第6章 抽样推断

合集下载

统计学 第 6 章 抽样与参数估计

统计学  第 6 章   抽样与参数估计

第6章抽样与参数估计第6章抽样与参数估计6.1抽样与抽样分布6.2参数估计的基本方法6.3总体均值的区间估计6.4总体比例的区间估计6.5样本容量的确定学习目标理解抽样方法与抽样分布估计量与估计值的概念点估计与区间估计的区别评价估计量优良性的标准总体均值的区间估计方法总体比例的区间估计方法样本容量的确定方法参数估计在统计方法中的地位统计推断的过程6.1抽样与抽样分布什么是抽样推断概率捕样方法抽样分布抽样方法抽样方法概率抽样(probabilitysampling)也称随机抽样特点按一定的概率以随机原则抽取样本抽取样本时使每个单位都有一定的机会被抽中每个单位被抽中的概率是已知的,或是可以计算出来的当用样本对总体目标量进行估计时,要考虑到每个样本单位被抽中的概率简单随机抽样(simplerandomsampling)从总体N个单位中随机地抽取n个单位作为样本,每个单位入抽样本的概率是相等的最基本的抽样方法,是其它抽样方法的基础特点简单、直观,在抽样框完整时,可直接从中抽取样本用样本统计量对目标量进行估计比较方便局限性当N很大时,不易构造抽样框抽出的单位很分散,给实施调查增加了困难没有利用其它辅助信息以提高估计的效率分层抽样(stratifiedsampling)将抽样单位按某种特征或某种规则划分为不同的层,然后从不同的层中独立、随机地抽取样本优点保证样本的结构与总体的结构比较相近,从而提高估计的精度组织实施调查方便既可以对总体参数进行估计,也可以对各层的目标量进行估计系统抽样(systematicsainplmg)将总体中的所有单位(抽样单位)按一定顺序排列,在规定的范闱内随机地抽取一个单位作为初始单位,然后按爭先规定好的规则确定其它样本单位先从数字1到k之间随机抽取一个数字r作为初始单位,以后依次取r+k,r+2k…等单位优点:操作简便,可提高估计的精度缺点:对估计量方差的估计比较困难整群抽样(clustersampling)将总体中若干个单位合并为组(群),抽样时直接抽取群,然后对中选群中的所有单位全部实施调查特点抽样时只需群的抽样框,可简化工作量调查的地点相对集中,节省调查费用,方便调查的实施缺点是估计的精度较差抽样分布总体中各元素的观察值所形成的分布分布通常是未知的可以假定它服从某种分布总体分布(populationdistribution)一个样本中各观察值的分布也称经验分布当样本容屋n逐渐增大时,样本分布逐渐接近总体的分布样本分布(sampledistribution)抽样分布的概念(samplingdistribution)抽样分布是指样本统计屋的分布,即把某种样本统计量看作一个随机变量,这个随机变屋的全部可能值构成的新的总体所形成的分布即为某种统计量的抽样分布.统计量:样本均值,样本比例,样本方差等样本统计量的概率分布是一种理论概率分布随机变量是样本统计量样本均值,样本比例,样本方差等结果来自容量相同的所有可能样本提供了样本统计量长远稳定的信息,是进行推断的理论基础,也是抽样推断科学性的重要依据对抽样分布的理解抽样分布:即不是总体分布,也不是样本分布,是根据所有可能样本计算的统计量的全部可能取值形成的分布样本均值的抽样分布容量相同的所有町能样本的样本均值的概率分布一种理论概率分布进行推断总体均值的理论基础样本均值的抽样分布样本均值的抽样分布(例题分析)【例】设一个总体,含有4个元素(个体),即总体单位数N=4。

统计学罗文宝主编 第六章抽样推断单选题多选题参考答案

统计学罗文宝主编 第六章抽样推断单选题多选题参考答案

第六章抽样推断二、单项选择题1.抽样平均误差是( A )。

A.抽样指标的标准差B.总体参数的标准差C.样本变量的函数D.总体变量的函数2.抽样调查所必须遵循的基本原则是( B )。

A.准确性原则B.随机性原则C.可靠性原则D.灵活性原则3.在简单随机重复抽样条件下,当抽样平均误差缩小为原来的1/2时,则样本单位数为原来的( C )。

A.2倍B.3倍C.4倍D.1/4倍4.按随机原则直接从总体N个单位中抽取n个单位作为样本,这种抽样组织形式是( A )。

A.简单随机抽样B.类型抽样C.等距抽样D.整群抽样5.事先将总体各单位按某一标志排列,然后依排列顺序和按相同的间隔来抽选调查单位的抽样称为( C ) 。

A.简单随机抽样B.类型抽样C.等距抽样D.整群抽样6.在一定的抽样平均误差条件下( A )。

A.扩大极限误差范围,可以提高推断的可靠程度B.扩大极限误差范围,会降低推断的可靠程度C.缩小极限误差范围,可以提高推断的可靠程度D.缩小极限误差范围,不改变推断的可靠程度7.映样本指标与总体指标之间的平均误差程度的指标是( C )。

A,平均数离差 B,概率度C,抽样平均误差 D,抽样极限误差8 以抽样指标估计总体指标要求抽样指标值的平均数等于被估计的总体指标值本身,这一标准称为( A )。

A.无偏性B.一致性C.有效性D.准确性9.在其他条件不变的情况下,提高估计的概率保证程度,其估计的精确程度( B )。

A.随之扩大B.随之缩小C.保持不变D.无法确定10.对某种连续生产的产品进行质量检验,要求每隔一小时抽出10分钟的产品进行检验,这种抽查方式是( D )。

A.简单随机抽样B.类型抽样C.等距抽样D.整群抽样三、多项选择题1.抽样推断的特点是(ABCE) 。

A.由推算认识总体的一种认识方法B.按随机原则抽取样板单位C.运用概率估计的方法D.可以计算,但不能控制抽样误差E.可以计算并控制抽样误差2. 抽样估计中的抽样误差(ACE) 。

统计学第六章 抽样法

统计学第六章  抽样法
31
第六章 抽样法
序号
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16 合计
样本变量x
40、40 40、50 40、70 40、80
50、40 50、50 50、70 50、80
70、40 70、50 70、70 70、80
80、40 80、50 80、70 80、80

x
x E(x)
总体
研究如何利用 样本数据来 推断总体特 征。
内容包括:参 数估计和假 设检验。
目的:对总体
特征作出推
样 本
断。
这是推断统计学研 究的问题
5
第六章 抽样法
描述统计与推断统计的关系
反映客观 现象的数

