得向量A = AA + AA。

题目七:平面向量的平行四边形法则1. 已知向量A = (2, 3) 和向量A = (4, 1),求向量A = A+ A的结果。

2. 已知向量A = (5, -2) 和向量A = (1, 3),求向量A =A + A的结果。

题目八:平面向量的三角形法则1. 已知向量A = (2, 3)、向量A = (4, 1) 和向量A = (1,2),求向量A = A + A + A的结果。

2. 已知向量A = (5, -2)、向量A = (1, 3) 和向量A = (2, 4),求向量A = A + A + A的结果。

人教版高二数学空间向量与立体几何练习(含答案)

人教版高二数学空间向量与立体几何练习(含答案)

人教版高二数学空间向量与立体几何练习(含答案)1.空间直角坐标系中,已知(1,2,3)A -,(3,2,5)B -,则线段AB 的中点坐标为( ) A.(1,2,4)--B.(2,0,1)-C.(2,0,2)-D.(2,0,1)-2.若向量(1,,0)λ=a ,(2,1,2)=-b ,且a 与b 的夹角的余弦值为23,则实数λ等于( ). A.0B.43-C.0或43-D.0或433.已知棱长为1的正方体1111ABCD A B C D -的上底面1111A B C D 的中心为1O ,则11AO AC ⋅的值为( ).A.-1B.0C.1D.24.已知(1,0,0)A ,(0,1,0)B ,(0,0,1)C ,则下列向量是平面ABC 的一个法向量的是( ) A.(1,1,1)- B.(1,1,1)- C.333,,333⎛⎫--- ⎪ ⎪⎝⎭D.333,,333⎛⎫- ⎪⎪⎝⎭5.如图,在三棱锥P ABC -中,ABC 为等边三角形,PAC 为等腰直角三角形,4PA PC ==,平面PAC ⊥平面ABC ,D 为AB 的中点,则异面直线AC 与PD 所成角的余弦值为( )A.142 3 D.126.如图,点P 为矩形ABCD 所在平面外一点,PA ⊥平面,ABCD Q 为线段AP 的中点,3,4,2AB BC PA ===,则点P 到平面BQD 的距离为( )A.513B.1213C.135D.13127.(多选)已知向量(1,1,)m =-a ,(2,1,2)m =--b ,则下列结论中正确的是( ) A.若||2=a ,则2m = B.若⊥a b ,则1m =- C.不存在实数λ,使得=a b D.若1⋅=-a b ,则(1,2,2)+=---a b8.(多选)已知正方体1111ABCD A B C D -的棱长为1,点E 、O 分别是11A B 、11A C 的中点,P 在正方体内部且满足1312423AP AB AD AA =++,则下列说法正确的是( ) A.点A 到直线BE 5 B.点O 到平面11ABC D 2 C.平面1A BD 与平面11B CD 3 D.点P 到直线AB 的距离为25369.已知(1,52) AB =-,,(3,1,)BC z =,若AB BC ⊥,(1,,3)BP x y =--,且BP ⊥平面ABC ,则x y +=___________.10.如图,在正四棱锥P ABCD -中,PA AB =,点M 为PA 的中点,BD BN λ=.若MN AD ⊥,则实数λ=__________.11.在棱长为2的正方体1111ABCD A B C D -中,M ,N 分别是111,A D CD 的中点,则直线MN 与平面ABCD 所成的角的余弦值为__________.12.如图,ABC △和BCD △都是边长为2的正三角形,且它们所在平面互相垂直.DE ⊥平面BCD ,且6AE =.(1)设P 是DE 的中点,求证://AP 平面BCD . (2)求二面角B AE C --的正弦值.答案以及解析1.答案:D解析:设中点坐标为(,,)x y z ,根据中点坐标公式得1322x +==,2202y -+==,3512z -==-.故选D. 2.答案:C解析:由题意得2202cos ,||31414λλ⋅-+〈〉===+⋅++a b a b a b ,解得0λ=或43λ=-.故选C. 3.答案:D解析:建立如图所示的空间直角坐标系,则(1,0,0)A ,111,,122O ⎛⎫⎪⎝⎭,1(0,1,1)C ,111,,122AO ⎛⎫=- ⎪⎝⎭,1(1,1,1)AC =-,121111,,1(1,1,1)122222AO AC ⎛⎫∴⋅=-⋅-=++= ⎪⎝⎭.故选D.4.答案:C解析:易得(1,1,0)AB =-,(1,0,1)AC =-, 设(,,)x y z =n 为平面ABC 的一个法向量,则0,0,AB AC ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,0,x y x z -+=⎧⎨-+=⎩x y z ∴==,故选C.5.答案:B解析:取AC 的中点O ,连接OP ,OB ,PA PC =,AC OP ∴⊥,平面PAC ⊥平面ABC ,平面PAC ⋂平面ABC AC = ,OP ∴⊥平面ABC ,又AB BC =,AC OB ∴⊥,以O 为坐标原点,建立如图所示的空间直角坐标系,PAC 是等腰直角三角形,4PA PC ==,ABC 为等边三角形,(22,0,0)A ∴,(2,0,0)C -,2)P ,(2,6,0)D , (42,0,0)AC ∴=-,(2,6,2)PD =-,2cos ,424||||AC PD AC PD AC PD ⋅∴〈〉===⨯∴异面直线AC 与PD 所成角的余弦值为24. 故选B. 6.答案:B解析:如图,以A 为原点,分别以,,AB AD AP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,则(3,0,0),(0,4,0),(0,0,2),(0,0,1)B D P Q ,(3,0,1),(3,4,0),(0,0,1)QB BD QP =-=-=.设平面BQD 的一个法向量为(,,)x y z =n ,则0,0,BD QB ⎧⋅=⎪⎨⋅=⎪⎩n n 即340,30.x y x z -+=⎧⎨-=⎩ 令4x =,则12,3,(4,3,12)z y ==∴=n .∴点P到平面BQD 的距离||12||13QP d ⋅==n n . 7.答案:AC解析:由||2=a 2221(1)2m +-+, 解得2m =±,故A 选项正确;由⊥a b得2120m m --++=,解得1m =,故B 选项错误; 若存在实数λ,使得λ=a b ,则12λ=-,1(1)m λ-=-,2m λ=,显然λ无解,即不存在实数λ使得λ=a b ,故C 选项正确; 若1⋅=-a b ,则2121m m --++=-,解得0m =, 于是(1,2,2)+=--a b ,故D 选项错误. 8.答案:BC解析:如图,建立空间直角坐标系,则(0,0,0)A ,(1,0,0)B ,(0,1,0)D ,1(0,0,1)A ,1(1,1,1)C ,1(0,1,1)D ,1,0,12E ⎛⎫ ⎪⎝⎭,所以(1,0,0)BA =-,1,0,12BE ⎛⎫=- ⎪⎝⎭.设ABE θ∠=,则||5cos 5||||BA BE BA BE θ⋅==,225sin 1cos θθ-. 故A 到直线BE 的距离12525||sin 1d BA θ===A 错. 易知111111,,0222C O C A ⎛⎫==-- ⎪⎝⎭, 平面11ABC D 的一个法向量1(0,1,1)DA =-,则点O 到平面11ABC D 的距离11211222DA C O d DA ⋅===,故B 对. 1(1,0,1)A B =-,1(0,1,1)A D =-,11(0,1,0)A D =.设平面1A BD 的法向量为(,,)x y z =n ,则110,0,A B A D ⎧⋅=⎪⎨⋅=⎪⎩n n 所以0,0,x z y z -=⎧⎨-=⎩令1z =,得1y =,1x =, 所以(1,1,1)=n .所以点1D 到平面1A BD 的距离1133||3A D d ⋅=n n . 因为易证得平面1//A BD 平面11B CD ,所以平面1A BD 与平面11B CD 间的距离等于点1D 到平面1A BD 的距离,所以平面1A BD 与平面11B CD 3,故C 对.因为1312423AP AB AD AA =++,所以312,,423AP ⎛⎫= ⎪⎝⎭,又(1,0,0)AB =,则34||AP AB AB ⋅=,所以点P 到AB 的距离2218195||144166||AP AB d AP AB ⋅=-=-=,故D 错. 9.答案:257解析:已知AB BC ⊥,由题意,可得BP AB ⊥,BP BC ⊥.利用向量数量积的运算公式,可得352015603(1)30z x y x y z +-=⎧⎪-++=⎨⎪-+-=⎩,,,解得4071574,x y z ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩,,401525777x y ∴+=-=. 10.答案:4解析:连接AC ,交BD 于点O ,连接OP ,以O 为原点,OA 所在直线为x 轴,OB 所在直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系,设2PA AB ==,则(2,0,0)A ,(0,2,0)D -,22M ⎝⎭,2,0)B ,(0,2,0)BD ∴=-,(2,2,0)AD =-,设(0,,0)N b ,则(0,2,0)BN b =-.BD BN λ=,22(2)b λ∴-=,222b λ-∴=222N λ⎛⎫-∴ ⎪ ⎪⎝⎭,22222,,22MN λλ⎛⎫-∴=-- ⎪ ⎪⎝⎭, MN AD ⊥,2410MN AD λλ-∴⋅=-=,解得4λ=.11.答案:63解析:建立如图所示的空间直角坐标系,则1(0,0,0),(0,0,2),(1,0,2),,(0,1,1)D D M N ,所以(1,1,1)MN =--,平面ABCD 的一个法向量为1(0,0,2)DD =,所以1113cos ,3||MN DD MN DD MN DD ⋅〈==-MN 与平面ABCD 所成的角为θ,则3sin θ,所以6cos θ=. 12.答案:(1)见解析 26解析:(1)证明:取BC 的中点O ,连接,,AO DO AD .ABC ∴△是正三角形, OA BC ∴⊥.∵平面ABC ⊥平面BCD ,平面ABC 平面BCD BC =,OA ∴⊥平面BCD . OD ⊂平面BCD , AO OD ∴⊥.在Rt AOD △中,2sin 603AO DO ===336∴=+=.AD又6AE=,∴△为等腰三角形.ADE∴⊥.P是DE的中点,AP DEDE⊥平面BCD,∴∴⊥∴.AO DE AP AO AP OD////,,BCD AP⊄平面BCD,OD⊂平面,∴平面BCD.//AP(2)由(1)知,,OA DP AP OD,////∴四边形APDO为平行四边形,∴==,PD OA3∴=.23DE以点O为坐标原点,以,,OD OC OA的方向分别为x轴、y轴、z轴的正方向,建立如图的空间直角坐标系O xyz-,则3),(0,1,0)C E,A B-,(0,1,0),(3,0,23)∴===-.BA AE AC(0,1,3),(3,0,3),(0,1,3)设平面ABE的法向量为(,,)m,x y z=则0,0,BA AE ⎧⋅=⎪⎨⋅=⎪⎩m m即0,0.y ⎧=⎪=令y =1,1x z ==-,1)∴=-m .设平面ACE 的法向量为(,,)a b c =n , 则0,0,AE AC ⎧⋅=⎪⎨⋅=⎪⎩n n即0,0.b ==⎪⎩ 令1a =-,则1b c ==,(∴=-n.1cos ,||||5⋅∴===m n m n m n. sin ,∴=m n ∴二面角B AE C --.。

