最新北师大课标版八年级数学上册《一次函数的应用(3)》教案1(优质课一等奖教学设计)
4.4.3一次函数的应用第3课时(教案)
三、教学难点与重点
1.教学重点
-理解一次函数表达式y=kx+b中的k和b在实际问题中的意义,如速度与时间关系中的斜率k代表速度,截距b代表初始位置。
-学会通过给定条件或图表信息建立一次函数模型,如根据距离和时间的关系确定物体运动的速度。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解一次函数的基本概念。一次函数是形如y=kx+b的表达式,其中k和b是常数,它描述了两个变量之间的线性关系。一次函数在生活中的应用非常广泛,如速度与时间的关系、单价与总价的关系等。
2.案例分析:接下来,我们来看一个具体的案例。假设小华骑自行车以每小时10公里的速度行驶,我们如何根据时间来计算他行驶的距离。这个案例展示了如何建立一次函数模型来解决实际问题。
4.4.3一次函数的应用第3课时(教案)
一、教学内容
《4.4.3一次函数的应用第3课时》
1.理解并掌握一次函数在实际问题中的建模过程。
2.应用一次函数解决实际生活中的问题,如速度与时间、单价与总价等关系。
3.通过实例,使学生能够:
a.确定问题中的变量关系,建立一次函数模型。
b.利用一次函数模型进行问题求解,并解释结果的实际意义。
c.能够根据图表或实际情境,分析一次函数的增减性及其在实际问题中的应用。
4.教材案例:结合教材中关于一次函数应用的问题,如“小明骑自行车行驶,速度与时间的关系”、“某商品打折后的价格与原价的关系”等,进行深入讲解与练习。
二、核心素养目标
1.培养学生的模型建构能力:通过实际问题,让学生学会运用一次函数建立数学模型,提高解决实际问题的能力。
北师大版数学八年级上册4《一次函数的应用》教学设计3
北师大版数学八年级上册4《一次函数的应用》教学设计3一. 教材分析《一次函数的应用》是北师大版数学八年级上册第四单元的内容。
本节课主要让学生了解一次函数在实际生活中的应用,学会用一次函数解决实际问题。
教材通过生活实例引入一次函数,让学生感受数学与生活的紧密联系,培养学生的数学应用意识。
二. 学情分析学生在七年级已经学习了直线、斜率等基本概念,对函数有了初步的认识。
但八年级的学生还未能完全将数学知识应用于实际生活中,因此,在教学过程中,教师需要引导学生将数学知识与生活实际相结合,提高学生的数学应用能力。
三. 教学目标1.让学生了解一次函数在实际生活中的应用,培养学生的数学应用意识。
2.让学生掌握一次函数的定义和性质,能运用一次函数解决实际问题。
3.培养学生的团队合作精神,提高学生的数学素养。
四. 教学重难点1.一次函数在实际生活中的应用。
2.一次函数的定义和性质。
五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生主动探究、积极参与,提高学生的数学应用能力。
六. 教学准备1.准备相关的生活案例,用于引导学生思考和讨论。
2.准备一次函数的定义和性质的PPT,用于讲解和展示。
3.准备课后作业,巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个生活中的实例,如购物时如何规划路线,让学生感受数学在生活中的应用,引出一次函数的概念。
2.呈现(15分钟)呈现一次函数的定义和性质,引导学生理解并掌握一次函数的基本概念。
3.操练(10分钟)让学生通过小组合作,运用一次函数解决实际问题。
教师给予引导和指导,确保学生能够正确运用一次函数解决实际问题。
4.巩固(5分钟)通过课后作业,让学生巩固所学知识,提高学生的数学应用能力。
5.拓展(5分钟)引导学生思考一次函数在其他领域的应用,如物理学、经济学等,拓宽学生的视野。
6.小结(3分钟)对本节课的主要内容进行总结,强调一次函数在实际生活中的应用。
7.家庭作业(2分钟)布置课后作业,让学生巩固所学知识,提高学生的数学应用能力。
最新北师大课标版八年级数学上册《一次函数的应用(1)》教案1(优质课一等奖教学设计)
《一次函数的应用(1)》教案教学内容北师大版八年级上册《一次函数的应用(1)》P89-90. 教学目标1、了解两个条件可确定一次函数;能根据所给信息(图象、表格、实际问题等)利用待定系数法确定一次函数的表达式;并能利用所学知识解决简单的实际问题.2、经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步发展数形结合的思想方法.3、经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.教学重点会根据条件用待定系数法求解一次函数的表达式.教学难点用待定系数法求解方程以及数形结合的使用.教学过程一、复习引入内容:提问:(1)什么是一次函数?(2)一次函数的图象是什么?(3)一次函数具有什么性质?目的:学生回顾一次函数相关知识,温故而知新.二、初步探究内容1:展示实际情境提供两个问题情境,供老师选用.实际情境一:某物体沿一个斜坡下滑,它的速度v(米/秒)与其下滑时间t(秒)的关系如图所示.(1)写出v与t之间的关系式.(2)下滑3秒时物体的速度是多少?分析:要求v与t之间的关系式,首先应观察图象,确定函数的类型,然后根据函数的类型设它对应的解析式,再把已知点的坐标代入解析式求出待定系数即可.实际情境二:假定甲、乙二人在一项赛跑中路程y与时间x的关系如图所示.(1)这是一次多少米的赛跑?(2)甲、乙二人谁先到达终点?(3)甲、乙二人的速度分别是多少?(4)求甲、乙二人y与x的函数关系式.目的:利用函数图象提供的信息可以确定正比例函数的表达式,一方面让学生初步掌握确定函数表达式的方法,即待定系数法,另一方面让学生通过实践感受到确定正比例函数只需一个条件.情景一、二可根据学生情况进行选取,情景二几个问题有一定的梯度,学生可能更易写出函数关系式.教学注意事项:学生可能会用图象所反映的实际意义来求函数表达式,如先求出速度,再写表达式,教师应给予肯定,但要注意比较两种方法异同,并突出待定系数法.内容2:想一想:确定正比例函数的表达式需要几个条件?确定一次函数的表达式呢?目的:在实践的基础上学生加以归纳总结.这个问题涉及到数学对象的一个本质概念——基本量.由于一次函数有两个基本量k、b,所以需要两个条件来确定.三、深入探究内容1:例1在弹性限度内,弹簧的长度y(厘米)是所挂物体的质量x(千克)的一次函数,一根弹簧不挂物体时长14.5cm;当所挂物体的质量为3kg时,弹簧长16cm.写出y与x之间的关系式,并求所挂物体的质量为4kg时弹簧的长度.解:设b=,根据题意,得y+kx14.5=b,①16=3k+b,②将5.14b代入②,得5.0=k.=所以在弹性限度内,5.14y.=x5.0+当4=x时,5.16⨯=y(厘米).+5.1445.0=即物体的质量为4千克时,弹簧长度为5.16厘米.目的:引例中设置的是利用函数图象求函数表达式,这个例子选取的是弹簧的一个物理现象,目的在于让学生从不同的情景中获取信息求一次函数表达式,进一步体会函数表达式是刻画现实世界的一个很好的数学模型.