一元二次方程根与系数的关系(韦达定理)专题训练(有答案)--
初中数学竞赛:韦达定理(附练习题及答案)
初中数学竞赛:韦达定理一元二次方程的根与系数的关系,通常也称为韦达定理,这是因为该定理是由16世纪法国最杰出的数学家韦达发现的。
韦达定理简单的形式中包含了丰富的数学内容,应用广泛,主要体现在:运用韦达定理,求方程中参数的值;运用韦达定理,求代数式的值;利用韦达定理并结合根的判别式,讨论根的符号特征;利用韦达定理逆定理,构造一元二次方程辅助解题等。
韦达定理具有对称性,设而不求、整体代入是利用韦达定理解题的基本思路。
韦达定理,充满活力,它与代数、几何中许多知识可有机结合,生成丰富多彩的数学问题,而解这类问题常用到对称分析、构造等数学思想方法。
【例题求解】【例1】 已知α、β是方程012=--x x 的两个实数根,则代数式)2(22-+βαα的值为 。
思路点拨:所求代数式为α、β的非对称式,通过根的定义、一元二次方程的变形转化为(例【例2】如果a 、b 都是质数,且0132=+-m a a ,0132=+-m b b ,那么ba ab +的值为( ) A 、22123 B 、22125或2 C 、22125 D 、22123或2思路点拨:可将两个等式相减,得到a 、b 的关系,由于两个等式结构相同,可视a 、b 为方程0132=+-m x x 的两实根,这样就为根与系数关系的应用创造了条件。
注:应用韦达定理的代数式的值,一般是关于1x 、2x 的对称式,这类问题可通过变形用1x +2x 、1x 2x 表示求解,而非对称式的求值常用到以下技巧:(1)恰当组合;(2)根据根的定义降次;(3)构造对称式。
【例3】 已知关于x 的方程:04)2(22=---m x m x (1)求证:无论m 取什么实数值,这个方程总有两个相异实根。
(2)若这个方程的两个实根1x 、2x 满足212+=x x ,求m 的值及相应的1x 、2x 。
思路点拨:对于(2),先判定1x 、2x 的符号特征,并从分类讨论入手。
【例4】 设1x 、2x 是方程02324222=-++-m m mx x 的两个实数根,当m 为何值时,2221x x +有最小值?并求出这个最小值。
(完整版)一元二次方程根与系数的关系习题精选(含答案)
一元二次方程根与系数的关系习题精选(含答案)一.选择题(共22小题)1.(2014•宜宾)若关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程是( ) A .x2+3x﹣2=0B.x2﹣3x+2=0C.x2﹣2x+3=0D.x2+3x+2=02.(2014•昆明)已知x1,x2是一元二次方程x2﹣4x+1=0的两个实数根,则x1•x2等于( ) A .﹣4B.﹣1C.1D.43.(2014•玉林)x1,x2是关于x的一元二次方程x2﹣mx+m﹣2=0的两个实数根,是否存在实数m使+=0成立?则正确的结论是( ) A .m=0时成立B.m=2时成立C.m=0或2时成立D.不存在4.(2014•南昌)若α,β是方程x2﹣2x﹣3=0的两个实数根,则α2+β2的值为( ) A .10B.9C.7D.55.(2014•贵港)若关于x的一元二次方程x2+bx+c=0的两个实数根分别为x1=﹣2,x2=4,则b+c的值是( ) A .﹣10B.10C.﹣6D.﹣16.(2014•烟台)关于x的方程x2﹣ax+2a=0的两根的平方和是5,则a的值是( ) A .﹣1或5B.1C.5D.﹣17.(2014•攀枝花)若方程x2+x﹣1=0的两实根为α、β,那么下列说法不正确的是( ) A .α+β=﹣1B.αβ=﹣1C.α2+β2=3D.+=﹣18.(2014•威海)方程x2﹣(m+6)x+m2=0有两个相等的实数根,且满足x1+x2=x1x2,则m的值是( ) A .﹣2或3B.3C.﹣2D.﹣3或2i mA .2B .1C .﹣1D .0 10.(2014•黄冈样卷)设a ,b 是方程x 2+x ﹣2015=0的两个实数根,则a 2+2a+b 的值为( ) A .2012B .2013C .2014D .2015 11.(2014•江西模拟)一元二次方程x 2﹣2x ﹣3=0与3x 2﹣11x+6=0的所有根的乘积等于( ) A.﹣6B .6C .3D.﹣3 12.(2014•峨眉山市二模)已知x 1、x 2是方程x 2﹣(k ﹣2)x+k 2+3k+5=0的两个实数根,则的最大值是( ) A .19B .18C .15D .13 13.(2014•陵县模拟)已知:x 1、x 2是一元二次方程x 2+2ax+b=0的两根,且x 1+x 2=3,x 1x 2=1,则a 、b 的值分别是( ) A .a=﹣3,b=1B .a=3,b=1C .a=﹣,b=﹣1D .a=﹣,b=1 14.(2013•湖北)已知α,β是一元二次方程x 2﹣5x ﹣2=0的两个实数根,则α2+αβ+β2的值为( ) A.﹣1B .9C .23D .27 15.(2013•桂林)已知关于x 的一元二次方程x 2+2x+a ﹣1=0有两根为x 1和x 2,且x 12﹣x 1x 2=0,则a 的值是( )A .a=1B .a=1或a=﹣2C .a=2D .a=1或a=216.(2013•天河区二模)已知一元二次方程x 2﹣4x+3=0两根为x 1、x 2,则x 1+x 2=( )A .4B .3C .﹣4D.﹣3 17.(2013•青神县一模)已知m 和n 是方程2x 2﹣5x ﹣3=0的两根,则的值等于( )A .B .C .D . 18.(2012•莱芜)已知m 、n 是方程x 2+2x+1=0的两根,则代数式的值为( )A 9B .±3C .3D 5ei n re 19.(2012•天门)如果关于x 的一元二次方程x 2+4x+a=0的两个不相等实数根x 1,x 2满足x 1x 2﹣2x 1﹣2x 2﹣5=0,那么a 的值为( ) A .3B .﹣3C .13D.﹣13 20.(2011•锦江区模拟)若方程x 2﹣3x ﹣2=0的两实根为x 1、x 2,则(x 1+2)(x 2+2)的值为( ) A.﹣4B .6C .8D .12 21.(2011•鄂州模拟)已知p 2﹣p ﹣1=0,1﹣q ﹣q 2=0,且pq ≠1,则的值为( )A .1B .2C .D .22.(2010•滨湖区一模)若△ABC 的一边a 为4,另两边b 、c 分别满足b 2﹣5b+6=0,c 2﹣5c+6=0,则△ABC 的周长为( ) A .9B .10C .9或10D .8或9或10二.填空题(共4小题)23.(2014•莱芜)若关于x 的方程x 2+(k ﹣2)x+k 2=0的两根互为倒数,则k= _________ .24.(2014•呼和浩特)已知m ,n 是方程x 2+2x ﹣5=0的两个实数根,则m 2﹣mn+3m+n= _________ .25.(2014•广州)若关于x 的方程x 2+2mx+m 2+3m ﹣2=0有两个实数根x 1、x 2,则x 1(x 2+x 1)+x 22的最小值为 _________ . 26.(2014•桂林)已知关于x 的一元二次方程x 2+(2k+1)x+k 2﹣2=0的两根为x 1和x 2,且(x 1﹣2)(x 1﹣x 2)=0,则k 的值是 _________ . 三.解答题(共4小题)27.(2014•泸州)已知x 1,x 2是关于x 的一元二次方程x 2﹣2(m+1)x+m 2+5=0的两实数根.(1)若(x 1﹣1)(x 2﹣1)=28,求m 的值;(2)已知等腰△ABC 的一边长为7,若x 1,x 2恰好是△ABC 另外两边的边长,求这个三角形的周长. 28.(2014•日照二模)已知x 1,x 2是关于x 的一元二次方程x 2+(3a ﹣1)x+2a 2﹣1=0的两个实数根,其满足29.(2013•孝感)已知关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)是否存在实数k使得x1•x2﹣x12﹣x22≥0成立?若存在,请求出k的值;若不存在,请说明理由. 30.(2001•苏州)已知关于x 的一元二次方程,(1)求证:不论k取何值,方程总有两个不相等的实数根;(2)设x1、x2是方程的两个根,且x12﹣2kx1+2x1x2=5,求k的值.一元二次方程根与系数的关系习题精选(含答案)参考答案与试题解析一.选择题(共22小题)1.(2014•宜宾)若关于x 的一元二次方程的两个根为x 1=1,x 2=2,则这个方程是( ) A .x 2+3x ﹣2=0B .x 2﹣3x+2=0C .x 2﹣2x+3=0D .x 2+3x+2=0考点:根与系数的关系.分析:解决此题可用验算法,因为两实数根的和是1+2=3,两实数根的积是1×2=2.解题时检验两根之和是否为3及两根之积是否为2即可.解答:解:两个根为x 1=1,x 2=2则两根的和是3,积是2.A 、两根之和等于﹣3,两根之积等于﹣2,所以此选项不正确;B 、两根之和等于3,两根之积等于2,所以此选项正确;C 、两根之和等于2,两根之积等于3,所以此选项不正确;D 、两根之和等于﹣3,两根之积等于2,所以此选项不正确,故选:B .点评:验算时要注意方程中各项系数的正负. 2.(2014•昆明)已知x 1,x 2是一元二次方程x 2﹣4x+1=0的两个实数根,则x 1•x 2等于( ) A.﹣4B .﹣1C .1D .4考点:根与系数的关系.专题:计算题.分析:直接根据根与系数的关系求解.解答:解:根据韦达定理得x 1•x 2=1.故选:C .点评:本题考查了一元二次方程ax 2+bx+c=0(a ≠0)的根与系数的关系:若方程两个为x 1,x 2,则x 1+x 2=﹣,x 1•x 2=.3.(2014•玉林)x 1,x 2是关于x 的一元二次方程x 2﹣mx+m ﹣2=0的两个实数根,是否存在实数m 使+=0成立?则正确的结论是( ) A .m=0时成立B .m=2时成立C .m=0或2时成立D .不存在分析:先由一元二次方程根与系数的关系得出,x 1+x 2=m ,x 1x 2=m ﹣2.假设存在实数m 使+=0成立,则=0,求出m=0,再用判别式进行检验即可.解答:解:∵x 1,x 2是关于x 的一元二次方程x 2﹣mx+m ﹣2=0的两个实数根,∴x 1+x 2=m ,x 1x 2=m ﹣2.假设存在实数m 使+=0成立,则=0,∴=0,∴m=0.当m=0时,方程x 2﹣mx+m ﹣2=0即为x 2﹣2=0,此时△=8>0,∴m=0符合题意.故选:A .点评:本题主要考查了一元二次方程根与系数的关系:如果x 1,x 2是方程x 2+px+q=0的两根时,那么x 1+x 2=﹣p ,x 1x 2=q .4.(2014•南昌)若α,β是方程x 2﹣2x ﹣3=0的两个实数根,则α2+β2的值为( ) A .10B .9C .7D .5考点:根与系数的关系.分析:根据根与系数的关系求得α+β=2,αβ=﹣3,则将所求的代数式变形为(α+β)2﹣2αβ,将其整体代入即可求值.解答:解:∵α,β是方程x 2﹣2x ﹣3=0的两个实数根,∴α+β=2,αβ=﹣3,∴α2+β2=(α+β)2﹣2αβ=22﹣2×(﹣3)=10.