高中数学必修一向量经典习题

高中数学必修一向量经典习题

高中数学必修一向量经典习题1.选择题1.已知向量`a`和向量`b`的模分别为3和4,且它们的夹角为60度,则向量`a·b`的值为:A。

5B。

6C。

7D。

8答案选B。

62.已知两个非零向量`a`和`b`的夹角为90度,则向量`a·b`的值为:A。

0B。

1C。

2D。

-1答案选A。

03.设向量`a`和向量`b`的模分别为2和5,且它们的夹角为30度,则向量`a`与向量`b`的夹角的余弦值为:A。

cosπ/3B。

cosπ/6C。

cosπ/2D。

cos2π/3答案选B。

cosπ/62.计算题1.已知向量`a = (2.3)`,向量`b = (4.1)`,计算向量`a + b`的结果。

答案:向量`a + b`的结果是`(6.4)`。

2.已知向量`a = (3.1)`,向量`b = (-2.5)`,计算向量`a - b`的结果。

答案:向量`a - b`的结果是`(5.-4)`。

3.已知向量`a = (1.2)`,计算向量`3a`的结果。

答案:向量`3a`的结果是`(3.6)`。

3.应用题1.一辆汽车以60km/h的速度行驶了2小时,求汽车行驶的位移向量。

答案:汽车行驶的位移向量是`(120.0)`。

2.已知一个力的大小为10N,方向为东北方,求该力的向量表示。

答案:该力的向量表示为`(5√2.5√2)`。

3.一个力的向量表示为`(6.-8)`,求该力的大小和方向。

答案:该力的大小为`10`,方向向下。

以上是高中数学必修一中关于向量的经典习题,希望能对你的学习有所帮助。

高中数学必修二(人教版)《平面向量加减法答案》习题

高中数学必修二(人教版)《平面向量加减法答案》习题

1.下列说法正确的是( )A .若|a |=|b |,则a ∥bB .零向量的长度是0C .长度相等的向量叫相等向量D .共线向量是在同一条直线上的向量解析:选B 当|a |=|b |时,由于a ,b 方向是任意的,a ∥b 未必成立,所以A 错误;因为零向量的长度是0,所以B 正确;因为长度相等的向量方向不一定相同,所以C 错误;因为共线向量不一定在同一条直线上,所以D 错误.故选B.2.(多选)如图,在正六边形ABCDEF 中,点O 为其中心,则下列判断正确的是( )A .AB ―→=OC ―→ B .AB ―→∥DE ―→ C .|AD ―→|=|BE ―→| D . AD ―→=FC ―→解析:选ABC 由题图可知,|AD ―→|=|FC ―→|,但AD ―→,FC ―→的方向不同,故AD ―→≠FC ―→,D 不正确,其余均正确,故选A 、B 、C. 3.(多选)下列四个条件能使a ∥b 成立的条件是( ) A .a =bB .|a |=|b |C .a 与b 方向相反D .|a |=0或|b |=0解析:选ACD 因为a 与b 为相等向量,所以a ∥b ,即A 能够使a ∥b 成立;由于|a |=|b |并没有确定a 与b 的方向,即B 不能够使a ∥b 成立;因为a 与b 方向相反时,a ∥b ,即C 能够使a ∥b 成立;因为零向量与任意向量共线,所以|a |=0或|b |=0时,a ∥b 能够成立.故使a ∥b 成立的条件是A 、C 、D.4.(多选)对于任意一个四边形ABCD ,下列式子能化简为BC ―→的是( )A .BA ―→+AD ―→+DC ―→B .BD ―→+DA ―→+AC ―→ C .AB ―→+BD ―→+DC ―→D .DC ―→+BA ―→+AD ―→解析:选ABD 在A 中,BA ―→+AD ―→+DC ―→=BD ―→+DC ―→=BC ―→;在B 中,BD ―→+DA ―→+AC ―→=BA ―→+AC ―→=BC ―→;在C 中,AB ―→+BD ―→+DC ―→=AD ―→+DC ―→=AC ―→;在D 中,DC―→+BA ―→+AD ―→=DC ―→+BD ―→=BD ―→+DC ―→=BC ―→.5.如图,四边形ABCD 是梯形,AD ∥BC ,对角线AC 与BD 相交于点O ,则OA ―→+BC ―→+AB ―→+DO ―→=( )A .CD ―→B .DC ―→C .DA ―→D .DO ―→解析:选B OA ―→+BC ―→+AB ―→+DO ―→=DO ―→+OA ―→+AB ―→+BC ―→=DA ―→+AB ―→+BC ―→=DB ―→+BC ―→=DC ―→.6.如图,在平行四边形ABCD 中,AD ―→+AB ―→=________,AD ―→+DC ―→=________,AC ―→+BA ―→=________.解析:利用三角形法则和平行四边形法则求解. 答案:AC ―→ AC ―→ BC ―→ (或AD ―→)7.在矩形ABCD 中,|AB ―→|=4,|BC ―→|=2,则向量AB ―→+AD ―→+AC ―→的长度为________.解析:因为AB ―→+AD ―→=AC ―→,所以AB ―→+AD ―→+AC ―→的长度为AC ―→的模的2倍.又|AC ―→|=42+22=25,所以向量AB ―→+AD ―→+AC ―→的长度为4 5. 答案:458.如图所示,四边形ABCD 与四边形ABDE 是平行四边形. (1)找出与向量AB ―→共线的向量; (2)找出与向量AB ―→相等的向量.解:(1)依据图形可知,DC ―→,ED ―→,与AB ―→方向相同,BA ―→ CD ―→,DE ―→,CE ―→与AB ―→方向相反,所以与向量AB ―→共线的向量为BA ―→,DC ―→,CD ―→,ED ―→,DE ―→,CE ―→.(2)由四边形ABCD 与四边形ABDE 是平行四边形,知DC ―→,ED ―→与AB ―→长度相等且方向相同,所以与向量AB ―→相等的向量为DC ―→和ED ―→.9.若向量a ,b 满足|a |=8,|b |=12,则|a +b |的最小值是________.解析:由向量的三角形不等式,知|a +b |≥|b |-|a |,当且仅当a 与b 反向,且|b |≥|a |时,等号成立,故|a +b |的最小值为4. 答案:410.如图,在△ABC 中,若D 是边BC 的中点,E 是边AB 上一点,则BE ―→-DC ―→+ED ―→=________.解析:BE ―→-CD ―→+ED ―→=BE ―→+ED ―→+CD ―→=BD ―→+CD ―→.因为BD ―→+CD ―→ =0,所以BE ―→-DC ―→+ED ―→=0. 答案:011.(多选)如图,在平行四边形ABCD 中,下列结论中正确的是 ( )A .AB ―→=DC ―→ B .AD ―→+AB ―→=AC ―→ C .AB ―→-AD ―→=BD ―→ D .AD ―→+CB ―→=0解析:选ABD 结合图形可知,A 、B 、D 显然正确.由于AB ―→-AD ―→=DB ―→,故C 项错.12.已知向量a 与b 反向,则下列等式成立的是( )A .|a |+|b |=|a -b |B .|a |-|b |=|a -b |C .|a +b |=|a -b |D .|a |+|b |=|a +b |解析:选A 如图,作AB ―→=a ,BC ―→=-b ,易知选A.13.如图,在四边形ABCD 中,设AB ―→=a ,AD ―→=b ,BC ―→=c ,则DC ―→=( )A .a -b +cB .b -(a +c )C .a +b +cD .b -a +c解析:选A DC ―→=DA ―→+AB ―→+BC ―→=AB ―→-AD ―→+BC ―→=a -b +c . 14.(多选)下列结果为零向量的是( )A .AB ―→-(BC ―→+CA ―→) B .AB ―→-AC ―→+BD ―→-CD ―→ C .OA ―→-OD ―→+AD ―→D .NO ―→+OP ―→+MN ―→-MP ―→解析:选BCD A 项,AB ―→-(BC ―→+CA ―→)=AB ―→-BA ―→=2AB ―→;B 项,AB ―→-AC ―→+BD ―→-CD ―→=CB ―→+BC ―→=0;C 项,OA ―→-OD ―→+AD ―→=DA ―→+AD ―→=0;D 项, NO ―→+OP ―→+MN ―→-MP ―→=NP ―→+PN ―→=0.故选B 、C 、D.15.已知O 是平面上一点,OA ―→=a ,OB ―→=b ,OC ―→=c ,OD ―→=d ,且四边形ABCD 为平行四边形,则( )A .a +b +c +d =0B .a -b +c -d =0C .a +b -c -d =0D .a -b -c +d =0解析:选B 易知OB ―→-OA ―→=AB ―→,OC ―→-OD ―→=DC ―→,而在平行四边形ABCD 中有AB ―→=DC ―→,所以OB ―→-OA ―→=OC ―→-OD ―→,即b -a =c -d ,也即a -b +c -d =0.故选B. 16.如图,在梯形ABCD 中,AD ∥BC ,AC 与BD 交于O 点,则BA ―→- BC ―→-OA ―→+OD ―→+DA ―→=________.解析:由题图知BA ―→-BC ―→-OA ―→+OD ―→+DA ―→=CA ―→-OA ―→+OA ―→=CA ―→. 答案:CA ―→17.若a ,b 为相反向量,且|a |=1,|b |=1,则|a +b |=________,|a -b |=________.解析:若a ,b 为相反向量,则a +b =0,∴|a +b |=0. 又a =-b ,∴|a |=|-b |=1.∵a 与b 共线,∴|a -b |=2. 答案:0 2。

人教版高中数学必修第二册6.2.3向量的数乘运算 同步练习(含答案)

人教版高中数学必修第二册6.2.3向量的数乘运算 同步练习(含答案)

