半导体物理总复习13-14

合集下载

半导体物理总复习例题

半导体物理总复习例题
真空能级
nb= m
EF 金属
qUJ = m - s
s - s
EF EC
N 型半导体 EV
平衡时整个系统的费米 能级统一一致。电子的 势垒高度为 nb = m , Schottky 结上电压
UJ = (m - s ) /q
此时从金属向半导体发 射的热电子流等于从半 导体向金属注入的电子 流,故 Schottky 结无净电 流流过。
If IsexpqkU Tf 1
考虑到二极管施加正向 电 压 ( 譬 如 ≥ 0.6V ) 时 , 方 括号中的指数项明显大 于1,故上式可近似改写 为
If
Is
e
xp
q Uf kT
两边求对数,得
Uf
k Tn I f q Is
上式两边同时对 T 求导, 整理后有
d dU fTIf常= 数 U Tf- q ksT Id dsI.T................1 ......
Lp Ln
n p
Lp Ln
n p
例12, 利用耗尽层近似, 求 n 型半导体表面耗尽层 宽度 xd 和空间电荷面密 度量 QS 随表面势 US 变化 的公式。
解:
设 n 型半导体中施主杂 质均匀分布,即施主密度 Nd 是常数。 采用耗尽层近似,故施主 杂质全部电离,电子基本 耗尽,表面如图所示,
SiO2 EFm
EC EFS Ei
EV
平带 UG = 0
积累层情况,如下图:
SiO2
EC
EFS
EFm
Ei
EV
表面积累 UG > 0
耗尽层情况,如下图:
SiO2
ห้องสมุดไป่ตู้
EFm
EC

半导体物理学期末总复习

半导体物理学期末总复习

与理想情况的偏离的原因
理论分析认为,杂质和缺陷的存在使得 原本周期性排列的原子所产生的周期性 势场受到破坏,并在禁带中引入了能级, 允许电子在禁带中存在,从而使半导体 的性质发生改变。
间隙式杂质、替位式杂质
杂质原子位于晶格原子间的间隙位置, 该杂质称为间隙式杂质。
间隙式杂质原子一般比较小,如Si、Ge、 GaAs材料中的离子锂(0.068nm)。
电子占据或基本上是空的一
个标志
玻尔兹曼分布函数
当E EF
所以
k0T
时,由于
exp(
E EF k0T
)
1 exp( E EF ) exp( E EF )
k0T
k0T
费米分布函数转化为
1,
fB
(E)

exp(
E EF k0T
)

exp( EF k0T
)
exp(
E k0T
ED
As
N型半导体
施主能级
EC ED
EV
半导体的掺杂
受主:掺入在半导体中的杂质原子,能够向半导体中提供导电的空穴, 并成为带负电的离子。如Si中的B
B
P型半导体
EA
受主能级
EC
EA EV
半导体的掺杂
Ⅲ、Ⅴ族杂质在Si、Ge晶体中分别为受主和施主杂 质,它们在禁带中引入了能级;受主能级比价带顶 高 E,A 施主能级比导带底低 ED ,均为浅能级,这两 种杂质称为浅能级杂质。
考虑电子的自旋情况,电子的允许量子态密度
为V (/ 4 3),每个量子态最多只能容纳一个电子。
kx