故选:A .点评:此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.5.(2014•贵港)若关于x 的一元二次方程x 2+bx+c=0的两个实数根分别为x 1=﹣2,x 2=4,则b+c 的值是( ) A.﹣10B .10C .﹣6D.﹣1分析:根据根与系数的关系得到﹣2+4=﹣b,﹣2×4=c,然后可分别计算出b、c的值,进一步求得答案即可.解答:解:∵关于x的一元二次方程x2+bx+c=0的两个实数根分别为x1=﹣2,x2=4,∴根据根与系数的关系,可得﹣2+4=﹣b,﹣2×4=c,解得b=﹣2,c=﹣8∴b+c=﹣10.故选:A.点评:此题考查根与系数的关系,解答此题的关键是熟知一元二次方程根与系数的关系:x1+x2=﹣,x1x2=. 6.(2014•烟台)关于x的方程x2﹣ax+2a=0的两根的平方和是5,则a的值是( ) A .﹣1或5B.1C.5D.﹣1考点:根与系数的关系;根的判别式.专题:计算题.分析:设方程的两根为x1,x2,根据根与系数的关系得到x1+x2=a,x1•x2=2a,由于x12+x22=5,变形得到(x1+x2)2﹣2x1•x2=5,则a2﹣4a﹣5=0,然后解方程,满足△≥0的a的值为所求.解答:解:设方程的两根为x1,x2,则x1+x2=a,x1•x2=2a,∵x12+x22=5,∴(x1+x2)2﹣2x1•x2=5,∴a2﹣4a﹣5=0,∴a1=5,a2=﹣1,∵△=a2﹣8a≥0,∴a=﹣1.故选:D.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.也考查了一元二次方程的根的判别式.7.(2014•攀枝花)若方程x2+x﹣1=0的两实根为α、β,那么下列说法不正确的是( ) A .α+β=﹣1B.αβ=﹣1C.α2+β2=3D.+=﹣1考点:根与系数的关系.分析:先根据根与系数的关系得到α+β=﹣1,αβ=﹣1,再利用完全平方公式变形α2+β2得到(α+β)2﹣2αβ,利用通分变形+得到,然后利用整体代入的方法分别计算两个代数式的值,这样可对各选项进行判断.解答:解:根据题意得α+β=﹣1,αβ=﹣1.所以α2+β2=(α+β)2﹣2αβ=(﹣1)2﹣2×(﹣1)=3;+===1.故选:D .点评:本题考查了一元二次方程ax 2+bx+c=0(a ≠0)的根与系数的关系:若方程两个为x 1,x 2,则x 1+x 2=﹣,x 1•x 2=.8.(2014•威海)方程x 2﹣(m+6)x+m 2=0有两个相等的实数根,且满足x 1+x 2=x 1x 2,则m 的值是( ) A.﹣2或3B .3C .﹣2D.﹣3或2考点:根与系数的关系;根的判别式.专题:判别式法.分析:根据根与系数的关系有:x 1+x 2=m+6,x 1x 2=m 2,再根据x 1+x 2=x 1x 2得到m 的方程,解方程即可,进一步由方程x 2﹣(m+6)+m 2=0有两个相等的实数根得出b 2﹣4ac=0,求得m 的值,由相同的解解决问题.解答:解:∵x 1+x 2=m+6,x 1x 2=m 2,x 1+x 2=x 1x 2,∴m+6=m 2,解得m=3或m=﹣2,∵方程x 2﹣(m+6)x+m 2=0有两个相等的实数根,∴△=b 2﹣4ac=(m+6)2﹣4m 2=﹣3m 2+12m+36=0解得m=6或m=﹣2∴m=﹣2.故选:C .点评:本题考查了一元二次方程ax 2+bx+c=0(a ≠0,a ,b ,c 为常数)根的判别式△=b 2﹣4ac .当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.同时考查了一元二次方程ax 2+bx+c=0(a ≠0)的根与系数的关系:若方程的两根为x 1,x 2,则x 1+x 2=﹣,x 1•x 2=.9.(2014•长沙模拟)若关于x 的一元二次方程x 2+(k+3)x+2=0的一个根是﹣2,则另一个根是( )A 2B .1C .D 0考点:根与系数的关系.分析:根据一元二次方程的根与系数的关系x1•x2=来求方程的另一个根.解答:解:设x1、x2是关于x的一元二次方程x2+(k+3)x+2=0的两个根,由韦达定理,得x1•x2=2,即﹣2x2=2,解得,x2=﹣1.即方程的另一个根是﹣1.故选C.点评:此题主要考查了根与系数的关系.在利用根与系数的关系x1+x2=﹣、x1•x2=时,要注意等式中的a、b、c所表示的含义.10.(2014•黄冈样卷)设a,b是方程x2+x﹣2015=0的两个实数根,则a2+2a+b的值为( ) A .2012B.2013C.2014D.2015考点:根与系数的关系;一元二次方程的解.专题:计算题.分析:先根据一元二次方程的解的定义得到a2+a﹣2015=0,即a2+a=2015,则a2+2a+b变形为a+b+2015,再根据根与系数的关系得到a+b=﹣1,然后利用整体代入的方法计算.解答:解:∵a是方程x2+x﹣2015=0的根,∴a2+a﹣2015=0,即a2+a=2015,∴a2+2a+b=a+b+2015,∵a,b是方程x2+x﹣2015=0的两个实数根∴a+b=﹣1,∴a2+2a+b=a+b+2015=﹣1+2015=2014.故选C.点评:本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=.也考查了一元二次方程的解.11.(2014•江西模拟)一元二次方程x2﹣2x﹣3=0与3x2﹣11x+6=0的所有根的乘积等于( ) A .﹣6B.6C.3D.﹣3e t 分析:由一元二次方程x 2﹣2x ﹣3=0和3x 2﹣11x+6=0先用判别式判断方程是否有解,再根据根与系数的关系,即可直接得出答案.解答:解:由一元二次方程x 2﹣2x ﹣3=0,∵△=4+16=20>0,∴x 1x 2=﹣3,由一元二次方程3x 2﹣11x+6=0,∵△=121﹣4×3×6=49>0,∴x 1x 2=2∴﹣3×2=﹣6故选A .点评:本题考查了一元二次方程根与系数的关系.解此类题目要把代数式变形为两根之积的形式. 12.(2014•峨眉山市二模)已知x 1、x 2是方程x 2﹣(k ﹣2)x+k 2+3k+5=0的两个实数根,则的最大值是( ) A .19B .18C .15D .13考点:根与系数的关系;二次函数的最值.分析:根据x 1、x 2是方程x 2﹣(k ﹣2)x+(k 2+3k+5)=0的两个实根,由△≥0即可求出k 的取值范围,然后根据根与系数的关系求解即可.解答:解:由方程有实根,得△≥0,即(k ﹣2)2﹣4(k 2+3k+5)≥0所以 3k 2+16k+16≤0,所以 (3k+4)(k+4)≤0解得﹣4≤k ≤﹣.又由x 1+x 2=k ﹣2,x 1•x 2=k 2+3k+5,得x 12+x 22=(x 1+x 2)2﹣2x 1x 2=(k ﹣2)2﹣2(k 2+3k+5)=﹣k 2﹣10k ﹣6=19﹣(k+5)2,当k=﹣4时,x 12+x 22取最大值18.故选:B .点评:本题考查了根与系数的关系,属于基础题,关键是根据△≥0先求出k 的取值范围再根据根与系数的关系进行求解.13.(2014•陵县模拟)已知:x 1、x 2是一元二次方程x 2+2ax+b=0的两根,且x 1+x 2=3,x 1x 2=1,则a 、b 的值分别是( ) A .a=﹣3,b=1B .a=3,b=1C .a=﹣,b=﹣1D .a=﹣,b=1考点:根与系数的关系.分析:根据根与系数的关系得到得x1+x2=﹣2a,x1x2=b,即﹣2a=3,b=1,然后解一次方程即可.解答:解:根据题意得x1+x2=﹣2a,x1x2=b,所以﹣2a=3,b=1,解得a=﹣,b=1.故选D.点评:本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=.14.(2013•湖北)已知α,β是一元二次方程x2﹣5x﹣2=0的两个实数根,则α2+αβ+β2的值为( ) A .﹣1B.9C.23D.27考点:根与系数的关系.分析:根据根与系数的关系α+β=﹣,αβ=,求出α+β和αβ的值,再把要求的式子进行整理,即可得出答案.解答:解:∵α,β是方程x2﹣5x﹣2=0的两个实数根,∴α+β=5,αβ=﹣2,又∵α2+αβ+β2=(α+β)2﹣βα,∴α2+αβ+β2=52+2=27;故选D.点评:此题考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法,若方程两个为x1,x2,则x1+x2=﹣,x1x2=.15.(2013•桂林)已知关于x的一元二次方程x2+2x+a﹣1=0有两根为x1和x2,且x12﹣x1x2=0,则a的值是( ) A .a=1B.a=1或a=﹣2C.a=2D.a=1或a=2考点:根与系数的关系;一元二次方程的解.专题:压轴题.分析:根据x12﹣x1x2=0可以求得x1=0或者x1=x2,所以①把x1=0代入原方程可以求得a=1;②利用根的判别式等于0来求a的值.解答:解:解x12﹣x1x2=0,得x1=0,或x1=x2,①把x1=0代入已知方程,得t i me an dAl l t h i ng sa ﹣1=0,解得:a=1;②当x 1=x 2时,△=4﹣4(a ﹣1)=0,即8﹣4a=0,解得:a=2.综上所述,a=1或a=2.故选:D .点评:本题考查了根与系数的关系、一元二次方程的解的定义.解答该题的技巧性在于巧妙地利用了根的判别式等于0来求a 的另一值.16.(2013•天河区二模)已知一元二次方程x 2﹣4x+3=0两根为x 1、x 2,则x 1+x 2=( ) A .4B .3C .﹣4D.﹣3考点:根与系数的关系.分析:根据一元二次方程x 2﹣4x+3=0两根为x 1、x 2,直接利用x 1+x 2=﹣求出即可.解答:解:∵一元二次方程x 2﹣4x+3=0两根为x 1、x 2,∴x 1+x 2=﹣=4.故选A .点评:此题主要考查了一元二次方程根与系数的关系,正确记忆根与系数关系公式是解决问题的关键. 17.(2013•青神县一模)已知m 和n 是方程2x 2﹣5x ﹣3=0的两根,则的值等于( ) A .B .C .D .考点:根与系数的关系.专题:计算题.分析:根据根与系数的关系得到m+n=,mn=﹣,再变形+得到,然后利用整体思想计算.解答:解:根据题意得m+n=,mn=﹣,所以+===﹣.故选D .点评:本题考查了一元二次方程ax 2+bx+c=0(a ≠0)的根与系数的关系:若方程两个为x 1,x 2,则x 1+x 2=﹣,x 1•x 2=.18.(2012•莱芜)已知m 、n 是方程x 2+2x+1=0的两根,则代数式的值为( ) A 9B .±3C .3D5i e dl l t h i ng si nt he i rb a re go od fo s ..考点:根与系数的关系;二次根式的化简求值.专题:整体思想.分析:根据一元二次方程ax 2+bx+c=0(a ≠0)的根与系数的关系得到m+n=﹣2,mn=1,再变形得,然后把m+n=﹣2,mn=1整体代入计算即可.