这道例题关键在于求一次函数表达式,在求出一般情况后,第二个问题就是求函数值的问题可迎刃而解.教学注意事项:学生除了从函数的观点来考虑这个问题之外,还有学生是用推理的方式:挂3千克伸长了1.5厘米,则每千克伸长了0.5厘米,同样可以得到y与x间的关系式.对此,教师应给予肯定,并指出两种方法考虑的角度和采用的方法有所不同.内容2:想一想:大家思考一下,在上面的两个题中,有哪些步骤是相同的,你能否总结出求一次函数表达式的步骤.求函数表达式的步骤有:1、设一次函数表达式.2、根据已知条件列出有关方程.3、解方程.4、把求出的k,b值代回到表达式中即可.目的:对求一次函数表达式方法的归纳和提升.在此基础上,教师可指出这种先将表达式中未知系数用字母表示出来,再根据条件求出这个未知系数,这种方法称为待定系数法.四、反馈练习内容:1、如图,直线l是一次函数b=的图象,求它的表达kxy+式.2、若一次函数b=2的图象经过A(-1,1),则=b___xy+_,该函数图象经过点B(1,5).3、如图,直线l是一次函数b=的图象,填空:kxy+(1)=b____,=k____.(2)当30x时,=y____.=x____.(3)当30y时,==4、已知直线l与直线x=平行,且与yy2-轴交于点(0,2),求直线l的表达式.目的:四个练习旨在对学生求一次函数表达式的掌握情况进行反馈,以便及时调整教学进程.效果:四个不同类型的问题由浅入深,学生能从不同角度掌握求一次函数的方法.对于问题4,教师可引导学生分析,并教学生要学会画图,利用图象分析问题,体会数形结合方法的重要性.学生若出现解题格式不规范的情况,教师应纠正并给予示范,训练学生规范答题的习惯.五、课时小结内容:总结本课知识与方法1、本节课主要学习了怎样确定一次函数的表达式,在确定一次函数的表达式时可以用待定系数法,即先设出解析式,再根据题目条件(根据图象、表格或具体问题)求出k,b 的值,从而确定函数解析式.其步骤如下:(1)设函数表达式;(2)根据已知条件列出有关k,b的方程;(3)解方程,求k,b;(4)把k,b代回表达式中,写出表达式.2、本节课用到的主要的数学思想方法:数形结合、方程的思想.目的:引导学生小结本课的知识及数学方法,使知识系统化.六、作业布置习题4.5。
北师大版数学八年级上册《1 函数》教案1
北师大版数学八年级上册《1 函数》教案1一. 教材分析北师大版数学八年级上册《1 函数》是学生在学习了初中数学基础知识后,对函数概念、性质和应用进行初步了解的一节课。
本节课的内容包括函数的定义、函数的性质和函数图像的识别。
通过本节课的学习,学生将对函数有更深入的认识,为今后的数学学习打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了实数、方程、不等式等基础知识,具备了一定的逻辑思维能力和抽象思维能力。
但函数概念较为抽象,学生可能难以理解。
因此,在教学过程中,教师需要运用生动形象的教学手段,帮助学生建立函数概念,引导学生理解函数的性质和图像。
三. 教学目标1.了解函数的定义,掌握函数的基本性质。
2.能够识别和绘制简单的函数图像。
3.培养学生的逻辑思维能力和抽象思维能力。
4.提高学生运用数学知识解决实际问题的能力。
四. 教学重难点1.函数的定义及其性质。
2.函数图像的识别和绘制。
五. 教学方法1.情境教学法:通过生活实例引入函数概念,激发学生兴趣。
2.讲授法:讲解函数的定义、性质和图像,引导学生理解。
3.实践操作法:让学生动手绘制函数图像,加深对函数的理解。
4.小组讨论法:分组讨论函数问题,培养学生的合作意识。
六. 教学准备1.教学PPT:包含函数的定义、性质、图像及实例。
2.练习题:包括简单函数的识别和绘制。
3.教学用具:黑板、粉笔、直尺、圆规等。
七. 教学过程1.导入(5分钟)通过一个生活实例,如温度随时间的变化,引入函数的概念。
引导学生思考:如何表示这种变化关系?引出函数的定义。
2.呈现(10分钟)讲解函数的定义、性质和图像,引导学生理解。
用PPT展示函数图像,让学生观察、分析。
3.操练(10分钟)让学生动手绘制一些简单函数的图像,如正比例函数、一次函数、二次函数等。
在绘制过程中,引导学生掌握函数图像的特点。
4.巩固(10分钟)出示一些练习题,让学生识别和绘制函数图像。
教师巡回指导,解答学生疑问。
4.4 一次函数的应用(3)教案(公开课)
一次函数的应用(3)教学目标1.进一步训练学生的识图能力,能通过函数图象获取信息,解决简单的实际问题;2.在函数图象信息获取过程中,进一步培养学生的数形结合意识,发展形象思维;3.在解决实际问题过程中,进一步发展学生的分析问题、解决问题的能力和数学应用意识.4.在现实问题的解决中,使学生初步认识数学与人类生活的密切联系,从而培养学生学习数学的兴趣.教学重点一次函数图象的应用教学难点从函数图象中正确读取信息教学过程:1.如图,l 1反映了某公司产品的销售收入与销售量之间的关系,l 2反映了该公司产品的销售成本与销售量之间的关系,根据图意填空:(1)当销售量为2吨时,销售收入=元,销售成本=元;(2)当销售量为6吨时,销售收入=元,销售成本=元;(3)当销售量等于时,销售收入等于销售成本;(4)当销售量时,该公司赢利(收入大于成本);当销售量时,该公司亏损(收入小于成本);(5) l 1对应的函数表达式是,l 2对应的函数表达式是。
2.例我边防局接到情报,近海处有一可疑船只正向公海方向行驶.边防局迅速派出快艇追赶(如图),下图中,分别表示两船相对于海岸的距离(海里)与追赶时间(分)之间的关系.A B 1l 2l s t根据图象回答下列问题:(1)哪条线表示到海岸的距离与时间之间的关系?(2),哪个速度快?(3)15 min 内能否追上?(4)如果一直追下去,那么能否追上?(5)当逃到离海岸海里的公海时,将无法对其进行检查.照此速度,能否在逃到公海前将其拦截?3. 如图,与分别表示步行与骑车同一路上行驶的路程与时间的关系.(1)出发时与相距多少千米?(2)走了一段路后,自行车发生故障,进行修理,所用的时间是多少小时?(3)出发后经过多少小时与相遇?课时小结本节课我们学习了一次函数图象的应用,在运用一次函数解决实际问题时,可以直接从函数图象上获取信息解决问题,当然也可以设法得出各自对应的函数关系式,然后借助关系式完全通过计算解决问题。
北师大版八年级数学上册《一次函数的应用》第3课时示范课教学设计