2
nx L
(nx

半导体物理复习试题及答案复习资料

半导体物理复习试题及答案复习资料

半导体物理复习试题及答案复习资料一、引言半导体物理是现代电子学中至关重要的一门学科,其涉及电子行为、半导体器件工作原理等内容。

为了帮助大家更好地复习半导体物理,本文整理了一些常见的复习试题及答案,以供大家参考和学习。

二、基础知识题1. 请简述半导体材料相对于导体和绝缘体的特点。

答案:半导体材料具有介于导体和绝缘体之间的导电特性。

与导体相比,半导体的电导率较低,并且在无外界作用下几乎不带电荷。

与绝缘体相比,半导体的电导率较高,但不会随温度显著增加。

2. 什么是本征半导体?请举例说明。

答案:本征半导体是指不掺杂任何杂质的半导体材料。

例如,纯净的硅(Si)和锗(Ge)就是本征半导体。

3. 简述P型半导体和N型半导体的形成原理。

答案:P型半导体形成的原理是在纯净的半导体材料中掺入少量三价元素,如硼(B),使其成为施主原子。

施主原子进入晶格后,会失去一个电子,并在晶格中留下一个空位。

这样就使得电子在晶格中存在的空位,形成了称为“空穴”的正电荷载流子,因此形成了P型半导体。

N型半导体形成的原理是在纯净的半导体材料中掺入少量五价元素,如磷(P)或砷(As),使其成为受主原子。

受主原子进入晶格后,会多出一个电子,并在晶格中留下一个可移动的带负电荷的离子。

这样就使得半导体中存在了大量的自由电子,形成了N型半导体。

4. 简述PN结的形成原理及特性。

答案:PN结是由P型半导体和N型半导体的结合所形成。

P型半导体和N型半导体在接触处发生扩散,形成电子从N区流向P区的过程。

PN结具有单向导电性,即在正向偏置时,电流可以顺利通过;而在反向偏置时,电流几乎无法通过。

三、摩尔斯电子学题1. 使用摩尔斯电子学符号,画出“半导体”的符号。

答案:半导体的摩尔斯电子学符号为“--..-.-.-...-.”2. 根据摩尔斯电子学符号“--.-.--.-.-.-.--.--”,翻译为英文是什么?答案:根据翻译表,该符号翻译为“TRANSISTOR”。

半导体物理复习归纳

半导体物理复习归纳

半导体物理复习归纳————————————————————————————————作者: ————————————————————————————————日期:一、半导体的电子状态1、金刚石结构(Si、Ge)Si、Ge原子组成,正四面体结构,由两个面心立方沿空间对角线互相平移1/4个空间对角线长度套构而成。

由相同原子构成的复式格子。

2、闪锌矿结构(GaAs)3-5族化合物分子构成,与金刚石结构类似,由两类原子各自形成的面心立方沿空间对角线相互平移1/4个空间对角线长度套构而成。

由共价键结合,有一定离子键。

由不同原子构成的复式格子。

3、纤锌矿结构(ZnS)与闪锌矿结构类似,以正四面体结构为基础,具有六方对称性,由两类原子各自组成的六方排列的双原子层堆积而成。

是共价化合物,但具有离子性,且离子性占优。

4、氯化钠结构(NaCl)沿棱方向平移1/2,形成的复式格子。

5、原子能级与晶体能带原子组成晶体时,由于原子间距非常小,于是电子可以在整个晶体中做共有化运动,导致能级劈裂形成能带。

6、脱离共价键所需的最低能量就是禁带宽度。

价带上的电子激发为准自由电子,即价带电子激发为导带电子的过程,称为本征激发。

7、有效质量的意义a.有效质量概括了半导体内部势场的作用(有效质量为负说明晶格对粒子做负功)b.有效质量可以直接由实验测定c.有效质量与能量函数对于k的二次微商成反比。

能带越窄,二次微商越小,有效质量越大。

8、测量有效质量的方法回旋共振。

当交变电磁场角频率等于回旋频率时,就可以发生共振吸收。

测出共振吸收时电磁波的角频率和磁感应强度,就可以算出有效质量。

为能观测出明显的共振吸收峰,要求样品纯度较高,且实验要在低温下进行。

9、空穴价带中空着的状态被看成带正电的粒子,称为空穴。

这是一种假想的粒子,其带正电荷+q,而且具有正的有效质量m p*。

10、轻/重空穴重空穴:有效质量较大的空穴轻空穴:有效质量较小的空穴11、间接带隙半导体导带底和价带顶处于不同k值的半导体。

半导体物理复习资料

半导体物理复习资料

半导体物理复习资料填空题半导体中的载流子主要受到两种散射,它们分别是 纯净半导体Si 中掺杂V 族元素,当杂质电离时释放 的半导体称 N 型半导体。

当半导体中载流子浓度的分布不均匀时,载流子将做 压情况下,载流子将做 漂移 运动。

n o p o =n 2标志着半导体处于热平衡状态,当半导体掺入的杂质含量改变时,乘积 n o p o 是 否改变? 不改变;当温度变化时,n o p o 改变否?改变。

硅的导带极小值位于布里渊区 <100>方向上,根据晶体对称性共有 6个等价能谷。

n 型硅掺 As 后,费米能级向 E C 或上 移动,在室外温度下进一步升高温度,费米能级向 E i 或下 移动。

半导体中的陷阱中心使其中光电导灵敏度 增加 ,并使其光电导衰减规律 衰减时间延 长。

若用氢取代磷化镓中的部分磷,结果是 禁带宽度 巳增大;若用砷的话,结果是 禁带宽 度 E g 减小 。

已知硅的E g 为1.12EV ,则本征吸收的波长限 为1.11微米;Ge 的曰为0.67eV ,则本征 吸收的波长限为 1.85 微米。

复合中心的作用是 促进电子和空穴的复合,起有效复合中心的杂质能级必须位于 E 或禁带中心线,而对电子和空穴的俘获系数 r n 或r p 必须满足r n =r p O 有效陷阱中心位置靠近 E F 或费米能级。

