Extraction, characterization of Astragalus polysaccharides and its immune modulating activities in

合集下载

取样分离法的英文缩写

取样分离法的英文缩写

取样分离法的英文缩写The Abbreviation of Sampling Separation MethodIntroduction:Sampling separation is a crucial process in various scientific fields, aiming to isolate and extract specific components from a mixture for further analysis or application. In order to simplify its usage, an abbreviation, also known as an acronym or initialism, is often assigned to represent the sampling separation method. This article explores the significance of abbreviations for sampling separation methods in the English language.Abbreviations in Sampling Separation Methods:Abbreviations play a vital role in simplifying complex terminologies, especially in scientific research. By condensing a long and technical name into a shorter form, abbreviations make it easier for researchers, professionals, and even general readers to refer to a particular sampling separation method efficiently. These abbreviations are widely accepted and recognized across the scientific community and help in creating a standardized language for communication.Importance of Abbreviations:1. Enhanced Communication:Abbreviations act as effective communication tools, as they facilitate easy and precise exchange of information between researchers and experts. The use of abbreviations enables efficient and concise communication in scientific journals, research papers, and conferences. Additionally,abbreviations assist in the dissemination of knowledge, allowing researchers to present their work without the cumbersome repetition of lengthy methodologies.2. Time-Saving:The utilization of abbreviations saves valuable time for both the writer and the reader. Instead of repeatedly writing the complete name of a sampling separation method, researchers can use the respective abbreviation, reducing the overall length of the text. This time-saving benefit enables authors to focus on explaining the nuances of the method rather than wasting words on repetitive instances of its name.3. Standardization:Standardization plays a pivotal role in establishing a common platform for sharing and understanding scientific concepts. Abbreviations ensure uniformity and consistency in scientific literature and research, as the same abbreviation is used for a specific sampling separation method by different scientists and researchers. This standardization eliminates confusion and ambiguity that may arise due to variations in the nomenclature of different techniques.Examples of Abbreviations:1. Liquid-Liquid Extraction (LLE): LLE is a widely used method for extracting a compound of interest from a liquid mixture by partitioning it between two immiscible liquids.2. Solid Phase Extraction (SPE): SPE is a technique that involves the use of a solid adsorbent to extract and isolate specific analytes from a sample matrix.3. Gas Chromatography (GC): GC is an analytical method used to separate and analyze volatile compounds in a gaseous mixture.4. High-Performance Liquid Chromatography (HPLC): HPLC is a technique that utilizes high-pressure pumps to separate and identify components in a liquid mixture.Conclusion:Sampling separation methods are pivotal in various scientific fields for accurate analysis and understanding of mixtures. Abbreviations associated with these methods have become essential tools for efficient communication, time-saving writing practices, and standardization of terminologies in scientific literature. It is crucial for scientists and researchers to utilize these abbreviations accurately and consistently, ensuring effective knowledge dissemination across the scientific community.。

黄芪药材提取纯化过程中黄芪皂苷Ⅳ含量变化及相关成分分析

黄芪药材提取纯化过程中黄芪皂苷Ⅳ含量变化及相关成分分析

第39卷第12期2020年12月分析测试学报FENXI CESHI XUEBAO( Journal of Instrumental Analysis)Vol. 39 No. 12 1487-1493d o i: 10.3969/j.issn.1004 -4957. 2020.12. 008黄芪药材提取纯化过程中黄芪皂苷IV含量变化及相关成分分析陈超,吴惠勤*,黄晓兰,黄芳,刘梦云(广东省科学院广东省测试分析研究所(中国广州分析测试中心)广东省中药质量安全工程技术研究中心,广东广州510070)摘要:该文建立了准确测定黄芪药材中游离黄芪皂苷W含量的超高效液相色谱-串联质谱(UPLC- MS/MS)法,并研究了2015年版《中国药典》黄芪项下黄芪皂苷W(黄芪甲苷)含量测定前处理操作对黄芪皂苷W含量的影响。

分别比较索氏提取后、正丁醇萃取后和氨试液除杂后黄芪皂苷W的含量变化,并利用具有超高分辨率的傅里叶变换离子回旋共振质谱仪(FT- ICR- MS)分析其成分的差异性。

结果表明,在优化条件下,黄芪药材中黄芪皂苷汉在0.387 0-24. 75 mg/L范围内呈良好的线性关系,相关系数()为0.999 8,检出限(LOD)为1.0mg/kg,定量下限(LOQ)为3.0mg/k g,力口标回收率为94.5%~105%,相对标准偏差(RSD,™ =6)为1.4%。

研究发现甲醇直接提取的黄芪皂苷I相对含量最高,正丁醇萃取后的氨试液除杂过程会导致黄芪皂苷I及其他黄芪皂苷W同系物水解,黄芪皂苷I的相对含量显著降低,而黄芪皂苷W的含量显著升高;并发现黄芪药材中存在目前尚未报道的黄芪皂苷n异构体,将其命名为新黄芪皂苷n。

关键词:黄芪;游离黄芪皂苷含量变化;新黄芪皂苷n;超高效液相色谱-串联质谱中图分类号:O657.7; R284 文献标识码:A文章编号:1004 -4957(2020)12 -1487 -07Analysis of Content Variation of Astra/aloside W and Related ChemicalComponents During the Extraction and Purification of Astragali RadixC H E N C h a o,W U H u i-q in*,H U A N G X ia o-la n,H U A N G F a n g,L IU M eng-yun(Guangdong Engineering and Technology Research Center for Quality and Safety of Traditional Chinese Medicine,GuangdongInstitute of Analysis(China National Analytical Center Guangzhou),Guangdong Academy ofSciences,Guangzhou510070,China)A b s t r a c t:A valida ted a n a lytic a l m ethod was developed fo r the d e term in ation o f free astragaloside Win A stra g a li R a dix by u ltra-h ig h perform ance liq u id chrom atography- tandem mass spectrom etry(U P-LC - MS/M S).E ffects o f each step o f pretreatm ent w ere studied on the de term in ation o W in Chinese pharm acopoeia(2015) (C h P).F u rth e rm o re,im pacts o f n-b u ta n o l e xtractio n and am­m onia im p u rity rem oval on the de term in ation and content va ria tio n o f astragaloside W were in te d.The differences o f com ponents caused by pretreatm ent were analyzed by F o u rie r trac lo tro n resonance mass s pectrom etry(F T- IC R- M S).R esults showed that there was a good lin e a rre la tio n sh ip o f the proposed m ethod fo r astragaloside W in the range o f0.387 0 -24. 75 ma co rre la tio n c o e ffic ie n t r)o f0.999 8.The lim it o f detection(L O D)and lim it o f q u a n tita tio n(L O Q)were 1.0 m g/k g and 3.0 mg/k g,re sp e ctive ly.The recoveries at three spiked levels ranged from94. 5% to 105%,w ith a re la tive standard d e v ia tio n(R S D,^ = 6)o f1.4% .The re la tive content o fastragaloside I was the highest when A stra g a li R a d ix was d ire c tly extracted w ith m etha no l.p u rity rem oval process w ith am m onia after n-b u ta n o l extractio n le d to the hom ologues tu galoside W by h y d ro ly s is,w h ic h s ig n ific a n tly increased the content o f astragaloside W.M o re o ve r,itwas fou nd th a t there exists a new isom er o f astragaloside n,nam ed as neoastragaloside n in A straga­l i R a d ix.Key words:A stra g a li R a d ix;free astragaloside W;content ch a n g e;neoastragaloside n ;u ltra-收稿日期:2020-06 -22;修回日期:2020-07 -14*通讯作者:吴惠勤,研究员,研究方向:质谱分析应用,E-mail:138****9756@139.o m1488分析测试学报第39卷h ig h perform ance liq u id chrom atography- tandem mass spectrom etry黄苗为見科植物蒙古黄 Y AVragaZiw(F is c h. )Bge.var.(Bge. )H siao 或膜荚黄苗也^§"〇^«應7716「£1疆;6«_15化8<:;11.)886.的干燥根[1]。

黄芪多糖的研究进展

黄芪多糖的研究进展

黄芪多糖的研究进展刘阳苗春柳(福建农林大学动物科学学院)【摘要】黄芪多糖是中药黄芪中含量最多、免疫活性较强的一类物质,是黄芪发挥免疫增强作用的主要成分。

本文就黄芪多糖的药理作用、分离提取、含量测定、真伪辨别、以及它在畜牧业中的应用和发展前景作一简单的综述。

【关键词】黄芪多糖药理作用分离提取含量测定真伪辨别应用发展前景The research Progress of APSLiu Yang, Miao Chun Liu(Animal science of Fujian Agriculture and forystry university)Abstract: Astragalus polysaccharide (APS) is a ingredient which have the most contents and strong immune activity in Chinese astragalus. It is the main components of astragalus which have thefunction of make immune enhance. This review is based on the pharmacological effects, separation and extraction, content determination, authenticity identification, application in animal husbandry and development prospect of astragalus polysaccharide.Key word:astragalus polysaccharide;pharmacological effects;separation and extraction;content determination;authenticity identification黄芪,又名绵芪、绵黄芪,为豆科多年生草本植物蒙古黄芪或膜荚黄芪的干燥根,除蒙古黄芪和膜荚黄芪为正品外,梭果黄芪、多花黄芪、东俄洛黄芪、金翼黄芪、单体蕊黄芪等也作药用。

Supercritical extraction of astaxanthin from H. pluvialis using=提取

Supercritical extraction of astaxanthin from H. pluvialis using=提取

speculated that anomalies were due to kinetic effects during extraction and recognized the need to evaluate the effect of extraction time on astaxanthin recovery. Thus, the main objective of this work was measuring and modelling kinetic curves of astaxanthin extraction under selected conditions to evaluate the effect of extraction time on astaxanthin recovery. Complementarily, we show results of the RS analysis study mentioned above. MATERIALS & METHODS Sample. Whole dried cysts of H. pluvialis containing 2.7% water were supplied by Astax S.A. (Iquique, II Región, Chile). Cysts underwent grinding in a bench top ring mill pulveriser (Rocklabs, Auckland, New Zealand). Treatments. Extractions were carried out in a one-pass laboratory SCE device (Spe-ed SFE 7071, Applied Separations, Allentown,

固相萃取 液质联用测定螺旋藻保健品中的微囊藻毒素

固相萃取 液质联用测定螺旋藻保健品中的微囊藻毒素

固相萃取-液质联用测定螺旋藻保健品中的微囊藻毒素虞锐鹏陶冠军贡小清(江南大学分析测试中心无锡 214036)摘要通过超声提取、固相萃取纯化、反相高效液相色谱-电喷雾电离质谱联用技术测定螺旋藻保健品中的微囊藻毒素-RR、-YR、-LR。

采用选择离子监测质荷比(m/Z)为520.3、1046.1、996.9的带正电荷的分子离子峰进行定量分析。

该法检测限为0.05µg/g,线性定量范围0.1~8µg/g藻粉。

此方法准确、灵敏度高、专属性好,可作为食品中蓝藻毒素的分析方法,为食品安全风险评价提供依据。

关键词固相萃取高效液相色谱-质谱螺旋藻微囊藻毒素Determination of Microcystins in Spirulina Products with LC-ESI-MSYu Ruipeng, Tao Guanjun, Gong Xiaoqing(Testing & Analysis Center, Southern Yangtze University, Wuxi 214036)Abstract A high performance liquid chromatography electrospray ionization mass spectrometry (HPLC-ESI-MS) method has been developed for the determination of microcystin (MCYST) variants in spirulina samples. The samples were extracted with 5% acetic acid in water, cleanup with a reversed-phasesolid-phase extraction cartridge, and then subjected to the HPLC-MS in the selected ion monitoring (m/Z)520.3,1046.1,996.9 for specific measurement of MCYST variant-RR,-YR, -LR in the concentration range of0.1 to 8µg·g-1. The lower limit of detection was found to be around 0.05µg·g-1. The method is highlyselective and sensitive for the analysis of trace amounts MCYSTs and is adequate for analysis of MCYSTs inspirulina health food products.Key words Solid-phase extraction, HPLC-electrospray ionization mass spectrometry, Spirulina, Microcystins螺旋藻隶属于蓝藻门,颤藻目中的螺旋藻属具有极高的营养价值和独特的医疗保健功能。

