浙教版八年级数学上册期末模拟试题2
浙教版八年级上数学期末试卷含答案2
浙教版八年级上数学期末试卷含答案2八年级(上)期末数学检测试卷一、并仔细选择一个(请在相应问题后括号内正确答案前填写大写字母。
每个子问题3分,共21分)1.下列各点中,在第三象限的点是()a、(-2,-3)b.(-2,3)c.(2,-3)d.(2,3)2。
如果等腰三角形的腰长为5cm,则其底边不能为()a.10cmb.9cmc.5cmd.3cm3.下列条件中使两个直角三角形全等的条件是()a.两条直角边对应相等b.两锐角对应相等c.一条边对应相等d.一锐角对应相等十、A4。
一元线性不等式系统?如果解集为x>A和A≠ - 1,a的值范围为()。
x??1?a、a>-1b、a0d、a<05.等边三角形绕中心顺时针旋转。
当最小角度为()时,图形与原始图形重合6.如果ab<0,那么下列判断正确的是()。
a、 a<0,B<0b。
A>0,b>0C。
A.≥ 0,B≤ 0d。
A<0,b>0或A>0,b<07洗衣机在洗涤衣物时,会经历三个连续的过程:注水、清洗和排水(工作前清洗)衣机内无水)。
在这三个过程中,洗衣机内的水量y(升)与浆洗一遍的时间x(分)之间函数关系的图象大致为()a、不列颠哥伦比亚省。
二、仔细填一填(每小题4分,共20分)十、A.≥ 0,8. 如果不等式系统关于x?如果有解决方案,请写出满足条件的a值__________12xx29.小明骑自行车的速度是15千米/时,步行的速度是6千米/时。
若小明先骑自行车1小然后走两个小时,他的平均速度是公里/小时。
10.如图,等边△abc的边长为2cm,d、e分别是ab、ac上的点,将△ade沿直线de 折叠,点a落在点aa?处,且点a?在△abc外部,则阴影部分图形的周长为cm.bdeca′(问题15中的数字)11.根据指令[s,a](s≥0,0(1)如果向机器人发出指令[6,60],机器人应移动到该点;(2)请给机器人一个移动到点(-4,4)的命令。
浙教版八年级(上)期末数学试卷及答案二
浙教版八年级(上)期末数学试卷及答案(满分:100 分考试时间:120 分钟考试中不允许使用计算器命题人:姚志敏)一、选择题(每小题 2 分,共 20 分) 1.下列二次根式中,是最简二次根式的是(▲)A .B .C .D .2.如果 a >b ,那么下列各式中正确的是(▲)A .a +1<b +1B .-a+3<-b+3C .-a >-bD .22a b 3. 如图,点 C ,D 在线段 AB 的同侧,如果∠CAB =∠DBA ,那么下列条件中不能..判定△ABD ≌△BAC 的是(▲) A .∠D =∠C B .∠CAD =∠DBC C .AD =BC D .BD =AC4.下列选项中,可以用来证明命题“若 a > 0 ,则 a > 0 ”是假命题的反例的是(▲) A .a=-1 B .a=0 C .a=1 D .a=2 5.关于一次函数 y =5x ﹣3 的描述,下列说法正确的是(▲) A .图象经过第一、二、三象限B .向下平移 3个单位长度,可得到 y =5xC .函数的图象与 x 轴的交点坐标是(0,﹣3)D .图象经过点(1,2)6.等腰三角形的一个内角为 70°,则另外两个内角的度数分别是(▲) A .55°,55° B .70°,40°或 70°,55° C .70°,40° D .55°,55°或 70°,40°7.如图,直线 y 1=x +b 与 y 2=kx -1 相交于点 P ,点 P 的横坐标为-1,则关于 x 的不等式 x +b >kx -1 的解集在数轴上表示正确的是 (▲)A. B. C. D.8.如图,已知矩形OABC,A(4,0),C(0,4),动点P 从点A出发,沿A﹣B﹣C﹣O 的路线匀速运动,设动点P 的运动路程为t,△OAP 的面积为S,则下列能大致反映S 与t 之间关系的图象是(▲)A.B.C.D.9. 如图,在△ABC 中,已知点D,E,F 分别是BC,AD,CE 的中点,且SΔABC=8,则SΔBEF的值是(▲)A.2B. 3C.4D. 510. 已知点P 是△ABC 内一点,且它到三角形的三个顶点距离之和最小,则P 点叫△ABC 的费马点(Fermat point).已经证明:在三个内角均小于120°的△ABC 中,当∠APB=∠APC=∠BPC=1200 时,P 就是△ABC 的费马点.若点P 是腰长为6 的等腰直角三角形DEF 的费马点,则PD+PE+PF=(▲)A.6 B C.D.9二、填空题(每小题3 分,共30 分)11.“对顶角相等”的逆命题是▲.12.一个三角形的三边长分别为6,8,10,则这个三角形最长边上的中线为▲.13.若点B(7a+14,a-3)在第四象限,则a 的取值范围是▲.14.如图,在平面直角坐标系中,已知点A(1,1),B(- 1,1),C(-1,-2),D(1,-2).现把一条长为2021 个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A 处,并按A-B-C-D-A-…的顺序紧绕在四边形 ABCD 的边上,则细线另一端所在位置的点的坐标是▲.15. 如果三角形三边长分别为12,k ,7225k -的结果是▲. 16.2002 年 8 月,在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图 1),且大正方形的面积是 15,小正方形的面积是 3,直角三角形的较短直角边为 a ,较长直角边为 b .如果将四个全等的直角三角形按如图 2 的形式摆放,那么图 2 中最大的正方形的面积为▲.17.如图,等边三角形纸片 ABC ,点 E 在 AC 边上,点 F 在 AB 边上,沿 EF 折叠,使点A 落在 BC 边上的点 D 的位置,且 ED ⊥BC ,则∠EFD =▲.18.已知点 P 是直线 y = −2x + 4 上的一个动点,若点 P 到两坐标轴的距离相等,则点 P 的坐标是▲. 19.如图,在△ABC 中,∠ABC 的平分线与 AC 的垂直平分线相交于点 D ,过点 D 作DF ⊥BC ,DG ⊥AB ,垂足分别为 F 、G .若 BG =5,AC =6,则△ABC 的周长是 ▲.20.如图,在 Rt △ABC 中,CA =CB ,M 是 AB 的中点,点 D 在 BM 上,AE ⊥CD ,BF ⊥CD ,垂足分别为 E ,F ,连接 EM .则下列结论中:①BF =CE ;②∠AEM =∠DEM ;③AE ﹣CE= 2 ME ;④DE 2+DF 2=2DM 2; ⑤若 AE 平分∠BAC ,则 EF :BF=:1; 正确的有▲.(只填序号)三、解答题(本大题共 7 小题 , 共 50 分) 21.(本小题满分 6 分) (1)化简:)11(2)解不等式组 363104x x ⎧<⎪⎨-+≥⎪⎩①②22. (本小题满分 6 分)如图,是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为 1,线段 AC 的两个端点均在小正方形的顶点上.(1)在图 1 中画出以 AC 为底边的等腰直角三角形 ABC ,点 B 在小正方形顶点上;(2)在图 2 中画出以 AC 为腰的等腰三角形 ACD ,点 D 在小正方形的顶点上,且△ACD 的面积为 8.23.(本小题满分 7分)某种机器工作前先将空油箱加满,然后停止加油立即开始工作.当停止工作时,油箱中油量为5L,在整个过程中,油箱里的油量y(单位:L)与时间x(单位:min)之间的关系如图所示.(1)机器每分钟加油量为▲L,机器工作的过程中每分钟耗油量为▲L.(2)求机器工作时y 关于x 的函数解析式,并写出自变量x 的取值范围.(3)直接写出油箱中油量为油箱容积的一半时x 的值.24.(本小题满分5 分)如图,∠BAD=∠CAE,AB=AD,AC=AE.且E,F,C,D 在同一直线上.(1)求证:△ABC≌△ADE;(2)若∠B=30°,∠BAC=100°,点F 是CE 的中点,连结AF,求∠F AE 的度数.25.(本小题满分8 分)某商店销售A 型和B 型两种型号的平板,销售一台A 型平板可获利120 元,销售一台B 型平板可获利140 元.该商店计划一次购进两种型号的平板共100 台,其中B 型平板的进货量不超过A 型平板的 3 倍.设购进A 型平板x 台,这100 台平板的销售总利润为y 元.(1)求 A 型平板至少多少台?(2)该商店购进 A 型、B 型平板各多少台,才能使销售利润最大?(3)若限定商店最多购进A 型平板60 台,则这100 台平板的销售总利润能否为13600元?若能,请求出此时该商店购进 A 型平板的台数;若不能,请求出这100 台平板销售总利润的范围.26.(本小题满分8 分)定义:若一个三角形两边的平方差等于第三边上高的平方,则称这个三角形为勾股高三角形,这两边的交点称为勾股顶点.(1)如图①,已知△ABC 为勾股高三角形,其中 A 为勾股顶点,AD 是BC 边上的高.若BD=1,CD=2,求高AD 的长;(2)如图②,△ABC 中,AB=AC=3,BC=3 3 -3,求证:△ABC 是勾股高三角形.①②27.(本小题满分10 分)如图,平面直角坐标系中,直线m 交x 轴于点A,交y 轴于点B.且点A (),∠BAO = 60° .点C 为AB 中点,过点C 作直线n 垂直于m,交x轴于点D.(1)请直接写出B、C、D 的坐标.(2)在x 轴上找一点E, 使得S△BCE=6,求点E 的坐标.(3)直线m 上有一点M, y 轴上有一点N, 若△DMN 是等腰直角三角形,求出点M 的坐标.第27 题备用图1 备用图2参考答案一、选择题(每小题2分,共20分)二、填空题(每小题3分,共30分)11、相等的角是对顶角12、513、-2<a<314、(0,1) 15、11-3k16、27 17、45°18、()444,433⎛⎫-⎪⎝⎭,,19、16 20、①②③④⑤三、解答题(本大题共7小题, 共50分)21、(1)31=--2=(2) 解①得2x <,….1’,解②得:1x ≥- ….1’,∴12x -≤<22、(1)作AC 的垂直平分线,作以AC 为直径的圆,垂直平分线与圆的交点即为点B ; (2)以C 为圆心,AC 为半径作圆,格点即为点D ;23、解:(1)由图象可得,机器每分钟加油量为:30÷10=3(L ),机器工作的过程中每分钟耗油量为:(30﹣5)÷(60﹣10)=0.5(L ), 故答案为:3,0.5;(2)当10<x ≤60时,设y 关于x 的函数解析式为y =ax +b ,1030605a b a b +=⎧⎨+=⎩,解得,0.535a b =-⎧⎨=⎩, 即机器工作时y 关于x 的函数解析式为y =﹣0.5x +35(10<x ≤60); (3)当3x =30÷2时,得x =5, 当﹣0.5x +35=30÷2时,得x =40,即油箱中油量为油箱容积的一半时x 的值是5或40. 24、(1)∵∠BAD=∠CAE ∴∠BAD+∠DAC=∠CAE+∠DAC 即∠BAC=∠DAE ∵AB=AD ,AC=AE∴△ABC ≌△ADE (SAS ) (2)∵∠B +∠ACB +∠BAC=180° ∴∠ACB=180°-∠B -∠BAC=50° ∵△ABC ≌△ADE∴∠ACB=∠AED=50° ∵点F 是CE 的中点 ∴AF ⊥CE∴∠F AE=90°-∠E=40°25、解:(1)100﹣x≤3x,解得x≥25∴A型平板至少25台。
2022-2023学年浙教版八年级数学上册期末模拟测试题含答案
2022-2023学年八年级数学上册期末模拟测试题一、选择题(本大题有10小题,每小题3分,共30分)1.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是( ) A . B . C . D . 2.下列结论中,正确的是( )A .若a >b ,则1a <1bB .若a >b ,则a 2>b 2C .若a >b ,则1﹣a <1﹣bD .若a >b ,ac 2>bc 23.下列命题中,逆命题错误的是( )A .两直线平行,同旁内角互补B .对顶角相等C .直角三角形的两个锐角互余D .直角三角形两条直角边的平方和等于斜边的平方4.若点A(2,m)在一次函数y =2x −7的图象上,则点A 到x 轴的距离是( ) A .2 B .−2 C .3 D .−35.如图,∠AOB =40°,OC 平分∠AOB ,直尺与OC 垂直,则∠1等于( )A .60°B .70°C .50°D .40°(第5题) (第6题) (第7题) (第9题) (第10题) 6.如图,在Rt △ABC 中,∠C =90°,D 为AC 上一点.若DA =DB =15,△ABD 的面积为90,则AC 的长是( )A .9B .12C .3√14D .247.如图,∠ABC 中,AB =AC ,∠DEF 为等边三角形,则α、β、γ之间的关系为() A .β=α+γ2 B .α=β+γ2 C .β=α−γ2 D .α=β−γ2 8.一次函数 y 1=ax +b 与 y 2=bx +a ,它们在同一坐标系中的大致图象是( ) A . B . C . D . 9.如图,边长为5的大正方形ABCD 是由四个全等的直角三角形和一个小正方形EFGH 组成,连结AF 并延长交CD 于点M.若AH =GH ,则CM 的长为( )A .12B .34C .1D .54 10.在Rt∠ABC 中,AC=BC ,点D 为AB 中点.∠GDH=90°,∠GDH 绕点D 旋转,DG 、DH 分别与边AC 、BC 交于E ,F 两点.下列结论:①AE+BF=√22AB ;②∠DEF 始终为等腰直角三角形;③S 四边形CEDF =18AB 2;④AE 2+CE 2=2DF 2. 其中正确的是( )A .①②③④B .①②③C .①④D .②③二、填空题(本大题有6小题,每小题4分,共24分)11.若点P(m+3,m+1)在x轴上,则点P的坐标为.12.一次函数y=(m+4)x+m+2的图象不经过第二象限,则整数m =13.如图,AB=AC,点D是△ABC内一点,∠D=110°,∠1=∠2,则∠A=°.(第13题)(第14题)(第15题)(第16题)14.如图,在长方形ABCD中,AB=3,BC=5,在CD上取一点E,连结BE.将∠BCE沿BE折叠,使点C恰好落在AD边上的点F处,则CE的长为.15.如图,已知∠A=∠B=90°,AB=6,E,F分别是线段AB和射线BD上的动点,且BF=2BE,点G在射线AC上,连接EG,若△AEG与△BEF全等,则线段AG的长为.16.如图,∠ABC为等边三角形,点E在BA的延长线上,点D在BC边上,且ED=EC.若∠ABC 的边长为4,AE=2,则BD的长为.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)17.在平面直角坐标系中,点A、B的坐标是(2a−5, a+1),B(b−1, 3−b).(1)若点A与点B关于x轴对称,求点A的坐标;(2)若A, B关于y轴对称,求(4a+b)2的值.18.如图,在Rt∠ABC中,∠C=90°.(1)作∠BAC的平分线AD交边BC于点D.(尺规作图,保留作图痕迹,不写作法).(2)在(1)的条件下,若∠BAC=28°,求∠ADB的度数.19.如图,AB=DC,AC=DB,AC和BD相交于点O.(1)求证:∠ABC∠∠DCB;(2)求证:∠ABD=∠DCA.20.某水产品市场管理部门规划建造面积为2400m2的集贸大棚,大棚内设A种类型和B种类型的店面共80间,每间A种类型的店面的平均面积为28m2,月租费为400元,每间B种类型的店面的平均面积为20m2,月租费为360元,全部店面的建造面积不低于大棚总面积的80%,又不能超过大棚总面积的85%.(1)试确定A种类型店面的数量范围;(2)该大棚管理部门通过了解业主的租赁意向得知,A种类型店面的出租率为75%,B种类型店面的出租率为90%.为使店面的月租费最高,应建造A种类型的店面多少间?21.如图,一次函数y=2x+b的图像经过点M(1,3),且与x轴,y轴分别交于A,B两点.(1)填空:b=;(2)将该直线绕点A顺时针旋转45∘至直线l,过点B作BC⊥AB交直线l于点C,求点C的坐标及直线l的函数表达式.22.如图,在△ABC中,BD、CE分别是边AC、AB上的高线.(1)如果BD=CE,那么△ABC是等腰三角形,请说明理由;(2)取F为BC中点,连接点D,E,F得到△DEF,G是ED中点,求证:FG⊥DE;(3)在(2)的条件下,如果∠A=60°,BC=16,求FG的长度.23.如图1,∠ABC和∠DEC均为等腰直角三角形,∠ACB=∠DCE=90°,点B,D在同一直线上,连接AD,BD.(1)求证:∠ACD∠∠BCE;(2)探求AD与BE的数量和位置关系(3)若AC=√10,EC=√2求线段AD的长.24.在平面直角坐标系中,直线l分别于x轴,y轴的正半轴交于A,B两点,OC平分∠AOB,交AB于点D,点M是直线l上一动点,过M作OC的垂线,交x轴于E,交y轴于F,垂足为H,设∠OAB=α°,∠OBA=β°,且α2−4αβ+4β2=0.(1)直接写出α,β的值,α=,β=(2)若M与A重合(如图2),求证AD=BF;(3)①若M是线段AB上任意一点(如图3),则AE,BF,AD之间有怎样的数量关系,说明理由.②若M不在线段AB上时,求出AE,BF,AD之间的数量关系。
浙教版2023-2024学年八年级上册数学期末复习卷(2)及答案
浙教版2023-2024学年八年级上册数学期末复习卷(2)一、选择题(本题有10小题,每小题4分,共40分)1.(4分)下列四个图形中,是轴对称图形的是 2.(4分)已知三角形的三边长分别为2、、10,若为正整数,则这样的三角形个数为 A.1B.2C.3D.43.(4分)下列说法中正确的是 A.使式子有意义的是B.使是正整数的最小整数是3C.若正方形的边长为,则面积为D.计算的结果是34.(4分)若点在一次函数的图象上,则点一定不在 A.第一象限B.第二象限C.第三象限D.第四象限5.(4分)如图,,,添加下列哪一个条件可以推证 A.B.C.D.6.(4分)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为( )A.40°B.45°C.47.5°D.50°7.(4分)关于的不等式只有2个正整数解,则的取值范围为 A.B.C.D.8.(4分)已知一次函数和且,这两个函数的图象可能是 9.(4分)如图,过点作轴的垂线交直线于点,过点作直线的垂线,交轴于点,过点作轴的垂线交直线于点,,这样依次下去,得到△,△,△,,其面积分别记为,,,,则为 A.B.C.D.10.(4分)如图,在中,,以的各边为边作三个正方形,点落在上,若,空白部分面积为10.5,则的长为 A.B.C.D.二、填空题(本题有6小题,每小题5分,共30分)11.(5分)命题“对顶角相等”的逆命题是 .12.(5分)一次函数中,随的增大而减小,则的取值范围是 .13.(5分)将点向左平移3个长度单位,再向上平移2个长度单位得到点,则点的坐标是 .14.(5分)已知一次函数的图象如图所示,则关于的不等式的解集为 .15.(5分)如图在中,,,将绕点按逆时针方向旋转角,得到△,设交边于,连结,若△是等腰三角形,则旋转角的度数为 .16.(5分)如图,在中,是边上的中点,连接,把沿翻折,得到,与交于点,连接,若,,则点到的距离为 .三、解答题(本题有8小题,共80分)17.(8分)解下面一元一次不等式组,并写出它的所有非负整数解..18.(8分)计算:(1);(2)已知,求的值.19.(8分)如图,已知中,,、是高,与相交于点(1)求证:;(2)若,求的度数.20.(10分)如图,在网格纸中,每个小正方形的边长都为1.(1)请在网格纸中建立平面直角坐标系,使点、的坐标分别为,,并写出点的坐标为 ;(2)画出关于轴的对称图形△,并写出点的坐标;(3)在轴上求作一点,使的周长最小,并直接写出点的坐标.21.(10分)镇海制米厂接到加工大米的任务,要求5天内加工完220吨大米,制米厂安排甲、乙两车间共同完成加工任务.乙车间加工中途停工一段时间维修设备,然后改变加工效率继续加工,直到与甲车间同时完成加工任务为止.设甲、乙两车间各自加工大米数量y(吨)与甲车间加工时间x(天)之间的关系如图1所示;未加工大米w(吨)与甲加工时间x(天)之间的关系如图2所示,请结合图象回答下列问题:(1)甲车间每天加工大米 吨,a= ;(2)求乙车间维修设备后,乙车间加工大米数量y(吨)与x(天)之间函数关系式;(3)若55吨大米恰好装满一节车厢,那么加工多长时间装满第一节车厢?再加工多长时间恰好第二节车厢和第三节车厢都装满?22.(10分)某土特产公司组织20辆汽车装运甲、乙、丙三种土特产共120吨去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满,根据下表提供的信息,解答以下问题:土特产品种甲乙丙每辆汽车运载量(吨865每吨土特产获利(百元)121610(1)设装运甲种土特产的车辆数为,装运乙种土特产的车辆数为,求与之间的函数关系式.(2)如果装运每种土特产的车辆都不少于3辆,那么车辆的安排方案有几种并写出每种安排方案.(3)若要使此次销售获利最大,应采用(2)中哪种安排方案?并求出最大利润的值.23.(12分)我们新定义一种三角形:若一个三角形中存在两边的平方差等于第三边上高的平方,则称这个三角形为勾股高三角形,两边交点为勾股顶点.●特例感知①等腰直角三角形 勾股高三角形(请填写“是”或者“不是”;②如图1,已知为勾股高三角形,其中为勾股顶点,是边上的高.若,试求线段的长度.●深入探究如图2,已知为勾股高三角形,其中为勾股顶点且,是边上的高.试探究线段与的数量关系,并给予证明;●推广应用如图3,等腰为勾股高三角形,其中,为边上的高,过点向边引平行线与边交于点.若,试求线段的长度.24.(14分)如图(1),在平面直角坐标系中,直线交坐标轴于、两点,过点作交于,交轴于点.且.(1)求点坐标为 ;线段的长为 ;(2)确定直线解析式,求出点坐标;(3)如图2,点是线段上一动点(不与点、重合),交于点,连接.①点移动过程中,线段与数量关系是否不变,并证明;②当面积最小时,求点的坐标和面积.参考答案一、选择题(本题有10小题,每小题4分,共40分)1.选:.2.选:.3.选:.4.选:.5.选:.6.选:B.7.选:.8.选:.9.选:.10.选:.二、填空题(本题有6小题,每小题5分,共30分)11.答案为:相等的角为对顶角.12.答案是:.13.答案为:.14.答案为:.15.答案为:或.16.答案为:.三、解答题(本题有8小题,共80分)17.【解答】解:,解不等式①得;解不等式②得;原不等式组的解集为,原不等式组的所有非负整数解为0,1,2.18.【解答】解:(1);(2),,,,,.19.【解答】(1)证明:,,、是的两条高线,,在和中,,,;(2),,,.20.【解答】解:(1)所作图形如图所示:;(2)所作图形如图所示:;(3)所作的点如图所示,.故答案为:.21.【解答】解:(1)由图象可知,第一天甲乙共加工220﹣185=35吨,第二天,乙停止工作,甲单独加工185﹣165=20吨,则乙一天加工35﹣20=15吨.a=15,故答案为:20,15;(2)设y=kx+b,把(2,15),(5,120)代入,,解得,∴y=35x﹣55;(3)由图2可知,当w=220﹣55=165时,恰好是第二天加工结束.当2≤x≤5时,两个车间每天加工速度为=55(吨),∴再加工2天装满第二节车厢和第三节车厢.22.【解答】解:(1),.与之间的函数关系式为.(3分)(2)由,,即可得,又为正整数,,4,5.(5分)故车辆的安排有三种方案,即:方案一:甲种3辆乙种11辆丙种6辆;方案二:甲种4辆乙种8辆丙种8辆;方案三:甲种5辆乙种5辆丙种10辆.(7分)(3)设此次销售利润为百元,.随的增大而减小,又,4,5当时,(百元)万元.答:要使此次销售获利最大,应采用(2)中方案一,即甲种3辆,乙种11辆,丙种6辆,最大利润为16.44万元.(10分)23.【解答】解:●特例感知:①等腰直角三角形是勾股高三角形.故答案为是.②如图1中,根据勾股定理可得:,,于是,.●深入探究:如图2中,由可得:,而,,即;●推广应用:过点向引垂线,垂足为,“勾股高三角形”为等腰三角形,且,只能是,由上问可知①.又,②.而③,,.易知与均为等腰三角形,根据三线合一原理可知.又,,,.24.【解答】解:(1)直线交坐标轴于、两点,当时,,当时,,点的坐标为,点的坐标为,;故答案为:,3;(2)过点作交于,交轴于点.且,,,,点,,,点的坐标为,设过点,点的直线解析式为,,得,直线的解析式为,即直线的解析式为,由,得,即点的坐标为,;(3)①线段与数量关系是保持不变,证明:,,,,,,,,在和中,,,,即线段与数量关系是保持不变;②由①知,,面积是:,当取得最小值时,面积取得最小值,,,,,当时,取得最小值,,,解得,,面积取得最小值是:,当取得最小值时,设此时点的坐标为,,解得,,,点的坐标为,,由上可得,当面积最小时,点的坐标是,和面积是。
浙教版初中数学八年级上册期末测试题(二)及答案
2011-2012学年八年级(上)期末数学模拟试卷(二)一、选择题(共10小题,每小题3分,共30分)温馨提示:每题的四个选项中只有一个是正确的,请将正确的选项选出来。
1、在平面直角坐标系中,点(23)P -,关于原点对称点P '的坐标是 ( ) A .(-2,-3) B .(-3,-2) C .(-2,3) D .(-3,2)2、若一个立体图形的主视图与左视图都是长方体,俯视图是圆,则这个几何体是 ( ) A .圆柱 B .三棱柱 C .四棱柱 D .球3.小张参加招考公务员考试,报名参考人数是1280名,按考试成绩从高到低排列,前640 名通过笔试.小张得知自己的成绩后,想知道自己是否通过笔考,他最应该了解的考试成绩统计量是( )A .中位数B .平均数C .标准差D .众数 4.若b a <,则下列各式中一定成立的是( ) A .11-<-b a B .33ba >C . b a -<-D . bc ac < 5、由四个大小相同的小正方体搭成的几何体的左视图如图所示,则这个几何体的搭法不能是( )6、两条直线y 1=ax +b 与y 2=bx +a 在同一坐标系中的图像可能是( )7. 已知a b <,则有以下结论①a c b c +<+;②a bc c<;③c a c b ->-;④a c b c <,其中正确的结论的序号是( )A 、①③B 、①②③C 、①③④D 、①②③④ABCD8.在平面直角坐标系中有两点A(一2,2),B(3,2),C 是坐标轴上的一点,若△ABC 是等腰三角形,则满足条件的点C 有( )A .7个B .8个C .9个D .10个 9.甲、乙二人沿相同的路线由A 到B 匀速行进,A ,B 两地间的路程为40km .他们行进的路程S (km )与乙出发后的时间t (h )之间的函数图像如图.根据图像信息,下列说法正确的是A 、甲的速度是20km/ hB 、乙的速度是10 km/ hC 、乙比甲晚出发1 hD 、乙比甲晚到B 地3 h10.如图,已知点A 的坐标为(-1,0 ),点B 在直线y =x 上运动,当线段AB 最短时,点B 的坐标为( ) A 、(0,0) B 、(22,22-) C 、(-21,-21) D 、(-22,-22)二、填空题(共6小题,每小题4分,共24分)温馨提示:填空题的答案要求是最简捷,最正确的答案。
浙教版八年级上期末数学试卷2
A.
B.
C.
D.
4.(2 分)下列调查中,适合用普查的是( )
A.了解宁波市八年级学生的视力情况
B.了解宁波市八年级学生的课外作业情况
C.了解宁波市百岁老人的身体情况
D.了解宁波市 30﹣40 岁人群的收入情况
5.(2 分)下列对一次函数 y=3x+1 的描述正确的是( )
A.图象经过第二、三、四象限
A.1 个
B.2 个
C.3 个
D.4 个
10.(2 分)如图,直线 a∥b∥c,且 a,b 之间的距离为 1,△ABC 和△CDE 是两块全等的直角三角形
纸板,其中∠ABC=∠CDE=90°,∠BAC=∠DCE=30°,它们的顶点都在平行线上,则 b,c 之间
的距离是( )
A.1
B.
C.
D.2
二、填空题(每小题 3 分,共 24 分)
;
【解决问题】
(4)已知一个多面体表面展开图有 17 条棱,且展开图的顶点数比原多面体的面数多 2,则这个多面体
的面数是多少?
23.(10 分)甲、乙两人同时从宁波港出发到距离 240 千米的上海港,甲乘快艇 4 小时候到达上海港,
然后立即换成船返回宁波港,乙乘船经 12 小时到达上海港,此时甲也正好返回到宁波港,如图表示甲、
浙教版八年级(上)期末数学试卷
一、选择题(每小题 2 分,共 20 分)
1.(2 分)直角三角形的一个锐角是 40°,则另一个锐角的度数是( )
A.50°
B.60°
C.70°
D.90°
2.(2 分)点 P(1,﹣5)所在的象限是( )
A.第一象限
B.第二象限
C.第三象限
浙教版2022-2023学年八年级上学期期末数学模拟测试卷(二)(解析版)
浙教版2022-2023学年八年级上学期期末数学模拟测试卷(二)(解析版)一、选择题(本大题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1.下列图案中,不是轴对称图形的是()A.B.C.D.【答案】C【解析】A、是轴对称图形,不符合题意;B、是轴对称图形,不符合题意;C、不是轴对称图形,符合题意;D、是轴对称图形,不符合题意;故答案为:C.2.在圆周长计算公式C=2πr中,对半径不同的圆,变量有()A.C,r B.C,π,r C.C,πD.C,2π,r【答案】A【解析】∵在圆的周长公式C=2πr中,C与r是改变的,π是不变的;∴变量是C,r,常量是2π.故选A.3.若实数a,b满足a>b,则下列不等式一定成立的是()A.a>b+2B.a﹣1>b﹣2C.﹣a>﹣b D.a2>b2【答案】B【解析】当a>b时,a>b+2不一定成立,故错误;当a>b时,a﹣1>b﹣1>b﹣2,成立,当a>b时,﹣a<﹣b,故错误;当a>b时,a2>b2不一定成立,故错误;故答案为:B.4.仔细观察用直尺和圆规作一个角等于已知角的示意图,请根据三角形全等的有关知识,说明画出∠AOB=∠CPD的依据是()A.SAS B.AAS C.ASA D.SSS【答案】D【解析】由作法易得OG=PM,OH=PN,GH=MN,在△GOH与△MPN中,{OG=PM OH=PN GH=MN,∴△GOH≌△MPN(SSS),∴∠AOB=∠CPD(全等三角形的对应角相等).故答案为:D.5.已知点A的坐标为(1,2),直线AB∥x轴,且AB=5,则点B的坐标为()A.(5,2)或(4,2)B.(6,2)或(-4,2)C.(6,2)或(-5,2)D.(1,7)或(1,-3)【答案】B【解析】∵AB∥x轴,点A的坐标为(1,2),∴点B 的纵坐标为2, ∵AB=5,∴点B 在点A 的左边时,横坐标为1-5=-4, 点B 在点A 的右边时,横坐标为1+5=6, ∴点B 的坐标为(-4,2)或(6,2). 故答案为:B .6.已知等腰三角形中有一个角等于 40° ,则这个等腰三角形的顶角的度数为( ) A .40° B .100° C .40° 或 70° D .40° 或 100° 【答案】D【解析】∵等腰三角形中有一个角等于40°, ∴①若40°为顶角,则这个等腰三角形的顶角的度数为40°;②若40°为底角,则这个等腰三角形的顶角的度数为:180°-40°×2=100°. ∴这个等腰三角形的顶角的度数为:40°或100°. 故答案为:D.7.如图,在△ABC 中,∠B =46°,∠C =52°,AD 平分∠BAC ,交BC 于点D ,DE ∥AB ,交AC 于点E ,则∠ADE =( )A .45°B .41°C .40°D .50° 【答案】B【解析】∵∠B =46°,∠C =52°,∴∠BAC =180°-∠B-∠C =180°-46°-52°=82°,又∵AD 平分∠BAC ,∴∠BAD =∠BAC =12×82°=41°,∵DE ∥AB ,∴∠ADE =∠BAD =41°. 故答案为:B .8.在平面直角坐标系中,若点(x 1,-1),(x 2,-2),(x 3,1)都在直线y=-2x+b 上,则x 1,x 2,x 3的大小关系是( ) A .x 1>x 2>x 3 B .x 3>x 2>x 1 C .x 2>x 1>x 3 D .x 2>x 3>x 1 【答案】C【解析】∵y=-2x+b 中k=-2<0 ∴y 随x 的增大而减小 ∵-2<-1<1 ∴x 2>x 1>x 3. 故答案为:C.9.在△ABC 中,AB=15,AC=13,BC 上的高AD 长为12,则△ABC 的面积为( ) A .84 B .24 C .24或84 D .42或84 【答案】C 【解析】(1)△ABC 为锐角三角形,高AD 在三角形ABC 的内部, ∴BD= √AB 2−AD 2 =9,CD= √AC 2−AD 2 =5, ∴△ABC 的面积为 12×(9+5)×12 =84,( 2 )△ABC 为钝角三角形,高AD 在三角形ABC 的外部,∴BD= √AB 2−AD 2 =9,CD= √AC 2−AD 2 =5,∴△ABC 的面积为 12×(9−5)×12 =24,故答案为:C.10.定义:△ABC 中,一个内角的度数为 α ,另一个内角的度数为 β ,若满足 α+2β=90° ,则称这个三角形为“准直角三角形”.如图,在Rt △ABC 中,∠C=90°, AC=8,BC=6,D 是BC 上的一个动点,连接AD ,若△ABD 是“准直角三角形”,则CD 的长是( )A .127B .2413C .83D .135【答案】C【解析】如图,过D 作DE ⊥AB ,∵∠C=90°,∴AB=√AC 2+BC 2=√82+62=10, ∴设∠ABD= α,∠BAD= β ,∵∠BAD+∠CAD+∠ABD=90°,即α+β+∠CAD=90°∵, ∴∠CAD=∠BAD=β,∴AD 是∠CAB 的平分线, ∴DE=DC ,AE=AC ,BE=AB-AE=10-8=2, 设DC=DE=x,则BD=BC-DC=6-x, ∵BD 2=BE 2+DE 2, ∴(6-x )2=22+x 2, 整理得12x=32, ∴x=83.故答案为:C.二、填空题(本大题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案. 11.如果点P (6,1+m )在第四象限,m 的取值范围是 . 【答案】m <﹣1【解析】∵点P (6,1+m )在第四象限, ∴1+m <0,解得:m <﹣1, 故答案为:m <﹣1.12.已知一个三角形三边的长分别为 √5,√10,√15 ,则这个三角形的面积是 .【答案】52√2【解析】∵(√5)2+(√10)2=15 , (√15)2=15 ,∴(√5)2+(√10)2=(√15)2 , ∴该三角形为直角三角形,∴其面积为 12×√5×√10=52√2 ,故答案为: 52√2 .13.在平面直角坐标系中,直线y =−34x +3与x 轴、y 轴交于点A 、B ,点C 在x 轴负半轴上,若ΔABC 为等腰三角形,则点C 的坐标为 . 【答案】(-4,0)或(-1,0)【解析】直线y =−34x +3与x 轴、y 轴交于点A 、B ,则点A 的坐标为(4,0),点B 的坐标为(0,3),∴AB =√OA 2+OB 2=5. 分两种情况考虑,如图所示.①当BA=BC 时,OC =OA =4, ∴点C 1的坐标为 (-4,0) ;②当AB=AC 时,∵AB =5,OA =4, ∴OC =5−4=1,∴点C 2的坐标为 (-1,0) .∴点C 的坐标为为(-4,0)或(-1,0). 故答案为:(-4,0)或(-1,0).14.如图,六边形 ABCDEF 的六个内角都等于120°,若 AB =BC =CD =6cm , DE =4cm ,则这个六边形的周长等于 cm .【答案】34【解析】如图,分别作AB 、CD 、EF 的延长线和反向延长线,使它们交于点G 、H 、P ,∵六边形ABCDEF的六个角都是120°,∴六边形ABCDEF的每一个外角的度数都是60°,∴△APF、△BGC、△DHE、△GHP都是等边三角形,∴GC=BC=6cm,DH=DE=4cm,PF=PA=FA,∴GH=6+6+4=16cm,∴FA=PA=PG-AB-BG=16-6-6=4cm,EF=PH-PF-EH=16-4-4=8cm,∴六边形的周长为6+6+6+4+8+4=34cm.故答案为:34.15.如图,在Rt△ABC中,∠ACB=90∘,∠A>∠B,将△ABC第一次沿折痕CE折叠,使得点A能落在BC上,铺平后,将∠B沿折痕GF折叠,使点B与点A重合,FG分别交BC边,AB边于点F,点G,CD是斜边上的高线,若∠DCE=∠B,则BFCE=.【答案】√2【解析】连接AF,∵将△ABC第一次沿折痕CE折叠,使得点A能落在BC上,∴∠ACE=∠BCE=45°,∵将∠B沿折痕GF折叠,使点B与点A重合,∴∠B=∠FAB,FA=FB,∵∠ACD+∠DCB=∠B+∠DCB=90°,∴∠ACD=∠B,∵∠DCE=∠B,∴∠ACD=∠DCE=∠B=12∠ACE=22.5°,∴∠AFC=∠B+∠FAB=2∠B=45°,∴△AFC为等腰直角三角形,设AC=CF=a,则AF=√a2+a2=√2a,∵∠CAB=90°−∠B=67.5°,∠CEA=∠B+∠BCE=67.5°,即∠CAE=∠CEA,∴CA=CE,∴BF CE=AFCA=√2aa=√2,故答案为:√2.16.在△ABC中,∠C=90°,D是边BC上一点,连接AD,若∠BAD+3∠CAD=90°,DC=a,BD =b,则AB=. (用含a,b的式子表示)【答案】2a+b【解析】如图,延长BC至点E,使CE=CD,连接AE,∵∠ACB=90°,∴∠CAB+∠B=90°,AC⊥CD,∵∠BAD+3∠CAD=90°,∠BAD+∠CAD=∠BAC,∴∠B=2∠CAD,∵CE=CD,AC⊥CD,∴AC垂直平分ED,∴AE=AD,即△AED是等腰三角形,∴∠EAC=∠CAD,∴∠EAD=2∠CAD=∠B,∴∠EAB=∠B+∠BAD,∵∠E=∠ADE=∠B+∠BAD,∴∠E=∠EAB,∴AB=EB,∵EB=EC+CD+BD=a+a+b=2a+b,∴AB=2a+b.故填:2a+b.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)解答应写出文字说明,证明过程或推演步骤.17.解下列不等式(组).(1)3(x﹣1)﹣5<2x;(2){1−2x−23⩽5−3x2 3−2x>1−3x【答案】(1)解:去括号得:3x﹣3﹣5<2x,移项得:3x﹣2x<3+5,合并得:x<8(2)解:{1−2x−23⩽5−3x2①3−2x>1−3x②,由①得:x≤1,由②得:x>﹣2,∴原不等式组的解集为﹣2<x≤118.如图,已知∠BAC,用三种不同的方法画出∠BAC的平分线.要求:( 1 )画图工具:带有刻度的直角三角板; ( 2 )保留画图痕迹,简要写出画法.【答案】 解:①在AC 上取线段AD ,AB 上取线段AE ,使AE =AD ,再连接DE ,并取DE 中点F ,最后连接AF 并延长,则AF 即为∠BAC 的平分线;②在AC 上取线段AG ,AB 上取线段AH ,使AG =AH .再过点G 作GJ ⊥AC ,过点H 作IH ⊥AB ,GJ 和HI 交于点K ,最后连接AK 并延长,则AK 即为∠BAC 的平分线;③在AC 上取线段AR ,在AB 上取线段AP ,使AR=AP ,过点P 作PQ//AC ,再在PQ 上取线段PO ,使PO=AR ,连接AO 并延长,则AO 即为∠BAC 的平分线.19.已知点P (32a +2,2a −3),根据下列条件,求出点P 的坐标.(1)点P 在y 轴上;(2)点Q 的坐标为(-3,3),直线PQ ∥x 轴. 【答案】(1)解:∵点P 在y 轴上, ∴点P 的横坐标为0,即32a +2=0解得:a =−43,∴2a −3=2×(−43)−3=−173,∴点P 的坐标为(0,−173);(2)解:∵直线PQ ∥x 轴,∴点P 、Q 的纵坐标相等,即2a −3=3,解得:a =3,∴32a +2=32×3+2=132∴点P 的坐标为(132,3).20.如图,AD 是△ABC 的高,CE 是△ACB 的角平分线,F 是AC 中点,∠ACB =50°,∠BAD =65°.(1)求∠AEC 的度数;(2)若△BCF 与△BAF 的周长差为3,AB =7,AC =4,则BC = . 【答案】(1)解:∵AD 是△ABC 的高, ∴∠ADB =90°, ∵∠BAD =65°, ∴∠ABD =90°﹣65°=25°,∵CE 是△ACB 的角平分线,∠ACB =50°, ∴∠ECB = 12∠ACB =25°,∴∠AEC =∠ABD+∠ECB =25°+25°=50°(2)10 【解析】(2)∵F 是AC 中点, ∴AF =FC ,∵△BCF 与△BAF 的周长差为3,∴(BC+CF+BF )﹣(AB+AF+BF )=3, ∴BC ﹣AB =3, ∵AB =7, ∴BC =10, 故答案为:10.21.如图,在一条绷紧的绳索一端系着一艘小船.河岸上一男孩拽着绳子另一端向右走,绳端从C 移动到E ,同时小船从A 移动到B ,且绳长始终保持不变.A 、B 、F 三点在一条直线上,CF ⊥AF .回答下列问题:(1)根据题意可知:AC BC +CE (填“>”、“<”、“=”).(2)若CF =6米,AF =8米,AB =3米,求小男孩需向右移动的距离(结果保留根号). 【答案】(1)=(2)解:∵A 、B 、F 三点共线, ∴在Rt △CFA 中,AC =√AF 2+CF 2=10,∵BF =AF −AB =8−3=5, ∴在Rt △CFB 中,BC =√CF 2+BF 2=√61, 由(1)可得:AC =BC +CE , ∴CE =AC −BC =10−√61,∴小男孩需移动的距离为(10−√61)米. 【解析】(1)∵AC 的长度是男孩拽之前的绳长,(BC +CE)是男孩拽之后的绳长,绳长始终未变, ∴AC =BC +CE ,故答案为:=;22.每年11月份脐橙和蜜桔进入销售旺季.某水果专销商购进脐橙和蜜桔共1000箱.设购进蜜桔x(2)为了迎接“双11”活动,商家决定进行组合促销活动:两种水果各一箱打包成一组,售价为55元/组,其组数为购进蜜桔箱数的 15,未打包的按原价出售.若这两种水果全部卖出,利润不少于6500元,则该商家至少要购进蜜桔多少箱? 【答案】(1)解:售完1000箱水果所获得的利润为8x +6(1000−x)=2x +6000(2)解:由题意可知,购进蜜桔x 箱,则脐橙(1000-x)箱8⋅45x +6⋅(1000−x −15x)+10⋅15x ≥6500 解得 x ≥41623∵x 为整数,且为5的倍数 ∴至少为420箱.23.在等腰三角形△ABC 中,AC =BC ,D 、E 分别为AB 、BC 上一点,∠CDE =∠A .(1)如图1,若BC =BD ,求证:△ADC ≅△BED ;(2)如图2,过点C 作CH ⊥DE ,垂足为H ,若CD =BD ,EH =3. ①求证:CE =DE ; ②求CE -BE 的值. 【答案】(1)证明:∵AC =BC ,∠CDE =∠A , ∴∠A =∠B =∠CDE ,∵∠CDB =∠A +∠ACD =∠CDE +∠BDE , ∴∠ACD =∠BDE . 又∵BC =BD , ∴BD =AC .在△ADC 和△BED 中,{∠ACD =∠BDE AC =BD ∠A =∠B△ADC ≅△BED(ASA)(2)解:①证明:∵CD =BD , ∴∠B =∠DCB .由(1)知:∠CDE =∠B , ∴∠DCB =∠CDE , ∴CE =DE ;②如图,在DE 上取点F ,使DF =BE ,在△CDF 和△DBE 中, {DF =BE ∠CDE =∠B CD =BD, ∴△CDF ≅△DBE(SAS), ∴CF =DE =CE , 又∵CH ⊥EF , ∴FH =HE ,∴CE −BE =DE −DF =EF =2HE =2×3=6.24.如图1,一次函数y =43x+4的图象与x 轴、y 轴分别交于点A 、B.(1)则点A 的坐标为 ,点B 的坐标为 ; (2)如图2,点P 为y 轴上的动点,以点P 为圆心,PB 长为半径画弧,与BA 的延长线交于点E ,连接PE ,已知PB =PE ,求证:∠BPE =2∠OAB ;(3)在(2)的条件下,如图3,连接PA ,以PA 为腰作等腰三角形PAQ ,其中PA =PQ ,∠APQ =2∠OAB.连接OQ.①则图中(不添加其他辅助线)与∠EPA 相等的角有;(都写出来) ②试求线段OQ 长的最小值. 【答案】(1)(﹣3,0);(0,4)(2)证明:如图2中,设∠ABO =α,则∠OAB =90°﹣α, ∵PB =PE ,∴∠PBE =∠PEB =α, ∴∠BPE =180°﹣∠PBE ﹣∠PEB =180°﹣2α=2(90°﹣α), ∴∠BPE =2∠OAB.(3)①∠QPO ,∠BAQ ;②如图3中,连接BQ 交x 轴于T.∵AP =PQ ,PE =PB ,∠APQ =∠BPE , ∴∠APE =∠QPB ,在△APE 和△QPB 中,{PA=PQ∠APE=∠QPBPE=PB,∴△APE≌△QPB(SAS),∴∠AEP=∠QBP,∵∠AEP=∠EBP,∴∠ABO=∠QBP,∵∠ABO+∠BAO=90°,∠OBT+∠OTB=90°,∴∠BAO=∠BTO,∴BA=BT,∵BO⊥AT,∴OA=OT,∴直线BT的解析式为为:y=﹣43x+4 ,∴点Q在直线上y=﹣43x+4运动,∵B(0,4),T(3,0).∴BT=5.当OQ⊥BT时,OQ最小.∵S△BOT=12×3×4=12×5×OQ.∴OQ=12 5.∴线段OQ长的最小值为12 5.【解析】(1)解:在y=43x+4中,令y=0,得0=43x+4,解得x=﹣3,∴A(﹣3,0),在y=43x+4中,令x=0,得y=4,∴B(0,4);故答案为:(﹣3,0),(0,4);(3)解:①结论:∠QPO,∠BAQ理由:如图3中,∵∠APQ=2∠OAB,∠BPE=2∠OAB,∴∠APQ=∠BPE.∴∠APQ﹣∠APB=∠BPE﹣∠APB.∴∠QPO=∠EPA.又∵PE=PB,AP=PQ∴∠PEB=∠PBE=∠PAQ=∠AQP.∴∠BAQ=180°﹣∠EAQ=180°﹣∠APQ=∠EPA.∴与∠EPA相等的角有∠QPO,∠BAQ.故答案为:∠QPO,∠BAQ;。
【浙教版】八年级数学上期末模拟试卷(含答案)(2)