计算半导体中载流子浓度时,不能使用玻尔兹曼统计代替费米统计的判定条件 E c - E F < 2k o T 以及E F -E V W 2k o T ,这种半导体被称为 简并半导体。

PN 结电容可分为 扩散电容和势垒电容 两种。

纯净半导体Si 中掺杂川族元素的杂质,当杂质电离时在Si 晶体的共价键中产生了一 个空穴,这种杂质称受主杂质;相应的半导体称 P 型半导体。

半导体产生光吸收的方式 本征、激子、杂质、晶格振动 、半导体吸收光子后产生载流 子,在均匀半导体中是 电导率增加 ,可制成 光敏电阻 ;在存在自建电场的半导体中产 生光生伏特 ,可制成 光电池 ;光生载流子发生辐射复合时,伴随着 发射光子 ,这就是 半导体的 发光现象,利用这种现象可制成 发光管 。

半导体物理复习资料全

半导体物理复习资料全

第一章 半导体中的电子状态1. 如何表示晶胞中的几何元素?规定以阵胞的基矢群为坐标轴,即以阵胞的三个棱为坐标轴,并且以各自的棱长为单位,也称晶轴。

2. 什么是倒易点阵(倒格矢)?为什么要引入倒易点阵的概念?它有哪些基本性质? 倒格子: 2311232()a a b a a a π⨯=⋅⨯3122312()a a b a a a π⨯=⋅⨯1233122()a a b a a a π⨯=⋅⨯倒格子空间实际上是波矢空间,用它可很方便地将周期性函数展开为傅里叶级数,而傅里叶级数是研究周期性函数的基本数学工具。

3. 波尔的氢原子理论基本假设是什么?(1)原子只能处在一系列不连续的稳定状态。

处在这些稳定状态的原子不辐射。

(2)原子吸收或发射光子的频率必须满足。

(3)电子与核之间的相互作用力主要是库仑力,万有引力相对很小,可忽略不计。

(4)电子轨道角动量满足:h m vr nn π== 1,2,3,24. 波尔氢原子理论基本结论是什么? (1) 电子轨道方程:0224πεe r mv = (2) 电子第n 个无辐射轨道半径为:2022meh n r n πε= (3) 电子在第n 个无辐射轨道大巷的能量为:222042821hn me mv E n n ε== 5. 晶体中的电子状态与孤立原子中的电子状态有哪些不同?(1)与孤立原子不同,由于电子壳层的交迭,晶体中的电子不再属于某个原子,使得电子在整个晶体中运动,这样的运动称为电子共有化运动,这种运动只能在相似壳间进行,也只有在最外层的电子共有化运动才最为显著。

(2)孤立原子钟的电子运动状态由四个量子数决定,用非连续的能级描述电子的能量状态,在晶体中由于电子共有化运动使能级分裂为而成能带,用准连续的能带来描述电子的运动状态。

6. 硅、锗原子的电子结构特点是什么?硅电子排布:2262233221p s p s s锗电子排布:22106262244333221p s d p s p s s价电子有四个:2个s 电子,2个p 电子。