解答:解:∵m 、n 是方程x 2+2x+1=0的两根,∴m+n=﹣2,mn=1,∴====3.故选C .点评:本题考查了一元二次方程ax 2+bx+c=0(a ≠0)的根与系数的关系:若方程两根分别为x 1,x 2,则x 1+x 2=﹣,x 1•x 2=.也考查了二次根式的化简求值.19.(2012•天门)如果关于x 的一元二次方程x 2+4x+a=0的两个不相等实数根x 1,x 2满足x 1x 2﹣2x 1﹣2x 2﹣5=0,那么a 的值为( ) A .3B .﹣3C .13D.﹣13考点:根与系数的关系;根的判别式.分析:利用根与系数的关系求得x 1x 2=a ,x 1+x 2=﹣4,然后将其代入x 1x 2﹣2x 1﹣2x 2﹣5=x 1x 2﹣2(x 1+x 2)﹣5=0列出关于a的方程,通过解方程即可求得a 的值.解答:解:∵x 1,x 2是关于x 的一元二次方程x 2+4x+a=0的两个不相等实数根,∴x 1x 2=a ,x 1+x 2=﹣4,∴x 1x 2﹣2x 1﹣2x 2﹣5=x 1x 2﹣2(x 1+x 2)﹣5=a ﹣2×(﹣4)﹣5=0,即a+3=0,解得,a=﹣3;故选B .点评:本题考查了根与系数的关系.将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法. 20.(2011•锦江区模拟)若方程x 2﹣3x ﹣2=0的两实根为x 1、x 2,则(x 1+2)(x 2+2)的值为( ) A.﹣4B .6C .8D .12考点:根与系数的关系.分析:根据(x 1+2)(x 2+2)=x 1x 2+2x 1+2x 2+4=x 1x 2+2(x 1+x 2)+4,根据一元二次方程根与系数的关系,即两根的和与积,代入数值计算即可.解答:解:∵x 1、x 2是方程x 2﹣3x ﹣2=0的两个实数根.thingsintheirbeingareg∴x1+x2=3,x1•x2=﹣2.又∵(x1+2)(x2+2)=x1x2+2x1+2x2+4=x1x2+2(x1+x2)+4.将x1+x2=3、x1•x2=﹣2代入,得(x1+2)(x2+2)=x1x2+2x1+2x2+4=x1x2+2(x1+x2)+4=(﹣2)+2×3+4=8.故选C点评:将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.21.(2011•鄂州模拟)已知p2﹣p﹣1=0,1﹣q﹣q2=0,且pq≠1,则的值为( ) A.1B.2C.D.考点:根与系数的关系.专题:计算题.分析:首先把1﹣q﹣q2=0变形为,然后结合p2﹣p﹣1=0,根据一元二次方程根与系数的关系可以得到p与是方程x2﹣x﹣1=0的两个不相等的实数根,那么利用根与系数的关系即可求出所求代数式的值.解答:解:由p2﹣p﹣1=0和1﹣q﹣q2=0,可知p≠0,q≠0,又∵pq≠1,∴,∴由方程1﹣q﹣q2=0的两边都除以q2得:,∴p与是方程x2﹣x﹣1=0的两个不相等的实数根,则由韦达定理,得p+=1,∴=p+=1.故选A.点评:本题考查了根与系数的关系.首先把1﹣q﹣q2=0变形为是解题的关键,然后利用根与系数的关系就可以求出所求代数式的值.22.(2010•滨湖区一模)若△ABC的一边a为4,另两边b、c分别满足b2﹣5b+6=0,c2﹣5c+6=0,则△ABC的周长为( ) A.9B.10C.9或10D.8或9或10考点:根与系数的关系;三角形三边关系.专题:压轴题.分析:由于两边b、c分别满足b2﹣5b+6=0,c2﹣5c+6=0,那么b、c可以看作方程x2﹣5x+6=0的两根,根据根与系数的关系可以得到b+c=5,bc=6,而△ABC的一边a为4,由此即可求出△ABC的一边a为4周长.解答:解:∵两边b、c分别满足b2﹣5b+6=0,c2﹣5c+6=0,∴b、c可以看作方程x2﹣5x+6=0的两根,∴b+c=5,bc=6,而△ABC的一边a为4,①若b=c,则b=c=3或b=c=2,但2+2=4,所以三角形不成立,故b=c=3.∴△ABC的周长为4+3+3=10或4+2+2②若b≠c,∴△ABC的周长为4+5=9.故选C.点评:此题把一元二次方程的根与系数的关系与三角形的周长结合起来,利用根与系数的关系来三角形的周长.此题要注意分类讨论.二.填空题(共4小题)23.(2014•莱芜)若关于x的方程x2+(k﹣2)x+k2=0的两根互为倒数,则k= ﹣1 .考点:根与系数的关系.专题:判别式法.分析:根据已知和根与系数的关系x1x2=得出k2=1,求出k的值,再根据原方程有两个实数根,求出符合题意的k的值.解答:解:∵x1x2=k2,两根互为倒数,∴k2=1,解得k=1或﹣1;∵方程有两个实数根,△>0,∴当k=1时,△<0,舍去,故k的值为﹣1.故答案为:﹣1.点评:本题考查了根与系数的关系,根据x1,x2是关于x的一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的两个实数根,则x1+x2=﹣,x1x2=进行求解.24.(2014•呼和浩特)已知m,n是方程x2+2x﹣5=0的两个实数根,则m2﹣mn+3m+n= 8 .考点:根与系数的关系;一元二次方程的解.专题:常规题型.Array分析:根据m+n=﹣=﹣2,m•n=﹣5,直接求出m、n即可解题.解答:解:∵m 、n 是方程x 2+2x ﹣5=0的两个实数根,∴mn=﹣5,m+n=﹣2,∵m 2+2m ﹣5=0∴m 2=5﹣2mm 2﹣mn+3m+n=(5﹣2m )﹣(﹣5)+3m+n =10+m+n =10﹣2=8故答案为:8.点评:此题主要考查了一元二次方程根根的计算公式,根据题意得出m 和n 的值是解决问题的关键. 25.(2014•广州)若关于x 的方程x 2+2mx+m 2+3m ﹣2=0有两个实数根x 1、x 2,则x 1(x 2+x 1)+x 22的最小值为 .考点:根与系数的关系;二次函数的最值.专题:判别式法.分析:由题意可得△=b 2﹣4ac ≥0,然后根据不等式的最小值计算即可得到结论.解答:解:由题意知,方程x 2+2mx+m 2+3m ﹣2=0有两个实数根,则△=b 2﹣4ac=4m 2﹣4(m 2+3m ﹣2)=8﹣12m ≥0,∴m ≤,∵x 1(x 2+x 1)+x 22=(x 2+x 1)2﹣x 1x 2=(﹣2m )2﹣(m 2+3m ﹣2)=3m 2﹣3m+2=3(m 2﹣m+﹣)+2=3(m ﹣)2 +;∴当m=时,有最小值;∵<,∴m=成立;∴最小值为;故答案为:.点评:本题考查了一元二次方程根与系数关系,考查了一元二次不等式的最值问题.总结一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.26.(2014•桂林)已知关于x的一元二次方程x2+(2k+1)x+k2﹣2=0的两根为x1和x2,且(x1﹣2)(x1﹣x2)=0,则k的值是 ﹣2或﹣ .考点:根与系数的关系;根的判别式.分析:先由(x1﹣2)(x1﹣x2)=0,得出x1﹣2=0或x1﹣x2=0,再分两种情况进行讨论:①如果x1﹣2=0,将x=2代入x2+(2k+1)x+k2﹣2=0,得4+2(2k+1)+k2﹣2=0,解方程求出k=﹣2;②如果x1﹣x2=0,那么将x1+x2=﹣(2k+1),x1x2=k2﹣2代入可求出k的值,再根据判别式进行检验.解答:解:∵(x1﹣2)(x1﹣x2)=0,∴x1﹣2=0或x1﹣x2=0.①如果x1﹣2=0,那么x1=2,将x=2代入x2+(2k+1)x+k2﹣2=0,得4+2(2k+1)+k2﹣2=0,整理,得k2+4k+4=0,解得k=﹣2;②如果x1﹣x2=0,那么(x1﹣x2)2=(x1+x2)2﹣4x1x2=[﹣(2k+1)]2﹣4(k2﹣2)=4k+9=0,解得k=﹣.又∵△=(2k+1)2﹣4(k2﹣2)≥0.解得:k≥﹣.所以k的值为﹣2或﹣.故答案为:﹣2或﹣.点评:本题考查了一元二次方程的根与系数的关系,根的判别式,注意在利用根与系数的关系时,需用判别式进行检验.三.解答题(共4小题)27.(2014•泸州)已知x1,x2是关于x的一元二次方程x2﹣2(m+1)x+m2+5=0的两实数根.(1)若(x1﹣1)(x2﹣1)=28,求m的值;(2)已知等腰△ABC的一边长为7,若x1,x2恰好是△ABC另外两边的边长,求这个三角形的周长.考点:根与系数的关系;三角形三边关系;等腰三角形的性质.专题:代数几何综合题.分析:(1)利用(x1﹣1)(x2﹣1)=x1•x2﹣(x1+x2)+1=m2+5﹣2(m+1)+1=28,求得m的值即可;(2)分7为底边和7为腰两种情况分类讨论即可确定等腰三角形的周长.解答:解:(1)∵x1,x2是关于x的一元二次方程x2﹣2(m+1)x+m2+5=0的两实数根,∴x1+x2=2(m+1),x1•x2=m2+5,∴(x1﹣1)(x2﹣1)=x1•x2﹣(x1+x2)+1=m2+5﹣2(m+1)+1=28,解得:m=﹣4或m=6;当m=﹣4时原方程无解,∴m=6;(2)①当7为底边时,此时方程x2﹣2(m+1)x+m2+5=0有两个相等的实数根,∴△=4(m+1)2﹣4(m2+5)=0,解得:m=2,∴方程变为x2﹣6x+9=0,解得:x1=x2=3,∵3+3<7,∴不能构成三角形;②当7为腰时,设x1=7,代入方程得:49﹣14(m+1)+m2+5=0,解得:m=10或4,当m=10时方程变为x2﹣22x+105=0,解得:x=7或15∵7+7<15,不能组成三角形;当m=4时方程变为x2﹣10x+21=0,解得:x=3或7,此时三角形的周长为7+7+3=17.点评:本题考查了根与系数的关系及三角形的三边关系,解题的关键是熟知两根之和和两根之积分别与系数的关系.28.(2014•日照二模)已知x 1,x 2是关于x 的一元二次方程x 2+(3a ﹣1)x+2a 2﹣1=0的两个实数根,其满足(3x 1﹣x 2)(x 1﹣3x 2)=﹣80.求实数a 的所有可能值.考点:根与系数的关系;根的判别式.专题:计算题.分析:根据△的意义由一元二次方程x 2+(3a ﹣1)x+2a 2﹣1=0的两个实数根得到△≥0,即(3a ﹣1)2﹣4(2a 2﹣1)=a 2﹣6a+5≥0,根据根与系数的关系得到x 1+x 2=﹣(3a ﹣1),x 1•x 2=2a 2﹣1,由(3x 1﹣x 2)(x 1﹣3x 2)=﹣80变形得到3(x 1+x 2)2﹣16x 1x 2=﹣80,于是有3(3a ﹣1)2﹣16(2a 2﹣1)=﹣80,解方程得到a=3或a=﹣,然后代入△验算即可得到实数a 的值.解答:解:∵x 1,x 2是关于x 的一元二次方程x 2+(3a ﹣1)x+2a 2﹣1=0的两个实数根,∴△≥0,即(3a ﹣1)2﹣4(2a 2﹣1)=a 2﹣6a+5≥0所以a ≥5或a ≤1.