一、选择题1.在下列条件中:①A C B ∠=∠-∠,②::2:3:5A B C ∠∠∠=,③90A B ∠=︒-∠,④90B C ∠-∠=︒中,能确定ABC 是直角三角形的条件有( )A .1个B .2个C .3个D .4个2.如图,已知ACF DBE?△≌△,下列结论:① AC DB =;② AB DC =;③ DCF ABE ∠∠=;④AF//DE ;⑤ACF DBES S =△△;⑥BC AF =;⑦CF //BE .其中正确的有( )A .4?个B .5?个C .6?个D .7个3.下列各命题中,属于假命题的是( )A .若0a b ->,则a b >B .若0a b -=,则0ab ≥C .若0a b -<,则a b <D .若0a b -≠,则0ab ≠4.由于今年重庆受到洪水袭击,造成南滨路水电站损害;重庆市政府决定对南滨路水电站水库进行加固.现有4辆板车和5辆卡车一次能运27吨水电站加固材料,10辆板车和3辆卡车一次能运20吨水电站加固材料,设每辆板车每次可运x 吨货,每辆卡车每次能运y 吨货,则可列方程组( )A .452710320x y x y +=⎧⎨-=⎩B .45271020x y x y -=⎧⎨+=⎩C .452710320x y x y -=⎧⎨-=⎩D .452710320x y x y +=⎧⎨+=⎩ 5.下列四组值中,不是二元一次方程21x y -=的解的是( ) A .11x y =-⎧⎨=-⎩ B .00.5x y =⎧⎨=-⎩ C .10=⎧⎨=⎩x y D .11x y =⎧⎨=⎩6.如图,点A 坐标为()1,0,点B 在直线y x =-上运动,当线段AB 最短时,点B 的坐标为( )A .11,22⎛⎫- ⎪⎝⎭B .11,22⎛⎫ ⎪⎝⎭C .112,222⎛⎫- ⎪⎝⎭D .112,222⎛⎫ ⎪⎝⎭ 7.已知,一次函数1y kx b =+和2y x a =+的图像如图,则下列结论:① k<0;② a>0;③若1y ≥2y ,则x ≤3,则正确的个数是( )A .0个B .1个C .2个D .3个8.如图,点A ,B ,C 在一次函数2y x m =-+的图象上,它们的横坐标依次为1-,1,2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是( )A .1B .3C .3(1)m -D .3(2)2m - 9.若x m ﹣n ﹣2y m+n ﹣2=2007,是关于x ,y 的二元一次方程,则m ,n 的值分别是( ) A .m=1,n=0 B .m=0,n=1 C .m=2,n=1 D .m=2,n=3 10.平面直角坐标系中,点()2,3A -,()2,1B -,经过点A 的直线//a x 轴,点C 是直线a 上的一个动点,当线段BC 的长度最短时,点C 的坐标为( )A .()0,1-B .()1,2--C .()2,1--D .()2,311.已知实数x 、y 满足|x -8y -0,则以x 、y 的值为两边长的等腰三角形周长是( )A .20或16B .20C .16D .18 12.下列四组数中,是勾股数的是( )A .5,12,13B .4,5,6C .2,3,4D .2,5 二、填空题13.如图,添加一个你认为合适的条件______使//AD BC .14.用反证法证明:在一个三角形中,如果两个角不相等,那么这两个角所对的边也不相等,证明时,可以先假设:_____________________________.15.某车间有660名工人,生产某种由一个螺栓和两个螺母构成的配套产品,每人每天平均生产螺栓14个或螺母20个,应安排______________人生产螺母,才能使生产出的螺栓和螺母刚好配套.16.现有甲、乙、丙三个圆柱形的杯子,杯深均为20cm ,各装有12cm 高的水,甲、乙、丙三个杯子的底面积如下表.分别从甲、乙两杯中取出相同体积的水倒入丙杯,过程中水没溢出,最后甲、乙两杯水的高度之和等于丙杯水的高度.则从甲杯中倒出的水的体积为__________3cm .底面积(2cm ) 甲杯40 乙杯60 丙杯 8017.如图,直线l 的表达式为3y x =-,点1A 坐标为()1,0-.过点作x 轴的垂线交直线l 于点1B ,以原点O 为圆心,1OB 长为半径画弧交x 轴负半轴于点2A ,再过点2A 作x 轴的垂线交直线l 于点2B ,以原点O 为圆心,2OB 长为半径画弧交x 轴负半轴于点3A ,…,按此法进行下去,点2021B 的坐标为______.18.如图,在平面直角坐标系上有点1,0A ,点A 第一次跳动至点()11,1A -,第二次点1A 向右跳到()22,1A ,第三次点2A 跳到()32,2A -,第四次点3A 向右跳动至点()43,2A ,…,依此规律跳动下去,则点2019A 与点2020A 之间的距离是___________.19.数轴上A 点表示的数是1-,点B ,C 分别位于点A 的两侧,且到A 的距离相等,若B 表示的数是3-,则点C 表示的数是 ____________.20.如图,长方体的长5BE cm =,宽3AB cm =,高6BC cm =,一只小蚂蚁从长方体表面由A 点爬到D 点去吃食物,则小蚂蚁走的最短路程是__________cm .三、解答题21.如图,在四边形ABCD 中,E 、F 分别是CD 、AB 延长线上的点,连接EF ,分别交AD 、BC 于点G 、H .若12∠=∠,A C ∠=∠,试判断AB 与CD 的位置关系,并说明理由.补全解答过程.猜想:AB 与CD 的位置关系是 ① .证明:∵12∠=∠(已知),1AGH ∠=∠(②),∴2AGH ∠=∠(③).∴ ④ (同位角相等,两直线平行).∴ADE C ∠=∠(⑤),∵A C ∠=∠(已知),∴ ⑥ (等量代换).∴ ⑦ (⑧).22.A ,B ,C 三个村庄依次在一条笔直的公路旁,甲从A 村庄出发沿着这条公路匀速去B 村庄,乙从C 村庄出发沿着这条公路匀速去A 村庄,当其中一人到达目的地时,另一人也随之停止运动.甲、乙与B 村庄的距离y ,y 2,与甲的行驶时间t 之间的函数关系如图所示.请根据所给图象解答下列问题:(1)填空:A ,B 两村庄之间的距离为____km ,乙比甲晚出发____h ;乙的速度为____km/h ,甲的速度为____km/h ;(2)求乙从C 村庄到B 村庄的行驶过程中,与B 村庄的距离y 2与甲行驶的时间t 之间的函数关系式;(3)请直接写出当t 为何值时,甲与乙相遇.23.快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣.该公司准备投入资金y 万元,购买A 、B 两种型号的机器人共10台,其中购进A 型机器人x 台.下表是某科技公司提供给快递公司有关两种型号的机器人分拣速度和单价的信息: 型号 分拣速度单价 A 100件/分钟6万元/台 B80件/分钟 4万元/台 y x(2)若要使这10台机器人每分钟分拣快递件数总和为920件,该公司需要投入资金多少万元?24.阅读以下材料,并解决问题:小明遇到一个问题:在平面直角坐标系xOy 中,点()1,4A ,()5,2B ,求OAB 的面积.小明用割补法解决了此问题,如图,过点A 作AM x ⊥轴于点M ,过点B 作BN x ⊥轴于点N ,则OAB OAM OBN AMNB S S S S =+-△△△梯形()()111142451529222=⨯⨯+⨯+--⨯⨯= 解决问题后小明又思考,如果将问题一般化,是否会有好的结论,于是它首先研究了点A ,B 在第一象限内的一种情形:如图,点()11,A x y ,()22,B x y ,其中12x x <,12y y >(1)请你帮助小明求出这种情形下OAB 的面积.(用含1x ,2x ,1y ,2y 的式子表示)(2)小明继续研究发现,只要将(1)中求得的式子再取绝对值就可以得到第一象限内任意两点A ,B (点O ,A ,B 不共线)与坐标原点O 构成的三角形OAB 的面积公式,请利用此公式解决问题:已知点(),2A a a +,(),B b b 在第一象限内,探究是否存在点B ,使得对于任意的0a >,都有3OAB S =?若存在,求出点B 的坐标;若不存在说明理由.25.计算:(1)022(32)(3)(5)----+-(2)27832-+- 26.已知ABC ∆中,ACB ∠=90°,如图,作三个等腰直角三角形ACD ∆,EAB ∆,FCB ∆,AB ,AC ,BC 为斜边,阴影部分的面积分别为1S ,2S ,3S ,4S . (1)当AC =6,BC =8时,①求1S 的值;②求4S -2S -3S 的值;(2)请写出1S ,2S ,3S ,4S 之间的数量关系,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据直角三角形的判定方法对各个选项进行分析,从而得到答案.【详解】①因为∠A+∠B=∠C ,则2∠C=180°,∠C=90°,所以△ABC 是直角三角形;②因为∠A :∠B :∠C=2:3:5,设∠A=2x ,则2x+3x+5x=180,x=18°,∠C=18°×5=90°,所以△ABC 是直角三角形;③因为∠A=90°﹣∠B ,所以∠A+∠B=90°,则∠C=180°﹣90°=90°,所以△ABC 是直角三角形;④因为∠B ﹣∠C=90°,则∠B=90°+∠C ,所以三角形为钝角三角形.所以能确定△ABC 是直角三角形的有①②③.故选:C .【点睛】本题考查了三角形的内角和定理:三角形的内角和为180°;理解三角形内若有一个内角为90°,则△ABC 是直角三角形.2.C解析:C【分析】利用ACF DBE △≌△得到对应边和对应角相等可以推出①③,根据对应角相等、对应边相等可推出②④⑦,再根据全等三角形面积相等可推出⑤,正确;根据已知条件不能推出⑥.【详解】解:①∵ACF DBE △≌△∴ AC DB =故①正确;②∵ AC DB =∴ AC-BC DB-BC =即: AB DC =,故②正确;③∵ACF DBE △≌△∴ ACF DBE ∠∠=;∴ 180-ACF 180-DBE ︒∠=︒∠即: DCF ABE ∠∠=,故③正确;④∵ACF DBE △≌△∴ A D ∠=∠;∴AF//DE ,故④正确;⑤∵ACF DBE △≌△∴ACF DBES S =△△,故⑤正确; ⑥根据已知条件不能证得BC AF =,故⑥错误;⑦∵ACF DBE △≌△∴ EBD FCA ∠=∠;∴CF //BE ,故⑦正确;故①②③④⑤⑦,正确的6个.故选C .【点睛】本题考查了全等三角形的性质,正确掌握全等三角形对应边相等,对应角相等是解答此题的关键.3.D解析:D【分析】根据不等式的性质对各选项进行逐一判断即可.【详解】A 、正确,符合不等式的性质;B 、正确,符合不等式的性质.C 、正确,符合不等式的性质;D 、错误,例如a=2,b=0;故选D .【点睛】考查了命题与定理的知识,解题的关键是了解不等式的性质,难度不大.4.D解析:D【分析】以每次运送加固材料为等量关系,列方程组即可.【详解】解:根据4辆板车运货量+5辆卡车运货量=27吨,得方程4527x y +=;根据10辆板车运货量+3辆卡车运货量=20吨,得方程10320x y +=.可列方程组为452710320x y x y +=⎧⎨+=⎩. 故选D .【点睛】本题考查了二元一次方程组的应用,解题关键是找准题目数量关系,找到等量关系列方程组. 5.D解析:D【分析】将各项中x 与y 的值代入方程检验即可.【详解】解:x-2y=1,解得:x=2y+1,当y=-1时,x=-1,所以11xy=-⎧⎨=-⎩是方程21x y-=的解,选项A不合题意,当y=-0.5时,x=-1+1=0,所以0.5xy=⎧⎨=-⎩是方程21x y-=的解,选项B不合题意;当y=0时,x=1,所以1xy=⎧⎨=⎩是方程21x y-=的解,选项C不合题意;当y=1时,x=2+1=3,所以11xy=⎧⎨=⎩不是方程21x y-=的解,选项D符合题意;故选:D.【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.6.A解析:A【分析】当AB与直线y=-x垂直时,AB最短,则△OAB是等腰直角三角形,作B如图,点A坐标为()1,0,点B在直线y x=-上运动,当线段AB最短时,点B的坐标为BC⊥x轴即可求得OD,BD的长,从而求得B的坐标.【详解】过A点作垂直于直线y x=-的垂线AB,点B在直线y x=-上运动,45AOB∴∠=︒,AOB∴∆为等腰直角三角形,过B作BC垂直x轴垂足为C,则点C为OA的中点,则12 OC BC==,作图可知B在x轴下方,y轴的右方.∴横坐标为正,纵坐标为负.所以当线段AB最短时,点B的坐标为11,22⎛⎫-⎪⎝⎭.故选A.【点睛】本题考查了正比例函数的性质,等腰三角形的性质的综合应用,正确根据垂线段最短确定:当AB与直线y=-x垂直时,AB最短是关键.7.C解析:C【分析】根据y1=kx+b和y2=x+a的图象可知:k<0,a<0,所以当x≤3时, y1图象在y2的图象的上方.【详解】根据图示及数据可知:①y1=kx+b的图象经过一、二四象限,则k<0,故①正确;②y2=x+a的图象与y轴的交点在x轴的下方,a<0,故②错误;③当x≤3时, y1图象在y2的图象的上方,则y1≥y2,故③正确.综上,正确的个数是2个.故选:C.【点睛】本题考查了一次函数的图象,考查学生的分析能力和读图能力,一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b <0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.8.B解析:B【分析】根据横坐标分别求出A,B,C的坐标,利用坐标的几何性质求面积即可.【详解】解:当x=-1时y=-2×(-1)+m=2+m,故A点坐标(-1,2+m);当x=0时,y=-2×0+m=m,故一次函数与y轴交点为(0,m);当x=1时,y=-2×1+m=-2+m,故B点坐标(1,-2+m);当x=2时,y=-2×2+m=-4+m,故C点坐标(2,-4+m),则阴影部分面积之和为1112m m22⨯⨯+-+×1×[m-(-2+m)]+12×1×[(-2+m)-(-4+m)]=1+1+1=3,故选B.本题考查了一次函数的图像和性质,中等难度,利用坐标表示底和高是解题关键. 9.C解析:C【分析】根据二元一次方程的定义,列出关于m、n的方程组,然后解方程组即可.【详解】解:根据题意,得121 m nm n-=⎧⎨+-=⎩,解得21mn=⎧⎨=⎩.故选:C.10.D解析:D【分析】由经过点A的直线a∥x轴,可知点C的纵坐标与点A的纵坐标相等,可设点C的坐标(x,3),根据点到直线垂线段最短,当BC⊥a时,点C的横坐标与点B的横坐标相等,即可得出答案.【详解】解:如右图所示,∵a∥x轴,点C是直线a上的一个动点,点A(-2,3),∴设点C(x,3),∵当BC⊥a时,BC的长度最短,点B(2,-1),∴x=2,∴点C的坐标为(2,3).故选:D.【点睛】本题主要考查了平面直角坐标系中点的特征和点到直线垂线段最短,解答时注意应用数形结合思想.11.B解析:B根据绝对值与二次根式的非负性即可求出x与y的值.由于没有说明x与y是腰长还是底边长,故需要分类讨论.【详解】由题意可知:x-4=0,y-8=0,∴x=4,y=8,当腰长为4,底边长为8时,∵4+4=8,∴不能围成三角形,当腰长为8,底边长为4时,∵4+8>8,∴能围成三角形,∴周长为:8+8+4=20,故选:B.【点睛】本题考查了算术平方根,以及三角形三边关系,解题的关键是正确理解非负性的意义,以及三角形三边关系,本题属于基础题型.12.A解析:A【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【详解】解:A. ∵5,12,13是正整数,且52+122=132,∴5,12,13是勾股数;B. ∵42+52≠62,∴4,5,6不是勾股数;C. ∵22+32≠42,∴2,3,4不是勾股数;D. ∵∴1故选A.【点睛】此题主要考查了勾股数,解答此题要用到勾股数组的定义,如果a,b,c为正整数,且满足a2+b2=c2,那么,a、b、c叫做一组勾股数.二、填空题13.∠ADF=∠C或∠A=∠ABE或∠A+∠ABC=180°或∠C+∠ADC=180°(答案不唯一写一个正确的即可)【分析】根据平行线的判定方法即可求解【详解】第一种情况同位角相等两直线平行即∠ADF=解析:∠ADF=∠C或∠A=∠ABE或∠A+∠ABC=180°或∠C+∠ADC=180°(答案不唯一,写一个正确的即可)根据平行线的判定方法即可求解.【详解】第一种情况,同位角相等,两直线平行,即∠ADF=∠C时,//AD BC;第二种情况,内错角相等,两直线平行,即∠A=∠ABE时,//AD BC;第三种情况,同旁内角互补,两直线平行,即∠A+∠ABC=180°或∠C+∠ADC=180°时,//AD BC;故答案为∠ADF=∠C或∠A=∠ABE或∠A+∠ABC=180°或∠C+∠ADC=180°.【点睛】本题考查了平行线的判定方法,同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.14.这两个角所对的边相等【分析】反证法的步骤中第一步是假设结论不成立反面成立可据此进行判断【详解】解:反证法证明:在一个三角形中如果两个角不相等那么这两个角所对的边也不相等证明时可以先假设这两个角所对的解析:这两个角所对的边相等【分析】反证法的步骤中,第一步是假设结论不成立,反面成立,可据此进行判断.【详解】解:反证法证明:在一个三角形中,如果两个角不相等,那么这两个角所对的边也不相等.证明时,可以先假设这两个角所对的边相等,故答案为:这两个角所对的边相等.【点睛】本题考查的是反证法,在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.15.385【分析】设安排x人生产螺栓y人生产螺母根据一个螺栓两个螺母构成的配套产品列方程组求解【详解】解:设安排x人生产螺栓y人生产螺母由题意得解得:答:安排275人生产螺栓385人生产螺母故答案是:3解析:385【分析】设安排x人生产螺栓,y人生产螺母,根据一个螺栓两个螺母构成的配套产品,列方程组求解.【详解】解:设安排x人生产螺栓,y人生产螺母,由题意得,660 14220x yx y+⎧⎨⨯⎩==,解得:275385 xy⎧⎨⎩==,答:安排275人生产螺栓,385人生产螺母.故答案是:385.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.16.180【分析】设后来甲乙丙三杯内水的高度分别为:xyx+y 利用水的总体积不变分别从甲乙两杯中取出相同体积的水倒入丙杯得出二元一次方程组进而即可求解【详解】解:设后来甲乙丙三杯内水的高度分别为:xyx解析:180【分析】设后来甲、乙、丙三杯内水的高度分别为:x ,y ,x+y ,利用水的总体积不变,分别从甲、乙两杯中取出相同体积的水倒入丙杯,得出二元一次方程组,进而即可求解.【详解】解:设后来甲、乙、丙三杯内水的高度分别为:x ,y ,x+y ,根据题意可得:()()()40126012801240608040126012x y x y x y ⎧⨯+⨯+⨯+++⎪⎨-=-⎪⎩=, 解得:7.59x y =⎧⎨=⎩, ∴从甲杯中倒出的水的体积为:40× (12-7.5)=180(3cm ),故答案是:180.【点睛】此题主要考查了二元一次方程组的应用,根据题意列出二元一次方程组是解题关键. 17.【分析】利用一次函数图象上点的坐标特征可得出点的坐标在Rt △中利用勾股定理可求出O 的长度进而可得出的长度同理可得出…根据数的变化可得出(n 为正整数)代入n =2021可求出的长再利用一次函数图象上点的解析:(20202,2- 【分析】利用一次函数图象上点的坐标特征可得出点1B 的坐标,在Rt △11OA B 中,利用勾股定理可求出O 1B 的长度,进而可得出2OA 的长度,同理可得出232OA =,342OA =,…,根据数的变化可得出12n n OA -=(n 为正整数),代入n =2021可求出2021OA 的长,再利用一次函数图象上点的坐标特征即可求出点2021B 的坐标.【详解】解:当x =−1时,y=∴点1B 的坐标为(−1在Rt △11OA B 中,11OA =,11A B∴12OB ==∴2OA =1OB =12OA =2=12同理,可得出:232242OA OA ===,343282OA OA ===,…,∴12n n OA -= (n 为正整数),∴202020212OA =当x=2020-2 时,y ==20202,∴点2020B 的坐标为(20202,2-故答案为:(20202,2- 【点睛】本题考查了一次函数图象上点的坐标特征、勾股定理以及规律型:点的坐标,根据数的变化,找出12n n OA -=(n 为正整数)是解题的关键.18.2021【分析】根据跳动的规律第偶数跳动至点的坐标横坐标是次数的一半加上1纵坐标是次数的一半奇数次数跳动与该偶数次跳动的横坐标下相反数加上1纵坐标相同分别求出点和点即可求解【详解】解:∵第二次跳动至 解析:2021【分析】根据跳动的规律,第偶数跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次数跳动与该偶数次跳动的横坐标下相反数加上1,纵坐标相同,分别求出点2019A 和点2020A 即可求解.【详解】解:∵第二次跳动至点的坐标为(2,1)第四次跳动至点的坐标为(3,2),第六次跳动至点的坐标为(4,3)第八次跳动至点的坐标为(5,4),第2n 次跳动至点的坐标是(1,)n n +,则第2020次跳动至点的坐标是(1011,1010),第2019次跳动至点的坐标是(1010,1010)-∵点2019A 和点2020A 的纵坐标相同,∴点2019A 和点2020A 之间的距离=1011(1010)2021--=故答案为:2021【点睛】本题主要考查了坐标与图形的性质,以及图形的变换问题,结合图形得到偶数次数跳动的点的横坐标与纵坐标的变换情况是解题的关键.19.【分析】根据数轴上两点的中点求法即两数和的一半直接求出即可【详解】解:设点C所表示的数为c则解得:故答案为:【点睛】此题主要考查了数轴上两点之间中点求法我们把数和点对应起来也就是把数和形结合起来二者解析:23-+【分析】根据数轴上两点的中点求法,即两数和的一半,直接求出即可.【详解】解:设点C所表示的数为c,则31c--=,解得:23-+故答案为:23-+【点睛】此题主要考查了数轴上两点之间中点求法,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.20.10【分析】将长方体展开可分三种情况求出其值最小者即为最短路程【详解】如图①:AD=;如图②:AD=;如图③:AD=;∴AD的最小值为故答案为:【点睛】本题依据两点之间线段最短考查了长方体的侧面展开解析:10【分析】将长方体展开,可分三种情况,求出其值最小者,即为最短路程.【详解】如图①:AD=22311130+=;如图②:228610010+=;如图③:2295106+=∴AD的最小值为10.故答案为:10.【点睛】本题依据“两点之间,线段最短”,考查了长方体的侧面展开图,解答时利用勾股定理进行分类讨论是解题的关键.三、解答题21.①//AB CD ;②对顶角相等;③等量代换;④//AD BC ;⑤两直线平行,同位角相等;⑥ADE ∠A =∠;⑦//AB CD ;⑧内错角相等,两直线平行【分析】先根据同位角相等,两直线平行,判定AD ∥BC ,进而得到∠ADE=∠C ,再根据内错角相等,两直线平行,即可得到AB ∥CD .【详解】猜想:AB 与CD 的位置关系是AB ∥CD .证明:∵∠1=∠2(已知)∠1=∠AGH (对顶角相等)∴∠2=∠AGH (等量代换)∴AD ∥BC (同位角相等,两直线平行)∴∠ADE=∠C (两直线平行,同位角相等)∵∠A=∠C (已知)∴∠ADE=∠A (等量代换)∴AB ∥CD (内错角相等,两直线平行)故答案为:①//AB CD ;②对顶角相等;③等量代换;④//AD BC ;⑤两直线平行,同位角相等;⑥ADE ∠A =∠;⑦//AB CD ;⑧内错角相等,两直线平行.【点睛】本题主要考查了平行线的判定与性质,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系;平行线的性质是由平行关系来寻找角的数量关系.22.(1)240,1,80,60;(2)()22000178028012t y t t ⎧≤<⎪=⎨⎛⎫-+≤≤ ⎪⎪⎝⎭⎩;(3)267t = 【分析】(1)根据函数图象直接得到A ,B 两村庄之间的距离为240km ,乙比甲晚出发1h ,根据7200(1)2÷-=80km/h ,求出乙的速度;根据甲行驶的路程及时间求出甲的速度为2404÷=60km/h ;(2)由图象可分0≤t <1与712t ≤≤两种情况,结合图象和待定系数法求解即可; (3)由题意得,甲从A 村庄到B 村庄的行驶过程中的函数解析式为y=240-60t ,设乙从B 村庄到A 村庄行驶过程中的函数解析式为y 2=mt+n ,将点(72,0),(4,40)代入求出y 2=80t-280,根据y=y 2得到240-60t=80t-280,求出t 即可.【详解】解:(1)根据函数图象得,A ,B 两村庄之间的距离为240km ,乙比甲晚出发1h , 乙的速度为7200(1)2÷-=80km/h ,甲的速度为2404÷=60km/h ,故答案为:240,1,80,60;(2)当0≤t <1时,y 2=200; 当712t ≤≤时,设2y 与t 之间的函数关系式为:2y kt b =+. 由(1)知,乙的速度为80km/h ,∴80k =-.将(1,200)代入280y t b =-+,得280b =,∴乙从C 村庄到B 村庄的行驶过程中,与B 村庄的距离2y 与甲行驶的时间t 之间的函数关系式为()22000178028012t y t t ⎧≤<⎪=⎨⎛⎫-+≤≤ ⎪⎪⎝⎭⎩. (3)由题意得,甲从A 村庄到B 村庄的行驶过程中的函数解析式为y=240-60t , 设乙从B 村庄到A 村庄行驶过程中的函数解析式为y 2=mt+n ,∵乙的行驶速度为80km/h , ∴780(4)402⨯-=,∴y 2=mt+n 过点(72,0),(4,40), ∴702440t n t n ⎧+=⎪⎨⎪+=⎩,解得80280t n =⎧⎨=-⎩, ∴y 2=80t-280,当y=y 2时,240-60t=80t-280, 解得267t =. 当267t =时,甲与乙相遇. 【点睛】此题考查一次函数的实际应用,待定系数法求函数解析式,一次函数图象交点,解题的关键是正确理解函数图象,掌握路程、时间、速度的关系.23.(1)240(010)y x x =+≤≤;(2)52万元.【分析】(1)A 型机器人购进x 台,则B 型机器人购进(10-x )台.再根据题意即可列出y 与x 之间的函数关系式.(2)根据题意可列方程:10080(10)920x x +⨯-=,解出x ,即可求出A 型机器人和B 型机器人分别购进多少台,最后即可求出该公司需要投资的金额.【详解】(1)A 型机器人购进x 台,则B 型机器人购进(10-x )台,根据题意,可列函数关系式:64(10)(010)y x x x =+-≤≤ ,即240(010)y x x =+≤≤.(2)根据题意可列方程:10080(10)920x x +⨯-=,解得:x =6,即A 型机器人购进6台,B 型机器人购进10-6=4台,∴该公司需要投资金额为:664452⨯+⨯=万元.【点睛】本题考查一次函数和一元一次方程的实际应用.根据题意正确的列出函数关系式和一元一次方程是解答本题的关键.24.(1)()211212AOB S x y x y =-△;(2)存在,()3,3B . 【分析】(1)把点的坐标转化成对应线段的长,按照图形面积的分割方式,代入化简即可;(2)把坐标代入(1)中的结论中,计算,是否存在b 值,存在,说明有这样的点B ,反之,没有.【详解】(1)如图,过点A 作AM x ⊥轴于点M ,过点B 作BN x ⊥轴于点N ,则OAB OAM OBN AMNB S S S S =+-△△△梯形()()11122122111222x y y y x x x y =+⨯+-- 111211221222111111222222x y y x x y x y x y x y =+-+-- 12121122y x x y =-.(2)根据(1)的结论,得 ()1232b a ab +-=,即3b =,点B 在第一象限,3b ∴=,故存在这样的点B ,且为()3,3B .【点睛】本题考查了坐标系中图形面积的计算,通过分解坐标,把点的坐标转化为对应线段的长,适当分割图形是计算面积的关键.25.(1)859;(2). 【分析】(1)根据零指数幂、负指数幂和二次根式的性质计算即可;(2)化简二次根式,在进行加减即可;【详解】解:(1)原式=1159-+=859;(2)原式=()-【点睛】本题主要考查了二次根式的运算,结合零指数幂、负指数幂计算是解题的关键. 26.(1)① 9;② 9;(2)4123S S S S =++,见解析【分析】(1)①在等腰直角三角形ACD ∆中,根据勾股定理AD =CD =②设5BEG S S ∆=,则()45235423++BEA BFC S S S S S S S S S S ∆∆-=+-=--,利用勾股定理得出AE BE ==CF BF ==即可求解;(2)设5BEG S S ∆=,假设一个等腰直角三角形的斜边为a ,则面积为214a ,利用勾股定理得出222AC BC AB +=,则222111444AC BC AB +=,即ABE ADC BFC S S S =+△△△,依此即可求解.【详解】解:(1)①ACD ∆是等腰直角三角形,AC =6,∴AD =CD =1192S ∴=⨯=; ②ACB ∠=90°,AC =6,BC =8,∴AB =10,EAB ∆和FCB ∆是等腰直角三角形,∴AE BE ==CF BF ==,设5BEG S S ∆=()4523542311++52524242922BEA BFC S S S S S S S S S S ∆∆-=+-=--=⨯⨯-⨯⨯=;(2)设5BEG S S ∆=,如图,等腰直角三角形的面积公式12ABC S AB CD =⋅=214a ,∵等腰直角三角形ACD ∆,EAB ∆,FCB ∆,∴222111,,444ADC BFC ABE S AC S BC S AB ===△△△, ∵222AC BC AB +=,∴222111444AC BC AB +=,即ABE ADC BFC S S S =+△△△, ∴451253S S S S S S +=+++,∴4123S S S S =++.【点睛】本题考查勾股定理,等腰直角三角形的性质,三角形的面积,有一定难度,解题关键是将勾股定理和直角三角形的面积公式进行灵活的结合和应用.。
【浙教版】八年级数学上期末模拟试题(带答案)(2)
一、选择题1.下列命题中,真命题是( )A .有两边和一角对应相等的两个三角形全等B .有两边和第三边上的高对应相等的两个三角形全等C .有两边和其中一边上的高对应相等的两个三角形全等D .有两边和第三边上的中线对应相等的两个三角形全等 2.下列命题中的假命题是( ) A .三角形的一个外角大于内角 B .同旁内角互补,两直线平行 C .21x y =-⎧⎨=⎩是二元一次方程231x y +=-的一个解D .方差是刻画数据离散程度的量 3.下列命题是真命题的是( ) A .相等的角是对顶角 B .内错角相等C .任何非负数的算术平方根是非负数D .直线外一点到这条直线的垂线段叫做点到直线的距离4.某学校操场是周长为400 m 的长方形,且长比宽的2倍少40m .若设该长方形的长为 x ,宽为y ,则可列方程组为( ) A .400240x y y x+=⎧⎨-=⎩B .400240x y y x+=⎧⎨+=⎩C .200240x y y x+=⎧⎨-=⎩D .200240x y y x +=⎧⎨+=⎩5.若2(23)3x y z -+=,2(23)203x y z ++=,则23xy yz +的值是( ) A .50B .100C .103D .2026.如图,在平面直角坐标系中,ABC ∆的顶点坐标分别为(1,1)A ,(3,1)B ,(2,2)C ,当直线3y kx =+与ABC ∆有交点时,k 的取值范围是( )A .2132k -≤≤- B .223k -≤≤- C .223k -<<- D .122k -≤≤-7.如图,直线l 分别与x 轴、y 轴交于点A ,B ,点C 为线段AB 上的一动点,过点C 分别作CE x ⊥轴于点E ,作CF y ⊥轴于点F ,若四边形OECF 的周长为6,则直线l 的解析式为( )A .6y x =-+B .6y x =+C .3y xD .3y x =-+8.如图,在直径为AB 的半圆O 上有一动点P 从A 点出发,按顺时针方向绕半圆匀速运动到B 点,然后再以相同的速度沿着直径回到A 点停止,线段OP 的长度d 与运动时间t 之间的函数关系用图象描述大致是( )A .B .C .D .9.《九章算术》中记载:“今有共买鸡,人出八,盈三;人出七,不足四.问人数、鸡价各几何?”译文:“今天有几个人共同买鸡,每人出8钱,多余3钱,每人出7钱,还缺4钱.问人数和鸡的价钱各是多少?”设人数有x 人,鸡的价钱是y 钱,可列方程组为( ). A .7384x y x y-=⎧⎨+=⎩B .7384x yx y +=⎧⎨-=⎩C .8374x y x y-=⎧⎨+=⎩D .8374x yx y +=⎧⎨-=⎩10.如图,将点A 0(-2,1)作如下变换:作A 0关于x 轴对称点,再往右平移1个单位得到点A 1,作A 1关于x 轴对称点,再往右平移2个单位得到点A 2,…,作A n -1关于x 轴对称点,再往右平移n 个单位得到点A n (n 为正整数),则点A 64的坐标为( )A .(2078,-1)B .(2014 ,-1)C .(2078 ,1)D .(2014 ,1)11.下面是一个按某种规律排列的数表,那么第7行的第2个数是:( ) 第1行 1第2行 2 3 2第3行5 6 7 22 3第4行 10 11 23 13 14 15 4……A .37B .38C .39D .21012.如图,两个较大正方形的面积分别为225,289,则字母A 所代表的正方形的面积为( )A .514B .8C .16D .64二、填空题13.如图,在△ABC 中,点D 在BC 上,将点D 分别以AB 、AC 为对称轴,画出对称点E 、F ,并连接AE 、AF ,根据图中标示的角度,可求得∠EAF 的度数为___________.14.如图,AB CD ,一副三角尺按如图所示放置,∠AEG =20度,则 HFD ∠为 ______________度.15.若点(2,2)A m n m n ++在y 轴的负半轴上,且点A 到x 轴的距离为6,则m n +=___________.16.若方程组34526x y k x y k -=-⎧⎨+=⎩的解中2019x y +=,则k 等于_____.17.如图,一个函数的图象由射线BA ,线段BC ,射线CD 组成,其中点(1,2)A -,()1,3B ,(2,1)C ,()6,5D .当y 随x 的增大而增大时,则x 的取值范围是_______.18.若点P (2m+4,3m+3)在x 轴上,则点P 的坐标为________.19.已知一个直角三角形的两边长分别是a ,b ,且a ,b 340a b --=.则斜边长是____________20.如图,已知圆柱的底面周长为10cm ,高AB 为12cm ,BC 是底面的直径,一只蚂蚁沿着圆柱侧面爬行觅食从点C 爬到点A ,则蚂蚁爬行的最短路线为________cm .三、解答题21.综合与探究问题情境:如图,已知OC 平分AOB ∠,CD OA ⊥于点D ,E 为DC 延长线上一点,EF OB ⊥于点F ,EG 平分DEF ∠交OB 于点G ,180DEF AOB ∠+∠=︒.问题发现:(1)如图1,当90AOB ∠=︒时,12∠+∠=____________°; (2)如图2,当AOB ∠为锐角时,1∠与2∠有什么数量关系,请说明理由; 拓展探究(3)在(2)的条件下,已知直角三角形中两个锐角的和是90°,试探究OC 和GE 的位置关系,并证明结论;(4)如图3,当AOB ∠为锐角时,若点E 为线段DC 上一点,EF OB ⊥于点F ,EH 平分DEF ∠交OA 于点H ,180DEF AOB ∠+∠=︒.请写出一个你发现的正确结论. 22.如图,已知一次函数2y x =-的图象与y 轴交于点A ,一次函数4y x b =+的图象与y 轴交于点B ,且与x 轴以及-次函数2y x =-的图象分别交于点C 、D ,点D 的坐标为(2,4)--.(1)关于x 、y 的方程组24y x y x b -=-⎧⎨-=⎩的解为 .(2)求ABD △的面积;(3)在x 轴上是否存在点E ,使得以点,,C D E 为顶点的三角形是直角三角形?若存在,求出点E 的坐标;若不存在,请说明理由.23.甲,乙两地相距300千米.一辆货车和一辆轿车先后从甲地出发向乙地,轿车比货车晚出发1.5小时,如图,线段OA 表示货车离甲地的距离y (千米)与时间x (小时)之间的函数关系;折线BCD 表示轿车离甲地的距离y (千米)与时间x (时)之间的函数关系,线段CD 对应的函数解析式是y =110x ﹣195(2.5≤x≤4.5),在轿车行进过程中,轿车行驶多少时间,两车相距15千米?24.如图,平面直角坐标系中ABC 的顶点均在格点上,点A 的坐标为()2,3-. (1)请在图中作出与ABC 关于y 轴对称的A B C '''; (2)写出点,A B ''和点C '的坐标. (3)求ABC 的面积.25.已知23a =+,23b =-,求a 2+b 2﹣3ab 的值.26.勾股定理是人类最伟大的十个科学发现之一,在《周髀算经》中就有“若勾三,股四,则弦五”的记载,汉代数学家赵爽为证明勾股定理创制的“赵爽弦图”也流传至今.迄今为止已有400多种证明勾股定理的方法.下面是数学课上创新小组验证过程的一部分.请认真阅读并根据他们的思路将后续的过程补充完整:将两张全等的直角三角形纸片按图1所示摆放,其中b a >,点E 在线段AC 上,点B 、D 在边AC 两侧,试证明:222+=a b c .证明:如图2,连结DB 、DC ,过点D 作BC 边上的高DF ,则DF EC b a ==-. ∵ABC DAE △≌△, ∴ABC DAE ∠=∠. ∵ABC 是直角三角形,90ACB ∠=︒,∴90ABC BAC ∠+∠=︒,∴DAB ∠=______+______=_______.∵ADB DCB ADCB S S S =+=△△四边形_________. ∴222+=a b c .【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据三角形全等的判定方法对A 、D 进行判断;利用三角形高的位置不同可对B 、C 进行判断. 【详解】A 、有两边和它们的夹角对应相等的两个三角形全等,所以A 选项错误;B 、有两边和第三边上的高对应相等的两个锐角三角形全等,所以B 选项错误;C 、有两边和其中一边上的高对应相等的两个锐角三角形全等,所以C 选错误;D 、有两边和第三边上的中线对应相等的两个三角形全等,所以D 选项正确; 故选:D . 【点睛】本题考査了判断命题真假,以及全等三角形的判定,熟练掌握全等三角形的判定,仔细分类讨论是解题关键.2.A解析:A 【分析】根据三角形的外角、平行线的判断、二元一次方程的解以及方差即可判断出结果. 【详解】解:在三角形内角中大于90°角的外角是一个锐角,故A 选项符合题目要求; 同旁内角互补,两直线平行,故B 选项不符合题目要求;21x y =-⎧⎨=⎩是二元一次方程231x y +=-的一个解,故C 选项不符合题目要求; 方差是刻画数据离散程度的量,故D 选项不符合题目要求. 故选:A 【点睛】本题主要考查的是命题与定理的知识,正确的掌握这些知识点是解题的关键. 3.C解析:C 【分析】根据对顶角的性质、平行线的性质、算术平方根的定义、点到直线距离的定义逐一分析即可. 【详解】解:A . 对顶角相等,但是相等的角不一定是对顶角,该项为假命题; B .两直线平行,内错角相等,该项为假命题; C . 任何非负数的算术平方根是非负数,该项为真命题;D . 直线外一点到这条直线的垂线段的长度叫做点到直线的距离,该项为假命题; 故选:C . 【点睛】本题考查判断命题的真假,掌握对顶角的性质、平行线的性质、算术平方根的定义、点到直线距离的定义是解题的关键.4.C解析:C 【分析】根据长加宽等于周长的一半200m ,长比宽的2倍少40m ,列得方程组. 【详解】解:若设该长方形的长为 x ,宽为y ,则可列方程组为200240x y y x +=⎧⎨-=⎩,故选:C . 【点睛】此题考查二元一次方程组的实际应用,正确理解题意是解题的关键. 5.A解析:A 【分析】先开平方,然后组成方程组,解方程组求出y 与(2x+3z ),整体代入求值计算即可. 【详解】解:∵2(23)3x y z -+=,2(23)203x y z ++=,∴23x y z -+=,23x y z ++=∴2323x y z x y z ⎧-+=⎪⎨++=⎪⎩2323x y z x y z ⎧-+=⎪⎨++=⎪⎩,2323x y z x y z ⎧-+=⎪⎨++=⎪⎩,2323x y z x y z ⎧-+=⎪⎨++=⎪⎩, ∴,()()2323x z y x z y ⎧+-=⎪⎨++=⎪⎩()()2323x z y x z y ⎧+-=⎪⎨++=⎪⎩,()()2323x z y x z y ⎧+-=⎪⎨++=⎪⎩,()()2323x z y x z y ⎧+-=⎪⎨++=⎪⎩,解得2322x z y ⎧⎪+=⎪⎨⎪=⎪⎩,()23x z y ⎧+=⎪⎪⎨⎪=⎪⎩,()23x z y ⎧+=⎪⎪⎨⎪=⎪⎩,()23x z y ⎧+=⎪⎪⎨⎪=⎪⎩, ()(20332033232350224+xy yz=y x z -++===,()(2032033232350224+xy yz=y x z ---++===,()(20332033232350224-xy yz=y x z -++===,()(2032033232350224+xy yz=y x z ---++===.故选择:A . 【点睛】本题考查开平方,解方程组,因式分解,整体代入求代数式的值,掌握开平方,解方程组,因式分解,整体代入求代数式的值.6.B解析:B 【分析】把A 点和B 点坐标分别代入y=kx+3中求出对应的的值,即可求得直线y=kx+3与△ABC 有交点时k 的临界值,然后再确定k 的取值范围. 【详解】解:把A (1,1)代入y=kx+3得1=k+3,解得k=-2 把B (3,1)代入y=kx+3得1=3k+3,解得:k=23-所以当直线y=kx+3与△ABC 有交点时,k 的取值范围是223k -≤≤-. 故答案为B . 【点睛】本题考查了一次函数与系数的关系,将A 、B 点坐标代入解析式确定k 的边界点是解答本题的关键.7.C解析:C 【分析】设点C 的坐标为(x ,y ),根据矩形的性质得到CF+CE=3,得到直线l 的表达式. 【详解】解:设点C 的坐标为(x ,y ), ∵四边形OECF 的周长为6, ∴CF+CE=3,∴|x|+|y|=3,即y=x+3, ∴直线l 的表达式为y=x+3, 故选:C . 【点睛】本题考查的是一次函数解析式的求法,灵活运用待定系数法求一次函数解析式是解题的关键.8.A解析:A 【解析】试题分析:∵圆的半径为定值,∴在当点P 从点A 到点B 的过程中OP 的长度为定值,当点P 从点B 到点O 的过程中OP 逐渐缩小,从点O 到点A 的过程中OP 逐渐增大. 故选A .9.C解析:C 【分析】设人数有x 人,鸡的价钱是y 钱,依据题意列方程组,即可完成求解. 【详解】设人数有x 人,鸡的价钱是y 钱 依据题意得:8374x yx y -=⎧⎨+=⎩即8374x y x y -=⎧⎨+=⎩故选:C . 【点睛】本题考查了二元一次方程组的知识;解题的关键是熟练掌握二元一次方程组的性质,从而完成求解.10.C解析:C【分析】观察不难发现,角码为奇数时点的纵坐标为-1,为偶数时点的纵坐标为1,然后再根据向右平移的规律列式求出点的横坐标即可.【详解】解:由题意得:()()()()()123451,1,1,1,4,1,8,1,13,1A A A A A ----……由此可得角码为奇数时点的纵坐标为-1,为偶数时点的纵坐标为1,故64A 的纵坐标为1,则点64A 的横坐标为()16464212345 (64220782)+⨯-+++++++=-+=,所以()642078,1A . 故选C .【点睛】 本题主要考查平面直角坐标系点的坐标规律,关键是根据题目所给的方式得到点的坐标规律,然后求解即可.11.B解析:B【分析】根据观察,可得规律(n-1)最后一个数是(n-1),可得第n 行的第二个数的算术平方根【详解】……第n第7行的第2故答案为:B .【点睛】本题是通过算术平方根的变化探究数字变化规律,观察得出规律是解题关键. 12.D解析:D【分析】设直角三角形的三边长分别为a 、b 、c ,由题意得222+=a b c ,代入得到2225289a +=,计算求出答案即可.【详解】如图,设直角三角形的三边长分别为a、b、c,由题意得222a b c,+=∴2225289a+=,∴字母A所代表的正方形的面积264a=,故选:D..【点睛】此题考查以弦图为背景的证明,熟记勾股定理的计算公式、理解三个正方形的面积关系是解题的关键.二、填空题13.130°【分析】连接AD利用轴对称的性质三角形的内角和定理解答即可【详解】连接AD∵D点分别以ABAC为对称轴画出对称点EF∴∠EAB=∠BAD∠FAC =∠CAD∵∠B=63°∠C=52°∴∠BAC解析:130°【分析】连接AD,利用轴对称的性质、三角形的内角和定理解答即可.【详解】连接AD,∵D点分别以AB、AC为对称轴,画出对称点E、F,∴∠EAB=∠BAD,∠FAC=∠CAD,∵∠B=63°,∠C=52°,∴∠BAC=∠BAD+∠DAC=180°−63°−52°=65°,∴∠EAF=2∠BAC=130°,故答案为:130°.【点睛】此题考查轴对称的性质等知识点,关键是利用轴对称的性质解答.14.35【解析】分析:过点G作AB平行线交EF于P根据平行线的性质求出∠EGP求出∠PGF根据平行线的性质平角的概念计算即可详解:过点G作AB平行线交EF于P由题意易知AB∥GP∥CD∴∠EGP=∠AE解析:35【解析】分析:过点G 作AB 平行线交EF 于P ,根据平行线的性质求出∠EGP ,求出∠PGF ,根据平行线的性质、平角的概念计算即可.详解:过点G 作AB 平行线交EF 于P ,由题意易知,AB ∥GP ∥CD ,∴∠EGP=∠AEG=20°,∴∠PGF=70°,∴∠GFC=∠PGF=70°,∴∠HFD=180°-∠GFC-∠GFP-∠EFH=35°.故答案为35°.点睛:本题考查的是平行线的性质、三角形内角和定理的应用,掌握两直线平行、内错角相等是解题的关键.15.-2【分析】根据题意列出方程组求得mn 的值即可求解【详解】根据题意得:①+②得:∴故答案为:【点睛】本题考查了坐标与图形坐标轴上点的坐标特征二元一次方程组的应用解此题的关键是列出关于的方程组解析:-2【分析】根据题意列出方程组,求得m 、n 的值,即可求解.【详解】根据题意,得:2026m n m n +=⎧⎨+=-⎩①②, ①+②得:336m n +=-,∴2m n +=-,故答案为:2-.【点睛】本题考查了坐标与图形,坐标轴上点的坐标特征,二元一次方程组的应用,解此题的关键是列出关于m 、n 的方程组.16.2020【分析】将方程组的两个方程相加可得再根据即可得到进而求出的值【详解】解:①②得即:故答案为:2020【点睛】本题考查二元一次方程组的解法整体代入是求值的常用方法解析:2020【分析】将方程组的两个方程相加,可得1x y k +=-,再根据2019x y +=,即可得到12019k -=,进而求出k 的值.【详解】解:34526x y k x y k -=-⎧⎨+=⎩①②, ①+②得,5555x y k +=-,即:1x y k +=-,2019x y +=,12019k ∴-=2020k ∴=,故答案为:2020.【点睛】本题考查二元一次方程组的解法,整体代入是求值的常用方法.17.或【分析】根据函数图象和题目中的条件可以写出各段中函数图象的变化情况从而可以解答本题【详解】由函数图象可得当时y 随x 的增大而增大当时y 随x 的增大而减小当时y 随x 的增大而增大∴当随的增大而增大时则的取 解析:1x ≤或2x ≥【分析】根据函数图象和题目中的条件,可以写出各段中函数图象的变化情况,从而可以解答本题.【详解】由函数图象可得,当1x ≤时,y 随x 的增大而增大,当12x <<时,y 随x 的增大而减小,当2x ≥时,y 随x 的增大而增大,∴当y 随x 的增大而增大时,则x 的取值范围是:1x ≤或2x ≥.