第四章一次函数4 一次函数的应用第3课时一、教学目标1.进一步培养学生的识图能力,能通过函数图象获取信息,解决简单的实际问题.2.在函数图象信息获取过程中,进一步培养学生的数形结合意识,发展形象思维.3.在解决实际问题的过程中,进一步发展学生的分析问题、解决问题的能力和数学应用意识.4.在现实问题的解决中,使学生初步认识数学与人类生活的密切联系,从而培养学生学习数学的兴趣.二、教学重难点重点:训练学生的识图能力,能通过函数图象获取信息.难点:通过函数图象发展学生的分析问题、解决问题的能力.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计【复习回顾】问题;解答实际问题,如何分析函数的图象信息?预设:(1)理解横、纵坐标分别表示的的实际意义;(2)分析已知,通过作x轴或y轴的垂线,在图象上找到对应的点,由点的横坐标或者纵坐标的值读出要求的值;(3)利用数形结合的思想:【做一做】某医药研究所开发了一种新药,在实际验药时发现,如果成人按规定剂量服用,那么每毫升血液中含药量y(毫克)随时间x(时)的变化情况如图所示:问题1:(1)服药后______时,血液中含药量最高,达到每毫升_______毫克,接着逐步衰弱.预设答案:2;6问题2:(2)服药后5时,血液中含药量为每毫升____毫克.预设答案:3问题3:(3)当x≤2时,y与x之间的函数解析式是___________.提示:当x≤2时图象过原点,表达式设为y=kx,求解k的值只需再找一个点的坐标即可.预设答案:解:当x≤2时,设y与x的解析式为y=kx,由图可知,图象过点(2,6),代入得6=2k,解得k=3,所以解析式为y=3x.问题4:(4)如果每毫升血液中含药量3 mg或3 mg以上时,治疗疾病最有效,那么吃药后_____小时能发挥最佳药效.教师活动:当y=3,且x≤2时,求出x的值即可.预设答案:解:当x≤2时,y与x的解析式为y=3x,把y=3代入,得3=3x,解得x=1.所以答案是1.量的关系,l2反映了该公司产品销售成本与销售量的关系,根据图象填空:(1)当销售量为2 t时,销售收入=______元,销售成本=_____元;(2)当销售量为6 t时,销售收入=_________元,销售成本=________元;预设答案:(1)2000;3000 (2)6000;5000(3)当销售量为______时,销售收入等于销售成本;(4)当销售量时,该公司赢利(收入大于成本);当销售量时,该公司亏损(收入小于成本);预设答案:(3)4吨(4)大于4 t 小于4 t(5)l1对应的函数表达式是,l2对应的函数表达式是.教师活动:l1的图象过原点,表达式设为y=kx,解这个方程只需再找一个点的坐标即可.解:设l1的表达式为y=k1x,由图可知,图象过(4,4000),代入得4000=4k1,解得k1=1000,所以表达式为y=1000x.教师活动:l2表达式设为y=k2x+b2,解这个方程需要两个点的坐标,从图上可知所需坐标点.解:设l2的表达式为y=k2x+b2,由图可知,图象过【典型例题】教师提出问题,学生先独立思考,然后再小组交流探讨.教师板书一道例题书写过程,其余题目可由学生代表板书完成,最终教师展示答题过程.【例1】我边防局接到情报,近海处有一可疑船只A正向公海方向行驶,边防局迅速派出快艇B追赶(如图).图中l1,l2分别表示两船相对于海岸的距离s(n mile)与追赶时间t(min)之间的关系.根据图象回答下列问题:(1)哪条线表示B到海岸的距离与追赶时间之间的关系?(2)A,B哪个速度快?(3)15 min内B能否追上A?(4)如果一直追下去,那么B能否追上A?(5)当A逃到离海岸12 n mile的公海时,B将无法对其进行检查.照此速度,B能否在A逃入公海前将其拦截?(6)l1与l2对应的两个一次函数s=k1t+b1与s=k2t+b2中,k1,k2的实际意义各是什么?可疑船只A与快艇B的速度各是多少?解:(1)当t=0时,B距海岸0 n mile,即s=0,故l1表示B到海岸的距离与追赶时间之间的关系.(2)t从0增加到10时,l2的纵坐标增加了2,而l1的纵坐标增加了5,即10 min内,A行驶了2 n mile,B行驶了5 n mile,所以B的速度快.(3)如图,延长l1,l2,可以看出,当t=15时,l1上的对应点在l2上对应点的下方,这表明,15 min时B 尚未追上A.(4)如图,延长l1,l2相交于点P.因此,如果一直追下去,那么B一定能追上A.(5)从图中可以看出,l1与l2交点P的纵坐标小于l2,这说明在A逃入公海前,B能够追上A.(6)k1表示快艇B的速度,k2表示可疑船只A的速度.可疑船只A的速度是0.2n mile/min,快艇B的速度是0.5n mile/min.【想一想】你能用其他方法解决例3(1)~(5)吗?预设答案:解:(1)由图可知,l1表示的速度=5÷10=0.5(n mile/min),l2表示的速度=(7-5)÷10=0.2(n mile/min),故l1表示B到海岸的距离与追赶时间之间的关系.(2)因为0.5>0.2,所以B的速度快.(3)教师活动:利用待定系数法求出图象的解析式,代入t=15,求出s值即可得出.解:设直线l1的解析式为s1=k1t,l2的解析式为s2=k2t+b.是()A.①②B.②③④C.②③D.①②③预设答案:D2.小敏从A地出发向B地行走,同时小聪从B地出发向A地行走,如图所示,相交于点P的两条线段l1、l2分别表示小敏、小聪离B地的距离y(km)与已用时间x(h)之间的关系,则小敏、小聪行走的速度分别是( )A.3 km/h 和4 km/hB.3 km/h 和3 km/hC.4 km/h 和4 km/hD.4 km/h 和3 km/h分析:可先根据图象上的点分别写出函数关系式,再分别求出两人的速度.预设答案:D3.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点距离是( )米. A.150 B.175 C.180 D.225分析:根据图象即可求出甲、乙的速度,再求出乙到达终点时所用的时间,然后求出乙到达终点时甲所走的路程,最后用总路程-甲所走的路程即可得出答案.预设答案:B4.两人分别骑自行车和摩托车沿相同路线由甲地到乙地,他们的行驶路程与行驶时间之间的关系如图所示.已知甲、乙两地的距离是120 km,请根据图象回答下列问题:(1)谁先出发的?早多少时间?(2)两人在途中行驶的速度分别是多少?(3)骑自行车者出发后经过几个小时后,两人相遇?(4)在什么时间范围内,骑自行车者在骑摩托车者前面?在什么时间范围内,骑摩托车者在自行车者前面?预设答案:解:(1)观察图象可以看出骑自行车者出发早,早3小时.(2)由图象知,自行车行120 km耗时8小时,所以速度是120÷8=15(km/h)摩托车行驶120 km耗时(5-3)=2小时;所以速度是120÷2=60(km/h)(3)因为两图象交点的横坐标为4,所以4小时后两人相遇.(4)由图象知,当时间在0~4小时内,骑自行车者在骑摩托车者前面;当时间在4~8小时内,骑摩托车者在骑自行车者前面.思维导图的形式呈现本节课的主要内容:。
北师大版八年级数学上册4.1一次函数的应用优秀教学案例
3.教师巡回指导,解答学生疑问,给予鼓励和评价,提高学生的自信心。
(四)总结归纳
1.教师引导学生回顾本节课所学内容,总结一次函数在购物、出行等方面的应用。
2.学生总结一次函数的图像特征和性质,加深对一次函数的理解。
3.教师强调一次函数在实际生活中的重要性,激发学生的学习兴趣。
三、教学策略
(一)情景创设
1.利用多媒体展示购物、出行等实际场景,让学生身临其境,引发学生的学习兴趣。