∴ 与 惨共线,又 与 惨有公共点, ∴A,B,D 三点共线.
(2)∵ka+b 与 2a+kb 共线,∴ka+b=λ(2a+kb)(λ∈R),
∴(k-2λ)a+(1-λk)b=0,∴
-2 1−
= 0, 解得 = 0,
k=±
2.
15.A [解析] 易知 = 惨+ ,因为点 P 在线段 AC 上,所以 与 同向,且 0<| |<| |, 故 =λ( 惨+ ),λ∈(0,1). 16.解:(1) = .理由如下: ∵D 为 BC 的中点,∴ 惨+ =2 , ∴由 2 + 惨+ =0,得 2 +2 =0,∴ = . (2)由题意得 +2 惨+3 =( + )+2( 惨+ )=2 +4 =0, ∴ =2 ,∴DE=3DO, 又 AB=2DE,∴AB=6DO,∴S△ABC=6S△BOC=12,即△ABC 的面积为 12.
-3 惨+2
=0,则| 惨|=
|惨 |
.
12.在四边形 ABCD 中,若 惨=3e, =-5e,且| |=|惨 |,则四边形 ABCD 的形状为
. .
.
三、解答题(本大题共 2 小题,共 20 分)
13.(10 分)化简: (1)8(2a-b+c)-6(a-2b+c)-2(2a+c); (2)1 1(2a+8b)-(4a-2b) .
C.-1 惨+1
2
2
D.12 惨-12
7.在△ABC 中,点 P 是 AB 上一点,且
=2
3
+1
3

2023年人教版数学向量几何练习题及答案

2023年人教版数学向量几何练习题及答案

2023年人教版数学向量几何练习题及答案在数学学科中,向量几何是一门重要的分支,它研究了向量的性质、运算以及在几何图形中的应用。

为了帮助学生更好地掌握向量几何的知识,人教版在2023年出版了一套全新的向量几何教材。

本文将为大家介绍2023年人教版数学向量几何的练习题及答案,帮助学生进行复习和巩固。

练习题一:已知向量a = (3, -2, 4)和向量b = (1, 5, -2),求向量a与向量b的数量积。

解答:向量a与向量b的数量积可以表示为a·b,其中a·b = a₁b₁ + a₂b₂+ a₃b₃。

根据已知数据,我们可以计算数量积如下:a·b = 3 * 1 + (-2) * 5 + 4 * (-2) = 3 - 10 - 8 = -15。

练习题二:设向量c = (5, -1, 3),计算向量c的模长。

解答:向量c的模长可以表示为∥c∥,其中∥c∥ = √(c₁² + c₂² + c₃²)。

根据已知数据,我们可以计算模长如下:∥c∥ = √(5² + (-1)² + 3²) = √(25 + 1 + 9) = √35。

练习题三:已知向量d = (2, -3, 1)和向量e = (4, 2, -1),求向量d与向量e的向量积。

解答:向量d与向量e的向量积可以表示为d×e,其中d×e = (d₂e₃ -d₃e₂, d₃e₁ - d₁e₃, d₁e₂ - d₂e₁)。

根据已知数据,我们可以计算向量积如下:d×e = (2 * (-1) - 1 * 2, 1 * 4 - 2 * (-1), 2 * 2 - (-3) * 4) = (-4, 6, 14)。

练习题四:已知向量f = (1, -2, 3)和向量g = (2, 1, -2),求向量f与向量g的夹角。

解答:向量f与向量g的夹角可以表示为θ,其中cosθ = (f·g) / (∥f∥ *∥g∥)。

人教版高中数学必修第二册6.1.3相等向量与共线向量 同步练习(含答案)

人教版高中数学必修第二册6.1.3相等向量与共线向量 同步练习(含答案)

人教版高中数学必修第二册6.1.3相等向量与共线向量同步练习(含答案)人教版高中数学必修第二册6.1.3相等向量与共线向量同步练习一、选择题(本大题共8小题,每小题5分,共40分)1.下列说法中正确的是()A.两个有共同起点的单位向量,其终点必相同B.向量与向量的长度相等C.向量就是有向线段D.零向量是没有方向的2.如图L6-1-1,在平行四边形ABCD中,E,F分别是AB,CD的中点,则图中与平行的向量有()图L6-1-1A.1个B.2个C.3个D.4个3.下列说法中正确的个数是()①温度含零上和零下温度,所以温度是向量;②向量a与b不共线,则a与b都是非零向量;③若|a|>|b|,则a>b.A.0B.1C.2D.34.下列命题中为真命题的是()A.若|a|=|b|,则a=bB.若|a|>|b|,则a>bC.若a=b,则a∥bD.若|a|=0,则a=05.若四边形ABCD满足=,则四边形ABCD的形状一定是()A.平行四边形B.菱形C.矩形D.正方形6.已知D为平行四边形ABPC的两条对角线的交点,则的值为()A. B.C.1D.27.已知O是∥ABC内一点,若||=||=||,则O一定是∥ABC的()A.重心B.内心C.外心D.垂心8.如图L6-1-2所示,四边形ABCD,CEFG,DCGH是全等的菱形,HE与CG相交于点M,则下列结论不一定成立的是()图L6-1-2A.||=||B.与共线C.与共线D.与共线二、填空题(本大题共4小题,每小题5分,共20分)9.如图L6-1-3所示,四边形ABCD为正方形,∥BCE为等腰直角三角形.图L6-1-3(1)图中与共线的向量有;(2)图中与相等的向量有;(3)图中与相等的向量有.10.在四边形ABCD中,若∥且||≠||,则四边形ABCD的形状是.11.给出下列说法:①两个向量相等,则它们的起点相同,终点相同;②若|a|≠|b|,则a≠b;③若a≠b,则a一定不与b共线;④共线向量是在一条直线上的向量.其中正确的是.(填序号)12.已知A,B,C是不共线的三点,向量m与向量是平行向量,与是共线向量,则m=.三、解答题(本大题共2小题,共20分)13.(10分)如图L6-1-4,EF是∥ABC的中位线,AD是BC边上的中线,在以A,B,C,D,E,F为端点的有向线段表示的向量中,请分别写出:(1)与向量共线的向量;(2)与向量的模相等的向量;(3)与向量相等的向量.图L6-1-414.(10分)已知飞机从A地沿北偏东30°的方向飞行2000 km到达B地,再从B地沿南偏东30°的方向飞行2000 km到达C地,再从C地沿西南方向飞行1000 km到达D地.(1)作出向量,,,.(2)D地在A地的什么方向D地距A地多远15.(5分)把同一平面内所有模不小于1且不大于2的向量的起点移到同一点O,则这些向量的终点构成的图形的面积为.16.(15分)一位模型赛车手遥控一辆赛车沿正东方向向前行进1米,逆时针转变α(0°<α<180°),继续按直线向前行进1米,再逆时针转变α度,按直线向前行进1米,按此方法继续操作下去.(1)作示意图说明当α=45°时,操作几次后赛车的位移为零向量.(2)按此操作方法使赛车行进一周后能回到出发点,α应满足什么条件参考答案与解析1.B[解析] 单位向量的方向是任意的,所以当两个单位向量的起点相同时,其终点在以起点为圆心的单位圆上,终点不一定相同,所以选项A不正确;向量与向量方向相反,长度相等,所以选项B正确;向量是既有大小,又有方向的量,可以用有向线段表示,但不能说向量就是有向线段,所以选项C不正确;规定零向量的方向任意,而不是没有方向,所以选项D不正确.故选B.2.C[解析] 与平行的向量有,,,共3个.3.B[解析] ①温度没有方向,所以不是向量,故①错误;③向量不可以比较大小,故③错误;②若a,b中有一个为零向量,则a与b必共线,故由a与b不共线,得a与b均为非零向量,故②正确.4.C[解析] 若两向量相等,则两向量共线.5.A[解析] 由=知AB∥CD且AB=CD,故四边形ABCD为平行四边形.故选A.6.C[解析] 因为四边形ABPC是平行四边形,D为对角线BC与AP的交点,所以D为PA的中点,所以的值为1.7.C[解析] 由条件知点O到∥ABC的三个顶点的距离相等,所以O一定是∥ABC的外心.8.C[解析] ∥三个四边形是全等的菱形,∥||=||,AB∥CD∥FH,故与共线,又D,C,E三点共线,∥与共线,∥A,B,D中的结论一定成立.故选C.9.(1),,,,,,(2),(3)[解析] 结合图形及向量的有关概念来解答问题.10.梯形[解析] ∥∥且||≠||,∥AB∥DC,但AB≠DC,∥四边形ABCD是梯形.11.②[解析] ①错误,两个向量相等,它们的起点和终点不一定相同.②正确.③错误,a≠b时,a与b可能共线.④错误,共线向量所在的直线也可能平行.12.0[解析] 因为A,B,C三点不共线,所以与不共线,又m∥且m∥,所以m=0.13.解:(1)与向量共线的向量有,,,,,,.(2)与向量的模相等的向量有,,,,.(3)与向量相等的向量有,.14.解:(1)向量,,,如图所示.(2)由图知,D地在A地的东南方向,D地距A地1000 km.15.3π[解析] 这些向量的终点构成的图形是一个圆环,其面积为π·22-π·12=3π.16.解:(1)如图所示,操作8次后赛车的位移为零向量.(2)要使赛车行进一周后能回到出发点,只需赛车的位移为零向量,按(1)的方式作图,则所作图形是内角为180°-α的正n边形,故有n(180°-α)=(n-2)180°,得α=,n为不小于3的整数.。