故答案为:1x ≤或2x ≥.【点睛】本题考查了函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答. 18.(20)【分析】根据x 轴上点的坐标的特点y=0计算出m 的值从而得出点P 坐标【详解】解:∵点P (2m+43m+3)在x 轴上∴3m+3=0∴m=﹣1∴2m+4=2∴点P 的坐标为(20)故答案为(20)解析:(2,0)【分析】根据x 轴上点的坐标的特点y=0,计算出m 的值,从而得出点P 坐标.【详解】解:∵点P (2m+4,3m+3)在x 轴上,∴3m+3=0,∴m=﹣1,∴2m+4=2,∴点P的坐标为(2,0),故答案为(2,0).19.5或4【分析】根据绝对值和算术平方根具有非负性可得ab的值然后再利用勾股定理分类求出该直角三角形的斜边长即可【详解】∵满足∴a−3=0b−4=0解得:a=3b=4当ab为直角边该直角三角形的斜边长为解析:5或4.【分析】根据绝对值和算术平方根具有非负性可得a、b的值,然后再利用勾股定理,分类求出该直角三角形的斜边长即可.【详解】∵a,b40b-=,∴a−3=0,b−4=0,解得:a=3,b=4,当a,b为直角边,=;54也可能为斜边长.综上所述:直角三角形的斜边长为:5或4.故答案为:5或4.【点睛】此题主要考查了勾股定理和绝对值和算术平方根的非负性,关键是掌握绝对值和算术平方根具有非负性,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.20.13【分析】把圆柱沿母线AB剪开后展开点C展开后的对应点为C′利用两点之间线段最短可判断蚂蚁爬行的最短路径为AC′然后利用勾股定理计算出AC′即可【详解】把圆柱沿母线AB剪开后展开点C展开后的对应点解析:13【分析】把圆柱沿母线AB剪开后展开,点C展开后的对应点为C′,利用两点之间线段最短可判断蚂蚁爬行的最短路径为AC′,然后利用勾股定理计算出AC′即可.【详解】把圆柱沿母线AB剪开后展开,点C展开后的对应点为C′,则蚂蚁爬行的最短路径为AC′,如图,∵AB =12, BC′=5,在Rt △ABC′,AC′2251213+=∴蚂蚁爬行的最短路程为13cm .故答案是:13【点睛】本题考查了平面展开−最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.三、解答题21.(1)90;(2)1290∠+∠=︒,理由见解析;(3)//OC GE ,证明见解析;(4)答案不唯一,例如1290∠+∠=︒【分析】(1)根据角平分线的性质得∠1=12∠AOB=45︒,∠2=12∠DEF=45︒,即可求得1290∠+∠=︒; (2)根据角平分线的性质得112DEF ∠=∠,122AOB ∠=∠,即可求得1290∠+∠=︒; (3)在Rt △EFG 中,得到190EGF ∠+∠=︒,结合1290∠+∠=︒,得到∠2=∠EGF ,即可得到//OC GE ;(4)根据角平分线的性质得∠1=12∠AOB ,∠2=12∠DEF ,即可求得1290∠+∠=︒. 【详解】(1)∵CD OA ⊥,∴90AOB ∠=︒,∵180DEF AOB ∠+∠=︒,∴90DEF ∠=︒,∵OC 平分AOB ∠,EG 平分DEF ∠,∴∠1=12∠AOB=45︒,∠2=12∠DEF=45︒, ∴1290∠+∠=︒;故答案为:90;(2)1290∠+∠=︒.理由如下:∵OC ,EG 分别是AOB ∠,DEF ∠的平分线, ∴112DEF ∠=∠,122AOB ∠=∠, ∴112()2DEF AOB ∠+∠=∠+∠, ∵180DEF AOB ∠+∠=︒,∴1290∠+∠=︒;(3)OC 和EG 的位置关系为OC ∥GE .证明:∵EF OB ⊥于点F ,∴90EFG ∠=︒.∴190EGF ∠+∠=︒.∵1290∠+∠=︒,∴2EGF ∠=∠,∴OC ∥GE ;(4)答案不唯一,例如1290∠+∠=︒.理由如下:∵OC ,EH 分别是AOB ∠,DEF ∠的平分线, ∴112DEF ∠=∠,122AOB ∠=∠, ∴112()2DEF AOB ∠+∠=∠+∠, ∵180DEF AOB ∠+∠=︒,∴1290∠+∠=︒;【点睛】本题考查了平行线的判定,角平分线的定义,正确的识别图形是解题的关键.22.(1)24x y =-⎧⎨=-⎩;(2)6;(3)存在,(2,0)E -或(18,0)E - 【分析】(1)直接结合题意和图象即可得出结论;(2)分别求出A ,B 的坐标,由12△ABD D S AB x =计算即可; (3)分三种情况讨论:①当点E 为直角顶点时,过点D 作DE 1⊥x 轴于E 1,即可得出结论;②当点C 为直角顶点时,x 轴上不存在点E ;③当点D 为直角顶点时,过点D 作DE 2⊥CD 交x 轴于点E 2.设E 2(t ,0),利用勾股定理即可得出结论.【详解】(1)由图象可知:关于x 、y 的方程组24y x y x b -=-⎧⎨-=⎩的解为24x y =-⎧⎨=-⎩; 故答案为:24x y =-⎧⎨=-⎩;(2)由题意可直接得出()0,2A -,将(2,4)--代入4y x b =+,解得:4b =,∴()0,4B ,6AB =, ∴1162622△ABD D S AB x ==⨯⨯=; (3)如图,①当点E 为直角顶点时,过点D 作DE 1⊥x 轴于E 1.∵D (-2,-4),∴E 1(-2,0)②当点C 为直角顶点时,x 轴上不存在点E .③当点D 为直角顶点时,过点D 作DE 2⊥CD 交x 轴于点E 2.设E 2(t ,0).∵C (-1,0),E 1(-2,0),∴CE 2=-1-t ,E 1E 2=-2-t .∵D (-2,-4),∴DE 1=4,CE 1=-1-(-2)=1.在12Rt DE E ∆中,由勾股定理得:()2222222211242420DE DE E E t t t =+=+--=++. 在1Rt CDE ∆中,由勾股定理得:2221417CD =+=.在2Rt CDE ∆中,由勾股定理得:22222CE DE CD =+.∴(-1-t )2=t 2+4t +20+17解得:t =-18.∴E 2(-18,0).综合上所述:点E 坐标为(-2,0)或(-18,0).【点睛】本题属于一次函数综合题,涉及的知识有:一次函数与坐标轴的交点,勾股定理,一次函数与方程组,利用了数形结合的思想,熟练掌握一次函数的性质是解答本题的关键. 23.轿车行驶2.1小时或2.7小时时,两车相距15千米【分析】根据函数图象中的数据,可以求得轿车和货车的速度,先计算出当轿车行驶到点C 时两车的距离,然后再计算CD 段,两车相距15千米时的情况,从而可以解答本题,注意问题是轿车行进过程中,何时两车相距15千米.【详解】解:由图象可得,当1.5≤x≤2.5时,轿车的速度为80÷(2.5﹣1.5)=80(千米/时),货车的速度为:300÷5=60(千米/时),当轿车行驶到点C 时,两车相距60×2.5﹣80=150﹣80=70(千米),∴两车相距15千米时,在CD 段,由图象可得,OA 段对应的函数解析式为y =60x ,则|60x ﹣(110x ﹣195)|=15,解得x =3.6或x =4.2,3.6﹣1.5=2.1(小时),4.2﹣1.5=2.7(小时),即在轿车行进过程中,轿车行驶2.1小时或2.7小时时,两车相距15千米.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.24.(1)见解析;(2)()2,3,()3,1,()1,2--;(3)5.5【分析】(1)依据轴对称的性质,即可得到A B C '''的三个顶点,依次连接即可.(2)根据图像直接找出坐标即可.(3)依据割补法即可得到△ABC 的面积.【详解】(1)如图所示:(2)点A '的坐标为2,3(),点B '的坐标为3,1(),点C '的坐标为()1,2--(3)ABC ∆的面积为:11145534321222=⨯-⨯⨯-⨯⨯-⨯⨯ 207.561=---5.5=【点睛】本题考查作图-轴对称变换,解题关键熟练掌握轴对称图形的作法.25.11【分析】利用二次根式的运算法则首先计算出a+b ,ab 的值,然后利用配方法对多项式进行变形整理,再代入,进行计算即可.【详解】解:∵23a =+23b =-∴a +b =4,(23)(23)431ab =+=-=,∴a 2+b 2﹣3ab =(a +b )2﹣5ab =42﹣5×1=11.【点睛】本题考查二次根式的混合运算,掌握运算顺序和计算法则并能灵活应用完全平方公式进行计算是解题关键.26.见详解【分析】先推出DAB ∠=90°,再根据ADB DCB ADCB S S S =+=△△四边形ADC ACB S S +△△,即可得到结论.【详解】证明:如图2,连结DB 、DC ,过点D 作BC 边上的高DF ,则DF EC b a ==-. ∵ABC DAE △≌△,∴ABC DAE ∠=∠.∵ABC 是直角三角形,90ACB ∠=︒, ∴90ABC BAC ∠+∠=︒,∴DAB ∠=∠DAE+∠BAC=90°. ∵ADB DCB ADCB S S S =+=△△四边形212c +1()2a b a -. 又∵21122ADC ACB ADCB S S S b ab =+=+△△四边形, ∴212c +1()2a b a -=21122b ab +, ∴222+=a bc .【点睛】本题主要考查勾股定理的证明,添加辅助线,利用割补法表示图形的面积,是解题的关键.。
【浙教版】八年级数学上期末模拟试题带答案(2)
一、选择题1.下列命题是真命题的是( )A .平行于同一直线的两条直线平行B .两直线平行,同旁内角相等C .同旁内角互补D .同位角相等 2.下列命题中,假命题是( )A .在同一平面内,垂直于同一条直线的两直线平行B .到线段两端点距离相等的点在这条线段的垂直平分线上C .一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等D .一边长相等的两个等腰直角三角形全等3.下列各数中,可以用来说明命题“任何偶数都是4的倍数”是假命题的反例是( ) A .5 B .12 C .14 D .16 4.已知关于x ,y 的二元一次方程组3233235x y k x y k ++=⎧⎨++=⎩的解满足8x y +=,则k 的值为( )A .4B .5C .6-D .8-5.已知关于x ,y 的两个方程组 48312ax by x y -=-⎧⎨+=⎩ 和 35180516ax by x y +=⎧⎨+=⎩具有相同的解,则a ,b 的值是( ) A .=202a b -⎧⎨=⎩ B .=202a b ⎧⎨=-⎩C .=202a b ⎧⎨=⎩D .=202a b -⎧⎨=-⎩ 6.对于函数31y x =-+,下列结论正确的是( )A .它的图象必经过点(1,3)B .它的图象经过第一、三、四象限C .当x >0时,y <0D .y 的值随x 值的增大而减小7.下列各图象中,y 不是..x 的函数的是( )A .B .C .D .8.已知∠A 、∠B 互余,∠A 比∠B 大30°,设∠A 、∠B 的度数分别为x°、y°,下列方程组中符合题意的是( )A .18030x y x y +=⎧⎨=-⎩B .180+30x y x y +=⎧⎨=⎩C .9030x y x y +=⎧⎨=-⎩D .90+30x y x y +=⎧⎨=⎩ 9.已知点A (1,1y )和点B (a ,2y )在y =-2x +b 的图象上且1y >2y ,则a 的值可能是( )A .2B .0C .-1D .-210.已知点P (a ,3)、Q (﹣2,b )关于y 轴对称,则a b a b +-的值是( ) A .15- B .15 C .﹣5D .5 11.若制作的一个长方体底面积为24,长、宽、高的比为4:2:1,则此长方体的体积为( )A .216B .123C .243D .483 12.下列各组数中,是勾股数的一组是( )A .4,5,6B .5,7,2C .10,24,26D .12,13,15 二、填空题13.已知,如图,在ABC 中,AD ,AE 分别是ABC 的高和角平分线,若30ABC ∠=︒;60ACB ∠=︒,则DAE =∠__________.14.如图,AE ∥CF ,∠ACF 的平分线交AE 于点B ,G 是CF 上的一点,∠GBE 的平分线交CF 于点D ,且BD ⊥BC ,下列结论:①BC 平分∠ABG ;②AC ∥BG ;③与∠DBE 互余的角有2个;④若∠A =α,则∠BDF =1802α︒-.其中正确的有_____.(把你认为正确结论的序号都填上)15.若方程组ax y c x by d -=⎧⎨-=⎩的解为12x y =⎧⎨=-⎩,则方程组y ax c by x d -=⎧⎨-=⎩的解为______. 16.若()1280m m x y -++=是关于x ,y 的二元一次方程,则m =__________. 17.若直线36y x =-+与两坐标轴的交点分别是A 、B ,O 为坐标原点,则AOB 的面积是_______.18.点M (2,-3)到x 轴的距离是______;到y 轴的距离是______.19.旧知回顾:在七年级学习“平方根”时,我们会直接开方解形如2810x -=的方程(解为129,9x x ==-).解题运用:方程(18)(1)170x x x -++=解为_________. 20.如图,长方体的长为15cm ,宽为10cm ,高为20cm ,点B 距离C 点5cm ,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,则蚂蚁爬行的最短距离是______cm .三、解答题21.阅读感悟:如下是小明在学习完“证明三角形内角和定理”后对所学知识的整理和总结,请仔细阅读,并完成相应的任务.三角形内角和定理的证明今天,在老师的带领下学习了三角形内角和定理证明的多种方法,我对这些方法进行了梳理,主要分为两大类:动手实践操作类①量角器测量法:通过引导同学们画出任意三角形,每人都用量角器测量并将所测得的角度相加,得到结论;②折叠法:如图1,将①所画的三角形剪下并折叠,使每个角都落到三角形一边的同一点处,发现三个角正好可拼为一个平角,进而得到相关结论;③剪拼法:如图2,将方法②用过的三角形展开之后,随意的将某两个角撕下之后,拼到第三个角处,发现三个角正好可拼为一个平角,故而得到相应的结论.证明类(思路:由实际操作的后两种方法得到的启发,我们可以通过构造辅助线,将所证明的三个角通过某些特殊的方法转化到一条直线上,利用所学相关数学知识来证明三角形内角和):①如图3,过三角形的某个顶点作对边的平行线,利用平行线性质来证明;②如图4,延长三角形的某一条边,并过相应的点做一条平行线,进而利用平行线性质来证明;……任务:(1)“折叠法”和“剪拼法”中得到相应结论的根据是:_________.(2)“证明类”的方法中主要体现了_______的数学思想;A.方程 B.类比 C.转化 D.分类(3)结合以上数学思想,请在图5中画出一种不同于以上思路的证明方法,并证明三角形内角和定理.22.2019年是中华人民共和国成立70周年,全国多地用灯光秀为祖国庆祝生日.据悉,四川省内某城市灯光秀共使用照明灯和投射灯共50万个,共花费1005万元.已知照明灯的售价为每个9元,投射灯的售价为每个120元,请用方程或方程组的相关知识解决下列问题:(1)该城市灯光秀使用照明灯和投射灯各多少个?(2)某栋楼宇原计划安装照明灯1000个,投射灯50个.后因楼宇本身的设计,实际安装时投射灯比计划多安装了20%,照明灯的数量不变.卖灯的商家为祖国70华诞而让利,把照明灯和投射灯售价分别降低了m%,3%5m,实际上这栋楼宇照明灯和投射灯的总价为13536元,请求出m的值.23.小刚家与学校相距1000米,某天小刚上学时忘了带一本书,走了一段时间才想起,于是返回家拿书,然后加快速度赶到学校.下图是小刚与家的距离y (米)关于时间x (分钟)的函数图象.请你根据图象中给出的信息,解答下列问题:(1)小刚走了多远才返回家拿书?(2)求线段AB 所在直线的函数关系式;(3)求小刚走到8分钟时,小刚与家的距离.24.已知:(0,1),(2,0),(4,4)A B C -.(1)在图中所示的坐标系中描出各点,画出ABC ,并求ABC 的面积.(2)若ABC 各顶点的横坐标不变,纵坐标都乘以1-,在同一坐标系中描出对应的点A ',B ',C ',并依次连结这三个点得A B C ''',并写出ABC 与A B C '''有怎样的位置关系?25.计算:(1()233812-- (2)1560353+26.如图,这是一个供滑板爱好者使用的U 型池的示意图,该U 型池可以看成是长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是直径为40m π的半圆,其边缘20m ==AB CD ,点E 在CD 上,5m CE =,一滑板爱好者从A 点滑到E 点,则他滑行的最短距离为多少米?(边缘部分的厚度忽略不计)【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】对照平行线的性质和定理,逐一判断即可.【详解】∵平行于同一直线的两条直线平行,∴选项A正确;∵两直线平行,同旁内角互补,∴选项B错误;∵两直线平行,同旁内角互补,∴选项C错误;∵两直线平行,同位角相等,∴选项D错误;故选A.【点睛】本题考查了平行线的性质和判定,熟记性质和判定的条件和结论是解题的关键.2.D解析:D【分析】根据垂线的性质,线段垂直平分线的判定,全等三角形的判定对各选项分析判断后利用排除法求解.【详解】A、同一平面内,垂直于同一条直线的两直线互相平行,真命题,本选项不符合题意;B、到线段两端点距离相等的点在这条线段的垂直平分线上,真命题,本选项不符合题意;C、一条直角边和另一条直角边上的中线对应相等的两个直角三角形,首先根据“HL”定理,可判断两个小直角三角形全等,可得另一条直角边相等,然后,根据“SAS”,可判断两个直角三角形全等,真命题,本选项不符合题意;D、有一边相等的两个等腰直角三角形不一定全等,如:一个等腰直角三角形的直角边与另一个等腰直角三角形的斜边相等,这两个等腰直角三角形并不全等,假命题,本选项符合题意.故选:D.【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.3.C解析:C【详解】∵5不是偶数,且也不是4的倍数,∴不能作为假命题的反例,故A错误;∵12是偶数,且是4的倍数,∴不能作为假命题的反例,故B错误;∵14是偶数但不是4的倍数,∴可以用来说明命题“任何偶数都是4的倍数”是假命题的反例,故C正确;∵16是偶数,且也是4的倍数,∴不能作为假命题的反例,故D错误.故选C.4.D解析:D【分析】①+②求出x+y=845k-,根据已知得出845k-=8,求出即可.【详解】解:3233 235x y kx y k++=⎧⎨++=⎩①②∵①+②得:5x+5y+4k=8,∴x+y=845k-,∵关于x,y的二元一次方程组3233235x y kx y k++=⎧⎨++=⎩的解满足x+y=8,∴845k-=8,∴k=-8.故选:D【点睛】本题考查了二元一次方程组的解和解一元一次方程的应用,关键是能得出关于k的方程.5.C解析:C【分析】联立不含a 与b 的方程组成方程组,求出方程组的解得到x 与y 的值,代入剩下的方程计算即可求出a 与b 的值.【详解】联立得:312516x y x y +=⎧⎨+=⎩, 解得:26x y =⎧⎨=⎩, 将26x y =⎧⎨=⎩代入得:124530a b a b -=-⎧⎨+=⎩, 解得:202a b =⎧⎨=⎩, 故选:C .【点睛】本题考查了同解二元一次方程组,熟练掌握二元一次方程组的解法是解题的关键. 6.D解析:D【分析】根据一次函数图象上点的坐标特征对A 进行判断;根据一次函数的性质对B 、D 进行判断;利用x >0时,函数图象在y 轴的左侧,y <1,则可对C 进行判断.【详解】A 、当1x =时,312y x =-+=-,则点(1,3)不在函数31y x =-+的图象上,所以A 选项错误;B 、30k =-<,10b =>,函数图象经过第一、二、四象限,所以B 选项错误;C 、当x >0时,y <1,所以C 选项错误;D 、y 随x 的增大而减小,所以D 选项正确.故选:D .【点睛】本题考查了一次函数的性质:k >0,y 随x 的增大而增大;k <0,y 随x 的增大而减小.由于y=kx+b 与y 轴交于(0,b ),当b >0时,直线与y 轴交于正半轴;当b <0时,直线与y 轴交于负半轴.7.B解析:B【分析】对于自变量x 的每一个确定的值y 都有唯一的确定值与其对应,则y 是x 的函数,根据函数的定义解答即可.【详解】根据函数的定义,选项A 、C 、D 图象表示y 是x 的函数,B 图象中对于x 的一个值y 有两个值对应,故B 中y 不是x 的函数,故选:B.【点睛】此题考查函数的定义,函数图象,结合函数图象正确理解函数的定义是解题的关键. 8.D解析:D【解析】试题∠A 比∠B 大30°,则有x=y+30,∠A ,∠B 互余,则有x+y=90.故选D .9.A解析:A【分析】函数解析式y=-2x+b 知k <0,可得y 随x 的增大而减小,求出a 的取值范围即可求解.【详解】解:由y=-2x+b 知k <0,∴y 随x 的增大而减小,∵1y >2y ,∴a>1∴a 的值可能是2故选:A .【点睛】本题考查一次函数的图象及性质;熟练掌握一次函数的图象及性质是解题的关键. 10.C解析:C【分析】直接利用关于y 轴对称点的性质得出a ,b 的值,进而得出答案.【详解】∵点P (a ,3)、Q (-2,b )关于y 轴对称,∴2a =,3b =, 则23523a b a b ++==---. 故选:C .【点睛】本题主要考查了关于x ,y 轴对称点的性质,正确得出a ,b 的值是解题关键.注意:关于y轴对称的点,纵坐标相同,横坐标互为相反数.11.C解析:C【分析】设出长宽高,利用底面积,求出高,最后再求出体积【详解】设长方体的高为x,则长为4x,宽为2x,由题意得:4x×2x=24解得x x=(舍去)长方体的体积为故答案选:C【点睛】主要考查的是平方根的定义及算术平方根意义,,熟练掌握定义是解题的关键.12.C解析:C【分析】根据勾股定理的逆定理逐项分析解题即可.【详解】解:A.222456∴不是勾股数,故A不符合题意;4,5,6B. 222257+≠∴不是勾股数,故B不符合题意;5,7,2C. 222+=102426∴是勾股数,故C符合题意;10,24,26D. 222121315+≠∴不是勾股数,故D不符合题意,12,13,15故选:C.【点睛】本题考查勾股定理的逆定理,是重要考点,难度较易,掌握相关知识是解题关键.二、填空题13.15°【分析】根据三角形的内角和等于180°求出∠BAC再根据角平分线的定义求出∠BAE根据直角三角形两锐角互余求出∠BAD然后根据∠DAE=∠BAE-∠BAD计算即可得解【详解】解:∵∠ABC=3解析:15°【分析】根据三角形的内角和等于180°求出∠BAC,再根据角平分线的定义求出∠BAE,根据直角三角形两锐角互余求出∠BAD,然后根据∠DAE=∠BAE-∠BAD计算即可得解.【详解】解:∵∠ABC=30°,∠ACB=60°,∴∠BAC=180°-∠B-∠C=180°-30°-60°=90°,∵AE是三角形的平分线,∴∠BAE=12∠BAC=12×90°=45°,∵AD是三角形的高,∴∠BAD=90°-∠B=90°-30°=60°,∴∠DAE=∠BAD-∠BAE=60°-45°=15°.故答案为:15.【点睛】本题考查了三角形的内角和定理,三角形的角平分线的定义,高线的定义, 熟记定理与概念并准确识图,理清图中各角度之间的关系是解题的关键.14.①②④【分析】求出∠EBD+∠ABC=90°∠DBG+∠CBG=90°求出∠ABC =∠GBC根据角平分线的定义即可判断①;根据平行线的性质得出∠ABC=∠BCG求出∠ACB=∠GBC根据平行线的判定解析:①②④.【分析】求出∠EBD+∠ABC=90°,∠DBG+∠CBG=90°,求出∠ABC=∠GBC,根据角平分线的定义即可判断①;根据平行线的性质得出∠ABC=∠BCG,求出∠ACB=∠GBC,根据平行线的判定即可判断②;根据余角的定义即可判断③;根据平行线的性质得出∠EBG=∠A=α,求出∠EBD=12∠EBG=12α,根据平行线的性质得出∠EBD+∠BDF=180°,即可判断④.【详解】∵BD⊥BC,∴∠DBC=90°,∴∠EBD+∠ABC=180°﹣90°=90°,∠DBG+∠CBG=90°,∵BD平分∠EBG,∴∠EBD=∠DBG,∴∠ABC=∠GBC,即BC平分∠ABG,故①正确;∵AE∥CF,∴∠ABC=∠BCG,∵CB平分∠ACF,∴∠ACB=∠BCG,∵∠ABC=∠GBC,∴∠ACB=∠GBC,∴AC∥BG,故②正确;与∠DBE互余的角有∠ABC,∠CBG,∠ACB,∠BCG,共4个,故③错误;∵AC∥BG,∠A=α,∴∠EBG=∠A=α,∵∠EBD=∠DBG,∴∠EBD=12∠EBG=12α,∵AB∥CF,∴∠EBD+∠BDF=180°,∴∠BDF=180°﹣∠EBD=180°﹣12α,故④正确;故答案为:①②④.【点睛】本题考查了平行线的性质和判定,角平分线的定义等知识点,能灵活运用定理进行推理是解此题的关键.15.【分析】用换元法求解即可【详解】解:∵∴∵方程组的解为∴∴故答案为:【点睛】此题考查利用换元法解二元一次方程组注意要根据方程的特点灵活选用合适的方法解数学题时把某个式子看成一个整体用一个变量去代替它解析:12 xy=-⎧⎨=⎩【分析】用换元法求解即可.【详解】解:∵y ax c by x d-=⎧⎨-=⎩,∴()() ()()a x y cx b y d ⎧---=⎪⎨---=⎪⎩,∵方程组ax y cx by d-=⎧⎨-=⎩的解为12xy=⎧⎨=-⎩,∴12xy-=⎧⎨-=-⎩,∴12xy=-⎧⎨=⎩,故答案为:12xy=-⎧⎨=⎩.【点睛】此题考查利用换元法解二元一次方程组,注意要根据方程的特点灵活选用合适的方法. 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.16.【分析】根据二元一次方程的定义从二元一次方程的未知数次数为1这一方面考虑【详解】根据题意得且解得且所以故答案是:【点睛】本题主要考查了二元一次方程的定义二元一次方程必须符合以下三个条件:(1)方程中 解析:1-【分析】根据二元一次方程的定义,从二元一次方程的未知数次数为1这一方面考虑.【详解】 根据题意,得1m =且10m -≠.解得1m =±且1m ≠.所以1m =-.故答案是:1-.【点睛】本题主要考查了二元一次方程的定义,二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程. 17.6【分析】可先求得AB 两点的坐标则可求得OA 和OB 再利用三角形的面积公式计算即可【详解】在中令x=0可得y=6令y=0可得x=2∴AB 两点的坐标为(06)和(20)∴OA 和OB 的长为6和2∴S △AO解析:6【分析】可先求得A 、B 两点的坐标,则可求得OA 和OB ,再利用三角形的面积公式计算即可.【详解】在36y x =-+中,令x=0可得y=6,令y=0可得x=2,∴A 、B 两点的坐标为(0,6)和(2,0),∴OA 和OB 的长为6和2,∴S △AOB =12OA•OB=12×6×2=6, 故答案为:6.【点睛】 本题主要考查了一次函数与坐标轴的交点,求得直线与两坐标轴的交点坐标是解题的关键.18.32【分析】平面内一点到x 轴的距离是它的纵坐标的绝对值到y 轴的距离是它的横坐标的绝对值【详解】解:点A (2-3)到x 轴的距离是3到y 轴的距离是2故答案为32【点睛】本题考查了平面内的点到坐标轴的距离解析:3, 2【分析】平面内一点到x 轴的距离是它的纵坐标的绝对值,到y 轴的距离是它的横坐标的绝对值.【详解】解:点A (2,-3)到x 轴的距离是3,到y 轴的距离是2.故答案为3,2.【点睛】本题考查了平面内的点到坐标轴的距离和点的坐标的关系,掌握平面内一点到x 轴的距离是它的纵坐标的绝对值,到y 轴的距离是它的横坐标的绝对值是关键.19.【分析】先将原方程化为即可类比题目中解方程的方法求解即可【详解】解:合并同类项得移项得解得故答案为:【点睛】本题考查了利用平方根解方程及整式的乘法运算掌握平方根的定义是解答此题的关键解析:1x =2x =-【分析】先将原方程化为2180x -=,即可类比题目中解方程的方法求解即可.【详解】解:(18)(1)170x x x -++=,21718170x x x --+=,合并同类项,得2180x -=,移项,得218x =,解得1x =,2x =-故答案为:1x =,2x =-.【点睛】本题考查了利用平方根解方程及整式的乘法运算,掌握平方根的定义是解答此题的关键. 20.25【分析】要求长方体中两点之间的最短路径最直接的作法就是将长方体侧面展开然后利用两点之间线段最短解答【详解】只要把长方体的右侧表面剪开与前面这个侧面所在的平面形成一个长方形如图1:∵长方体的宽为1 解析:25【分析】要求长方体中两点之间的最短路径,最直接的作法,就是将长方体侧面展开,然后利用两点之间线段最短解答.【详解】只要把长方体的右侧表面剪开与前面这个侧面所在的平面形成一个长方形,如图1:∵长方体的宽为10,高为20,点B 离点C 的距离是5,∴10515BD CD BC =+=+=,20AD =,在直角三角形ABD 中,根据勾股定理得: ∴2222152025AB BD AD ;只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如图2:∵长方体的宽为10,高为20,点B 离点C 的距离是5,∴20525BD CD BC =+=+=,10AD =, 在直角三角形ABD 中,根据勾股定理得:∴22221025529AB BD AD =+=+=;只要把长方体的上表面剪开与后面这个侧面所在的平面形成一个长方形,如图3:∵长方体的宽为10,高为20,点B 离点C 的距离是5.∴201030AC CD AD =+=+=,在直角三角形ABC 中,根据勾股定理得:∴2222305537AB AC BC +=+=∵25529537<∴蚂蚁爬行的最短距离是25.故答案为:25.【点睛】本题主要考查两点之间线段最短,关键是将长方体侧面展开,然后利用两点之间线段最短解答.三、解答题21.(1)平角为180︒;(2)C ;(3)见解析【分析】(1)分析题意,即可得到“折叠法”和“剪拼法”都是根据平角为180︒进行证明; (2)由题意,证明类主要是通过角度的转化,从而进行证明;(3)过点D 作//DE AC 交AB 于,//E DF AB 交AC 于F ,由角度的关系,得到A EDF ∠=∠,然后根据平角的定义,即可得到结论成立.【详解】解:(1)根据题意,“折叠法”和“剪拼法”都是根据平角为180︒进行证明;故答案为:平角为180︒;(2)根据题意,“证明类”的方法中主要体现了角度的转化,从而进行证明结论成立; 故选:C ;(3)证明:如图,过点D 作//DE AC 交AB 于,//E DF AB 交AC 于F ,,,180,180FDC B EDB C A AED EDF AED ∴∠=∠∠=∠∠+∠=︒∠+∠=︒. A EDF ∴∠=∠,180A B C EDF FDC EDB CDB ∴∠+∠+∠=∠+∠+∠=∠=︒.∴三角形的内角和为180︒.【点睛】本题考查了三角形的内角和定理的证明,解题的关键是掌握证明三角形内角和等于180°的方法.22.(1)照明灯45万个,投射灯5万个;(2)m =20.【分析】(1)设该城市灯光秀使用照明灯x 万个,投射灯y 万个,根据“该城市灯光秀共使用照明灯和投射灯共50万个,共花费1005万元”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)根据总价=单价×数量,即可得出关于m 的一元一次方程,解之即可得出结论.【详解】解:(1)设该城市灯光秀使用照明灯x 万个,投射灯y 万个,依题意,得:5091201005x y x y +=⎧⎨+=⎩,解得:455xy=⎧⎨=⎩.答:该城市灯光秀使用照明灯45万个,投射灯5万个.(2)依题意,得:9(1﹣m%)×1000+120(135-m%)×50×(1+20%)=13536,解得:m=20.答:m的值为20.【点睛】本题考查了二元一次方程组的应用以及一元一次方程的应用,找准题目中等量关系列出方程是解题关键.23.(1)小刚走了200米后返回家拿书;(2)y=200x−1000;(3)小刚走到8分钟时,小刚离家600米.【分析】(1)直接观察图象即可得到结果;(2)运用待定系数法设出直线AB的方程,根据图象过点A,B,列出关于k和b的方程组,求解即可得到答案;(3)根据(2)中的结果可知AB的函数解析式,将x=8代入求出y的值,即可得到答案.【详解】解:(1)根据题中所给的分段函数的图象可得,小刚走了200米后返回家拿书;(2)设直线AB的解析式为:y=kx+b,∵图象过点A(5,0),B(10,1000),∴50101000k bk b+=⎧⎨+=⎩,解得:2001000kb=⎧⎨=-⎩,∴直线AB的解析式为:y=200x−1000;(3)由(2)可知,直线AB的解析式为y=200x−1000,(5≤x≤10)∴当x=8时,y=200×8−1000=600,答:小刚走到8分钟时,小刚离家600米.【点睛】本题主要考查函数模型的选择与应用,函数解析式的求解及常用方法,考查了分段函数的理解.解决实际问题通常有四个步骤:(1)阅读理解,认真审题;(2)引进数学符号,建立数学模型;(3)利用数学的方法,得到数学结果;(4)转译成具体问题作出解答,其中关键是建立数学模型.属于中档题.24.(1)图见解析,3;(2)ABC与A B C'''关于x轴对称【分析】(1)根据点坐标确定其在坐标系中的位置,顺次连线即可得到ABC,利用割补法求面积;(2)根据点A、B、C纵坐标都乘以1-,得到对应的点A',B',C'的坐标,再确定各点位置,即可得到两个三角形的关系.(1)如图,ABC即为所求,111451245(15)23222ABCS=⨯-⨯⨯-⨯⨯-⨯+⨯=;(2)∵(0,1),(2,0),(4,4)A B C-,∴A'(0,-1),B'(2,0),C'(4,4),∴ABC与A B C'''关于x轴对称..【点睛】此题考查点坐标的确定,坐标与图形,图形的变换关系,正确根据点的坐标确定其在直角坐标系中的位置是解题的关键.25.(12;(2)0【分析】(1)直接利用立方根的性质、绝对值的性质、二次根式的性质分别进行化简即可;(2)直接利用二次根式的性质化简即可.【详解】解:(1)原式=3-2212;(2525350=.【点睛】本题考查实数的运算、二次根式的运算,熟练掌握运算法则是解题的关键.【分析】要求滑行的最短距离,需将该U 型池的侧面展开,进而根据“两点之间线段最短”得出结果.【详解】解:如图是其侧面展开图:AD=π•20π=20,AB=CD=20.DE=CD-CE=20-5=15,在Rt △ADE 中,22AD DE +222015+.故他滑行的最短距离约为25米.【点睛】本题考查了平面展开-最短路径问题,U 型池的侧面展开图是一个矩形,此矩形的宽等于半径为20π的半圆的弧长,矩形的长等于AB=CD=20.本题就是把U 型池的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.。
【浙教版】八年级数学上期末模拟试卷(及答案)(2)
高二数学文寒假专题——数形结合思想在解题中的应用北师大版【本讲教育信息】一、教学内容:数形结合思想在解题中的应用二、教学目标:1. 使学生对运用数形结合的方法解决数学问题有一个初步的了解。
2. 能用数形结合法解决一些简单的数学问题。
三、教学重、难点数形结合法的理解是本节课的教学重点。
难点是应用数形结合法解题四、知识要点分析:1.数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷。
2.所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,实现数形结合,常与以下内容有关:(1)实数与数轴上的点的对应关系; (2)函数与图象的对应关系; (3)曲线与方程的对应关系;(4)以几何元素和几何条件为背景建立起来的概念,如三角函数等;(5)所给的等式或代数式的结构含有明显的几何意义。
如等式()()x y -+-=21422。
3.纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。
4.数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域、最值问题中,在三角函数解题中,运用数形结合思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。
这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图见数想图,以开拓自己的思维视野。
考点一:利用数形结合的方法解决有关方程有两个不相等的实数根和不等式问题:【例题分析】例1. 若关于x 的方程x kx k 2230++=的两根都在区间(-1,3)内,求k 的取值X 围。
解:由y f x =()只需f ()->10,解得-<<10k说明:f x x kx k ()=++223,其图象与x 轴交点的横坐标就是方程f x ()=0的根,根据函数图象的性质可以得出对应的方程情况。
【浙教版】八年级数学上期末模拟试卷(带答案)(2)
一、选择题1.如图,要得到AB ∥CD ,只需要添加一个条件,这个条件不可以...是( )A .∠1=∠3B .∠B +∠BCD =180°C .∠2=∠4D .∠D +∠BAD =180° 2.在ABC 中,若+,A B C ∠=∠∠那么这个三角形的形状是( ) A .等腰三角形 B .等边三角形 C .直角三角形 D .钝角三角形 3.下列命题:①相等的两个角是对顶角;②若∠1+∠2=180°,则∠1与∠2互为补角;③同旁内角互补;④垂线段最短,其中假命题有( )A .1个B .2个C .3个D .4个4.已知关于x ,y 的方程组72x my mx y m +=⎧⎨-=+⎩①②,将此方程组的两个方程左右两边分别对应相加,得到一个新的方程,当m 每取一个值时,就有一个方程,这些方程有一个公共解,这个公共解为( )A .54x y =⎧⎨=-⎩B .14x y =⎧⎨=-⎩C .41x y =⎧⎨=-⎩D .-54x y =⎧⎨=⎩5.一次函数y =﹣bx ﹣k 的图象如下,则y =﹣kx ﹣b 的图象大致位置是( )A .B .C .D .6.两条直线y ax b =+与y bx a =+在同一直角坐标系中的图象位置可能为( ). A . B . C . D .7.下列各方程中,是二元一次方程的是( )A .253x y x y-=+ B .x+y=1 C .2115x y =+ D .3x+1=2xy 8.已知方程组43235x y k x y -=⎧⎨+=⎩的解满足x y =,则k 的值为( ) A .1 B .2 C .3 D .49.甲、乙两车从A 地出发,匀速驶向B 地.甲车以80/km h 的速度行驶1h 后,乙车沿相同路线行驶.乙车先到达B 地并停留1h 后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离()y km 与乙车行驶时间(h)x 之间的函数关系如图所示.下列说法:①乙车的速度是120/km h ;②150m =;③点H 的坐标是()7,80;④7.4n =其中说法正确的是( )A .①②③④B .①②③C .①②④D .①③④ 10.点()1,2-关于y 轴对称的点的坐标是( )A .()1,2-B .()2,1-C .()1,2--D .()1,211.下列各式中,正确的是( )A .16=±4B .±16=4C .3273-=-D .2(4)4-=- 12.我国古代著名的“赵爽弦图”的示意图如图所示,它是由四个全等的直角三角形围成的.若AC =2,BC =3,将四个直角三角形中边长为3的直角边分别向外延长一倍,得到一个如图所示“数学风车”,则这个风车的外围周长是( )A .13B .10C .1312D .81012二、填空题13.如图所示,在ABC 中,80A ∠=︒,延长BC 到D ,ABC ∠与ACD ∠的平分线相交于1A 点,1A BC ∠与1A CD ∠的平分线相交于A 点,依此类推,4A BC ∠与4A CD ∠的平分线相交于5A 点,则5A ∠的度数是_________.14.如图,把 ABC 纸片沿 DE 折叠,使点 A 落在图中的A '处,若 ∠A =25︒ ,120BDA '∠︒= , 则A EC '∠=____.15.若方程组23113543.1a b a b -=⎧⎨+=⎩的解为9.72.8a b =⎧⎨=⎩,则方程组()()()()(223111325143.1x y x y ⎧+--=⎪⎨++-=⎪⎩的解为___________ .16.已知24x y -=,用含x 的代数式表示y 为:y =____________.17.将直线2y x =向下平移1个单位长度后得到的图像的函数解析式是______. 18.若点(3+m ,a -2)关于y 轴对称点的坐标是(3,2),则m +a 的值为______. 19.比较大小:5______3.(填“>”、“=”或“<”号)20.如图,在Rt △ABC 中,∠ACB =90°,BC =4cm ,AC =3cm ,动点P 从点B 出发沿射线BA 以2cm/s 的速度运动.设运动时间为t ,则当t =______秒时,△BPC 为直角三角形.三、解答题21.综合与实践问题情境:在数学活动课上,全班同学分组进行了一副三角尺上角的探究活动,如图所示,放置一副三角尺,两个三角尺的顶点O 重合,边CD 与边AB 重合,试求AOC ∠的度数.(1)探究展示勤奋小组展示了如下的解决方法(请结合图形1,完成填空)解:∵45OCD ∠=︒,60OBC ∠=︒∴BOC ∠=__________(___________________)又∵90AOB ∠=︒,∴AOC ∠=__________.(2)反思交流:创新小组受勤奋小组的启发,继续进行探究,如图2所示,绕顶点O 逆时针旋转DOC △,当DC AO //时,求得AEO ∠的度数.(请你写出解答过程)(3)探索发现:小明受到旋转的启发,继续进行探究(如图3),继续绕顶点O 逆时针旋转DOC △,使点B 落在边DC 上,此时发现1∠与2∠之间的数量关系.以下是他的解答过程,请补充完整解:在AOE △与BCE 中,∵12AEO A CEB C ∠+∠+∠=∠+∠+∠又∵AEO CEB ∠=∠(___________________)A ∠=__________,C ∠=__________,∴12A C ∠+∠=∠+∠12∠-∠=__________.22.如图,直线L 1:2y x =-+ 与x 轴,y 轴分别交于A ,B 两点,点P (m ,3)为直线AB 上一点,另一直线L 2:4y kx =+经过点P .(1)求点A 、B 坐标;(2)求点P 坐标和k 的值;(3)若点C 是直线L 2与x 轴的交点,点Q 是x 轴上一点,当△CPQ 的面积等于3时,求出点Q 的坐标23.纺织厂生产某种产品,每件出厂价定为80元,每件的成本是60元,由于在生产过程中平均每生产一件此种产品,就会有0.5立方米的污水排出,为了保护环境,工厂需要对污水净化处理后才能排出.已知处理1立方米污水的费用为2元,另外每月排污设备物资损耗为8000元.设该厂每月生产此产品x 件(0x >且x 是整数),每月获得纯利润y 元.(纯利润=总收人-总支出)(1)求出y 与x 之间的函数表达式;(2)如果该厂本月获得的纯利润是106000元,请求出该厂在本月生产此产品的件数. 24.在平面直角坐标系中,已知点()3,21M m m +-(1)若点M 在x 轴上,求m 的值.(2)若点M 在第一、三象限的角平分线上,求m 的值.25.(1)计算: ①27123+;②(23+32)(23 -32).(2)解方程:①4(x -1)2-9 =0;②8x 3+125=0.26.如图,已知∠ACB =∠DCE =90°,AC =BC =6,CD =CE ,AE =3,∠CAE =45°, (1)求证△ACD ≌△BCE ;(2)求AD 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据B 、D 中条件结合“同旁内角互补,两直线平行”可以得出AB ∥CD ,根据C 中条件结合“内错角相等,两直线平行”可得出AB ∥CD ,而根据A 中条件结合“内错角相等,两直线平行”可得出AD ∥BC .由此即可得出结论.【详解】解:A .∵∠1=∠3,∴AD ∥BC (内错角相等,两直线平行);B .∵∠B +∠BCD =180°,∴AB ∥CD (同旁内角互补,两直线平行);C .∠2=∠4,∴AB ∥CD (内错角相等,两直线平行);D .∠D +∠BAD =180°,∴AB ∥CD (同旁内角互补,两直线平行).故选A .【点睛】本题考查了平行线的判定,解题的关键是根据四个选项给定的条件结合平行线的性质找出平行的直线.本题属于基础题,难度不大,解决该题型题目时,根据相等或互补的角找出平行的两直线是关键.2.C解析:C【分析】根据三角形内角和定理得到180A B C ∠+∠+∠=︒,则180B C A ∠+∠=︒-∠,变形得180A A ︒-∠=∠,解得90A ∠=︒,即可判断△ABC 的形状.【详解】解:∵180A B C ∠+∠+∠=︒,∴180B C A ∠+∠=︒-∠,又∵+A B C ∠=∠∠,∴180A A ︒-∠=∠,解得:90A ∠=︒,∴△ABC 为直角三角形.故选:C .【点睛】本题考察了三角形内角和定理:三角形的内角和为180°.3.B解析:B【分析】根据对顶角的定义对①进行判断;根据补角的定义对②进行判断;根据平行线的性质对③进行判断;根据垂线段公理对④进行判断.【详解】解:相等的两个角不一定为对顶角,所以①为假命题;若∠1+∠2=180°,则∠1与∠2互为补角,所以②为真命题;两直线平行,同旁内角互补,所以③为假命题;垂线段最短,所以④为真命题.故选:B .【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.4.A解析:A【分析】由这组公共解与m 无关,所以把两个方程相加变形为:()190,x y m x y +-+--=从而可得答案.【详解】解:①+②得:9,mx x my y m ++-=+90,mx x my y m ∴++---=()190,x y m x y ∴+-+--=结合题意得:1090x y x y +-=⎧⎨--=⎩解得:54x y =⎧⎨=-⎩, 所以这个公共解为54x y =⎧⎨=-⎩. 故选A .【点睛】本题考查的是二元一次方程组的公共解与字母系数无关的问题,掌握与该字母无关,则含有该字母的项合并后系数为零是解题的关键.5.D解析:D【分析】根据一次函数的性质和一次函数y=-bx-k 的图象,可以得到-b <0,-k >0,然后即可得到y=-kx-b 的图象经过哪几个象限,从而可以解答本题.【详解】解:由一次函数y =﹣bx ﹣k 的图象可知:﹣b <0,﹣k >0,∴y =﹣kx ﹣b 的图象经过第一、三、四象限,故选:D .【点睛】本题考查了一次函数的图象,解答本题的关键是明确题意,利用一次函数的性质解答. 6.B解析:B【分析】由于a 、b 的符号均不确定,故应分四种情况讨论,找出合适的选项.