2.设计具有挑战性和趣味性的数学问题,激发学生的求知欲。
3.以生活实例为载体,引导学生发现数学规律,感知数学与生活的紧密联系。( Nhomakorabea)问题导向
1.引导学生提出问题,激发学生的思考,培养学生的问题意识。
五、案例亮点
1.生活情境导入:通过购物、出行等生活场景的展示,引导学生发现数学问题,激发学生的学习兴趣,增强学生的数学应用意识。
2.问题导向:本节课以问题为导向,引导学生主动探究、积极思考,培养学生的问题意识和解决问题的能力。
3.小组合作:组织学生进行小组讨论,培养学生的团队协作能力和沟通能力,提高学生的学习效果。
(四)反思与评价
1.引导学生对学习过程进行反思,总结经验,提高学生的学习能力。
2.组织学生进行自我评价、同伴评价,培养学生的评价能力。
3.教师对学生的学习过程和结果进行多元化评价,激发学生的学习动力。
本节课的教学策略旨在充分发挥学生的主体作用,引导学生主动探究、积极思考,提高学生的数学素养。通过情景创设、问题导向、小组合作和反思与评价等策略,培养学生的问题意识、团队协作能力和自我评价能力,使学生在学习一次函数的应用过程中,既能掌握数学知识,又能培养良好的学习习惯和价值观。
一次函数的应用(第3课时)一等奖创新教学设计
一次函数的应用(第3课时)一等奖创新教学设计第四章一次函数4. 一次函数的应用(第3课时)教学设计一、教材分析(地位与作用)本节课是北师大版义务教育教科书八年级(上)第四章《一次函数》第四节的第3课时,主要是利用两个一次函数的图象解决一些生活中的实际问题.和前一课时一样,教科书注重从函数图象中获取信息从而解决具体问题,关注数形结合思想的揭示,关注形象思维能力的发展,同时,这为今后学习用图象法解二元一次方程组打下基础.二、学情分析在前几节课,学生已经分别学习了一次函数,一次函数的图象,一次函数图象的特征,并且了解到一次函数的应用十分广泛.在此基础上,通过生活中的实际问题进一步探讨一次函数图象的应用.教学目标根据本教材的结构和内容分析,结合八年级学生的认知结构及其心理特征,我制定了以下教学目标:(一)知识与技能:1、通过观察函数图象,能够从两个一次函数图象中获取信息,理解函数图象交点的实际意义;2、利用一次函数图象,解决实际问题。
(二)过程与方法:1、通过利用一次函数图象获取信息解决问题的过程,渗透数形结合与数学建模思想,体会函数与方程之间的关系;2、通过利用函数图象解决问题,进一步发展学生的数学应用意识,提高数学应用能力。
(三)情感、态度与价值观:激发学生的学习兴趣,培养独立思考、合作学习的能力,感受数学的应用价值。
四、教学的重难点根据新课程标准,在吃透教材,紧扣中考考点的基础上,我确定了以下教学重难点:教学重点:从两个函数图象中提取有用的信息,利用函数图象解决实际问题教学难点:1、结合具体实例理解一次函数关系式中k、b的实际意义;体会函数与方程之间的关系,理解数形结合以及数学建模思想,发展学生的几何直观和应用意识。
五、教法学法1.教学方法:依据新的教学理念、学习方式的转变,通过学生自主、分组合作、探究等方式使学生在参与中培养能力;合作中学会学习。
本节课在教法上主要采用探究式教学法,选择由浅入深提出问题、分析问题、解决问题的流程进行教学。
北师大版数学八年级上册4《一次函数的应用》教案1
北师大版数学八年级上册4《一次函数的应用》教案1一. 教材分析《一次函数的应用》是北师大版数学八年级上册第4章的内容。
本节课主要让学生了解一次函数在实际生活中的应用,学会利用一次函数解决实际问题,培养学生的数学应用能力。
教材通过实例引导学生理解一次函数的定义,掌握一次函数的性质,并能运用一次函数解决实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了代数基础知识,具备了一定的问题解决能力。
但部分学生对实际问题与数学知识的联系还不够明确,需要老师在教学中加以引导。
此外,学生对数学应用题的兴趣不高,教师应注重激发学生的学习兴趣,提高他们的数学应用意识。
三. 教学目标1.理解一次函数的定义,掌握一次函数的性质。
2.学会利用一次函数解决实际问题,提高数学应用能力。
3.培养学生的团队协作能力和问题解决能力。
四. 教学重难点1.一次函数的定义和性质。
2.一次函数在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活实例引入一次函数,让学生感受数学与生活的紧密联系。
2.启发式教学法:引导学生主动探究一次函数的定义和性质,培养学生的思维能力。
3.小组合作学习:鼓励学生分组讨论,共同解决实际问题,提高学生的团队协作能力。
六. 教学准备1.教学课件:制作课件,展示一次函数的定义、性质及实际应用。
2.实例材料:收集一些与生活密切相关的一次函数实例,用于引导学生学习。
3.练习题:准备一些有关一次函数的应用题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用课件展示一次函数在生活中的应用实例,如线性增长、直线距离等,引导学生关注一次函数的实际意义。
2.呈现(10分钟)(1)介绍一次函数的定义:y=kx+b(k≠0,k、b为常数)。
(2)讲解一次函数的性质:随着x的增大,y的值会按照k的的正负和大小变化。
3.操练(10分钟)让学生分组讨论,每组选取一个实例,分析实例中的一次函数关系,并绘制函数图像。
教师巡回指导,解答学生疑问。
北师大版八年级数学上册:4.4 《一次函数的应用》教案3
北师大版八年级数学上册:4.4 《一次函数的应用》教案3一. 教材分析《一次函数的应用》是北师大版八年级数学上册第4章“一次函数”的最后一节内容。
本节课的主要内容是让学生掌握一次函数在实际问题中的应用,培养学生的实际问题解决能力。
教材通过生活实例引入一次函数的应用,让学生感受数学与生活的紧密联系,提高学生学习数学的兴趣。
二. 学情分析学生在学习本节课之前,已经学习了初中阶段的一次函数、不等式和方程等基础知识,对一次函数的概念、性质和图象有一定的了解。
但学生对实际问题与一次函数之间的联系还需加强,本节课通过具体的生活实例,让学生将已学知识运用到实际问题中,提高学生解决问题的能力。
三. 教学目标1.让学生理解一次函数在实际问题中的应用,提高学生的实际问题解决能力。
2.培养学生运用数学知识描述生活现象的能力,感受数学与生活的紧密联系。
3.提高学生学习数学的兴趣,培养学生的自主学习能力。
四. 教学重难点1.一次函数在实际问题中的应用。
2.如何将实际问题转化为一次函数问题,找出合适的自变量和因变量。
五. 教学方法采用问题驱动法、案例分析法和小组合作法进行教学。
以生活实例为载体,引导学生发现实际问题与一次函数之间的联系,通过小组合作、讨论交流,培养学生解决问题的能力。
六. 教学准备1.准备相关的生活实例,用于引导学生发现实际问题与一次函数之间的联系。
2.准备课件,展示一次函数在实际问题中的应用。
3.准备练习题,巩固学生对一次函数应用的理解。