高二数学向量的练习题

高二数学向量的练习题

高二数学向量的练习题一、基础练习1. 已知向量a = (3, 4)和向量b = (5, -2),求向量a + b的坐标表示。

2. 已知向量a = (2, -1)和向量b = (-3, 5),求向量a - b的坐标表示。

3. 已知向量a = (1, 2)和向量b = (2, 3),求向量a · b的结果。

4. 已知向量a = (3, 4),求向量a的模长。

5. 求向量(4, 1)的单位向量。

二、向量运算1. 已知向量a = (5, -2)和向量b = (-3, 1),求向量a + 2b的坐标表示。

2. 已知向量a = (2, 4),向量b = (-3, 1),和向量c = (0, -2),求向量a + b - c的坐标表示。

3. 已知向量a = (1, 2)和向量b = (2, 3),求向量a · b + 2a的结果。

4. 若向量a的模长为5,向量b的模长为3,且向量a与向量b的夹角为45度,求向量a · b的结果。

5. 求向量(3, 4)的模长,并求与该向量夹角为60度的单位向量。

三、平面向量与几何应用1. 已知三角形ABC的顶点坐标分别为A(1, 2),B(4, 3),C(2, 6),求向量AB和向量BC的坐标表示。

2. 已知四边形ABCD的顶点坐标分别为A(1, 1),B(5, 1),C(5, 4),D(1, 4),求向量AB + 向量BC + 向量CD + 向量DA的坐标表示。

3. 若平行四边形ABCD的对角线AC的向量表示为(3, 2),且向量CD的坐标表示为(4, 1),求向量AB的坐标表示。

4. 已知平行四边形ABCD的对角线AC的向量表示为(2, 3),向量AB的坐标表示为(-1, 4),求向量BC的坐标表示。

5. 已知平行四边形ABCD的对角线AC的向量表示为(3, 4),向量CD的坐标表示为(1, 2),求平行四边形的面积。

四、向量的投影1. 已知向量a = (3, 5)和向量b = (1, -2),求向量a在b方向上的投影的坐标表示。

高中向量练习题

高中向量练习题

高中向量练习题在高中数学学习中,向量是一个重要的概念。

向量不仅仅是一个有大小和方向的量,它还具有多种运算法则,能够帮助我们解决很多几何和代数问题。

本文将为大家提供几个高中向量练习题,帮助大家加深对向量的理解和运用。

练习一:向量的模和方向角1. 已知向量AB = (-3, 4),求向量AB的模和方向角。

解析:向量AB的模可以通过勾股定理求得:|AB| = √((-3)^2 + 4^2) = √(9 + 16) = √25 = 5向量AB的方向角可以根据三角函数求得:tanθ = y/x = 4/(-3)θ = arctan(4/(-3)) ≈ -0.93 弧度练习二:向量的加法和减法2. 已知向量AC = (2, -1) 和向量CB = (4, 3),求向量AB的坐标表示和模。

解析:向量AB = 向量AC + 向量CB = (2 + 4, -1 + 3) = (6, 2)向量AB的模可以通过勾股定理求得:|AB| = √(6^2 + 2^2) = √(36 + 4) = √40 = 2√10练习三:向量的数量积3. 已知向量A = (2, 3) 和向量B = (4, -1),求向量A与向量B的数量积。

解析:向量A与向量B的数量积可以通过坐标分量对应相乘再相加求得:A·B = 2 * 4 + 3 * (-1) = 8 - 3 = 5练习四:向量的夹角4. 已知向量A = (2, 4) 和向量B = (-3, 5),求向量A与向量B的夹角。

解析:向量A与向量B的夹角可以通过向量的数量积和模的关系求得:cosθ = (A·B) / (|A| * |B|)= (2 * (-3) + 4 * 5) / (√(2^2 + 4^2)* √((-3)^2 + 5^2))= (-6 + 20) / (√20 * √34)= 14 / (2√5 * √34)= 7 / (√5 * √17)= 7√17 / 5√17= √17 / 5θ = arccos(√17 / 5) ≈ 0.36 弧度练习五:向量的共线与垂直5. 已知向量A = (-2, 3) 和向量B = (4, -6),判断向量A和向量B是否共线,并求其是否垂直。

人教版高中数学向量练习题

人教版高中数学向量练习题

一、选择题;1、若a ,b ,c 是空间任意三个向量, R λ∈,下列关系式中,不成立的是( )A 、a b b a +=+B 、()a b a b λλλ+=+ C 、()()a b c a b c ++=++ D 、b a λ=2、已知向量a =(1,1,0),则与a 共线的单位向量( ) A 、(1,1,0) B 、(0,1,0) C 、(22,22,0) D 、(1,1,1) 3、若,,a b c 为任意向量,∈R m ,下列等式不一定成立的是( ) A.()()a b c a b c ++=++ B.()a b c a c b c +=+··· C.()a b a b +=+m m m D.()()a b c a b c =···· 4、设(43)(32)a b ==,,,,,x z ,且∥a b ,则xz 等于( ) A.4-B.9C.9-D.6495、若向量(12)λ=,,a 与(212)=-,,b 的夹角的余弦值为89,则λ=( ) A.2B.2-C.2-或255D.2或255-6、已知ABCD 为平行四边形,且(413)(251)(375)A B C --,,,,,,,,,则D 的坐标为( ) A.7412⎛⎫- ⎪⎝⎭,, B.(241),, C.(2141)-,, D.(5133)-,,7、在正方体1111ABCD A B C D -中,O 为AC BD ,的交点,则1C O 与1A D 所成角的( )A.60°B.90°C. D. 8、正方体1111ABCD A B C D -的棱长为1,E 是11A B 的中点,则E 到平面11ABC D 的距离是( )C.129、ABCD 为正方形,P 为平面ABCD 外一点,2PD AD PD AD ⊥==,,二面角P AD C --为60°,则P 到AB 的距离为( )A. C.210、如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为( )。