概率论
(包括分布理论、大 数定律和中心极限定
理等)
样本数
描述统计
推断统计

总体数 据
(统计数据的搜集 、整理、显示和分
13
第六章 抽样法
第二节 有关抽样的基本概念(2)
(二)抽样总体
也称子样,样本或样本总体,它是从全 及总体中随机抽取出来的,代表全及总体的 那部分单位的集合体。抽样总体的单位数称 为样本容量,用n表示,对于N来说,n是很 小的。
总体
样 本
14
第六章 抽样法
第二节 有关抽样的基本概念(3)
• 二 全及指标和抽样指标p.249 (一) 全及指标
研究总体中 的品质标志
总体成数 P N1
N
总体成数标准差 P
P1 P
17
第六章 抽样法
第二节 有关抽样的基本概念(5)
(二)抽样指标
抽样指标是由样本总体各单位标志值 或标志特征计算的综合指标,也称统计量。 与全及指标相对应有:样本平均数,样本 标准差;样本成数,样本成数的标准差。

第6章--抽样推断PPT优秀课件

第6章--抽样推断PPT优秀课件

不考虑顺序
(N n 1)! n!(N 1)!
不重复抽样:又称不回置抽样。
考虑顺序 N !
( N n )!
可能组成的样本数目
不考虑ห้องสมุดไป่ตู้序
N! ( N n )! n!
7
标号为A、B、C、D的四个圆球从中随机抽取两个 可能样本个数
考虑顺序 N n
AA、AB、AC、AD BA 、BB、BC、BD
CA、CB、CC、CD
p
p1p0.9 8 0.0 20.8(0% 8 )
n
300
p p1np1N n 0.938 0 0.0021630000 00 0.80(6 %
计算结果表明:不重复抽样的平均误差小于重复抽样, 但是“N”的数值越大,则两种方法计算 的抽样平均误差就越接近。
24
四、抽样极限误差
含义:
抽样极限误差指在进行抽样估计时,根据研究对象的变 异程度和分析任务的要求所确定的样本指标与总体指标 之间可允许的最大误差范围。
例题二解 已知: N 20 ,n 040,0 x 0 48 ,0 3000
则:
x
n
3001(5小)时 400
x
2 1 n 3020140013.42(小时 )
n N 400 2000
计算结果表明:
根据部分产品推断全部产品的平均使用寿命时,采用
不重复抽样比重复抽样的平均误差要小。
21
抽样成数平均误差的计算公式
例题二:
某厂生产一种新型灯泡共2000只,随机抽出 400只作耐用时间试验,测试结果平均使用寿 命为4800小时,样本标准差为300小时,求抽 样推断的平均误差?
17
下面求 Y 的无偏估计 y 的方差 V ( y )

第6章抽样推断

第6章抽样推断

第6章抽样推断统计试题习题一、单选题1.抽样调查的目的在于()。

A、了解总体的基本情况B、用样本指标推断总体指标C、对样本进行全面调查D、了解样本基本情况2.在抽样推断中,必须遵循()抽取样本。

A、随意原则B、随机原则C、可比原则D、对等原则3.某企业连续性生产,为检查产品质量,在24小时中每隔30分钟取下一分钟的产品进行全部检查,这是()。

A、整群抽样B、简单随机抽样C、类型抽样D、等距抽样4.置信区间的大小表达了区间估计的()。

A、可靠性B、准确性C、显著性D、及时性5.为提高类型抽样的效果,应当合理分组,尽可能做到()。

A、缩小组内和组间的差异B、扩大组内和组间的差异C、缩小组内差异,扩大组间差异D、扩大组内差异,缩小组间差异6.为提高整群抽样的效果,应当合理分群,尽可能使()。

A、群内和群间的差异扩大B、群内和群间的差异缩小C、群内差异缩小,群间差异扩大D、群内差异扩大,群间差异缩小7.在重复的简单随机抽样中,当概率保证度(置信度)从68.27%提高到95.45%时(其他条件不变),必要的样本容量将会()。

A、增加1倍B、增加2倍C、增加3倍D、减少一半8.在其他条件不变的情况下,抽样单位数目增加一半,则抽样平均误差()。

A、缩小为原来的81.6%B、缩小为原来的50%C、缩小为原来的25%D、扩大为原来的4倍9.当置信水平一定时,置信区间的宽度()。

A、随样本量的增大而减小B、随样本容量的增大而增大C、与样本量的大小无关D、与样本量的平方根成正比10.一个95%的置信区间是指()。

A、总体参数有95%的概率落在这一区间B、总体参数有5%的概率为落在这一区间内C、在用同样方法构造的总体参数的多个区间中,有95%的区间包含该总体参数D、在用同样方法构造的总体参数的多个区间中,有95%的区间不包含该总体参数11.当正态总体的方差未知,且为小样本的条件下,估计总体均值使用的分布为()。

统计试题A、正态分布B、t分布C、2分布D、F分布12.当正态总体的方差未知,在大样本的条件下,估计总体均值使用的分布是()。

《国民经济统计学概论》_第六章_抽样推断

《国民经济统计学概论》_第六章_抽样推断
总体未分组: 2 (X X )2 N
总体分组: 2 (X X )2 F F
总体成数的方差为 P(1 - P)
2.统计量,又称样本指标,反映样本特 征的统计指标
(1)样本平均数( x ),样本各 单位数量标志值的平均数
未分组: x x
n
分组: x xf f
(2)样本成数(p) 是指样本中具有某一相同标志表现的单
要有四个:
(1)总体平均数( X )
总体各单位数量标志值的平均数
X
总体未分组情况下:X N
总体分组情况下:
XF
X
F
(2)总体成数(P)
是指总体中具有某一相同标志表现的单 位数占全部总体单位数的比重
多为交替指标
总体中具有相同标志表现的单位数用N1 表示
P N1 N
(3)总体方差和标准差 总体方差(σ2)
特点: 1.抽样方式组织简便,便于实施 2.在已知总体某些有关信息的情况下,
采用等距抽样能保证样本单位在总体中 均匀的分布,从而提高了样本对总体的 代表性,有利于降低抽样误差。
无关标志排队 有关标志排队
(三)类型抽样 首先把总体按某一标志分成若干个类型
组,使各组组内标志值比较接近,然后 分别在各组内按随机原则抽取样本单位。 特点:在于把分组法和随机抽样原则结 合起来。
i2ni
n
抽样成数的平均误差:
重置抽样:
p
P(1 P) n
不重置抽样:
第四节 抽样的组织形式及抽样方 案设计
一、抽样的组织形式 (一)简单随机抽样 从总体全部单位中直接按随机原则抽取
样本单位,使每个总体单位都有同等机 会被抽中
最基本形式
(1)直接抽选法 直接从调查对象中随机抽选。