…(3分)∴x 1+x 2=﹣(3a ﹣1),x 1•x 2=2a 2﹣1,∵(3x 1﹣x 2)(x 1﹣3x 2)=﹣80,即3(x 12+x 22)﹣10x 1x 2=﹣80,∴3(x 1+x 2)2﹣16x 1x 2=﹣80,∴3(3a ﹣1)2﹣16(2a 2﹣1)=﹣80,整理得,5a 2+18a ﹣99=0,∴(5a+33)(a ﹣3)=0,解得a=3或a=﹣,当a=3时,△=9﹣6×3+5=﹣4<0,故舍去,当a=﹣时,△=(﹣)2﹣6×(﹣)+6=()2+6×+6>0,∴实数a 的值为﹣点评:本题考查了一元二次方程ax 2+bx+c=0(a ≠0)的根与系数的关系:如果方程的两根为x 1,x 2,则x 1+x 2=﹣,x 1•x 2=.也考查了一元二次方程根的判别式以及代数式的变形能力.29.(2013•孝感)已知关于x 的一元二次方程x 2﹣(2k+1)x+k 2+2k=0有两个实数根x 1,x 2.(1)求实数k 的取值范围;(2)是否存在实数k 使得x 1•x 2﹣x 12﹣x 22≥0成立?若存在,请求出k 的值;若不存在,请说明理由.e an dAl l t h i ng si nt he i rb ei n ga re go od fo r考点:根与系数的关系;根的判别式.专题:压轴题.分析:(1)根据已知一元二次方程的根的情况,得到根的判别式△≥0,据此列出关于k 的不等式[﹣(2k+1)]2﹣4(k 2+2k )≥0,通过解该不等式即可求得k 的取值范围;(2)假设存在实数k 使得≥0成立.利用根与系数的关系可以求得,然后利用完全平方公式可以把已知不等式转化为含有两根之和、两根之积的形式≥0,通过解不等式可以求得k 的值.解答:解:(1)∵原方程有两个实数根,∴[﹣(2k+1)]2﹣4(k 2+2k )≥0,∴4k 2+4k+1﹣4k 2﹣8k ≥0∴1﹣4k ≥0,∴k ≤.∴当k ≤时,原方程有两个实数根. (2)假设存在实数k 使得≥0成立.∵x 1,x 2是原方程的两根,∴.由≥0,得≥0.∴3(k 2+2k )﹣(2k+1)2≥0,整理得:﹣(k ﹣1)2≥0,∴只有当k=1时,上式才能成立.又∵由(1)知k ≤,∴不存在实数k 使得≥0成立.点评:本题综合考查了根的判别式和根与系数的关系,在解不等式时一定要注意数值的正负与不等号的变化关系.30.(2001•苏州)已知关于x 的一元二次方程,(1)求证:不论k 取何值,方程总有两个不相等的实数根;(2)设x 1、x 2是方程的两个根,且x 12﹣2kx 1+2x 1x 2=5,求k 的值.n ga re go od fo rs 考点:根与系数的关系;根的判别式.专题:计算题;证明题;压轴题.分析:(1)要保证方程总有两个不相等的实数根,就必须使△>0恒成立;(2)欲求k 的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可.解答:解:(1)已知关于x 的一元二次方程,∴△=(﹣2k )2﹣4×(k 2﹣2)=2k 2+8,∵2k 2+8>0恒成立,∴不论k 取何值,方程总有两个不相等的实数根.(2)∵x 1、x 2是方程的两个根,∴x 1+x 2=2k ,x 1•x 2=k 2﹣2,∴x 12﹣2kx 1+2x 1x 2=x 12﹣(x 1+x 2)x 1+2x 1x 2=x 1x 2=k 2﹣2=5,解得k=±.点评:此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.。
一元二次方程韦达定理、根与系数的关系练习+答案
韦达定理与根与系数的关系练习题一、填空题1、关于x的方程2x2-3x,m=0,当_______________ 时,方程有两个正数根;当m ____________ 时,方程有一个正根,一个负根;当m ___________ 时,方程有一个根为0。
2、已知一元二次方程2x2 - 3x -1 = 0的两根为x-i、x2,则x< x2 = __________ .3、如果X i,X2是方程x2-5x ■ 6 = 0的两个根,那么X i・X2 = _______________ .4、已知x i,X2是方程X2+6X+3=0的两实数根,则竺+殂的值为____________ .x1 x25、设x-i、x2是方程2x2,4x-3=0 的两个根,贝U (x-i 1)(x2 1) = _______ .& 若方程 2X2-4X-3=0 的两根为:•、一:,则a2-2ap,/ = ___________ .17、已知x1> x2是关于x的方程(a -1)x2 x a20的两个实数根,且为+ x2= 一,则3% X2 _______ .8、已知关于x的一元二次方程mx2-4x-6=0的两根为x1和x2,且为• x2 - -2,贝U m =____ ,占■ x2 MX?二__________ 。
9、若方程2x2 -5x • k = 0的两根之比是2: 3,则k二_________ .10、如果关于x的方程x2 6x ^0的两根差为2,那么k二________________ 。
11、___________________________________________________________ 已知方程2x2,mx-4=0两根的绝对值相等,则m = __________________________________________ 。
12、__________________________________________________________ 已知方程x2-mx ■ 2=0的两根互为相反数,则m = ________________________________________ 。
初三上学期一元二次方程韦达定理(根与系数的关系)全面练习题及答案word版本
韦达定理(根与系数的关系)韦达定理:对于一元二次方程20(0)ax bx c a ++=≠,如果方程有两个实数根12,x x ,那么1212,b cx x x x a a+=-=说明:定理成立的条件0∆≥练习题一、填空:1、如果一元二次方程c bx ax ++2=0)(0≠a 的两根为1x ,2x ,那么1x +2x = ,1x 2x = .2、如果方程02=++q px x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = .3、方程01322=--x x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = .4、如果一元二次方程02=++n mx x 的两根互为相反数,那么m = ;如果两根互为倒数,那么n = .5方程0)1(2=-++n mx x 的两个根是2和-4,那么m = ,n = . 6、以1x ,2x 为根的一元二次方程(二次项系数为1)是 . 7、以13+,13-为根的一元二次方程是 . 8、若两数和为3,两数积为-4,则这两数分别为 . 9、以23+和23-为根的一元二次方程是 . 10、若两数和为4,两数积为3,则这两数分别为 .11、已知方程04322=-+x x 的两根为1x ,2x ,那么2212x x += .12、若方程062=+-m x x 的一个根是23-,则另一根是 ,m 的值是 . 13、若方程01)1(2=----k x k x 的两根互为相反数,则k = ,若两根互为倒数,则k = . 14、如果是关于x 的方程02=++n mx x 的根是2-和3,那么n mx x ++2在实数范围内可分解为 .二、已知方程0232=--x x 的两根为1x 、2x ,且1x >2x ,求下列各式的值:(1)2212x x += ;(2)2111x x += ; (3)=-221)(x x = ; (4))1)(1(21++x x = . 三、选择题:1、关于x 的方程p x x --822=0有一个正根,一个负根,则p 的值是( ) (A )0 (B )正数 (C )-8 (D )-42、已知方程122-+x x =0的两根是1x ,2x ,那么=++1221221x x x x ( ) (A )-7 (B) 3 (C ) 7 (D) -3 3、已知方程0322=--x x 的两根为1x ,2x ,那么2111x x +=( ) (A )-31 (B) 31(C )3 (D) -34、下列方程中,两个实数根之和为2的一元二次方程是( ) (A )0322=-+x x (B ) 0322=+-x x (C )0322=--x x (D )0322=++x x5、若方程04)103(422=+--+a x a a x 的两根互为相反数,则a 的值是( ) (A )5或-2 (B) 5 (C ) -2 (D) -5或26、若方程04322=--x x 的两根是1x ,2x ,那么)1)(1(21++x x 的值是( ) (A )-21 (B) -6 (C ) 21 (D) -25 7、分别以方程122--x x =0两根的平方为根的方程是( ) (A )0162=++y y (B ) 0162=+-y y (C )0162=--y y (D )0162=-+y y四、解答题:1、若关于x 的方程02352=++m x x 的一个根是-5,求另一个根及m 的值.2、关于x 的方程04)2(222=++-+m x m x 有两个实数根,且这两根平方和比两根积大21. 求m 的值.3、若关于x 的方程03)2(2=---+m x m x 两根的平方和是9. 求m 的值.4、已知方程032=--m x x 的两根之差的平方是7,求m 的值.5、已知方程0)54(22=+--+m x m m x 的两根互为相反数,求m 的值.6、关于x 的方程0)2()14(322=++--m m x m x 的两实数根之和等于两实数根的倒数和,求m 的值.7、已知方程m x x 322+-=0,若两根之差为-4,求m 的值.8、已知12,x x 是一元二次方程24410kx kx k -++=的两个实数根.(1) 是否存在实数k ,使12123(2)(2)2x x x x --=-成立?若存在,求出k 的值;若不存在,请您说明理由.(2) 求使12212x x x x +-的值为整数的实数k 的整数值.答案:。
初中数学一元二次方程根与系数关系专项练习题4(附答案详解)
(2)关于 x 的一元二次方程 kx2+(k﹣1)x﹣3=0 有一个根为 3,求 k 的值及另一个根.
26.己知:负整数 a 是关于 x 的方程 x2 2bx a 0 的一个根. (1)则 a 2b = __________. ( 2 )当 2a b 3 的值是非负数时,试说明方程 (a b)x2 2(m 1)x m(m 2) 0
28.已知一元二次方程 x2 2x m 1 0 .
1 若方程有两个实数根,求 m 的范围; 2 若方程的两个实数根为 x1 , x 2 ,且 x1 3x2 2m 8 ,求 m 的值.
29.已知关于 x 的方程 x2+(2m+1)x+m2+2=0 有两个不相等的实数根,试判断直线 y =(2m-3)x-4m+7 能否经过点 A(-2,4),并说明理由.
【分析】
根据根与系数的关系即可得出 α+β 的值.
【详解】
∵一元二次方程 x2﹣3x=1,即 x2﹣3x﹣1=0 的两个实数根为 α,β,
∴α+β=3.
故选 A. 【点睛】 本题考查了根与系数的关系:若 x1,x2 是一元二次方程 ax2+bx+c=0(a≠0)的两根,则 x1+x2=
﹣ ,x1•x2= .