最新人教版高中数学《平面向量》精选习题(含答案解析)

最新人教版高中数学《平面向量》精选习题(含答案解析)

最新人教版高中数学《平面向量》精选习题(含答案解析)一、选择题(本大题共12小题,每小题5分,共60分)1.已知向量a =(4,2),b =(x,3),且a ∥b ,则x 的值是( ) A .-6 B .6 C .9 D .12 2.下列命题正确的是( ) A .单位向量都相等B .若a 与b 共线,b 与c 共线,则a 与c 共线C .若|a +b |=|a -b |,则a ·b =0D .若a 与b 都是单位向量,则a ·b =1.3.设向量a =(m -2,m +3),b =(2m +1,m -2),若a 与b 的夹角大于90°,则实数m 的取值范围是( )A .(-43,2)B .(-∞,-43)∪(2,+∞)C .(-2,43)D .(-∞,2)∪(43,+∞)4.平行四边形ABCD 中,AC 为一条对角线,若AB →=(2,4),AC →=(1,3),则AD →·BD →等于( ) A .8 B .6 C .-8 D .-65.已知|a |=1,|b |=6,a ·(b -a )=2,则向量a 与向量b 的夹角是( ) A.π6 B.π4 C.π3 D.π26.关于平面向量a ,b ,c ,有下列四个命题: ①若a ∥b ,a ≠0,则存在λ∈R ,使得b =λa ; ②若a ·b =0,则a =0或b =0;③存在不全为零的实数λ,μ使得c =λa +μb ; ④若a ·b =a ·c ,则a ⊥(b -c ). 其中正确的命题是( )A .①③B .①④C .②③D .②④7.已知|a |=5,|b |=3,且a ·b =-12,则向量a 在向量b 上的投影等于( )A .-4B .4C .-125 D.1258.设O ,A ,M ,B 为平面上四点,OM →=λOB →+(1-λ)·OA →,且λ∈(1,2),则( ) A .点M 在线段AB 上 B .点B 在线段AM 上 C .点A 在线段BM 上D .O ,A ,B ,M 四点共线9.P 是△ABC 内的一点,AP →=13(AB →+AC →),则△ABC 的面积与△ABP 的面积之比为( )A.32B .2C .3D .6 10.在△ABC 中,AR →=2RB →,CP →=2PR →,若AP →=mAB →+nAC →,则m +n 等于( ) A.23 B.79 C.89D .1 11.已知3a +4b +5c =0,且|a |=|b |=|c |=1,则a ·(b +c )等于( )A .-45B .-35C .0 D.3512.定义平面向量之间的一种运算“⊙”如下:对任意的a =(m ,n ),b =(p ,q ),令a ⊙b =mq -np .下面说法错误的是( )A .若a 与b 共线,则a ⊙b =0B .a ⊙b =b ⊙aC .对任意的λ∈R ,有(λa )⊙b =λ(a ⊙b )D .(a ⊙b )2+(a ·b )2=|a |2|b |2二、填空题(本大题共4小题,每小题5分,共20分)13.设向量a =(1,2),b =(2,3),若向量λa +b 与向量c =(-4,-7)共线,则λ=________. 14.a ,b 的夹角为120°,|a |=1,|b |=3,则|5a -b |=________.15.已知向量a =(6,2),b =(-4,12),直线l 过点A (3,-1),且与向量a +2b 垂直,则直线l 的方程为________.16. 如图所示,半圆的直径AB =2,O 为圆心,C 是半圆上不同于A ,B 的任意一点,若P 为半径OC 上的动点,则(P A →+PB →)·PC →的最小值是________.三、解答题(本大题共6小题,共70分)17.(10分)已知a ,b ,c 在同一平面内,且a =(1,2). (1)若|c |=25,且c ∥a ,求c ;(2)若|b |=52,且(a +2b )⊥(2a -b ),求a 与b 的夹角.18.(12分)已知|a |=2,|b |=3,a 与b 的夹角为60°,c =5a +3b ,d =3a +k b ,当实数k 为何值时, (1)c ∥d ;(2)c ⊥d.19.(12分)已知|a |=1,a ·b =12,(a -b )·(a +b )=12,求:(1)a 与b 的夹角;(2)a -b 与a +b 的夹角的余弦值.20.(12分)在平面直角坐标系xOy 中,已知点A (-1,-2),B (2,3),C (-2,-1). (1)求以线段AB 、AC 为邻边的平行四边形的两条对角线的长;(2)设实数t 满足(AB →-tOC →)·OC →=0,求t 的值.21.(12分)已知正方形ABCD ,E 、F 分别是CD 、AD 的中点,BE 、CF 交于点P .求证: (1)BE ⊥CF ; (2)AP =AB .22.(12分)已知向量OP 1→、OP 2→、OP 3→满足条件OP 1→+OP 2→+OP 3→=0,|OP 1→|=|OP 2→|=|OP 3→|=1. 求证:△P 1P 2P 3是正三角形.参考答案与解析1.B [∵a ∥b ,∴4×3-2x =0,∴x =6.]2.C [∵|a +b |2=a 2+b 2+2a ·b |a -b |2=a 2+b 2-2a ·b |a +b |=|a -b |.∴a ·b =0.]3.A [∵a 与b 的夹角大于90°,∴a ·b <0,∴(m -2)(2m +1)+(m +3)(m -2)<0,即3m 2-2m -8<0,∴-43<m <2.]4.A [∵AD →=BC →=AC →-AB →=(-1,-1),∴BD →=AD →-AB →=(-1,-1)-(2,4)=(-3,-5), ∴AD →·BD →=(-1,-1)·(-3,-5)=8.]5.C [∵a (b -a )=a ·b -|a |2=2,∴a ·b =3,∴cos 〈a ,b 〉=a ·b |a |·|b |=31×6=12,∴〈a ,b 〉=π3.]6.B [由向量共线定理知①正确;若a ·b =0,则a =0或b =0或a ⊥b ,所以②错误;在a ,b 能够作为基底时,对平面上任意向量,存在实数λ,μ使得c =λa +μb ,所以③错误;若a ·b =a ·c ,则a (b -c )=0,所以a ⊥(b -c ),所以④正确,即正确命题序号是①④.]7.A [向量a 在向量b 上的投影为|a |cos 〈a ,b 〉=|a |·a ·b |a ||b |=a ·b |b |=-123=-4.]8.B [∵OM →=λOB →+(1-λ)OA →=OA →+λ(OB →-OA →)∴AM →=λAB →,λ∈(1,2),∴点B 在线段AM 上,故选B.]9.C [设△ABC 边BC 的中点为D ,则S △ABC S △ABP =2S △ABD S △ABP=2ADAP .