第6章 抽样调查(1)

第6章 抽样调查(1)

33
1、由于总体单位总数未 知,因此采用重复抽样 公式。又总体标 准差未知,采用过去资 料最大标准差作为估计 值。
x

n

0.12 0.0219 (升) 30
n1 30 2 2、合格率p 93.3% n 30 S P p(1 p) 93.3% (1 93.3%) 6.25%
根据质量标 准,使用寿 命800小时及 以上者为合 格品,计算 产品平均合 格率和标准 差。
14
全及指标
X XF X N F
P N1 N
X
2
( X X )2
N

( X X )2 F F
X
(X X )
N
2

(X X ) F F
2
P 2 P(1 P)
31
例 上题中,如果寿命低于9000小时的产品是不合格品,计 算不合格率(合格率)的抽样平均误差。
不合格率:
n1 90 x p 18% n 500
Sp
p(1 p)
Sp
0.18 (1 0.18) 38.4%
重复抽样下:
p
p
Sp n
0.384 1.7% n 500
3
特 点
遵循随机原则抽取部分单位 ;
用样本推断总体;
会产生抽样误差,但误差可以计算和控制。
4
随机原则的实现
统 计 学 概 论
是将总体中每个单位的编号写在外形完全 一致的签上,将其搅拌均匀,从中任意抽 抽签法 选,签上的号码所对应的单位就是样本单 位。 将总体中每个单位编上号码,然后使 用随机数表,查出所要抽取的调查单 随机数表法 位。

统计学第六章抽样调查

统计学第六章抽样调查

n
N
例题2
xf
x
f
8400 200
42
s (x x)2 f 12200 7.81
f
200
2 (1 n ) 7.812 (1 200 ) 0.55
x
n
N
200
2000
例题3
❖某冷库的10万只冻鸡合格率为97%, 如果按重复抽样与不重复抽样各抽 取1000只和2000只,分别计算抽样 平均误差。
A
B
较小的样本容量
X
成数
❖ 总体成数
每个总体单位标志值设为0或1 1:具有某种属性的总体单位标志值 0:不具有某种属性的总体单位标志值 总体中具有某种特征的单位占全部总体单位
数的比例称为总体成数,记作P 成数总体方差:P(1-P)
总体成数和样本成数
❖ 样本成数
从成数总体中抽取样本容量为n的样本 样本中具有此种特征的单位占全部样本单位
从1、2 、3、4中随机抽取2个的样本数
重复抽样考虑顺序
16
1、1 2、1 3、1 4、1
1、2 2、2 3、2 4、2
1、3 2、3 3、3 4、3
1、4 2、4 3、4 4、4
从1、2 、3、4中随机抽取2个的样本数
不重复抽样考虑顺序 12
2、1 3、1 4、1
1、2
3、2 4、2
1、3 2、3
- 2.58x
-1.65 x
+1.65x + 2.58x
x
-1.96 x
+1.96x
90%的样本
95% 的样本
99% 的样本
区间估计
❖ 根据一个样本的观察值给出总体参数的估计范围 ❖ 给出总体参数落在这一区间的概率 ❖ 例如: 总体均值落在50~70之间,置信度为 95%

统计学作业(抽样推断)

统计学作业(抽样推断)

第六章抽样推断一、单项选择题1. 抽样调查的主要目的在于()。

A。

计算和控制误差 B. 了解总体单位情况C. 用样本来推断总体 D。

对调查单位作深入的研究2。

抽样调查所必须遵循的基本原则是( ).A. 随意原则 B。

可比性原则C. 准确性原则 D. 随机原则3。

下列属于抽样调查的事项有( )。

A. 为了测定车间的工时损失,对车间的每三班工人中的第一班工人进行调查B。

为了解某大学生食堂卫生状况,对该校的一个食堂进行了调查C。

对某城市居民1%的家庭调查,以便研究该城市居民的消费水平D。

对某公司三个分厂中的第一个分厂进行调查,以便研究该工厂的能源利用效果4。

无偏性是指().A。

抽样指标等于总体指标 B. 样本平均数的平均数等于总体平均数C。

样本平均数等于总体平均数 D. 样本成数等于总体成数5。

一致性是指当样本的单位数充分大时,抽样指标( )。

A。

小于总体指标 B. 等于总体指标C. 大于总体指标 D. 充分靠近总体指标6. 有效性是指作为优良估计量的方差与其他估计量的方差相比,有( )。

A。

前者小于后者 B. 前者大于后者C。

两者相等 D。

两者不等7。

能够事先加以计算和控制的误差是( )。

A。

抽样误差 B。

登记误差C。

代表性误差 D. 系统性误差8.对两个工厂工人平均工资进行不重复的随机抽样调查,抽查的工人人数一样,两工厂工人工资方差相同,但第二个厂工人数比第一个厂工人数整整多一倍.抽样平均误差()。

A。

第一工厂大 B。

第二个工厂大C. 两工厂一样大 D. 无法做出结论9。

抽样平均误差是指抽样平均数(或抽样成数)的()。

A. 平均数 B。

平均差C. 标准差 D. 标准差系数10.在同样情况下,不重复抽样的抽样平均误差与重复抽样的抽样平均误差相比,是( ).A。

两者相等 B。

两者不等C。

前者小于后者 D. 前者大于后者。

11。

反映抽样指标与总体指标之间抽样的可能范围的指标是()。

A。

抽样平均误差 B. 抽样误差系数C. 概率度 D. 抽样极限误差。

抽样估计

抽样估计

人生得意须尽欢,莫使金樽空对月。0 1:45:29 01:45:2 901:45 11/17/2 020 1:45:29 AM
做一枚螺丝钉,那里需要那里上。20. 11.1701 :45:290 1:45No v-2017 -Nov-2 0
日复一日的努力只为成就美好的明天 。01:45:2901:4 5:2901:45Tues day , November 17, 2020
2
x ( R r ),
x r R 1
2
P(Rr) P r R 1
2
2 x
(xi x)
R