瑶药紫九牛中4种化学成分的提取分离、鉴定及含量测定

瑶药紫九牛中4种化学成分的提取分离、鉴定及含量测定

瑶药紫九牛中4种化学成分的提取分离、鉴定及含量测定Δ閤雪晴 1*,黄建猷 2, 3 #,黄周锋 2,高美美 1,黄宏妙 1,陆国寿 2(1.广西中医药大学药学院,南宁 530200;2.广西壮族自治区中医药研究院,南宁 530022;3.广西中药质量标准研究重点实验室,南宁 530022)中图分类号 R 917;R 284.1 文献标志码 A 文章编号 1001-0408(2024)05-0560-06DOI 10.6039/j.issn.1001-0408.2024.05.09摘要 目的 提取分离瑶药紫九牛中的4种化学成分并对其进行鉴定和含量测定。

方法 采用溶剂提取、萃取和硅胶柱色谱分离法、制备液相色谱技术对紫九牛中的化学成分进行分离、纯化,根据化合物的波谱数据对分离得到的4种化学成分进行结构鉴定。

采用高效液相色谱(HPLC )-一测多评(QAMS )法同时测定紫九牛中4种化学成分的含量,色谱条件为:以Echway Gowon TM C 18(250 mm ×4.6 mm ,5 μm )为色谱柱,以乙腈-0.1%磷酸溶液为流动相进行梯度洗脱,检测波长为269 nm ,柱温为25 ℃;以大黄素为内参物,建立该成分与其他3种成分的相对校正因子,利用相对校正因子计算含量;同时采用外标法计算各成分的含量,并比较2种方法所得结果的差异。

结果 从紫九牛中分离得到的4种化学成分经鉴定分别为大黄素、欧鼠李苷A 、pleuropyrone A 、大黄素-8-O -β-D-葡萄糖苷。

HPLC-QAMS 法结果表明,pleuropyrone A 、大黄素-8-O -β-D-葡萄糖苷、欧鼠李苷A 的相对校正因子分别为1.147 2、0.874 7、0.644 4。

上述4种成分在各自检测范围内线性关系良好(r ≥0.999 6),精密度、稳定性、重复性试验的RSD 均小于2.00%,平均加样回收率为99.41%~100.46%(RSD ≤2.05%)。

艾草总黄酮的提取工艺优化及抗氧化活性研究_何姿

艾草总黄酮的提取工艺优化及抗氧化活性研究_何姿

中华中医药学刊艾草总黄酮的提取工艺优化及抗氧化活性研究何姿,夏道宗,吴晓敏,徐丽萍(浙江中医药大学药学院,浙江杭州310053)摘要:目的:研究艾草总黄酮(total flavonoids from Artemisia argyi,TFAA)的最佳提取工艺及抗氧化活性。

方法:采用超声辅助提取法,以乙醇浓度、提取温度、提取时间、料液比为考察因素,通过正交实验优选TFAA的最佳提取工艺。

采用化学模拟体系测定TFAA的抗氧化活性。

结果:TFAA的最佳提取条件为乙醇浓度60%、提取温度90ħ、提取时间1.5h、料液比1ʒ45。

TFAA清除DPPH·和ABTS·+的IC50分别为38.05μg/mL和31.08μg/mL。

结论:经工艺优化后TFAA的提取量为177.5mg/g,具有很强的抗氧化活性。

关键词:艾草;总黄酮;提取工艺;抗氧化活性中图分类号:R284.2文献标志码:A文章编号:1673-7717(2013)07-1550-03Study on the Extraction Technique and Antioxidant Capacity ofTotal Flavonoids from Artemisia argyiHE Zi,XIA Daozong,WU Xiaomin,XU Liping(College of Pharmaceutical Sciences,Zhejiang Chinese Medical University,Hangzhou310053,Zhejiang,China)Abstract:Objective:To investigate the optimal extraction technique and antioxidant activity of total flavonoids from Artemisia argyi(TFAA).Methods:To optimize the extraction technique of TFAA with orthogonal method by using ultra-sound-assisted extraction,which factors are ethanol concentration,extraction temperature,extraction time,and solid/liquid ratio.The antioxidant capacity of TFAA was measured by the chemical simulation system.Results:The resultsshowed the optimal extraction technique:ethanol concentration60%,extraction temperature90ħ,extracting time1.5h,solid/liquid ratio1ʒ45.TFAA had effective activity on scavenging DPPH·and ABTS·+,its IC50was38.05μg/mL and 31.08μg/mL,respectively.Conclusion:The maximum yield of TFAA was177.5mg/g.TFAA has strong antioxidant ca-pacity.Key words:Artemisia argyi;total flavonoids;extraction technique;antioxidant capacity收稿日期:2013-03-03基金项目:国家自然科学基金资助项目(81102861);浙江省自然科学基金资助项目(Y2110031)作者简介:何姿(1991-),女,湖南娄底人,本科学生,研究方向:天然产物与功能性食品。

检验专业英语试题及答案

检验专业英语试题及答案

检验专业英语试题及答案一、选择题(每题2分,共20分)1. Which of the following is not a routine test in clinical laboratory?A. Blood countB. Urine analysisC. Liver function testD. DNA sequencing2. The term "hemoglobin" refers to:A. A type of proteinB. A type of enzymeC. A type of hormoneD. A type of lipid3. What is the primary function of the enzyme amylase?A. To break down proteinsB. To break down carbohydratesC. To break down fatsD. To break down nucleic acids4. The process of identifying the presence of a specific microorganism in a sample is known as:A. CulturingB. IsolationC. IdentificationD. Quantification5. Which of the following is a common method for measuring the concentration of glucose in blood?A. SpectrophotometryB. ChromatographyC. ElectrophoresisD. Enzymatic assay6. The term "ELISA" stands for:A. Enzyme-Linked Immunosorbent AssayB. Electrophoresis-Linked Immunosorbent AssayC. Enzyme-Linked Immunofluorescence AssayD. Electrophoresis-Linked Immunofluorescence Assay7. In medical diagnostics, what does "PCR" refer to?A. Polymerase Chain ReactionB. Protein Chain ReactionC. Particle Count ReactionD. Pathogen Characterization Reaction8. The process of measuring the amount of a specific substance in a sample is known as:A. TitrationB. CalibrationC. QuantificationD. Qualification9. Which of the following is a common type of clinical specimen?A. BloodB. SoilC. HairD. Water10. The term "antibodies" refers to:A. Proteins that recognize and bind to specific antigensB. Substances that neutralize toxinsC. Hormones that regulate immune responseD. Cells that produce immune responses二、填空题(每空1分,共10分)1. The process of separating molecules based on their size is known as __________.2. In clinical chemistry, the term "assay" refers to a__________ method.3. The unit of measurement for pH is __________.4. A common method for detecting the presence of antibodies in a sample is the __________ test.5. The process of identifying the type of bacteria in a sample is known as __________.6. The process of separating DNA fragments based on their size is known as __________.7. The term "ELISA" is used in __________ to detect the presence of specific antibodies or antigens.8. The process of identifying the genetic makeup of an organism is known as __________.9. The process of measuring the amount of a substance in a sample using a specific wavelength of light is called__________.10. The process of identifying the presence of specific microorganisms in a sample is known as __________.三、简答题(每题5分,共20分)1. Describe the principle of the Enzyme-Linked Immunosorbent Assay (ELISA).2. Explain the importance of maintaining aseptic technique ina clinical laboratory.3. What are the steps involved in performing a blood count?4. Discuss the role of antibodies in the immune response.四、论述题(每题15分,共30分)1. Compare and contrast the methods of Chromatography and Electrophoresis in terms of their applications in clinical diagnostics.2. Discuss the ethical considerations in the use of genetic testing for medical purposes.五、翻译题(每题5分,共10分)1. 将以下句子从中文翻译成英文:在临床实验室中,酶联免疫吸附测定法是一种常用的检测特定抗体或抗原的方法。