∵AP →=13(AB →+AC →)=23AD →,∴AD →=32AP →,∴|AD →|=32|AP →|.∴S △ABC S △ABP=3.]10.B [AP →=AC →+CP →=AC →+23CR →=AC →+23(23AB →-AC →)=49AB →+13AC →故有m +n =49+13=79.]11.B [由已知得4b =-3a -5c ,将等式两边平方得(4b )2=(-3a -5c )2,化简得a ·c =-35.同理由5c =-3a-4b 两边平方得a ·b =0,∴a ·(b +c )=a ·b +a ·c =-35.]12.B [若a =(m ,n )与b =(p ,q )共线,则mq -np =0,依运算“⊙”知a ⊙b =0,故A 正确.由于a ⊙b =mq -np ,又b ⊙a =np -mq ,因此a ⊙b =-b ⊙a ,故B 不正确.对于C ,由于λa =(λm ,λn ),因此(λa )⊙b =λmq -λnp ,又λ(a ⊙b )=λ(mq -np )=λmq -λnp ,故C 正确.对于D ,(a ⊙b )2+(a ·b )2=m 2q 2-2mnpq +n 2p 2+(mp +nq )2=m 2(p 2+q 2)+n 2(p 2+q 2)=(m 2+n 2)(p 2+q 2)=|a |2|b |2,故D 正确.] 13.2解析 ∵a =(1,2),b =(2,3),∴λa +b =(λ,2λ)+(2,3)=(λ+2,2λ+3). ∵向量λa +b 与向量c =(-4,-7)共线, ∴-7(λ+2)+4(2λ+3)=0. ∴λ=2. 14.7解析 ∵|5a -b |2=(5a -b )2=25a 2+b 2-10a ·b =25×12+32-10×1×3×(-12)=49.∴|5a -b |=7.15.2x -3y -9=0解析 设P (x ,y )是直线上任意一点,根据题意,有AP →·(a +2b )=(x -3,y +1)·(-2,3)=0,整理化简得2x -3y -9=0.16.-12解析 因为点O 是A ,B 的中点,所以P A →+PB →=2PO →,设|PC →|=x ,则|PO →|=1-x (0≤x ≤1).所以(P A →+PB →)·PC →=2PO →·PC →=-2x (1-x )=2(x -12)2-12.∴当x =12时,(P A →+PB →)·PC →取到最小值-12.17.解 (1)∵c ∥a ,∴设c =λa ,则c =(λ,2λ). 又|c |=25,∴λ=±2,∴c =(2,4)或(-2,-4).(2)∵()a +2b ⊥(2a -b ),∴(a +2b )·(2a -b )=0.∵|a |=5,|b |=52,∴a·b =-52.∴cos θ=a·b|a||b |=-1,∴θ=180°.18.解 由题意得a·b =|a||b |cos 60°=2×3×12=3.(1)当c ∥d ,c =λd ,则5a +3b =λ(3a +k b ).∴3λ=5,且kλ=3,∴k =95.(2)当c ⊥d 时,c·d =0,则(5a +3b )·(3a +k b )=0.∴15a 2+3k b 2+(9+5k )a·b =0,∴k =-2914.19.解 (1)∵(a -b )·(a +b )=|a |2-|b |2=1-|b |2=12,∴|b |2=12,∴|b |=22,设a 与b 的夹角为θ,则cos θ=a ·b |a ||b |=121×22=22.∴θ=45°.(2)∵|a |=1,|b |=22,∴|a -b |2=a 2-2a ·b +b 2=1-2×12+12=12.∴|a -b |=22,又|a +b |2=a 2+2a ·b +b 2=1+2×12+12=52.∴|a +b |=102,设a -b 与a +b 的夹角为α,则cos α=(a -b )·(a +b )|a -b |·|a +b |=1222×102=55.即a -b 与a +b 的夹角的余弦值为55.20.解 (1)AB →=(3,5),AC →=(-1,1),求两条对角线的长即求|AB →+AC →|与|AB →-AC →|的大小. 由AB →+AC →=(2,6),得|AB →+AC →|=210, 由AB →-AC →=(4,4),得|AB →-AC →|=4 2. (2)OC →=(-2,-1),∵(AB →-tOC →)·OC →=AB →·OC →-tOC →2,易求AB →·OC →=-11,OC →2=5,∴由(AB →-tOC →)·OC →=0得t =-115.21.证明如图建立直角坐标系xOy ,其中A 为原点,不妨设AB =2, 则A (0,0),B (2,0),C (2,2), E (1,2),F (0,1). (1)BE →=OE →-OB →=(1,2)-(2,0)=(-1,2), CF →=OF →-OC →=(0,1)-(2,2)=(-2,-1),∵BE →·CF →=-1×(-2)+2×(-1)=0, ∴BE →⊥CF →,即BE ⊥CF .(2)设P (x ,y ),则FP →=(x ,y -1),CF →=(-2,-1), ∵FP →∥CF →,∴-x =-2(y -1),即x =2y -2.同理由BP →∥BE →,得y =-2x +4,代入x =2y -2.解得x =65,∴y =85,即P ⎝⎛⎭⎫65,85. ∴AP →2=⎝⎛⎭⎫652+⎝⎛⎭⎫852=4=AB →2, ∴|AP →|=|AB →|,即AP =AB .22.证明 ∵OP 1→+OP 2→+OP 3→=0,∴OP 1→+OP 2→=-OP 3→,∴(OP 1→+OP 2→)2=(-OP 3→)2,∴|OP 1→|2+|OP 2→|2+2OP 1→·OP 2→=|OP 3→|2,∴OP 1→·OP 2→=-12,cos ∠P 1OP 2=OP 1→·OP 2→|OP 1→|·|OP 2→|=-12,∴∠P 1OP 2=120°.同理,∠P 1OP 3=∠P 2OP 3=120°,即OP 1→、OP 2→、OP 3→中任意两个向量的夹角为120°,故△P 1P 2P 3是正三角形.。