2 P
(
pi
R
p)2
注:整群抽样是对中选 群进行全面调查,所以 只存在群间抽样误差不 存在群内抽样误差
抽样方案的检查:
主要有(1)准确性检查(以方案所要求的 允许误差范围为标准)
(2)代表性检查(方案中的样本指
二、抽样推断的内容
(一)参数估计。特点是不知道总体的数 量特征,依据所获得的样本观察资料,对所研究 现象总体的水平、规模等数量特征进行估计
(二)假设检验。特点是对总体的变化情 况不了解,不妨对总体的状况作某种假设,然后 再根据抽样推断的原理,根据样本观察资料对所 作假设进行检验,来判断着种假设的 真伪,以决 定行动的取舍。
l估计值
x x
l估计值的误差范围
t
x
x
注意:t=1 F(t)-68.27%
t=2 F(t)=95.45% t=3 F(t)=99.73% 需要熟记
区间估计:
x x X x x
p p P p p
区间估计的步骤:
(x
t ) X
(p
t ) p

第六章 抽样推断

第六章  抽样推断

第六章 抽样推断一、本章学习要点(一)总体参数,也称总量指标,是由总体各单位标志值计算而来的,样本统计量则由样本各单位标志值计算而来的指标。

通常有平均数、标准差、成数等。

重复抽样与不重复抽样的样本统计量分布是不同的。

如果样本的n 个个体完全来自于某一正态总体N (X ,2σ),则当方差已知时,样本均值服从正态分布;如果总体方差未知,则样本均值服从t (n-1)分布,且对于大样本,样本均值趋于正态分布。

即使总体分布未知,根据中心极限定理,大样本下的样本均值近似服从正态分布。

对于大样本,样本成数同样趋于服从正态分布。

(二)抽样估计就是利用样本指标值来估计相应总体指标的数值,又称参数估计,它有点估计和区间估计两种。

点估计就是用样本指标的实际值直接作为相应总体参数的估计值,如X =x ,区间估计就是根据给定的概率保证度,利用实际资料计算出总体参数的估计区间(上限和下限),并以这一区间作为总体参数的估计值。

优良估计量应该满足无偏性、一致性、有效性。

抽样误差有几种不同的形式。

实际抽样误差是指样本统计量所得的抽样统计值与总体参数真值之间的绝对离差;抽样平均误差(抽样标准误差)是样本统计量抽样分布的标准差。

通常有用x μ、p μ或者σ(x )、σ(p )表示;抽样极限误差是指以样本统计量统计总体参数时所允许的最大误差范围。

通常用 x ∆或 p ∆ 表示。

影响抽样误差的因素有:总体内在差异程度、样本容量、抽样方法、抽样组织形式。

抽样极限误差Δ与抽样标准误差μ 所得的相对数称抽样误差的概率度,用t 表示。

xx t μ∆= 或pp t μ∆= ,它是测定抽样估计可靠程度的一个参数。

(三)不同抽样组织形成的含义、要求、效果及估计方法是不同的,具体表现为点估计值、抽样标准误差及样本容量的计算公式不同。

其中最基本的是简单随机抽样,下表给出了二、本章思考题及练习题(一) 填空题1.抽样推断是按照,从总体中抽取样本,然后以样本的观察结果来估计总体的数量特征。

6第六章 抽样分布及总体平均数的推断

6第六章 抽样分布及总体平均数的推断

师大附小二年级中48个学生的身高
容量=48 平均数=129.5625 标准差=4.8942
样本分布:样本内个体数值的频数分布
所抽取的各样本的平均数如下: 129.825 126.55 128.575 129.5 128.52 130.72 129.55 129.45 129.68 129.385 129.95 130.27 128.57 128.9 125.65
0.32
5 127-128 2 0.04 49
0.98 3
0.06
6 126-127 1 0.02 50
1
1
0.02
容量=50 平均数=129.00 标准差=1.34
根据抽样平均数频率分布表制作的多边图
例1
上海市初中一年级末数学水平的调查研究,在 该研究中假定上海市共有初中一年级学生为 150000人( N 人),如果对上海所有初中一年级学 生进行统一的标准化的数学成就测验,其测验的平 均成绩为80分( μ ),测验的标准差为9分( σ )。
( 其中

6.2.3 总体平均数的估计
(2)总体方差σ2 未知时
1 当总体分布为正态时
当总体分布为正态,总体方差( ) 2未知时,样 本平均数 的分布X为t分布,这时可用下式计算其 置信区间:
X
t
2
X
X
t 2 X
(其中
X )snn1
s n 1
6.2.3 总体平均数的估计
(2)总体方差σ2 未知时
•有效性:当总体参数的无偏估计不止一个统计量 时,无偏估计变异性小者有效性高,变异大者有效 性低。
6.2 总体平均数的参数估计
(2)点估计的评价标准: •一致性:当样本容量无限增大时,估计量的值能 越来越接近它所估计的总体参数值,估计值越来越 精确,逐渐趋近于真值。

第6章 抽样推断

第6章 抽样推断

控制。
三、抽样推断的作用
1、对某些不可能进行全面调查的而又要求反映全面 情况的无限总体,必须采用抽样推断的方法。 2、对某些属于破坏性或消耗性产品质量的检查只能 进行抽样推断。 3、对某些不必要进行全面调查的总体现象可以利用 抽样推断取得资料。 4、对全面调查进行验证,并作为修正数字的参考。 5、生产过程中的质量控制。 6、对某些总体的假设进行检验,判断真伪,为制定 决策提供依据。
第二节 抽样估计的一般原理
一、抽样估计的特点
1、运用的是归纳推理的方法。 2、抽样估计运用的是概率原理。 3、抽样估计的结论存在一定的抽样误差。
二、抽样估计的优良标准
由于抽样指标作为统计量,它是一个随 机变量,随着抽取的样本不同,便有不同估 计值。因此要判断一种估计量的好坏,仅从 某一次试验的结果来衡量是不可能的,而应 该从多次重复试验中,看这种估计量是否在 某种意义上说最接近于被估计参数的真值。 一般地说,用抽样指标估计总体指标应 该有三个要求。满足了这个要求的,就可以 认为是合理的估计或优良的估计。
x
x x X x x
1500 160 X 1500 160 1340 X 1660
两种抽样误差的关系
抽样平均误差具有较强的客观性,抽取的样
本一旦确定,抽样平均误差也就随之确定。 它由样本单位数、总体标准差、总体单位数 确定。
抽样极限误差具有较强的主观性,人们可以
离差,不可避免,可以控制。 登记误差:由于观察、测量、登记、计算造 成的误差,可以避免。 系统性误差:由于有意识选取调查单位造成 的系统偏差。理论上可以避免。
3.影响抽样误差的因素
(1) 抽样单位数目的多少
在其他条件不变的情况下,抽样单位数愈 多,抽样误差就愈小;反之抽样单位数少了, 则抽样误差就要增大。