复习题半导体物理学

复习题半导体物理学

复习题:半导体物理学引言:半导体物理学是研究半导体材料的电学和光学性质的科学学科。

半导体材料由于其特殊的能带结构,介于导体和绝缘体之间。

在半导体物理学中,我们研究电子行为、能带理论、掺杂效应和半导体器件等方面的内容。

本文将通过一系列复习题来回顾半导体物理学的相关知识。

一、电子行为:1. 什么是载流子?在半导体中有哪两种类型的载流子?在半导体中,带有电荷的粒子称为载流子。

一种是带负电荷的电子,另一种是带正电荷的空穴。

2. 什么是能带?能带理论是用来描述什么的?能带是指具有一定能量范围的电子能级分布。

能带理论用于描述电子在半导体中的分布和运动行为。

3. 什么是禁带宽度?它对半导体的导电性质有什么影响?禁带宽度是指能带中能量差最小的范围,该范围内的能级没有允许态。

禁带宽度决定了半导体的导电性能。

能带中存在禁带宽度时,半导体表现出绝缘体的性质;当禁带宽度足够小的时候,允许电子状态穿越禁带,半导体表现出导体的性质。

二、掺杂效应:1. 什么是掺杂?常见的掺杂元素有哪些?掺杂是指向纯净的半导体中引入少量杂质元素,以改变半导体的导电性质。

常见的掺杂元素有磷、锑、硼等。

2. 控制掺杂浓度的方法有哪些?掺杂浓度可以通过掺杂杂质元素的量来控制。

掺杂浓度越高,半导体的导电性越强。

3. P型和N型半导体有什么区别?P型半导体是指通过掺杂三价元素使半导体中存在过剩的空穴,空穴是主要的载流子。

N型半导体是指通过掺杂五价元素使半导体中存在过剩的电子,电子是主要的载流子。

三、半导体器件:1. 什么是PN结?它的主要作用是什么?PN结是由P型半导体和N型半导体组成的结构。

PN结的主要作用是将半导体材料的导电性质从P型区域传导到N型区域,形成电子流和空穴流。

2. 什么是二极管?它的特点是什么?二极管是PN结的一种常见应用。

它具有单向导电性,允许电流从P区域流向N区域,而阻止电流从N区域流向P区域。

3. 什么是晶体管?它的工作原理是怎样的?晶体管是由三个掺杂不同类型的半导体构成的器件。

半导体物理学期末总复习

半导体物理学期末总复习
半导体检测器
半导体物理器件在传感与检测领域中的应用
发展趋势
了解半导体物理器件的发展趋势,包括更高性能、更低功耗、更小体积等。
面临的挑战
分析半导体物理器件在发展中面临的挑战,包括工艺复杂度、成本、可靠性等。ຫໍສະໝຸດ 半导体物理器件的发展趋势与挑战
THANK YOU.
谢谢您的观看
半导体激光器
介绍半导体激光器的原理、结构、制造工艺和应用,包括分布反馈式激光器、布拉格光栅激光器等。
半导体物理器件在光电子中的应用
介绍半导体传感器的基本原理、分类、应用和制造工艺,重点了解气体传感器和生物传感器。
半导体传感器
介绍半导体检测器的基本原理、分类、应用和制造工艺,包括光电检测器、热电检测器等。
半导体二极管及其特性
半导体二极管伏安特性
半导体二极管的伏安特性曲线反映了二极管在不同电压下的电流密度和电阻率,从而表现出单向导电性。
半导体二极管温度特性
半导体二极管的温度系数表示温度对二极管电压的影响,温度升高会使二极管正向电压降低。
双极型晶体管结构
01
双极型晶体管由三个半导体材料区域组成,两个P型区域和一个N型区域,通过三个区域的组合和连接形成NPN或PNP结构。
双极型晶体管及其特性
双极型晶体管的电流放大效应
02
双极型晶体管的基极电流对集电极电流的控制作用称为电流放大效应,这种效应是双极型晶体管的核心特性。
双极型晶体管的击穿特性
03
双极型晶体管在特定电压和电流条件下会发生击穿,导致电流突然增加,失去单向导电性。
场效应晶体管结构
场效应晶体管的电压控制特性
场效应晶体管的频率特性
双极型晶体管的模型与仿真
场效应晶体管的模型与仿真

半导体物理考试复习资料

半导体物理考试复习资料

半导体物理考试复习资料半导体物理考试复习资料概念题:1、半导体硅、锗的晶体结构(⾦刚⽯型结构)及其特点;三五族化合物半导体的闪锌矿型结构及其特点。

2、熟悉晶体中电⼦、孤⽴原⼦的电⼦、⾃由电⼦的运动有何不同:孤⽴原⼦中的电⼦是在该原⼦的核和其它电⼦的势场中运动,⾃由电⼦是在恒定为零的势场中运动,⽽晶体中的电⼦是在严格周期性重复排列的原⼦间运动(共有化运动),单电⼦近似认为,晶体中的某⼀个电⼦是在周期性排列且固定不动的原⼦核的势场以及其它⼤量电⼦的平均势场中运动,这个势场也是周期性变化的,⽽且它的周期与晶格周期相同。

3、晶体中电⼦的共有化运动导致分⽴的能级发⽣劈裂,是形成半导体能带的原因,半导体能带的特点:①存在轨道杂化,失去能级与能带的对应关系。

杂化后能带重新分开为上能带和下能带,上能带称为导带,下能带称为价带②低温下,价带填满电⼦,导带全空,⾼温下价带中的⼀部分电⼦跃迁到导带,使晶体呈现弱导电性。

③导带与价带间的能隙(Energy gap )称为禁带(forbidden band ).禁带宽度取决于晶体种类、晶体结构及温度。

④当原⼦数很⼤时,导带、价带内能级密度很⼤,可以认为能级准连续。

4、晶体中电⼦运动状态的数学描述:⾃由电⼦的运动状态:对于波⽮为k 的运动状态,⾃由电⼦的能量E ,动量p ,速度v 均有确定的数值。

因此,波⽮k 可⽤以描述⾃由电⼦的运动状态,不同的k 值标志⾃由电⼦的不同状态,⾃由电⼦的E 和k 的关系曲线呈抛物线形状,是连续能谱,从零到⽆限⼤的所有能量值都是允许的。