高三向量练习题及答案

高三向量练习题及答案

高三向量练习题及答案向量是数学中重要的概念之一,它广泛应用于各个领域,尤其在几何学和物理学中。

本文将为高三学生提供一些向量练习题,并附上详细的答案和解析,以帮助他们更好地理解和掌握向量的相关知识。

1. 练习题一已知向量A = (3, -2) 和向量B = (-1, 4),求向量A + B的结果。

答案解析:向量A + B的结果等于将A和B的对应分量相加,所以A +B = (3 + (-1), -2 + 4) = (2, 2)。

2. 练习题二已知向量C = (5, -3) 和向量D = (-2, 1),求向量C - D的结果。

答案解析:向量C - D的结果等于将C和D的对应分量相减,所以C -D = (5 - (-2), -3 - 1) = (7, -4)。

3. 练习题三已知向量E = (2, 5),求向量E的模长。

答案解析:向量E的模长等于它的分量平方和的平方根,所以|E| = √(2^2 + 5^2) = √(4 + 25) = √29。

4. 练习题四已知向量F = (3, -4),求向量F的单位向量。

答案解析:向量F的单位向量等于将F除以它的模长,所以F的单位向量 = (3/|F|, -4/|F|) = (3/5, -4/5)。

5. 练习题五已知向量G = (1, 2) 和向量H = (3, -1),求向量G和向量H的数量积。

答案解析:向量G和向量H的数量积等于将G和H的对应分量相乘,然后再相加,所以G·H = (1 * 3) + (2 * (-1)) = 3 - 2 = 1。

6. 练习题六已知向量I = (2, -3) 和向量J = (-4, 5),求向量I和向量J的向量积。

答案解析:向量I和向量J的向量积等于将I和J的对应分量相乘,然后再相减,所以I × J = (2 * 5) - ((-3) * (-4)) = 10 - 12 = -2。