七. 教学过程1.导入(5分钟)通过一个生活实例,如购物问题,引导学生发现实际问题中存在一种线性关系。
让学生思考如何用数学语言描述这种关系,引出一次函数的概念。
2.呈现(15分钟)呈现一组实际问题,如的身高与年龄的关系,让学生尝试用一次函数来表示。
引导学生找出合适的自变量和因变量,并解释为什么选择这两个变量。
3.操练(15分钟)让学生分组讨论,每组选择一个实际问题,尝试用一次函数来表示。
北师大版数学八年级上册4《一次函数的应用》教学设计1
北师大版数学八年级上册4《一次函数的应用》教学设计1一. 教材分析《一次函数的应用》是北师大版数学八年级上册第4章的内容。
本节课的主要内容是一次函数在实际生活中的应用,通过实例让学生了解一次函数的性质,学会用一次函数解决实际问题。
教材通过丰富的实例,引导学生探究一次函数的图象和性质,培养学生的动手操作能力和解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了函数的概念、一次函数的定义和图象,具备了一定的函数知识基础。
但学生对实际问题与函数关系的理解还不够深入,解决实际问题的能力有待提高。
因此,在教学过程中,教师需要关注学生的认知基础,通过实例引导学生将实际问题转化为函数问题,培养学生解决实际问题的能力。
三. 教学目标1.知识与技能:让学生了解一次函数在实际生活中的应用,学会用一次函数解决实际问题。
2.过程与方法:通过实例分析,让学生掌握一次函数的图象和性质,提高学生解决问题的能力。
3.情感态度与价值观:培养学生对数学的兴趣,增强学生运用数学解决实际问题的意识。
四. 教学重难点1.重点:一次函数在实际生活中的应用。
2.难点:如何将实际问题转化为函数问题,并运用一次函数解决。
五. 教学方法1.情境教学法:通过生活实例,引导学生了解一次函数在实际中的应用。
2.启发式教学法:引导学生主动探究一次函数的图象和性质,培养学生解决问题的能力。
3.小组合作学习:让学生在小组内讨论实际问题,共同寻找解决方法,提高学生的合作能力。
六. 教学准备1.教学课件:制作课件,展示一次函数的图象和实例。
2.实例材料:准备一些实际问题,作为教学案例。
3.练习题:准备一些练习题,巩固学生对一次函数应用的理解。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的实例,如身高与年龄的关系、商品价格与数量的关系等,引导学生思考这些实际问题是否可以用一次函数来表示。
2.呈现(10分钟)教师展示一次函数的图象,引导学生观察图象,了解一次函数的性质。
八年级数学上册4.4一次函数的应用第3课时两个一次函数图象的应用教案 新版北师大版
八年级数学上册4.4一次函数的应用第3课时两个一次函数图象的应用教案新版北师大版一. 教材分析本次课的内容是北师大版八年级数学上册4.4一次函数的应用第3课时,主要讲述了两个一次函数图象的应用。
本节课的内容是学生学习一次函数的进一步延伸,通过分析两个一次函数图象的交点、斜率等特征,培养学生解决实际问题的能力。
二. 学情分析学生在学习了八年级数学上册前几章的内容后,对一次函数的基本概念、性质和图象已经有了一定的了解。
但在解决实际问题时,还需要进一步引导他们运用一次函数的知识进行分析。
此外,学生可能对两个一次函数图象的交点、斜率等特征的理解不够深入,需要通过实例进行讲解和练习。
三. 教学目标1.理解两个一次函数图象的交点、斜率等特征,并能够运用这些特征解决实际问题。
2.培养学生的分析问题和解决问题的能力,提高他们的数学思维水平。
3.培养学生合作交流的能力,提高他们的团队协作能力。
四. 教学重难点1.重点:掌握两个一次函数图象的交点、斜率等特征,并能够运用这些特征解决实际问题。
2.难点:如何引导学生运用一次函数的知识分析实际问题,并找出解决问题的方法。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过设置问题情境,引导学生运用一次函数的知识进行分析;通过案例讲解,让学生了解两个一次函数图象的交点、斜率等特征;通过小组合作,培养学生的团队协作能力和沟通能力。
六. 教学准备1.准备相关的案例和问题,以便在课堂上进行讲解和练习。
2.准备多媒体教学设备,以便进行图象展示和讲解。
3.准备练习题,以便在课堂上进行巩固和拓展。
七. 教学过程1.导入(5分钟)通过设置一个实际问题,引导学生运用一次函数的知识进行分析。
例如:某商店进行促销活动,商品的原价一次函数为y=2x+1,促销价一次函数为y=x+3。
问:当商品原价等于促销价时,商品的价格是多少?2.呈现(15分钟)通过多媒体展示两个一次函数图象,让学生观察并分析图象的交点、斜率等特征。
八年级数学上册4.4一次函数的应用第3课时两个一次函数图象的应用说课稿(新版北师大版)
八年级数学上册4.4一次函数的应用第3课时两个一次函数图象的应用说课稿(新版北师大版)一. 教材分析本次说课的内容是北师大版八年级数学上册4.4一次函数的应用第3课时,这部分内容主要让学生学会利用两个一次函数图象解决实际问题。
教材通过生活实例引入两个一次函数图象的交点坐标,让学生理解交点坐标的意义,并学会如何求解交点坐标。
同时,教材还引导学生通过观察图象来判断两个函数的交点个数,以及如何利用交点坐标解决实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了一次函数图象的基本知识,包括一次函数的定义、图象的性质等。
但是,对于两个一次函数图象的交点坐标以及应用,可能还存在一定的困惑。
因此,在教学过程中,我将会重点引导学生理解和掌握交点坐标的意义,以及如何利用交点坐标解决实际问题。
三. 说教学目标1.知识与技能目标:让学生理解和掌握两个一次函数图象的交点坐标的意义,以及如何求解交点坐标;让学生学会通过观察图象来判断两个函数的交点个数,并能够利用交点坐标解决实际问题。
2.过程与方法目标:通过生活实例的引入,培养学生的观察能力和思维能力;通过小组合作探究,培养学生的合作意识和团队精神。
3.情感态度与价值观目标:让学生感受到数学与生活的紧密联系,激发学生学习数学的兴趣和热情。
四. 说教学重难点1.教学重点:让学生理解和掌握两个一次函数图象的交点坐标的意义,以及如何求解交点坐标;让学生学会通过观察图象来判断两个函数的交点个数,并能够利用交点坐标解决实际问题。
2.教学难点:如何引导学生理解和掌握交点坐标的意义,以及如何利用交点坐标解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作探究法等。
2.教学手段:利用多媒体课件、黑板、粉笔等。
六. 说教学过程1.导入新课:通过一个实际问题引入本节课的内容,让学生观察图象,引导学生思考两个函数的交点坐标有什么意义。
2.讲解新课:讲解两个一次函数图象的交点坐标的意义,以及如何求解交点坐标。
05 -一次函数的应用(第三课时)-1教案
当y1>y2时,即400+4x>820+2x,解得x>210
∴当运输路程大于210公里时,选择火车运输较好.