【详解】解:分四种情况讨论:当a >0,b >0时,直线y ax b =+与y bx a =+的图象均经过一、二、三象限,4个选项均不符合;当a >0,b <0,直线y ax b =+图象经过一、三、四象限,y bx a =+的图象经过第一、二、四象限;选项B 符合此条件;当a <0,b >0,直线y ax b =+图象经过一、二、四象限,y bx a =+的图象经过第一、三、四象限,4个选项均不符合;当a <0,b <0,直线y ax b =+图象经过二、三、四象限,y bx a =+的图象经过第二、三、四象限,4个选项均不符合;故选:B.【点睛】此题主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y =kx +b 的图象有四种情况:①当k >0,b >0,函数y =kx +b 的图象经过第一、二、三象限;②当k >0,b <0,函数y =kx +b 的图象经过第一、三、四象限;③当k <0,b >0时,函数y =kx +b 的图象经过第一、二、四象限;④当k <0,b <0时,函数y =kx +b 的图象经过第二、三、四象限.7.B解析:B【解析】根据二元一次方程的定义对四个选项进行逐一分析.解:A 、分母中含有未知数,是分式方程,故本选项错误;B 、含有两个未知数,并且未知数的次数都是1,是二元一次方程,故本选项正确;C 、D 、含有两个未知数,并且未知数的最高次数是2,是二元二次方程,故本选项错误. 故选B .8.A解析:A【分析】把x y =代入方程组43235x y k x y -=⎧⎨+=⎩,得到关于x 、k 的二元一次方程组,即可求解. 【详解】x y =代入方程组43235x y k x y -=⎧⎨+=⎩,得43235x x k x x -=⎧⎨+=⎩,即1x k x =⎧⎨=⎩, 所以k=1,故选:A【点睛】此题考查了解二元一次方程组.把x=y 代入到方程组,消去y 是解答此题的关键. 9.D解析:D【分析】根据乙追上甲的时间求出乙的速度可判断①,根据乙由相遇点到达B 点所用时间可确定m 的值,即可判断②,根据乙休息1h 甲所行驶的路程可判断③,由乙返回时,甲乙相距80km ,可求出两车相遇的时间即可判断④,【详解】解:由图象可知,乙出发时,甲乙相距80km ,2小时后,乙车追上甲.则说明乙每小时比甲快40km ,则乙的速度为120km/h .①正确;由图象第2﹣6小时,乙由相遇点到达B ,用时4小时,每小时比甲快40km ,则此时甲乙距离4×40=160km ,则m=160>150,②不正确;当乙在B 地停留1h 时,甲前进80km ,甲乙相距=160-80=80km ,时间=6+1=7小时,则H 点坐标为(7,80),③正确;乙返回时,甲乙相距80km ,到两车相遇用时80÷(120+80)=0.4小时,则n=7+0.4=7.4,④正确.所以正确的有①③④,故选D ,【点睛】本题考查通过分段函数图像解决问题,根据题意明确图像中的信息是解题关键, 10.C解析:C【分析】根据关于y 轴对称的点的坐标的变化特征求解即可.【详解】解:关于y 轴对称的点的坐标变化规律是:纵坐标不变,横坐标变为原来的相反数, 所以,点()1,2-关于y 轴对称的点的坐标是(-1,-2),故选:C .【点睛】本题考查了关于y 轴对称点的坐标变化规律,解题关键是树立数形结合思想,掌握坐标变化规律.11.C解析:C【分析】根据算术平方根与平方根、立方根的定义逐项判断即可得.【详解】A 、164=,此项错误;B 、164±=±,此项错误;C 、3273-=-,此项正确;D 、2(4)164-==,此项错误;故选:C .【点睛】本题考查了算术平方根与平方根、立方根,熟记各定义是解题关键.12.D解析:D【分析】将CB 延长至点D ,使CB BD =,利用勾股定理求出AD 的长,即可求出结果.【详解】解:如图,将CB 延长至点D ,使CB BD =,∵2AC =,26CD BC ==,∴22436210AD AC CD =+=+=,2103AD BD +=+,一共有4个这样的长度,∴这个风车的外围周长是:()4210381012⨯+=+.故选:D .【点睛】本题考查勾股定理,解题的关键是利用勾股定理求直角三角形边长.二、填空题13.5度【分析】由∠A1CD=∠A1+∠A1BC∠ACD=∠ABC+∠A而A1BA1C分别平分∠ABC和∠ACD得到∠ACD=2∠A1CD∠ABC=2∠A1BC于是有∠A=2∠A1同理可得∠A1=2∠A解析:5度【分析】由∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,而A1B、A1C分别平分∠ABC和∠ACD,得到∠ACD=2∠A1CD,∠ABC=2∠A1BC,于是有∠A=2∠A1,同理可得∠A1=2∠A2,即∠A=22∠A2,因此推出∠A=25∠A5,而∠A=80°,即可求出∠A5.【详解】解:∵A1B、A1C分别平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,∵∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,∴∠A=2∠A1同理可得∠A1=2∠A2,即∠A=22∠A2,…,∴∠A=25∠A5,∵∠A=80°,∴∠A5=80°÷32=2.5°.故答案为:2.5°.【点睛】本题考查了三角形的内角和定理:三角形的内角和为180°.也考查了三角形的外角性质以及角平分线性质.14.70°【分析】如图利用折叠性质得∠ADE=∠A′DE=30°∠AED=∠A′ED再根据三角形外角性质得∠CED=55°利用邻补角得到∠AED=125°则∠A′ED=125°然后利用∠A′EC=∠A′解析:70°【分析】如图,利用折叠性质得∠ADE=∠A′DE=30°,∠AED=∠A′ED,再根据三角形外角性质得∠CED=55°,利用邻补角得到∠AED=125°,则∠A′ED=125°,然后利用∠A′EC=∠A′ED-∠CED 进行计算即可.【详解】∵∠BDA'=120°,∴∠ADA'=60°,∵△ABC纸片沿DE折叠,使点A落在图中的A'处,∴∠ADE=∠A′DE=30°,∠AED=∠A′ED,∵∠CED=∠A+∠ADE=25°+30°=55°,∴∠AED=125°,∴∠A′ED=125°,∴∠A′EC=∠A′ED-∠CED=125°-55°=70°.故答案为:70°.【点睛】本题考查了折叠的性质,三角形外角的性质,三角形内角和定理等,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.15.【分析】先把x+2与y-1看作一个整体则x+2与y-1是已知方程组的解于是可得进一步即可求出答案【详解】解:由方程组的解为由题意得:方程组的解为解得:故答案为:【点睛】本题考查了二元一次方程组同解方解析:7.73.8 xy=⎧⎨=⎩.【分析】先把x+2与y-1看作一个整体,则x+2与y-1是已知方程组23113543.1a ba b-=⎧⎨+=⎩的解,于是可得29.71 2.8xy+=⎧⎨-=⎩,进一步即可求出答案.【详解】解:由方程组23113543.1a ba b-=⎧⎨+=⎩的解为9.72.8ab=⎧⎨=⎩,由题意得:方程组()()()()(223111325143.1x yx y⎧+--=⎪⎨++-=⎪⎩的解为29.71 2.8xy+=⎧⎨-=⎩,解得:7.73.8 xy=⎧⎨=⎩.故答案为:7.73.8 xy=⎧⎨=⎩.【点睛】本题考查了二元一次方程组同解方程组的解法,正确理解题意、得出29.71 2.8xy+=⎧⎨-=⎩是解此题的关键.16.2x-4【分析】【详解】由2x-y=4得:-y=4-2x∴y=2x-4故答案为:2x-4 解析:2x-4【分析】【详解】由2x-y=4得:-y=4-2x,∴ y=2x-4,故答案为:2x-417.y=2x-1【解析】试题分析:根据一次函数图象与几何变换得到直线y=2x 向下平移1各单位得到函数解析式y=2x-1考点:一次函数的图象与几何变换 解析:y=2x-1.【解析】试题分析:根据一次函数图象与几何变换得到直线y=2x 向下平移1各单位得到函数解析式y=2x-1.考点:一次函数的图象与几何变换18.【分析】根据关于y 轴的对称点的坐标特点:横坐标互为相反数纵坐标不变可得再解即可【详解】∵点()关于y 轴对称点的坐标是(32)∴解得:∴故答案为:【点睛】本题主要考查了关于y 轴的对称点的坐标特点关键是 解析:2-【分析】根据关于y 轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变可得33m +=-,22a -=,再解即可.【详解】∵点(3m +,2a -)关于y 轴对称点的坐标是(3,2),∴33m +=-,22a -=,解得:6m =-,4a =,∴2m a +=-,故答案为:2-.【点睛】本题主要考查了关于y 轴的对称点的坐标特点,关键是掌握点的坐标的变化规律. 19.【分析】估算的大小与3比较即可【详解】解:∵4<5<9∴2<<3则<3故答案为:<【点睛】本题考查了实数大小比较熟练掌握运算法则是解本题的关键解析:<【分析】3比较即可.【详解】解:∵4<5<9,∴23,,故答案为:<.【点睛】本题考查了实数大小比较,熟练掌握运算法则是解本题的关键.20.5或16【分析】分两种情况讨论:①当∠BCP 为直角时点P 与点A 重合根据勾股定理即可求得跑PB 进而得到t ;②当∠BPC 为直角时利用三角形面积即可求解PC 然后根据勾股定理即可求解BP 进而求得t 【详解】∵解析:5或1.6【分析】分两种情况讨论:①当∠BCP 为直角时,点P 与点A 重合,根据勾股定理即可求得跑PB ,进而得到t ;②当∠BPC 为直角时,利用三角形面积即可求解PC ,然后根据勾股定理即可求解BP ,进而求得t .【详解】∵∠C =90°,BC =4cm ,AC =3cm ,,∴在Rt BCA ∆,2222435AB BC AC =+=+=. ①当∠BCP 为直角时,点P 与点A 重合,∴t =5÷2=2.5s .②∠BPC 为直角时,在Rt △ABC 中,1122ABC S BC AC AB CP ∆=⨯⨯=⨯⨯, 即1143522⨯⨯=⨯⨯CP ,解得 2.4CP = 在Rt △BPC 中,22224 2.4 3.2BP BC PC =-=-=∴t =3.2÷2=1.6s . 综上,当t =2.5s 或1.6s 时,△BPC 为直角三角形.故答案为:2.5或1.6.【点睛】本题考查了三角形的动点问题,掌握t s v =÷以及勾股定理是解题的关键.三、解答题21.(1)75︒;三角形内角和是180︒;15︒;(2)105︒;见解析;(3)对顶角相等;30;45︒;15︒【分析】(1)利用三角形内角和定理求解即可;(2)利用平行线的性质求得∠AOC=45°,再利用三角形内角和定理求解即可;(3)在△AOE与△BCE中,利用三角形内角和定理得到∠1+∠A=∠2+∠C,计算即可求解.【详解】解:∵∠OCD=45°,∠OBC=60°,∴∠BOC=75°(三角形内角和是180°),又∵∠AOB=90°,∴∠AOC=15°;(2)解:∵DC∥AO,∠OCD=45°,∴∠AOC=45°(两直线平行,内错角相等),又∵∠BAO=30°,∴∠AEO=180°−∠AOC−∠BAO=180°−45°−30°=105°(三角形内角和是180°);(3)在△AOE与△BCE中,∵∠AEO+∠1+∠A=∠CEB+∠2+∠C,又∵∠AEO=∠CEB(对顶角相等),∠A=30°,∠C=45°,∴∠1+∠A=∠2+∠C,∠1−∠2=15°.【点睛】本题考查了三角形内角和定理,平行线的性质,正确的识别图形是解题的关键.22.(1)A(2,0),B(0,2);(2)P(-1,3),k=1;(3)Q(-6,0)或(-2,0)【分析】(1)对于直线L1:y=−x+2 ,令y=0求出x的值,确定A的坐标,令x=0,求出y的值,确定B的坐标;(2)将P代入直线y=﹣x+2中,求出m的值,确定点P坐标,再将点P的坐标代入直线L2: y=kx+4 ,求出k的值.(3)先求出点C的坐标,再根据三角形的面积公式,△CPQ的面积等于3时,求出底边CQ 的长度,再确定点Q的坐标.【详解】解:如图(1)由题意可知,直线AB的关系式为y=﹣x+2,令y=0,∴﹣x+2=0,∴x=2,∴A(2,0),令x=0,则y=2,∴B(0,2)(2)∵P点在直线y=﹣x+2上∴-m+2=3∴m=-1∴P点(-1,3)∵直线y=kx+4经过点P.∴-k+4=3∴k=1(3)由(2)知直线L2关系式为y=x+4∵点C是直线L2与x轴的交点令y=0,∴x+4=0,∴x=-4,∴C(-4,0)S△CPQ=12CQ•y P=12×CQ×3=3∴CQ=2∴Q(-6,0)或者(-2,0)【点睛】此题属于一次函数综合题,涉及的知识有:坐标与图形性质,一次函数与坐标轴的交点,以及三角形面积求法,熟练掌握一次函数的性质是解本题的关键.23.(1)y=19x−8000(x>0且x是整数);(2)这个月该厂生产产品6000件.【分析】(1)本题的等量关系是:纯利润=产品的出厂单价×产品的数量−产品的成本价×产品的数量−生产过程中的污水处理费−排污设备的损耗.可根据此等量关系来列出总利润与产品数量之间的函数关系式.(2)根据(1)中得出的式子,将y的值代入其中,求出x即可.【详解】解:(1)依题意得:y=80x−60x−2×0.5x−8000,化简得:y=19x−8000.∴函数关系式为y=19x−8000(x>0且x是整数);(2)当y=106000时,代入得:106000=19x−8000,解得:x=6000.答:这个月该厂生产产品6000件.【点睛】本题是利用一次函数的有关知识解答实际应用题,可根据题意找出等量关系,列出函数式进行求解.24.(1)0.5;(2)4【分析】(1)根据点在x 轴上纵坐标为0求解;(2)根据第一、三象限的角平分线上的横坐标,纵坐标相等求解.【详解】解:(1)由题意得:210m -=,解得0.5m =;(2)由题意得:321m m +=- ,解得4m =.【点睛】此题考查了点与坐标的对应关系,坐标轴上的点的特征,第一、三象限的角平分线上的点的特征.25.(1)①5;②6-;(2)52x =或12x =-; ②52x =-. 【分析】(1)①先把各二次根式化为最简二次根式,然后合并后进行二次根式的除法运算; ②根据平方差公式计算即可;(2)①将方程移项,再整理为2x a =的的形式,再根据平方根定义求解即可; ②将方程移项,再整理为3x a =根据立方根定义求解即可;【详解】解:(1)解:①原式== 5=.②原式1218=-6=-.(2)解:①原方程可化为29(1)4x -=则312x -=或312x -=-, 解得,52x =或12x =-.②原方程可化为31258x =-, 解得,52x =-. 【点睛】 本题考查了平方根、立方根及实数的运算,主要考查学生的运算能力,题目比较好,解题关键是理解平方根、立方根的意义.26.(1)见解析;(2)AD=9.【分析】(1)根据已知条件先证出∠BCE=∠ACD ,根据SAS 证出△ACD ≌△BCE ;(2)根据(1)中△ACD ≌△BCE 得出AD=BE ,再根据勾股定理求出AB ,然后根据∠BAC=∠CAE=45°,求出∠BAE=90°,在Rt △BAE 中,根据AB 、AE 的值,求出BE ,从而得出AD .【详解】解:(1)∵∠ACB=∠DCE=90°,∴∠ACB+∠ACE=∠DCE+∠ACE ,即∠BCE=∠ACD ,又∵AC=BC ,DC=EC ,在△ACD 和△BCE 中,AC BC BCE ACD DC EC ⎧⎪∠∠⎨⎪⎩=== , ∴△ACD ≌△BCE (SAS ).(2)∵△ACD ≌△BCE (SAS ),∴AD=BE ,∵AC=BC=6,∴,∵∠BAC=∠CAE=45°,∴∠BAE=90°,在Rt △BAE 中,AE=3,∴,∴AD=9.【点睛】此题考查了全等三角形的判定与性质,用到的知识点是全等三角形的判定与性质、勾股定理,关键是根据题意作出辅助线,证出△ACD ≌△BCE .。
【浙教版】八年级数学上期末模拟试卷附答案(2)
一、选择题1.化简221x x x ++÷(1-11x +)的结果是( ) A .11x + B .11x - C .x+1 D .x-12.如果分式11m m -+的值为零,则m 的值是( ) A .1m =- B .1m = C .1m =±D .0m = 3.下列计算正确的是( ) A .22a a a ⋅=B .623a a a ÷=C .2222a b ba a b -=-D .3339()28a a-=- 4.从7-、5-、3-、1-、3、6这六个数中,随机抽取一个数,记为k ,若数k 使关于x 的分式方程3211k x x +=--的解为非负数,那么这6个数中所有满足条件的k 的值之和是( )A .4-B .0C .3D .6 5.代数式2346x x -+的值为3,则2463x x -+的值为( ) A .7B .18C .5D .9 6.在下列的计算中正确的是( ) A .23a ab a b ⋅=;B .()()2224a a a +-=+;C .235x y xy +=;D .()22369x x x -=++ 7.下列有四个结论,其中正确的是( )①若1(1)1x x +-=,则x 只能是2;②若()2(1)1x x ax -++的运算结果中不含2x 项,则1a =③若10,16a b ab +==,则6a b -=④若4,8x y a b ==,则232x y -可表示为a b A .①②③④ B .②③④ C .①③④ D .②④ 8.下列各式计算正确的是( )A .5210a a a =B .()428=a aC .()236a b a b =D .358a a a += 9.如图,已知ABC ∆中,,AB AC =点,DE 是射线AB 上的两个动点(点D 在点E 的右侧).且,CE DE =连结CD ,若ACE x ∠=,BCD y ∠=.则y 关于x 的函数关系式是( )A .()900180y x x =-<<︒B .()101802y x x =<<︒C .()39001802y x x =-<<︒D .()201803y x x =<<︒ 10.如图,在ABC 中,DE 是AC 的垂直平分线,交AC 边于E ,交BC 边于D ,连接AD ,若3AE =,ABD △的周长为13,则ABC 的周长( )A .16B .19C .20D .2411.如图,点O 是△ABC 中∠BCA ,∠ABC 的平分线的交点,已知△ABC 的面积是12,周长是8,则点O 到边BC 的距离是( )A .1B .2C .3D .412.下列说法正确的个数为( ) ①过两点有且只有一条直线;②两点之间,线段最短;③若ax ay =,则x y =;④若A 、B 、C 三点共线且AB BC =,则B 为AC 中点;⑤各边相等的多边形是正多边形. A .①②④ B .①②③ C .①④⑤ D .②④⑤二、填空题13.规定一种新的运算“ JX x A B →+∞”,其中A 和B 是关于x 的多项式,当A 的次数小于B 的次数时. 0JX x A B →+∞=;当A 的次数等于B 的次数时, JX x A B→+∞的值为A 、B 的最高次项的系数的商,当A 的次数大于B 的次数时, JX x A B →+∞不存在,例如: 201JX x x →+∞=-,2 2212312JXx x x x →+∞+=+-,若223410211A x x B x x -⎛⎫=-÷ ⎪--⎝⎭,则 JX x A B →+∞的值为__________.14.计算:262393x x x x -÷=+--______. 15.如果23a b -的值为1-,则645b a -+的值为_____.16.若2211392781n n ++⨯÷=,则n =____.17.如图,已知30MON ∠=︒,点1A ,2A ,3A ,…在射线ON 上,1B ,2B ,3B ,…在射线OM 上,112A B A △,223A B A △,334A B A △,…均为等边三角形;若48OA =,则1n n n A B A +△的边长为______.18.如图,点C 在DE 上,,,45B E AB AE CAD BAE ∠=∠=∠=∠=︒,则ACB =∠_____________.19.已知△ABC ≌△DEF ,△ABC 的三边分别为3,m ,n ,△DEF 的三边分别为5,p ,q .若△ABC 的三边均为整数,则m+n+p+q 的最大值为________.20.如图,,AE AD 分别是△ABC 的高和角平分线,且6B 3︒∠=,6C 7︒∠=则DAE ∠的度数为__.三、解答题21.(1)解分式方程:23193x x x +=-- (2)先化简代数式+⎛⎫+÷ ⎪---+⎝⎭2a 11a a 1a 1a 2a 1,然后选取一个使原式有意义的a 值代入求值.22.先化简,再求值:2222224414y x x xy y x x x y ⎛⎫+-++-÷ ⎪-⎝⎭,其中x ,y 满足()2230x y ++-=.23.阅读下面的材料:常用的分解因式的方法有提取公因式法、公式法等,但有的多项式只用上述方法无法分解.如22926a b a b --+,细心观察这个式子,会发现前两项符合平方差公式,后两项可提取公因式,前、后两部分分别因式分解后又出现新的公因式,提取公因式就可以完成整个式子的分解因式.具体过程如下: ()()2222926926a b a b a b a b --+=---()()()3323a b a b a b =+---()()332a b a b =-+-.像这种将一个多项式适当分组后,进行分解因式的方法叫做分组分解法.利用分组分解法解决下面的问题:(1)分解因式:22222x xy y x y -+-+;(2)已知ABC 的三边长a ,b ,c 满足220a bc b ac +--=,判断ABC 的形状并说明理由.24.如图,BD 是ABC 的角平分线,点E 在边AB 上,且//DE BC ,AE BE =. (1)若5BE =,求DE 的长;(2)求证:AB BC =.25.已知矩形ABCD 中,点E 是AD 中点,连接CE ,经过点A ,B ,E 三点作O ,交BC 于点F ,过点F 作FH CE ⊥于H .(1)求证:直线FH 是O 的切线;(2)若42AD =H 恰好为CE 中点时,判断此时CE 与O 的位置关系?说明理由,并求出弧EF ,线段EH ,FH 围成的图形的面积.26.如图,在ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,60BAC ∠=︒,70C ∠=︒.求EAD ∠和∠BOE 的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】首先把括号里因式进行通分,然后把除法运算转化成乘法运算,进行约分化简.【详解】解:原式=22211(1)1(1)1(1)1x x x x x x x x x +-+÷=⋅=++++ , 故选A.【点睛】本题考查了分式的混合运算,能正确根据分式的运算法则进行化简是解题的关键. 2.B解析:B【分析】先根据分式为零的条件列出关于m 的不等式组并求解即可.【详解】解:∵11m m -+=0 ∴m-1=0,m+1≠0,解得m=1.故选B .【点睛】本题主要考查了分式为零的条件,掌握分式为零的条件是解答本题的关键,同时分母不等于零是解答本题的易错点.3.C解析:C【分析】A 、B 两项利用同底数幂的乘除法即可求解,C 项利用合并同类项法则计算即可,D 项利用分式的乘方即可得到结果,即可作出判断.【详解】解:A 、原式=a 3,不符合题意;B 、原式=a 4,不符合题意;C 、原式=-a 2b ,符合题意;D 、原式=3278a-,不符合题意, 故选:C .【点睛】此题考查了分式的乘方,合并同类项,以及同底数幂的乘除法,熟练掌握运算法则是解本题的关键. 4.C解析:C【分析】先对分式方程进行求解,即用含k 的代数式表示分式方程的解,然后根据题意可进行求解.【详解】 解:由3211k x x +=--可得:52x k =+, ∵分式方程的解为非负数,且1x ≠, ∴502k +≥且512k +≠,解得:5k ≥-且3k ≠- ∴满足条件的有5-、1-、3、6,∴它们的和为51363--++=;故选C .【点睛】 本题主要考查分式方程及一元一次不等式的解法,熟练掌握分式方程及一元一次不等式的解法是解题的关键.5.C解析:C【分析】由代数式3x 2−4x +6的值为3,变形得出x 2−43x =−1,再整体代入x 2−43x +6计算即可. 【详解】∵代数式3x 2−4x +6的值为3,∴3x 2−4x +6=3,∴3x 2−4x =−3,∴x 2−43x =−1, ∴x 2−43x +6=−1+6=5. 故选:C .【点睛】本题考查了代数式求值,熟练掌握相关运算法则并运用整体思想是解题的关键. 6.A解析:A【分析】根据单项式的乘法,平方差公式,完全平方公式,对各选项计算后利用排除法求解.【详解】A 、a 2•ab =a 3b ,正确;B 、应为(a +2)(a−2)=a 2−4,故本选项错误;C 、2x 与3y 不是同类项不能合并;D 、应为(x−3)2=x 2−6x +9,故本选项错误.故选:A .【点睛】本题主要考查平方差公式,单项式的乘法法则,完全平方公式,熟练掌握运算法则和公式是解题的关键,合并同类项时,不是同类项的不能合并.7.D解析:D【分析】根据零次幂、多项式乘多项式、完全平方公式及同底数幂的除法法则分别对每一项进行分析,即可得出答案.【详解】解:①若(x-1)x+1=1,则x=-1或x=2,故本选项错误;②(x-1)(x 2+ax+1)的运算结果中x 2项的系数为a-1,∵不含x 2项,则a=1,故本选项正确;③∵(a-b )2=(a+b )2-4ab=102-4×16=36,∴6a b -=±,故本选项错误;④∵4x =a ,∴22x =a ,∵8y =b ,∴23y =b ,∴22x-3y =22x ÷23y a b=;故本选项正确; 故选:D .【点睛】本题考查了零次幂、多项式乘多项式、完全平方公式以及同底数幂的除法,熟练掌握运算法则是解题的关键.8.B解析:B【分析】根据同底数幂相乘、幂的乘方、积的乘方、合并同类项法则逐一计算即可判断.【详解】解:A 、a 5•a 2=a 7,此选项计算错误,故不符合题意;B 、(a 2)4=a 8,此选项计算正确,符合题意;C 、(a 3b )2=a 6b 2,此选项计算错误,故不符合题意;D 、a 3与a 5不能合并,此选项计算错误,故不符合题意.故选:B .【点睛】本题主要考查幂的运算,合并同类项,解题的关键是熟练掌握同底数幂相乘、幂的乘方与积的乘方的运算法则.9.B解析:B【分析】根据等腰三角形的性质得出∠ACB=∠ABC=x+∠BCE 和∠D=∠DCE=y+∠BCE ,由三角形的外角性质得出∠ABC=∠D+∠BCD ,即x+∠BCE= y+∠BCE+ y ,即x=2y ,得出y 关于x 的函数关系式.【详解】解:∵AB AC =,ACE x ∠=,∴ ∠ACB=∠ABC=x+∠BCE ,∵CE DE =,BCD y ∠=∴∠D=∠DCE=y+∠BCE ,∵ ∠ABC 是△BCD 的一个外角,∴∠ABC=∠D+∠BCD ,即 x+∠BCE= y+∠BCE+ y ,即x=2y , ∴()101802y x x =<<︒, 故选:B .【点睛】 本题主要考查了等腰三角形的性质,三角形的外角性质,三角形的外角等于它不相邻的两个内角和.熟练掌握并运用各性质是解题的关键.10.B解析:B【分析】根据线段垂直平分线性质得出 AD = DC ,求出和 AB + BC 的长,即可求出答案.DE 是 AC 的垂直平分线,AE=3cm,.∴ AC=2AE=6cm,AD = DC ,△ ABD 的周长为13cm,∴ AB + BD +AD=13cm,∴AB + BD + DC = AB +BC=13cm∴△ ABC 的周长为 AB + BC +AC=13cm+6cm=19cm,故选 B.【点睛】本题考查了线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.11.C解析:C【分析】过点O作OE⊥AB于E,OF⊥AC于F,连接OA,根据角平分线的性质得:OE=OF=OD然后根据△ABC的面积是12,周长是8,即可得出点O到边BC的距离.【详解】如图,过点O作OE⊥AB于E,OF⊥AC于F,连接OA.∵点O是∠ABC,∠ACB平分线的交点,∴OE=OD,OF=OD,即OE=OF=OD∴S△ABC=S△ABO+S△BCO+S△ACO=12AB·OE+12BC·OD+12AC·OF=12×OD×(AB+BC+AC)=12×OD×8=12OD=3故选:C【点睛】此题主要考查了角平分线的性质以及三角形面积求法,角的平分线上的点到角的两边的距离相等,正确表示出三角形面积是解题关键.12.A解析:A【分析】根据直线的性质、两点间的距离、等式的性质、线段中点定义、多边形的定义依次判断.①过两点有且只有一条直线,故①正确;②两点之间,线段最短,故②正确;③若ax ay =,当0a =时,x 不一定等于y ,故③错误;④若A ,B ,C 三点共线且AB BC =,则B 为AC 中点,故④正确;⑤各角都相等且各边相等的多边形是正多边形,故⑤错误.∴正确的有①②④,故选:A .【点睛】此题考查理解能力,正确掌握直线的性质、两点间的距离、等式的性质、线段中点定义、正多边形的定义是解题的关键.二、填空题13.【分析】根据已知条件化简分式即可求出答案【详解】解:∵的次数等于的次数故答案为:【点睛】本题考查了分式的混合运算熟练分解因式是解题的关键 解析:12【分析】根据已知条件,化简分式即可求出答案.【详解】 解:223410(2)11A x xB x x -=-÷-- ()()()225223111x x x x x x ---⎛⎫=÷ ⎪-+-⎝⎭ ()()()1125112252x x x x x x x x +--+⎛⎫=⨯= ⎪--⎝⎭ 12x x+=, ∵A 的次数等于B 的次数, ∴12x A JXB →+∞=, 故答案为:12. 【点睛】 本题考查了分式的混合运算,熟练分解因式是解题的关键.14.1【分析】先将分母因式分解再将除法转化为乘法再根据法则计算即可【详解】故答案为:1【点睛】本题主要考查了分式的混合运算解题的关键是掌握分式的混合运算顺序和运算法则解析:1【分析】先将分母因式分解,再将除法转化为乘法,再根据法则计算即可.【详解】262393x x x x -÷+-- 633(3)(3)2x x x x x -=+⋅++- 333x x x =+++ 33x x +=+ 1=. 故答案为:1.【点睛】本题主要考查了分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则. 15.7【分析】把所求代数式整理成已知条件的形式然后整体代入进行计算即可得解【详解】解:∵2a-3b=-1∴3b-2a=1∴=2+5=7故答案是:7【点睛】本题考查了代数式求值整体思想的利用是解题的关键解析:7【分析】把所求代数式整理成已知条件的形式,然后整体代入进行计算即可得解.【详解】解:∵2a-3b=-1,∴3b -2a=1,∴()64523b 2a 5b a -+=-+=2+5=7,故答案是:7.【点睛】本题考查了代数式求值,整体思想的利用是解题的关键.16.3【分析】根据幂的乘方把算式中的各底数变成同底数然后按同底数幂运算法则列方程即可【详解】解:故答案为:3【点睛】本题考查了同底数幂的乘除和幂的乘方根据题意把底数变成相同是解题关键解析:3【分析】根据幂的乘方把算式中的各底数变成同底数,然后按同底数幂运算法则,列方程即可.【详解】解:2211392781n n ++⨯÷=22213143(3)(3)3n n ++⨯÷=,2423343333n n ++⨯÷=,242(33)433n n ++-+=,1433n +=,14n +=,3n =.故答案为:3【点睛】本题考查了同底数幂的乘除和幂的乘方,根据题意,把底数变成相同是解题关键. 17.【分析】根据等边三角形的性质以及含30度角的直角三角形得出OA2=A2B2=OA3OA3=A3B3=OA4…再将解得OA3==OA2==OA1=找到规律进而得出答案【详解】解:∵△A1B1A2是等边解析:12n -【分析】根据等边三角形的性质以及含30度角的直角三角形得出OA 2=A 2B 2=12OA 3,OA 3=A 3B 3=12OA 4…,再将48OA =解得OA 3=1842⨯==312-,OA 2=1422⨯==212-,OA 1=1112122-⨯==,找到规律,进而得出答案. 【详解】解:∵△A 1B 1A 2是等边三角形,∴A 1B 1=A 2B 1,∠B 1A 1A 2=∠A 1B 1A 2=60°∵∠MON=30°,∴∠OB 1A 1=30°,∠OB 1A 2=90°∴OA 1=A 1B 1=12OA 2, 同理可得OA 2=A 2B 2=12OA 3,OA 3=A 3B 3=12OA 4 ∵48OA = ∴OA 3=1842⨯==312-,OA 2=1422⨯==212-,OA 1=1112122-⨯==, 以此类推△A n B n A n+1的边长为2n-1.故答案为2n-1.【点睛】本题考查了等边三角形的性质及含30°角的直角三角形的性质,根据得出的数值找到规律是解题的关键.18.【分析】由条件可证得△ABC ≌△AED 则可求得∠ACB=∠ADEAD=AC 再利用等腰三角形的性质可求得答案【详解】解:∵∠CAD=∠BAE ∴∠CAD+∠CAE=∠BAE+∠CAE 即∠BAC=∠DAE解析:67.5【分析】由条件可证得△ABC ≌△AED ,则可求得∠ACB=∠ADE ,AD=AC ,再利用等腰三角形的性质可求得答案.【详解】解:∵∠CAD=∠BAE ,∴∠CAD+∠CAE=∠BAE+∠CAE ,即∠BAC=∠DAE ,在△ABC 和△AED 中,B E AB AEBAC EAD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC ≌△AED (ASA ),∴AD=AC ,∠ACB=∠ADE ,∴∠ACD=∠ADC ,∵∠CAD=45°,∴∠ADC=67.5°,∴∠ACB=67.5°,故答案为:67.5.【点睛】本题主要考查全等三角形的判定和性质及等腰三角形的性质,掌握全等三角形的判定方法(即SSS 、SAS 、ASA 、AAS 和HL )和全等三角形的性质(全等三角形的对应边相等、对应角相等)是解题的关键.19.22【分析】由三角形全等性质可得mn 中有一边为5pq 中有一边为3mn 与pq 中剩余两边相等再由三角形三边关系可知mn 与pq 中剩余两边最大为7如此即可得到m+n+p+q 的最大值【详解】∵△ABC ≌△DE解析:22【分析】由三角形全等性质可得m 、n 中有一边为5,p 、q 中有一边为3,m 、n 与p 、q 中剩余两边相等,再由三角形三边关系可知m 、n 与p 、q 中剩余两边最大为7,如此即可得到m+n+p+q 的最大值.【详解】∵△ABC ≌△DEF ,∴m 、n 中有一边为5,p 、q 中有一边为3,m 、n 与p 、q 中剩余两边相等, ∵3+5=8,∴两三角形剩余两边最大为7,∴m+n+p+q 的最大值为:3+5+7+7=22.【点睛】本题考查三角形全等与三角形三边关系的综合运用,灵活运用三角形全等的性质及三角形三边关系的应用是解题关键 .20.20°【分析】根据高线的定义以及角平分线的定义分别得出∠CAD=34°进而得出∠CAE 的度数进而得出答案【详解】解:∵且∴∵平分∴∵是的高∴∴∴∴故答案为:20°【点睛】此题考查三角形的角平分线中线解析:20°【分析】根据高线的定义以及角平分线的定义分别得出68BAC ︒∠=,∠CAD =34°,进而得出∠CAE 的度数,进而得出答案.【详解】解:∵180B BAC C ︒∠+∠+∠=,且6B 3︒∠=,6C 7︒∠=,∴180180367668BAC B C ︒︒︒︒︒∠=-∠-∠=--=,∵AD 平分BAC ∠, ∴11683422CAD BAC ︒︒∠=∠=⨯=, ∵AE 是ABC ∆的高, ∴90AEC ︒∠=,∴90C CAE ︒∠+∠=,∴90907614CAE C ︒︒︒︒∠=-∠=-=,∴341420DAE CAD CAE ︒︒︒∠=∠-∠=-=,故答案为:20°.【点睛】此题考查三角形的角平分线、中线和高,三角形内角和定理,解题关键在于掌握各性质定义.三、解答题21.(1)x=-4(2)化简为:1a a -,当a=2时,原式=2 【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.(2)先算括号内的加减,把除法变成乘法,再根据分式的乘法法则求出答案即可.【详解】解:(1)两边都乘最简公分母(x 2-9)得:3+x (x+3)=x 2-9,解这个整式方程得:x=-4,经检验x=-4时,x 2-9≠0,所以,x=-4是分式方程的解.(2)原式=()()()()22a 1a 11a a 1a 1a 1⎛⎫+- ⎪+÷ ⎪---⎝⎭ ()()=222a 11a a 1a 1a 1⎛⎫- ⎪+÷ ⎪---⎝⎭()=22a a 1aa 1-⋅- =a a 1- 当a=2时,原式=2.【点睛】本题考查了分式的混合运算及解分式方程,能正确根据分式的运算法则进行化简以及掌握解分式方程的方法是解答此题的关键,注意解分式方程要验根.22.2x y x+,-2 【分析】 先算括号里的加减法运算,再把除法化为乘法,约分化简,最后代入求值,即可求解.【详解】原式=2222(2)(2)(2)x x y x x y x x y x y +---÷-+ =222x y x y x x y --÷+ =222x y x y x x y -+⋅- =2x y x+, ∵()2230x y ++-=,∴()22030x y +=-=,, ∴x=-2,y=3,∴原式=2x y x +=22322-+⨯-=-. 【点睛】 本题主要考查分式的化简求值,掌握分式的混合运算法则,通分和约分,是解题的关键. 23.(1)()()2x y x y ---;(2)ABC 为等腰三角形,理由见解析【分析】(1)前三项符合完全平方公式,最后一项用提公因式法进行分解因式,最后再提公因式(x-y )即可.(2)通过因式分解22a bc b ac +--()()0a b a b c =-+-=,因为0a b c +->,所以得0a b -=,则a b =,那么ABC 为等腰三角形.【详解】解:(1)原式()()22222x xy y x y =-+--()()22x y x y =--- ()()2x y x y =---.(2)结论:ABC 为等腰三角形理由:∵22a bc b ac +--()()22a b ac bc =---()()()a b a b c a b =+---()()a b a b c =-+-0=又∵0a b c +->∴0a b -=∴a b =∴ABC 为等腰三角形.【点睛】 此题主要考查了因式分解的应用,要熟练掌握,用因式分解的方法将式子变形时,根据已知条件,变形的可以是整个代数式,也可以是其中的一部分.24.(1)DE=5;(2)证明见解析.【分析】(1)根据角平分线和平行线的性质可得∠ABD=∠EDB ,从而可得DE= BE=5;(2)根据等边对等角得出∠A=∠ADE ,根据平行线的性质可得∠C=∠ADE ,从而可得∠A=∠C ,根据等角对等边可证得结论.【详解】解:(1)∵BD 是ABC 的角平分线,∴∠ABD=∠DBC ,∵DE//BC ,∴∠EDB=∠DBC ,∴∠ABD=∠EDB ,∴BE=DE ,∵BE=5,∴DE=5;(2)∵AE=BE ,BE=DE ,∴AE=DE ,∴∠A=∠ADE ,∵DE//BC ,∴∠C=∠ADE ,∴∠A=∠C ,∴AB=BC .【点睛】本题考查等腰三角形的性质和判定,平行线的性质.解决此题的关键是借助等腰三角形的性质和判定完成边相等与角相等之间的互相转化.25.(1)见解析;(2)EC 与O 相切,理由见解析,4π-【分析】(1)连接BE ,OF ,易得出BE 是圆的直径,根据全等三角形的判定证得△EAB ≌△EDC ,继而根据平行线的性质和切线的判定即可求证结论;(2)连接EF ,易求得四边形OFHE 的边长,再利用面积的和差即可求解.【详解】(1)连接BE ,OF∵四边形ABCD 是矩形,∴90A D ∠=∠=︒,AB CD =,∵90A ∠=︒,∴BE 是O 的直径,∵点E 是AD 中点,∴EA EC =,∴△EAB ≌△EDC ,∴EB EC =,∴EBC ECB ∠=∠,∵OB OF =,∴ECB OFB ∠=∠,∴ECB OFB ∠=∠,∴//OF EC ,∴OFH FHC ∠=∠,∵FH CE ⊥,∴90FHC OFH ∠=∠=︒,又∵OF 是O 的半径,∴直线FH 是O 的切线.(2)EC 与O 相切. 理由如下:连接EF ,由(1)知,BE 是O 直径,∴90EFB EFC ∠=∠=︒,∵点H 是CE 中点,∴FH EH HC ==,∵FH CE ⊥,∴90FHC ∠=︒,∴45ECF HFC ∠=∠=︒,∴90BEC ∠=︒,又∵OE 是O 的半径,∴直线EC 与圆O 相切.由上可知四边形ABFE 和四边形OFHE 都是正方形, ∴11422222AE AB AD ===⨯= ∴224BE AB AE =+=,∴2OE OF ==, ∴2290π224π360OFHE OEFS S S ⨯=-=-=-正方形扇形. 【点睛】本题考查直线与圆的位置关系,矩形的性质,全等三角形的判定和性质、切线的判定、勾股定理,解题的关键是综合运用所学知识.26.10EAD ∠=︒,55BOE ∠=︒【分析】根据三角形内角和定理求出∠BAC=180°-60°-70°=50°,再由AE 是角平分线,求出∠EAC=12∠BAC=30°,由AD 是高,求出∠CAD=90°-∠C=20°,最后即可求出∠EAD=∠EAC-∠CAD=10°;根据角平分线的性质,得∠OAB=12∠BAC ,∠OBA=12∠ABC ,所以∠BOE=∠OAB+∠OBA=12(∠BAC+∠ABC )=12(180°-∠C )=12×(180°-70°)=55°.【详解】解:∠B AC=60°,∠C=70°∴∠ABC=180°−∠ABC−∠C=180°−60°-70°=50°,∵AE是角平分线,∴∠EAC=12∠BAC=12×60°=30°,∵AD是高,∴∠ADC=90°,∴∠CAD=90°−∠C=90°−70°=20°,∴∠DAE=∠EAC−∠CAD=30°−20°=10°;∵AE,BF是角平分线,∴∠OAB=12∠BAC,∠OBA=12∠ABC,∴∠BOE=∠OAB+∠OBA=12(∠BAC+∠ABC)=12(180°−∠C)=12×(180°−70°) =55°.【点睛】本题考查了三角形内角和定理、角平分线性质,解题的关键是明确题意,找出所求问题需要的条件.。
【浙教版】八年级数学上期末模拟试卷(附答案)(2)