通过以上的练习题,我们可以看到向量的运算方法和性质。

高三向量练习题

高三向量练习题

高三向量练习题在高中数学学习中,向量是一个重要的概念。

向量不仅在数学中有广泛的应用,而且在物理、计算机科学等领域也有重要作用。

掌握向量的基本概念和运算规则对于高三学生来说至关重要。

本文将通过一系列练习题,帮助读者巩固和加深对高三向量的理解。

1. 请计算向量a = (3, 4)与向量b = (-1, 2)的和。

解析:向量的和等于两个向量对应分量的和。

a +b = (3 + (-1), 4 + 2)= (2, 6)2. 已知向量a = (1, 2)和向量b = (3, -4),求它们的数量积。

解析:向量的数量积等于两个向量对应分量的乘积再求和。

a ·b = 1 * 3 + 2 * (-4)= 3 - 8= -53. 向量的模长是什么?请计算向量a = (3, 4)的模长。

解析:向量的模长就是向量的长度,可以通过勾股定理求得。

向量a的模长= √(3^2 + 4^2)= √(9 + 16)= √25= 54. 如果向量a = (2, 3)与向量b的数量积等于0,求向量b。

解析:当两个向量的数量积等于0时,可以推出它们的两个分量的乘积之和等于0。

2b1 + 3b2 = 0化简得到b1 = -3/2 * b2可取b2 = 2,则b1 = -3。

因此,向量b = (-3, 2)。

5. 已知向量a = (4, 3)和向量b的模长等于5,且向量a与向量b夹角为60°,求向量b。

解析:根据向量的数量积公式和余弦定理可以求得向量b的模长和分量。

由于|a| * |b| * cosθ = a · b,其中θ是向量a和向量b之间的夹角。

已知|a| = √(4^2 + 3^2) = 5已知|b| = 5已知θ = 60°,cosθ = cos60° = 1/2因此,(5) * (5) * (1/2) = (4, 3) · b解之得到b = (2, 4/3)。

通过以上练习题的分析和解答,我们可以进一步加深对高三向量的理解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题;
1、若a ,b ,c 是空间任意三个向量, R λ∈,下列关系式中,不成立的是( )
A 、a b b a +=+
B 、()
a b a b λλλ+=+ C 、()()
a b c a b c ++=++ D 、b a λ=
2、已知向量a =(1,1,0),则与a 共线的单位向量( ) A 、(1,1,0) B 、(0,1,0) C 、(
22,2
2
,0) D 、(1,1,1) 3、若,,a b c 为任意向量,∈R m ,下列等式不一定成立的是( ) A.()()a b c a b c ++=++ B.()a b c a c b c +=+··· C.()a b a b +=+m m m D.()()a b c a b c =···· 4、设(43)(32)a b ==,,,,,x z ,且∥a b ,则xz 等于( ) A.4-
B.9
C.9-
D.
649
5、若向量(12)λ=,,a 与(212)=-,,b 的夹角的余弦值为8
9
,则λ=( ) A.2
B.2-
C.2-或
2
55
D.2或255
-
6、已知ABCD 为平行四边形,且(413)(251)(375)A B C --,,,,,,,,,
则D 的坐标为( ) A.7412
⎛⎫
- ⎪⎝⎭

, B.(241),, C.(2141)-,, D.(5133)-,,
7、在正方体1111ABCD A B C D -中,O 为AC BD ,的交点,则1C O 与1A D 所成角的( )
A.60°
B.90°
C. D. 8、正方体1111ABCD A B C D -的棱长为1,E 是11A B 的中点,则E 到平面11ABC D 的距离是( )
C.12
9、ABCD 为正方形,P 为平面ABCD 外一点,2PD AD PD AD ⊥==,,二面角
P AD C --为60°,则P 到AB 的距离为( )
A. C.2
10、如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为( )。

A.
63 B.552 C.155 D.10
5
二、填空题:
11、若向量a 与b 的夹角为60°,4=b ,(2)(3)72a b a b +-=-,则a = 。

12、已知,a b 均为单位向量,它们的夹角为60︒,那么3a b += 。

13、已知,,A B C 三点不共线,O 为平面ABC 外一点,若由向量
12
53
OP OA OB OC λ=++确定的点P 与A
B C ,,共面,那么λ= 。

14、在长方体1111ABCD A B C D -中,1B C 和1C D 与底面所成的角分别为60°和45°,则异面直线1B C 和1C D 所成角的余弦值为 。

15、直三棱柱ABC —A 1B 1C 1中,∠ACB=90°,15==BC AC ,AA 1=6,E 为AA 1的中点,则平面EBC 1与平面ABC 所成的二面角的大小为_____ ___。

三、解答题:
16、如图,在四棱锥P-ABCD 中,底面ABCD 是边长为1的正方形,侧棱PA 的长为2,且PA 与AB 、AD 的夹角都等于600,M 是PC 的中点,设c b a ===AP AD AB ,,。

(1)试用c b a ,,表示出向量BM ; (2)求BM 的长。

M
P
D
C
B
A
17、设空间两个不同的单位向量()()1122,,0,,,0a x y b x y == 与向量()1,1,1c =的夹
角都等于45︒。

(1)求11x y +和11x y ⋅的值; (2)求,a b 的大小。

18、如图,已知直四棱柱1111ABCD A B C D -中,12AA =,底面ABCD 是直角梯形,ADC ∠是直角,421AB CD AB AD DC ===,,,∥,求异面直线1BC 与DC 所成角的大小。

19、如图,直三棱柱ABC —A 1B 1C 1中,∠ACB=90°,AC=AA 1=1,,AB 1与
A 1
B 相交于点D ,M 为B 1
C 1的中点。

(1)求证:C
D ⊥平面BDM ;
(2)求平面B 1BD 与平面CBD 所成二面角的大小。

20、如图,在四棱锥P —ABCD 中,底面ABCD 为正方形,PD ⊥平面ABCD ,且PD=AB=a ,E 为PB 的中点。

(1)求异面直线PD 与AE 所成的角的大小;
(2)在平面PAD 内求一点F ,使得EF ⊥平面PBC ; (3)在(2)的条件下求二面角F —PC —E 的大小。

21、平行六面体1111ABCD A B C D -的底面ABCD 是菱形,且11C CB C CD BCD ∠=∠=∠,试问:当
1
CD
CC 的值为多少时,1
AC ⊥面1C BD ?请予以证明。

相关文档
最新文档