当y1=y2时,即400+4x=820+2x,解得x=210
∴当运输路程大等于210公里时,选择任意一种运输方式均可.
当y1<y2时,即400+4x<820+2x,解得x<210
将函数图象问题转化为利用函数表达式求值问题,实现一次函数与一元一次方程间的转化。
新授
一次函数与一元一次不等式
从例1的图象中,仅能得到直线y=kx+b与两个坐标轴的交点坐标吗?有同学会说,直线左低右高,k>0,y值随x值的增大而增大.还有同学会说,直线经过一、二、三象限.
例2通过观察图象,你能得到关于x的不等式kx+b>0的解集吗?
方式一:使用快递公司的邮车运输,装卸收费400元,另外每公里再加收4元;
方式二:使用铁路运输公司的火车运输,装卸收费820元,另外每公里再加收2元.
(1)请分别写出邮车、火车运输的总费用y1(元)、y2(元)与运输路程x公里之间的函数关系式;
(2)你认为选用哪种运输方式较好,为什么?
解:(1)运输总费用=装卸费+运输路程收费,邮车总费用y1=400+4x(x≥0),火车总费用y2=820+2x(x≥0)此时的自变量x取值范围,要符合实际意义大于等于0.
把x=1代入一次函数y=2x+3中得y=2×1+3=5,刚好与点(1,5)的纵坐标相吻合,所以(1,5)满足一次函数y=2x+3的表达式,它在一次函数y=2x+3的图象上.
相互关联一次函数y=kx+b的图象上有无数个点,这些点就是无数个有序数对(x,y).换另一个角度来考虑,若以x,y为未知数,y=kx+b这个二元一次方程中就有无数个解.倘若一个点是在一次函数y=kx+b的图象上,那么这个点的坐标必然是关于x,y的二元一次方程y=kx+b(k≠0)的解,它会使得方程成立.
《一次函数的应用(3)》参考教案
一次函数的应用(三)教学目标:知识与技能:1.理解作函数图像的方法与代数方法各自的特点;2.掌握利用二元一次方程确定一次函数的表达式;3.进一步理解方程与函数的联系。
过程与方法:1.经历应用问题多种解法的探究过程,在探究中学会解决应用问题的一些基本方法和策略;2.在对作图像解法与代数解法的对比中,体会知识之间的普遍联系和知识之间的相互转化;3.通过对本节课的探究,在探究中培养学生的观察能力、识图能力以及语言表达能力。
情感态度与价值观:1.在探究过程中,培养学生联系实际、善于观察、勇于探索和勤于思考的精神;2.在合作与交流活动中发展学生的合作意识和团队精神,在探究活动中获得成功的体验。
重点:1、二元一次方程和一次函数的关系;2、能根据一次函数的图象求二元一次方程的近似解难点:方程和函数之间的对应关系即数形结合的意识和能力教学过程:一、复习回忆、引入新课1、同学们:什么叫二元一次方程及二元一次方程的解2、一次函数的图像是什么3、如图,求一次函数的图像的解析式二、合作交流、解读探究问题1:新知探究1.方程x+y=5的解有多少个写出其中的几个解来[方程x+y=5的解有无数多个,如:x=-1 x=0 x=1 x=2 x=3y=6 y=5 y=4 y= 3 y=2 等2.在直角坐标系中分别描出以这些解为坐标的点,它们在一次函数y=5-x 的图像上吗3.在一次函数y=5-x的图像上任取一点,它的坐标适合方程x+y=5吗4.以方程x+y=5的解为坐标的所有点组成的图象与一次函数y=5-x的图像相同吗归纳:在上面直角坐标系中描出以x+y=5的解为坐标的点,我们很容易发现这些点都在一次函数y=5-x的图象上.在函数y=5-x的图象上任取一点,它的坐标一定适合方程x+y=5.以x+y=5的解为坐标的所有点组成的图象与一次函数y=5-x的图象是相同的.综上所述,二元一次方程和一次函数的图象有如下关系:(1)以二元一次方程的解为坐标的点都在相应的函数图象上.(2)反过来,一次函数图象上的点的坐标都适合相应的二元一次方程.问题2:合作交流问:你能找出下面两个问题之间的联系吗(1)解方程:3x-6=0.(2)已知一次函数y=3x-6,问x取何值时,y=0学生讨论后归纳:一般地,一次函数y=kx+b的图像与x轴的交点的横坐标是一元一次方程kx+b=0的解。
2019—2020年北师大课标版八年级数学上册《一次函数的应用(3)》教案1(教案).doc
《一次函数的应用(3)》教案教学内容北师大版数学八年级上册《一次函数的应用(3)》P93-9 4.教学目的1、进一步训练学生的识图能力,能通过函数图象获取信息,解决简单的实际问题.2、在函数图象信息获取过程中,进一步培养学生的数形结合意识,发展形象思维.3、在解决实际问题过程中,进一步发展学生的分析问题、解决问题的能力和数学应用意识.4、在现实问题的解决中,使学生初步认识数学与人类生活的密切联系,从而培养学生学习数学的兴趣.教学重点一次函数图象的应用.教学难点从函数图象中正确读取信息,能够与实际问题联系起来. 教学过程一、情境引入一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题.(1)农民自带的零钱是多少?(2)试求降价前y与x之间的关系.(3)由表达式你能求出降价前每千克的土豆价格是多少?(4)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?通过与上一课时相似的问题,回顾旧知,导入新知识.二、问题解决内容1:如图,1l反映了某公司产品的销售收入与销售量的关系,2l 反映了该公司产品的销售成本与销售量的关系,根据图意填空:(1)当销售量为2吨时,销售收入=_______元, 销售成本=________元;(2)当销售量为6吨时,销售收入=________元, 销售成本=________元;(3)当销售量为_______时,销售收入等于销售成本; (4)当销售量________时,该公司赢利;当销售量________时,该公司亏损. (5)1l 对应的函数表达式是______________;2l 对应的函数表达式是_______________.内容2:深入探究例2我边防局接到情报,近海处有一海 岸公 海AB可疑船只A正向公海方向行驶.边防局迅速派出快艇B追赶(如图),下图中1l,2l分别表示两船相对于海岸的距离s(海里)与追赶时间t(分)之间的关系.根据图象回答下列问题:(1)哪条线表示B到海岸的距离与时间之间的关系?