一、选择题1.下列命题的逆命题是真命题的是( )A .两个全等三角形的对应角相等B .若一个三角形的两个内角分别为30和60︒,则这个三角形是直角三角形C .两个全等三角形的面积相等D .如果一个数是无限不循环小数,那么这个数是无理数2.一个三角形的三个内角中( )A .至少有一个等于90°B .至少有一个大于90°C .不可能有两个大于89°D .不可能都小于60°3.如图,AB ∥DE ,80,45B D ︒︒∠=∠=则C ∠的度数为( )A .50︒B .55︒C .60︒D .65︒4.已知关于x 、y 的方程组1427x y a x y a +=+⎧⎨-=--⎩得出下列结论,正确的是( ) ①当0a =时,方程组的解也是方程1x y +=的解;②当x y =时,52a =-;③不论a 取什么实数,3x y -的值始终不变:④不存在a 使得23x y =成立;A .①②③B .①②④C .①③④D .②③④ 5.由于今年重庆受到洪水袭击,造成南滨路水电站损害;重庆市政府决定对南滨路水电站水库进行加固.现有4辆板车和5辆卡车一次能运27吨水电站加固材料,10辆板车和3辆卡车一次能运20吨水电站加固材料,设每辆板车每次可运x 吨货,每辆卡车每次能运y 吨货,则可列方程组( )A .452710320x y x y +=⎧⎨-=⎩B .45271020x y x y -=⎧⎨+=⎩C .452710320x y x y -=⎧⎨-=⎩D .452710320x y x y +=⎧⎨+=⎩ 6.甲、乙两车从A 城出发匀速行驶至B 城.在整个行驶过程中,甲、乙两车离开A 城的距离y (千米)与甲车行驶的时间t (小时)之间的函数关系如图所示.则下列结论: ①A ,B 两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后1.5小时追上甲车;④当甲、乙两车相距50千米时,54t =或154其中正确的结论有( )A.1个B.2个C.3个D.4个7.今天早晨上7点整,小华以50米/分的速度步行去上学,妈妈同时骑自行车向相反的方向去上班,10分钟时按到小华的电话,立即原速返回并前往学校,恰与小华同时到达学校他们离家的距离y(米)与时间x(分)间的函数关系如图所示,有如下的结论:①妈妈骑骑自行车的速度为250米/分;②小华家到学校的距离是1250米;③小华今早晨上学从家到学校的时间为25分钟:④在7点16分40秒时妈妈与小华在学校相遇.其中正确的结论有()A.1个B.2个C.3个D.4个8.已知∠A、∠B互余,∠A比∠B大30°,设∠A、∠B的度数分别为x°、y°,下列方程组中符合题意的是()A.18030x yx y+=⎧⎨=-⎩B.180+30x yx y+=⎧⎨=⎩C.9030x yx y+=⎧⎨=-⎩D.90+30x yx y+=⎧⎨=⎩9.已知函数y=kx+b的图象如图所示,则y=2kx+b的图象可能是()A.B.C .D .10.在如图所示的平面直角坐标系中,一只蚂蚁从A 点出发,沿着A ﹣B ﹣C ﹣D ﹣A …循环爬行,其中A 点坐标为(﹣1,1),B 的坐标为(﹣1,﹣1),C 的坐标为(﹣1,3),D 的坐标为(1,3),当蚂蚁爬了2015个单位时,它所处位置的坐标为( )A .(1,1)B .(1,0)C .(0,1)D .(1,﹣1) 11.实数a 、b 在数轴上的位置如图所示,那么()2a b a b -++的结果是( )A .2aB .2bC .2a -D .2b -12.如图,在Rt ABC △中,90,30,ACB ABC CD ︒∠︒=∠=平分ACB ∠.边AB 的垂直平分线DE 分别交,CD AB 于点,D E .以下说法错误的是( )A .60BAC ∠=︒B .2CD BE =C .DE AC =D .122CD BC AB =+ 二、填空题13.如图,AD 平分,34BDF ∠∠=∠,若150,2130∠=︒∠=︒,则CBD ∠=________︒.14.如图,下列条件:①∠1=∠2;②∠BAD+∠ADC =180°;③∠ABC =∠ADC ;④∠3=∠4;其中能判定AB ∥CD 的是_____(填序号).15.已知方程组278ax by cx y +=⎧⎨-=⎩,甲解对了,得32x y =⎧⎨=-⎩.乙看错了c ,得22x y =-⎧⎨=⎩.则abc 的值为_______.16.若()1280m m x y -++=是关于x ,y 的二元一次方程,则m =__________.17.在平面直角坐标系xOy 中,直线y =﹣34x +3分别与x 轴、y 轴交于点A 、B ,将△AOB 沿过点A 的直线折叠,使点B 落在x 轴的负半轴上,记作点C ,折痕与y 轴交于点D ,则直线AD 的解析式为_____.18.如图,在Rt ABC △中,90ACB ∠=︒,3AC =,4BC =,5AB =,AD 平分CAB ∠交BC 于点D ,E ,F 分别是AD ,AC 边上的动点,则CE EF +的最小值为__________.19.计算1248⨯的结果是________________. 20.如图,在四边形ABCD 中,22AD =,27AB =,10BC =,8CD =,90BAD ∠=︒,那么四边形ABCD 的面积是___________.三、解答题21.在如图所示的方格纸中,每个小正方形的边长为1,每个小正方形的顶点都叫做格点,点A 、B 、P 均在格点上.(请利用网格作图,画出的线用铅笔描粗描黑)(1)过点P 画直线AB 的平行线;(2)连接PA 、PB ,则三角形PAB 的面积= ;(3)若三角形QAB 面积与三角形PAB 的面积相等,且格点Q 与P 不重合,则格点Q 有 个.22.已知一次函数1y ax b , 2y bx a (0ab ≠,且a b )(1)若1y 过点(1,2)与点(23)b a --,, 求1y 的函数解析式. (2)1y 与2y 的图像交于点(),A m n , 用含a ,b 的式子表示n .(3)设3y = 12y y -, 421y y y =-, 当34y y >时,求x 的取值范围.23.剧院举行新年专场音乐会,成人票每张20元,学生票每张5元,剧院制定了两种优惠方案,方案1:购买一张成人票赠送一张学生票;方案2:按总价的90%付款.某校有4名老师与若干名(不少于4人)学生听音乐会.(1)设学生人数为x (人),付款总金额为y (元),分别表示这两种方案; (2)请计算并确定出最节省费用的购票方案.24.在平面直角坐标系中,点P(2﹣m ,3m +6).(1)若点P 与x 轴的距离为9,求m 的值;(2)若点P 在过点A(2,﹣3)且与y 轴平行的直线上,求点P 的坐标.25.阅读材料:我们定义:如果一个数的平方等于1-,记作21i =-,那么这个i 就叫做虚数单位.虚数与我们学过的实数合在一起叫做复数.一个复数可以表示为a bi +(a ,b 均为实数)的形式,其中a 叫做它的实部,b 叫做它的虚部.复数的加、减、乘的运算与我们学过的整式加、减、乘的运算类似.例如计算:()()()()62362382i i i i i ++-=++-=-.根据上述材料,解决下列问题:(1)填空:3i ______,6i =_________;(2)计算:2(32)i +;(3)将32i i+-化为a bi +(a ,b 均为实数)的形式(即化为分母中不含i 的形式). 26.如图,在两面墙之间有一个底端在A 点的梯子,当它靠在一侧墙上时,梯子的顶端在B 点;当它靠在另一侧墙上时,梯子的顶端在D 点.已知∠BAC=60°,∠DAE=45°,点D 到地面的垂直距离DE=32米.求点B到地面的垂直距离BC.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据原命题分别写出逆命题,然后再判断真假即可.【详解】A、两个全等三角形的对应角相等,逆命题是:对应角相等的两个三角形全等,是假命题;B、若一个三角形的两个内角分别为 30°和 60°,则这个三角形是直角三角形,逆命题是:如果一个三角形是直角三角形,那么它的两个内角分别为 30°和 60°,是假命题;C、两个全等三角形的面积相等,逆命题是:面积相等的两个三角形全等,是假命题;D、如果一个数是无限不循环小数,那么这个数是无理数,逆命题是:如果一个数是无理数,那么这个数是无限不循环小数,是真命题.故选:D【点睛】本题考查了命题与定理,解决本题的关键是掌握真命题.2.D解析:D【分析】根据三角形的内角性质、三角形的内角和定理逐项判断即可得.【详解】A、反例:锐角三角形的三个内角均小于90︒,此项错误;B、反例:锐角三角形的三个内角均小于90︒,此项错误;︒︒︒,此项错误;C、反例:一个三角形的三个内角分别为89.5,89.5,1D、因为三角形的内角和等于180︒,所以不可能都小于60︒,此项正确;故选:D.【点睛】本题考查了三角形的内角、三角形的内角和定理,熟练掌握三角形的内角和定理是解题关键.3.B解析:B【分析】延长DE交BC于F,利用平行线的性质求出∠DFC=∠B=80°,再利用三角形的内角和定理求出C∠的度数.【详解】延长DE交BC于F,如图,∵AB∥DE,∴∠DFC=∠B=80°,∵∠C+∠D+∠DFC=180°,∴∠C= =180°-∠D-∠DFC=55°,故选:B.【点睛】此题考查平行线的性质:两直线平行,同位角相等;三角形的内角和定理.4.A解析:A【分析】①把a看做已知数表示出方程组的解,把a=0代入求出x与y的值,代入方程检验即可;②令x=y求出a的值,即可作出判断;③把x与y代入3x-y中计算得到结果,判断即可;④令2x=3y求出a的值,判断即可.【详解】解:1427x y ax y a+=+⎧⎨-=--⎩①②,①+②得:3x=3a-6,解得:x=a-2,把x=a-2代入①得:y=3a+3,当a=0时,x=-2,y=3,把x=-2,y=3代入x+y=1得:左边=-2+3=1,右边=1,是方程的解;当x=y 时,a-2=3a+3,即a=52-; 3x-y=3a-6-3a-3=-9,无论a 为什么实数,3x-y 的值始终不变,为-9;令2x=3y ,即2a-4=9a+9,即a=137-,存在, 则正确的结论是①②③,故选A .【点睛】此题考查了二元一次方程组的解,二元一次方程的解,以及解二元一次方程组,熟练掌握运算法则是解本题的关键. 5.D解析:D【分析】以每次运送加固材料为等量关系,列方程组即可.【详解】解:根据4辆板车运货量+5辆卡车运货量=27吨,得方程4527x y +=;根据10辆板车运货量+3辆卡车运货量=20吨,得方程10320x y +=.可列方程组为452710320x y x y +=⎧⎨+=⎩. 故选D .【点睛】本题考查了二元一次方程组的应用,解题关键是找准题目数量关系,找到等量关系列方程组. 6.C解析:C【分析】由图象所给数据可求得甲、乙两车离开A 城的距离y 与时间t 的关系式,可求得两函数图象的交点,进而判断,再令两函数解析式的差为50,可求得t ,可得出答案.【详解】图象可知A 、B 两城市之间的距离为300km ,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,故①②都正确;设甲车离开A 城的距离y 与t 的关系式为y kt =甲,把()5,300代入可求得60k =,60y t ∴=甲,设乙车离开A 城的距离y 与t 的关系式为y mt n =+乙,把()1,0和()4,300代入可得04300m n m n +=⎧⎨+=⎩,解得100100m n =⎧⎨=-⎩,100100y t ∴=-乙,令y y =甲乙可得:60100100t t =-,解得 2.5t =,即甲、乙两直线的交点横坐标为 2.5t =,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,故③正确; 令50y y -=甲乙,可得|60100100|50t t -+=,即|10040|50t -=,当1004050t -=时,可解得54t =, 当1004050t -=-时,可解得154t =, 又当56t =时,50y =甲,此时乙还没出发, 当256t =时,乙到达B 城,250y =甲; 综上可知当t 的值为54t =或154t =或56t =或256t =时,两车相距50千米,故④不正确; 综上可知正确的有①②③共三个,故选:C .【点睛】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,学会构建一次函数,利用方程组求两个函数的交点坐标,属于中考常考题型.7.C解析:C【分析】①由函数图象可以求出妈妈骑车的速度是250米/分;②设妈妈到家后追上小华的时间为x 分钟,就可以求出小华家到学校的距离; ③由②结论就可以求出小华到校的时间;④由③的结论就可以求出相遇的时间.【详解】解:①由题意,得妈妈骑车的速度为:2500÷10=250米/分;②设妈妈到家后追上小华的时间为x 分钟,由题意,得250x=50(20+x ),解得:x=5.∴小华家到学校的距离是:250×5=1250米.③小华今天早晨上学从家到学校的时间为1250÷50=25分钟,④由③可知在7点25分时妈妈与小华在学校相遇.∴正确的有:①②③共3个.故选:C.【点睛】本题考查了追击问题的数量关系的运用,路程÷速度=时间的关系的运用,解答时认真分析函数图象的意义是关键.8.D解析:D【解析】试题∠A比∠B大30°,则有x=y+30,∠A,∠B互余,则有x+y=90.故选D.9.A解析:A【分析】由图知,函数y=kx+b图象过点(0,1),即k>0,b=1,再根据一次函数的特点解答即可.【详解】解:∵由函数y=kx+b的图象可知,k>0,b=1,∴y=2kx+b=2kx+1,2k>0,∴2k>k,可见一次函数y=2kx+b图象与x轴的夹角,大于y=kx+b图象与x轴的夹角.∴函数y=2kx+1的图象过第一、二、三象限且与x轴的夹角比y=kx+b与x轴的夹角大.故选:A.【点睛】本题考查了一次函数的图象,掌握一次函数图象上点的坐标特点及一次函数的图象与k与b的关系是解题的关键.10.B解析:B【分析】由题意知:AB=2,BC=4,CD=2,DA=4,可求出蚂蚁爬行一周的路程为12个单位,然后求出2015个单位能爬167圈还剩11个单位,结合图形即可确定位置为(1,0)【详解】由题意知:AB=2,BC=4,CD=2,DA=4,∴蚂蚁爬行一周的路程为:2+4+2+4=12(单位),2015÷12=167(圈)…11(单位),即离起点差1个单位,∴蚂蚁爬行2015个单位时,所处的位置是AD和x轴的正半轴的交点上,∴其坐标为(1,0).故选:B .【点睛】本题考查了点坐标规律探索,根据蚂蚁的运动规律找出“蚂蚁每运动12个单位长度是一圈”是解题的关键.11.D解析:D【分析】由数轴可得到0b a <<,根据()2a b a b +=+和绝对值的性质,即可得到答案.【详解】解:根据题意,则 0b a <<,∴0a b ->,0a b +<,∴()2a b a b -++=a b a b -++=a b a b ---=2b -;故选:D .【点睛】本题考查了二次根式的性质,绝对值的意义,数轴的定义,解题的关键是掌握所学的知识,正确得到0b a <<.12.B解析:B【分析】利用直角三角形的性质、三角形内角和定理、勾股定理、全等三角形的判定与性质等知识对各选项的说法分别进行论证,即可得出结论.【详解】解:如图,连接BD 、AD ,过点D 作DM ⊥BC 于M ,DN ⊥CA 的延长线于N ,A 、在Rt ABC △中,90ACB ∠=︒,30ABC ∠=︒,∴60BAC ∠=︒.故此选项说法正确;B 、∵DM ⊥BC ,DN ⊥CA∴∠DNC =∠DMC =90°,∵CD 平分∠ACB ,∴∠DCN =∠DCM =45°.∴∠DCN =∠CDN =45°.∴CN=DN .则△CDN 是等腰直角三角形.同理可证:△CDM 也是等腰直角三角形,∴=.,∴DM=DN= CM=CN ,∠MDN =90°.∵DE 垂直平分AB ,∴BD=AD ,AB=2BE .∴Rt △BDM ≌△ADN ,∴∠BDM=∠AND .∴∠BDM+∠ADM =∠AND+∠ADM =∠MDN .∴∠ADB=90°.∴=.即.∵在Rt △AND 中,AD 是斜边,DN 是直角边,∴AD >DN.∴2BE >CD .故此选项说法错误.C 、∵BD=AD ,∠ADB=90°,∴△ABD 是等腰直角三角形.∴DE=12AB .在Rt ABC △中,90ACB ∠=︒,30ABC ∠=︒,∴AC=12AB .∴DE=AC .故此选项说法正确.D 、∵Rt △BDM ≌△ADN ,∴BM=AN .∴CN=AC+AN=AC+BM=CM .∴BC=BM+CM=AC+2BM .∵, ∴.∵AC=12AB , ∴12AB+BC .故此选项说法正确.故选:B.【点睛】本题属于三角形综合题,考查了直角三角形的性质,全等三角形的判定与性质,勾股定理等知识,难度较大,准确作出辅助线并灵活运用所学知识是解题的关键.二、填空题13.65【分析】利用平行线的判定定理和性质定理等量代换可得∠CBD=∠EBC 可得结果【详解】∵∠1=50°∴∠DBE=180°-∠1=180°-50°=130°∵∠2=130°∴∠DBE=∠2∴AE∥C解析:65【分析】利用平行线的判定定理和性质定理,等量代换可得∠CBD=∠EBC,可得结果.【详解】∵∠1=50°,∴∠DBE=180°-∠1=180°-50°=130°,∵∠2=130°,∴∠DBE=∠2,∴AE∥CF,∴∠4=∠ADF,∵∠3=∠4,∴∠EBC=∠4,∴AD∥BC,∵AD平分∠BDF,∴∠ADB=∠ADF,∵AD∥BC,∴∠ADB=∠CBD,∴∠4=∠CBD,∴∠CBD=∠EBC=12∠DBE=12×130°=65°.故答案为:65.【点睛】本题主要考查了平行线的判定定理和性质定理,角平分线的定义等,熟练掌握定理是解答此题的关键.14.①②【分析】根据平行线的判定定理逐一判断即可得答案【详解】∵∠1=∠2∴AB∥CD;故①符合题意∵∠BAD+∠ADC=180°∴AB∥CD;故②符合题意∠ABC=∠ADC不能判定AB∥CD故③不符合解析:①②.【分析】根据平行线的判定定理逐一判断即可得答案.【详解】∵∠1=∠2,∴AB ∥CD ;故①符合题意,∵∠BAD+∠ADC =180°,∴AB ∥CD ;故②符合题意,∠ABC =∠ADC ,不能判定AB ∥CD ,故③不符合题意,∵∠3=∠4,∴AD ∥BC ;不能判定AB ∥CD ,故④不符合题意,故答案为:①②【点睛】本题考查平行线的判定,同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;熟练掌握平行线的判定定理是解题关键.15.-40【分析】把甲的结果代入方程组求出c 的值得到关于a 与b 的方程将乙结果代入第一个方程得到a 与b 的方程联立求出a 与b 的值在计算abc 的值即可【详解】解:由甲运算结果得解得由乙运算结果得得解得=故答案解析:-40【分析】把甲的结果代入方程组求出c 的值,得到关于a 与b 的方程,将乙结果代入第一个方程得到a 与b 的方程,联立求出a 与b 的值,在计算abc 的值即可.【详解】解:由甲运算结果得322a b -=,3148c +=,解得2c =-,由乙运算结果得222a b -+=,得322222a b a b -=⎧⎨-+=⎩, 解得45a b =⎧⎨=⎩. ∴ abc =45(2)40⨯⨯-=-故答案为:-40【点睛】本题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.16.【分析】根据二元一次方程的定义从二元一次方程的未知数次数为1这一方面考虑【详解】根据题意得且解得且所以故答案是:【点睛】本题主要考查了二元一次方程的定义二元一次方程必须符合以下三个条件:(1)方程中 解析:1-【分析】根据二元一次方程的定义,从二元一次方程的未知数次数为1这一方面考虑.【详解】 根据题意,得1m =且10m -≠.解得1m =±且1m ≠.所以1m =-.故答案是:1-.【点睛】 本题主要考查了二元一次方程的定义,二元一次方程必须符合以下三个条件:(1)方程中只含有2个未知数;(2)含未知数项的最高次数为一次;(3)方程是整式方程. 17.y =﹣【分析】分别将x=0y=0代入直线y=-x+3中求出与之对应的yx 值由此即可得出点BA 的坐标根据折叠的性质结合勾股定理可求出AC 的长度进而可得出点C 的坐标设OD=m 则CD=BD=3-m 在Rt △解析:y =﹣1433x +【分析】分别将x=0、y=0代入直线y=-34x+3中求出与之对应的y 、x 值,由此即可得出点B 、A 的坐标,根据折叠的性质结合勾股定理可求出AC 的长度,进而可得出点C 的坐标,设OD=m ,则CD=BD=3-m ,在Rt △COD 中利用勾股定理可求出m 的值,进而可得出点D 的坐标,则可求出答案.【详解】解:如图,当x =0时,y =﹣34x +3=3, ∴点B 的坐标为(0,3), 当y =0时,有﹣34x +3=0, 解得:x =4,∴点A 的坐标为(4,0).由折叠性质可知,△ABD ≌△ACD ,∴AC =AB ,BD =CD .在Rt △AOB 中,AB 22OA OB +5,∴AC =5,∴OC =AC ﹣OA =5﹣4=1,∴点C 的坐标为(﹣1,0).设OD =m ,则CD =BD =3﹣m ,在Rt △COD 中,OC 2+OD 2=CD 2,即12+m 2=(3﹣m )2,解得:m =43, ∴OD =43, ∴点D 的坐标为(0,43). 设直线AD 的解析式为y =kx +b (k ≠0), 将A (4,0)、D (0,43)代入y =kx +b , 4043k b b +=⎧⎪⎨=⎪⎩, 解得:1343k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴直线AD 的解析式为y =1433x -+. 故答案为:y =1433x -+. 【点睛】本题考查了待定系数法求一次函数解析式、一次函数图象上点的坐标特征以及翻折变换,解题的关键是熟练掌握折叠的性质. 18.【分析】在上取点使连接过点作垂足为利用角的对称性可知则EC +EF 的最小值即为点C 到AB 的垂线段CH 的长度进而即可求解【详解】解:如图在上取点使连接过点作垂足为平分根据对称可知当点共线且点与点重合时的 解析:125【分析】在AB 上取点F ',使AF AF '=,连接EF ',过点C 作CH AB ⊥,垂足为H .利用角的对称性,可知EF EF '=,则EC +EF 的最小值即为点C 到AB 的垂线段CH 的长度,进而即可求解.【详解】解:如图,在AB 上取点F ',使AF AF '=,连接EF ',过点C 作CH AB ⊥,垂足为H . AD 平分CAB ∠,∴根据对称可知EF EF '=. 1122ABC S AB CH AC BC =⋅=⋅△, 125AC BC CH AB ⋅∴==. EF CE EF EC '+=+,∴当点C 、E 、F '共线,且点F '与点H 重合时,FE EC +的值最小,最小值为CH=125, 故答案为125.【点睛】本题考查了轴对称-线段和最小值问题,添加辅助线,把两条线段的和的最小值化为点到直线的距离问题,是解题的关键.19.【分析】利用二次根式的乘法运算法则进行计算即可【详解】解:=故答案为:【点睛】本题考查二次根式的乘法熟练掌握二次根式的乘法运算法则是解答的关键3【分析】利用二次根式的乘法运算法则进行计算即可.【详解】124812438⨯= 3【点睛】本题考查二次根式的乘法,熟练掌握二次根式的乘法运算法则是解答的关键. 20.+24【分析】连结BD 可求出BD=6再根据勾股定理逆定理得出△BDC 是直角三角形两个三角形面积相加即可【详解】解:连结BD ∵∴∵∴BD=6∵BD2=36CD2=64BC2=100BD2+CD2=BC解析:214+24 【分析】 连结BD ,可求出BD=6,再根据勾股定理逆定理,得出△BDC 是直角三角形,两个三角形面积相加即可.【详解】解:连结BD ,∵90BAD ∠=︒,∴22BD AD AB =+, ∵22AD =,27AB =, ∴BD=6,∵BD 2=36,CD 2=64,BC 2=100,BD 2+CD 2=BC 2,∴∠BDC=90°,S △ABD =122272142⨯⨯=, S △BDC =168242⨯⨯=, 四边形ABCD 的面积是= S △ABD + S △BDC =214+24故答案为:214+24.【点睛】本题考查勾股定理以及逆定理,三角形的面积等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题21.(1)见解析;(2)6.5;(3)3【分析】(1)连结AP ,过点P 作∠APQ=∠PAB ,利用内错角相等,两直线平行可得PQ ∥AB 即可; (2)连PB ,割补法利用网格正方形面积减去三个三角形面积即可;(3)由三角形QAB 面积与三角形PAB 的面积相等,在AB 的平行线PQ 上,截取PQ=AB 或PQ 1=AB ,连结AQ ,延长QA ,在QA 的延长线上截取AQ 2=AQ 即可.【详解】(1)连结AP ,过点P 作∠APQ=∠PAB ,∴PQ ∥AB ,则PQ 为所求;(2)连PB ,S △PAB =4×4-12×4×3-12×1×3-12×4×1=16-6-1.5-2=6.5, 故答案为:6.5;(3)三角形QAB 面积与三角形PAB 的面积相等,在AB 的平行线PQ 上,截取PQ=AB 或PQ 1=AB ,连结AQ ,延长QA ,在QA 的延长线上截取AQ 2=AQ ,则Q 、Q 1、Q 2三点为所求,则格点Q 有3个,故答案为:3.【点睛】本题考查平行线的作法,网格三角形面积,面积相等的三角形格点问题,掌握平行线的作法,网格三角形面积求法,面积相等的三角形格点确定方法是解题关键.22.(1) 13y x =-+;(2) n a b =+;(3)0a b ->,1x >或0a b -<,1x <【分析】(1)将1,2();)2,3b a --(代入1y ,得到二元一次方程组,求解方程组即可得a 、b 的值;(2)联立1y 与2y ,即ax b bx a +=+,求得m 的值,然后把点代入1y 或2y ,即可得出结论;(3)根据题意,分别表示出34,y y ,当340y y ->时,分情况讨论得出结论.【详解】解:(1) 将1,2();)2,3b a --(代入1y : 232a b b a a b =+⎧⎨--=+⎩解得:13a b =-⎧⎨=⎩∴ 13y x =-+(2)12y y =,即ax b bx a +=+∴ 1a b x a b-==- ∴ 1m =将()1,A n 代入1y :得到n a b =+(3)3y =12y y -=()()ax b bx a +-+=ax bx b a -+-4y =21y y -=()()bx a ax b +-+=bx ax a b -+-∴34y y - = ()()ax bx b a bx ax a b -+---+-=()()220a b x b a -+->当0a b ->时:解得1x >;当0a b -<时:解得1x <.【点睛】此题考查了待定系数法求一次函数解析式,以及一次函数图像上点的坐标特征,一次函数交点坐标特征,熟练掌握待定系数法是解本题的关键.23.(1)y 1=5x +60;y 2=4.5x +72;(2)当购买24张票时,两种优惠方案付款一样多;4≤x <24时,优惠方案1付款较少;x >24时,优惠方案2付款较少【分析】(1)首先根据优惠方案①:付款总金额=购买成人票金额+除去4人后的学生票金额; 优惠方案②:付款总金额=(购买成人票金额+购买学生票金额)×打折率,列出y 关于x 的函数关系式,(2)根据(1)的函数关系式求出当两种方案付款总金额相等时,购买的票数.再就三种情况讨论.【详解】(1)按优惠方案1可得:y 1=20×4+(x -4)×5=5x +60,按优惠方案2可得:y 2=(5x +20×4)×90%=4.5x +72,(2)y 1-y 2=0.5x -12(x≥4),①当y 1-y 2=0时,得0.5x -12=0,解得x =24,∴当购买24张票时,两种优惠方案付款一样多;②当y 1-y 2<0时,得0.5x -12<0,解得x <24,∴4≤x <24时,y 1<y 2,优惠方案1付款较少.③当y 1-y 2>0时,得0.5x -12>0,解得x >24,∴当x >24时,y 1>y 2,优惠方案2付款较少.【点睛】本题根据实际问题考查了一次函数的运用.解决本题的关键是根据题意正确列出两种方案的解析式,进而计算出临界点x 的取值,再进一步讨论.24.(1)1或﹣5;(2)(2,6)【分析】(1)由点P 与x 轴的距离为9可得36=9m +,解出m 的值即可;(2)由点P 在过点A(2,-3)且与y 轴平行的直线上可得2-m =2,解出m 的值即可.【详解】(1)点P (2-m ,3m +6),点P 在x 轴的距离为9,∴|3m +6|=9,解得:m =1或-5.答:m 的值为1或-5;(2)点P 在过点A (2,-3)且与y 轴平行的直线上,∴2-m =2,解得:m =0,∴3m +6=6,∴点P 的坐标为(2,6).【点睛】本题主要考查点到坐标轴的距离以及在与坐标轴平行的直线上点的坐标的特点,熟练掌握点到坐标轴的距离的意义以及与坐标轴平行的直线上点的坐标的特点是解题关键. 25.(1)i -,1-;(2)512i +;(3)1i +【分析】(1)根据21i =-,则i 3=i 2•i ,i 4=i 2•i 2,然后计算;(2)根据完全平方公式计算,出现i 2,化简为-1计算;(3)分子分母同乘以(2)i +后,把分母化为不含i 的数后计算.【详解】解:(1)∵21i =-,∴321i i i i i =⋅=-⋅=-,6222i i i i 1(1)(1)1=⋅⋅=-⋅-⋅-=-.故答案为:,1i --;(2)222(32)31249124512i i i i i +=++=+-=+;(3)223(3)(2)655512(2)(2)45i i i i i i i i i i i ++++++====+--+-. 【点睛】本题考查了实数的运算,以及完全平方公式的运用,能读懂题意是解此题的关键,解题步骤为:阅读理解,发现信息;提炼信息,发现规律;运用规律,联想迁移;类比推理,解答问题.26.【分析】在Rt△ADE中,运用勾股定理可求出梯子的总长度,在Rt△ABC中,根据已知条件再次运用勾股定理可求出BC的长.【详解】解:在Rt△DAE中,∵∠DAE=45°,∴∠ADE=∠DAE=45°,.∴AD2=AE2+DE2=()2+()2=36,∴AD=6,即梯子的总长为6米.∴AB=AD=6.在Rt△ABC中,∵∠BAC=60°,∴∠ABC=30°,∴AC=1AB=3,2∴BC2=AB2-AC2=62-32=27,∴m,∴点B到地面的垂直距离.【点睛】本题考查了勾股定理的应用,如何从实际问题中整理出直角三角形并正确运用勾股定理是解决此类题目的关键.。
【浙教版】八年级数学上期末模拟试题附答案(2)
一、选择题1.计算:2x y x yx y xy-⋅-=( ) A .x B .y xC .yD .1x2.已知分式34x x -+的值为0,则x 的值是( ) A .3 B .0C .-3D .-43.计算221(1)(1)x x x +++的结果是( )A .1B .1+1x C .x +1 D .21(+1)x 4.下列各式中错误的是( ) A .2c d c d c d c d da a a a-+-----== B .5212525aa a +=++ C .1x y x y y x-=--- D .2211(1)(1)1x x x x -=---5.如果249x mx -+是一个完全平方式,则m 的值是( ) A .12±B .9C .9±D .126.已知25y x -=,那么()2236x y x y --+的值为( ) A .10B .40C .80D .2107.下列计算一定正确的是( ) A .235a b ab += B .()235610a b a b -=C .623a a a ÷=D .()222a b a b +=+8.下列计算正确的是( ) A .(a 2)3=a 5B .(2a 2)2=2a 4C .a 3•a 4=a 7D .a 4÷a =a 49.如图,在△ABC 中,∠C =84°,分别以点A ,B 为圆心,以大于12AB 的长为半径画弧,两弧分别交于点M ,N ,作直线MN 交AC 于点D ;以点B 为圆心,适当长为半径画弧,分别交BA ,BC 于点E ,F ,再分别以点E ,F 为圆心,大于12EF 的长为半径画弧,两弧交于点P .若此时射线BP 恰好经过点D ,则∠A 的大小是( )A .30°B .32°C .36°D .42°10.如图,已知等腰三角形ABC 中,AB AC =,15DBC ∠=︒,分别以A 、B 两点为圆心,以大于12AB 的长为半径画圆弧,两弧分别交于点E 、F ,直线EF 与AC 相交于点D ,则A ∠的度数是( )A .50°B .60°C .75°D .45° 11.下列长度的三条线段可以组成三角形的是( )A .1,2,4B .5,6,11C .3,3,3D .4,8,1212.如图,在ABC 和△FED 中,AD FC =,AB FE =,下列条件中不能证明F ABC ED ≌△△的是( )A .BC ED =B .A F ∠=∠C .B E ∠=∠D .//AB EF二、填空题13.化简23x x+=____.14.符号“a b c d”称为二阶行列式,规定它的运算法则为:a b c d=ad ﹣bc ,请你根据上述规定求出下列等式中x 的值.若2111111xx =--,那么x =__. 15.已知x 2-3x -1=0,则2x 3-3x 2-11x +1=________.16.一个长方形的两邻边分别是8x -,2x -,若()()228213x x -+-=,则这个长方形的面积是_________17.如图,等腰ABC 的周长为36,底边上的高12AD =,则ABD △的周长为________.18.如图,∠AOB =45°,OC 平分∠AOB ,点M 为OB 上一定点,P 为OC 上的一动点,N 为OB 上一动点,当PM +PN 最小时,则∠PMO 的度数为___________.19.如图,把等腰直角三角板放平面直角坐标系内,已知直角顶点C 的坐标为()0,3,另一个顶点B 的坐标为()8,8,则点A 的坐标为____________20.如图,在ABC 中,点D 、E 、F 分别是边BC 、AD 、CE 上的中点,则6ABCS=,则BEF S =△______.三、解答题21.解分式方程: (1)1171.572x x += (2)21533x x x -+=-- 22.解下列方程.(1)21133x x x-+=-- (2)2216124x x x --=+- 23.数学活动课上,张老师准备了若干个如图①的三种纸片,A 种纸片是边长为a 的正方形,B 种纸片是边长为b 的正方形,C 种纸片是长为,b 宽为a 的长方形,并用A 种纸片一张,B 种纸片一张,C 种纸片两张拼成如图②的大正方形.()1观察图②,请你写出代数式()222,,a b a b ab ++之间的等量关系是 ;()2根据()1中的等量关系,解决下列问题;①已知224,10a b a b +=+=,求ab 的值;②已知()()222020201852x x -+-=,求2019x -的值.24.如图,点E 在ABC 的边AB 上,90ABC EAD ∠=∠=︒,30BAC ADE ∠=∠=︒,DE 的延长线交AC 于点G ,交BC 延长线于点F .AB=AD ,BH ⊥DF ,垂足为H .(1)求HAE ∠的度数;(2)求证:DHFB FH =+.25.已知:直线EF 分别与直线AB ,CD 相交于点G ,H ,并且180AGE DHE ∠+∠=︒(1)如图1,求证://AB CD ;(2)如图2,点M 在直线AB ,CD 之间,连接GM ,HM ,求证:M AGM CHM ∠=∠+∠;(3)如图3,在(2)的条件下,射线GH 是BGM ∠的平分线,在MH 的延长线上取点N ,连接GN ,若N AGM ∠=∠,12M N FGN ∠=∠+∠,求MHG ∠的度数.26.如图,在ABC 中,D 是AB 上一点,且AD AC =,连结CD .请在下面空格中用“>”,“<”或“=”填空.(1)AB________AC BC +; (2)2AD________CD ; (3)BDC ∠________A ∠.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据分式乘法计算法则解答. 【详解】解:2x y x yx y xy-⋅-=x , 故选:A . 【点睛】此题考查分式的乘法计算法则,熟记计算法则是解题的关键.2.A解析:A 【分析】根据分式的值为0的条件可以求出x 的值;分式为0时,分子为0分母不为0; 【详解】由分式的值为0的条件得x-3=0,x+4≠0, 由x-3=0,得x=3, 由x+4≠0,得x≠-4, 综上,得x=3时,分式34x x -+ 的值为0; 故选:A . 【点睛】本题考查了分式的值为0的情况,若分式的值为0,需要同时具备两个条件:(1)分子为0;(2)分母不为0,这两个条件缺一不可.3.B【分析】根据同分母分式加法法则计算. 【详解】221(1)(1)x x x +++=211(1)1x x x +=++,故选:B . 【点睛】此题考查同分母分式加法,熟记加法法则是解题的关键.4.C解析:C 【分析】按同分母分式加减法则计算即可. 【详解】 A.2c d c d c d c d da a a a -+-----==,正确; B.52521252525a aa a a ++==+++,正确; C.x y x y x y x y y x x y x y x y +-=+=-----,错误; D.222111(1)(1)(1)1x x x x x x --==----,正确.故选:C 【点睛】此题考查同分母分式的加减法的法则:同分母分式相加减,分母不变,分子相加减.5.A解析:A 【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m 的值. 【详解】解:∵()22249=23x mx x mx -+-+, ∴223mx x -=±⨯⨯ , 解得m=±12. 故选:A . 【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.6.B【分析】所求式子变形后,将已知等式变形代入计算即可求出值. 【详解】 25y x -=∴ 25x y -=-()2236x y x y --+()()2=322x y x y ---=()()2535--⨯- =25+15 =40 故选:B 【点睛】此题主要考查整体代入的思想,还考查代数式求值的问题,是一道基础题.7.B解析:B 【分析】分别根据合并同类项的法则、同底数幂的除法法则、幂的乘方法则以及完全平方公式解答即可. 【详解】A 、2a 与3b 不是同类项,故不能合并,故选项A 不合题意;B 、(-a 3b 5)2=a 6b 10,故选项B 符合题意;C 、a 6÷a 2=a 4,故选项C 不符合题意;D 、(a+b )2=a 2+2ab+b 2,故选项D 不合题意. 故选B . 【点睛】本题主要考查了幂的运算性质、合并同类项的法则以及完全平方公式,熟练掌握运算法则是解答本题的关键.8.C解析:C 【分析】根据幂的乘方、积的乘方、同底数幂的乘除法逐项判断即可得. 【详解】A 、236()a a =,此项错误;B 、224(2)4a a =,此项错误;C 、347a a a ⋅=,此项正确;D 、34a a a ÷=,此项错误;【点睛】本题考查了幂的乘方、积的乘方、同底数幂的乘除法,熟练掌握各运算法则是解题关键.9.B解析:B 【分析】根据题中作图知:DM 垂直平分AB ,BD 平分∠ABC ,利用三角形内角和定理计算即可. 【详解】由题意得:DM 垂直平分AB ,BD 平分∠ABC , ∵DM 垂直平分AB , ∴AD=BD , ∴∠A=∠ABD , ∵BD 平分∠ABC , ∴∠ABD=∠CBD ,∵∠A+∠ABD+∠CBD+∠C=180︒,∠C =84°, ∴∠A=32︒, 故选:B . 【点睛】此题考查线段垂直平分线作图及性质,角平分线作图及性质,三角形的内角和定理,根据题意得到DM 垂直平分AB ,BD 平分∠ABC 是解题的关键.10.A解析:A 【分析】根据中垂线的性质可得DA=DB ,设∠A=x ,则∠ABD=x ,结合等腰三角形的性质以及三角形内角和定理,列出方程,即可求解. 【详解】又作图可知:EF 是AB 的垂直平分线, ∴DA=DB , ∴∠A=∠ABD , 设∠A=x ,则∠ABD=x , ∵15DBC ∠=︒, ∴∠ABC=x+15°, ∵AB=AC ,∴∠C=∠ABC=x+15°, ∴2(x+15°)+x=180°, ∴x=50°, 故选A . 【点睛】本题主要考查等腰三角形的性质,中垂线的性质以及三角形内角和定理,掌握中垂线的性质定理以及方程思想,是解题的关键.11.C解析:C 【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析. 【详解】解:A 、1+2<4,不能构成三角形; B 、5+6=11,不能构成三角形; C 、3+3>3,能构成三角形; D 、8+4=12,不能构成三角形. 故选:C . 【点睛】本题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于最大的数.12.C解析:C 【分析】由AD FC =推出AC=FD ,根据已知AB FE =添加夹角相等或第三边相等即可判定. 【详解】 ∵AD FC =, ∴AC=FD , ∵AB FE =,∴当A F ∠=∠(//AB EF 也可得到)或BC ED =时,即可判定F ABC ED ≌△△, 故B E ∠=∠不能判定F ABC ED ≌△△, 故选:C . 【点睛】此题考查添加一个条件证明两个三角形全等,熟记全等三角形的判定定理并熟练应用是解题的关键.二、填空题13.【分析】原式利用同分母分式的加法法则计算即可得到结果【详解】故答案为:【点睛】此题考查了分式的加减法熟练掌握运算法则是解本题的关键解析:5x . 【分析】原式利用同分母分式的加法法则计算即可得到结果. 【详解】232+3x x x+=5x =. 故答案为:5x【点睛】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键. 14.4【分析】首先根据题意由二阶行列式得到一个分式方程解分式方程即得问题答案【详解】解:∵=1∴方程两边都乘以x ﹣1得:2+1=x ﹣1解得:x =4检验:当x =4时x ﹣1≠01﹣x≠0即x =4是分式方程的解析:4【分析】首先根据题意由二阶行列式得到一个分式方程,解分式方程即得问题答案 .【详解】解:∵211111xx --=1, ∴21111x x-=--, 方程两边都乘以x ﹣1得:2+1=x ﹣1,解得:x =4,检验:当x =4时,x ﹣1≠0,1﹣x≠0,即x =4是分式方程的解,故答案为:4.【点睛】本题考查分式方程与新定义实数运算的综合运用,通过观察所给运算式子归纳出运算规律并得到分式方程再求解是解题关键.15.4【分析】根据x2-3x -1=0可得x2-3x =1再将所求代数式适当变形后分两次整体代入即可求得值【详解】解:∵x2-3x -1=0∴x2-3x =1∴==将x2-3x =1代入原式==将x2-3x =1代解析:4【分析】根据x 2-3x -1=0可得x 2-3x =1,再将所求代数式适当变形后分两次整体代入即可求得值.【详解】解:∵x 2-3x -1=0,∴x 2-3x =1,∴3223111x x x --+=223132611x x x x -+-+=()22233111x x x x x -+-+将x 2-3x =1代入原式=221113x x x +-+=23)13(x x -+将x 2-3x =1代入原式=314+=,故答案为:4.【点睛】本题考查代数式求值,因式分解法的应用.解决此题的关键是掌握“降次”思想和整体思想. 16.【分析】根据矩形的周长和面积公式以及完全平方公式即可得到结论【详解】解:设8-x=ax-2=b ∵长方形的两邻边分别是8-xx-2∴a+b=8-x+x-2=6∵(8-x)2+(x-2)2=a2+b2= 解析:232【分析】根据矩形的周长和面积公式以及完全平方公式即可得到结论.【详解】解:设8-x=a ,x-2=b ,∵长方形的两邻边分别是8-x ,x-2,∴a+b=8-x+x-2=6,∵(8-x)2+(x-2)2=a 2+b 2=(a+b)2-2ab=62-2ab=13,∴ab=232, ∴这个长方形的面积=(8-x)(x-2)=ab=232. 故答案为:232. 【点睛】 本题考查了完全平方公式的变形求值,熟练掌握完全平方公式是解题的关键.17.30【分析】根据等腰三角形的性质可求得AB+BD=18再结合AD=12即可求得的周长【详解】∵△ABC 为等腰三角形AD 为底边上的高∴AB=ACBD=DC ∵△ABC 的周长等于36∴AB+BD+DC+A解析:30【分析】根据等腰三角形的性质可求得AB+BD=18,再结合AD=12,即可求得ABD △的周长.【详解】∵△ABC为等腰三角形,AD为底边上的高,∴AB=AC,BD=DC,∵△ABC的周长等于36,∴AB+BD+DC+AC=36,即AB+BD=18,∵AD=12,∴△ABD的周长等于=AD+BD+AB=12+18=30.故答案为:30.【点睛】本题考查等腰三角形的性质.掌握等腰三角形三线合一(底边上的中线、底边上的高线,顶角的平分线重合)是解题关键.18.45°【分析】找到点M关于OC对称点M′过点M′作M′N⊥OB于点N交OC 于点P则此时PM+PN的值最小再根据角平分线的性质及三角形内角和即可得出答案【详解】解:如图找到点M关于OC对称点M′过点M解析:45°【分析】找到点M关于OC对称点M′,过点M′作M′N⊥OB于点N,交OC于点P,则此时PM+PN 的值最小,再根据角平分线的性质及三角形内角和即可得出答案.【详解】解:如图,找到点M关于OC对称点M′,过点M′作M′N⊥OB于点N,交OC于点P,则此时PM+PN 的值最小.∵PM=PM′,∴此时PM+PN=PM′+PN′=M′N′,∵点M与点M′关于OC对称,OC平分∠AOB,∴OM=OM′,∵∠AOB=45°,∴∠PM'O=∠AOB=45°,∴∠PMO=∠PM'O=45°,故答案为:45°.【点睛】本题考查了利用轴对称的知识寻找最短路径的知识,涉及到两点之间线段最短、垂线段最短的知识,有一定难度,正确确定点P及点N的位置是关键.19.(5-5)【分析】根据余角的性质可得∠BCP=∠CAQ 根据全等三角形的判定与性质可得AQCQ 根据线段的和差可得OQ 可得答案【详解】解:作BP ⊥y 轴AQ ⊥y 轴如图∴∠BPC=∠AQC=90°∵BC=A解析:(5,-5)【分析】根据余角的性质,可得∠BCP=∠CAQ ,根据全等三角形的判定与性质,可得AQ ,CQ ,根据线段的和差,可得OQ ,可得答案.【详解】解:作BP ⊥y 轴,AQ ⊥y 轴,如图,∴∠BPC=∠AQC=90°∵BC=AC ,∠BCA=90°,∴∠BCP+∠ACQ=90°.又∠CAQ+∠ACQ=90°∴∠BCP=∠CAQ .在△BPC 和△CQA 中,BPC CQA BCP CAQ BC AC ∠∠⎧⎪∠∠⎨⎪⎩=== Rt △BPC ≌Rt △ACQ (AAS ),AQ=PC=8-3=5;CQ=BP=8.∵QO=QC-CO=8-3=5,∴A (5,-5),故答案为:(5,-5).【点睛】本题考查了坐标与图形,全等三角形的判定与性质,利用全等三角形的判定与性质得出AQ ,CQ 是解题关键.20.【分析】利用三角形的中线把三角形分成面积相等的两部分解决问题即可【详解】解:∵BD=DC ∴S △ABD=S △ADC=×6=3(cm2)∵AE=DE ∴S △AEB=S △AEC=×3=(cm2)∴S △BEC 解析:32【分析】利用三角形的中线把三角形分成面积相等的两部分解决问题即可.【详解】解:∵BD=DC,∴S△ABD=S△ADC=12×6=3(cm2),∵AE=DE,∴S△AEB=S△AEC=12×3=32(cm2),∴S△BEC=6-3=3(cm2),∵EF=FC,∴S△BEF=12×3=32(cm2),故答案为32.【点睛】本题考查三角形的面积,三角形的中线等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题21.(1)1207x=;(2)无解【分析】(1)先去分母,解整式方程,求解后检验是否为原分式方程的解即可;(2)先去分母,解整式方程,求解后检验是否为原分式方程的解即可.【详解】(1)解:1171.572x x+=方程两边都乘72x,得:72+48=7x,解得:1207x=,经检验:1207x=是原方程的解;(2)21533xx x-+=--方程两边都乘(3x-),得:x-2-1=5(x-3),解得:3x=,检验:当3x=时,x-3=3-3=0,是增根,故原方程无解.【点睛】此题考查解分式方程,掌握解分式方程的步骤:去分母化为整式方程,解整式方程,检验解的情况.22.(1)2x =;(2)无解【分析】(1)去分母,化成整式方程求解即可;(2)去分母,化成整式方程求解即可;【详解】(1)分式两边同时乘以()3x -得,213x x --=-,解得2x =,把2x =代入()3x -中得2310-=-≠,∴2x =是分式方程的解;(2)分式方程两边同时乘以()()22x x +-得,()()()222216x x x ---+=, 2244416x x x -+-+=,解得:2x =-,把2x =-代入()()22x x +-中得()()220x x +-=,∴分式方程无解.【点睛】本题主要考查了分式方程的求解,准确计算是解题的关键.23.(1)()2222a b a b ab +=++;(2)①3ab =;②20195x -=±.【分析】(1)整体看是一个边长为(a+b )的正方形,局部看它有一个边长为a ,b 的正方形,两个长为b ,宽为a 的矩形组成,根据图形的面积相等即可确定它们之间的关系; (2)①公式变形为ab=222()()2a b a b +-+计算即可; ②把x-2020变形成(x-2019)-1, 把x-2018变形成(x-2019)+1,用整体思想展开公式计算即可.【详解】()()22212a b a b ab +=++;理由如下:图②是边长为()a b +的正方形,()2S a b ∴=+图②可看成1个边长为a 的正方形,1个边长为b 的正方形以及2个长为,b 宽为a 的长方形的组合图形, 222,S a b ab ∴=++()222 2a b a b ab ∴+=++. ()24a b +=①,()216,a b +∴=即22216a b ab ++=.又2210,a b +=3ab ∴=;②设2019,x a -=则20201,20181x a x a -=--=+,()()222020201852x x -+-=,()()22 1152a a ∴-++=,22212152,a a a a ∴-++++=22252,a ∴+=2250,a ∴=225,a ∴=即()2201925,x -= 20195x ∴-=±.【点睛】本题考查了完全平方公式的几何意义,公式的应用,以及公式的整体思想代换应用,熟练掌握公式的几何意义和公式的变形是解题的关键.24.(1)=15∠HAE ;(2)见解析【分析】(1)连接BG ,先根据等腰三角形的判定得出AG=AD ,再根据SSS 得出△AGH ≌△ABH ,从而得出=∠∠HAE HAG ,继而得出HAE ∠的度数;(2)在DH 上取HM=HF ,连接BM ,根据垂直平分线的性质得出BF=BM ,再根据等腰三角形的判定得出DM=BM ,从而得出结论【详解】解:(1)连接BG∵90EAD ∠=︒,30BAC ∠=︒,∴∠DAG=120°,∵30ADE ∠=︒,∴30∠=∠=︒ADE AGD ,∴AG=AD ,∵AB=AD ,∴AG=AB ,∵30BAC ∠=︒,∴75∠=∠=︒AGB ABG ,∵BH ⊥DF ,90EAD ∠=︒,∴=90∠∠=︒BHE EAD ,∵=∠∠BEH AED ,∴30∠=∠=︒ADE EBH ,∴45∠=∠-∠=︒HBG ABG EBH ,∵90FHB ∠=︒,∴∠=∠HBG HGB ,∴GH=BH ,∵AG=AB ,AH=AH ,∴△AGH ≌△ABH ,∴=∠∠HAE HAG ,∵30BAC ∠=︒,∴=15∠HAE ;(2)在DH 上取HM=HF ,连接BM ;∵90ABC EAD ∠=∠=︒,∴AD//BF ,∴30∠=∠=︒F ADE ,∵BH ⊥DF ,HM=HF ,∴BF=BM∴30∠=∠=︒F BMF∵AB=AD ,90EAD ∠=︒∴45ADB ∠=︒,∵30ADE ∠=︒∴15∠=︒MDB ,∵30∠=︒=∠+∠BMF MBD MDB ,∴==15∠∠MBD MDB ,∴BM=DM=BF ,∵DH=DM+HM ,∴DH=FH+BF【点睛】本题考查了等腰三角形的性质和判定、全等三角形的性质和判定、垂直平分线的性质,解题的关键是学会添加常用辅助线面构造全等三角形解决问题,属于中考常考题型. 25.(1)见解析;(2)见解析;(3)60°【分析】(1)推出同旁内角互补即可(2)如图,过点M 作//MR AB ,利用平行线性质推出////AB CD MR .得GMR AGM ∠=∠,HMR CHM ∠=∠.利用角的和M GMR HMR ∠=∠+∠代换即可.(3)如图,令2AGM α∠=,CHM β∠=,由N AGM ∠=∠推得2N α∠=,2M αβ∠=+,由射线GH 是BGM ∠的平分线,推得1902FGM BGM α∠=∠=︒-, 则90AGH AGM FGM α∠=∠+∠=︒+,由12M N FGN ∠=∠+∠,求出2FGN β∠=,过点N 作//HT GN ,由平行线的性质22GHM MHT GHT αβ∠=∠+∠=+,求出∠CHG 23αβ=+,利用//AB CD 的性质180AGH CHG ∠+∠=︒,即9023180ααβ︒+++=︒,求出30αβ+=︒,再求()260MHG αβ∠=+=︒即可.【详解】(1)证明:如图,∵180AGE DHE ∠+∠=︒,AGE BGF ∠=∠.∴180BGF DHE ∠+∠=︒,∴//AB CD .(2)证明:如图,过点M 作//MR AB ,又∵//AB CD ,∴////AB CD MR .∴GMR AGM ∠=∠,HMR CHM ∠=∠.∴M GMR HMR AGM CHM ∠=∠+∠=∠+∠;(3)解:如图,令2AGM α∠=,CHM β∠=,∵N AGM ∠=∠则2N α∠=,2M αβ∠=+,∵射线GH 是BGM ∠的平分线, ∴()111809022FGM BGM AGM α∠=∠=︒-∠=︒-, ∴29090AGH AGM FGM ααα∠=∠+∠=+︒-=︒+, ∵12M N FGN ∠=∠+∠, ∴1222FGN αβα+=+∠, ∴2FGN β∠=,过点N 作//HT GN ,则2MHT N α∠=∠=,2GHT FGN β∠=∠=,∴22GHM MHT GHT αβ∠=∠+∠=+,∴CHG CHM MHT GHT ∠=∠+∠+∠2223βαβαβ=++=+,∵//AB CD ,∴180AGH CHG ∠+∠=︒,∴9023180ααβ︒+++=︒,∴30αβ+=︒,∴()260MHG αβ∠=+=︒.【点睛】本题主要考查平行线的性质, 角平分线的定义,解决问题的关键是作平行线构造内错角,和同位角,利用两直线平行,内错角相等,同位角相等来计算是解题关键.26.(1)<;(2)>;(3)>【分析】(1)根据三角形的三边关系解答;(2)根据三角形的三边关系解答;(3)根据三角形的外角性质解答.【详解】(1)在△ABC中,AB<AC+BC,故答案为:<;(2)在△ACD中,AD+AC>CD,,∵AD AC∴2AD>CD,故答案为:>;(3)∵∠BDC是△ACD的外角,∴∠BDC>∠A,故答案为:>.【点睛】此题考查三角形的三边关系:两边之和大于第三边,三角形的外角性质三角形的外角大于每一个与它不相邻的内角.。