分子生物学英文文献6

分子生物学英文文献6

Chapter19Detection and Quantitative Analysis of Small RNAs by PCR Seungil Ro and Wei YanAbstractIncreasing lines of evidence indicate that small non-coding RNAs including miRNAs,piRNAs,rasiRNAs, 21U endo-siRNAs,and snoRNAs are involved in many critical biological processes.Functional studies of these small RNAs require a simple,sensitive,and reliable method for detecting and quantifying levels of small RNAs.Here,we describe such a method that has been widely used for the validation of cloned small RNAs and also for quantitative analyses of small RNAs in both tissues and cells.Key words:Small RNAs,miRNAs,piRNAs,expression,PCR.1.IntroductionThe past several years have witnessed the surprising discovery ofnumerous non-coding small RNAs species encoded by genomesof virtually all species(1–6),which include microRNAs(miR-NAs)(7–10),piwi-interacting RNAs(piRNAs)(11–14),repeat-associated siRNAs(rasiRNAs)(15–18),21U endo-siRNAs(19),and small nucleolar RNAs(snoRNAs)(20).These small RNAsare involved in all aspects of cellular functions through direct orindirect interactions with genomic DNAs,RNAs,and proteins.Functional studies on these small RNAs are just beginning,andsome preliminaryfindings have suggested that they are involvedin regulating genome stability,epigenetic marking,transcription,translation,and protein functions(5,21–23).An easy and sensi-tive method to detect and quantify levels of these small RNAs inorgans or cells during developmental courses,or under different M.Sioud(ed.),RNA Therapeutics,Methods in Molecular Biology629,DOI10.1007/978-1-60761-657-3_19,©Springer Science+Business Media,LLC2010295296Ro and Yanphysiological and pathophysiological conditions,is essential forfunctional studies.Quantitative analyses of small RNAs appear tobe challenging because of their small sizes[∼20nucleotides(nt)for miRNAs,∼30nt for piRNAs,and60–200nt for snoRNAs].Northern blot analysis has been the standard method for detec-tion and quantitative analyses of RNAs.But it requires a relativelylarge amount of starting material(10–20μg of total RNA or>5μg of small RNA fraction).It is also a labor-intensive pro-cedure involving the use of polyacrylamide gel electrophoresis,electrotransfer,radioisotope-labeled probes,and autoradiogra-phy.We have developed a simple and reliable PCR-based methodfor detection and quantification of all types of small non-codingRNAs.In this method,small RNA fractions are isolated and polyAtails are added to the3 ends by polyadenylation(Fig.19.1).Small RNA cDNAs(srcDNAs)are then generated by reverseFig.19.1.Overview of small RNA complementary DNA(srcDNA)library construction forPCR or qPCR analysis.Small RNAs are polyadenylated using a polyA polymerase.ThepolyA-tailed RNAs are reverse-transcribed using a primer miRTQ containing oligo dTsflanked by an adaptor sequence.RNAs are removed by RNase H from the srcDNA.ThesrcDNA is ready for PCR or qPCR to be carried out using a small RNA-specific primer(srSP)and a universal reverse primer,RTQ-UNIr.Quantitative Analysis of Small RNAs297transcription using a primer consisting of adaptor sequences atthe5 end and polyT at the3 end(miRTQ).Using the srcD-NAs,non-quantitative or quantitative PCR can then be per-formed using a small RNA-specific primer and the RTQ-UNIrprimer.This method has been utilized by investigators in numer-ous studies(18,24–38).Two recent technologies,454sequenc-ing and microarray(39,40)for high-throughput analyses of miR-NAs and other small RNAs,also need an independent method forvalidation.454sequencing,the next-generation sequencing tech-nology,allows virtually exhaustive sequencing of all small RNAspecies within a small RNA library.However,each of the clonednovel small RNAs needs to be validated by examining its expres-sion in organs or in cells.Microarray assays of miRNAs have beenavailable but only known or bioinformatically predicted miR-NAs are covered.Similar to mRNA microarray analyses,the up-or down-regulation of miRNA levels under different conditionsneeds to be further validated using conventional Northern blotanalyses or PCR-based methods like the one that we are describ-ing here.2.Materials2.1.Isolation of Small RNAs, Polyadenylation,and Purification 1.mirVana miRNA Isolation Kit(Ambion).2.Phosphate-buffered saline(PBS)buffer.3.Poly(A)polymerase.4.mirVana Probe and Marker Kit(Ambion).2.2.Reverse Transcription,PCR, and Quantitative PCR 1.Superscript III First-Strand Synthesis System for RT-PCR(Invitrogen).2.miRTQ primers(Table19.1).3.AmpliTaq Gold PCR Master Mix for PCR.4.SYBR Green PCR Master Mix for qPCR.5.A miRNA-specific primer(e.g.,let-7a)and RTQ-UNIr(Table19.1).6.Agarose and100bp DNA ladder.3.Methods3.1.Isolation of Small RNAs 1.Harvest tissue(≤250mg)or cells in a1.7-mL tube with500μL of cold PBS.T a b l e 19.1O l i g o n u c l e o t i d e s u s e dN a m eS e q u e n c e (5 –3 )N o t eU s a g em i R T QC G A A T T C T A G A G C T C G A G G C A G G C G A C A T G G C T G G C T A G T T A A G C T T G G T A C C G A G C T A G T C C T T T T T T T T T T T T T T T T T T T T T T T T T V N ∗R N a s e f r e e ,H P L CR e v e r s e t r a n s c r i p t i o nR T Q -U N I r C G A A T T C T A G A G C T C G A G G C A G GR e g u l a r d e s a l t i n gP C R /q P C Rl e t -7a T G A G G T A G T A G G T T G T A T A G R e g u l a r d e s a l t i n gP C R /q P C R∗V =A ,C ,o r G ;N =A ,C ,G ,o r TQuantitative Analysis of Small RNAs299 2.Centrifuge at∼5,000rpm for2min at room temperature(RT).3.Remove PBS as much as possible.For cells,remove PBScarefully without breaking the pellet,leave∼100μL of PBS,and resuspend cells by tapping gently.4.Add300–600μL of lysis/binding buffer(10volumes pertissue mass)on ice.When you start with frozen tissue or cells,immediately add lysis/binding buffer(10volumes per tissue mass)on ice.5.Cut tissue into small pieces using scissors and grind it usinga homogenizer.For cells,skip this step.6.Vortex for40s to mix.7.Add one-tenth volume of miRNA homogenate additive onice and mix well by vortexing.8.Leave the mixture on ice for10min.For tissue,mix it every2min.9.Add an equal volume(330–660μL)of acid-phenol:chloroform.Be sure to withdraw from the bottom phase(the upper phase is an aqueous buffer).10.Mix thoroughly by inverting the tubes several times.11.Centrifuge at10,000rpm for5min at RT.12.Recover the aqueous phase carefully without disrupting thelower phase and transfer it to a fresh tube.13.Measure the volume using a scale(1g=∼1mL)andnote it.14.Add one-third volume of100%ethanol at RT to the recov-ered aqueous phase.15.Mix thoroughly by inverting the tubes several times.16.Transfer up to700μL of the mixture into afilter cartridgewithin a collection bel thefilter as total RNA.When you have>700μL of the mixture,apply it in suc-cessive application to the samefilter.17.Centrifuge at10,000rpm for15s at RT.18.Collect thefiltrate(theflow-through).Save the cartridgefor total RNA isolation(go to Step24).19.Add two-third volume of100%ethanol at RT to theflow-through.20.Mix thoroughly by inverting the tubes several times.21.Transfer up to700μL of the mixture into a newfilterbel thefilter as small RNA.When you have >700μL of thefiltrate mixture,apply it in successive appli-cation to the samefilter.300Ro and Yan22.Centrifuge at10,000rpm for15s at RT.23.Discard theflow-through and repeat until all of thefiltratemixture is passed through thefilter.Reuse the collectiontube for the following washing steps.24.Apply700μL of miRNA wash solution1(working solu-tion mixed with ethanol)to thefilter.25.Centrifuge at10,000rpm for15s at RT.26.Discard theflow-through.27.Apply500μL of miRNA wash solution2/3(working solu-tion mixed with ethanol)to thefilter.28.Centrifuge at10,000rpm for15s at RT.29.Discard theflow-through and repeat Step27.30.Centrifuge at12,000rpm for1min at RT.31.Transfer thefilter cartridge to a new collection tube.32.Apply100μL of pre-heated(95◦C)elution solution orRNase-free water to the center of thefilter and close thecap.Aliquot a desired amount of elution solution intoa1.7-mL tube and heat it on a heat block at95◦C for∼15min.Open the cap carefully because it might splashdue to pressure buildup.33.Leave thefilter tube alone for1min at RT.34.Centrifuge at12,000rpm for1min at RT.35.Measure total RNA and small RNA concentrations usingNanoDrop or another spectrophotometer.36.Store it at–80◦C until used.3.2.Polyadenylation1.Set up a reaction mixture with a total volume of50μL in a0.5-mL tube containing0.1–2μg of small RNAs,10μL of5×E-PAP buffer,5μL of25mM MnCl2,5μL of10mMATP,1μL(2U)of Escherichia coli poly(A)polymerase I,and RNase-free water(up to50μL).When you have a lowconcentration of small RNAs,increase the total volume;5×E-PAP buffer,25mM MnCl2,and10mM ATP should beincreased accordingly.2.Mix well and spin the tube briefly.3.Incubate for1h at37◦C.3.3.Purification 1.Add an equal volume(50μL)of acid-phenol:chloroformto the polyadenylation reaction mixture.When you have>50μL of the mixture,increase acid-phenol:chloroformaccordingly.2.Mix thoroughly by tapping the tube.Quantitative Analysis of Small RNAs3013.Centrifuge at10,000rpm for5min at RT.4.Recover the aqueous phase carefully without disrupting thelower phase and transfer it to a fresh tube.5.Add12volumes(600μL)of binding/washing buffer tothe aqueous phase.When you have>50μL of the aqueous phase,increase binding/washing buffer accordingly.6.Transfer up to460μL of the mixture into a purificationcartridge within a collection tube.7.Centrifuge at10,000rpm for15s at RT.8.Discard thefiltrate(theflow-through)and repeat until allof the mixture is passed through the cartridge.Reuse the collection tube.9.Apply300μL of binding/washing buffer to the cartridge.10.Centrifuge at12,000rpm for1min at RT.11.Transfer the cartridge to a new collection tube.12.Apply25μL of pre-heated(95◦C)elution solution to thecenter of thefilter and close the cap.Aliquot a desired amount of elution solution into a1.7-mL tube and heat it on a heat block at95◦C for∼15min.Open the cap care-fully because it might be splash due to pressure buildup.13.Let thefilter tube stand for1min at RT.14.Centrifuge at12,000rpm for1min at RT.15.Repeat Steps12–14with a second aliquot of25μL ofpre-heated(95◦C)elution solution.16.Measure polyadenylated(tailed)RNA concentration usingNanoDrop or another spectrophotometer.17.Store it at–80◦C until used.After polyadenylation,RNAconcentration should increase up to5–10times of the start-ing concentration.3.4.Reverse Transcription 1.Mix2μg of tailed RNAs,1μL(1μg)of miRTQ,andRNase-free water(up to21μL)in a PCR tube.2.Incubate for10min at65◦C and for5min at4◦C.3.Add1μL of10mM dNTP mix,1μL of RNaseOUT,4μLof10×RT buffer,4μL of0.1M DTT,8μL of25mM MgCl2,and1μL of SuperScript III reverse transcriptase to the mixture.When you have a low concentration of lig-ated RNAs,increase the total volume;10×RT buffer,0.1M DTT,and25mM MgCl2should be increased accordingly.4.Mix well and spin the tube briefly.5.Incubate for60min at50◦C and for5min at85◦C toinactivate the reaction.302Ro and Yan6.Add1μL of RNase H to the mixture.7.Incubate for20min at37◦C.8.Add60μL of nuclease-free water.3.5.PCR and qPCR 1.Set up a reaction mixture with a total volume of25μL ina PCR tube containing1μL of small RNA cDNAs(srcD-NAs),1μL(5pmol of a miRNA-specific primer(srSP),1μL(5pmol)of RTQ-UNIr,12.5μL of AmpliTaq GoldPCR Master Mix,and9.5μL of nuclease-free water.ForqPCR,use SYBR Green PCR Master Mix instead of Ampli-Taq Gold PCR Master Mix.2.Mix well and spin the tube briefly.3.Start PCR or qPCR with the conditions:95◦C for10minand then40cycles at95◦C for15s,at48◦C for30s and at60◦C for1min.4.Adjust annealing Tm according to the Tm of your primer5.Run2μL of the PCR or qPCR products along with a100bpDNA ladder on a2%agarose gel.∼PCR products should be∼120–200bp depending on the small RNA species(e.g.,∼120–130bp for miRNAs and piRNAs).4.Notes1.This PCR method can be used for quantitative PCR(qPCR)or semi-quantitative PCR(semi-qPCR)on small RNAs suchas miRNAs,piRNAs,snoRNAs,small interfering RNAs(siRNAs),transfer RNAs(tRNAs),and ribosomal RNAs(rRNAs)(18,24–38).2.Design miRNA-specific primers to contain only the“coresequence”since our cloning method uses two degeneratenucleotides(VN)at the3 end to make small RNA cDNAs(srcDNAs)(see let-7a,Table19.1).3.For qPCR analysis,two miRNAs and a piRNA were quan-titated using the SYBR Green PCR Master Mix(41).Cyclethreshold(Ct)is the cycle number at which thefluorescencesignal reaches the threshold level above the background.ACt value for each miRNA tested was automatically calculatedby setting the threshold level to be0.1–0.3with auto base-line.All Ct values depend on the abundance of target miR-NAs.For example,average Ct values for let-7isoforms rangefrom17to20when25ng of each srcDNA sample from themultiple tissues was used(see(41).Quantitative Analysis of Small RNAs3034.This method amplifies over a broad dynamic range up to10orders of magnitude and has excellent sensitivity capable ofdetecting as little as0.001ng of the srcDNA in qPCR assays.5.For qPCR,each small RNA-specific primer should be testedalong with a known control primer(e.g.,let-7a)for PCRefficiency.Good efficiencies range from90%to110%calcu-lated from slopes between–3.1and–3.6.6.On an agarose gel,mature miRNAs and precursor miRNAs(pre-miRNAs)can be differentiated by their size.PCR prod-ucts containing miRNAs will be∼120bp long in size whileproducts containing pre-miRNAs will be∼170bp long.However,our PCR method preferentially amplifies maturemiRNAs(see Results and Discussion in(41)).We testedour PCR method to quantify over100miRNAs,but neverdetected pre-miRNAs(18,29–31,38). AcknowledgmentsThe authors would like to thank Jonathan Cho for reading andediting the text.This work was supported by grants from theNational Institute of Health(HD048855and HD050281)toW.Y.References1.Ambros,V.(2004)The functions of animalmicroRNAs.Nature,431,350–355.2.Bartel,D.P.(2004)MicroRNAs:genomics,biogenesis,mechanism,and function.Cell, 116,281–297.3.Chang,T.C.and Mendell,J.T.(2007)Theroles of microRNAs in vertebrate physiol-ogy and human disease.Annu Rev Genomics Hum Genet.4.Kim,V.N.(2005)MicroRNA biogenesis:coordinated cropping and dicing.Nat Rev Mol Cell Biol,6,376–385.5.Kim,V.N.(2006)Small RNAs just gotbigger:Piwi-interacting RNAs(piRNAs) in mammalian testes.Genes Dev,20, 1993–1997.6.Kotaja,N.,Bhattacharyya,S.N.,Jaskiewicz,L.,Kimmins,S.,Parvinen,M.,Filipowicz, W.,and Sassone-Corsi,P.(2006)The chro-matoid body of male germ cells:similarity with processing bodies and presence of Dicer and microRNA pathway components.Proc Natl Acad Sci U S A,103,2647–2652.7.Aravin,A.A.,Lagos-Quintana,M.,Yalcin,A.,Zavolan,M.,Marks,D.,Snyder,B.,Gaaster-land,T.,Meyer,J.,and Tuschl,T.(2003) The small RNA profile during Drosophilamelanogaster development.Dev Cell,5, 337–350.8.Lee,R.C.and Ambros,V.(2001)An exten-sive class of small RNAs in Caenorhabditis ele-gans.Science,294,862–864.u,N.C.,Lim,L.P.,Weinstein, E.G.,and Bartel,D.P.(2001)An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans.Science,294, 858–862.gos-Quintana,M.,Rauhut,R.,Lendeckel,W.,and Tuschl,T.(2001)Identification of novel genes coding for small expressed RNAs.Science,294,853–858.u,N.C.,Seto,A.G.,Kim,J.,Kuramochi-Miyagawa,S.,Nakano,T.,Bartel,D.P.,and Kingston,R.E.(2006)Characterization of the piRNA complex from rat testes.Science, 313,363–367.12.Grivna,S.T.,Beyret,E.,Wang,Z.,and Lin,H.(2006)A novel class of small RNAs inmouse spermatogenic cells.Genes Dev,20, 1709–1714.13.Girard, A.,Sachidanandam,R.,Hannon,G.J.,and Carmell,M.A.(2006)A germline-specific class of small RNAs binds mammalian Piwi proteins.Nature,442,199–202.304Ro and Yan14.Aravin,A.,Gaidatzis,D.,Pfeffer,S.,Lagos-Quintana,M.,Landgraf,P.,Iovino,N., Morris,P.,Brownstein,M.J.,Kuramochi-Miyagawa,S.,Nakano,T.,Chien,M.,Russo, J.J.,Ju,J.,Sheridan,R.,Sander,C.,Zavolan, M.,and Tuschl,T.(2006)A novel class of small RNAs bind to MILI protein in mouse testes.Nature,442,203–207.15.Watanabe,T.,Takeda, A.,Tsukiyama,T.,Mise,K.,Okuno,T.,Sasaki,H.,Minami, N.,and Imai,H.(2006)Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes.Genes Dev,20,1732–1743.16.Vagin,V.V.,Sigova,A.,Li,C.,Seitz,H.,Gvozdev,V.,and Zamore,P.D.(2006)A distinct small RNA pathway silences selfish genetic elements in the germline.Science, 313,320–324.17.Saito,K.,Nishida,K.M.,Mori,T.,Kawa-mura,Y.,Miyoshi,K.,Nagami,T.,Siomi,H.,and Siomi,M.C.(2006)Specific asso-ciation of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome.Genes Dev,20, 2214–2222.18.Ro,S.,Song,R.,Park, C.,Zheng,H.,Sanders,K.M.,and Yan,W.(2007)Cloning and expression profiling of small RNAs expressed in the mouse ovary.RNA,13, 2366–2380.19.Ruby,J.G.,Jan,C.,Player,C.,Axtell,M.J.,Lee,W.,Nusbaum,C.,Ge,H.,and Bartel,D.P.(2006)Large-scale sequencing reveals21U-RNAs and additional microRNAs and endogenous siRNAs in C.elegans.Cell,127, 1193–1207.20.Terns,M.P.and Terns,R.M.(2002)Small nucleolar RNAs:versatile trans-acting molecules of ancient evolutionary origin.Gene Expr,10,17–39.21.Ouellet,D.L.,Perron,M.P.,Gobeil,L.A.,Plante,P.,and Provost,P.(2006)MicroR-NAs in gene regulation:when the smallest governs it all.J Biomed Biotechnol,2006, 69616.22.Maatouk,D.and Harfe,B.(2006)MicroR-NAs in development.ScientificWorldJournal, 6,1828–1840.23.Kim,V.N.and Nam,J.W.(2006)Genomics of microRNA.Trends Genet,22, 165–173.24.Bohnsack,M.T.,Kos,M.,and Tollervey,D.(2008)Quantitative analysis of snoRNAassociation with pre-ribosomes and release of snR30by Rok1helicase.EMBO Rep,9, 1230–1236.25.Hertel,J.,de Jong, D.,Marz,M.,Rose,D.,Tafer,H.,Tanzer, A.,Schierwater,B.,and Stadler,P.F.(2009)Non-codingRNA annotation of the genome of Tri-choplax adhaerens.Nucleic Acids Res,37, 1602–1615.26.Kim,M.,Patel,B.,Schroeder,K.E.,Raza,A.,and Dejong,J.(2008)Organization andtranscriptional output of a novel mRNA-like piRNA gene(mpiR)located on mouse chro-mosome10.RNA,14,1005–1011.27.Mishima,T.,Takizawa,T.,Luo,S.S.,Ishibashi,O.,Kawahigashi,Y.,Mizuguchi, Y.,Ishikawa,T.,Mori,M.,Kanda,T., and Goto,T.(2008)MicroRNA(miRNA) cloning analysis reveals sex differences in miRNA expression profiles between adult mouse testis and ovary.Reproduction,136, 811–822.28.Papaioannou,M.D.,Pitetti,J.L.,Ro,S.,Park, C.,Aubry, F.,Schaad,O.,Vejnar,C.E.,Kuhne, F.,Descombes,P.,Zdob-nov, E.M.,McManus,M.T.,Guillou, F., Harfe,B.D.,Yan,W.,Jegou,B.,and Nef, S.(2009)Sertoli cell Dicer is essential for spermatogenesis in mice.Dev Biol,326, 250–259.29.Ro,S.,Park,C.,Sanders,K.M.,McCarrey,J.R.,and Yan,W.(2007)Cloning and expres-sion profiling of testis-expressed microRNAs.Dev Biol,311,592–602.30.Ro,S.,Park,C.,Song,R.,Nguyen,D.,Jin,J.,Sanders,K.M.,McCarrey,J.R.,and Yan, W.(2007)Cloning and expression profiling of testis-expressed piRNA-like RNAs.RNA, 13,1693–1702.31.Ro,S.,Park,C.,Young,D.,Sanders,K.M.,and Yan,W.(2007)Tissue-dependent paired expression of miRNAs.Nucleic Acids Res, 35,5944–5953.32.Siebolts,U.,Varnholt,H.,Drebber,U.,Dienes,H.P.,Wickenhauser,C.,and Oden-thal,M.(2009)Tissues from routine pathol-ogy archives are suitable for microRNA anal-yses by quantitative PCR.J Clin Pathol,62, 84–88.33.Smits,G.,Mungall,A.J.,Griffiths-Jones,S.,Smith,P.,Beury,D.,Matthews,L.,Rogers, J.,Pask, A.J.,Shaw,G.,VandeBerg,J.L., McCarrey,J.R.,Renfree,M.B.,Reik,W.,and Dunham,I.(2008)Conservation of the H19 noncoding RNA and H19-IGF2imprint-ing mechanism in therians.Nat Genet,40, 971–976.34.Song,R.,Ro,S.,Michaels,J.D.,Park,C.,McCarrey,J.R.,and Yan,W.(2009)Many X-linked microRNAs escape meiotic sex chromosome inactivation.Nat Genet,41, 488–493.Quantitative Analysis of Small RNAs30535.Wang,W.X.,Wilfred,B.R.,Baldwin,D.A.,Isett,R.B.,Ren,N.,Stromberg, A.,and Nelson,P.T.(2008)Focus on RNA iso-lation:obtaining RNA for microRNA (miRNA)expression profiling analyses of neural tissue.Biochim Biophys Acta,1779, 749–757.36.Wu,F.,Zikusoka,M.,Trindade,A.,Das-sopoulos,T.,Harris,M.L.,Bayless,T.M., Brant,S.R.,Chakravarti,S.,and Kwon, J.H.(2008)MicroRNAs are differen-tially expressed in ulcerative colitis and alter expression of macrophage inflam-matory peptide-2alpha.Gastroenterology, 135(1624–1635),e24.37.Wu,H.,Neilson,J.R.,Kumar,P.,Manocha,M.,Shankar,P.,Sharp,P.A.,and Manjunath, N.(2007)miRNA profiling of naive,effec-tor and memory CD8T cells.PLoS ONE,2, e1020.38.Yan,W.,Morozumi,K.,Zhang,J.,Ro,S.,Park, C.,and Yanagimachi,R.(2008) Birth of mice after intracytoplasmic injec-tion of single purified sperm nuclei and detection of messenger RNAs and microR-NAs in the sperm nuclei.Biol Reprod,78, 896–902.39.Guryev,V.and Cuppen,E.(2009)Next-generation sequencing approaches in genetic rodent model systems to study func-tional effects of human genetic variation.FEBS Lett.40.Li,W.and Ruan,K.(2009)MicroRNAdetection by microarray.Anal Bioanal Chem.41.Ro,S.,Park,C.,Jin,JL.,Sanders,KM.,andYan,W.(2006)A PCR-based method for detection and quantification of small RNAs.Biochem and Biophys Res Commun,351, 756–763.。