晶体中的电⼦运动:服从布洛赫定理:晶体中的电⼦是以调幅平⾯波在晶体中传播。

这个波函数称为布洛赫波函数。

求解薛定谔⽅程,得到电⼦在周期场中运动时其能量不连续,形成⼀系列允带和禁带。

⼀个允带对应的K 值范围称为布⾥渊区。

5、⽤能带理论解释导带、半导体、绝缘体的导电性。

6、理解半导体中求E (k )与k 的关系的⽅法:晶体中电⼦的运动状态要⽐⾃由电⼦复杂得多,要得到它的E (k )表达式很困难。

半导体器件物理施敏答案

半导体器件物理施敏答案

半导体器件物理施敏答案【篇一:施敏院士北京交通大学讲学】t>——《半导体器件物理》施敏 s.m.sze,男,美国籍,1936年出生。

台湾交通大学电子工程学系毫微米元件实验室教授,美国工程院院士,台湾中研院院士,中国工程院外籍院士,三次获诺贝尔奖提名。

学历:美国史坦福大学电机系博士(1963),美国华盛顿大学电机系硕士(1960),台湾大学电机系学士(1957)。

经历:美国贝尔实验室研究(1963-1989),交通大学电子工程系教授(1990-),交通大学电子与资讯研究中心主任(1990-1996),国科会国家毫微米元件实验室主任(1998-),中山学术奖(1969),ieee j.j.ebers奖(1993),美国国家工程院院士(1995), 中国工程院外籍院士 (1998)。

现崩溃电压与能隙的关系,建立了微电子元件最高电场的指标等。

施敏院士在微电子科学技术方面的著作举世闻名,对半导体元件的发展和人才培养方面作出了重要贡献。

他的三本专著已在我国翻译出版,其中《physics of semiconductor devices》已翻译成六国文字,发行量逾百万册;他的著作广泛用作教科书与参考书。

由于他在微电子器件及在人才培养方面的杰出成就,1991年他得到了ieee 电子器件的最高荣誉奖(ebers奖),称他在电子元件领域做出了基础性及前瞻性贡献。

施敏院士多次来国内讲学,参加我国微电子器件研讨会;他对台湾微电子产业的发展,曾提出过有份量的建议。

主要论著:1. physics of semiconductor devices, 812 pages, wiley interscience, new york, 1969.2. physics of semiconductor devices, 2nd ed., 868 pages, wiley interscience, new york,1981.3. semiconductor devices: physics and technology, 523 pages, wiley, new york, 1985.4. semiconductor devices: physics and technology, 2nd ed., 564 pages, wiley, new york,2002.5. fundamentals of semiconductor fabrication, with g. may,305 pages, wiley, new york,20036. semiconductor devices: pioneering papers, 1003 pages, world scientific, singapore,1991.7. semiconductor sensors, 550 pages, wiley interscience, new york, 1994.8. ulsi technology, with c.y. chang,726 pages, mcgraw hill, new york, 1996.9. modern semiconductor device physics, 555 pages, wiley interscience, new york, 1998. 10. ulsi devices, with c.y. chang, 729 pages, wiley interscience, new york, 2000.课程内容及参考书:施敏教授此次来北京交通大学讲学的主要内容为《physics ofsemiconductor device》中的一、四、六章内容,具体内容如下:chapter 1: physics and properties of semiconductors1.1 introduction 1.2 crystal structure1.3 energy bands and energy gap1.4 carrier concentration at thermal equilibrium 1.5 carrier-transport phenomena1.6 phonon, optical, and thermal properties 1.7 heterojunctions and nanostructures 1.8 basic equations and exampleschapter 4: metal-insulator-semiconductor capacitors4.1 introduction4.2 ideal mis capacitor 4.3 silicon mos capacitorchapter 6: mosfets6.1 introduction6.2 basic device characteristics6.3 nonuniform doping and buried-channel device 6.4 device scaling and short-channel effects 6.5 mosfet structures 6.6 circuit applications6.7 nonvolatile memory devices 6.8 single-electron transistor iedm,iscc, symp. vlsi tech.等学术会议和期刊上的关于器件方面的最新文章教材:? s.m.sze, kwok k.ng《physics of semiconductordevice》,third edition参考书:? 半导体器件物理(第3版)(国外名校最新教材精选)(physics of semiconductordevices) 作者:(美国)(s.m.sze)施敏 (美国)(kwok k.ng)伍国珏译者:耿莉张瑞智施敏老师半导体器件物理课程时间安排半导体器件物理课程为期三周,每周六学时,上课时间和安排见课程表:北京交通大学联系人:李修函手机:138******** 邮件:lixiuhan@案2013~2014学年第一学期院系名称:电子信息工程学院课程名称:微电子器件基础教学时数: 48授课班级: 111092a,111092b主讲教师:徐荣辉三江学院教案编写规范教案是教师在钻研教材、了解学生、设计教学法等前期工作的基础上,经过周密策划而编制的关于课程教学活动的具体实施方案。