【浙教版】八年级数学上期末模拟试卷及答案(2)
一、选择题1.如图,在ABC 中,100ACB ∠=︒,20A ∠=︒,D 是AB 上一点,将ABC 沿CD 折叠,使点B 落在AC 边上的B '处,则ADB '∠等于( )A .25°B .30°C .40°D .55°2.如图,//AB CD ,一副三角尺按如图所示放置,18AEG ∠=︒,则HFD ∠为( )A .23B .33C .36D .383.如图,A B C D E F ∠+∠+∠+∠+∠+∠则等于( )A .90︒B .180︒C .270︒D .360︒4.已知24510a b a b +=⎧⎨-=⎩,则+a b 等于( ) A .8 B .7 C .6 D .55.4辆板车和5辆卡车一次能运27吨货,10辆板车和3车卡车一次能运货20吨,设每辆板车每次可运x 吨货,每辆卡车每次能运y 吨货,则可列方程组( )A .452710320x y x y +=⎧⎨-=⎩B .452710320x y x y -=⎧⎨+=⎩C .452710320x y x y +=⎧⎨+=⎩D .427510203x y x y -=⎧⎨-=⎩6.一次函数()0y kx b k =+≠在平面直角坐标系内的图像如图所示,则k 和b 的取值范围是( )A .0k >,0b >B .0k <,0b <C .0k <,0b >D .0k >,0b < 7.若某正比例函数过(2,3)-,则关于此函数的叙述不.正确的是( ). A .函数值随自变量x 的增大而增大B .函数值随自变量x 的增大而减小C .函数图象关于原点对称D .函数图象过二、四象限8.某快递公司每天上午7:008:00-为集中件和派件时段,甲仓库用来揽收快件,乙仓库用来派发件快件,该时段内甲、乙两仓库的快件数量y (件)与时间x (分)之间的函数图象如图所示,下列说法正确的个数为:①15分钟后,甲仓库内快件数量为180件;②乙仓库每分钟派送快件数量为4件:③8:00时,甲仓库内快件数为400件;④7:20时,两仓库快递件数相同( )A .1个B .2个C .3个D .4个9.小明、小颖、小亮玩飞镖游戏,他们每人投靶5次,中靶情况如图所示.规定投中同一圆环得分相同,若小明得分21分,小亮得分17分,则小颖得分为( )A .19分B .20分C .21分D .22分 10.若点()23,P m m --在第四象限,则m 的取值范围是( )A .302m <<B .0m >C .32m >D .0m < 11.1x -中,字母x 的取值范围是( )A .x >1B .x ≥1C .x <1D .x 13≤ 12.如图,已知 Rt ABC 中,90,6,8C AC BC ∠︒===,将它的锐角A 翻折,使得点A 落在边 BC 的中点 D 处,折痕交 AC 边于点E ,交AB 边于点F ,则 DE 的值为( )A .5B .4C .133D .143 二、填空题13.如图,25AOB ∠=︒,点M ,N 分别是边OA ,OB 上的定点,点P ,Q 分别是边OB ,OA 上的动点,记MPQ α∠=,PQN β∠=,当MP PQ QN ++的值最小时,βα-的大小=__________(度).14.完成下面的证明.如图,AC ⊥BC ,DG ⊥AC ,垂足分别为点C ,G ,∠1=∠2.求证:CD //EF .证明:∵AC ⊥BC ,DG ⊥AC ,(已知)∴∠DGA =∠BCA =90°,(垂直的定义)∴ // ( )∴∠2=∠BCD ,( )又∵∠l =∠2,(已知)∴∠1=∠ ,(等量代换)∴CD //EF .(同位角相等,两直线平行)15.若方程组41524x y k x y +=-⎧⎨+=⎩的解为x 、y ,且x +y >0,则k 的取值范围是__________. 16.《一千零一夜》中有这样一段文字:有一群鸽子,其中一部分在树上欢歌,另一部分在地上觅食,树上一只鸽子对地上觅食的鸽子说:“若从你们中飞来一只,则树下的鸽子就是整个鸽群的13;若从树上飞下去一只,则树上,树下的鸽子数一样多.”你知道树上树下共有______只. 17.如图,过点1(1,0)A 作x 轴的垂线,交直线2y x =于点1B ;点2A 与点O 关于直线11A B 对称;过点2(2,0)A 作x 轴的垂线,交直线2y x =于点2B ;点3A 与点O 关于直线22A B 对称;过点3(4,0)A 作 x 轴的垂线,交直线2y x =于点3B ⋅⋅⋅按此规律作下去, 则点4A 的坐标为_______;点2021B 的坐标为_______ .18.在如图所示的平面直角坐标系内,四边形OBCD 是边长为1的正方形,分别取,BC OD 边的中点11C D 、,连结11C D ,得到第一个四边形11OBC D ;再分别取11OB C D 、边的中点12A D 、,连结12,A D 得到第二个四边形112A BC D ;再分别取112BC A D 、边的中点23,C D 、连结23C D ,得到第三个四边113A BC D ,……,按这种方法做下去,则第2017个四边形100810092017A BC D 中的顶点2017D 的坐标为________________________.19.已知2443y x x x=-+-+,当x分别取1,2,3,,2020⋯时,所对应的y值的总和是_________.20.如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C与点A重合,折痕为DE,则△ABE的周长为.三、解答题21.△ABC中,AD是∠BAC的角平分线,AE是△ABC的高.(1)如图1,若∠B=40°,∠C=60°,请说明∠DAE的度数;(2)如图2(∠B<∠C),试说明∠DAE、∠B、∠C的数量关系;(3)如图3,延长AC到点F,∠CAE和∠BCF的角平分线交于点G,请直接写出∠G的度数.22.如图,直线l1:y=x+1与直线l2:y=mx+n交于点P(1,b),直线l2与x轴交于点A (4,0).(1)求b的值;(2)解关于x,y的方程组1y xy mx n=+⎧⎨=+⎩,并直接写出它的解;(3)判断直线l3:y=nx+m是否也经过点P?请说明理由.23.如图,平面直角坐标系中,直线3944y x =-+与直线3922y x =+交于点B ,与x 轴交于点A .(1)求点B 的坐标.(2)若点C 在x 轴上,且ABC 是以AB 为腰的等腰三角形,求点C 的坐标. 24.如图,ABC 的三个顶点的坐标分别是()2,3A -,()3,1B -,()1,2C -.(1)直接写出点A 、B 、C 关于y 轴对称的点A '、B '、C ';坐标:A '( , )、B '( , )、C '( , )(2)在x 轴上求作一点P ,使PA PB +最短.(保留痕迹)(3)求ABC 的面积.25.计算:(1)022)(3)---(226.先阅读下列一段文字,再回答问题.已知平面内两点P 1(x 1,y 1),P 2(x 2,y 2),这两点的距离P 1P 2=时,当两点所在的直线在坐标轴上或平行于坐标轴或垂直于坐标轴时,两点间的距离公式可简化为|x 2﹣x 1|或|y 2﹣y 1|.(1)已知点A (2,4),B (﹣3,﹣8),试求A ,B 两点间的距离;(2)已知点A ,B 所在的直线平行于y 轴,点B 的纵坐标为﹣1,A ,B 两点间的距离等于6.试求点A 的纵坐标;(3)已知一个三角形各顶点的坐标分别为A (﹣3,﹣2),B (3,6),C (7,﹣2),你能判断三角形ABC 的形状吗?说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】先求出60B ∠=︒,由折叠得60CB D B '∠=∠=︒,得出ADB '∠=40CB D A '∠-∠=︒.【详解】∵100ACB ∠=︒,20A ∠=︒,∴60B ∠=︒,由折叠得60CB D B '∠=∠=︒,∴ADB '∠=40CB D A '∠-∠=︒,故选:C .【点睛】此题考查三角形内角和定理,折叠的性质,三角形的外角性质,熟练掌握折叠的性质是解题的关键.2.B解析:B【分析】过点G 作AB 平行线交EF 于P ,根据平行线的性质求出∠EGP ,求出∠PGF ,根据平行线的性质、平角的概念计算即可.【详解】解:过点G 作AB 平行线交EF 于P ,由题意易知,AB ∥GP ∥CD ,∴∠EGP=∠AEG=18°,∴∠PGF=72°,∴∠GFC=∠PGF=72°,∴∠HFD=180°-∠GFC-∠GFP-∠EFH=33°.故选:B .【点睛】本题考查的是平行线的性质、三角形内角和定理的应用,掌握两直线平行、内错角相等是解题的关键.3.D解析:D【分析】这个图形可以看成是两个三角形叠放在一起的,根据三角形内角和定理可得出结论.【详解】解:180A E C ∠+∠+∠=︒,180D B F ∠+∠+∠=︒,360A B C D E F ∴∠+∠+∠+∠+∠+∠=︒.故选:D .【点睛】 本题考查的是三角形内角和定理,熟知三角形内角和是180︒是解答此题的关键. 4.D解析:D【分析】解二元一次方程组再进行计算即可;【详解】24510a b a b +=⎧⎨-=⎩, 10a b -=两边同时乘以2得:2220a b -=,245a b +=减去2220a b -=得:615b =-, 解得:52b =-, 代入10a b -=得:152a =,∴155522a b +=-=; 故答案选D .【点睛】 本题主要考查了二元一次方程组的求解,结合代数式求值是解题的关键.5.C解析:C【分析】根据等量关系式“①4辆板车运货量+5辆卡车运货量=27吨;②10辆板车运货量+3辆卡车运货量=20吨”根据相等关系就可设未知数列出方程.【详解】解:根据4辆板车运货量+5辆卡车运货量=27吨,得方程4x+5y=27;根据10辆板车运货量+3辆卡车运货量=20吨,得方程10x+3y=20.可列方程组为452710320x y x y +⎧⎨+⎩==. 故选:C .【点睛】由关键性词语“4辆板车和5辆卡车一次能运27吨货”,“10辆板车和3车卡车一次能运货20吨”,找到等量关系是解决本题的关键.6.A解析:A【分析】根据一次函数的图象和性质判断即可.【详解】解:∵一次函数y=kx+b (k≠0)在平面直角坐标系内的图象过第一、二、三象限, ∴k >0,b >0,故选:A .【点睛】本题主要考查了一次函数的图象与系数之间的关系,关键是掌握数形结合思想. 7.A解析:A【详解】解:设正比例函数解析式(0)y kx k =≠,∵正比例函数过(2,3)-,∴32k -=, ∴32k =-,∴正比例函数解析式为32y x =-, ∵302k =-<, ∴图象过二、四象限,函数值随自变量x 增大而减小,图象关于原点对称,∴四个选项中,只有A 选项中的不正确,其余三个选项中的结论都是正确的.故选A .8.C解析:C【分析】根据题意,结合一次函数图象去分析图象所表示的实际意义,上升的图象表示甲仓库,下降的图象表示乙仓库,然后选出正确选项.【详解】解:①不正确,根据上升的一次函数图象,当15x =的时候,130y =;②正确,根据下降的一次函数图象,从15分钟到60分钟,乙仓库派发的快递是180件,所以速度=()18060154÷-=(件/分钟);③正确,用待定系数法求出上升的一次函数图象的解析式为640y x =+,当60x =时,66040400y =⨯+=;④正确,用待定系数法求出下降的一次函数图象解析式为4240y x =-+,再联立两个直线解析式求交点横坐标,列式6404240x x +=-+,解得20x,也就是20分钟之后甲乙仓库快递数一样.故选:C .【点睛】本题考查一次函数图象的实际应用,解题的关键是能够结合题意理解函数图象所表达的实际含义. 9.A解析:A【分析】设投中外环得x 分,投中内环得y 分,根据所给图信息列一个二元一次方程组,解出即可得出答案.【详解】解:设投中外环得x 分,投中内环得y 分,根据题意得2321417x y x y +=⎧⎨+=⎩, 解得:35x y =⎧⎨=⎩, 32332519x y ∴+=⨯+⨯=分即小颖得分为19分,故选A.【点睛】本题考查了二元一次方程组的应用,读懂题意找到等量关系式是解题的关键.10.C解析:C【分析】先根据第四象限内点的坐标符号特点列出关于m的不等式组,再求解可得.【详解】解:根据题意,得:230?0?mm-⎧⎨-⎩>①<②,解不等式①,得:m>32,解不等式②,得:m>0,∴不等式组的解集为m>32,故选:C.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.11.B解析:B【分析】根据二次根式有意义的条件求解即可;【详解】由题意得,x﹣1≥0,解得x≥1,故选:B.【点睛】本题考查了二次根式有意义的条件,正确掌握知识点是解题的关键;12.C解析:C【分析】由折叠可得△AEF≌△DEF,可知AE=DE,由点D为边BC的中点,可求CD=118422CB=⨯=,设DE=x,CE=6-x,在Rt△CDE中由勾股定理()22246x x+-=解方程即可.【详解】解:∵将它的锐角A 翻折,使得点A 落在边 BC 的中点 D 处,折痕交 AC 边于点E ,交AB 边于点F ,∴△AEF ≌△DEF ,∴AE=DE ,∵点 D 为边 BC 的中点,∴CD=118422CB =⨯=, 设DE=x ,CE=6-x , 在Rt △CDE 中由勾股定理,222CD CE DE +=即()22246x x +-=, 解得133x =. 故选择:C .【点睛】 本题考查折叠性质,中点定义,勾股定理,掌握折叠性质,中点定义,勾股定理,关键是利用勾股定理构造方程.二、填空题13.50【分析】作M 关于OB 的对称点N 关于OA 的对称点连接交OB 于点P 交OA 于点Q 连接MPQN 可知此时最小此时再根据三角形外角的性质和平角的定义即可得出结论【详解】作M 关于OB 的对称点N 关于OA 的对称点 解析:50【分析】作M 关于OB 的对称点M ',N 关于OA 的对称点N ',连接M N '',交OB 于点P ,交OA 于点Q ,连接MP ,QN ,可知此时MP PQ QN ++最小,此时OPM OPM NPQ OQP AQN AQN ''∠=∠=∠∠=∠=∠,,再根据三角形外角的性质和平角的定义即可得出结论.【详解】作M 关于OB 的对称点M ',N 关于OA 的对称点N ',连接M N '',交OB 于点P ,交OA 于点Q ,连接MP ,QN ,如图所示.根据两点之间,线段最短,可知此时MP PQ QN++最小,即MP PQ QN M N ''++=, ∴OPM OPM NPQ OQP AQN AQN ''∠=∠=∠∠=∠=∠,,∵MPQ PQN αβ∠=∠=,, ∴11(180)(180)22QPN OQP αβ∠=︒-∠=︒-,, ∵QPN AOB OQP ∠=∠+∠,25AOB ∠=︒,∴11(180)25(180)22αβ︒-=︒+︒- , ∴50βα-=︒ . 故答案为:50.【点睛】本题考查轴对称-最短问题、三角形内角和,三角形外角的性质等知识,灵活运用所学知识解决问题是解题的关键,综合性较强.14.DGBC 同位角相等两直线平行两直线平行内错角相等BCD 【分析】根据垂直的定义求出∠DGA =∠BCA =90°根据平行线的判定得出DG//BC 根据平行线的性质得出∠2=∠BCD 求出∠1=∠BCD 根据平行解析:DG ,BC ,同位角相等,两直线平行,两直线平行,内错角相等,BCD .【分析】根据垂直的定义求出∠DGA =∠BCA =90°,根据平行线的判定得出DG //BC ,根据平行线的性质得出∠2=∠BCD ,求出∠1=∠BCD ,根据平行线的判定得出即可.【详解】∵AC ⊥BC ,DG ⊥AC (已知),∴∠DGA =∠BCA =90°,(垂直的定义),∴DG //BC (同位角相等,两直线平行),∴∠2=∠BCD (两直线平行,内错角相等),又∵∠l =∠2,(已知)∴∠1=∠BCD (等量代换),∴CD //EF (同位角相等,两直线平行),故答案为:DG ,BC ,同位角相等,两直线平行,两直线平行,内错角相等,BCD .【点睛】本题考查平行的证明,解题关键是通过角度的转化,推导得出∠1=∠BCD ,从而证明平行.15.k >-3【分析】本题可将两式相加得到6x+6y=k+3根据x+y 的取值可得出k的值【详解】两式相加得:6x+6y=k+3∵x+y>0∴6x+6y=6(x+y)>0即k+3>0∴k>-3故答案为:k>解析:k>-3【分析】本题可将两式相加,得到6x+6y=k+3,根据x+y的取值,可得出k的值.【详解】两式相加得:6x+6y=k+3,∵x+y>0∴6x+6y=6(x+y)>0,即k+3>0,∴ k>-3,故答案为:k>-3.【点睛】本题考查的是二元一次方程的解的性质,通过化简得到x+y的形式,再根据x+y>0求得k 的取值.16.12【解析】要求树上树下各有多少只鸽子吗?就要设树上有x只鸽子树下有y只鸽子然后根据若从你们中飞上来一只则树下的鸽子就是整个鸽群的;列出一个方程y-1=(x+y)再根据若从树上飞下去一只则树上树下的解析:12【解析】要求树上、树下各有多少只鸽子吗?就要设树上有x只鸽子,树下有y只鸽子,然后根据若从你们中飞上来一只,则树下的鸽子就是整个鸽群的13;列出一个方程y-1=13(x+y),再根据若从树上飞下去一只,则树上、树下的鸽子有一样多,列一个方程x-1=y+1,组成方程组11311y x yx y⎧-=+⎪⎨⎪-=+⎩(),解方程组可得75xy=⎧⎨=⎩,求得鸽子的总数为12.故答案为12.点睛:解应用题的关键是弄清题意,合适的等量关系,列出方程组.所以做这类题读懂题意是关键,要注意“若从你们中飞上来一只,则树下的鸽子就是整个鸽群的13;若从树上飞下去一只,则树上、树下的鸽子有一样多”这个关系.17.(80);(2202022021)【分析】先根据题意求出A2点的坐标再根据A2点的坐标求出B2的坐标以此类推总结规律便可求出点A4B2021的坐标【详解】解:∵点A1坐标为(10)∴OA1=1过点A解析:(8,0);(22020,22021).【分析】先根据题意求出A2点的坐标,再根据A2点的坐标求出B2的坐标,以此类推总结规律便可求出点A4、B2021的坐标.【详解】解:∵点A 1坐标为(1,0),∴OA 1=1,过点A 1作x 轴的垂线交直线于点B 1,点B 1在2y x =上,y=2×1=2,B 1点的坐标为(1,2),∵点A 2与点O 关于直线A 1B 1对称,∴OA 1=A 1A 2=1,∴OA 2=1+1=2,∴点A 2的坐标为(2,0),点B 2在2y x =上,y=2×2=4,B 2的坐标为(2,4), ∵点A 3与点O 关于直线A 2B 2对称.故点A 3的坐标为(4,0),点B 3在2y x =上,y=2×4=8,B 3的坐标为(4,8),此类推便可求出点A n 的坐标为(2n-1,0),点B n 在2y x =上,y=2×2n-1=2n ,点B n 的坐标为(2n-1,2n ).所以点A 4的坐标为(8,0),点4B 的坐标为(8,16)所以点A 2021的坐标为(22020,0),点2021B 的坐标为(22020,22021)故答案为(8,0),(22020,22021).【点睛】本题考查一次函数图象上点的坐标特征:一次函数图象上点的坐标满足其解析式.也考查了轴对称的性质.18.【分析】易得的坐标从和中依此类推找到规律即可求解【详解】∵四边形是边长为的正方形且分别是边的中点∴;∵分别是边的中点∴;∵分别是边的中点∴;同理:;;∴;;故答案为:【点睛】本题考查了坐标与图形的性 解析:1009100811122⎛⎫- ⎪⎝⎭, 【分析】 易得1102D ⎛⎫ ⎪⎝⎭,,21122D ⎛⎫ ⎪⎝⎭,,321122D ⎛⎫ ⎪⎝⎭,,42211122D ⎛⎫- ⎪⎝⎭,,53211122D ⎛⎫- ⎪⎝⎭,的坐标,从2D 、3D 和4D 、5D 中依此类推,找到规律,即可求解.【详解】∵四边形OBCD 是边长为1的正方形,且11C D 、分别是BC OD ,边的中点, ∴1102D ⎛⎫ ⎪⎝⎭,; ∵12A D 、分别是11OB C D 、边的中点, ∴21122D ⎛⎫ ⎪⎝⎭,;∵23C D 、分别是112BC A D 、边的中点,∴321122D ⎛⎫ ⎪⎝⎭,; 同理:42211 122D ⎛⎫- ⎪⎝⎭,;53211122D ⎛⎫- ⎪⎝⎭,; ∴20161008100811122D ⎛⎫- ⎪⎝⎭,;20171009100811122D ⎛⎫- ⎪⎝⎭,; 故答案为:1009100811122⎛⎫-⎪⎝⎭, . 【点睛】本题考查了坐标与图形的性质,是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.19.2022【分析】将原式化简为然后根据x 的不同取值求出y 的值最后把所有的y 值加起来即可【详解】解:当时当时当时∴当分别取时所有值的总和是:故答案是:2022【点睛】本题考查二次根式的化简解题的关键是掌解析:2022【分析】 将原式化简为23y x x =--+,然后根据x 的不同取值,求出y 的值,最后把所有的y 值加起来即可.【详解】解:3323y x x x x =+=+=--+,当2x ≥时,231y x x =--+=,当2x <时,2352y x x x =--+=-,当1x =时,523y =-=,∴当x 分别取1,2,3,,2020⋯时,所有y 值的总和是:312019320192022+⨯=+=. 故答案是:2022.【点睛】本题考查二次根式的化简,解题的关键是掌握二次根式的性质进行化简.20.7【解析】∵在△ABC 中∠B=90°AB=3AC=5∴BC=∵△ADE 是△CDE 翻折而成∴AE=CE ∴AE+BE=BC=4∴△ABE 的周长=AB+BC=3+4=7故答案是:7解析:7【解析】∵在△ABC 中,∠B=90°,AB=3,AC=5,∴4==.∵△ADE 是△CDE 翻折而成,∴AE=CE ,∴AE+BE=BC=4,∴△ABE 的周长=AB+BC=3+4=7.故答案是:7.三、解答题21.(1)∠DAE =10°;(2)∠DAE =12∠C ﹣12∠B ;(3)45°. 【分析】(1)先根据三角形的内角和定理求得80BAC ∠=︒、30CAE ∠=︒,再根据角平分线的定义得到40CAD ∠=︒,最后根据角的和差解答即可;(2)先根据三角形的内角和定理求得180BAC B C ∠=︒-∠-∠、90CAE C ∠=︒-∠,再根据角平分线的定义得到12CAD BAD BAC ∠=∠=∠,然后根据角的和差表示出来即可;(3)先根据角平分线的定义得到2,2CAE CAG FCB FCG ∠=∠∠=∠,再结合三角形外角的性质得到2AEC G ∠=∠,然后根据题意得到90AEC ∠=︒,最后算出∠G 即可.【详解】解:(1)40,60,180B C BAC B C ∠=︒∠=︒∠+∠+∠=︒80BAC ∴∠=︒AE ∵是ABC ∆的高,90,AEC ∴∠=︒60,C ∠=︒906030CAE ∴∠=︒-︒=︒ AD 是BAC ∠的角平分线,1402CAD BAD BAC ∴∠=∠=∠=︒, 10DAE CAD CAE ∴∠=∠-∠=︒.(2)180,BAC B C ∠+∠+∠=︒180BAC B C ∴∠=︒-∠-∠AE ∵是ABC ∆的高,90,AEC ∴∠=︒90CAE C ∴∠=︒-∠ AD 是BAC ∠的角平分线,12CAD BAD BAC ∴∠=∠=∠, ()1902DAE CAD CAE BAC C ∴∠=-∠=∠-︒-∠()1180902C C =︒-∠B -∠-︒+∠ 1122C B =∠-∠ 即1122DAE C B ∠=∠-∠; (3)CAE ∠和BCF ∠的角平分线交于点G ,2,2CAE CAG FCB FCG ∴∠=∠∠=∠,CAE FCB AEC CAG FCG G ∠=∠-∠∠=∠-∠()2222FCG AEC FCG G FCG G ∴∠-∠=∠-∠=∠-∠,即2AEC G ∠=∠, AE ∵是ABC ∆的高,90AEC ∴∠=︒,45G ∴∠=︒.故答案为:45°.【点睛】本题主要考查了三角形内角和定理、角平分线的定义、三角形外角的性质等知识点,灵活应用相关知识成为解答本题的关键.22.(1)2;(2)12x y =⎧⎨=⎩;(3)是,理由见解析 【分析】(1)由点P 的坐标结合一次函数图象上点的坐标特征,即可求出b 的值;(2)利用数形结合的思想即可得出方程组的解就是两直线的交点坐标,依此即可得出结论;(3)根据点A 、P 的坐标,利用待定系数法求出m 、n 的值,由此即可得出直线l 3的解析式,代入x=1得出y=2,由此即可得出直线l 3:y=nx+m 也经过点P .【详解】解:(1)∵点P (1,b )在直线l 1:y =x +1上,∴b =1+1=2.(2)∵直线l 1:y =x +1与直线l 2:y =mx +n 交于点P (1,2), ∴关于x ,y 的方程组1y x y mx n =+⎧⎨=+⎩的解为12x y =⎧⎨=⎩. (3)直线l 3:y =nx +m 也经过点P .理由如下:将点A (4,0)、P (1,2)代入直线l 2:y =mx +n 中,得:042m n m n =+⎧⎨=+⎩,解得:2383m n ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线l3:y=83x﹣23.当x=1时,y=83×1﹣23=2,∴直线l3:y=83x﹣23经过点P(1,2).【点睛】本题考查了一次函数图象上点的坐标特征以及待定系数法求函数解析式,解题的关键是:(1)利用一次函数图象上点的坐标特征求出b值;(2)根据交点坐标得出方程组的解;(3)利用待定系数法求出m、n的值.本题属于中档题,难度不大,解决该题型题目时,根据点的坐标利用待定系数法求出函数解析式是关键.23.(1)(1,3)B-;(2)123(5,0),(2,0),(8,0)C C C--【分析】(1)联立两直线解析式构建二元一次方程组求解即可;(2)由题意易得点A的坐标,然后分AB=AC和AB=BC两种情况结合等腰三角形的性质可进行分类求解.【详解】解:(1)由题意可联立解析式得:39443922y xy x⎧=-+⎪⎪⎨⎪=+⎪⎩,解得:13xy=-⎧⎨=⎩,∴(1,3)B-;(2)由直线3944y x=-+可令y=0得:(3,0)A,①若A 为顶角顶点,如图所示:由(1)及两点距离公式可得, ∴22435AC AB ==+=,∴22OC =,38OC =,②若B 为顶角顶点,∴5BC BA ==,过点B 作BD ⊥x 轴于点D ,则有14C D AD ==,∴15OC =,∴综上所述:当△ABC 以AB 为腰的等腰三角形,则有123(5,0),(2,0),(8,0)C C C --.【点睛】本题主要考查等腰三角形的性质、勾股定理及一次函数的性质,熟练掌握等腰三角形的性质、勾股定理及一次函数的性质是解题的关键.24.(1)2,3,3,1,-1,-2;(2)见解析;(3)5.5【分析】(1)根据关于y 轴对称点的坐标,纵坐标不变,横坐标改变符号得出答案即可; (2)作A 点关于x 轴的对称点A 1,连接A 1B ,与x 轴交点即为P ;(3)利用割补法求解可得.【详解】解:(1)A′(2,3),B′(3,1),C′(-1,-2);故答案为:2,3,3,1,-1,-2;(2)如图所示,点P 即为所求作;(3)三角形ABC 得面积为11145433521 5.5222⨯-⨯⨯-⨯⨯-⨯⨯=. 【点睛】 本题考查了轴对称-最短路线问题以及坐标与图形的性质,找到关于x 轴、y 轴的对称点,是解本题的关键.25.(1)859;(2)32. 【分析】(1)根据零指数幂、负指数幂和二次根式的性质计算即可;(2)化简二次根式,在进行加减即可;【详解】解:(1)原式=1159-+=859;(2)原式=()-【点睛】本题主要考查了二次根式的运算,结合零指数幂、负指数幂计算是解题的关键. 26.(1)13;(2)﹣7或5;(3)△ABC 为等腰三角形,理由见解析.【分析】(1)根据两点间距离公式求解即可.(2)根据与y 轴平行的线段的特点以及两点间距离公式求解即可.(3)根据两点间距离公式求该三角形的各边长,从而进行判断即可.【详解】(1)∵点()2,4A ,()3,8B --,∴13AB ==;(2)∵点A ,B 所在的直线平行于y 轴,点B 的纵坐标为﹣1,A ,B 两点间的距离等于6,∴点A 的纵坐标为﹣1﹣6=﹣7或﹣1+6=5;(3)∵10AB ==,10AC ==,BC ==∴△ABC 为等腰三角形.【点睛】本题考查了两点间的距离公式问题,掌握两点间距离公式、等腰三角形的性质是解题的关键.。
【浙教版】八年级数学上期末模拟试题(及答案)(2)
一、选择题1.如图,已知//AB CD ,120AFC ∠=︒,13EAF EAB ∠=∠,1 3ECF ECD ∠=∠,则 AEC ∠=( )A .60°B .80°C .90°D .100°2.下列命题是真命题的是( )A .平行于同一直线的两条直线平行B .两直线平行,同旁内角相等C .同旁内角互补D .同位角相等3.如图,在△ABC 中,∠ACB=90°,D 在AB 上,将△ABC 沿CD 折叠,点B 落在AC 边上的点B′处,若'20ADB ∠=︒,则∠A 的度数为( )A .25°B .30°C .35°D .40°4.已知关于x ,y 的两个方程组 48312ax by x y -=-⎧⎨+=⎩ 和 35180516ax by x y +=⎧⎨+=⎩具有相同的解,则a ,b 的值是( ) A .=202a b -⎧⎨=⎩ B .=202a b ⎧⎨=-⎩C .=202a b ⎧⎨=⎩D .=202a b -⎧⎨=-⎩ 5.两条直线y ax b =+与y bx a =+在同一直角坐标系中的图象位置可能为( ). A . B . C . D . 6.如图,直线l:33y x =,过点A(0,1)作y 轴的垂线交直线l 于点B,过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2;…按此作法继续下去,则点A 2015的坐标为( )A .(0,20154)B .(0, 20144)C .(0, 20153)D .(0, 20143) 7.在平面直角坐标系xOy 中,点P 在由直线y=-x+3,直线y=4和直线x=1所围成的区域内或其边界上,点Q 在x 轴上,若点R 的坐标为R (2,2),则QP+QR 的最小值为( ) A 17B 5C .5D .48.已知关于x ,y 的方程组232x y a x y a -=-⎧⎨+=⎩,其中﹣2≤a≤0.下列结论:①当a =0时,x ,y 的值互为相反数;②20x y =⎧⎨=⎩是方程组的解;③当a =﹣1时,方程组的解也是方程2x ﹣y =1﹣a 的解;其中正确的是( ) A .①② B .①③C .②③D .①②③ 9.已知:关于x 、y 的方程组2423x y a x y a +=-+⎧⎨+=-⎩,则x-y 的值为( ) A .-1B .a-1C .0D .1 10.若点P (﹣m ,﹣3)在第四象限,则m 满足( ) A .m >3B .0<m≤3C .m <0D .m <0或m >3 11.58) A 5B 10C .54D 52212.下列四组数中,是勾股数的是( )A .5,12,13B .4,5,6C .2,3,4D .2,5二、填空题13.如图,已知12∠=∠,求证:A BCH ∠=∠.证明:∵12∠=∠(已知)23∠∠=(______)∴13∠=∠(等量代换)∴//CH (______)(同位角相等,两直线平行)∴A BCH ∠=∠(______)14.命题“若11a b=,则a b =”,这个命题是_____命题.(填“真”或“假”) 15.定义一种新的运算:2a b a b =-☆,例如:()()312317-=⨯--=☆,那么 (1)若()216b -=-☆,那么b =______;(2)若0a b =☆,且关于x ,y 的二元一次方程()1520a x by a -++-=,当a ,b 取不同值时,方程都有一个公共解,那么公共解为_________.16.一个两位数的十位数字与个位数字的和是13,把这个两位数减去27,结果恰好成为数字对调后组成的两位数,则这个两位数为__________.17.甲、乙两名运动员在笔直的公路上进行骑自行车训练.如图所示,反映了甲、乙两名运动员在公路上进行训练时的行驶路程S (千米)与行驶时间t (小时)之间的关系,在两人行驶过程中,当t =__________小时时,甲、乙两名运动员相距12千米.18.已知点P (a ,a +1)在平面直角坐标系的第二象限内,则a 的取值范围___. 19.已知52a =+,52b =,则227a b ++的算术平方根是_____. 20.已知等腰三角形的两边长分别为a ,b ,且a ,b 满足2235(2313)0a b a b -++-=,则此等腰三角形的面积为____.三、解答题21.如图,如果147∠=︒,2133∠=︒,47D ∠=︒,那么AB 与CD 平行吗?BC 与DE 呢?观察下面的解答过程,补充必要的依据或结论.解:∵147∠=︒(已知),1ABC ∠=∠(___________________)∴47ABC ∠=︒(等量代换)又∵2133∠=︒(已知),∴2ABC ∠+∠=(_________)(等式的性质).∴//AB CD (___________________)又∵2180BCD ∠+∠=︒,∴47BCD ∠=︒(等式的性质)∵47D ∠=︒(已知),∴47BCD D ∠=∠=︒(___________________)∴//BC DE (_____________________________________)22.已知:用5辆A 型车和1辆B 型车载满货物一次可运货200吨;用1辆A 型车和5辆B 型车载满货物一次可运货232吨,某物流公司现有304吨货物待运,计划A 型车m 辆,B 型车n 辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题: (1)请问1辆A 型车和1辆车B 型车都载满货物一次可分别运货多少吨;(2)请你帮该物流公司设计租车方案;(3)若A 型车每辆需租金1000元/次,B 型车每辆需租金1200元/次.请选出最省钱的租车方案,并求出最少租车费是多少.23.“游山水、寻特色、览风情、悟心得”,为推动文旅产业全面复苏,某旅游公司推出河南省十大景点畅游活动,活动内容如下:游客免费注册普通会员,旅游门票费用打八折;游客注册 VIP 会员,需要支付 100 元的注册费用,旅游门票费用打六折.活动期间,某旅游门票原价为x 元,注册普通会员所需费用为y 1元,注册, VIP 会员所需费用为y 2元.(1)求出y 1,y 2关于x 的函数解析式;(2)若旅游门票原价为1000元,则选择哪种活动更划算?(3)当旅游门票原价为多少元时,选择两种活动所需费用相同?(4)根据图象,请直接写出如何选择活动方式更划算.24.如图,平面直角坐标系xOy 中,有五个点,,,,A B C D E .(1)哪两个点关于x 轴对称?__________(直接填写答案);(2)在y 轴上找一个点F ,使点F 到点,D E 的距离之和最短(画出示意图即可,不需要说明理由).25.计算:(1)()()3131+- (2)3144272⎛⎫+⨯-- ⎪⎝⎭26.△ABC 三边长分别为,AB =25,BC =10,AC =34.(1)请在方格内画出△ABC ,使它的顶点都在格点上;(2)求△ABC 的面积;(3)求最短边上的高.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】连接AC ,设∠EAF=x ,∠ECF=y ,得到∠FAB=4x ,∠FCD=4x ,根据平行线性质得出∠CAB+∠ACD=180°,从而得到x+y=30°,再根据∠AEC=180°-(∠EAF+∠ECF+∠FCA+∠FAC )得到结果.【详解】解:连接AC,设∠EAF=x,∠ECF=y,∴∠EAB=3x,∠ECD=3x,∴∠FAB=4x,∠FCD=4x,∵AB∥CD,∴∠CAB+∠ACD=180°,∵∠AFC=120°,∴∠FAC+∠FCA=180°-120°=60°,∴∠FAC+∠FCA+∠FAB+∠FCD=180°,即60+4x+4y=180°,解得:x+y=30°,∴∠AEC=180°-(∠EAC+∠ECA)=180°-(∠EAF+∠ECF+∠FCA+∠FAC)=180°-(x+y+60°)=90°故选C.【点睛】本题考查了平行线性质和三角形内角和定理的应用,解题的关键是注意整体思想的运用.2.A解析:A【分析】对照平行线的性质和定理,逐一判断即可.【详解】∵平行于同一直线的两条直线平行,∴选项A正确;∵两直线平行,同旁内角互补,∴选项B错误;∵两直线平行,同旁内角互补,∴选项C错误;∵两直线平行,同位角相等,∴选项D错误;故选A.【点睛】本题考查了平行线的性质和判定,熟记性质和判定的条件和结论是解题的关键.3.C解析:C【分析】利用翻折不变性,三角形内角和定理和三角形外角的性质即可解决问题.【详解】∵∠ACB=90°,∴∠A+∠B=90°,∵△CDB′是由△CDB翻折得到,∴∠CB′D=∠B,∵∠CB′D=∠A+∠ADB′=∠A+20°,∴∠A+∠A+20°=90°,解得∠A=35°.故选:C.【点睛】本题考查三角形内角和定理和三角形外角的性质,翻折变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4.C解析:C【分析】联立不含a与b的方程组成方程组,求出方程组的解得到x与y的值,代入剩下的方程计算即可求出a与b的值.【详解】联立得:312 516 x yx y+=⎧⎨+=⎩,解得:26 xy=⎧⎨=⎩,将26xy=⎧⎨=⎩代入得:124530a ba b-=-⎧⎨+=⎩,解得:202ab=⎧⎨=⎩,故选:C.【点睛】本题考查了同解二元一次方程组,熟练掌握二元一次方程组的解法是解题的关键.5.B解析:B【分析】由于a、b的符号均不确定,故应分四种情况讨论,找出合适的选项.【详解】解:分四种情况讨论:当a >0,b >0时,直线y ax b =+与y bx a =+的图象均经过一、二、三象限,4个选项均不符合;当a >0,b <0,直线y ax b =+图象经过一、三、四象限,y bx a =+的图象经过第一、二、四象限;选项B 符合此条件;当a <0,b >0,直线y ax b =+图象经过一、二、四象限,y bx a =+的图象经过第一、三、四象限,4个选项均不符合;当a <0,b <0,直线y ax b =+图象经过二、三、四象限,y bx a =+的图象经过第二、三、四象限,4个选项均不符合;故选:B.【点睛】此题主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y =kx +b 的图象有四种情况:①当k >0,b >0,函数y =kx +b 的图象经过第一、二、三象限;②当k >0,b <0,函数y =kx +b 的图象经过第一、三、四象限;③当k <0,b >0时,函数y =kx +b 的图象经过第一、二、四象限;④当k <0,b <0时,函数y =kx +b 的图象经过第二、三、四象限.6.A解析:A【分析】根据所给直线解析式可得l 与x 轴的夹角,进而根据所给条件依次得到点A 1,A 2的坐标,通过相应规律得到A 2015标即可.【详解】解:∵直线l 的解析式为:y x =, ∴直线l 与x 轴的夹角为30°,∵AB ∥x 轴,∴∠ABO=30°,∵OA=1,∴∵A 1B ⊥l ,∴∠ABA 1=60°,∴AA 1=3,∴A 1(0,4),同理可得A 2(0,16),…,∴A 2015纵坐标为:42015,∴A2015(0,42015).故选:A.【点睛】本题考查的是一次函数综合题,先根据所给一次函数判断出一次函数与x轴夹角是解决本题的突破点;根据含30°的直角三角形的特点依次得到A、A1、A2、A3…的点的坐标是解决本题的关键.7.A解析:A【解析】试题分析:本题需先根据题意画出图形,再确定出使QP+QR最小时点Q所在的位置,然后求出QP+QR的值即可.试题当点P在直线y=-x+3和x=1的交点上时,作P关于x轴的对称点P′,连接P′R,交x轴于点Q,此时PQ+QR最小,连接PR,∵PR=1,PP′=4∴221417+=∴PQ+QR17故选A.考点:一次函数综合题.8.B解析:B【分析】把a=0代入方程组,可求得方程组的解,把2xy=⎧⎨=⎩代入方程组,可得a=1,可判断②;把a=﹣1代入方程可求得a的值为2,可判断③;可得出答案.【详解】解:①当a=0时,原方程组为23x yx y-=⎧⎨+=⎩,解得11xy=-⎧⎨=⎩,②把2xy=⎧⎨=⎩代入方程组得到a=1,不符合题意.③当a=﹣1时,原方程组为242x yx y-=⎧⎨+=-⎩,解得2xy=⎧⎨=-⎩,当2xy=⎧⎨=-⎩时,代入方程组可求得a=﹣1,把2xy=⎧⎨=-⎩与a=﹣1代入方程2x﹣y=1﹣a得,方程的左右两边成立,综上可知正确的为①③.故选:B.【点睛】本题主要考查二元一次方程组的解,熟练掌握二元一次方程组的解是解题的关键.9.D解析:D【解析】分析:由x、y系数的特点和所求式子的关系,可确定让①-②即可求解.详解:2423x y ax y a+=-+⎧⎨+=-⎩①②,①−②,得x−y=−a+4−3+a=1.故选:D.点睛:此题考查了解二元一次方程组,一般解法是用含有a的代数式表示x、y,再计算,但也要注意能简便的则简便.此题中注意整体思想的渗透.10.C解析:C【分析】根据第四象限内点的特点,横坐标是正数,列出不等式求解即可.【详解】解:根据第四象限的点的横坐标是正数,可得﹣m>0,解得m<0.故选:C.【点睛】本题考查平面直角坐标系中各象限内点的坐标符号,关键是掌握四个象限内点的坐标符号.11.B解析:B【分析】根据分数的性质,在分子分母同乘以2,再根据二次根式的性质化简即可.【详解】=== 故选:B .【点睛】此题考查化简二次根式,掌握分数的性质确定分子分母同乘以最小的数值,使分母化为一个数的平方,由此化简二次根式是解题的关键.12.A解析:A【分析】欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【详解】解:A. ∵5,12,13是正整数,且52+122=132,∴5,12,13是勾股数;B. ∵42+52≠62,∴4,5,6不是勾股数;C. ∵22+32≠42,∴2,3,4不是勾股数;D. ∵∴1故选A .【点睛】此题主要考查了勾股数,解答此题要用到勾股数组的定义,如果a ,b ,c 为正整数,且满足a 2+b 2=c 2,那么,a 、b 、c 叫做一组勾股数.二、填空题13.对顶角相等AG 两直线平行同位角相等【分析】根据对顶角的定义可得再根据平行线的判定可得CH//AG 最后由两直线平行同位角相等即可证明【详解】解:证明:∵(已知)(对顶角相等)∴(等量代换)∴(AG )(解析:对顶角相等,AG ,两直线平行,同位角相等.【分析】根据对顶角的定义可得23∠∠=,再根据平行线的判定可得CH//AG,最后由两直线平行、同位角相等即可证明.【详解】解:证明:∵12∠=∠(已知)23∠∠=(对顶角相等)∴13∠=∠(等量代换)∴//CH (AG )(同位角相等,两直线平行)∴A BCH ∠=∠(两直线平行,同位角相等).故答案为:对顶角相等,AG ,两直线平行,同位角相等.【点睛】本题考查了对顶角的定义、平行线的性质和判定定理等知识,灵活应用平行线的性质和判定定理是解答本题的关键.14.真【分析】根据题意判断正误即可确定是真假命题【详解】解:命题若则a=b这个命题是真命题故答案为:真【点睛】本题考查了命题与定理的知识解题的关键是当判断一个命题为假命题时可以举出反例难度不大解析:真【分析】根据题意判断正误即可确定是真、假命题.【详解】解:命题“若11a b=,则a=b”,这个命题是真命题,故答案为:真.【点睛】本题考查了命题与定理的知识,解题的关键是当判断一个命题为假命题时可以举出反例,难度不大.15.【分析】(1)根据新定义代入数据计算即可求解;(2)根据新定义可得b=2a代入方程得到(a-1)x+2ay+5-2a=0则(x+2y-2)a=x-5根据当ab取不同值时方程都有一个公共解得到方程组解解析:51.5 xy=⎧⎨=-⎩【分析】(1)根据新定义代入数据计算即可求解;(2)根据新定义可得b=2a,代入方程得到(a-1)x+2ay+5-2a=0,则(x+2y-2)a=x-5,根据当a,b取不同值时,方程都有一个公共解,得到方程组22050x yx+-=⎧⎨-=⎩,解方程组即可求解.