仙人掌多糖的提取_分离纯化及GPC法测定其分子量

仙人掌多糖的提取_分离纯化及GPC法测定其分子量

文章篇号:1007-2764(2006)02-0138-044仙人掌多糖的提取、分离纯化及GPC法测定其分子量金鑫,赖凤英(华南理工大学轻工与食品学院,广东广州510640)摘要:研究了仙人掌多糖水提法的最佳工艺条件,以及仙人掌多糖的分离纯化。

试验结果表明,提取液用Savag法脱蛋白后,采用Sephacryl S-400柱层析纯化,得到仙人掌多糖OP,经过高效凝胶渗透色谱和常压凝胶柱色谱分析表明,OP为均一多糖,高效液相凝胶色谱法测定OP分子量(Mw)为172591Da。

关键词:仙人掌多糖;提取;分离纯化;分子量测定Extraction、Isolation and Purification of Polysaccharides in Opuntia and Determination of its molecular weight by GPC methodJin Xin, Lai Feng-ying(College of light industry and Food, South China University of Technology, Guangzhou 510640, China) Abstract The extraction technology、separation and purification of the polysaccharide from opuntia was studied in this paper. By using Savag method, almost all protein was removed from the extracted juice. Then the polysaccharide was purified by Sephacryl S-400 gelcolumn chromatography, and OP was gained. Its homogeneity is verified by HPGPC and Sephadex G-200 column chromatography. And the molecular weight of OP is 172591Da by the determination of HPGPC.Keywords: Opuntia; Polysaccharide; Extraction; Isolation; Purification; Determination of molecular weights仙人掌,别名仙巴掌、观音掌、霸王树、龙舌等,为仙人掌科仙人掌属植物,原产于美洲、墨西哥一带,广泛分布于非洲、亚洲、美洲等热带和亚热带地区[1]。

反复冻融法制备灵芝多糖工艺优化、结构表征及抗氧化活性分析

反复冻融法制备灵芝多糖工艺优化、结构表征及抗氧化活性分析

任洪飞,逄梦玉,隋昕怡,等. 反复冻融法制备灵芝多糖工艺优化、结构表征及抗氧化活性分析[J]. 食品工业科技,2024,45(8):11−20. doi: 10.13386/j.issn1002-0306.2023070076REN Hongfei, PANG Mengyu, SUI Xinyi, et al. Repeated Freeze-thaw Extraction Optimization, Structural Features and Antioxidant Activity of Polysaccharides from Ganoderma lucidum [J]. Science and Technology of Food Industry, 2024, 45(8): 11−20. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023070076· 特邀主编专栏—食品中天然产物提取分离、结构表征和生物活性(客座主编:杨栩、彭鑫) ·反复冻融法制备灵芝多糖工艺优化、结构表征及抗氧化活性分析任洪飞,逄梦玉,隋昕怡,刘 丹,杨飞燕,刘养山,张 景,杜秀菊*(聊城大学生命科学学院,山东聊城 252000)摘 要:为提高灵芝多糖的提取得率,获得抗氧化活性更高的多糖组分,利用响应面试验优化反复冻融提取灵芝多糖的工艺条件,采用乙醇分级法对冻融多糖进行分离得到3种多糖(GLPf30、GLPf60、GLPf80),评价热水浸提(G. lucidum polysaccharide water ,GLPw )、反复冻融多糖(GLPf )及乙醇分级的多糖GLPf30、GLPf60、GLPf80的抗氧化活性,以高效阴离子交换色谱(HPAEC )和红外光谱(FT-IR )进行结构表征。

结果显示,最佳冻融条件为:溶胀比14:1(mL/g ),冻融时间140 min ,冻融次数3次。

联合con-GRU与ATGAT模型的情感分析三元组方法

联合con-GRU与ATGAT模型的情感分析三元组方法

现代电子技术Modern Electronics TechniqueApr. 2024Vol. 47 No. 82024年4月15日第47卷第8期0 引 言自然语言处理是一种专业分析如文本、图像、视频等多种人类语言的人工智能。