解:观察图象,得当0=t时,B距海岸0nmile,即0=S,故1l表示B到海岸的距离与追赶时间之间的关系.(2)A,B哪个速度快?解:从0增加到10时,2l的纵坐标增加了2,而1l的纵坐标增加了5,即10min内,A行驶了2海里,B行驶了5nmile,所以B的速度快.(3)15min内B能否追上A?解:可以看出,当15t时,1l上对应点=在2l上对应点的下方.(4)如果一直追下去,那么B能否追上A?解:如图1l,2l相交于点P.因此,如果一直追下去,那么B一定能追上A.(5)当A逃到离海岸2l海里的公海时,B将无法对其进行检查.照此速度,B能否在A逃到公海前将其拦截?解:从图中可以看出,1l与2l交点P的纵坐标小于2l,这说明在A逃入公海前,我边防快艇B能够追上A.活动目的:培养学生良好的识图能力,进一步体会数与形的关系,建立良好的知识联系.说明:学生在教师的引导下,逐步形成了良好的识图能力.三、反馈练习内容:观察甲、乙两图,解答下列问题:1、填空:两图中的( )图比较符合传统寓言故事《龟免赛跑》中所描述的情节.2、根据1中所填答案的图象填写下表:3、根据1中所填答案的图象求:(1)龟免赛跑过程中的函数关系式(要注明各函数的自变量的取值范围).(2)乌龟经过多长时间追上了免子,追及地距起点有多远的路程?4、甲、乙两班参加植树活动.乙班先植树30棵,然后甲班才开始与乙班一起植树.设甲班植树的总量为y甲(棵),乙班植树的总量为y 乙(棵),两班一起植树所用的时间(从甲班开始植树时计时)为x (时),y 甲、y 乙分别与x 之间的部分函数图象如图所示.(1)当06x ≤≤时,分别求y 甲、y 乙与x 之间的函数关系式. (2)如果甲、乙两班均保持前6h 的工作效率,通过计算说明,当8x =时,甲、乙两班植树的总量之和能否超过260棵.(3)如果6h 后,甲班保持前6h 的工作效率,乙班通过增加人数,提高了工作效率,这样继续植树2小时,活动结束.当8x =时,两班之间植树的总量相差20棵,求乙班增加人数后平均每小时植树多少棵.四、课时小结内容:本节课我们学习了一次函数图象的应用,在运用一次函数解决实际问题时,可以直接从函数图象上获取信息解决问题,当然也可以设法得出各自对应的函数关系式,然后借助关系式完全通过计算解决问题.通过列出关系式解决y问题时,一般首先判断关系式的特征,如两个变量之间是不是一次函数关系?当确定是一次函数关系时,可求出函数解析式,并运用一次函数的图象和性质进一步求得我们所需要的结果.意图:引导学生自己小结运用一次函数解决实际问题的主要方法.说明:让学生畅所欲言,相互进行补充,尽量用自己的语言进行归纳总结.五、作业布置习题4.7。
《一次函数的应用》word教案 (公开课获奖)2022北师版 (3)
第四章一次函数§4.4 一次函数的应用〔一〕一、教学目标1、能通过函数图象获取信息,开展形象思维。
2、能利用函数图象解决简单的实际问题,3、初步体会方程与函数的关系。
二、能力目标1、通过函数图象获取信息,培养学生的数形结合意识。
2、根据函数图象解决简单的实际问题,开展学生的教学应用能力。
3、通过方程与函数关系的研究,建立良好的知识联系。
三、情感目标通过函数图象解决实际问题,培养学生的数学应用能力,同时培养学生良好的环保意识和热爱生活的意识。
四、教学重点一次函数图象的应用五、教学过程1、新课导入在前几节课里,我们分别学习了一次函数,一次函数的图象,一次函数图象的特征,并且了解到一次函数的应用十分广泛,和我们日常生活密切相关,因此本节课我们一起来学习一次函数图象的应用。
2、讲授新课〔1〕由于持续高温和连日无雨,某水库的蓄水量随着时间的增加而减少,干旱持续时间t 〔天〕与蓄水量V〔万米3〕的关系如以下图所示,答复以下问题:①干旱持续10天,蓄水量为多少?连续干旱23天呢?②蓄水量小于400万米3时,将发生严重干旱警报。
干旱多少天后将发出严重干旱警报?③按照这个规律,预计持续干旱多少天水库将干涸?请大家根据图象答复以下问题,有困难的同学,请与同伴互相交流。
分析:〔1〕求干旱持续10天时的蓄水量,也就是求t等于10时所对应的V的值。
当t=10时,V 约为1000万米3。
同理可知当t为23天时,V约为750万米3。
〔2〕当蓄水量小于400万米3时,将发出严重干旱警报,也就是当V等于400万米3时,求所对应的t值。
t约为40天。
〔3〕水库干涸也就是V为0,所以求函数图象与横轴交点的横坐标即为所求。
当V为0时,所对应的t的值约为60天。
练一练某种摩托车的油箱最多可储油10升,加满油后,油箱中的剩余油量y〔升〕与摩托车行驶路程x (千米)之间的关系如下图。
根据图象答复以下问题:〔1〕一箱汽油可供摩托车行驶多少千米?〔2〕摩托车每行驶100千米消耗多少升汽油?〔3〕油箱中的剩余油量小于1升时,摩托车将自动报警,行驶多少千米后,摩托车将自动报警?分析:〔1〕函数图象与x轴交点的横坐标即为摩托车行驶的最长路程。
校八年级数学上册 4.4 一次函数的应用(第3课时)教案 (新版)北师大版 教案
4.4一次函数的应用(第三课时)教学目标:知识与技能:1.进一步训练学生的识图能力,能通过函数图象获取信息,解决简单的实际问题过程与方法:1.在函数图象信息获取过程中,进一步培养学生的数形结合意识,发展形象思维;2.在解决实际问题过程中,进一步发展学生的分析问题、解决问题的能力和数学应用意识.情感态度与价值观:在现实问题的解决中,使学生初步认识数学与人类生活的密切联系,从而培养学生学习数学的兴趣.教学重难点:重点:一次函数图象的应用难点:从函数图象中正确读取信息教学过程(一)课前研究:学生自学教材93--94页,并完成书中问题完成课本P93(二)课中展示:小组合作交流,完成展示。