【详解】解:(1)∵(-2)☆b=-16,∴2×(-2)-b=-16,解得b=12;(2)∵a☆b=0,∴2a-b=0,∴b=2a,则方程(a-1)x+by+5-2a=0可以转化为(a-1)x+2ay+5-2a=0,则(x+2y-2)a=x-5,∵当a,b取不同值时,方程都有一个公共解,∴22050x y x +-=⎧⎨-=⎩, 解得51.5x y =⎧⎨=-⎩, 故这个公共解为51.5x y =⎧⎨=-⎩. 【点睛】本题考查了新定义,二元一次方程的解,关键是熟练掌握新定义运算.16.85【分析】设这个两位数的个位数字为x 十位数字为y 则两位数可表示为10y+x 对调后的两位数为10x+y 根据题中的两个数字之和为13及对调后的等量关系可列出方程组求解即可【详解】设这个两位数的个位数字解析:85【分析】设这个两位数的个位数字为x ,十位数字为y ,则两位数可表示为10y+x ,对调后的两位数为10x+y ,根据题中的两个数字之和为13及对调后的等量关系可列出方程组,求解即可.【详解】设这个两位数的个位数字为x ,十位数字为y ,根据题意得:13102710x y x y y x +=⎧⎨+-=+⎩, 解得:85x y =⎧⎨=⎩, 则这个两位数为8×10+5=85.故答案为:85.【点睛】本题考查了二元一次方程组的应用,解题关键是掌握两位数的表示方法,读懂题意,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.17.【分析】根据一次函数图象求出甲和乙的解析式然后先考虑两者相遇之前是否有可能相距12千米再考虑相遇之后相距12千米的情况【详解】解:根据函数图象设甲的解析式为乙的解析式为用待定系数法求解析式将代入解得 解析:5.4【分析】根据一次函数图象求出甲和乙的解析式,然后先考虑两者相遇之前是否有可能相距12千米,再考虑相遇之后相距12千米的情况.【详解】解:根据函数图象,设甲的解析式为11y k x =,乙的解析式为()()22311k x x y k x b x ⎧≤⎪=⎨+>⎪⎩,用待定系数法求解析式,将()3,120代入11y k x =,解得140k =,则140y x =,将()1,50和()3,120代入()()22311k x x y k x b x ⎧≤⎪=⎨+>⎪⎩,解得23503515k k b =⎧⎪=⎨⎪=⎩,则()()250135151x x y x x ⎧≤⎪=⎨+>⎪⎩, 当1x =时,2150401012y y -=-=<,∴甲和乙在相遇之前不可能相距12千米,当3x >时,()1240351512y y x x -=-+=,解得 5.4x =.故答案是:5.4.【点睛】本题考查一次函数的实际应用,解题的关键是能够看懂函数图象,把图象和实际含义联系起来,通过求解析式来解决实际问题.18.﹣1<a <0【分析】直接利用第二象限内点的坐标特点得出a 的取值范围【详解】解:∵点P (aa+1)在平面直角坐标系的第二象限内∴解得:﹣1<a <0则a 的取值范围是:﹣1<a <0故答案为:﹣1<a <0【解析:﹣1<a <0【分析】直接利用第二象限内点的坐标特点得出a 的取值范围.【详解】解:∵点P (a ,a +1)在平面直角坐标系的第二象限内,∴010a a <⎧⎨+>⎩, 解得:﹣1<a <0.则a 的取值范围是:﹣1<a <0.故答案为:﹣1<a <0.【点睛】本题考查了点的坐标,正确掌握各象限内点的坐标特点是解题的关键.19.5【分析】根据完全平方公式和算术平方根即可求解【详解】解:因为所以=(+2)2+(-2)2+7=9+2+9-2+7=25所以a2+b2+7的算术平方根是5故答案为:5【点睛】本题考查了完全平方公式算解析:5【分析】根据完全平方公式和算术平方根即可求解.【详解】解:因为2a =,2b =,,所以227a b ++=(5+2)2+(5-2)2+7=9+25+9-25+7=25.所以a 2+b 2+7的算术平方根是5.故答案为:5.【点睛】本题考查了完全平方公式、算术平方根,解决本题的关键是掌握完全平方公式、算术平方根.20.或【分析】根据非负数的性质列出方程组求解的值然后分两种情况讨论画出图形作底边上的高利用勾股定理求出高即可求解【详解】解:由非负性可知解得①当是腰时三边分别为由2+2>3则能组成三角形设底边上的高为h 解析:374或22 【分析】根据非负数的性质列出方程组求解a ,b 的值,然后分两种情况讨论,画出图形,作底边上的高,利用勾股定理求出高,即可求解.【详解】解:由非负性可知235023130a b a b -+=⎧⎨+-=⎩, 解得23a b =⎧⎨=⎩, ①当a 是腰时,三边分别为2、2、3,由2+2>3,则能组成三角形,设底边上的高为h ,如下图所示则h=22322⎛⎫- ⎪⎝⎭=7 ∴此等腰三角形的面积为1732⨯⨯=37; ②当b 是腰时,三边分别为3、3、2,由3+2>3,则能组成三角形,设底边上的高为h ,如下图所示则∴此等腰三角形的面积为122⨯⨯=综上:此等腰三角形的面积为4或或 【点睛】 本题主要考查了等腰三角形的性质,非负数的性质,解二元一次方程组,三角形的三边关系,勾股定理,先求出a ,b 的值是解题的关键,要注意分情况讨论.三、解答题21.对顶角相等;180︒;同旁内角互补,两直线平行;等量代换;内错角相等,两直线平行.【分析】首先由对顶角相等并结合已知可得1ABC ∠=∠,进而可得2180ABC ∠+∠=,接下来利用平行线的判定进行证明即可;再利用平角的定义并结合已知可得18013347BCD ∠=︒-︒=︒,进而可得BCD D ∠=∠,然后根据平行线的判定定理进行证明即可.【详解】解:∵147∠=︒(已知),1ABC ∠=∠(对顶角相等)∴47ABC ∠=︒(等量代换)又∵2133∠=︒(已知),∴2ABC ∠+∠=(180︒)(等式的性质).∴//AB CD (同旁内角互补,两直线平行)又∵2180BCD ∠+∠=︒,∴47BCD ∠=︒(等式的性质)∵47D ∠=︒(已知),∴47BCD D ∠=∠=︒(等量代换)∴//BC DE (内错角相等,两直线平行)故答案为:对顶角相等;180︒;同旁内角互补,两直线平行;等量代换;内错角相等,两直线平行.【点睛】本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.22.(1)1辆A 型车可运32吨,1辆B 型车可运40吨;(2)共有两种方案:方案一:租A 型车7辆,B 型车2辆;方案二:租A 型车2辆,B 型车6辆;(3)最省钱的租车方案为方案二:租A 型车2辆,B 型车6辆,最少租车费为9200元【分析】(1)设1辆A 型车可运x 吨,1辆B 型车可运y 吨,根据“用5辆A 型车和1辆B 型车载满货物一次可运货200吨;用1辆A 型车和5辆B 型车载满货物一次可运货232吨,”列方程组求解即可;(2)根据“某物流公司现有304吨货物待运,计划A 型车m 辆,B 型车n 辆,”得出3240304m n +=,再根据,m n 都是自然数,即可得出,m n 的值,从而得出方案;(3)由(2)可知两种方案,再将值分别代入两种方案中求出值后再比较即可得出答案.【详解】解:(1)设1辆A 型车可运x 吨,1辆B 型车可运y 吨,根据题意可列方程组:52005232x y x y +=⎧⎨+=⎩, 解得:3240x y =⎧⎨=⎩, 答:1辆A 型车可运32吨,1辆B 型车可运40吨.(2)根据题意得:3240304m n += 则3044032n m -=,且,m n 都是自然数. 当27n m ==时,;当62n m ==时,;故一共有两种方案:方案一:租A 型车7辆,B 型车2辆方案二:租A 型车2辆,B 型车6辆.(3)根据题意可知,方案一需租金:71000212009400⨯+⨯=(元)方案二需租金:21000612009200⨯+⨯=(元)94009200,>∴最省钱的租车方案为方案二:租A 型车2辆,B 型车6辆,最少租车费为9200元.【点睛】本题考查了二元一次方程组的应用,读懂题意找到等量关系式是解题的关键. 23.(1)y 1=0.8x ,y 2=0.6x +100;(2)当x =1000时,注册VIP 用户比较合算;(3)当旅游门票原价为500元时,选择两种活动所需费用相同;(4)当x >500时,注册VIP 用户比较合算,当x <500时,注册普通用户比较合算,当x=500时,两种用户一样合算.【分析】(1)依据若游客免费注册普通会员,旅游门票费用打八折;若注游客注册 VIP 会员,需要支付 100 元的注册费用,旅游门票费用打六折,即可得到普通用户的收费y 1和注册VIP 用户y 2与x 之间的函数关系式;(2)依据x =1000,分别求得y 1和 y 2的值,即可得到结论;(3)由y 1=y 2得:0.6x +100=0.8x ,进而得出当下载量为500份时,注册两种用户的收费相等;(4)先求出函数图像的交点坐标,再根据函数图像,直接写出结论即可.【详解】解:(1)由题意得:普通用户:y1=0.8x,VIP用户:y2=0.6x+100;(2)∵当x=1000时,y1=0.8x=0.8×100=800(元),y2=0.6x+100=0.6×1000+100=700(元)∴y1>y2,∴当x=1000时,注册VIP用户比较合算;(3)由y1=y2得:0.6x+100=0.8x,解得:x=500,答:当旅游门票原价为500元时,选择两种活动所需费用相同;(4)由0.6x+100=0.8x,得x=500,∴两个函数图像的交点坐标为(500,400),当x>500时,注册VIP用户比较合算,当x<500时,注册普通用户比较合算,当x=500时,两种用户一样合算.【点睛】本题考查了一次函数的应用,读懂题目信息,写出注册VIP用户的收费y1和注册普通用户y2与x之间的函数关系式是解题的关键.24.(1)点A、B;(2)见解析.【分析】(1)根据平面直角坐标系内各点的坐标特点进行判断,即可得出结论;(2)判断出B、E关于y轴对称,并根据轴对称的性质可得FE+FD=FB+FD,即可得出点F 的位置.【详解】解:(1)由图得:A,B两点的横坐标相同,纵坐标互为相反数,则点A、B关于x轴对称.故答案为:点A、B.(2)如图所示:点F即为所求作的点,由图得:B 、E 关于y 轴对称,∴FE=FB .则FE+FD=FB+FD .当B 、F 、D 三点共线时,FB+FD 最短,∴连接BD 与y 轴的交点即为点F .【点睛】本题考查了轴对称与坐标变化以及利用轴对称求最值等知识,掌握轴对称与坐标之间的变化规律及轴对称的性质是解题的关键.25.(1)2;(3)-3【分析】(1)根据平方差公式计算即可;(2)根据实数混合运算法则计算即可.【详解】解:(1)原式2231=-31=-2=(2)原式()223=+--3=-.【点睛】本题主要考查了实数的运算以及平方差公式,解题的关键是熟练掌握平方差公式以及实数混合运算法则.26.(1)见解析;(2)7;(3710. 【分析】(1)根据AB =2252024==+, BC 221031=+,,AC 223435+,利用勾股定理不难在网格上画出△ABC ;(2)如图,根据S △ABC =ADB BEC AFC ADEF S S S S ---⊿⊿⊿矩形不难得到答案;(3)对各边作出比较,可以找出最短边,然后根据三角形面积公式可求得最短边上的高.【详解】解:(1)如图所示:△ABC 即为所求;(2)如图,S △ABC =5×4﹣122⨯×4﹣12⨯1×3﹣12⨯3×5=7,∴△ABC 的面积是7;(3)∵10<534∴BC 是最短边,作AH ⊥BC ,交CB 延长线于点H ,∵S △ABC =12BC •AH , ∴AH =2ABC S BC =10710. 710. 【点睛】本题考查三角形面积的综合问题,熟练掌握三角形面积的各种求解方法是解题关键.。
【浙教版】八年级数学上期末模拟试题含答案(2)
一、选择题1.若整数a 使得关于x 的方程3222a x x-=--的解为非负数,且使得关于y 的一元一次不等式组322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩至少有3个整数解,则所有符合条件的整数a 的和为( )A .23B .25C .27D .282.下列命题中,属于真命题的是( )A .如果0ab =,那么0a =B .253x x x -是最简分式C .直角三角形的两个锐角互余D .不是对顶角的两个角不相等3.要使分式()()221x x x ++-有意义,x 的取值应满足( )A .1x ≠B .2x ≠-C .1x ≠或2x ≠-D .1x ≠且2x ≠-4.若数a 关于x 的不等式组()()11223321x x x a x ⎧-≤-⎪⎨⎪-≥-+⎩恰有三个整数解,且使关于y 的分式方程13y 2a 2y 11y--=---的解为正数,则所有满足条件的整数a 的值之和是( ) A .2 B .3C .4D .5 5.计算()201920180.52-⨯的值( ) A .2 B .2- C .12 D .12- 6.下列计算中能用平方差公式的是( ).A .()()a b a b -+-B .1133x y y x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭C .22x xD .()()21x x -+7.下列运算正确的是( ) A .3m ·4m =12m B .m 6÷m 2= m 3(m≠0)C .236(3)27m m -=D .(2m+1)(m-1)=2m 2-m-1 8.下列各式运算正确的是( )A .235a a a +=B .1025a a a ÷=C .()32626b b =D .2421a a a -⋅= 9.如图,在ABC 中,AB AC =,108BAC ∠=︒,72ADB ∠=︒,DE 平分ADB ∠,图中等腰三角形的个数是( )A .3B .4C .5D .610.如图,在ABC 中,90C =∠,30B ∠=,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交 BC 于点D ,则:DAC ABC S S 等于( )A .1:2B .2:3C .1:3D .1:311.如图,在ABC 中,AD BC ⊥于D ,CE AB ⊥于E ,AD 与CE 交于点F .请你添加一个适当的条件,使AEF ≌CEB △.下列添加的条件不正确的是( )A .EF EB =B .EA EC = C .AF CB =D .AFE B ∠=∠ 12.以下列各组线段为边,能组成三角形的是( )A .1,2,3B .2,3,4C .2,5,8D .6,3,3 二、填空题13.符号“a bc d ”称为二阶行列式,规定它的运算法则为:a bc d =ad ﹣bc ,请你根据上述规定求出下列等式中x 的值.若2111111x x =--,那么x =__.14.化简:(﹣2y x)3÷(223⋅y x x y )=_______________. 15.若x 、y 为有理数,且22(2)0x y ++-=,则2021()xy 的值为____.16.已知2m n +=,2mn =-,则(1)(1)m n --=________.17.若等腰三角形一腰上的高与另一腰的夹角为20°,则顶角的度数为______________ 18.如图,AB =4cm ,AC =BD =3cm ,∠CAB =∠DBA ,点P 在线段AB 上以1cm/s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动.设运动时间为t (s ),则当△ACP 与△BPQ 全等时,点Q 的运动速度为__cm/s .19.如图①,点D 为一等腰直角三角形纸片的斜边AB 的中点,E 是BC 边上的一点,将这张纸片沿DE 翻折成如图②,使BE 与AC 边相交于点F ,若图①中AB =2,则图②中△CEF 的周长为______________.20.如果一个多边形所有内角和与外角和共为2520°,那么从这个多边形的一个顶点出发共有_________条对角线三、解答题21.在今年新冠肺炎防疫工作中,学校购买了A 、B 两种不同型号的口罩,已知A 型口罩的单价比B 型口罩的单价多1.5元,且用8000元购买A 型口罩的数量与用5000元购买B 型口罩的数量相同.(1)求A 、B 两种型号口罩的单价各是多少元?(2)根据疫情发展情况,学校还需要增加购买一些口罩,增加购买B 型口罩数量是A 型口罩数量的2倍,若总费用不超过7200元,求增加购买A 型口罩的数量最多是多少个? 22.先化简,再求值:213(1)211x x x x x +--÷-+-,其中x =12. 23.计算:4a 2·(-b )-8ab ·(b -12a ). 24.如图1,△ABC 中AB =AC ,DE 垂直平分AB 分别交AB ,AC 于点D ,E .(1)若∠C =70°,则∠A 的大小为 ;(2)若AE =BC ,求∠A 的度数;(3)如图2,点M 是边BC 上的一个定点,若点N 在直线DE 上,当BN +MN 最小时,点N 在何处?请用无刻度直尺作出点N 的位置.(不需要说明理由,保留作图痕迹)25.在数学课本中,有这样一道题:如图1,AB∥CD,试用不同的方法证明∠B+∠C=∠BEC(1)某同学写出了该命题的逆命题,请你帮他把逆命题的证明过程补充完整.已知:如图1,∠B+∠C=∠BEC求证:AB∥CD证明:如图2,过点E,作EF∥AB,∴∠B=∠∵∠B+∠C=∠BEC,∠BEF+∠FEC=∠BEC(已知)∴∠B+∠C=∠BEF+∠FEC(等量代换)∴∠=∠(等式性质)∴EF∥∵EF∥AB∴AB∥CD(平行于同一条直线的两条直线互相平行)(2)如图3,已知AB∥CD,在∠BCD的平分线上取两个点M、N,使得∠BMN=∠BNM,求证:∠CBM=∠ABN.(3)如图4,已知AB∥CD,点E在BC的左侧,∠ABE,∠DCE的平分线相交于点F.请直接写出∠E与∠F之间的等量关系.26.在△ABC中,∠B=40°,∠C=60°,AD平分∠BAC,点E为AD延长线上的点,EF⊥BC 于F,求∠DEF的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】表示出不等式组的解集,由不等式至少有3个整数解确定出a 的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a 的值,进而求出之和.【详解】 解:322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩, 不等式组整理得:2y y a -⎧⎨≤⎩>, 由不等式组至少有3个整数解,得到-2<y≤a ,解得:a≥1,即整数a=1,2,3,4,5,6,…,3222a x x-=--, 去分母得:2(x-2)-3=-a ,解得:x=72a -, ∵72a -≥0,且72a -≠2, ∴a≤7,且a≠3,由分式方程的解为非负数以及分式有意义的条件,得到a 为1,2,4,5,6,7, 之和为1+2+4+5+6+7=25.故选:B .【点睛】此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键. 2.C解析:C【分析】根据有理数的乘法、最简分式的化简、直角三角形的性质、对顶角的概念判断即可.【详解】解:A. 如果 ab=0,那么a=0或b=0或a 、b 同时为0,本选项说法是假命题,不符合题意; B. ()2555==333x x x x x x x ---,故253x x x-不是最简分式,本选项说法是假命题,不符合题意;C. 直角三角形的两个锐角互余,本选项说法是真命题,符合题意;D. 不是对顶角的两个角可能相等,本选项说法是假命题,不符合题意;故选:C .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉教材中的性质定理.3.D解析:D【分析】根据分式有意义的条件得出x +2≠0且x ﹣1≠0,计算即可.【详解】解:要使分式()()221x x x ++-有意义,必须满足x +2≠0且x ﹣1≠0, 解得:x ≠﹣2且x ≠1,故选:D .【点睛】本题考查了分式有意义的条件,能根据分式有意义的条件得出x +2≠0且x ﹣1≠0是解此题的关键.4.A解析:A【分析】先解不等式得出解集x≤2且x≥2a -,根据其有两个整数解得出0<2a -≤1,解之求得a 的范围;解分式方程求出y =2a −1,由解为正数且分式方程有解得出2a −1>0且2a - 1≠1,解之求得a 的范围;综合以上a 的范围得出a 的整数值,从而得出答案.【详解】 解:()()11223321x x x a x ⎧-≤-⎪⎨⎪-≥--⎩①②,解不等式①得:x≤2,解不等式②得:x≥2a -,∵不等式组恰有三个整数解,∴-1<2a -≤0,解得12a ≤<, 解分式方程132211y a y y--=---, 得:21y a =-,由题意知210211a a ->⎧⎨-≠⎩, 解得12a >且1a ≠, 则满足12a ≤<,12a >且1a ≠的所有整数a 的值是2, 所有满足条件的整数a 的值之和为2.故选择:A .【点睛】 本题主要考查解一元一次不等式组和求方程的正数解,解题的关键是根据不等式组整数解和方程的正数解得出a 的范围,再求和即可.5.D解析:D【分析】 将原式变形为201920181-22⎛⎫⨯ ⎪⎝⎭,再利用同底数幂的乘法逆运算变为2018201811--222⎛⎫⎛⎫⨯⨯ ⎪ ⎪⎝⎭⎝⎭,然后运用乘法交换律及积的乘方的逆运算计算即可. 【详解】 解:原式=201920181-22⎛⎫⨯ ⎪⎝⎭=2018201811--222⎛⎫⎛⎫⨯⨯ ⎪ ⎪⎝⎭⎝⎭ =2018201811-2-22⎛⎫⎛⎫⨯⨯ ⎪ ⎪⎝⎭⎝⎭=201811-2-22⎛⎫⎛⎫⨯⨯ ⎪ ⎪⎝⎭⎝⎭ =()20181-1-2⎛⎫⨯ ⎪⎝⎭=1×1-2⎛⎫ ⎪⎝⎭=12- 故选:D .【点睛】本题主要考查了整式的乘法,熟练掌握同底数幂的乘法、积的乘方的逆运算是解题的关键.6.B解析:B【分析】根据平方差公式()()22a b a b a b -+=-一项一项代入判断即可. 【详解】A 选项:两项都是互为相反数,故不能用平方差公式;B 选项:两项有一项完全相同,另一项为相反数,故可用平方差公式;C 选项:两项完全相同,故不能用平方差公式;D 选项:有一项2-与1不同,故不能用平方差公式.故选:B .【点睛】此题考查平方差的基本特征:()()22a b a b a b -+=-中a 与b 两项符号不同,难度一般.7.D解析:D【分析】利用同底数幂的乘法和除法,积的乘方、幂的乘方,多项式乘多项式的运算法则计算即可判断.【详解】A 、 347·m m m =,该选项错误;B 、624m m m ÷=,该选项错误;C 、236(3)27m m -=-,该选项错误;D 、(()221)121m m m m +-=--,该选项正确; 故选:D .【点睛】本题考查了同底数幂的乘法和除法,积的乘方、幂的乘方,多项式乘多项式,熟练掌握运算法则是解题的关键.8.D解析:D【分析】根据幂的乘方,底数不变指数相乘;同底数幂相乘,底数不变指数相加;合并同类项的法则,对各选项计算后利用排除法求解.【详解】解:A 、a 2与3a 不是同类项,不能合并,故本选项错误;B 、1028a a a ÷=,故本选项错误;C 、()32628b b =,故本选项错误;D 、24221a a a a --⋅==,正确. 故选:D .【点睛】本题考查了幂的乘方的性质,同底数幂的乘法,合并同类项的法则,熟练掌握运算性质是解题的关键,合并同类项时,不是同类项的不能合并.9.C解析:C【分析】利用等腰三角形的性质“等边对等角”,求出角的度数,再根据“等角对等边”证明三角形是等腰三角形.【详解】解:∵AB AC =,∴ABC 是等腰三角形,∵108BAC ∠=︒, ∴180108362B C ︒-︒∠=∠==︒, ∵72ADB ∠=︒, ∴18072BAD B ADB ∠=︒-∠-∠=︒,∴ADB BAD ∠=∠,∴AB BD =,∴ABD △是等腰三角形,∵1087236DAC BAC BAD ∠=∠-∠=︒-︒=︒,∴DAC C ∠=∠,∴AD CD =,∴ACD △是等腰三角形,∵DE 平分ADB ∠, ∴1362ADE BDE ADB ∠=∠=∠=︒, ∴18072AED ADE DAE ∠=︒-∠-∠=︒,∴AED DAE ∠=∠,∴DE DA =,∴ADE 是等腰三角形,∵BDE B ∠=∠, ∴BE DE =,∴BED 是等腰三角形,一共有5个等腰三角形.故选:C .【点睛】本题考查等腰三角形的性质和判定,解题的关键是掌握等腰三角形的性质和判定.10.D解析:D【分析】先根据直角三角形的性质得出∠2=30°,CD=12AD,再由三角形的面积公式即可得出结论.【详解】解:由作图过程可知:AP平分∠BAC,∵∠C=90°,∠B=30°,∴∠BAC=60°,∴∠1=∠2=∠B=30°,∴CD=12AD,AD=BD,∴BC=BD+CD=AD+12AD=32AD,S△DAC=12AC•CD=14AC•AD,∴S△ABC=12AC•BC=12AC•32AD=34AC•AD,∴S△DAC:S△ABC=1:3,故选D.【点睛】本题考查的是作图—基本作图,熟知角平分线的作法和性质,30°的直角三角形的性质是解答此题的关键.11.D解析:D【分析】根据垂直关系,可以判断△AEF与△CEB有两对角相等,就只需要添加一对边相等就可以了.【详解】解:∵AD⊥BC,CE⊥AB,垂足分别为D、E,∴∠AEF=∠CEB=90°,∠ADB=∠ADC=90°,∴∠EAF+∠B=90°,∠BCE+∠B=90°,∴∠EAF=∠BCE .A.在Rt △AEF 和Rt △CEB 中AEF CEB EAF BCE EF EB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴AEF ≌CEB △(AAS ),故正确;B.在Rt △AEF 和Rt △CEB 中 AEF CEB EA ECEAF BCE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴AEF ≌CEB △(ASA ),故正确;C.在Rt △AEF 和Rt △CEB 中 AEF CEB EAF BCE AF CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴AEF ≌CEB △(AAS ),故正确;D.在Rt △AEF 和Rt △CEB 中 由AEF CEB EAF BCE AFB B ∠=∠⎧⎪∠=∠⎨⎪∠=∠⎩不能证明AEF ≌CEB △,故不正确; 故选D .【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .添加时注意:AAA 、SSA 不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.12.B解析:B【分析】根据三角形的三边关系定理:两边之和大于第三边,即两条较短的边的长大于最长的边即可.【详解】A 、1+2=3,不能构成三角形, A 错误;B 、2+3=5>4可以构成三角形,B 正确;C 、2+5=7<8,不能构成三角形, C 错误;D 、3+3=6,不能构成三角形,D 错误.故答案选:B .【点睛】本题主要考查三角形的三边关系,比较简单,熟记三边关系定理是解决本题的关键.二、填空题13.4【分析】首先根据题意由二阶行列式得到一个分式方程解分式方程即得问题答案【详解】解:∵=1∴方程两边都乘以x ﹣1得:2+1=x ﹣1解得:x =4检验:当x =4时x ﹣1≠01﹣x≠0即x =4是分式方程的解析:4【分析】首先根据题意由二阶行列式得到一个分式方程,解分式方程即得问题答案 .【详解】解:∵211111xx --=1, ∴21111x x-=--, 方程两边都乘以x ﹣1得:2+1=x ﹣1,解得:x =4,检验:当x =4时,x ﹣1≠0,1﹣x≠0,即x =4是分式方程的解,故答案为:4.【点睛】本题考查分式方程与新定义实数运算的综合运用,通过观察所给运算式子归纳出运算规律并得到分式方程再求解是解题关键.14.﹣【分析】按照先乘方再乘除的运算顺序进行计算即可得到结论;【详解】解:原式=﹣÷=﹣•=﹣故答案为:﹣【点睛】本题考查分式的混合运算按照正确的运算顺序进行运算并及时化简是解题的关键解析:﹣25y x【分析】按照先乘方再乘除的运算顺序进行计算即可得到结论;【详解】 解:原式=﹣36y x ÷y x=﹣36y x •x y=﹣25y x,故答案为:﹣25y x. 【点睛】本题考查分式的混合运算,按照正确的运算顺序进行运算并及时化简是解题的关键. 15.﹣1【分析】根据绝对值的非负性及偶次方的非负性求出x=-2y=2代入求值即可【详解】∵且∴x+2=0y-2=0∴x=-2y=2∴=-1故答案为:-1【点睛】此题考查代数式的求值计算正确掌握绝对值的非解析:﹣1【分析】根据绝对值的非负性及偶次方的非负性求出x=-2,y=2,代入求值即可.【详解】 ∵22(2)0x y ++-=,且220,(2)0x y +≥-≥,∴x+2=0,y-2=0,∴x=-2,y=2, ∴2021()xy=-1, 故答案为:-1.【点睛】此题考查代数式的求值计算,正确掌握绝对值的非负性及偶次方的非负性求出x=-2,y=2是解题的关键.16.-3【分析】原式利用多项式乘以多项式法则计算变形后将m+n 与mn 的值代入计算即可求出值【详解】解:∵m+n=2mn=-2∴(1-m )(1-n )=1-(m+n )+mn=1-2-2=-3故答案为:-3【解析:-3【分析】原式利用多项式乘以多项式法则计算,变形后,将m+n 与mn 的值代入计算即可求出值.【详解】解:∵m+n=2,mn=-2,∴(1-m )(1-n )=1-(m+n )+mn=1-2-2=-3.故答案为:-3.【点睛】本题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.17.70°或110°;【分析】分情况讨论:当等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角两种情况【详解】解:①当等腰三角形的顶角是钝角时腰上的高在外部如图1根据三角形的一个外角等于与它不相邻的两个内解析:70°或110° ;【分析】分情况讨论:当等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角两种情况.【详解】解:①当等腰三角形的顶角是钝角时,腰上的高在外部, 如图1,根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;②当等腰三角形的顶角是锐角时,腰上的高在其内部,如图2,根据直角三角形两锐角互余可求顶角是90°-20°=70°.故答案为70°或110°.【点睛】本题考查了等腰三角形的性质,注意此类题的两种情况.其中考查了直角三角形的两个锐角互余;三角形的一个外角等于和它不相邻的两个内角的和.18.1或15【分析】分两种情况讨论:当△ACP ≌△BPQ 时从而可得点的运动速度;当△ACP ≌△BQP 时可得:从而可得点的运动速度从而可得答案【详解】解:当△ACP ≌△BPQ 时则AC =BPAP =BQ ∵AC解析:1或1.5【分析】分两种情况讨论:当△ACP ≌△BPQ 时,1AP BQ ==, 从而可得Q 点的运动速度;当△ACP ≌△BQP 时,可得:23AP BP BQ ===,, 从而可得Q 点的运动速度,从而可得答案.【详解】解:当△ACP ≌△BPQ 时,则AC =BP ,AP =BQ ,∵AC =3cm ,∴BP =3cm ,∵AB =4cm ,∴AP =1cm ,∴BQ =1cm ,∴点Q 的速度为:1÷(1÷1)=1(cm/s );当△ACP ≌△BQP 时,则AC =BQ ,AP =BP ,∵AB =4cm ,AC =BD =3cm ,∴AP =BP =2cm ,BQ =3cm ,∴点Q 的速度为:3÷(2÷1)=1.5(cm/s );故答案为:1或1.5.【点睛】本题考查的是全等三角形的判定与性质,分类讨论的数学思想,掌握利用分类讨论解决全等三角形问题是解题的关键.19.【分析】如图作DM ⊥AC 于MDH ⊥BC 于HDN ⊥EB 于N 连接DF 首先证明△DFB ≌△DFC 推出CF=BF 可得再利用勾股定理求解即可得到答案【详解】解:如图作DM ⊥AC 于MDH ⊥BC 于HDN ⊥EB 于N 解析:2【分析】如图,作DM ⊥AC 于M ,DH ⊥BC 于H ,DN ⊥EB 于N ,连接DF .首先证明△DFB ≌△DFC ,推出CF=BF ,可得()CEF C EF CF EC EF FB EC =++=++=EB EC EB EC CB ''+=+=,再利用勾股定理求解B C '即可得到答案.【详解】解:如图,作DM ⊥AC 于M ,DH ⊥BC 于H ,DN ⊥EB 于N ,连接DF .∵,90CA CB ACB ''=∠=︒,AD B D '=,∴CD DB AD DB '===,45DCB DCA '∠=∠=︒,45B B '∠=∠=︒.∴DH DM =,,B DE BDE '≌,DH DN ∴=,DH DM DN ∴==∴DFM DFN ∠=∠,∵∠BFM=∠EFC ,∴∠DFB=∠DFC ,在△DFB 和△DFC 中,B DCF DFB DFC DF DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DFB ≌△DFC ,∴CF=BF ,∵()CEF C EF CF EC EF FB EC =++=++=EB EC EB EC CB ''+=+=, ∵2AB '=,∴224B C AC '+=,,B C AC '=B C '∴= (负根舍去)CEF C ∴=【点睛】本题考查翻折变换,等腰直角三角形的性质,全等三角形的判定和性质,角平分线的判定,勾股定理的应用,直角三角形斜边上的中线等于斜边的一半,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题.20.11【分析】先根据题意求出多边形的边数再根据从n 边形一个顶点出发共有(n-3)条对角线即可解答【详解】设多边形的边数为n 则有(n-2)•180+360=2520解得:n=1414-3=11即从这个多解析:11【分析】先根据题意求出多边形的边数,再根据从n 边形一个顶点出发共有(n-3)条对角线即可解答.【详解】设多边形的边数为n ,则有(n -2)•180+360=2520,解得:n =14,14-3=11,即从这个多边形的一个顶点出发共有11条对角线,故答案为11.【点睛】本题考查了多边形的内角和与外角和、多边形的对角线,得到多边形的边数是解本题的关键.三、解答题21.(1)4元;2.5元 (2)800个【分析】(1)设A 型口罩的单价为x 元,则B 型口罩的单价为( 1.5)x 元,根据“用8000元购买A型口罩的数量与用5000元购买B 型口罩的数量相同”列出方程并解答;(2)设增加购买A 型口罩的数量是m 个,根据“增加购买B 型口罩数量是A 型口罩数量的2倍,若总费用不超过7200元”列出不等式并解答即可.【详解】解:(1)设A 型口罩的单价为x 元,则B 型口罩的单价为()1.5x -元, 根据题意,得800050001.5x x =-. 解方程,得:4x =.经检验:4x =是原方程的根,且符合题意.所以 1.5 2.5x -=.答:A 型口罩的单价为4元,则B 型口罩的单价为2.5元.(2)设增加购买A 型口罩的数量是m 个,根据题意,得:2.5247200m m ⨯+≤.解不等式,得:800m ≤.答:增加购买A 型口罩的数量最多是800个.【点睛】本题主要考查了分式方程的应用和一元一次不等式的应用,分析题意,找到关键描述语,找到合适的数量关系是解决问题的关键.22.1x x -,-1. 【分析】 先计算括号内,再将除法化为乘法,分别因式分解后约分,将x =12代入计算即可. 【详解】 解:原式=222113211x x x x x x x -+---÷-+- =2233211x x x x x x --÷-+- =2(3)1(1)3x x x x x ---- =1x x -, 当x =12时, 原式=121112=--. 【点睛】本题考查分式的化简求值.属于常考题型,熟练掌握分式混合运算的法则是解题的关键.23.28ab-【分析】整式的混合运算,先算乘除,然后再算加减,有小括号先算小括号里面的.【详解】解:4a2·(-b)-8ab·(b-12 a)=222484--+a b ab a b=28ab-.【点睛】本题考查整式的混合运算,掌握单项式乘单项式以及单项式乘多项式的计算法则正确计算是解题关键.24.(1)40°;(2)36°;(3)见解析【分析】(1)根据等腰三角形的两底角相等和三角形内角和等于180°即可求解;(2)根据DE垂直平分AB可得BE=AE,进而可知∠A=∠ABE,再由AE=BC,可得∠C=∠BEC,进而得出∠ABC=∠C=2∠A,再由三角形内角和即可求出∠A;(3)由已知可知B关于直线DE的对称点是A点,由此可知当A、M、N三点在同一直线上时,BN+MN=AN+MN最小.【详解】解:(1)∵AB=AC,∴∠B=∠C,∵∠C=70°,∴∠A=180°-70°-70°=40°,故答案为:40°;(2)如图:连接BE,∵DE垂直平分AB,∴BE=AE,∴∠A=∠ABE,又∵AE=BC,∴BE=BC,∴∠C=∠BEC,∵∠BEC=∠A+∠ABE=2∠A,∴∠ABC=∠C=2∠A,又∵∠A+∠ABC+∠C=180°,∴∠A+2∠A+2∠A=180°,∴∠A=36°;(3)如图,连接AM交DE于N点;即N点为所求.【点睛】本题主要考查了线段垂直平分线的性质、等腰三角形的性质、三角形内角和及最短路径等知识点,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.25.(1)BEF,C,CEF,CD;(2)证明见解析;(3)∠E=2∠F【分析】(1)过点E,作EF∥AB,根据内错角性质即可得出∠B=∠BEF,利用等量代换即可证出∠C=∠CEF,进而得出EF∥CD.(2)如图3,过点N作NG∥AB,交BM于点G,可以知道NG∥AB∥CD,由平行线的性质得出∠ABN=∠BNG,∠GNC=∠NCD,由三角形的外角性质得出∠BMN=∠BCM+∠CBM,证出∠BCM+∠CBM=∠BNG+∠GNC,进而得出∠BCM+∠CBM=∠ABN+∠NCD,由角平分线得出∠BCM=∠NCD,即可得出结论.(3)如图4,分别过E,F作EG∥AB,FH∥AB,则EG∥CD,FH∥CD,根据平行线的性质和角平分线的定义即可得到结论.【详解】(1)证明:如图2,过点E,作EF∥AB,∴∠B=∠BEF,∵∠B+∠C=∠BEC,∠BEF+∠FEC=∠BEC(已知),∴∠B+∠C=∠BEF+∠FEC(等量代换),∴∠C=∠CEF(等式性质),∴EF∥CD,∵EF∥AB,∴AB∥CD(平行于同一条直线的两条直线互相平行);故答案为:BEF,C,CEF,CD;(2)如图3所示,过点N作NG∥AB,交BM于点G,则NG∥AB∥CD,∴∠ABN=∠BNG,∠GNC=∠NCD,∵∠BMN是△BCM的一个外角,∴∠BMN=∠BCM+∠CBM,又∵∠BMN=∠BNM,∠BNM=∠BNG+∠GNC,∴∠BCM+∠CBM=∠BNG+∠GNC,∴∠BCM+∠CBM=∠ABN+∠NCD,∵CN平分∠BCD,∴∠BCM=∠NCD,∴∠CBM=∠ABN.(3)如图4,分别过E,F作EG∥AB,FH∥AB,则EG∥CD,FH∥CD,∴∠BEG=∠ABE,∠CEG=∠DCE,∴∠BEC=∠BEG+∠CEG=∠ABE+∠DCE,同理可得∠BFC=∠ABF+∠DCF,∵∠ABE,∠DCE的平分线相交于点F,∴∠ABE=2∠ABF,∠DCE=2∠DCF,∴∠BEC=2(∠ABF+∠DCF)=2∠BFC.【点睛】本题考察了命题与定理、平行线的性质与判定、逆命题、三角形的外角性质、角平分线定义等知识;熟练掌握平行线的判定与性质,作出辅助平行线是解决问题的关键.26.10°【分析】利用三角形的外角的性质求出∠ADC,再利用三角形内角和定理求出∠DEF即可.【详解】解:∵∠B=40°,∠C=60°,∴∠BAC=180°-∠B-∠C=80°.∵AD平分∠BAC,∴∠BAD=1∠BAC=40°2∴∠ADC=∠B+∠BAD=80°∴∠EDF=∠ADC=80°∵EF⊥BC,∴∠EFD=90°∴∠DEF=90°-80°=10°【点睛】本题考查三角形内角和定理,角平分线的定义等知识,解题的关键是熟练掌握基本知识.。
【浙教版】八年级数学上期末一模试题含答案(2)