自然语言处理分为情感分析[1]、关系抽取[2]等多种具体问题,本文主要研究情感分析问题。

在日常生活中,人们更多关注的是某一个方面的具体情感,传统的情感分析也仅仅是判断出某一个方面的情感,并没有指出文本的方面词表示。

Peng 等人在2020年提出了三元组的概念[3],三元组是指将方面词、情感词以及情感极性作为一个组合共同输出,是当前情感分析的主要方向。

三元组的示例如下:Sentence1:The environment here is poor,but the food is delicious.Sentence2:Overall,it′s okay.Aspect term:environment,food,NULL Opinion term:poor,delicious,okaySentimental Polarities: negative, positive, positive Opinion Triplets:(environment, poor, negative ),(food,delicious,positive ),(NULL,okay,positive )DOI :10.16652/j.issn.1004⁃373x.2024.08.024引用格式:毕晓杰,李卫疆.联合con⁃GRU 与ATGAT 模型的情感分析三元组方法[J].现代电子技术,2024,47(8):149⁃154.联合con⁃GRU 与ATGAT 模型的情感分析三元组方法毕晓杰1,2, 李卫疆1,2(1.昆明理工大学 信息工程与自动化学院, 云南 昆明 650500; 2.昆明理工大学 云南省人工智能重点实验室, 云南 昆明 650500)摘 要: 情感分析三元组任务是情感分析任务的研究热点,其目的在于将方面词、情感词与情感极性组成三元组。

HPLC_ELSD测定黄芪苦参药对提取物中黄芪甲苷的含量

HPLC_ELSD测定黄芪苦参药对提取物中黄芪甲苷的含量

187第12卷 第1期 2010 年 1 月辽宁中医药大学学报JOURNAL OF LIAONING UNIVERSITY OF TCMVol. 12 No. 1 Jan . ,2010病毒性心肌炎近年来发病率在我国呈上升趋势,目前国内外均无特异疗法和药物。

黄芪、苦参药对提取物是黄芪和苦参药材经醇提后制得的粉末,主要含皂苷类和生物碱类物质。

两药配伍,药味虽少,但却寒热并用,补泻同施,升降相随,共奏健脾益气,清心解毒之功。

适用于病毒性心肌炎气虚湿毒内侵之虚实夹杂证。

黄芪作为一种常用中药,为2005年版《中华人民共和国药典》所收载[1]。

近代研究表明黄芪具有免疫调节、抗炎降压、镇静镇痛、保肝、护心、清除多种自由基等作用[2]。

黄芪甲苷是黄芪中的主要有效成分,因此采用黄芪甲苷为指标,测定黄芪、苦参药对提取物中的黄芪甲苷的含量。

本实验采用外标二点法进行测定,可用于黄芪甲苷含量的控制。

1 仪器与试药1.1 仪器AS3120A 超声提取器;日本岛津LC-10AT 高压输液泵;蒸发光散射检测器(ELSD);N2000 色谱工作站;AS3120A 超声波清洗器;AR2140电子分析天平;METTLER AB135-S 十万分之一电子天平(瑞士)。

1.2 试剂及药物黄芪、苦参药材均购自河北安国,经辽宁中医药大学药学院王冰教授鉴定黄芪为豆科植物蒙古黄芪Astragalus membranaceus (Fisch.) Bge.var.mongholicus (Bge.)hisao 的干燥根,苦参为豆科植物苦参Sophora flavescens Ait.的干燥根。

黄芪甲苷对照品, 购自中国药品生物制品检定所(批号:110781-200613);黄芪、苦参药对提取物(称取比例为1∶2黄芪药材粗粉与苦参药材粗粉,置于500mL 的圆底烧瓶中,用8倍量60%乙醇回流提取3次,每次1h,提取液滤过,合并滤液,置已干燥至恒重的蒸发皿中,水浴蒸干,减压干燥,称重,即得);乙腈为色谱纯;水为重蒸水;其它试剂均为分析纯。

METHOD FOR THE EXTRACTION OF A SUBSTANCE FROM A ST

METHOD FOR THE EXTRACTION OF A SUBSTANCE FROM A ST

专利名称:METHOD FOR THE EXTRACTION OF ASUBSTANCE FROM A STARTING MATERIALAND EXTRACTION APPARATUS FORCARRYING OUT THE METHOD发明人:LANGELAAN, Hubertus, Cornelis,BARTELS, Paul, Vincent,HULLEMAN, Stephan, Henrick,Dick申请号:EP98956025.5申请日:19981119公开号:EP1032465A1公开日:20000906专利内容由知识产权出版社提供摘要:The present invention relates to a kind of counter-current extraction processes and raw material to extract and conveying high-pressure extruder interlude. High pressure and area of low pressure can for example be formed as the spacing by different screw elements pair. The spacing of these screw elements pair is arranged in the upstream of the charging high pressure belt of extractant. The extractant subsequently flows into adverse current, and to outlet opening, which is located on or near the downstream of the low-pressure area, the spacing of screw element pair. The counter-current extraction technique stable with specific extracting method according to the present invention can obtain in very short length and extract the raw material and extractant that there is recovery rate height can be completed in a short time by extremely mixing. In addition, high pressure can be used for extract equipment, according to the present invention, because outlet is located at close to low-pressure area.Therefore it further increases extraction yield and extraction fluid uses in the supercritical state.申请人:Instituut voor Agrotechnologisch Onderzoek (ATO-DLO)地址:P.O. Box 17 6700 AA Wageningen NL国籍:NL代理机构:Jorritsma, Ruurd更多信息请下载全文后查看。

星形胶质细胞rna提取

星形胶质细胞rna提取

星形胶质细胞rna提取English Answer:## Astrocyte RNA Extraction.Astrocytes are star-shaped glial cells that play a crucial role in maintaining homeostasis in the central nervous system. They are involved in a wide range of functions, including neurotransmitter recycling, ion regulation, and immune response. To study the molecular mechanisms underlying astrocyte function, it is often necessary to extract RNA from these cells. Here is a detailed protocol for astrocyte RNA extraction:Materials:Astrocyte culture.Tri reagent.Chloroform.Isopropanol.75% ethanol.Diethyl pyrocarbonate (DEPC)-treated water.RNAse inhibitor.Procedure:1. Harvest astrocytes: Harvest astrocytes from culture using trypsinization or other appropriate methods.2. Lyse cells: Resuspend the astrocytes in Tri reagent and incubate at room temperature for 5 minutes.3. Phase separation: Add chloroform and mix vigorously. Centrifuge at 12,000 x g for 15 minutes at 4°C.4. Collect RNA: Transfer the aqueous phase to a newtube and add isopropanol. Incubate at room temperature for 10 minutes.5. Precipitate RNA: Centrifuge at 12,000 x g for 10 minutes at 4°C.6. Wash RNA: Wash the RNA pellet with 75% ethanol. Centrifuge at 7,500 x g for 5 minutes at 4°C.7. Resuspend RNA: Resuspend the RNA pellet in DEPC-treated water and quantify using a spectrophotometer.Tips:Use high-quality Tri reagent to ensure efficient lysis and RNA recovery.Incubate samples at the specified time and temperature to maximize RNA yield.Centrifuge samples at the correct speed and time to pellet the RNA effectively.Add RNAse inhibitor to protect RNA from degradation during the extraction process.中文回答:## 星形胶质细胞 RNA 提取。

天文学英语新词自动提取系统

天文学英语新词自动提取系统

天文学英语新词自动提取系统∗余恒;崔辰州;张晖【期刊名称】《天文研究与技术-国家天文台台刊》【年(卷),期】2015(000)003【摘要】Standardized Chinese translations of scientific terms are important for scientific research as well as science communication. Identifying new English terms in time is a basic requirement for standardized translations. In this paper we introduce a system that is designed for automated extraction of astronomical English terms from scientific publications. The system combines several techniques, e. g. the script filter, automatic term recognition, and regular-expression match. It can automatically trace updates of the arXiv paper database, analyze contents of papers, and generate lists of candidates of new terms. By using the system the China National Committee for Terms in Sciences and Technologies can focus on deciding Chinese translations of terms instead of spending time on term collection. We expect the system to contribute substantially to standardization of Chinese translations of astronomical English terms in the near future and promote other activities of standardization in astronomy.%科技名词中文译名标准化和规范化工作是推动我国科技进步和科学知识传播的重要基础。

黄芪多糖的提取及含量测定方法简述

黄芪多糖的提取及含量测定方法简述

黄芪多糖的提取及含量测定方法简述发表时间:2011-11-02T10:39:28.263Z 来源:《中外健康文摘》2011年第22期供稿作者:惠秋沙[导读] 黄芪是一种传统中药材,含有多种有效成分,其中黄芪多糖是黄芪补气的主要活性成分之一惠秋沙(山东中医药大学药学院山东济南 250014)【中图分类号】R446.1【文献标识码】A【文章编号】1672-5085(2011)22-0220-02【摘要】黄芪是一种传统中药材,含有多种有效成分,其中黄芪多糖是黄芪补气的主要活性成分之一,现就其提取方法和含量测定做一简单的分析。

【关键词】黄芪多糖提取含量测定The Extracting and the Content Determination Method of Astragalus polysaccharidesHui Qiu-sha (Pharmaceutical College, Shandong University of Traditional Chinese Medicine, Jinan, China 250014)【Abstract】Astragalus is a kind of traditional Chinese herbal medicine. It contain a variety of effective ingredients, inside, astragalus polysaccharides are one of the main compositions tonifying qi astragalus. Currently, we make a simple analysis on the extracting and the content determination method of astragalus polysaccharides.【Key words】 Astragalus polysaccharides extraction content determination黄芪为豆科草本植物蒙古黄芪、膜荚黄芪的根,是一种传统的中药材,具有补气固表、利水退肿、托毒排脓、生肌等功效。