第六章 抽样推断 简答题

第六章   抽样推断   简答题

第六章抽样推断简答题1.什么是抽样推断?有何特点?简述其作用。

抽样推断:是按照随机的原则,在抽样调查的基础上,利用样本实际资料计算样本指标,并推断总体相应指标数值的统计方法。

特点:(1)是一种由部分认识总体的统计方法(2)抽取样本时按随机性原则抽取的(3)是用样本指标从数量上推断总体指标(4)抽样误差是不可避免的,但可以计算和控制作用:(1)在无法或很困难进行全面调查的情况下,可以应用抽样法来了解全面情况;(2)应用抽样法不但比全面调查有更大的优越性,并可对全面调查的结果加以补充和订正;(3)用于生产过程中产品质量的检查和控制;(4)可以对总体的某种假设进行检验。

2.什么是抽样误差?影响抽样误差大小的各因素与抽样误差的关系如何?抽样误差:是样本指标与总体指标之间的平均离差。

影响因素:(1)在其他条件一定时,总体的变异程度与抽样误差成正比关系。

(2)在其他条件一定时,样本单位数与抽样误差成反比关系。

(3)在其他条件一定时,重复抽样的抽样误差大于不重复抽样的抽样误差。

(4)在其他条件一定时,所选择的组织方式不同,抽样误差的大小不同。

3.影响抽样单位数目的各因素与抽样单位数目的关系如何?(1)在其他条件一定时,总体的变异程度与抽样单位数成正比关系。

(2)在其他条件一定时,概率保证程度与抽样单位数成正比关系。

(3)在其他条件一定时,极限误差大小与抽样单位数成反比关系。

(4)在其他条件一定时,所选择的组织方式不同,需要的抽样单位数目也不相同。

(5)在其他条件一定时,重复抽样所需要的抽样单位数大于不重复抽样。

4.简要说明各种抽样组织方式有什么特点?(1)简单随机抽样:是抽样中最基本、最单纯的方式,它是按随机的原则直接从总体中抽取样本单位,适用于均匀总体。

这种抽样方式在理论上最符合随机原则,它的抽样误差容易得到理论上的论证,因此可以作为其他更复杂的抽样设计的基础,同时也是衡量其他抽样方式抽样效果的比较标准。

但在实践上受到许多限制,如当总体很大时,要首先对每个单位加以编号,就有很大困难;又如对于正在继续生产的产品加以编号是不可能的,在这种情况下,就不能用简单随机抽样。

统计学A第6章 抽样推断

统计学A第6章 抽样推断

2
样本可能数目

3 0.577 9
计算复杂,可对 定义公式变形为 更为简单的形式
3.2 抽样平均误差
(2)抽样平均误差的计算 1)抽样平均数的抽样平均误差 ① 重复抽样
第6章 抽样推断 第3节 抽样平均误差
x
(总体标准差)
n (样本容量)
在总体标准差未知, 且样本单位数较大时, 可用样本标准差代替。
解: 已知: n 100, x 58, x
则:
x


10
10 1(公斤) 100 n
x
即: 当根据样本学生的平均体重估计全部学生 的平均体重时,抽样平均误差为1公斤。
② 不重复抽样
1)抽样平均数的抽样平均误差
例2: 某厂生产一种新型灯泡共2000只,随机抽出400只作 耐用时间试验,测试结果平均使用寿命为4800小时, 样本标准差为300小时,求抽样推断的平均误差?
的数量特征做出具有一定可靠性的估计判断,从而达
到对全部研究对象的认识的一种统计方法。 一、 2.特点 ① 抽样调查建立在随机取样的基础上; ② 抽样推断是由部分推算总体的一种方法; ③ 抽样推断是运用概率估计的方法; ④ 抽样推断的抽样误差可以事先计算并加以控制。
1.2 抽样调查的作用
第6章 抽样推断 第1节 抽样调查的意义和作用
x E x
1 0.25 0 0.25 0 0.25 0 0.25 1
2
合计