8.定义运算:a⋆ b=2ab.若 a,b 是方程 x2+x-m=0(m>0)的两个根,则(a+1)⋆ a -(b+1)⋆ b
的值为( )
A.0 B.2 C.4m D.-4m
9.若关于 x 的一元二次方程 x2 mx m 4 0 有一根为 0,则 m 的值为
A.4
B. 4
C.2
D. 2
10.若关于 x 的一元二次方程 2x2 4x m 0 有两个相等实数根,则 m 的值是( )
初中数学一元二次方程根与系数关系专项练习题(附答案详解)
初中数学一元二次方程根与系数关系专项练习题(附答案详解)1.若一个关于x 的一元二次方程的两个根分别是数据2,4,5,4,3,5,5的众数和中位数,则这个方程是( )A .x 2﹣7x+12=0B .x 2+7x+12=0C .x 2﹣9x+20=0D .x 2+9x+20=02.关于x 的方程kx 2+2x ﹣1=0有两个实数根,则k 的取值范围是( )A .k≥1B .k≥﹣1C .k≥1且k≠0D .k≥﹣1且k≠03.若m ,n 是方程2250x x --=两根,则()()22m m m n -+的值为( ) A .5 B .10 C .5- D .10-4.已知x 1,x 2是一元二次方程x 2-6x- 15=0的两个根,则x 1+x 2等于( )A .-6B .6C .-15D .155.在数轴上用点B 表示实数b .若关于x 的一元二次方程x 2+bx +1=0有两个相等的实数根,则( )A .2OB = B .2OB >C .2OB ≥D .2OB <6.若方程x 2 +x-1 = 0的两实根为α、β,那么下列说法不正确的是( ) .A .α+β=-1B .αβ=-1C .11+αβ=1D .α2+β2=1 7.已知x 1,x 2是关于x 的方程x 2+bx ﹣3=0的两根,且满足x 1+x 2﹣3x 1x 2=5,那么b 的值为( )A .4B .﹣4C .3D .﹣38.下列关于x 的一元二次方程中,有两个不相等的实数的是( ).A .2x +2 =0B .2x +x-1=0C .2x +x+3=0D .42x -4x+1=0. 9.已知关于x 的一元二次方程x 2+mx +n =0的两个实数根分别为x 1=-2,x 2=4,则m ,n 的值分别为()A .m =-2,n =8B .m =-2,n =-8C .m =2,n =-8D .m =2,n =8 10.已知α,β是方程2201610x x ++=的两个根,则()()221201812018ααββ++++的值为( ) A .1 B .2 C .3 D .411.已知1x ,2x 分别是一元二次方程260x x --=的两个实数根,则12x x +=________.12.已知,,a b c 是等腰ABC ∆的三条边,其中2b =,如果 ,a c 是关于y 的一元二次方程 260y y n -+=的两个根,则n 的值是__.13.已知a 、b 是一元二次方程2410x x --=的两根,则a +b =_____.14.有一个一元二次方程,它的一个根 x 1=1,另一个根-2<x 2<0. 请你写出一个符合这样条件的方程:_________.15.已知方程 x 2﹣4x+3=0 的两根分别为 x 1、x 2,则 x 1+x 2=______.16.已知x 1,x 2是一元二次方程x 2﹣3x ﹣2=0的两实数根,则1132x ++2132x +的值是_____.17.已知x 1,x 2是关于x 的方程x 2-(2m -2)x +(m 2-2m )=0的两根,且满足x 1•x 2+2(x 1+x 2)=-1,那么m 的值为( )A .1-或3B .3-或1C .3-D .118.设一元二次方程2230x x --=的两个实数根为x 1,x 2,则x 1+x 1x 2+x 2等于( ). A .1 B .-1 C .0 D .319.已知方程x 2+kx ﹣6=0有一个根是2,则k =_____,另一个根为_____.20.求作一个方程,使它的两个根分别是4-和3,这个方程的一般式是________. 21.关于x 的一元二次方程226250x x p p -+-+=的一个根为2。
(含答案)韦达定理(根与系数的关系)
根与系数的关系(韦达定理)练习题一、填空:1、 如果一元二次方程c bx ax ++2=0)(0≠a 的两根为1x ,2x ,那么1x +2x = ,1x 2x = .2、如果方程02=++q px x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = .3、方程01322=--x x 的两根为1x ,2x ,那么1x +2x = ,1x 2x = .4、如果一元二次方程02=++n mx x 的两根互为相反数,那么m = ;如果两根互为倒数,那么n = . 5方程0)1(2=-++n mx x 的两个根是2和-4,那么m = ,n = .6、以1x ,2x 为根的一元二次方程(二次项系数为1)是 .7、以13+,13-为根的一元二次方程是 .8、若两数和为3,两数积为-4,则这两数分别为 .9、以23+和23-为根的一元二次方程是 .10、若两数和为4,两数积为3,则这两数分别为 .11、已知方程04322=-+x x 的两根为1x ,2x ,那么2212x x += .12、若方程062=+-m x x 的一个根是23-,则另一根是 ,m 的值是 .13、若方程01)1(2=----k x k x 的两根互为相反数,则k = ,若两根互为倒数,则k = .14、如果是关于x 的方程02=++n mx x 的根是2-和3,那么n mx x ++2在实数范围内可分解为 .二、已知方程0232=--x x 的两根为1x 、2x ,且1x >2x ,求下列各式的值:(1)2212x x += ; (2)2111x x += ;(3)=-221)(x x = ; (4))1)(1(21++x x = . 三、选择题:1、关于x 的方程p x x --822=0有一个正根,一个负根,则p 的值是( )(A )0(B )正数(C )-8(D )-42、已知方程122-+x x =0的两根是1x ,2x ,那么=++1221221x x x x ( ) (A )-7 (B) 3 (C ) 7 (D) -33、已知方程0322=--x x 的两根为1x ,2x ,那么2111x x +=( )(A )-31 (B) 31 (C )3 (D) -3(A )0322=-+x x (B ) 0322=+-x x (C )0322=--x x (D )0322=++x x5、若方程04)103(422=+--+a x a a x 的两根互为相反数,则a 的值是( )(A )5或-2 (B) 5 (C )-2 (D)-5或2 6、若方程04322=--x x 的两根是1x ,2x ,那么)1)(1(21++x x 的值是()(A )-21(B)-6 (C )21(D) -257、分别以方程122--x x =0两根的平方为根的方程是( )(A )0162=++y y (B ) 0162=+-y y (C )0162=--y y (D )0162=-+y y四、解答题:1、若关于x 的方程02352=++m x x 的一个根是-5,求另一个根及m 的值.2、关于x 的方程04)2(222=++-+m x m x 有两个实数根,且这两根平方和比两根积大21. 求m 的值.3、 若关于x 的方程03)2(2=---+m x m x 两根的平方和是9. 求m 的值.4、已知方程032=--m x x 的两根之差的平方是7,求m 的值.5、已知方程0)54(22=+--+m x m m x 的两根互为相反数,求m 的值.6、关于x 的方程0)2()14(322=++--m m x m x 的两实数根之和等于两实数根的倒数和,求m 的值.7、已知方程m x x 322+-=0,若两根之差为-4,求m 的值.8、已知12,x x 是一元二次方程24410kx kx k -++=的两个实数根.(1) 是否存在实数k ,使12123(2)(2)2x x x x --=-成立?若存在,求出k 的值;若不存在,请您说明理由.(2) 求使12212x x x x +-的值为整数的实数k 的整数值.9、设21x x ,是方程03422=-+x x 的两根,利用根与系数关系求下列各式的值:)1)(1()1(21++x x 、 2111)2(x x +、 2112)3(x x x x +、 121212)4(x x x x ++、10、设方程03742=+-x x 的两根为21x x ,,不解方程,求下列各式的值:(1) 2221x x + (2) 21x x - (3)21x x + (4)21x x -11、已知21x x ,是方程01322=-+x x 的两个根,利用根与系数的关系,求下列各式的值:(1) )32)(32(21--x x ; (2)321231x x x x +12、实数s、t分别满足方程0199192=++s s 和且099192=++t t 求代数式t s st 14++的值。
一元二次方程[韦达定理、根和系数的关系练习+答案]
WORD 格式 .可编辑韦达定理与根与系数的关系练习题一、填空题1、关于x的方程2x23x m0 ,当时,方程有两个正数根;当 m时,方程有一个正根,一个负根;当 m时,方程有一个根为 0。
2、已知一元二次方程2x23x 1 0 的两根为 x1、 x2,则 x1x2.3、如果 x1, x2是方程x25x 6 0 的两个根,那么 x1x2.4、已知x1,x2是方程x26x 3 0 的两实数根,则x2x1的值为 ______.x1x25、设x1、x2是方程2x24x 3 0 的两个根,则 ( x1 1)( x2 1).24x 30 的两根为、,则 a 22.6、若方程2x2aββ7、已知 x1、x2是关于x的方程(a 1) x2x a 2 1 0 的两个实数根,且x1+x2=1,则x1x2=.38、已知关于x的一元二次方程mx24x60 的两根为 x1和 x2,且 x1 x2 2 ,则 m, x1 x2x1 x2。
9、若方程2 x25x k0 的两根之比是2:3,则k.10、如果关于x的方程x26x k0 的两根差为2,那么k。
11、已知方程2x2mx40 两根的绝对值相等,则 m。
12、已知方程x2mx20的两根互为相反数,则 m。
13、已知关于x的一元二次方程(a21)x 2(a 1)x10 两根互为倒数,则 a。
14、已知关于x的一元二次方程x22(m 1)x m20 。
若方程的两根互为倒数,则 m;若方程两根之和与两根积互为相反数,则 m。
15、一元二次方程px 2qx r0(p0) 的两根为和-,则p: q。
116、已知方程3x2x 1 0 ,要使方程两根的平方和为13,那么常数项应改为。
917、已知方程x24x2m0 的一个根比另一个根小4,则;; m。
WORD 格式 .可编辑19、已知关于x的方程x23mx2(m 1)0 的两根为 x1、x2,且113,则 m。
x1x2420、若方程x24x m0 与 x2x2m0 有一个根相同,则 m。
一元二次方程根与系数的关系习题(配答案)
一元二次方程根与系数的关系习题一、单项选择题:1.关于x 的方程0122=+-x ax 中,如果0<a ,那么根的情况是(B )(A )有两个相等的实数根(B )有两个不相等的实数根(C )没有实数根(D )不能确定 a 4)2(2--=∆ 解:04>-∴a 实数根。