水下目标特性特征提取及其融合_李秀坤

水下目标特性特征提取及其融合_李秀坤

第31卷第7期 哈 尔 滨 工 程 大 学 学 报 V o.l 31l .72010年7月Jour nal ofH arb i n Engineeri n g U niversity Ju.l 2010do:i 10.3969/.j issn .1006-7043.2010.07.014水下目标特性特征提取及其融合李秀坤,李婷婷,夏 峙(哈尔滨工程大学水声技术实验室,黑龙江哈尔滨150001)摘 要:为解决基于回波法水下目标分类与识别问题,从水下目标回波的弹性亮点特性、多分量特性和能量积分特性出发,利用频域离散小波变换(FDWT )、希尔伯特谱(H il bert 谱)、希尔伯特边际谱、分数阶傅里叶变换(FRFT )4种时-频分析方法从不同角度对目标回波与混响进行分析.对所提取的特征进行压缩与融合,利用支持向量机完成对水下目标和混响的分类与识别.文中给出了发射换能器以不同掠射角工作时4种时-频特征及其融合特征的识别率.实验结果表明,随着掠射角的增大,总体识别率呈现升高的趋势,融合特征可以有效提高识别率.关键词:水下目标识别;频域离散小波变换;H ilbe rt 谱;H il bert 边际谱;分数阶傅里叶变换中图分类号:TN 911.7 文献标志码:A 文章编号:1006-7043(2010)07-0903-06Feature extraction and fusion based on the characteristics of under water targetsLI X iu -kun ,LI T i n g -ti n g ,X I A Zh i(A coustic Science and T echno l ogy L abo rato ry ,H arbi n Eng i neeri ng U niversity ,H arb i n 150001,Ch i na)Abst ract :I n or der to so l v e the under w ater targe ts recogn ition proble m based on t h e echo analysism ethod ,the ti m e -frequency characteristic ,m u lt-i co m ponents c haracteristic ,energy integ ral characteristic of the tar gets echo are dis -cussed i n this paper .The f o ur kinds of ti m e -frequency ana l y sism ethods inc l u d i n g frequency discrete w avelet trans -f o r m (FDWT),H ilbert spectrum,H ilbert m ar g ina l spectru m,fractiona l Fouri e r transfor m (FRFT)take d ifferent aspects into the characteristics o f the tar gets echo and rever beration .The extracted feat u res are co m pressed and f u sed be fore send i n g to the support vector m ach i n e to m ake an identification o f the tar get echo and reverbera ti o n .The recogn iti o n rates of ti m e -frequency features and fusi o n feature dea li n g w ith t h e experi m ent data got by trans m i-t received sonar of d ifferent inc li n ati o n angles are g iven .The results show ed that the recogn iti o n rate is higher when t h e inc li n ation angle is larger .The fusion m ethod can effectively i m prove the recogn ition rate .K eywords :under wa ter target recogn ition;FDWT;H ilbert spectrum ;H il b ert m ar g ina l spectr um;FRFT 收稿日期:2010-06-19.基金项目:水声技术实验室基金资助项目(9140C2009010906).作者简介:李秀坤(1962-),女,教授,博士生导师.李婷婷(1983-),女,博士研究生,E-m ai:l orangeltt @yahoo .co .通信作者:李婷婷.利用主动声呐进行水下小目标分类识别是一项十分复杂的信号处理工作.对于静止的水下小目标的识别方法大致可以分为成像法[1]和回波法[2-4].成像法是基于高频窄波束,在抑制混响干扰的同时获取目标的声学图像及其阴影的声图像进而实现目标的分类与识别.成像声呐工作频率高,声呐作用距离有限,并且不能有效识别具有相似几何形状的假目标.亮点模型[5]和共振散射理论[6]是目标回波法的重要理论依据.两理论共同认为,回波是入射信号与水下目标相互作用的结果,其必然包含了目标的特征,那么通过分析回波信号的特征来检测目标是可行的.但在实际水下目标的探测过程中,由于目标回波信号微弱,海底环境及目标几何形状复杂,声传播条件不确定等使得基于回波法的目标识别仍然具有很大的挑战.水下弹性目标与假目标的根本差别在于内部结构的不同,即水下弹性目标有空腔,并且具有较规则的结构.水下目标回波信号往往具有以下3个特征:信号是多种散射体和目标上多个亮点回波的叠加;信号是多个振动模态的叠加;信号频率近似稳定.因此,基于目标回波特性,利用信号处理手段,提取具有好的稳定性和可预测性的目标特征,以克服实际应用中海量目标特征获取的困难是具有实际意义的.结合水下目标回波特性的研究,文中将从水下目标回波的弹性亮点特性、多分量特性和能量积分特性的角度出发,利用频域离散小波变换(FD WT )、H ilbert 谱、H il b ert 边际谱、分数阶傅里叶变换(FR-FT)4种信号处理方法进行基于上述特性的特征提取及融合处理.利用支持向量机(SVM )作为海上实验获取的目标回波与混响样本库的判决分类器.1 水下目标特性的特征提取对于主动声呐的探测与识别问题而言,混响是主要的干扰.文中将混响作为一类目标,尽管混响频率与目标回波相近,但不具备亮点特性,因此,亮点是回波法区别目标回波和混响的主要依据.文中对水下目标回波特性分析的处理框架如图1所示.图1 水下目标回波特性分析框架F i g.1 F ram e w ork o f under w ater targe t echocharacter i sti cs ana l ys i s由亮点模型[5]出发,重点讨论水下目标回波的弹性亮点特性、多分量特性和能量积分特性.时频分析方法因其可以有效地提取出目标特征而被广泛地应用于目标识别中,不同的时频分析方法又可以从不同角度对信号进行深入的剖析.小波分析是一种局部性较好的方法,能从水下目标回波的频谱微结构特性中提取出表现目标本质的特征向量,从而提高对目标回波信号分析的能力[7].针对水下目标回波的多分量特性,希尔伯特黄变换(HHT)是基于多分量信号分析的信号分析理论,对信号有很好的局域化作用[8].利用E MD 分解,用信号本身分解出来的I M F 来表示信号,不存在吉布斯现象,很多频率信息就能很好地突显出来.水下目标回波频率近似稳定,分数阶傅里叶变换方法利用目标回波与混响在不同分数阶域的聚集性来实现目标与混响的分类[9].1.1 弹性亮点特性信号频域离散小波变换是利用小波的滤波作用/剔除0回波中的几何特征部分只提取目标弹性亮点的方法.FD WT 的具体算法为:对目标回波进行H il b ert 变换,然后对得到的解析信号做FFT,再对FF T 的结果取模,最后对回波的幅频信号做离散小波变换.图2 目标回波的FD W T 谱F i g.2 FDW T o f the echo of t he targe t图2为海上实验获取的水下目标回波的前四级FD WT 近似系数,图3为海上实验获取的混响数据的前四级FDWT 近似系数.根据目标回波信号所处的频段范围,选择信号幅频特性的离散小波变换的第4级近似系数作为特征.第4级近似系数中主要包含目标的弹性特征,目标回波的几何特征被滤除#904#哈 尔 滨 工 程 大 学 学 报 第31卷在各个细节系数中[7].从图中可以看出,目标回波的第4级近似系数起伏较大,表现出了目标回波的弹性特征,而混响信号的第四级近似系数则变化较平缓.文中将第四级小波变换的近似系数作为特征,用于后续的分类与识别处理.图3 混响的FDW T 谱F i g .3 FDWT o f t he echo o f reve rbera ti on1.2 多分量特性水下目标的回波是由多个振动模态叠加而成的,因而具有多分量特性.HHT 方法是多分量特性分析的有效工具,HHT 算法的思路是计算信号有意义的瞬时频率.利用E MD 算法,可以将一个信号分解为几个瞬时频率分量的组合,这种分量称为固有模态函数,这时信号可表示为x (t)=6ni=1i m f i (t)+r n (t).(1)式中:i m f i (t)是可以进行H il b ert 变换的固有模态函数,而r n 频率极低,可以代表信号宏观趋势项.实际上E MD 是一种强制信号不断接近局部零对称的过程,利用信号本身局部的包络特性实现自适应性.H ilbert 谱的具体求解方法是对每个I M F 进行H i-l bert 谱分析,就得到原始信号的H il b ert 谱,最后经汇总所有分量的H il b ert 谱,就得到原始信号的H il b ert 谱:H (t ,w )=6ni=1Hi(t ,w ).(2)用H il b ert 谱也可以进一步定义边际谱,它是H ilbert 谱在时域上的积分:h (X )=Q+]-]H (X ,t)d t .(3)边际谱反映了每一个频率点上的幅值分布.它的含义是信号中(瞬时)频率X 的总幅值.图4为海上实验获取的水下目标回波的H il b ert 谱及H ilbert 边际谱,图5为海上实验获取的混响数据的H ilbert 谱及H il b ert 边际谱.主动声呐以LF M 信号进行发射,归一化频率为0.03~0.06.目标回波的H ilbert 谱可以通过瞬时频率反映发射信号的线性调频特征,而混响的瞬时频率在H il b ert 谱上的变化剧烈,线性调频性不明显.对于H il b ert 边际谱而言,目标回波信号的频率与发射信号的频率吻合较好,而混响的频率分布则有明显的带宽展宽现象.利用H ilbert 谱及H ilbert 边际谱是进行目标与混响分类的有效手段,这里分别将H il b ert 谱的变化趋势及H il b ert 边际谱整体作为目标识别的特征,进行后续的识别处理.图4 目标回波的H il bert 谱及H ilbert 边际谱F i g .4 H il bert spectrum and H il bert m arg i na l spec tru mof the echo o f t he ta rget#905#第7期 李秀坤,等:水下目标特性特征提取及其融合图5混响的H ilbe rt谱及H il bert边际谱F ig.5H ilbe rt spectru m and H il bert m arg i na l spectru m o fthe echo of reverberation1.3能量积分特性从H ilbert谱的分布上看出,目标回波信号的瞬时频率与发射信号的频带吻合较好,目标回波能够近似保持发射信号的频率形式,而混响的频带则与发射信号的频带范围有一定差异.针对这一现象,可以利用FRFT讨论其在能量积分特性上的差异.FRFT通过对信号在变换域上的线性积分,实现对于LF M信号的能量聚集.对于目标回波的特征提取问题,通过选择合适的角度,LF M信号的FRFT 就可以得到一个冲击信号,其能量在分数阶域上聚集.而混响信号失去了原来发射信号的线性调频性,其能量将在分数域上均匀分布.据此,可提取代表目标回波与混响差异的特征.图6为海上实验获取的水下目标回波的FRFT 谱,图7为海上实验获取的混响数据的FRFT谱.目标回波的能量聚集性较好,聚集能量在u轴的分布具有一个峰值,混响的能量聚集性较差,对应u轴上具有多个峰值.文中以FRFT谱最大值处对应的u 轴上的能量分布作为目标与混响的特征进行后续的分类与识别.图6目标回波的FR FT谱及其剖面图F i g.6FRFT o f echo o f the target and the pro fil e o fFRFT图7混响的FR FT谱及其剖面图F i g.7FRFT of echo rev erbera ti on and t he pro file of FRFT 2特征压缩、融合与机器识别基于上述特性所提取的特征都是具有很高的维#906#哈尔滨工程大学学报第31卷数,高维的特征对于水下目标识别具有不同贡献.有些特征对于识别的贡献较大且鲁棒性较好,有些特征则不是.因此,对高维特征进行降维处理,保留对识别有贡献的特征,去除冗余特征,对提高机器识别率、降低识别复杂度具有十分重要的意义.主元分析(PC A)是目前常用的一种降维处理手段,但是普通的主元分析是一种线性空间映射算法,在处理非线性问题时,不能提取出输入向量所包含的非线性信息.核主元分析(KPC A)是伴随着支持向量分类算法研究发展起来的一种非线性主元分析方法[10].核主元分析通过由内积函数定义的非线性变换将低维的输入向量变换到高维空间,然后在高维空间中再进行主元分析.与支持向量机类似,这种非线性变换可以由核函数解决,而不需要知道变换的具体形式.文中分别对FDWT第四级近似系数, H ilbert谱的变化趋势,H il b ert边际谱,FRFT谱能量在u轴的分布4种高维特征进行KPC A处理,每种方法提取对识别最有贡献的三维特征,进而实现特征压缩.上述4种特征提取方法是从不同角度进行回波特性分析的.将这些特征信息进行综合的分析与处理,是增强识别率的一个途径.文中将4种方法经过特征压缩后的12维特征向量作为最后的特征向量交送SVM进行目标回波与混响的分类与识别.支持向量机(SVM)作为基于统计学习理论的机器学习算法,因其可以有效地解决小样本、非线性、高维数情况下的分类问题而备受关注.它通过由内积函数定义的非线性变换将低维的输入空间转化为某个高维空间,将非线性分类问题变换为线性分类问题,并在高维空间中求解广义最优分类面[11].这种内积函数变换一般比较复杂,但是支持向量机利用核函数技术解决了这个问题.支持向量机在高维空间中的分类过程只涉及到输入空间中的训练样本之间的内积运算(x i#x j),而根据泛函的有关理论,只要一种核函数K(x i,x j)满足M ercer条件,就对应于某一非线性空间变换的内积[12].这样只需要确定在输入空间中采用哪种核函数及其参数,就完成了通过内积函数将低维的输入空间变换到高维空间这一过程,但不需要知道其变换的具体形式.目前常用的核函数有多项式核函数、径向基核函数和S i g m o i d核函数,其中径向基核函数因其适用范围较大、性能良好而使用得最为广泛.文中采用基于径向基核函数的SVM进行分类判决.3分类性能测试海上实验中,主动声呐保持发射信号形式不变,分别以5种掠射角进行工作,其中H1<H2<H3< H4<H5.在每种角度下,通过波束形成的输出截取目标和混响的回波作为样本库,以基于径向基核函数的SVM作为目标识别的分类器,对相同数量的目标与混响样本数进行训练与识别.用于训练的样本与用于识别的样本数近似相等,具体数目见表1.表1不同角度下的用于训练和识别的样本数Table1N u m bers of tra i n i ng and recogn it i on sa mp les underd ifferen te levati ons掠射角度/(b)训练样本数识别样本数H52626H42930H31616H21314H13031分别采用经过KPCA压缩后的FD WT特征、H ilbert谱特征、H il b ert边际谱特征、FRFT特征及这4种特征的融合特征作为特征向量进行目标回波与混响的分类与识别.在不同掠射角下目标与混响的正确识别率如图8所示.图8几种方法在不同掠射角下的正确识别率F i g.8The r i ght recogn iti on rates o f the m ethods underd iffe rent e l evations可以看出,对于大掠射角H4和H5时,各种特征#907#第7期李秀坤,等:水下目标特性特征提取及其融合的识别率均在90%以上;掠射角在H3时的识别率高于掠射角在H1时的识别率,均在65%以上;掠射角在H2时的识别率较低.由于海上实验环境的复杂性,掠射角在H2时获得的目标样本数较少,且样本受混响干扰严重,难以截取到目标回波的数据段,因而造成识别率的下降.随着掠射角度的增大,目标回波与混响的识别率总体上呈现增加的趋势.融合特征具有更优的识别与分类性能.4结论文章从水下目标回波的弹性亮点特性、多分量特性和能量积分特性角度出发,利用4种时频分析方法及其融合方法,实现水下目标回波与混响的分类与识别.通过文中的分析,可以得到如下结论:1)FD WT、H il b ert谱、H ilbert边际谱、FRFT从不同的角度描述了水下目标回波与混响在特征上的差异性,可以有效地进行目标回波与混响信号的分类与识别.2)从总体识别性能上,FRFT特征和H il b ert边际谱特征要优于FDWT特征和H ilbert谱特征.融合特征结合了各种方法对于识别最有贡献的特征,使得融合特征具有更优的性能.3)对于海上实验数据,目标回波与混响的识别率随着工作掠射角的增大有上升的趋势.而随着掠射角的增大,声呐工作距离随之变小,这将增加系统工作的危险性.因而,在实际应用中,应该合理权衡作用距离和识别率,以合理的掠射角度进行工作.参考文献:[1]PEI N E H,BREC HT D,BRODER F.D e tecti on of ob j ectsburied i n t he seafl oor[J].A c ta A custi ca U nited w ithA custi ca,2006,92:150-152.[2]STERNL IC HT D D,LE M ONDS D W,D I KE M AN R D,e ta.l D e tecti on and classificati on o f buried ob jects w ith an a-daptive acousti c m i ne-hun ting syste m[J].O ceans Confer-ence R eco rd,2001(1):212-219.[3]YODER T J,BUCARO J A,HOU S TON B H,S I M P S ON HJ.Long range de tecti on and i den tificati on o f under w ate r m i nes usi ng very lo w frequenc i es(1-10k H z)[J].P roceed-i ng s o f SP IE-T he Inte rnati ona l So ciety for O pti ca l Eng ineer-i ng,1998,3392:203-210.[4]RO BI N SON M,A Z I M I-S AD J AD I M R,STERN L IC HT DD,LE M ONDS D.M u lt-i aspect acousti c c l assifi cation of buried objects[C]//P roc o f OCE AN S2003.San D i ego, CA,U S A,2003:478-484.[5]汤渭霖.声呐目标回波的亮点模型[J].声学学报,1994,19(2):92-100.TANG W e ili n.H i ghli ght model o f echoes from sonar targets [J].A cta A custi ca,1994,19(2):92-100.[6]何祚镛.结构振动与声辐射[M].哈尔滨:哈尔滨工程大学出版社,2001:110-124.[7]李秀坤.水雷目标特征提取与识别研究[D].哈尔滨:哈尔滨工程大学,2000:58-66.L I X i ukun.Study on character i sti c extraction and identifi ca-tion o fm i ne targets[D].H arb i n:H arb i n Eng i neer i ng U n-i versity,2000:58-66.[8]HUANG N E.T he emp irical m ode decompositi on and theH il bert spectru m f o r nonli near and non-stationary ti m e seriesanalysis[J].J Proc R Soc London A,1998,454:903-995.[9]陶然,齐林,王越.分数阶Four i er变换的原理与应用[M].北京:清华大学出版社,2004:23-35.[10]SC H B LKOPF B,S M OLA A,M B LLER K R.K e rnel pri n-c i pa l component ana l ysis[C]//P roc o f I CANN9'7.L au-sanne,Sw itzerland,1997:583-589.[11]张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42.Z HANG X uegong.Introducti on to sta tica l learn i ng theo ry and suppo rt vector m ach i nes[J].A c ta A uto m atica S i nica,2000,26(1):32-42.