半导体物理学期末总复习

半导体物理学期末总复习
热平衡态的定义
半导体中的热平衡态
载流子的扩散
在半导体中,不同区域的载流子浓度不同,浓度高的区域的载流子会向浓度低的区域扩散,这种现象称为载流子的扩散。
载流子的漂移
当半导体中存在电场时,载流子会受到电场力的作用,从高电场强度区域向低电场强度区域移动,这种现象称为载流子的漂移。
载流子的输运过程
在半导体中,载流子的浓度分布取决于载流子的产生、复合、扩散、漂移等过程的综合作用。
太阳能电池
利用半导体物理器件的能带结构,可以制造出高效的太阳能电池。
半导体物理器件在新能源和环境中的应用
风能发电装置
利用半导体物理器件的高频特性,可以制造出高效的风能发电装置。
水质监测和污水处理
利用半导体物理器件的化学传感器作用,可以制造出用于水质监测和污水处理中的传感器。
THANK YOU.
谢谢您的观看
04
半导体的光学性质
光吸收
半导体对光的吸收主要取决于材料中的电子和原子结构。在光子能量大于或等于半导体带隙时,光子会被吸收并产生电子-空穴对。
光发射
光发射是半导体中电子从束缚态跃迁到自由态并辐射出光子的过程。光发射的能量与带隙密切相关,带隙越大,发射光的能量越高。
半导体中的光吸收与光发射
光电效应
5G和6G通信技术
随着5G和6G通信技术的不断发展,现代半导体器件需要适应更高的频率和更复杂的通信协议。
半导体物理器件在集成电路中的应用
存储器
半导体物理器件还可以应用于存储器中,例如动态随机存储器和闪存等。
传感器
半导体物理器件还可以应用于传感器中,例如光传感器、温度传感器和压力传感器等。
微处理器
半导体物理器件在集成电路中的应用最为广泛,其中微处理器是其中的代表。

半导体物理学总复习课

半导体物理学总复习课


-1
• 玻尔兹曼分布
E − EF f B (E ) = exp − k0T

E − EF >> kT时, exp [(E-EF )/kT] >> 1
此时,费米分布函数近似为
E − EF f F (E ) = 1+exp kT
− t
τ
∆n(t ) = ∆n(0)e

t
τ
平衡时
n0、 p0
光注入后从非平 衡到平衡的过程
n = n0 + ∆n p = p0 + ∆p
σ=( n0+∆n ) qµn+( p0+∆p) qµp
= (n 0 qµ n +p 0 qµ p ) + (∆nqµ n +∆pqµ p )
= σ 0 (原光电导) ∆σ + (附加光电导)
非平衡载流子的寿命
复合过程引起非平衡载流子的减少,随时间做指数衰减。
非平衡载流子的复合率:单位时间单位体积内复合消失的电子-空 穴对的数目。
d ∆p (t ) d ∆p (t ) 复合率U = = ∆t dt t − 1 1 τ = ∆p (0)e (− ) = − ∆p (t )
∆p (t ) = −Uτ
先求多子(空穴)浓度 先求多子(空穴)浓度
n0 = N D − N A + p0 ni2 p0 = n0
( N D − N A ) + (( N D − N A ) 2 + 4ni2 )1/2 = 2
强 n0 = ni + N A − ND 电 ≈ N A − ND 离 再求少子浓度 区
ni2 n0 = p0
先求多子(空穴)浓度 先求多子(空穴)浓度