原方程有两个不相等的∴ a 44-=044>-∴a0<a 0>∆即2.设21,x x 是方程03622=+-x x 的两根,则2221x x +的值是(C )(A )15 (B )12 (C )6 (D )3 21x x ,方程两根为解: 2122122212)(x x x x x x -+=+∴2332121==+x x x x ,623232=⨯-= 3.下列方程中,有两个相等的实数根的是(B ) (A ) 2y 2+5=6y (B )x 2+5=2 5 x (C ) 3 x 2- 2 x+2=0(D )3x 2-2 6 x+1=0)0(”的方程即可本题为找出“=∆4.以方程x 2+2x -3=0的两个根的和与积为两根的一元二次方程是(B )(A ) y 2+5y -6=0 (B )y 2+5y +6=0 (C )y 2-5y +6=0 (D )y 2-5y -6=0 ,则:,解:设方程两根为21x x 0)3)(2()]3()2[(2=--+-+--y y322121-=-=+x x x x ,0652=++y y 即::为根的一元二次方程为和以32--∴5.如果21x x ,是两个不相等实数,且满足12121=-x x ,12222=-x x ,那么21x x ∙等于(D )(A )2 (B )-2 (C ) 1 (D )-1 1212222121=-=-x x x x ,解: 的两根12221=-∴x x x x 可看作是方程,121-=∴x x二、填空题:1、如果一元二次方程0422=++k x x 有两个相等的实数根,那么k =2±。
一元二次方程根与系数的关系(韦达定理)专题训练(有答案)--
一元二次方程根与系数的关系(韦达定理)韦达定理:对于一元二次方程20(0)ax bx c a ++=≠,如果方程有两个实数根12,x x ,那么1212,b cx x x x a a+=-=说明:(1)定理成立的条件0∆≥(2)注意公式重12bx x a+=-的负号与b 的符号的区别已知x1,x2是方程2x 2-x-5=0的两个根考点:根与系数的关系.专题:应用题.分析:利用根与系数的关系,分别求得x1+x2,x1/x2的值,整体代入所求的代数式即可.解:∵x1,x2是方程2x 2-x-5=0的两个根 ∴x1+x2=-b/a=12,x1×x2=c/a=-5/2本题考查了一元二次方程根与系数的关系.要掌握根与系数的关系式:x1+x2=-b/a ,x1×x2=c/a .(1)计算对称式的值例一 若12,x x 是方程2220070x x +-=的两个根,试求下列各式的值:(1) 2212x x +; (2) 1211x x +; (3) 12(5)(5)x x --; (4) 12||x x -.(2)定性判断字母系数的取值范围例二 一个三角形的两边长是方程的两根,第三边长为2,求k 的取值范围。
例三 已知关于x 的方程221(1)104x k x k -+++=,根据下列条件,分别求出k 的值.(1) 方程两实根的积为5; (2) 方程的两实根12,x x 满足12||x x =.例四 已知12,x x 是一元二次方程24410kx kx k -++=的两个实数根.(1) 是否存在实数k ,使12123(2)(2)2x x x x --=-成立?若存在,求出k 的值;若不存在,请您说明理由.(2) 求使12212x x x x +-的值为整数的实数k 的整数值.一元二次方程根与系数的关系练习题A 组1.一元二次方程2(1)210k x x ---=有两个不相等的实数根,则k 的取值范围是( )A .2k >B .2,1k k <≠且C .2k <D .2,1k k >≠且2.若12,x x 是方程22630x x -+=的两个根,则1211x x +的值为( )A .2B .2-C .12 D .923.已知菱形ABCD 的边长为5,两条对角线交于O 点,且OA 、OB 的长分别是关于x 的方程22(21)30x m x m +-++=的根,则m 等于( )A .3-B .5C .53-或D .53-或4.若t 是一元二次方程20 (0)ax bx c a ++=≠的根,则判别式24b ac ∆=-和完全平方式2(2)M at b =+的关系是()A .M ∆=B .M ∆>C .M ∆<D .大小关系不能确定5.若实数a b ≠,且,a b 满足22850,850a a b b -+=-+=,则代数式1111b a a b --+--的值为( )A .20-B .2C .220-或D .220或6.如果方程2()()()0b c x c a x a b -+-+-=的两根相等,则,,a b c 之间的关系是 ______ 7.已知一个直角三角形的两条直角边的长恰是方程22870x x -+=的两个根,则这个直角三角形的斜边长是 _______ .8.若方程22(1)30x k x k -+++=的两根之差为1,则k 的值是 _____ .9.设12,x x 是方程20x px q ++=的两实根,121,1x x ++是关于x 的方程20x qx p ++=的两实根,则p = _____ ,q = _____ .10.已知实数,,a b c 满足26,9a b c ab =-=-,则a = _____ ,b = _____ ,c = _____ . 11.对于二次三项式21036x x -+,小明得出如下结论:无论x 取什么实数,其值都不可能等于10.您是否同意他的看法?请您说明理由.12.若0n >,关于x 的方程21(2)04x m n x mn --+=有两个相等的的正实数根,求m n的值.13.已知关于x 的一元二次方程2(41)210x m x m +++-=. (1) 求证:不论为任何实数,方程总有两个不相等的实数根; (2) 若方程的两根为12,x x ,且满足121112x x +=-,求m 的值.14.已知关于x 的方程221(1)104x k x k -+++=的两根是一个矩形两边的长.(1) k 取何值时,方程存在两个正实数根?(2) k 的值.B 组1.已知关于x 的方程2(1)(23)10k x k x k -+-++=有两个不相等的实数根12,x x . (1) 求k 的取值范围;(2) 是否存在实数k ,使方程的两实根互为相反数?如果存在,求出k 的值;如果不存在,请您说明理由.2.已知关于x 的方程230x x m +-=的两个实数根的平方和等于11.求证:关于x 的方程22(3)640k x kmx m m -+-+-=有实数根.3.若12,x x 是关于x 的方程22(21)10x k x k -+++=的两个实数根,且12,x x 都大于1.(1) 求实数k的取值范围;(2) 若121 2xx,求k的值.。
初中数学一元二次方程根与系数关系专项复习题(附答案详解)
初中数学一元二次方程根与系数关系专项复习题(附答案详解)1.已知关于x 的一元二次方程2210ax x --=有两个不相等的实数根,则二次项系数a 的取值范围是( ) A .1a >-B .2a >-C .1a >且0a ≠D .1a >-且0a ≠2.若关于x 的一元二次方程x 2-2x+k=0有两个不相等的实数根,那么k 的取值范围是( )A .k <1B .k≠0C .k >1D .k <03.一元二次方程ax 2+x ﹣2=0有两个不相等实数根,则a 的取值范围是( ) A .a 18<B .a= 18-C .a 18>-且a≠0 D .a 18> 且a≠0 4.下列方程中,两根是﹣2和﹣3的方程是( ) A .x 2﹣5x+6=0 B .x 2﹣5x ﹣6=0 C .x 2+5x ﹣6=0 D .x 2+5x+6=05.关于x 的一元二次方程260x mx +-=的一个根是3,则另一个根是( ) A .-1B .1C .-2D .26.已知方程x 2+2x-1=0,则此方程( )A .无实数根B .两根之和为2C .两根之积为-1D .有一个根为21+7.已知方程x 2﹣4x +k =0有一个根是﹣1,则该方程的另一根是( ) A .1B .0C .﹣5D .58.已知关于x 的一元二次方程x 2-6x +k +1=0的两个实数根是x 1,x 2,且x +x =24,则k 的值是(). A .8B .-7C .6D .59.关于x 的方程的022=+-a ax x 两个根的平方和5是,则a 的值是( )A .-1或5B . 1C .5D .-110.已知一元二次方程2310x x -+=的两根是1x 、2x ,则12x x +的值是( ) A .3B .1C .3-D .1-11.若方程25320x x --=的两个实数根为,m n ,则11m n+的值为__________. 12.若方程x 2+(m+1)x ﹣2n=0的两根分别为2和﹣5,则m=_____,n=_____. 13.已知a ,b 是一元二次方程220180x x --=的两个实数根,则22________a a b--=;14.方程2x2+4x﹣1=0的两根为x1,x2,则x1+x2=____.15.若关于x的方程的两根互为倒数,则= .16.如果一元二次方程2x2﹣5x+m=0有两个实数根,那么实数m的取值范围为_____.17.写出一个二次项系数为2,一个根比1大,另一个根比1小的一元二次方程__________.18.若-2是一元二次方程x2―2x―a=0的一个根,则a的值为____.19.若关于的方程有两个相等的实数根,则k的值为▲ . 20.如果方程x2﹣2x+m=0的两实根为a,b,且a,b,1可以作为一个三角形的三边之长,则实数m的取值范围是___________________.21.已知关于的方程.(1)若该方程有两个不相等的实数根,求实数的取值范围;(2)若该方程的一个根为1,求的值及该方程的另一根.22.已知关于x的一元二次方程x2+(2m+3)x+m2=0有两个不相等的实数根,(1)求m的取值范围(2)若α,β是方程的两个实数根,且满足11αβ+=﹣1,求m的值.23.阅读材料:材料1 若一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2则x1+x2=﹣ba,x1x2=ca.材料2 已知实数m,n满足m2﹣m﹣1=0,n2﹣n﹣1=0,且m≠n,求n mm n+的值.解:由题知m,n是方程x2﹣x﹣1=0的两个不相等的实数根,根据材料1得m+n=1,mn =﹣1,所以222()2121n m m n m n mn m n mn mn ++-++===-=﹣3. 根据上述材料解决以下问题:(1)材料理解:一元二次方程5x 2+10x ﹣1=0的两个根为x 1,x 2,则x 1+x 2= ,x 1x 2= .(2)类比探究:已知实数m ,n 满足7m 2﹣7m ﹣1=0,7n 2﹣7n ﹣1=0,且m ≠n ,求m 2n +mn 2的值:(3)思维拓展:已知实数s 、t 分别满足19s 2+99s +1=0,t 2+99t +19=0,且st ≠1.求41st s t++的值.24.已知关于x 的一元二次方程(k ﹣1)x 2+(2k+1)x+k =0. (1)依据k 的取值讨论方程解的情况.(2)若方程有一根为x =﹣2,求k 的值及方程的另一根.25.已知关于x 的方程230x x a ++=①的两个实数根的倒数和等于3,且关于x 的方程2(1)320k x x a -+-=②有实数根,又k 为正整数,求代数式2216k k k -+-的值.26.已知关于的一元二次方程x 2-4x +k +1=0(1)若=-1是方程的一个根,求k 值和方程的另一根;(2)设x 1,x 2是关于x 的方程x 2-4x +k +1=0的两个实数根,是否存在实数k ,使得x 1x 2>x 1+x 2成立?请说明理由.27.已知关于x 的一元二次方程2104x x m -+=有两个实数根. ()1若m 为正整数,求此方程的根.()2设此方程的两个实数根为a 、b ,若2221y ab b b =-++,求y 的取值范围.28.已知关于x 的一元二次方程x 2+(4m+1)x+2m-1=O . (1)求证:不论m 为任何实数,方程总有两个不相等的实数根; (2)若方程两根为x 1、x 2,且满足12111+?=2x x ,求m 的值.29.关于的一元二次方程(1)求证:方程有两个不相等的实数根; (2)为何整数时,此方程的两个根都为正整数.30.