27
3
3.2 抽样平均误差
第6章 抽样推断 第3节 抽样平均误差
例1 样本平均数的平均数(总体平均数)
27 23 4 E x 3(或X 3) 9 3

统计学习题集6

统计学习题集6

第六章抽样推断一、填空题1.抽样推断是按照原则,从全部研究对象中抽取部分单位进行调查.2.抽样推断的组织方式有抽样、抽样、等距抽样、整群抽样和抽样.3.抽样推断是用指标推断总体指标的一种统计方法.4.抽样平均误差与极限误差之间的关系为 .5.抽样极限误差是指指标和指标之间最大可能的误差范围.二、判断题1.抽样推断的目的是用样本指标从数量上推断全及总体指标.2.对各种不同型号的电冰箱进行使用寿命的检查,最好的方法是抽样推断.3.为了保证抽样指标的分布趋近于正态分布,抽样时,一般样本容量应大于或等于30,这时的样本称为大样本.4.某厂产品质量检查,按连续生产时间顺序每20小时抽取1小时的全部产品进行检验,这种方式是等距抽样.5.在其他条件一定时,重复抽样的抽样平均误差大于不重复抽样的抽样平均误差.6.抽样平均误差是样本指标与总体指标之间的平均离差.7.在抽样推断中,可能没有抽样平均误差.8.点估计是直接用样本指标代替总体指标.9.在其他条件一定的情况下,将重复抽样改为不重复抽样可以缩小抽样误差.10.在其他条件一定时,增大样本容量,抽样平均误差不变.三、单项选择题1.抽样调查的目的在于 .A.用样本指标推断总体指标B.对调查单位作深入的研究C.对全及总体作一般的了解D.提高调查的准确性和时效性2.对烟花爆竹进行质量检查,最好采用 .A.重点调查B.抽样调查C.典型调查D.普查3.从生产线上每隔1小时随机抽取10分钟的产品进行检验,这种方式属于 .A.等距抽样B.类型抽样C.整群抽样D.简单随机抽样4.在其他条件不变的情况下,如果重复抽样的极限误差缩小为原来的1/2,则样本容量 .A.扩大为原来的4倍B.扩大为原来的2倍C.缩小原来的1/2D. 缩小原来的1/45.纯随机抽样重复的抽样平均误差的大小取决于 .A.样本单位数B.总体方差C.总体单位数和总体方差D.样本单位数和总体方差6.从纯理论出发,最符合随机性原则的抽样方式是 .A.简单随机抽样B.类型抽样C.等距抽样D.整群抽样7.根据对某超市100名顾客等候结账情况的调查,得知每次平均等候时间为4分钟,标准差为2分钟,在概率保证程度为95.45%的要求下,估计顾客平均等候时间的区间为 .z=2A.3.9~4.1分钟之间B.3.8~4.2分钟之间C.3.7~4.3分钟之间D.3.6~4.4分钟之间四、多项选择题1.缩小抽样误差的途径有 .A.缩小总体方差B.增加样本单位数C.减少样本单位数D.将重复抽样改为不重复抽样E.将不重复抽样改为重复抽样2.抽取样本的方法有 .A.简单随机抽样B.类型抽样C.重复抽样D.等距抽样E.不重复抽样3.抽样的组织方式有 .A.纯随机抽样B.类型抽样C.整群抽样D.等距抽样E.阶段抽样4.影响样本单位数多少的因素有 .A.总体的变异程度B.所要求的把握程度大小C.极限误差的大小D.抽样的组织方式E.抽取样本的方法5.影响平均抽样误差大小的因素有 .A.总体的变异程度B.抽取样本的方法C.抽样的组织方式D.样本单位数的多少E.是有限总体还是无限总体6.抽样推断中的抽样误差 .A.是不可不免要产生的B.是可以通过改进调查方法消除的C.只能在调查后才能计算D.既不能减小也不能消除E.其大小是可以控制的7.点估计,下列说法正确的有 .A.点估计是直接用样本指标作为总体指标的估计值B.这种估计没有表明抽样估计的误差大小C.这种估计能指出误差在一定范围内的概率保证程度的大小D.点估计是一种参数估计的方法E.点估计所得到的总体参数是一个区间范围8.抽样推断的特点有 .A.是用样本指标从数量上推断总体指标B.抽取样本时按随机性原则抽取的C.抽样误差可以计算和控制D.抽样误差是不可避免的E.是一种由部分认识总体的统计方法五、简答题1.什么是抽样误差 影响抽样误差大小的各因素与抽样误差的关系如何2.影响抽样单位数目的各因素与抽样单位数目的关系如何3.简要说明各种抽样组织方式有什么特点4.什么是抽样推断 有何特点六、计算题1.从某制药厂仓库中随机抽取100瓶c v 进行检验,其结果平均每瓶c v 为99片,样本标准差为3片,如果可靠程度为99.73%,计算该仓库平均每瓶c v 的区间范围;如果极限误差减少到原来的1∕2,可靠程度仍为99.73%,问需要调查多少瓶c v1已知:n=100 s=3 99=x z=33.010092===n s x μ 99-3×0.3≤X ≤99+3×0.3 98.1≤X ≤99.92已知:s=3 t=3 △=3×0.3∕2=0.45 222994000.2025z s n ⨯===∆ 2.某大学有学生6000人,欲调查学生的人均月生活费情况,现抽取60名学生进行调查,得到月生活费在500元以上的有42名,以95%的概率保证程度计算全体学生中月生活费在500元以上学生比重的区间范围;如果极限误差减少为5.8%,概率保证程度仍为95%,需要抽取多少名学生1已知:n=60 p=42∕60=70% z=1.96%660%30%70)1(=⨯=-=n p p p μ 70%-1.96×6%≤P ≤70%+1.96×6% 58.24%≤P ≤81.76%2已知:z=1.96 △=5.8%2222(1) 1.9670%30%2405.8%z p p n -⨯⨯===∆。

第6章抽样推断19619

第6章抽样推断19619

1
e dx
(
x )2 22
2
x t 2
1 et2dt 1
(3)一般正态分布的标准化
若 X N , , 2
对其进行“标准化”变换,即令
Z X
则 Z N 0,1
2 、中心极限定理
一般意义: 无论随机变量服从何种分布,只要样本容量足够
大,都可以近似地看作是服从正态分布。中心极限 定理说明,大量相互独立的随机变量和的概率分布 是以正态分布为极限的。由于正态分布在概率论中 占有的中心地位,中心极限定理因此而得名。
(四)样本容量——指一个样本所包括的单位数。
(五)抽样比例——抽样比例是指在抽取样本时,所抽取的样 本单位数与总体单位数之比。
(六)样本个数——指从总体中可能抽取的最多的样本数量。
1、重复抽样: (1)考虑顺序: M = N n (2)不考虑顺序: M = (N + n- 1)! n!(N - 1)!
(一) 全及总体和抽样总体(总体和样本)
全及总体:所要调查观察的全部事物。
总体单位数用N表示。
抽样总体:抽取出来调查观察的单位。
抽样总体的单位数用n表示。 n ≥ 30 大样本 n < 30 小样本
(二) 抽样方法 1、重复抽样: 1
N
2、不重复抽样: 1 、 1 、 1 ...... 1 N N 1 N 2 N n
重复抽样和不重复抽样会产生三个差别: 抽取的样本数目不同 抽样误差的计算公式不同 抽样误差的大小不同
(三) 参数和统计量
(全及指标和抽样指标、总体指标和样本指标)
全及指标:全及总体的那些指标。 抽样指标:抽样总体的那些指标。
参数
研究总体中 的数量标志