东南大学《半导体物理基础》复习总结

东南大学《半导体物理基础》复习总结

掺入的深能级杂质作为有效复合中心可缩短少子寿命,提高开关速度,有利于高速开关器件的应用。
控制掺入金的浓度,可以调节少子的寿命,而不影响电导率等其他性能指标。
施主能级上的电子浓度 nD 即为未电离的施主浓度,受主能级上的空穴浓度 pA 即为未电离的受主浓度,
第 2 页 共 10 页
电离施主浓度 + = 1+ ( − ) 0 =ND-nD,电离受主浓度 − = 1+ ( − ) 0 =NA-pA,其中简并因子 =
小,本征载流子浓度越大。温度每升高 8 度,Si 的 ni 约增加 1 倍;每升高 12 度,Ge 的 ni 约增加 1 倍。 7. 半导体中的杂质
施主杂质:杂质原子价电子比基质原子多,杂质替代基质后易失去电子,如 P/As 在 Si/Ge 中。
受主杂质:杂质原子价电子比基质原子少,杂质替代基质后易得到电子,如 B/Al/Ga 在 Si/Ge 中,Mg
在 GaAs 中。
Ⅳ族 Si/Ge 在 GaAs 中,可替代 Ga 而成为施主杂质,也可替代 As 而成为受主杂质,故其是双性杂质。
在 Si 低浓度掺杂时先替代 Ga 成为施主杂质,高浓度掺杂时再替代 As 成为受主杂质。电子浓度先增加
后趋于饱和,总体呈现施主杂质的作用。
深能级杂质如金 Au 可在带隙中引入多个杂质能级,但施受主能级不同时起作用。Au 在 n 型半导体中接 受电子带负电成为 Au-,受主能级起作用;在 p 型半导体中施放电子带正电成为 Au+,施主能级起作用。
小注入 注入
大注入
型材料: 型材料:
0 非子 多子
光注入,n p
0 非子 多子 , 注入电注入