已知关于x的一元二次方程01)1(22=-+++k x k kx 有两个实数根,求k 的取值范围.参考答案1.D【解析】【分析】由关于x的一元二次方程ax2-2x-1=0有两个不相等的实数根,即可得判别式△>0且二次项系数a≠0,继而可求得a的范围.【详解】∵一元二次方程ax2-2x-1=0有两个不相等的实数根,∴△=(-2)2-4×a×(-1)>0,且a≠0,解得:a>-1且a≠0,故选D.【点睛】此题考查了一元二次方程根的判别式的知识.此题比较简单,注意掌握一元二次方程有两个不相等的实数根,即可得△>0.2.A【解析】∵关于x的一元二次方程x2−2x+k=0有两个不相等的实数根,∴△=(−2)2−4k>0,解得:k<1.故选:A.3.C【解析】【分析】根据已知得出b2-4ac=12-4a•(-2)>0,求出即可.【详解】∵一元二次方程ax2+x-2=0有两个不相等实数根,∴b2-4ac=12-4a•(-2)>0,解得:a>-18且a≠0,故选:C.【点睛】本题考查了根的判别式的应用,注意:一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0)的根的判别式是b 2-4ac ,当b 2-4ac >0时,方程有两个不相等的实数根,当b 2-4ac=0时,方程有两个相等的实数根,当b 2-4ac <0时,方程没有实数根. 4.D . 【解析】试题分析:设两根是﹣2和﹣3的方程为:x 2+ax+b=0,根据根与系数的关系,可得(﹣2)+(﹣3)=﹣a=5,(﹣2)×(﹣3)=b=6,故方程为:x 2+5x+6=0.故选D . 考点:根与系数的关系. 5.C 【解析】 【分析】设该一元二次方程的另一根为t ,则根据根与系数的关系得到36t =-,由此易求t 的值. 【详解】解:设关于x 的一元二次方程260x mx +-=的另一个根为t ,则36t =-, 解得2t =-. 故选:C . 【点睛】本题考查了根与系数的关系.若二次项系数为1,常用以下关系:1x ,2x 是方程20x px q ++=的两根时,12x x p +=-,12x x q =,反过来可得12()p x x =-+,12q x x =,前者是已知系数确定根的相关问题,后者是已知两根确定方程中未知系数. 6.C . 【解析】试题解析:A 、△=22-4×1×(-1)=8>0,则该方程有两个不相等的实数根.故本选项错误; B 、设该方程的两根分别是α、β,则α+β=-2.即两根之和为2,故本选项错误; C 、设该方程的两根分别是α、β,则αβ=-1.即两根之积为-1,故本选项正确;D 、根据求根公式1=-±1-+1-.故本选项错误; 故选C .考点:1.根与系数的关系;2.根的判别式.【解析】 【分析】利用根与系数的关系,即可求出. 【详解】设该方程的另一根为m , 利用根与系数的关系:12b x x a+=- 得:m ﹣1=4, 解得:m =5. 故选:D . 【点睛】本题考查一元二次方程的解的定义以及根数系数的关系,熟练掌握相关知识点是解题关键. 8.D 【解析】 【分析】根据一元二次方程根与系数的关系,即韦达定理进行作答. 【详解】 由韦达定理,即,x 1·x 2=.而x +x =24=()2-2 x 1·x 2=36-2(k +1),解出k =5.所以,答案选D. 【点睛】本题考查了一元二次方程根与系数的关系,即韦达定理的运用,熟练掌握一元二次方程根与系数的关系,即韦达定理是本题解题关键. 9.D 【解析】试题分析:设,αβ是方程022=+-a ax x 的两个根,则,2a a αβαβ+==,又225αβ+=,所以22()245a a αβαβ+-=-=,解得a =-1或5,当a=-1时,9=V >0,当a=5时,16=-V <0,所以a=5不合题意舍去,所以选:D . 考点:根与系数的关系.【解析】 【分析】根据根与系数的关系得到x 1+x 2=3,即可得出答案. 【详解】解:∵x 1、x 2是一元二次方程x 2−3x+1=0的两个根, ∴x 1+x 2=3, 故选A.. 【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=b a -,x 1x 2=c a. 11.32-【解析】 【分析】因为方程25320x x --=的两个实数根为m 、n ,所以32,55m n mn +==-,而11m n +=m nnm +,将所得的式子代入计算即可. 【详解】解:∵方程25320x x --=的两个实数根为m 、n ,∴32,55m n mn +==-, ∴11m n +=m n n m +=3525-=32-.故答案为32-.【点睛】本题考查的是一元二次方程的根与系数的关系,对于此类题目,一般的思路和方法是先写出两根之和与两根之积,再将所求的式子变形成两根和与积的形式,整体代入求解. 12. 2 5【解析】∵方程x 2+(m+1)x ﹣2n=0的两根分别为2和﹣5,∴由一元二次方程“根与系数的关系”可得:2+(﹣5)=﹣(m+1),2×(﹣5)=﹣2n,解得:m=2,n=5.故答案为2,5.13.2017【解析】【分析】先根据一元二次方程解的定义得到a2=a+2018,所以a2-2a-b化简为-(a+b)+2018,再利用根与系数的关系得到a+b=1,然后利用整体代入的方法计算.【详解】∵a为方程x2-x-2018=0的根,∴a2-a-2018=0,即a2=a+2018,∴a2-2a-b=a+2018-2a-b=-(a+b)+2018,∵a、b是一元二次方程x2-x-2018=0的两个实数根,∴a+b=1,所以原式=-1+2018=2017.故答案是:2017.【点睛】考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-ba,x1x2=ca.也考查了一元二次方程解的定义.14.﹣2 【解析】试题解析:根据一元二次方程根与系数的关系可得:x1+x2=4-=-2 2.15.-1.【解析】试题分析:设已知方程的两根分别为m,n,由题意得:m与n互为倒数,即mn=1,由方程有解,得到,解得:,又mn=,∴=1,解得:=1(舍去)或=-1,则=-1.故应填为:-1.考点:根与系数的关系.点评:此题要求熟练掌握一元二次方程ax 2+bx+c=0(a ≠0),当b 2-4ac≥0时,方程有解,然后利用韦达定理得出,.16.m≤258【解析】 【分析】此题根据方程有实数根,可得25420,m -⨯≥解这个不等式即可得出答案. 【详解】解:关于x 的一元二次方程2250x x m -+=有两个实数根,由一元二次方程根的判别式,得25420,m -⨯≥解得:25.8m ≤ 故答案为:25.8m ≤ 【点睛】一元二次方程根的判别式:△>0时,一元二次方程有两个不等实根; △=0时,一元二次方程有两个相等实根; △<0时,一元二次方程没有实根; △≥0时,方程有实数根.17.2240x x -=(答案不唯一) 【解析】 【分析】根据题意可设一根为2,另一根为0,再计算出2+0=2,2×0=0,然后根据根与系数的关系写出新方程,再把二次项系数化为2即可. 【详解】解:设一根为2,另一根为0, ∵2+0=2,2×0=0,∴以2和0为根的一元二次方程可为x 2-2x=0, 当二次项系数为2时,方程变形为2x 2-4x=0. 故答案为2240x x -=. 【点睛】本题考查了根与系数的关系:若x 1,x 2是方程ax 2+bx+c=0的两根时,12bx x a +=-,12c x x a=. 18.8【解析】解析:把x=-2代入方程得:4+4-a=0, 解得:a=8.考点:一元二次方程的解. 19.8 【解析】若一元二次方程有两个相等的实数根,则根的判别式△=b 2-4ac=0,建立关于k 的等式,求出k 的值.解:由题意知方程有两相等的实根, ∴△=b 2-4ac=36-4k-4=0, 解得k=8. 20.34<m≤1. 【解析】 【分析】若一元二次方程有两根,则根的判别式△=b 2-4ac≥0,建立关于m 的不等式,求出m 的取值范围.再根据根与系数的关系和三角形中三边的关系来再确定m 的取值范围,最后综合所有情况得出结论. 【详解】∵方程x 2-2x+m=0的两实根为a ,b , ∴有△=4-4m≥0, 解得:m≤1,由根与系数的关系知:a+b=2,a•b=m , 若a ,b ,1可以作为一个三角形的三边之长, 则必有a+b >1与|a-b|<1同时成立,故只需(a-b )2<1即可, 化简得:(a+b )2-4ab <1,把a+b=2,a•b=m 代入得:4-4m <1, 解得:m >34, ∴34<m≤1, 故本题答案为:34<m≤1. 【点睛】主要考查一元二次方程的根的判别式与根的关系和一元二次方程根与系数的关系、三角形中三边的关系. 21.(1);(2)的值是,该方程的另一根为.【解析】试题分析:(1)利用根的判别式列出不等式求解即可; (2)利用根与系数的关系列出有关的方程(组)求解即可.试题解析:(1)∵b 2﹣4ac=22﹣4×1×(a ﹣2)=12﹣4a >0, 解得:a <3, ∴a 的取值范围是a <3;(2)设方程的另一根为x 1,由根与系数的关系得:111x 21x 2a +=-⎧⎨⋅=-⎩,解得:11x 3a =-⎧⎨=-⎩, 则a 的值是﹣1,该方程的另一根为﹣3.22.(1)m >﹣34;(2)m =3. 【解析】 【分析】(1)根据方程有两个相等的实数根可知△>0,求出m 的取值范围即可; (2)根据根与系数的关系得出α+β与αβ的值,代入代数式进行计算即可. 【详解】(1)∵关于x 的一元二次方程x 2+(2m +3)x +m 2=0有两个不相等的实数根,∴△>0,即△=(2m +3)2﹣4m 2>0,解得m >﹣34; (2)∵α,β是方程的两个实数根, ∴α+β=﹣(2m +3),αβ=m 2. ∵211(23)1m mαβαβαβ+-++===-, ∴﹣(2m +3)=﹣m 2,解得m 1=3,m 2=﹣1(舍弃). ∴m =3. 【点睛】考查的是根与系数的关系,熟知x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,x 1+x 2=﹣b a ,x 1x 2=ca是解答此题的关键. 23.(1)-2,-15;(2)﹣17;(3)﹣15.【解析】 【分析】(1)直接利用根与系数的关系求解;(2)把m 、n 可看作方程7x 2﹣7x ﹣1=0,利用根与系数的关系得到m +n =1,mn =﹣17,再利用因式分解的方法得到m 2n +mn 2=mn (m +n ),然后利用整体的方法计算;(3)先把t 2+99t +19=0变形为19•(1t )2+99•1t +1=0,则把实数s 和1t可看作方程19x 2+99x +1=0的两根,利用根与系数的关系得到s +1t =﹣9919,s •1t =119,然后41st s t ++变形为s +4•s t +1t,再利用整体代入的方法计算. 【详解】解:(1)x 1+x 2=﹣105=﹣2,x 1x 2=﹣15;故答案为﹣2;﹣15;(2)∵7m 2﹣7m ﹣1=0,7n 2﹣7n ﹣1=0,且m ≠n , ∴m 、n 可看作方程7x 2﹣7x ﹣1=0, ∴m +n =1,mn =﹣17,∴m2n+mn2=mn(m+n)=﹣17×1=﹣17;(3)把t2+99t+19=0变形为19•(1t)2+99•1t+1=0,实数s和1t可看作方程19x2+99x+1=0的两根,∴s+1t=﹣9919,s•1t=119,∴41st st++=s+4•st+1t=﹣9919+4×119=﹣15.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣ba,x1x2=ca.也考查了解一元二次方程.24.(1)k>﹣18且k≠1时,原方程有两个不相等的实数根;k=﹣18时,原方程有两个相等的实数根;k<﹣18时,原方程没有实数根;(2)k=6,方程的另一根为﹣35.