第六章抽样推断

第六章抽样推断

第六章抽样推断一、单项选择题1. 抽样调查必须遵循的基本原则是()A. 灵活性原则B. 准确性原则C. 随机原则D. 可靠性原则2. 抽样误差是()A. 代表性误差B. 登记性误差c. 系统性误差 D. 随机误差3. 抽样平均误差和极限误差的关系是()A. 抽样平均误差小于极限误差B.抽样平均误差大于极限误差C. 抽样平均误差等于极限误差D. 抽样平均误差可能大于、等于或小于极限误差4. 在其他条件不变的情况下,如果允许误差缩小为原来的1/2,则样本容量()A. 扩大为原来的4倍B. 每个大为原来的2倍C. 缩小为原来的1/4倍D. 缩小为原来的1/2倍5. 一般来说, 在抽样组织形式中,抽样误差较大的是()A. 简单抽样B. 分层抽样C. 整群抽样D. 等距抽样6. 根据抽样的资料, 一年级优秀生比重为10%, 二年级为20%,在人数相等时,优秀生比重的抽样误差()A. 一年级较大B. 二年级较大C.相同 D. 无法判断7. 根据重复抽样的资料, 甲单位工人工资方差为25,乙单位为100,乙单位人数比甲单位多3倍, 则抽样误差()A. 甲单位较大B. 无法判断C.乙单位较大 D. 相同8.一个全及总体()A. 只能抽取一个样本B. 可以抽取多个样本C. 只能计算一个指标 D.只能抽取一个单位9. 最符合随机原则地抽样组织形式是()A. 整群抽样B. 类型抽样C. 阶段抽样D. 简单随机抽样10.差错比率指标是用于()A. 点估计法B. 区间估计法C. 直接换算法 D.系数修正法二、多项选择题1.抽样估计的抽样平均误差()A. 是不可以避免的B.是可以改进调查方法消除的C. 是可以事先计算的D.只有调查结束之后才能计算E. 其大小是可以控制的2.影响样本客量的因素有()A. 推断的可靠程度 B.抽样方式C. 抽样方法D. 允许误差的大小E. 总体各单位标志变异程度3.抽样估计的特点是()A. A.运用归纳推理B. 运用演绎推理C. 运用数学分析法D. 运用概率分析法,E. 抽样误差和抽样估计的可靠程度有关4. 提高推断的可靠程度, 可以采取的办法是()A.扩大估计值的误差范围 B.缩小估计值的误差范围C. 增大概率度D. 降低概率度E. 增加样本容量5. 影响整群抽样的抽样误差的因素有()A. 总方差B. 组内方差C. 组间方差D. 总体群数E. 样本群数6. 抽样估计的优良标准是()A.无偏性B. 随机性C.一致性D. 有效性E.代表性7. 影响抽样平均误差的因素有()A. 总体标志变异程度 B.样本容量C. 抽样方法D. 抽样组织形式E. 样本指标值的大小8. 抽样调查遵循随机原则的原因是()A. 样本客量有限B. 保证总体中每个单位有同等机会被抽中C. 能确定抽样方法D. 能确定推断的可靠程度E. 能计算抽样误差9. 和重复抽样相比,不重复抽样的特点是()A. 总体单位数在抽选过程中逐渐减少B. 总体中每个单位都有被重复抽中的可能C.总体中每个单位没有被重复抽中的可能D. 样本可能数目要多些E. 样本可能数目要少些10.总体标准差未知时, 常用的替代办法有()A. 用过去调查的同类问题的经验数据B. 用样本的标准C.凭调查者经验确定D. 用总体方差E. 先组织试验性抽样,用试验样本的标准差11. 抽样调查的主要目的是()A. 对调查单位作深入研究B. 用样本指标推断总体的指标C. 计算和控制误差D. 广泛运用数学方法E.对总体进行科学的估计和判断12. 区间估计的基本要素是()A. 概率度B. 点估计C.误差范围 D.抽样数目E. 总体单位数三、填空题1.调查是用________推断________的一种调查方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 ( x X ) k 2 ( x X ) f f


k =∑f :全部可能的样本个数
2.样本成数的抽 p 样平均误差
2 ( x X ) P p k

2 ( p P ) k
k =∑f :全部可能的样本个数
.
.
(二)抽样平均误差的计算方法
1.样本平均数的抽样平均误差 2.样本成数的抽样平均误差
注意:在实际统计中我们只是抽取一个样本,但进行抽 样推断必须要考虑全部的可能样本。
CA CB CC CD CE
.
.
(四)抽样框和抽样单元
1.抽样框: 是调查对象的具体表现,它是一份包含所有抽样单元的名单, 给每个抽样单元编号后,就可以按照一定的随机化程序进 行抽样。 编制抽样框是抽样设计的一个重要环节,它应该包含抽样单
又假设总体有A、B、C、D、E五个单位,现纯
随机不重复抽取3个单位组成样本,求全部的可能 样本个数。 则所有可能的样本个数为:
1 1 k 51 (5 - 1) (5 - 2) 60个样本
第一次抽取: 5 1 (抽后不放回)
1 (抽后不放回) 第二次抽取: (5 - 1) 1 第三次抽取: (5 - 2)
资料对总体的数量特征作出估计
(3)抽样误差可以事先计算并且加以控制; (4)它是运用概率估计的方法。
.
.
(三)抽样调查的作用
(1)对于不可能或不必要进行全面调查的场合, 抽样调查具有其独特的作用。 (2)抽样调查和全面调查相结合,可以验证和
补充修正全面调查的资料、数据。
(3)利用抽样方法进行生产过程的质量控制。 (4)抽样方法可以用来检验总体特征的某些假设, 判断假设的真伪,为行动决策提供依据。
k 51 51 51 125个样本
.
.
2.不重复抽样
即每次从具有N个单位的总体中随机抽取一个单 位,但在登记其序号和相应的标志值之后,就不再 将它重新放回总体参加下一次的抽选。(从抽样分 布角度来看,这种抽样分布实际上等同于一次从总 体中同时抽取n个单位组成一个样本。 例4-1:假设总体有A、B、C、D、E五个单位, 现纯随机不重复抽取2个单位组成样本,求全部的 可能样本个数。 (N = 5 n = 2)
登记性误差
系统性误差 代表性误差 随机误差
(抽样误差)
.
.
二、抽样平均误差的计算
(一)抽样平均误差的定义公式
(二)抽样平均误差的计算方法
(三)影响抽样(平均)误差的因素
.
.
(一)抽样平均误差的定义公式
如前所述,抽样平均误差是反映抽样误差一般 水平的指标,即所有可能出现的样本指标与总体 指标的标准差。 1.样本平均数的 抽样平均误差 x
1.样本容量: 即一个样本中所包含的单位数,一 般用n表示。n≥30为大样本,n<30为小样本。 2.样本个数: 是指在一个总体中所有可能被抽取 或可能构成的样本数目。 例如:假设总体有A、 AA AB AC AD AE B、C、D、E五个单位, BA BB BC BD BE 若按随机重复抽取方法, DA DB DC DD DE 从总体中随机抽取两个 EA EB EC ED EE 单位组成样本,则其样 本容量为2;而所有可能的样本个数为25个。
.
.
1.样本平均数的抽样平均误差
(1)重复抽样: x (2)不重复抽样:

2
n

:总体标准差
n n : 样本容量
n 1 N
2 N n x n
n N 1
N : 总体单位数 注意:在实际计算抽样平均误差时,当总体标
准差σ未知时,可以用样本标准差s来代替。即:
.
统 计 学
(多媒体教学课件)
第六章
抽样推断
.
.
本章相关内容
本章教学内容 本章小结 本章思考与练习题 本章学习目的 本章重点、难点 本章参考资料
.
.
本章教学内容(6学时)
第一节 第二节 第三节 第四节 抽样法的基本原理 抽样误差 抽样估计的方法 抽样的组织形式
.
.
第一节抽样法的基本原理来自一、抽样法的概念和特点
.
. 三、抽样法的内容
抽样推断(统计推断)所面临的问题是对总 体的数量特征不了解或了解很少,而且需要利
用有限的样本信息对它进行估计和判断,以达
到对总体数量特征的认识。抽样推断在由样本 资料推断总体资料时,包括以下两个内容:
抽样推断 的内容
1.总体参数的估计 2.总体参数的假设检验
.
.
1.总体参数的估计
20 16 17 18 19 20
在重复抽样条件下, (N=5 n=2)所有可能的样 本及样本平均工资如表5-1
.
.
表4-2
样本平均数分布
样本平均数离差
样本 样本平均数 样本个数 序号
元的名称和地理位置等有关信息,以便调查人员能找到被
抽中的单元。 2.抽样单元: 是构成抽样框的基本要素。它可以只包含一个总体单位, 也可以包含若干个总体单位。
抽样单元与抽样框是元素与集合的关系
.
(五)重复抽样与不重复抽样
1.重复抽样 即每次从具有N个单位的总体中随机抽取一个单 位(登记其序号和相应的标志值)之后,又将它重 新放回总体,参加下一次抽选。依次连续进行n次 抽选,便构成一个容量为n的样本。 例4-1:假设总体有A、B、C、D、E五个单位, 现纯随机重复抽取2个单位组成样本,求全部的可 能样本个数。
资的抽样平均误差。(N=5
n=2) 这一总体的平均数和标准差分别为: X 80 表4-1 样本平均数分布 X 16 N 5
2
(X X) 40 8 N 5
样本 12 14 16 18 20
12 14 12 13 14 15 16 13 14 15 16 17
16 18 14 15 16 17 18 15 16 17 18 19
.
.
第二节
抽样误差
一、抽样误差的概念
二、抽样平均误差的计算 三、抽样极限误差 四、抽样误差的概率度 五、抽样估计的置信度 .
.
一、抽样误差的概念
抽样误差是指由于随机抽样的偶然因素使
样本各单位的结构不足以代表总体各单位的
结构,而引起样本指标与总体指标之间的绝 对离差。 如,
x X x
p P p
抽样 误差
(无法计算) (一)抽样实际误差 .
(二)抽样平均误差 . (可以计算)
.
.
(一)抽样实际误差 :即是指每次抽样所得的样本指 标与总体指标之间的离差,它随着样本的不同而 不同,是一个随机变量。 (二)抽样平均误差 : 即是指所有可能出现的样本指 标与总体指标之间的平均离差,即所有可能出现 的样本指标与总体指标的标准差。对于一个特定 的总体来说,它是固定的,而且是可以计算的。 注意抽样误差与调查误差的区别。 统计调查误 差的种类
重复抽样的特点: (1)在n次抽样中,总体每个单位在各次抽样中被 抽取的概率都相同; (2)共可组成 k N n 个样本, 每个样本在各次抽 样中被抽取的概率都相同。
又例:假设总体有A、B、C、D、E五个单
位,现纯随机重复抽取3个单位组成样本,求 全部的可能样本个数。 (N = 5 n = 3) 第一次抽取: 5 1 (抽后放回) 第三次抽取: 51 第二次抽取:5 1(抽后放回) 则所有可能的样本个数为:
.
(N = 5 n = 2) 即:
BB CB DB EB BC BD CC CD DC DD EC ED BE CE DE EE
第一次抽取: 5 1 (抽后放回) AA AB AC AD AE
第二次抽取: 51
BA CA 则所有可能的样本个数为: DA EA k 51 51 25个样本

.
.
总体 成数
属 总体平 性 均 数 Xp 总 总体标 体 准 差

N1 N
P
σp PQ P(1 P)
是唯一确定的
属 性 样 本
样本平 xp 均 数 样本标 准 差

n1 n
p
样本 成数
sp pq p(1 p)
性 质
性 质
是随机变量,它会随着样 本的不同而有不同的取值
.
.
(三)样本容量和样本个数
(抽样实际误差)
1
x1 X1 1 x2 X 2 2
x3 X 3 3
标准差: σ
(X X )
N
2
2
K个 样本
n3 x nk xk
3
抽样平均误差(可以计算)
抽样推断的结果具有一定 的可靠程度(置信度)

xk X k k
.
.
二、有关抽样法的几个基本概念
(一)总体和样本 (二)总体参数和统计量 (三)样本容量和样本个数 (四)抽样框和抽样单元 (五) 重复抽样与不重复抽样
.
.
(一)总体和样本
1.总体(全及总体): 即统计所要认识对象的全体。 总体单位数通常般用“N”表示。 2.样本(样本总体):即它是从总体中随机抽取出 来,用来代表总体的那部分单位的组成集合体。 样本单位数通常用“n”表示。 注意:总体与样本的不同性质: 总体 不是唯 是唯一 样本 一确 确定的。 定的。 变量总体 属性总体 即从一个总体中可以抽 出许多个样本。
— AB AC AD AE 第一次抽取: 5 1(抽后不放回) BA — BC BD BE 1 第二次抽取: (5 - 1) CA CB — CD CE 则所有可能的样本个数为: DA DB DC — DE
k 51 41 20个样本
EA EB EC ED —
相关文档
最新文档