[12]邓乃扬,田英杰.数据挖掘中的新方法-支持向量机[M].北京:科学出版社,2004:164-196.[责任编辑:陈峰]#908#哈尔滨工程大学学报第31卷。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Extraction,characterization of Astragalus polysaccharides and its immune modulating activities in rats with gastric cancerLi Rui a ,Chen Wei-chang a,*,Wang Wei-peng b ,Tian Wen-yan a ,Zhang Xue-guang caDepartment of Gastroenterology,The First Affiliated Hospital of Soochow University,Key Laboratory of Medicine and Clinical Immunology of Jiangsu Province,Suzhou 215006,China bCollege of Pharmacy,Soochow University,Suzhou 215007,China cInstitute of Medical Biotechnology,Soochow University,Suzhou 215007,Chinaa r t i c l e i n f o Article history:Received 5May 2009Received in revised form 3June 2009Accepted 9June 2009Available online 13June 2009Keywords:Gastric cancerPolysaccharides of Astragalus Rat HPLCImmunitya b s t r a c tOne major polysaccharide fractions,glucose,were isolated from the polysaccharides extract of Astragalus (AP),a valuable traditional Chinese medicine,using thin-layer chromatography (TLC)and Sephadex G-100chromatography.HPLC and IR methods were used for a qualitative and quantitative determination of from polysaccharides of Astragalus .The HPLC method was validated for linearity,precision and accu-racy.The results indicated that polysaccharides of Astragalus is an a -(1?4)-d-glucan with a -(1?6)-linked branches attached to the O-6of branch points.Bioactivity tests showed that polysaccharides of Astragalus is active for spleen lymphocytes proliferation.The polysaccharides also presented anti-inflam-matory activities.These data together suggest that polysaccharides of Astragalus presents significant immune modulating activity,thus supporting the popular use of the polysaccharides in the treatment of gastric cancer diseases.Ó2009Elsevier Ltd.All rights reserved.1.IntroductionA wide variety of biological activities from medicinal plants have recently been reported,in addition to their traditional medic-inal effects.Herbal medicines have attracted considerable interest as alternative cancer remedies because of their low toxicity and costs.The roots of Astragalus provide a traditional Chinese medi-cine,which is described in the 2005version of the ‘‘Chinese Phar-macopoeia”.Many reports on the biological activities of Astragalus indicate that it shows protective effects against hepatic injury,anti-peroxidation of lipids,inhibition of platelet aggregation,reduction of serum lipids,anti-inflammatory effects and immune enhancement through specific and non-specific immunity (Grover,Yadav,&Vats,2002;Mao,Xie,&Gu,2002).Gastric cancer is the second commonest cause of death from malignant disease worldwide (Neugut,Hayek,&Howe,1996).Although it is the worldwide trend that cancer-related deaths have decreased during the recent two decades,gastric cancer still ac-counts for about 23.2%of all cancer deaths (Brown &Devesa,2002;Crew &Neugut,2006;Sun et al.,2004).Nowadays,surgery and chemotherapy are the mainstream therapeutic methods forgastric cancer in China,but the existing chemotherapeutic drugs do not have ideal curative effects and meanwhile have many unde-sirable side effects.Consequently,combination of multi-therapeu-tic methods may effectively improve the treatment of gastric cancer patients,minimize their symptoms and prolong their sur-vival time (Kodera,Fujiwara,Koike,&Nakao,2006).The aim of this study is therefore,to investigate the potential immune modulating activities of AP extract in rats with gastric cancer and its chemical constituents.2.Material and method2.1.Extraction of polysaccharides from Astragalus neutralFresh commercially obtained Astragalus roots were used for iso-lation of Astragalus polysaccharide.The fresh plant material (300g)was extracted twice with water (2l)for 2.5h at 100°C.The combined extracts were concentrated to 250ml using a rotary evaporator (BC-R203,Shanghai Biochem-ical Equipment Co.,Shanghai,China)at 65°C under vacuum.The proteins in the extract were removed by Sevag reagent (Niea,Xie,Fu,Wan,&Yan,2008).After removal of the Sevag reagent,100ml of anhydrate ethanol was added before the mixture was maintained overnight at 4°C to precipitate polysaccharides.The crude polysaccharides (25g)was obtained by centrifugation at 3860g for 15min.0144-8617/$-see front matter Ó2009Elsevier Ltd.All rights reserved.doi:10.1016/j.carbpol.2009.06.005Abbreviations:AP,Astragalus polysaccharides;TLC,thin-layer chromatography;HPLC,high-performance liquid chromatography;IR,infrared spectroscopy;LgA,immune globulin A;LgM,immune globulin M;LgG,immune globulin G;NK,natural killer;IL-2,interleukin-2.*Corresponding author.Tel.:+8651265223637;fax:+8651265228072.E-mail address:chenwc_phd@ (W.-c.Chen).Carbohydrate Polymers 78(2009)738–742Contents lists available at ScienceDirectCarbohydrate Polymersj o u r n a l ho m e p a g e :w w w.e l s e v i er.c om/locate/carbpol2.2.TLC analysisTwo-dimensional thin-layer chromatography(TLC)analysis was performed with Merck DC-Alufolien cellulose plates (20Â20Â0.1mm);first dimension:upper phase of the mixture methyl isobutylketone–formic acid–H2O(3:1:2;v/v/v);second dimension:formic acid–H2O(6:94;v/v).Polysaccharides com-pounds separated on the plates were visualized under UV light in the presence of liquid nitrogen and after fuming with ammonia.2.3.Sephadex G-100chromatography and IRThe concentrated preparation was applied to a1.5Â120-cm column of Sephadex G-100(Pharmacia,Sweden)equilibrated with a pH6.0phosphate buffer containing20mM Na/K and0.15M NaCl.Elution was done with the same buffer at15ml hÀ1.Each fraction with1ml of eluate was collected.Fractions(3.5ml each) were collected and combined in accord with the results of analysis by the anthrone–sulfuric acid procedure(Morris,1948).The chro-matography profile was drawn by Microsoft Excel2000(Microsoft, Seattle,WA).The peak with the highest polysaccharide content was collected and then freeze-dried.Infrared spectra(IR)were also used to identify the polysaccha-rides compounds.The infrared spectra(450–4000cmÀ1)of all the subfractions(EA1–EA7)were recorded in potassium bromide (KBr)disks with a Fourier transform IR spectrophotometer(Bio-Rad FTS-135).One milligram of dry sample was mixed with 100mg of dry KBr,and the mixture was pressed into a disk for spectrum recording.2.4.HPLC analysisAP were hydrolyzed with2M H2SO4for5–6h at121°C in sealed glass test tube.After complete hydrolysis,content was neu-tralized with BeCO3andfiltered.Monosaccharide composition of the hydrolysate was determined by HPLC(Waters Alliance,2996-seperation module)using Supelco gel610H column (30cmÂ7.8mm)and RI(2414)detector withflow rate0.4ml/ min at temperature30°C and mobile phase,0.17%H3PO4in water (Meisen,Wingender,&Telgheder,2008).The relative proportion of the peak area was calculated to estimate the monomer composition.2.5.AnimalsMale wistar rats6–7weeks old,weighing200–250g were pur-chased from the National Institute of Nutrition,Suzhou university, China,and maintained in the Central Animal House,Suzhou Uni-versity.The animals were housed in groups of four orfive in poly-propylene cages and provided standard pellet diet and water ad libitum and maintained under controlled conditions of tempera-ture and humidity,with a12h light/dark cycle.The animals were maintained as per the principles and guidelines of the ethical com-mittee for animal care of Suzhou University in accordance with the China National Law on animal care and use.2.6.Experimental designThe Institutional animal ethical committee,Suzhou University, China,approved the experimental design.A total of40male wistar rats were divided intofive groups of eight each.Stomach carcino-genesis was developed in rats(group II–V)according to the method of Li and Xue(2006).Group III mice were orally administered AP (100mg/kg b.w in2ml distilled water)once daily for5weeks. Group IV animals were orally administered AP(200mg/kg b.w in 2ml distilled water)once daily for5weeks.Group V animals were orally administered AP(300mg/kg b.w in2ml distilled water) once daily for5weeks.Group I and II animals orally received an equal volume of saline.All animals were allowing to free access to water and fed with standard commercial pelleted rat chaw.At the end of the experimental period all the animals were sacrificed by cervical dislocation.2.7.Blood and tissue collectionBlood and spleen were obtained for further analysis.Blood was allowed to clot and the serum was separated by centrifugation at 3000rpm for10min at4°C,and then stored atÀ80°C.Serum was used to analyze immunity activity and spleen was used to ana-lyze proliferation rate.2.8.Biochemical analysisSpleen Lymphoproliferation rate was measured according to the method of Girón-Pérez,Zaitseva,Casas-Solis,and Santerre(2008). Blood LgA,LgM and LgG levels were measured with a commercially available ELISA kit.Natural killer(NK)cells activity was measured according to the method of Li,Yuan,&Farzana Rashid(2009). Spleen CD4+/CD8+was measured according to the method of Salem et al.