例1小聪和小慧去某风景区游览,约好在“飞瀑”见面,上午7:00小聪乘电动汽车从“古刹”出发,沿景区公路去“飞瀑”,车速为36km/h,小慧也于上午7:00从“塔林”出发,骑电动自行车沿景区公路去“飞瀑”,车速为26km/h.(1)当小聪追上小慧时,他们是否已经过了“草甸”?(2)当小聪到达“飞瀑”时,小慧离“飞瀑”还有多少km?例2 我边防局接到情报,近海处有一可疑船只A正向公海方向行驶.边防局迅速派出快艇B追赶(如图),下图中l1,l2分别表示两船相对于海岸的距离s(海里)与追赶时间t(分)之间的关系.根据图象回答下列问题:(1)哪条线表示B到海岸的距离与时间之间的关系?解:观察图象,得当t=0时,B距海岸0海里,即S=0,故l1表示B到海岸的距离与追赶时间之间的关系;(2)A,B哪个速度快?解:从0增加到10时,l2的纵坐标增加了2,而l1的纵坐标增加了5,即10分内,A行驶了2海里,B行驶了5海里,所以B的速度快.(3)15分钟内B能否追上A?解:可以看出,当t=15时,l1上对应点在l2上对应点的下方,(4)如果一直追下去,那么B能否追上A?解:如图l1,l2相交于点P.因此,如果一直追下去,那么B一定能追上A.(5)当A逃到离海岸12海里的公海时,B将无法对其进行检查.照此速度,B能否在A逃到公海前将其拦截?解:从图中可以看出,l1与l1交点P的纵坐标小于12,这说明在A逃入公海前,我边防快艇B能够追上A.(三)应用新知:例观察甲、乙两图,解答下列问题1. 填空:两图中的()图比较符合传统寓言故事《龟免赛跑》中所描述的情节。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《一次函数的应用(3)》教案
教学内容
北师大版数学八年级上册《一次函数的应用(3)》P93-9 4.
教学目的
1、进一步训练学生的识图能力,能通过函数图象获取信息,解决简单的实际问题.
2、在函数图象信息获取过程中,进一步培养学生的数形结合意识,发展形象思维.
3、在解决实际问题过程中,进一步发展学生的分析问题、解决问题的能力和数学应用意识.
4、在现实问题的解决中,使学生初步认识数学与人类生活的密切联系,从而培养学生学习数学的兴趣.
教学重点
一次函数图象的应用.
教学难点
从函数图象中正确读取信息,能够与实际问题联系起来.
教学过程
一、情境引入
一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,
售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题.
(1)农民自带的零钱是多少?
(2)试求降价前y与x之间的关系.
(3)由表达式你能求出降价前每千克的土豆
价格是多少?
(4)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆?
通过与上一课时相似的问题,回顾旧知,导入新知识.
二、问题解决
内容1:如图,1l反映了某公司产品的销售收入与销售量的关系,2l反映了该公司产品的销售成本与销售量的关系,根据图意填空:
(1)当销售量为2吨时,销售收入=_______元,
销售成本=________元;
(2)当销售量为6吨时,销售收入=________元,
销售成本=________元;
(3)当销售量为_______时,销售收入等于销售成本;
(4)当销售量________时,该公司赢利;
当销售量________时,该公司亏损.
(5)1l对应的函数表达式是______________;
2
l对应的函数表达式是_______________.
内容2:深入探究
例2我边防局接到情报,近海处有一可疑船只A正向公海方向行驶.边防局迅速派出快艇B追赶
(如图),下图中1l,2l分别表示两船相对
于海岸的距离s(海里)与追赶时间t(分)
之间的关系.
根据图象回答下列问题:
(1)哪条线表示B到海岸的距离与时间之间的关系?
解:观察图象,得当0=t时,B距海岸0nmile,即0=
S,故1l表示B到海岸的距离与追赶时间之间的关系.
(2)A,B哪个速度快?
解:从0增加到10时,2l的纵坐标增加了2,而1l的纵坐标增加了5,即10min内,A行驶了2海里,B行驶了5nmile,所以B的速度快.
(3)15min内B能否追上A?
解:可以看出,当15
=
t时,1l上对应
点
海
岸
公
海
A
B
在2l
上对应点的下方.
(4)如果一直追下去,那么B能否追上A?
解:如图1l,2l相交于点P.因此,如果一直追下去,那么B一定能追上A.
(5)当A逃到离海岸2l海里的公海时,B将无法对其进行检查.照此速度,
B能否在A逃到公海前将
其拦截?
解:从图中可以看出,1l与2l交点P的
纵坐标小于2l,这说明在A逃入公海前,我
边防快艇B能够追上A.
活动目的:培养学生良好的识图能力,进一步体会数与形的关系,建立良好的知识联系.
说明:学生在教师的引导下,逐步形成了良好的识图能力.
三、反馈练习
内容:观察甲、乙两图,解答下列问题:
1、填空:两图中的( )图比较符合传统寓言故事《龟
免赛跑》中所描述的情节.
2、根据1中所填答案的图象填写下表:
3、根据1中所填答案的图象求:
(1)龟免赛跑过程中的函数关系式(要注明各函数的自
变量的取值范围).
(2)乌龟经过多长时间追上了免子,追及地距起点有多远的路程?
4、甲、乙两班参加植树活动.乙班先植树30棵,然后甲班才开始与乙班一起植树.设甲班植树的总量为y甲(棵),乙班植树的总量为y乙(棵),两班一起植树所用的时间(从甲班开始植树时计时)为x(时),y甲、y乙分别与x之间的部分函数图象如图所示.
(1)当06
≤≤时,分别求y甲、y乙与x之间的函数关系式.x
(2)如果甲、乙两班均保持前6h的工作效率,通过计算说明,当8
x 时,甲、乙两班植树的总量之和能否超过260棵.
(3)如果6h 后,甲班保持前6h 的工作效率,乙班通过增加人数,提高了工作效率,这样继续植树2小时,活动结束.当8x 时,两班之间植树的总量相差20棵,求乙班增加人数后平均每小时植树多少棵.
四、课时小结
内容:本节课我们学习了一次函数图象的应用,在运用一次函数解决实际问题时,可以直接从函数图象上获取信息解决问题,当然也可以设法得出各自对应的函数关系式,然后借助关系式完全通过计算解决问题.通过列出关系式解决问题时,一般首先判断关系式的特征,如两个变量之间是不是一次函数关系?当确定是一次函数关系时,可求出函数解析式,并运用一次函数的图象和性质进一步求得我们所需要的结果.
意图:引导学生自己小结运用一次函数解决实际问题的主要方法.
说明:让学生畅所欲言,相互进行补充,尽量用自己的语言进行归纳总结.
五、作业布置 习题
4.7
y。