第 3 页 共 10 页

半导体物理复习要点答案

半导体物理复习要点答案

一、填充题1. 两种不同半导体接触后,费米能级较高的半导体界面一侧带正电达到热平衡后两者的费米能级相等。

2。

半导体硅的价带极大值位于k空间第一布里渊区的中央,其导带极小值位于【100】方向上距布里渊区边界约0.85倍处,因此属于间接带隙半导体。

3。

晶体中缺陷一般可分为三类:点缺陷,如空位间隙原子;线缺陷,如位错;面缺陷,如层错和晶粒间界. 4。

间隙原子和空位成对出现的点缺陷称为弗仓克耳缺陷 ;形成原子空位而无间隙原子的点缺陷称为肖特基缺陷。

5.浅能级杂质可显著改变载流子浓度; 深能级杂质可显著改变非平衡载流子的寿命,是有效的复合中心。

6。

硅在砷化镓中既能取代镓而表现为施主能级,又能取代砷而表现为受主能级,这种性质称为杂质的双性行为。

7.对于ZnO半导体,在真空中进行脱氧处理,可产生氧空位,从而可获得 n型 ZnO半导体材料。

8.在一定温度下,与费米能级持平的量子态上的电子占据概率为1/2 ,高于费米能级2kT能级处的占据概率为 1/1+exp (2) 。

9.本征半导体的电阻率随温度增加而单调下降,杂质半导体的电阻率随温度增加,先下降然后上升至最高点 ,再单调下降。

10.n型半导体的费米能级在极低温(0K)时位于导带底和施主能级之间中央处,随温度升高,费米能级先上升至一极值,然后下降至本征费米能级 .11。

硅的导带极小值位于k空间布里渊区的【100】方向。

12。

受主杂质的能级一般位于价带顶附近。

13。

有效质量的意义在于它概括了半导体内部势场的作用。

14。

间隙原子和空位成对出现的点缺陷称为弗仓克耳缺陷。

15。

除了掺杂,引入缺陷也可改变半导体的导电类型。

16. 回旋共振是测量半导体内载流子有效质量的重要技术手段。

17. PN结电容可分为势垒电容和扩散电容两种。

18. PN结击穿的主要机制有雪崩击穿、隧道击穿和热击穿.19. PN结的空间电荷区变窄,是由于PN结加的是正向电压电压。

20.能带中载流子的有效质量反比于能量函数对于波矢k的二阶导数 ,引入有效质量的意义在于其反映了晶体材料的内部势场的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.由电子能带图中费米能级的位置和形态(如,水平、倾斜、分裂),分 析半导体材料特性。
6.何谓准费米能级?它和费米能级的区别是什么? 7.比较Si,Ge,GaAs能带结构的特点,并说明各自在不同器件中应用的优势。 8.重空穴,轻空穴的概念. 9.有效质量、状态密度有效质量、电导有效质量概念。源自 10.什么是本征半导体和本征激发?
n , p , n , p 17.写出热平衡时, 非简并半导体 0 0 D A 的表达式,n0、p0用
ni表示的表达式。
18.n型、p 型(包括同时含有施主和受主杂质)半导体的电中性方程。 19.解释载流子浓度随温度的变化关系,并说明为什么高温下半导体器件无 法工作。
20.温度、杂质浓度对费米能级位置的影响。
11.何谓施主杂质和受主杂质?浅能级杂质与深能级杂质?各自的作用。
12.何谓杂质补偿?举例说明有何实际应用。 13.金原子的带电状态与浅能级杂质的关系? 14.画出(a)本征半导体、(b)n型半导体、(c)p型半导体的能带图, 标出费米能级、导带底、价带顶、施主能级和受主能级的位置 15.重掺杂的半导体其能带结构会发生何种变化? 16.何谓非简并半导体、简并半导体?简并化条件?
时间:6.20(周五) 下午2:00 - 4:00 地点:教二 -2楼 教师休息室
7. 迁移率的定义、量纲。影响迁移率的因素。
8. 解释迁移率与杂质浓度、温度的关系。 9. 解释电阻率随温度的变化关系。 10. 强电场下Si、Ge和GaAs的漂移速度的变化规律,并解释之。 11. 何谓热载流子? 12.载流子在什么情况下做扩散运动?扩散系数的定义、量纲。 13.爱因斯坦关系式?理解推导过程。 14.扩散长度和牵引长度的定义。 15.在不同条件下,对连续性方程进行化简。 16.平均自由时间、非平衡载流子寿命概念。 17.平均自由程与扩散长度概念。 18.小注入、大注入概念
21.热平衡态、非平衡态、稳态概念. 22.非平衡状态下载流子浓度表达式(用准费米能级表示),比较平衡与非 平衡下电子浓度n和空穴浓度p的乘积。
载流子的各种运动
1. 何谓直接复合?间接复合? 2. 推导直接复合的非平衡载流子寿命公式,从直接复合的非平衡载流子寿 命公式出发说明小注入条件下,寿命为定值。 3. 了解间接复合的净复合率公式中各参量代表的意义,并从间接复合的净 复合率公式出发说明深能级是最有效的复合中心。 4. 已知间接复合的非平衡载流子寿命公式的一般形式,会化简不同费米能 级位置下的寿命公式。 5. 半导体的主要散射机制?温度对它们的影响,原因? 6. 何谓漂移运动?
半导体与外界作用、半导体接触现象
1.本课程中哪几种外界作用能够改变单一半导体的电导率,试述原理。 2.请说出判断半导体导电类型的实验方法。
3.试述平衡p-n结形成的物理过程,画出势垒区中载流子漂移运动和扩散运 动的方向.
4.内建电势差VD的公式。分析影响接触电势差的因素。
5.平衡p-n结,正向偏置p-n结,反向偏置p-n结的空间图、能带图,各区域载 流子浓度表达式、载流子运动方向、电流方向。
基础知识
1.导体,绝缘体和半导体的能带结构有什么不同?并以此说明半导体的导电 机理(两种载流子参与导电)与金属有何不同? 2.什么是空穴?它有哪些基本特征?以硅为例,对照能带结构和价键结构图 理解空穴概念。 3.半导体材料的一般特性。 4.费米统计分布与玻耳兹曼统计分布的主要差别是什么?什么情况下费米 分布函数可以转化为玻耳兹曼函数。为什么通常情况下,半导体中载流子 分布都可以用玻耳兹曼分布来描述。
6.分别说明空间电荷区、耗尽区、势垒区的三个概念
7.理想p-n结I-V方程。
8. p-n结的理想伏-安特性与实际伏-安特性有哪些区别?定性分析原因。
9 .p-n结电容包括哪两种?在正向偏置或反向偏置下哪种电容起主要作用?为 什么? 10. 定性分析影响p-n结电容大小的因素?并举例说明p-n结电容对器件性能的 影响。 11.p-n结击穿主要有哪几种?说明各种击穿产生的原因和条件。并分析影响它 们的主要因素 12.从能带图出发,分析p-n结隧道效应的基本原理,隧道二极管与一般p-n二 极管的伏-安特性有什么不同?它有什么优点? 13.金属与半导体两系统接触前后的能带图,指出何种为肖特基接触,何种为 欧姆接触。 14.实际半导体通过什么方式实行欧姆接触? 15.比较pn结和肖特基结伏安特性的主要异同点。为什么肖特基结更适应高频 条件下使用? 16.异质结能带结构特点及应用
相关文档
最新文档