一、选择题1.如果分式11m m -+的值为零,则m 的值是( ) A .1m =- B .1m = C .1m =±D .0m = 2.若整数a 使得关于x 的不等式组3(1)32(1)x a x x >⎧⎨-+>+⎩的解集为2x >,且关于x 的分式方程21111ax x x+=---的解为整数,则符合条件的所有整数a 的和是( ) A .2- B .1- C .1 D .23.若分式2132x x x --+的值为0,则x 的值为( ) A .1-B .0C .1D .±1 4.化简214a 2a 4---的结果为( ) A .1a 2+ B .a 2+ C .1a 2- D .a 2- 5.下列各式由左边到右边的变形中,是分解因式的为( )A .2105525x x x x x -=⋅-B .()a x y ax ay +=+C .()22442x x x -+=-D .()()2163443x x x x x -+=-++ 6.已知21102x y ⎛⎫++-= ⎪⎝⎭,则代数式2xy−(x +y )2=( ) A .34 B .54- C .12- D .547.已知x =7+1,y =7﹣1,则xy 的值为( )A .8B .48C .27D .68.下列运算正确的是( )A .428a a a ⋅=B .()23624a a =C .6233()()ab ab a b ÷=D .22()()a b a b a b +-=+9.如图,在△ABC 中,∠C =90°,∠B =30°,AD 平分∠CAB 交BC 于点D ,E 为AB 上一点,连接DE ,则下列四个结论正确的有( ).①∠CAD =30° ②AD =BD ③BD =2CD ④CD =EDA .1个B .2个C .3个D .4个10.如图,在ABC ∆中,90,30C B ∠=︒∠=︒,以点A 为圆心,任意长为半径画弧分别交,AB AC 于点M 和N ,再分别以,M N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D ,则下列结论不正确的是( )A .AD 是∠BAC 的平分线B .60ADC ∠=︒ C .点D 在AB 的垂直平分线上 D . : 1:3DAC ABD S S ∆∆=11.如图,在四边形ABCD 中,//,AB CD AE 是BAC ∠的平分线,且AE CE ⊥.若,AC a BD b ==,则四边形ABDC 的周长为( )A .1.5()a b +B .2a b +C .3a b -D .2+a b 12.在下列长度的四根木棒中,能与2m 、5m 长的两根木棒钉成一个三角形的是( )A .2mB .3mC .5mD .7m 二、填空题13.计算211()(1)11m m m -⨯--+的结果是______. 14.某工人现在平均每天比原计划多做20个零件,现在做4000个零件和原来做3000个零件的时间相同,问现在平均每天做______个零件.15.如果210x x m -+是一个完全平方式,那么m 的值是__________.16.因式分解:(x +3)2-9=________.17.如图,∠MON=30°,点123A A A 、、…在射线ON 上,点123B B B 、、…在射线OM 上,△112A B A 、△223A B A 、△334A B A …均为等边三角形,从左起第1个等边三角形的边长记为1a ,第2个等边三角形的边长记为2a ,以此类推.若11OA =,则2021a =____.18.已知,如图,△ABC 是等边三角形,AE =CD ,BQ ⊥AD 于Q ,BE 交AD 于点P ,下列说法:①∠APE =∠C ,②AQ =BQ ,③BP =2PQ ,④AE +BD =AB ,其正确的个数是_____.19.如图,已知在ABC ∆和ADC ∆中,,ACB ACD ∠=∠请你添加一个条件:_________,使ABC ADC ∆≅∆(只添一个即可).20.将一副直角三角尺所示放置,已知//AE BC ,则AFD ∠的度数是__________.三、解答题21.先化简,再求值:213(1)211x x x x x +--÷-+-,其中4x =-. 22.某小区购买了A 型和B 型两种垃圾桶,购买A 型垃圾桶花费了2500元,购买B 型垃圾桶花费了2000元,且购买A 型垃圾桶数量是购买B 型垃圾桶数量的2倍,已知购买一个A 型垃圾桶比购买一个B 型垃圾桶少用30元,求购买一个A 型垃圾桶、一个B 型垃圾桶各需多少元?(要求列分式方程求解)23.阅读下面材料,完成任务.多项式除以多项式可以类比于多位数的除法进行计算,先把多项式按照某个字母的降幂进行排列,缺少的项可以看做系数为零,然后类比多位数的除法利用竖式进行计算.∴26445123215÷= ∴()()32223133x x x x x +-÷-=++ 请用以上方法解决下列问题:(计算过程要有竖式)(1)计算:()()3223102x x x x +--÷- (2)若关于x 的多项式43225x x ax b +++能被二项式2x +整除,且a ,b 均为自然数,求满足以上条件的a ,b 的值.24.在等边ABC 中,D E 、分别为AB AC 、边上的动点,以DE 为一边作等边DEF .(1)如图1,若等边DEF 的顶点F 恰好在BC 上,求证:ADE CEF ≌;(2)如图2,若2BD AE =,当点D 从点A 向点B 运动(不运动到点B )时,连接CF ,请判断ECF ∠的大小是否变化并说明理由.25.如图,AB ⊥CB ,DC ⊥CB , E 、F 在 BC 上,AF=DE ,BE=CF ,求证:AB =DC .26.如图,在平面内有三个点、、A B C(1)根据下列语句画图:①连接AB ;②作直线BC ;③作射线AC ,在AC 的延长线上取一点D 使得CD CB =,连接BD ;(2)比较,,AB BD AB BC CD AD +++的大小关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先根据分式为零的条件列出关于m 的不等式组并求解即可.【详解】解:∵11m m -+=0 ∴m-1=0,m+1≠0,解得m=1.故选B .【点睛】本题主要考查了分式为零的条件,掌握分式为零的条件是解答本题的关键,同时分母不等于零是解答本题的易错点.2.D解析:D【分析】先分别解不等式组里的两个不等式,根据解集为2x >,得出a 的范围,根据分式方程的解为整数即得到a 的值,结合a 的范围即可求得符合条件的所有整数a 的和.【详解】解:关于x 的不等式组3(1)32(1)x a x x >⎧⎨-+>+⎩①② 解不等式①得,x a >;解不等式②得,2x >;∵不等式组的解集为2x >,∴a≤2, 解方程21111ax x x+=---得:21x a =- ∵分式方程的解为整数,∴11a -=±或2±∴a=0、2、-1、3又x≠1, ∴211a≠-,∴a≠-1, ∴a≤2且a≠-1,则a=0、2,∴符合条件的所有整数a 的和=0+2=2,故选:D .【点睛】 本题考查了分式方程的解以及解一元一次不等式组,根据分式方程的解为整数结合不等式组有解,找出a 的值是解题的关键.3.A解析:A【分析】根据分式值为零的条件列出方程和不等式,解方程和不等式得到答案.【详解】由题意得:|x|−1=0,x 2−3x+2≠0,解得,x =-1,故选:A .【点睛】本题考查的是分式为零的条件,掌握分式值为零的条件是分子等于零且分母不等于零是解题的关键.4.A解析:A【分析】根据分式的减法可以解答本题.【详解】 解:()()214a 241a 2a 4a 2a 2a 2+--==--+-+, 故选:A .【点睛】本题考查异分母分式的减法运算,解答本题的关键是明确公分母.5.C解析:C【分析】将多项式写成整式的积的形式,叫做将多项式分解因式,根据定义解答.【详解】解:A 、2105525x x x x x -=⋅-,不是分解因式;B 、()a x y ax ay +=+,不是分解因式;C 、()22442x x x -+=-,是分解因式;D 、()()2163443x x x x x -+=-++,不是分解因式; 故选:C .【点睛】此题考查多项式的分解因式,熟记定义及分解因式后式子的特点是解题的关键. 6.B解析:B【分析】直接利用非负数的性质得出x ,y 的值,进而代入得出答案.【详解】∵|x +1|+(y−12)2=0, ∴x +1=0,y−12=0, 解得:x =−1,y =12, ∵2xy−(x +y )2=2xy−x 2−y 2−2xy =−x 2−y 2,∴当x =−1,y =12时, 原式=−(−1)2−(12)2=−1−14=−54. 故选:B .【点睛】 此题主要考查了非负数的性质,和完全平方公式,正确得出x ,y 的值是解题关键. 7.D解析:D【分析】利用平方差公式计算即可.【详解】当x +1,y 1时,xy +11))2﹣12=7﹣1=6,故选:D.【点睛】此题考查平方差计算公式,已知字母的值求代数式的值,熟记平方差公式是解题的关键. 8.B解析:B【分析】根据同底数幂相乘法则、积的乘方法则、同底数幂除法法则、平方差公式依次计算判断.【详解】A 、426a a a ⋅=,故该项错误;B 、()23624a a =,故该项正确;C 、4624()()ab ab a b ÷=,故该项错误;D 、22()()a b a b a b +-=-,故该项错误;故选:B .【点睛】此题考查整式的计算法则,正确掌握整式的同底数幂相乘法则、积的乘方法则、同底数幂除法法则、平方差公式是解题的关键.9.C解析:C【分析】根据三角形内角和定理求出∠CAB ,求出∠CAD=∠BAD=∠B ,推出AD=BD ,AD=2CD 即可.【详解】解:∵在△ABC 中,∠C=90°,∠B=30°,∴∠CAB=60°,∵AD 平分∠CAB ,∴∠CAD=∠BAD=30°,①正确;∴∠CAD=∠BAD=∠B ,∴AD=BD ,AD=2CD ,②正确;∴BD=2CD ,③正确;根据已知不能推出CD=DE ,故④错误;故选:C .【点睛】本题考查了三角形的内角和定理,等腰三角形的判定,含30度角的直角三角形的性质的应用,注意:在直角三角形中,如果有一个角等于30°,那么它所对的直角边等于斜边的一半.10.D解析:D【分析】根据题意作图可知:AD 是BAC ∠的平分线,即可判断A ;先求得∠BAC=60︒,由AD 是BAC ∠的平分线,求得∠CAD=∠BAD=30B ∠=︒,即可得到60ADC ∠=︒,即可判断B ;过点D 作DE ⊥AB 于E ,根据∠BAD=30B ∠=︒,证得△ABD 是等腰三角形,得到AE=BE ,即可判断C ;由30CAD ∠=︒,可得12CD AD =,由AD DB =,可得12DC DB =.可得::DAC ABD SS CD DB =,由12CD DB =,可得:1:21:3DAC ABD S S =≠,即可判断D .【详解】解:根据作图方法可得AD 是BAC ∠的平分线,故A 正确;∵90,30C B ∠=︒∠=︒,∴60CAB ∠=︒.∵AD 是BAC ∠的平分线,∴30DAC DAB ∠=∠=︒.∴60ADC ∠=︒.故B 正确;过D 作DE ⊥AB∵30,30B DAB ∠=︒∠=︒,∴AD DB =.∴AE=BE∴点D 在AB 的垂直平分线上.故C 正确;∵30CAD ∠=︒, ∴12CD AD =, ∵AD DB =, ∴12DC DB =. ∴12DAC CD AC S⋅=,12ABD DB AC S ⋅=, ∴::DAC ABD SS CD DB =, ∴12CD DB =, ∴:1:21:3DAC ABD S S =≠,故D 错误.故选择:D.【点睛】本题考查角平分线的作图方法及性质应用,线段垂直平分线的判定,等腰三角形的判定及性质,三角形内角和定理,熟练掌握各部分知识并综合应用是解题的关键.11.B解析:B【分析】在线段AC上作AF=AB,证明△AEF≌△AEB可得∠AFE=∠B,∠AEF=∠AEB,再证明△CEF≌△CED可得CD=CF,即可求得四边形ABDC的周长.【详解】解:在线段AC上作AF=AB,∵AE是BAC∠的平分线,∴∠CAE=∠BAE,又∵AE=AE,∴△AEF≌△AEB(SAS),∴∠AFE=∠B,∠AEF=∠AEB,∵AB∥CD,∴∠D+∠B=180°,∵∠AFE+∠CFE=180°,∴∠D=∠CFE,⊥,∵AE CE∴∠AEF+∠CEF=90°,∠AEB+∠CED=90°,∴∠CEF=∠CED,在△CEF 和△CED 中∵D CFE CEF CED CE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△CEF ≌△CED (AAS )∴CE=CF ,∴四边形ABDC 的周长=AC+AB+BD+CD=AC+AF+CF+BD=2AC+BD=2a b +,故选:B .【点睛】本题考查全等三角形的性质和判断.能正确作出辅助线构造全等三角形是解题关键. 12.C解析:C【分析】判定三条线段能否构成三角形,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【详解】解:设三角形的第三边为x m ,则5-2<x <5+2即3<x <7,∴当x=5时,能与2m 、5m 长的两根木棒钉成一个三角形,故选:C .【点睛】本题考查了三角形的三边关系的运用,解题时注意:三角形两边之和大于第三边,三角形的两边差小于第三边.二、填空题13.2【分析】利用乘法分配律展开括号再计算加减法【详解】故答案为:2【点睛】此题考查分式的混合运算掌握乘法分配律计算法则是解题的关键 解析:2【分析】利用乘法分配律展开括号,再计算加减法.【详解】()211()(1)11211m m m m m -⨯-=+--=-+. 故答案为:2.【点睛】 此题考查分式的混合运算,掌握乘法分配律计算法则是解题的关键.14.80【分析】设现在每天做x 个零件则原计划每天做个零件根据工作时间=工作总量÷工作效率结合现在做4000个零件和原来做3000个零件的时间相同即可得出关于x 的方程求解即可【详解】设现在每天做x 个零件则解析:80【分析】设现在每天做x 个零件,则原计划每天做()20x -个零件,根据工作时间=工作总量÷工作效率,结合现在做4000个零件和原来做3000个零件的时间相同,即可得出关于x 的方程,求解即可.【详解】设现在每天做x 个零件,则原计划每天做()20x -个零件, 依题意得:4000300020x x =-, 解得:80x =;经检验x=80是原方程的解∴现在平均每天做80个零件故答案为:80.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解答本题的关键. 15.25【分析】利用完全平方公式的结构特征即可求出m 的值【详解】解:∵x2-10x+m 是一个完全平方式∴m==25故答案为:25【点睛】此题考查了完全平方式熟练掌握完全平方公式是解本题的关键解析:25【分析】利用完全平方公式的结构特征,即可求出m 的值.【详解】解:∵x 2-10x +m 是一个完全平方式,∴m=210()2-=25. 故答案为:25.【点睛】 此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.16.x (x+6)【分析】根据平方差公式分解因式【详解】(x +3)2-9=(x+3+3)(x+3-3)=x (x+6)故答案为:x (x+6)【点睛】此题考查多项式的因式分解掌握因式分解的方法:提公因式法和公解析:x (x+6)【分析】根据平方差公式分解因式.【详解】(x +3)2-9=(x+3+3)(x+3-3)=x (x+6),故答案为:x (x+6).【点睛】此题考查多项式的因式分解,掌握因式分解的方法:提公因式法和公式法(平方差公式、完全平方公式)、分组分解法,根据多项式的特点选用恰当的方法分解因式是解题的关键.17.【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3以及A2B2=2B1A2得出A3B3=4B1A2=4A4B4=8B1A2=8A5B5=16B1A2即:a1=1a2=2a3解析:20202【分析】根据等腰三角形的性质以及平行线的性质得出A 1B 1∥A 2B 2∥A 3B 3,以及A 2B 2=2B 1A 2,得出A 3B 3=4B 1A 2=4,A 4B 4=8B 1A 2=8,A 5B 5=16B 1A 2,即:a 1=1,a 2=2,a 3=4,a 4=8,,进而得出答案.【详解】∵△A 1B 1A 2是等边三角形,∴A 1B 1=A 2B 1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA 1=A 1B 1=1,∴A 2B 1=1,∵△A 2B 2A 3、△A 3B 3A 4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A 1B 1∥A 2B 2∥A 3B 3,B 1A 2∥B 2A 3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A 2B 2=2B 1A 2=2,A 3B 3=2B 2A 3,∴A 3B 3=4B 1A 2=4,A 4B 4=8B 1A 2=8,A 5B 5=16B 1A 2=16,即:a 1=1,a 2=2,a 3=4,a 4=8,, 以此类推:a n =2n-1.∴2021a =20202,故答案是:20202..【点睛】此题主要考查了等边三角形的性质以及等腰三角形的性质,直角三角形30度角的性质,根据已知得出A 3B 3=4B 1A 2,A 4B 4=8B 1A 2,A 5B 5=16B 1A 2进而发现规律是解题关键.18.3【分析】根据等边三角形的性质可得AB=AC ∠BAE=∠C=60°再利用边角边证明△ABE 和△CAD 全等然后得到∠1=∠2结合角的关系得到∠APE =∠C ;再结合30°直角三角形的性质得到BP =2PQ解析:3【分析】根据等边三角形的性质可得AB=AC ,∠BAE=∠C=60°,再利用“边角边”证明△ABE 和△CAD 全等.然后得到∠1=∠2,结合角的关系,得到∠APE =∠C ;再结合30°直角三角形的性质,得到BP =2PQ ;再结合边的关系,得到AC=AB ;即可得到答案.【详解】证明:如图所示:∵△ABC 是等边三角形,∴AB=AC ,∠BAE=∠C=60°,在△ABE 和△CAD 中,60AB AC BAE C AE CD =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABE ≌△CAD (SAS ),∴∠1=∠2,∴∠BPQ=∠2+∠3=∠1+∠3=∠BAC=60°,∴∠APE=∠C=60°,故①正确∵BQ ⊥AD ,∴∠PBQ=90°-∠BPQ=90°-60°=30°,∴BP=2PQ .故③正确,∵AC=BC .AE=DC ,∴BD=CE ,∴AE+BD=AE+EC=AC=AB ,故④正确,无法判断BQ=AQ ,故②错误,∴正确的有①③④,共3个;故答案为:3.【点睛】本题考查了全等三角形的判定与性质,等边三角形的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,解题的关键是灵活运用所学知识解决问题.19.或或【分析】要判定△ABC ≌△ADC 已知AC 是公共边具备了一组边和一组角对应相等故添加CB=CD ∠BAC=∠DAC ∠B=∠D 后可分别根据SASASAAAS 能判定△ABC ≌△ADC 【详解】解:添加CB解析: BC DC =或CAB CAD ∠=∠或B D ∠=∠【分析】要判定△ABC ≌△ADC ,已知ACB ACD ∠=∠,AC 是公共边,具备了一组边和一组角对应相等,故添加CB=CD 、∠BAC=∠DAC 、∠B=∠D 后可分别根据SAS 、ASA 、AAS 能判定△ABC ≌△ADC .【详解】解:添加CB=CD ,结合ACB ACD ∠=∠,AC=AC ,根据SAS ,能判定△ABC ≌△ADC ; 添加∠BAC=∠DAC ,结合ACB ACD ∠=∠,AC=AC ,根据ASA ,能判定△ABC ≌△ADC ; 添加∠B=∠D ,结合ACB ACD ∠=∠,AC=AC ,根据AAS ,能判定△ABC ≌△ADC ; 故添加的条件是 BC DC =或CAB CAD ∠=∠或B D ∠=∠.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.20.【详解】根据平行线的性质及三角形内角和定理解答【点睛】解:由三角板的性质可知∠EAD=45°∠C=30°∠BAC=∠ADE=90°∵AE ∥BC ∴∠EAC=∠C=30°∴∠DAF=∠EAD-∠EAC=解析:75︒【详解】根据平行线的性质及三角形内角和定理解答.【点睛】解:由三角板的性质可知∠EAD=45°,∠C=30°,∠BAC=∠ADE=90°.∵AE ∥BC ,∴∠EAC=∠C=30°,∴∠DAF=∠EAD-∠EAC=45°-30°=15°.∴∠AFD=180°-∠ADE-∠DAF=180°-90°-15°=75°.故答案为:75°.本题考查的是平行线的性质及三角形内角和定理,平行线的性质:两直线平行同位角相等,同旁内角互补.三角形内角和定理:三角形的内角和等于180°.三、解答题21.1x x -;45【分析】 分式的混合运算,注意先算乘除,然后算加减,有小括号先算小括号里的,然后代入求值即可.【详解】 解:213(1)211x x x x x +--÷-+- =2221(1)1(1)3x x x x x x -+-+-⨯-- =222111(1)3x x x x x x -+---⨯-- 2231(1)3x x x x x --=⨯-- 2(3)1(1)3x x x x x --=⨯-- 1x x =- 当4x =-时,原式441415x x -===---. 【点睛】 本题考查分式的混合运算,分式的化简求值,掌握运算顺序和计算法则正确计算是解题关键.22.购买一个A 型垃圾桶需50元,一个B 型垃圾桶需80元【分析】设购买一个A 型垃圾桶需x 元,购买一个A 型垃圾桶比购买一个B 型垃圾桶少用30元,一个B 型垃圾桶需()30x +元,根据购买A 型垃圾桶数量是购买B 型垃圾桶数量的2倍,构造分式方程25002000230x x =⨯+,解方程并检验即可. 【详解】解:设购买一个A 型垃圾桶需x 元,则一个B 型垃圾桶需()30x +元,由题意得:25002000230x x =⨯+, 解得50x =,经检验,50x =是原方程的解,且符合题意,30503080x +=+=,答:购买一个A 型垃圾桶需50元,一个B 型垃圾桶需80元.【点睛】本题考查列分式方程解应用题,掌握列分式方程解应用题的方法,抓住购买一个A 型垃圾桶比购买一个B 型垃圾桶少用30元设未知数,购买A 型垃圾桶数量是购买B 型垃圾桶数量的2倍构造方程,注意分式方程要验根.23.(1)()()3222310245x x x x x x +--÷-=++;(2)0a =,8b =;1a =,4b =;2a =,0b =【分析】(1)直接利用竖式计算即可;(2)竖式计算,根据整除的意义,利用对应项的系数对应倍数求得答案即可.【详解】解:(1)列竖式如下:()()3222310245x x x x x x +--÷-=++ (2)列竖式如下:∵多项式43225x x ax b +++能被二项式2x +整除∴余式()420b a +-=∵a ,b 均为自然数∴0a =,8b =;1a =,4b =;2a =,0b =【点睛】此题考查利用竖式计算整式的除法,解题时要注意同类项的对应.24.(1)见解析;(2)不变,理由见解析.【分析】(1)根据AAS 证明ADE CEF ≌即可;(2)在AC 上截取CH AE =,连接FH ,根据等边△ABC 和等边△DEF 的性质证明△ADE HEF ≅∆可得FH CH =,得∠FCH HFC =∠,进一步可得∠30ECF =︒.【详解】解:(1)证明:∵△ABC 和△DEF 是等边三角形∴∠A=∠C=60°,∠DEF=60°,DE=EF∵∠DEF=60°,∴∠DEF+∠FEC=180°-60°=120°∵∠C=60°∴∠CFE+∠FEC=180°-60°=120°∴∠DEA EFC =∠在△ADE 和△CEF 中,A C DEA EFC DE EF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ADE CEF ≌;(2)在AC 上截取CH AE =,连接FH ,设,AE CH x ==等边△ABC 的边长为a∵22BD AE x ==∴2AD EH a x ==-∵△ABC 是等边三角形∴∠60A =︒∴∠120ADE DEA +∠=︒∵△DEF 是等边三角形∴∠60,DEF DE EF =︒=∴∠120AED FEC +∠=︒∴∠ADE FEC =∠∴△()ADE HEF SAS ≅∆∴∠60,FHE A FH AE x =∠=︒==∴FH CH =∴∠FCH HFC =∠∵∠60FCH HFC FHE +∠=∠=︒∴260FCH ∠=︒∴∠30FCH =︒即∠30ECF =︒【点睛】本题考查的是全等三角形的判定和性质,等边三角形的性质,掌握全等三角形的判定定理和性质定理、等边三角形的性质是解题的关键.25.见解析【分析】由BE =CF 得BF =CE ,由AB ⊥CB ,DC ⊥CB 得到∠ABF =∠DCE =90°,然后根据“HL ”可判断Rt ABF ≌Rt DCE ,则AB =DC 即可.【详解】证明:∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE ,∵AB ⊥CB ,DC ⊥CB ,∴∠ABF =∠DCE =90°,∵在Rt ABF 和Rt DCE 中,AF DE BF CE=⎧⎨=⎩, ∴Rt ABF ≌Rt DCE (HL ),∴AB =DC .【点睛】本题考查了直角三角形的判定与性质:有一组直角边和斜边对应相等的两直角三角形全等;全等三角形的对应角相等,对应边相等.26.(1)见解析;(2)AB BC CD AB BD AD ++>+>【分析】(1)①按要求作图;②按要求作图;③按要求作出射线AC,然后以点C为圆心,BC为半径画弧,交射线AC于点D,连接BD;(2)结合图形,根据三角形两边之和大于第三边进行分析比较.【详解】解:(1)①如图,线段AB即为所求;②如图,直线BC即为所求;③如图,射线AC,点D,线段BD即为所求(2)如图,在△BCD中,BC+CD>BD++>+∴AB BC CD AB BD在△ABD中,AB+BD>AD++>+>∴AB BC CD AB BD AD【点睛】本题考查基本作图及三角形三边关系,正确理解几何语言并掌握三角形三边关系是解题关键.。
【浙教版】初二数学上期末模拟试卷(含答案)
一、选择题1.使分式21x x -有意义的x 的取值范围是( ) A .x ≠1 B .x ≠0C .x ≠±1D .x 为任意实数2.分式293x x --等于0的条件是( ) A .3x =B .3x =-C .3x =±D .以上均不对 3.计算233222()m n m n -⋅-的结果等于( ) A .2m n B .2n m C .2mn D .72mn 4.将0.50.0110.20.03x x +-=的分母化为整数,得( ) A .0.50.01123x x +-= B .5051003x x +-= C .0.50.01100203x x +-= D .50513x x +-= 5.多项式291x 加上一个单项式后﹐使它成为一个整式的完全平方,那么加上的单项式可以是( )A .6x ±B .-1或4814xC .29x -D .6x ±或1-或29x - 6.按照如图所示的运算程序,能使输出y 的值为5的是( )A .1,4m n ==B .2,5m n ==C .5,3m n ==D .2,2m n == 7.计算2019202040.753⎛⎫⨯- ⎪⎝⎭的结果是( ) A .43 B .43- C .0.75 D .-0.758.已知x 7,y 7﹣1,则xy 的值为( )A .8B .48C .7D .69.如图,在ABC 中,AB AC =,D 为BC 的中点,AD AE =,若40BAD ∠=︒,则CDE ∠的度数为( )A .10︒B .20︒C .30D .40︒ 10.若海岛N 位于海岛M 北偏东30°的方向上,则从海岛N 出发到海岛M 的航线可能是( ) A . B .C .D .11.如图,∠ACB=90°,AC=BC ,AD ⊥CE ,BE ⊥CE ,垂足分别是点D 、E ,AD=3,BE=1,则DE 的长是( )A .1.5B .2C .22D .10 12.在ABC 中,若一个内角等于另两个内角的差,则( )A .必有一个内角等于30°B .必有一个内角等于45°C .必有一个内角等于60°D .必有一个内角等于90°二、填空题13.席卷全世界的新型冠状病毒是个肉眼看不见的小个子,它的身高(直径)约为0.0000012米,将数0.0000012用科学记数法表示为_________. 14.若分式方程13322a x x x--=--有增根,则a 的值是________. 15.已知2m n +=,2mn =-,则(1)(1)m n --=________. 16.因式分解:(x +3)2-9=________.17.如图,点A 为线段BC 外一动点,4BC =,1AB =,分别以AC 、AB 为边作等边ACD △、等边ABE △,连接BD .则线段BD 长的最大值为______.18.含30角的直角三角板与直线1l ,2l 的位置关系如图所示,已知12//l l ,30A ∠=︒,160∠=︒,若6AB =,CD 的长为__________.19.如图所示,ABC ≅△AB C '',20CAC ∠'=︒,BAB ∠'=___度.20.如图,AD 、AE 分别是ABC 的高和角平分线,且76B ∠=︒,36C ∠=︒,则DAE ∠的度数为_________.三、解答题21.解分式方程:(1)13x -+2=43x x --; (2)()3211x x x x +---= 0 22.为了安全与方便,某自助加油站只提供两种自助加油方式:“每次定额只加200元”与“每次定量只加40升”.自助加油站规定每辆车只能选择其中一种自助加油方式,那么哪种加油方式更合算呢?请以两种加油方式各加油两次予以说明.(分析问题)“更合算”指的是两次加油后平均油价更低由于汽油单价会变,不妨设第一次加油时油价为x 元/升,第二次加油时油价为y 元/升.①两次加油,每次只加200元的平均油价为:_______________元/升.②两次加油,每次只加40升的平均油价为:_______________元/升.(解决问题)请比较两种平均油价,并用数学语言说明哪种加油方式更合算.23.因式分解:(1)222x - (2)32244x x y xy -+24.如图1,点A 是射线OE :y x =-(x≥0)上的一点,已知232OA =,过点A 作x 轴的垂线,垂足为B ,过点B 作OE 的平行线交∠AOB 的平分线于点C .(1)求点A 的坐标;(2)如图2,过点C 作CG ⊥AB 于点G ,CH ⊥OE 于点H ,求证:CG =CH .(3)①若射线OC 与AB 交于点D ,在射线BC 上是否存在一点P 使得△ACP 与△BDC 全等,若存在,请求出点P 的坐标;若不存在,请说明理由.②在①的条件下,在平面内另有三点1(8,8)P -、2P (4,32-)、3(8484)P +-,,请你判断也满足△ACP 与△BDC 全等的点是 .(写出你认为正确的点)25.如图,直角梯形ABCD 中,//,,AD BC AB BC E ⊥是AB 上的点,且,DE CE DE CE =⊥,(1)证明:AB AD BC =+.(2)若已知AB a ,求梯形ABCD 的面积.26.如图,在ABC 中,90ACB ∠=︒.(1)作出AB 边上的高CD .(2)5AC =,12BC =,13AB =,求高CD 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】分式有意义的条件是分母不等于零,据此可得x 的取值范围.【详解】由题意,得x 2−1≠0,解得:x≠±1,故选:C .【点睛】此题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零. 2.B解析:B【分析】根据分式等于0的条件:分子为0,分母不为0解答.【详解】由题意得:290,30x x -=-≠,解得x=-3,故选:B .【点睛】此题考查分式的值等于0的条件,熟记计算方法是解题的关键. 3.A解析:A【分析】根据整数指数幂的运算法则进行运算即可.解:原式=43431222m m m n n m nn---=⋅=⋅= 故选:A .【点睛】本题考查了整数指数幂的运算,掌握运算法则是解题的关键 4.D解析:D【分析】根据分式的基本性质求解.【详解】 解:将0.50.0110.20.03x x +-=的分母化为整数,可得50513x x +-=. 故选:D .【点睛】本题考查一元一次方程的化简,熟练掌握分式的基本性质解题关键. 5.D解析:D【分析】根据完全平方公式计算解答.【详解】解:添加的方法有4种,分别是:添加6x ,得9x 2+1+6x=(3x+1)2;添加﹣6x ,得9x 2+1﹣6x=(3x ﹣1)2;添加﹣9x 2,得9x 2+1﹣9x 2=12;添加﹣1,得9x 2+1﹣1=(3x )2,故选:D .【点睛】此题考查添加一个整式得到完全平方式,熟记完全平方式的特点是解题的关键. 6.D解析:D【分析】根据题意逐一计算即可判断.【详解】A 、当m=1,n=4时,则m n <,∴2224210y n =+=⨯+=,不合题意;B 、当m=2,n=5时,则m n <,∴2225212y n =+=⨯+=,不合题意;C 、当m=5,n=3时,则m n >,∴3135114y m =-=⨯-=,不合题意;D 、当m=2,n=2时,则m n >,∴313215y m =-=⨯-=,符合题意;【点睛】本题考查了代数式求值,有理数的混合运算等知识,解题的关键是理解题意,属于中考常考题型.7.D解析:D【分析】先将20200.75化为20193434⨯,再用幂的乘方的逆运算计算,再计算乘法即可得到答案. 【详解】2019202040.753⎛⎫⨯- ⎪⎝⎭ =20192019343434⎛⎫⎛⎫⨯-⨯ ⎪ ⎪⎝⎭⎝⎭=201934()3434⎡⎤⨯⎢⎥⎣⎦⨯- =(31)4-⨯=34-, 故选:D .【点睛】此题考查有理数数的乘法运算,掌握幂的乘方的逆运算是解题的关键.8.D解析:D【分析】利用平方差公式计算即可.【详解】当x +1,y 1时,xy +11))2﹣12=7﹣1=6,故选:D.【点睛】此题考查平方差计算公式,已知字母的值求代数式的值,熟记平方差公式是解题的关键. 9.B【分析】根据AB AC =,D 为BC 的中点,∠CAD=40BAD ∠=︒,∠C=50︒,由AD AE =,得到∠AED =70︒,再根据∠AED=∠C+∠CDE 求得答案.【详解】∵AB AC =,D 为BC 的中点,∴∠CAD=40BAD ∠=︒,∠BAC=802BAD ∠=︒,∴∠B=∠C=50︒,∵AD AE =,∴∠AED=∠ADE=70︒,∵∠AED=∠C+∠CDE ,∴CDE ∠=20︒,故选:B .【点睛】此题考查等腰三角形的性质:等边对等角求角的度数以及三线合一,三角形的内角和定理,三角形外角的性质,熟记并熟练运用等腰三角形的性质是解题的关键.10.D解析:D【分析】根据题意画出图形,再利用“上北下南”求出方向角即可.【详解】解:如图:∵海岛N 位于海岛M 的北偏东30°方向上,∴海岛N 在海岛M 上方,故排除A 、B 选项, 根据直角三角形中30°角所对的边等于斜边的一半,排除选项C ,故选D .【点睛】本题考查了方向角,解题的关键是熟练掌握方向角的概念.11.B解析:B【分析】根据已知条件可以得出∠E=∠ADC=90︒,进而得出∆CEB ≅∆ADC ,就可以得出BE=DC ,进而求出DE 的值.∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90︒,∴∠EBC+∠BCE=90︒,∵∠BCE+∠ACD=90︒,∴∠EBC=∠DCA,在∆CEB和∆ADC中,∠E=∠ADC,∠EBC=∠DCA,BC=AC,∴∆CEB≅∆ADC(AAS),∴BE=DC=1,CE=AD=3,∴DE=EC-CD=3-1=2,故选:B.【点睛】本题考查全等三角形的判定和性质,熟练掌握全等三角形的判定和性质是解决问题的关键.12.D解析:D【分析】根据三角形内角和定理得出∠A+∠B+∠C=180°,把∠C=∠A+∠B代入求出∠C即可判断.【详解】解:∵∠A+∠B+∠C=180°,∠A=∠C-∠B,∴2∠C=180°,∴∠C=90°,∴必有一个内角等于90°,故选:D.【点睛】本题考查了三角形内角和定理的应用,能求出三角形最大角的度数是解此题的关键,注意:三角形的内角和等于180°.二、填空题13.【分析】绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10-n与较大数的科学记数法不同的是其所使用的是负指整数数幂指数n由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:000解析:6⨯1.210-【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指整数数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000012=1.2×10-6.故答案为:1.2×10-6.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.【分析】分式方程去分母转化为整式方程由分式方程有增根求出x的值代入整式方程计算即可求出a的值【详解】去分母得:1-3x+6=-3a+x由分式方程有增根得到x−2=0即x=2把x=2代入得:1-6+6解析:1 3【分析】分式方程去分母转化为整式方程,由分式方程有增根求出x的值,代入整式方程计算即可求出a的值.【详解】去分母得:1-3x+6=-3a+x,由分式方程有增根,得到x−2=0,即x=2,把x=2代入得:1-6+6=-3a+2,解得:a=13,故答案为:13.【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.15.-3【分析】原式利用多项式乘以多项式法则计算变形后将m+n与mn的值代入计算即可求出值【详解】解:∵m+n=2mn=-2∴(1-m)(1-n)=1-(m+n)+mn=1-2-2=-3故答案为:-3【解析:-3【分析】原式利用多项式乘以多项式法则计算,变形后,将m+n与mn的值代入计算即可求出值.【详解】解:∵m+n=2,mn=-2,∴(1-m)(1-n)=1-(m+n)+mn=1-2-2=-3.故答案为:-3.【点睛】本题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.16.x(x+6)【分析】根据平方差公式分解因式【详解】(x+3)2-9=(x+3+3)(x+3-3)=x(x+6)故答案为:x(x+6)【点睛】此题考查多项式的因式分解掌握因式分解的方法:提公因式法和公解析:x (x+6)【分析】根据平方差公式分解因式.【详解】(x +3)2-9=(x+3+3)(x+3-3)=x (x+6),故答案为:x (x+6).【点睛】此题考查多项式的因式分解,掌握因式分解的方法:提公因式法和公式法(平方差公式、完全平方公式)、分组分解法,根据多项式的特点选用恰当的方法分解因式是解题的关键.17.5【分析】连接CE 根据等边三角形的性质得到AE =ABAC =AD ∠CAD =∠BAE =60°再利用SAS 推出△BAD ≌△EAC 由全等三角形的性质得到BD =EC 由于线段BD 长的最大值=线段EC 的最大值即可解析:5【分析】连接CE,根据等边三角形的性质得到AE =AB ,AC =AD ,∠CAD =∠BAE =60°,再利用SAS 推出△BAD ≌△EAC ,由全等三角形的性质得到BD =EC ,由于线段BD 长的最大值=线段EC 的最大值,即可得到结果.【详解】解:连接CE ,∵△ACD 与△ABE 是等边三角形,∴AE =AB ,AC =AD ,∠CAD =∠BAE =60°,∴∠CAD +∠BAC =∠BAE +∠BAC ,即∠BAD =∠EAC ,在△BAD 与△EAC 中,AD AC BAD EAC AB AE ⎧⎪∠∠⎨⎪⎩===,∴△BAD ≌△EAC (SAS ),∴BD =EC ;∵线段BD 长的最大值=线段EC 的最大值,当线段EC 的长取得最大值时,点E 在CB 的延长线上,且BC =4,AB =1,∴线段BD 长的最大值为BE +BC =AB +BC =5.故答案为:5.【点睛】本题考查了三角形的综合问题,掌握等边三角形的性质、全等三角形的判定与性质,并正确的作出辅助线构造全等三角形是解题的关键.18.3【分析】再根据含角的直角三角形的边角关系证得BC=AB=3根据平行线的性质可求得∠BDC=∠1=60°根据∠CBD=60°和三角形内角和定理可证得△BCD 是等边三角形即可证得CD=BC=3【详解】解析:3【分析】再根据含30角的直角三角形的边角关系证得BC=12AB=3,根据平行线的性质可求得∠BDC=∠1=60°,根据∠CBD=60°和三角形内角和定理可证得△BCD 是等边三角形,即可证得CD=BC=3.【详解】解:∵∠ACB=90°,∠A=30°,∴BC=12AB=3,∠CBD=60°, ∵12//l l ,∴∠BDC=∠1=60°,又∠CBD=60°,∴∠BCD=60°,∴△BCD 为等边三角形,∴CD=BC=3,故答案为:3.【点睛】本题考查了含30角的直角三角形的边角关系、平行线的性质、三角形的内角和定理、等边三角形的判定与性质,熟练掌握含30角的直角三角形的边角关系,证得△BCD 为等边三角形是解答的关键.19.20【分析】根据△得到由此推出得到答案【详解】解:△∴;∵∴故答案为:20【点睛】此题考查全等三角形的性质:全等三角形的对应角相等熟记性质定理是解题的关键解析:20【分析】根据ABC ≅△AB C ''得到CAB C AB ∠=∠'',由此推出CAC C AB BAB C AB ''∠'+∠=∠'+∠得到答案.解:ABC ∆≅△AB C '',∴CAB C AB ∠=∠'';∵CAC C AB CAB '∠'+∠=∠,BAB C AB C AB '∠'+∠=∠'',∴CAC C AB BAB C AB ''∠'+∠=∠'+∠,20CAC BAB ∴∠'=∠'=︒.故答案为:20.【点睛】此题考查全等三角形的性质:全等三角形的对应角相等,熟记性质定理是解题的关键. 20.20°【分析】根据高线的定义以及角平分线的定义分别得出∠BAD=14°∠CAD=54°进而得出∠DAE 的度数进而得出答案【详解】∵ADAE 分别是△ABC 的高和角平分线且∠B=76°∠C=36°∴∠B解析:20°【分析】根据高线的定义以及角平分线的定义分别得出∠BAD=14°,∠CAD=54°,进而得出∠DAE 的度数,进而得出答案.【详解】∵AD ,AE 分别是△ABC 的高和角平分线,且∠B=76°,∠C=36°,∴∠BAC=180763668︒-︒-︒=︒,∠BAD=9076︒-︒=14°,∠CAD=9036︒-︒=54°,∴∠BAE=12∠BAC=12×68°=34°, ∴∠DAE=34°-14°=20°.故答案为:20°.【点睛】 本题主要考查了高线以及角平分线的性质,得出∠BAD 和∠CAD 的度数是解题关键.三、解答题21.(1)x =1;(2)无解【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程无解;【详解】解:(1)去分母得:1+2(x ﹣3)=x ﹣4,解得:x =1,经检验x =1是分式方程的解;(2)去分母,得解得:x=1,经检验x=1是分式方程的增根,∴原分式方程无解.【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x 的值后不要忘记检验.22.【分析问题】①2xy x y +;②2x y +;【解决问题】22x y xy x y +≥+,当x y =时,两种加油方式均价相等;当x y ≠时,每次加200元更合算【分析】分析问题:①计算出两次加油的总价400元,总的加油量为200200+x y ⎛⎫ ⎪⎝⎭升,从而得到两次加油的平均价格;②计算出两次加油的总价()4040x y +元,总的加油量为80升,从而得到两次加油的平均价格; 解决问题:利用作差法可得22x y xy x y +-+()()22x y x y -=+,再判断()()22x y x y -+的符号,从而可得结论.【详解】解:分析问题:① 第一次加油时油价为x 元/升, ∴ 第一次加油的数量为:200x升, 第二次加油时油价为y 元/升,∴ 第二次加油的数量为:200y 升, 所以两次加油的平均价格为每升:()200+2004004002200200200200200xy xy x y x y x y x y xy===++++(元) 故答案为:2xy x y+ ②两次加油,每次只加40升的总价分别为:40x 元,40y 元, 所以两次加油的平均价格为每升:()40404080802x y x y x y +++==元, 故答案为:2x y +.解决问题:()()()()()222422422x y x y x y xy xy x y x xy y x y x y +++-=--=++++()()22x y x y -=+ x ,y 为两次加油的汽油单价,故0x y +>,()20x y -≥ ()()22022x y x y xy x y x y -+∴-=≥+-,即22x y xy x y +≥+. 结论:当x y =时,两种加油方式均价相等;当x y ≠时,每次加200元更合算.【点睛】本题考查的是列代数式,分式的化简,分式的加减运算的应用,分式除法的应用,代数式的值的大小比较,掌握以上知识是解题的关键.23.(1)2(1)(1)x x +-;(2)2(2)-x x y .【分析】(1)首先提公因式2,再利用平方差公式进行分解即可;(2)首先提公因式x ,再利用完全平方公式进行分解即可.【详解】(1)原式()221x =- 2(1)(1)x x =+-.(2)原式()2244x x xy y =-+2(2)x x y =-.【点睛】此题主要考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解. 24.(1)(4,4)A -;(2)见解析;(3)①存在,P (8,-4);②满足全等的点有P 1、P 2、P 3,见解析.【分析】(1)根据题意,设(,)A a a -,在Rt △AOB 中,利用勾股定理,解得a 的值,即可解得点A 的坐标;(2)过点C 作CM ⊥x 轴于M ,由平行线的性质得到∠MBC=∠ABC ,结合角平分线上的点到角两边的距离相等可得CM= CH ,据此可证明CG =CH ;(3)①先计算∠BDC 的度数,再根据角平分线及平行线性质可证明∠BOC=∠BCO ,由等角对等边可解得BO=BC=AB ,继而得到∠ACP=∠BDC ,接着证明△APB 为等腰直角三角形,解答AP 的长,据此解题;②根据全等三角形的判定方法,分别证明1()BCD PCA AAS ≅、2()BCD P CA AAS ≅、3()BCD P AC AAS ≅即可解题.【详解】(1)∵AB ⊥x 轴=-上∵A在y xA a a-∴设(,)则AB=OB=a即△ABO为等腰直角三角形在Rt△AOB中∵222AB OB OA+=∴2232a a+=∴a=±4(负值舍去)A-,∴(44)(2)如图,过点C作CM⊥x轴于M∵BC//OE∴∠MBC=∠BOA=45°,∠ABC=∠OAB=45°∴∠MBC=∠ABC∵CM⊥x轴,CG⊥AB∴CM= CG∵OC平分∠AOB,CM⊥x轴 CH⊥OE∴CM= CH∴CG=CH(3)①存在点P易证∠BDC=∠BOD+∠OBD=22.5°+90°=112.5°∵OC平分∠AOB,BC∥OE∴∠BOC=∠COA ,∠BCO=∠COA∴BO=BC=AB又∠ABC =45°∴∠BAC=∠BCA=67.5°∴∠ACP=112.5°∴∠ACP=∠BDC又∠BAC=∠CDA=67.5°∴CA=CD∴当CP=BD 时,△ACP ≌△CDB∴∠APC=∠DBC=45°∴△APB 为等腰直角三角形∴AP=AB=OB=4∴P (8,-4)②如图,满足全等的点有P 1、P 2、P 3理由如下, 1(8,8)P -∴点1P 在射线(0)OE x x =-≥:y 上,84<1P ∴在线段OA 上,连接1CP,45CG AB CBG ⊥∠=︒BCG ∴是等腰直角三角形,CG BG ∴=(4,4)A -4OB ∴=BC OB =222216BC BG CG OB ∴=+==2,4BG CG BC ∴===(42,2)C ∴+-1422224CP ∴=+=11,//CP BC CP x ∴=轴145CP A BOA CBD ∴∠=∠=∠=︒190,PGA ∠=︒ 145P AG ∴∠=︒1167.545112.5CAP CAG P AG ∴∠=∠+∠=︒+︒=︒在BCD △与1PCA 中 111BDC P AC CP A CBD BC PC ∠=∠⎧⎪∠=∠⎨⎪=⎩1()BCD PCA AAS ∴≅ 2P 的横坐标为4,点(4,4)4A OB -=,2P ∴在BA 的延长线上,连接22,AP CP67.5BAC ∠=︒2180112.5CAP BAC ∴∠=︒-∠=︒2CAP BDC ∴∠=∠ 2P的纵坐标为2BP ∴==2BG =22GP BP BG ∴=-=CG ∴=2GP CG ∴=CG AB ⊥245AP C ∴∠=︒2AP C ABC ∴∠=∠在BCD △与2P CA 中,22BDC P AC ABC AP C CD CA ∠=∠⎧⎪∠=∠⎨⎪=⎩2()BCD P CA AAS ∴≅3P,点C的横坐标为4,3CP ∴所在的直线垂直于x 轴,AB x ⊥轴3//CP AB ∴连接33CP AP 、,过点A 作3AQ CP ⊥交3P C 的延长线于点Q ,3//CP AB3180BAC ACP ∴∠+∠=︒3180112.5ACP BAC ∴∠=︒-∠=︒3ACP BDC ∴∠=∠(4,4)A -3444(4)AQ PQ ∴=-==--=3AQ PQ ∴= 3AQ PQ ⊥ 345APQ ∴∠=︒ 3APQ ABC ∴∠=∠ 在BCD △与3P AC 中33BDC PCA APC ABC CD AC ∠=∠⎧⎪∠=∠⎨⎪=⎩3()BCD P AC AAS ∴≅故答案为:123P P P 、、 .【点睛】本题考查等腰直角三角形、全等三角形的判定与性质、平行线的性质、角平分线的性质等知识,是重要考点,难度一般,掌握相关知识是解题关键.25.(1)见解析;(2)12a 2 【分析】(1)由DE 垂直于EC ,得到一个角为直角,利用平角的定义得到一对角互余,又三角形BEC 为直角三角形,根据直角三角形的两锐角互余得到一对角互余,利用同角的余角相等得到一对角相等,再由一对直角相等及DE =CE ,利用AAS 可得出三角形AED 与三角形BCE 全等,根据全等三角形的对应边相等得到AD =EB ,AE =BC ,由AB =AE +EB ,等量代换可得证;(2)由第一问的结论AB =AD +BC ,根据AB =a ,得出此直角梯形的上下底之和为a ,高为a ,利用梯形的面积公式即可求出梯形ABCD 的面积.【详解】解:(1)证明:∵DE ⊥EC ,∴∠DEC =90°,∴∠AED +∠BEC =90°,又AB ⊥BC ,∴∠B =90°,∴∠BCE +∠BEC =90°,∴∠AED =∠BCE ,又AD ∥BC ,∴∠A +∠B =180°,∴∠A =∠B =90°,在△AED 和△CBE 中,A B AED BCE ED CE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AED ≌△CBE (AAS ),∴AD =EB ,AE =BC ,则AB =AE +EB =BC +AD ;(2)由AB =a ,及(1)得:AB =BC +AD =a ,则S 直角梯形ABCD =12AB •(BC +AD )=12a 2. 【点睛】此题考查了直角梯形,全等三角形的判定与性质,以及梯形的面积公式,利用了转化的思想,灵活运用全等三角形的判定与性质是解本题的关键,本题在做第二问时注意运用第一问的结论.26.(1)见解析 (2)1360=CD 【分析】(1)过C 点作CD ⊥AB 即可;(2)根据三角形的面积求解即可.【详解】解:(1)如图:(2)∵在ABC 中,5AC =,12BC =,13AB =,∠ACB =90°,∴S △ABC =12AC ×BC =12AB ×CD ,∴125601313AC BC CD AB ⋅⨯=== 【点睛】 本题考查了做三角形高线和利用三角形的面积求高,属于常考题型,熟练掌握基本知识是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017八年级上期末模拟试题2班级_________________姓名__________________总分_______________ 一.选择题(共12小题)
1.下列图形中有稳定性的是()
A.正方形B.长方形C.直角三角形D.平行四边形
2.等腰三角形底边上的高与底边的比是1:2,则它的顶角等于()
A.60°B.90°C.120°D.150°
3.若不等式组的解集为﹣1≤x≤3,则图中表示正确的是()
4.下列说法中,能确定物体位置的是()
A.天空中的一只小鸟 B.电影院中18座
C.东经120°,北纬30°D.北偏西35°方向
5.如图,△ABD≌△ACE,∠AEC=110°,则∠DAE的度数为()
A.30°B.40°C.50°D.60°
6.用反证法证明“三角形的三个外角中至少有两个钝角”时,假设正确的是()A.假设三个外角都是锐角
B.假设至少有一个钝角
C.假设三个外角都是钝角
D.假设三个外角中只有一个钝角
7.已知a<b,则下列不等式中不正确的是()
A.4a<4b B.a+4<b+4 C.﹣4a<﹣4b D.a﹣4<b﹣4
8.若点P(x,y)的坐标满足xy=0(x≠y),则点P必在()
A.原点上B.x轴上C.y轴上D.x轴上或y轴上(除原点)
1。