(2009).2.9.Statistical analysisData were analyzed using the SPSS14.0software.One-way ANOVA followed by Duncan’s multiple range test was used to compare the parameters among the different groups.3.Result and discussion3.1.TLC separationThe extracts were pre-purified using a method described below and modified as described previously(Vidanarachchi,Iji, Mikkelsen,Sims,&Choct,2009).The method involves a two-stage separation on a pre-coated silica gel60F254TLC plate.The TLC run did not separates polysaccharides sample.The TLC analyses re-vealed glucose as the predominant compound in the extract (Fig.1).Fig.1.TLC analysis.R.Li et al./Carbohydrate Polymers78(2009)738–7427393.2.Isolation of active compoundsThe polysaccharides extract on further purification using silica gel column chromatographic technique,finally yielded one fraction (Fig.2).3.3.Preparative HPLC separationThe HPLC analyses of the polysaccharides showed one main peak component,detected with an ELSD system(Fig.3a).The pre-parative HPLC separations of standard samplesfinally yieldedfive compounds corresponding to peaks1,2,3,4and5(Fig.3b).From the comparison of retention time of the six standard compounds in HPLC analyses,we found that the polysaccharides were composed of glucose.That means that glucan appears as the major compound in the polysaccharides extract.In a previous study(Li&Zhang,2009),elemental analysis found to be free of nitrogen,indicating it was a neutral polysaccharide. The GPC profile showed a single and symmetrically sharp peak, indicating that AP was a homogeneous polysaccharide,with a weight-average molecular weight of3.6Â104Da.AP was com-posed of only glucose monomers.Thesefinds are agreement with our experimental results.3.4.IR spectrumFig.4shows the IR spectrum of the polysaccharides extract. The absorption band at2360.7and2337.6cmÀ1is assigned to the hydroxyl(OH)group.The absorption bands at1639and740R.Li et al./Carbohydrate Polymers78(2009)738–7421538cm À1are attributed to the stretching vibration of the C–O bond of carboxyl group.The absorption band at 1035and 956cm À1suggests that the extract contains pyrene monomer in its structure.The band at 850.81cm À1was ascribed to a -type glycosidic link-ages in the polysaccharide (Barker,Bourne,Stacey,&Whiffen,1954).The bands at 850.81and 915.56cm À1were characteristic of (1?4)-a -glucan (Li et al.,2008).3.5.Effect of polysaccharides on immunity activities of rats with stomach cancerAs a first step towards understanding how polysaccharides con-ditionally promotes antibody responses in vivo,proliferation stud-ies on purified populations of spleen lymphocytes have been performed.In this study,we found that proliferation of antigen receptor-stimulated rat peripheral blood lymphocyte cells was sig-nificantly (P <0.01)inhibited in rats with stomach cancer (Table 1).The AP administration dose-dependently significantly (P <0.01)in-creased proliferation of spleen lymphocytes.We also found that AP administration dose-dependently significantly (P <0.01)increased blood IL-2levels and NK activities (Table 1).There was significant (P <0.01)decrease in blood LgA,LgG and LgM levels of model rats (group II)as compared with the control rats (group I)(Table 2).The AP treatment dose-depen-dently significantly (P <0.01)increased the blood LgA,LgG and LgM levels of rats with stomach cancer (group III,IV and V)(Ta-ble 2).There was significant (P <0.01)decrease in CD 4+and CD 4+/CD 8+of model rats (group II)as compared with the control rats (group I)(Table 3).However,there was not significant (P >0.01)change in CD 8+between all groups.AP treatment resulted in significant (P <0.01)increase in CD 4+and CD 4+/CD 8+when compared to model rats (group II)(Table 3).Glucans are a basis of fungal cell wall structure.They are not found in animals,so that as carbohydrates they can be recognized by the innate immune system of vertebrates (Brown &Gordon,2003).In vitro experiments showed that b -glucans can directly activate leukocytes,stimulating their phagocytic,cytotoxic,and antimicrobial activity.In addition,they can stimulate the produc-tion of proinflammatory mediators,such as cytokines and chemo-kines (Schepetkin &Quinn,2006),and have anti-tumor (Mizuno et al.,1990),anti-oxidative (Toklu et al.,2006),anti-inflammatory (Dore et al.,2007),and immunomodulating (Zhang,Cui,Cheung,&Wang,2007)activities.Our work showed that AP was composed of glucan.This just explains the mechanism of immune modulating activity of AP.Together,these results indicated that the AP treatment could stimulate immunity activities in rats with stomach cancer.AcknowledgementThe work was supported by the National Natural Science Foun-dation of China (No.30872943).Fig.4.Infrared spectroscopy of AP.Table 3Effect of AP on CD 4+,CD 8+and CD 4+/CD 8+.Group CD 4+(%)CD 8+(%)CD 4+/CD 8+Control (I)64.64±3.5336.48±1.32 1.75±0.09Model (II)47.83±2.77a 37.43±1.42 1.31±0.07a ACP (III)53.36±3.09b 38.39±1.11 1.42±0.08b ACP (IV)58.48±4.62b 37.27±2.65 1.63±0.05b ACP (V)63.52±3.49b39.63±3.281.59±0.08ba P <0.01,vs control group (I).bP <0.01,vs model group (II).Table 2Effect of AP on blood LgA,LgM and LgG levels.Group Lg A (g/L)Lg M (g/L)Lg G (g/L)Control (I)10.34±0.78 5.32±0.247.22±0.47Model (II) 6.78±0.33a 3.06±0.14a 4.26±0.21a ACP (III)8.34±0.42b 4.37±0.12b 5.98±0.11b ACP (IV)8.92±0.37b 4.93±0.19b 6.54±0.18b ACP (V)9.71±0.52b5.21±0.15b7.14±0.13ba P <0.01,vs control group (I).bP <0.01,vs model group (II).Table 1Effect of AP on spleen lymphocytes proliferation and IL-2,NK activity.Group Proliferation rate (%)IL-2(OD)NK (%)Control (I)0.505±0.031 4.4732±0.023121.5481±1.0972Model (II)0.311±0.013a 2.8952±0.0211a 7.9494±0.2769a ACP (III)0.394±0.021b 3.2411±0.0234b 12.6841±0.9573b ACP (IV)0.463±0.023b 3.7832±0.0274b 17.3525±1.0043b ACP (V)0.513±0.028b4.2852±0.0507b20.4825±1.7404ba P <0.01,vs control group (I).bP <0.01,vs model group (II).R.Li et al./Carbohydrate Polymers 78(2009)738–742741ReferencesBarker,S.A.,Bourne,E.J.,Stacey,M.,&Whiffen,D.H.(1954).Infrared spectra of carbohydrates.Part I.Some derivatives of d-glucopyranose.Journal of the Chemical Society,171–176.Brown,L.M.,&Devesa,S.S.(2002).Epidemiologic trends in esophageal and gastric cancer in the United States.Surgical Oncology Clinics of North America,11, 235–236.Brown,G.D.,&Gordon,S.(2003).Fungal b-glucans and mammalian immunity.Immunity,19,311–315.Crew,K.D.,&Neugut,A.I.(2006).Epidemiology of gastric cancer.World Journal of Gastroenterology,12,354–362(in Chinese).Dore,C.M.P.G.,Azevedo,T.C.G.,Souza,M.C.R.,Rego,L.A.,Dantas,J.C.M.,Silva,F.R.F.,et al.(2007).Antiinflammatory,antioxidant and cytotoxic actions of b-glucan-rich extract from Geastrum saccatum mushroom.International Immunopharmacology,7,1160–1169.Girón-Pérez,M.I.,Zaitseva,G.,Casas-Solis,J.,&Santerre, A.(2008).Effects of diazinon and diazoxon on the lymphoproliferation rate of splenocytes from Nile tilapia(Oreochromis niloticus):The immunosuppressive effect could involve an increase in acetylcholine levels.Fish&Shellfish Immunology,25, 517–521.Grover,J.K.,Yadav,S.,&Vats,V.(2002).Medicinal plants of India with anti-diabetic potential.Journal of Ethnopharmacology,81,81–100.Kodera,Y.,Fujiwara,M.,Koike,M.,&Nakao, A.(2006).Chemotherapy as a component of multimodal therapy for gastric carcinoma.World Journal of Gastroenterology,12,2000–2005(in Chinese).Li,S.-G.,Wang, D.-G.,Tian,W.,Wang,X.-X.,Zhao,J.-X.,Liu,Z.,et al.(2008).Characterization and anti-tumor activity of a polysaccharide from Hedysarum polybotrys Hand.-Mazz.Carbohydrate Polymers,73,344–350.Li, F.,Yuan,Q.P.,&Farzana Rashid, F.(2009).Isolation,purification and immunobiological activity of a new water-soluble bee pollen polysaccharide from Crataegus pinnatifida Bge.Carbohydrate Polymers,78,80–88.Li,Y.F.,&Xue,Y.W.(2006).Six factors induce gastric cancer model in rats.Journal of Practical Oncology,20,521–522.Li,S.-G.,&Zhang,Y.-Q.(2009).Characterization and renal protective effect of a polysaccharide from Astragalus membranaceus.Carbohydrate Polymers,78, 343–348.Mao,C.P.,Xie,M.L.,&Gu,Z.L.(2002).Effects of konjac extract on insulin sensitivity in high fat diet rats.Acta Pharmacologica Sinica,23,855–859.Meisen,S.,Wingender,J.,&Telgheder,U.(2008).Analysis of microbial extracellular polysaccharides in biofilms by HPLC.Part I:development of the analytical method using two complementary stationary phases.Analytical and Bioanalytical Chemistry,391,993–1002.Mizuno,T.,Hagiwara,T.,Nakamura,T.,Ito,H.,Shimura,K.,Sumiya,T.,et al.(1990).Antitumor activity and some properties of water-soluble polysaccharides from ‘‘Himematsutake”,from the fruiting body of Agaricus blazei Murill.Agricultural and Biological Chemistry,54,2889–2896.Morris,D.L.(1948).Determination of carbohydrates with Dreywood’s anthrone reagent.Science,107,254.Neugut,A.I.,Hayek,M.,&Howe,G.(1996).Epidemiology of gastric cancer.Seminars in Oncology,3,281–291.Niea,S.P.,Xie,M.Y.,Fu,Z.H.,Wan,Y.Q.,&Yan,A.P.(2008).Study on the purification and chemical compositions of tea glycoprotein.Carbohydrate Polymers,71,626–633.Salem,M.L.,Marcela Diaz-Montero,C.,EL-Naggar,S.A.,Chen,Y.,Moussa,O.,&Cole,D.J.(2009).The TLR3agonist poly(I:C)targets CD8+T cells and augments theirantigen-specific responses upon their adoptive transfer into naïve recipient mice.Vaccine,27,549–557.Schepetkin,I.A.,&Quinn,M.T.(2006).Botanical polysaccharides:Macrophage immunomodulation and therapeutic potential.International Immunopharmacology,6,317–333.Sun,X.D.,Mu,R.,Zhou,Y.S.,Dai,X.D.,Zhang,S.W.,Huangfu,X.M.,et al.(2004).Analysis of mortality rate of stomach cancer and its trend in twenty years in China.Zhonghua Zhongliu Zazhi,26,4–9(in Chinese).Toklu,H.Z.,Sener,G.,Jahovic,N.,Uslu,B.,Arbak,S.,&Yegen,B.Ç.(2006).b-Glucan protects against burn-induced oxidative organ damage in rats.International Immunopharmacology,6,156–169.Vidanarachchi,J.K.,Iji,P.A.,Mikkelsen,L.L.,Sims,I.,&Choct,M.(2009).Isolation and characterization of water-soluble prebiotic compounds from Australian and New Zealand plants.Carbohydrate Polymers,77,670–676.Zhang,M.,Cui,S.W.,Cheung,P. C.K.,&Wang,Q.(2007).Antitumor polysaccharides from mushrooms:A review on their isolation process, structural characteristics and antitumor activity.Trends in Food Science& Technology,18,4–19.742R.Li et al./Carbohydrate Polymers78(2009)738–742。

相关文档
最新文档