【解析】【分析】(1)根据方程的系数可得出根的判别式△=8k+1,进而可得出方程解得情况;(2)将x=﹣2代入原方程可求出k值,再利用两根之和等于ba-及方程的一根为x=﹣2,可求出方程的另一根.【详解】解:(1)a=k﹣1,b=2k+1,c=k,∵△=b2﹣4ac=(2k+1)2﹣4×(k﹣1)×k=8k+1,∴当k>﹣18且k≠1时,原方程有两个不相等的实数根;当k=﹣18时,原方程有两个相等的实数根;当k<﹣18时,原方程没有实数根.(2)将x=﹣2代入原方程,得:(k﹣1)×(﹣2)2+(2k+1)×(﹣2)+k=0,解得:k=6,∴原方程为5x2+13x+6=0,∴方程的另一根为x =﹣135﹣(﹣2)=﹣35. 【点睛】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根”;(2)代入x=-2求出k 值. 25.0. 【解析】 【分析】由于关于x 的方程x 2+3x +a =0的两个实数根的倒数和等于3,利用根与系数的关系可以得到关于a 的方程求出a ,又由于关于x 的方程(k -1)x 2+3x -2a =0有实数根,分两种情况讨论,该方程可能是一次方程、有可能是一元二次方程,又k 为正整数,利用判别式可以求出k ,最后代入所求代数式计算即可求解. 【详解】解:设方程①的两个实数根分别为x 1、x 2则12123940x x x x a a +-⎧⎪⎨⎪-≥⎩V=== , 由条件,知12121211x x x x x x ++==3, 即33a -=,且94a ≤, 故a =-1,则方程②为(k -1)x 2+3x +2=0,Ⅰ.当k -1=0时,k =1,x =23-,则22106k k k -=+-.Ⅱ.当k -1≠0时,∆=9-8(k -1)=17-6-8k ≥0,则178k ≤, 又k 是正整数,且k≠1,则k =2,但使2216k k k -+-无意义.综上,代数式2216k k k -+-的值为0【点睛】本题综合考查了根的判别式和根与系数的关系,在解方程时一定要注意所求k 的值与方程判别式的关系.要注意该方程可能是一次方程、有可能是一元二次方程, 26.(1)k=" -6" ,方程的另一根是5. (2)不存在.理由见解析. 【解析】试题分析:(1)把已知的根代入原方程,求出k ,然后根据根与系数的关系,求得另一根; (2)根据一元二次方程的跟的判别式求出k 的范围,然后再根据根与系数的关系表示出x 1+x 2=4,x 1·x 2=k +1,根据已知的不等式求出k 的范围,从判断是否存在. 试题解析:(1)k="-6" ,方程的另一根是5. ( 2 ) 不存在.理由:由题意得Δ=16-4(k +1)≥0,解得k≤3. ∵x 1,x 2是一元二次方程的两个实数根, ∴x 1+x 2=4,x 1x 2=k +1, 由x 1x 2>x 1+x 2得k +1>4, ∴k >3,∴不存在实数k 使得x 1x 2>x 1+x 2成立.考点:一元二次方程根的判别式,根与系数的关系 27.()11m =,1212x x ==.()724y ≤. 【解析】 【分析】(1)根据方程的系数结合根的判别式,即可得出114m 1m 04=-⨯=-≥V ,由此吉可求得m 的取值范围,根据m 为正整数,可得出m 的值,将m 代入原方程求出x 的值即可; (2)根据根与系数的关系以及一元二次方程根的定义可得1ab m 4=,21b b m 04-+=,由此可得3y m 14=+,根据m 的取值范围进行求解即可. 【详解】()1∵一元二次方程21x x m 04-+=有两个实数根,∴114m 1m 04=-⨯=-≥V , ∴m 1≤.∵m 为正整数, ∴m 1=,当m 1=时,此方程为21x x 04-+=, ∴此方程的根为121x x 2==; ()2∵此方程的两个实数根为a 、b ,∴1ab m 4=,21b b m 04-+=, ∴()22113y ab 2b 2b 1ab 2b b 1m 2m 1m 1444⎛⎫=-++=--+=--+=+ ⎪⎝⎭, ∵()4m y 13=-, 又∵m 1≤, ∴()4m y 113=-≤, ∴y 的取值范围为7y 4≤. 【点睛】本题考查了一元二次方程根的判别式、根与系数的关系、一元二次方程的根等,综合性较强,正确理解题意,熟练运用相关知识是解题的关键. 28.(1)相交线;(2)m=110-. 【解析】 【分析】(1)要证明方程总有两个不相等的实数根,那么只要证明△>0即可; (2)首先利用根与系数的关系可以得到x 1+x 2,x 1x 2,接着利用根与系数的关系得到关于m 的方程,解方程即可解决问题. 【详解】(1)证明:因为一元二次方程x 2+(4m+1)x+2m-1=O 的根的判别式 △=(4m+1)2-4(2m-1)=16m 2+8m+1-8m+4=16m 2+5.因为不论m 取何值时,m 2≥0,所以16m 2+5总大于0,即不论m 为任何实数,方程总有两个不相等的实数根;(2)因为方程两根为x 1、x 2,所以x 1+x 2=-(4m+1),x 1x 2=2m -1, 因为12111+=,2x x 所以121212x x x x +=,所以()411212m m -+=-,所以m=110-.【点睛】本题考查了一元二次方程根的判别式及根与系数的关系,掌握(1) △>0,方程有两个不相等的实数根;(2) △=0,方程有两个相等的实数根;(3) △<0,方程没有实数根,是解答本题的关键. 29.(1)证明见解析;(2)2或3. 【解析】试题分析:(1)表示出根的判别式,得到根的判别式大于0,进而确定出方程总有两个不相等的实数根;(2)由(1)得到方程有两个不相等的实数根,利用求根公式表示出方程的两根:x 1=,x 2=1,要使原方程的根是整数,必须使得x 1==1+为正整数,则m-1=1或2,进而得出符合条件的m 的值.解:(1)∵△=b 2-4ac=(-2m )2-4(m-1)(m+1)=4>0, ∴方程有两个不相等的实数根; (2)由求根公式,得x=, ∴x 1==,x 2==1;∵m 为整数,且方程的两个根均为正整数, ∴x 1==1+,必为正整数,∴m-1=1或2, ∴m=2或m=3.考点:根的判别式;一元二次方程的定义. 30.k≥-13且k≠0. 【解析】试题分析:若一元二次方程有两不等实数根,则根的判别式△=b 2-4ac≥0,建立关于k 的不等式,求出k 的取值范围.还要注意二次项系数不为0. 试题解析:∵a=k ,b=2(k+1),c=k-1,∴△=[2(k+1)]2-4×k×(k-1)=12k+4≥0,解得:k≥-13,∵原方程是一元二次方程,∴k≠0.所以:k的取值范围为:k≥-13且k≠0.考点:根的判别式.。
根与系数的关系(韦达定理)练习题
.一元二次方程根与系数的关系练习题一.选择题(共14小题)1.下列一元二次方程中,两根之和为2的是()A.x2﹣x+2=0 B.x2﹣2x+2=0 C.x2﹣x﹣2=0 D.2x2﹣4x+1=02.小明和小华解同一个一元二次方程时,小明看错一次项系数,解得两根为2,﹣3,而小华看错常数项,解错两根为﹣2,5,那么原方程为()A.x2﹣3x+6=0 B.x2﹣3x﹣6=0 C.x2+3x﹣6=0 D.x2+3x+6=03.(2011•锦江区模拟)若方程x2﹣3x﹣2=0的两实根为x1、x2,则(x1+2)(x2+2)的值为()A.﹣4 B.6C.8D.124.(2007•泰安)若x1,x2是方程x2﹣2x﹣4=0的两个不相等的实数根,则2x12﹣2x1+x22+3的值是()A.19 B.15 C.11 D.35.(2006•贺州)已知a,b是一元二次方程x2+4x﹣3=0的两个实数根,则a2﹣ab+4a的值是()A.6B.0C.7D.﹣16.(1997•天津)若一元二次方程x2﹣ax﹣2a=0的两根之和为4a﹣3,则两根之积为()A.2B.﹣2 C.﹣6或2 D.6或﹣27.已知x的方程x2+mx+n=0的一个根是另一个根的3倍.则()A.3n2=16m2B.3m2=16n C.m=3n D.n=3m28.a、b是方程x2+(m﹣5)x+7=0的两个根,则(a2+ma+7)(b2+mb+7)=()A.365 B.245 C.210 D.1759.在斜边AB为5的Rt△ABC中,∠C=90°,两条直角边a、b是关于x的方程x2﹣(m﹣1)x+m+4=0的两个实数根,则m的值为()A.﹣4 B.4C.8或﹣4 D.810.设m、n是方程x2+x﹣2012=0的两个实数根,则m2+2m+n的值为()A.2008 B.2009 C.2010 D.201111.设x1、x2是二次方程x2+x﹣3=0的两个根,那么x13﹣4x22+19的值等于()A.﹣4 B.8C.6D.012.m,n是方程x2﹣2008x+2009=0的两根,则(m2﹣2007m+2009)(n2﹣2007n+2009)的值是()A.2007 B.2008 C.2009 D.201013.已知x1、x2是一元二次方程x2+x﹣1=0两个实数根,则(x12﹣x1﹣1)(x22﹣x2﹣1)的值为()A.0B.4C.﹣1 D.﹣414.设m,n是方程x2﹣x﹣2012=0的两个实数根,则m2+n的值为()A.1006 B.2011 C.2012 D.2013二.填空题(共5小题)15.若关于x的方程x2+2mx+m2+3m﹣2=0有两个实数根x1、x2,则x1(x2+x1)+x22的最小值为_________.16若关于x的一元二次方程x2+x﹣3=0的两根为x1,x2,则2x1+2x2+x1x2=_________.17.已知关于x的方程x2﹣2ax+a2﹣2a+2=0的两个实数根x1,x2,满足x12+x22=2,则a的值是_________.18.一元二次方程2x2+3x﹣1=0和x2﹣5x+7=0所有实数根的和为_________.19.已知m、n是关于x的一元二次方程x2﹣3x+a=0的两个解,若(m﹣1)(n﹣1)=﹣6,则a的值为_________.三.解答题(共11小题)20.已知关于x的一元二次方程x2+(2m﹣3)x+m2=0的两个不相等的实数根α、β满足,求m 的值.21.是否存在实数m,使关于x的方程2x2+mx+5=0的两实根的平方的倒数和等于?若存在,求出m;若不存在,说明理由.22.已知关于x的方程kx2﹣2x+3=0有两个不相等的实数根x1、x2,则当k为何值时,方程两根之比为1:3?23.已知斜边为5的直角三角形的两条直角边a、b的长是方程x2﹣(2m﹣1)x+4(m﹣1)=0的两个根,求m的值.24.实数k为何值时,方程x2+(2k﹣1)x+1+k2=0的两实数根的平方和最小,并求出这两个实数根.25.已知关于x的方程x2+(2k﹣1)x﹣2k=0的两个实数根x1、x2满足x1﹣x2=2,试求k的值.26.已知x1、x2是方程x2﹣kx+k(k+4)=0的两个根,且满足(x1﹣1)(x2﹣1)=,求k的值.27.关于x的一元二次方程x2+2x+k+1=0的实数解是x1和x2.(1)求k的取值范围;(2)如果x1+x2﹣x1x2<﹣1且k为整数,求k的值.28.已知x1,x2是一元二次方程(a﹣6)x2+2ax+a=0的两个实数根.(1)是否存在实数a,使﹣x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,请你说明理由;(2)求使(x1+1)(x2+1)为负整数的实数a的整数值.29.已知一元二次方程x2﹣2x+m=0.(1)若方程有两个实数根,求m的范围;(2)若方程的两个实数根为x1,x2,且x1+3x2=3,求m的值.30.已知x1、x2是一元二次方程2x2﹣2x+m+1=0的两个实根.(1)求实数m的取值范围;(2)如果m满足不等式7+4x1x2>x12+x22,且m为整数.求m的值.一元二次方程要与系数的关系练习题参考答案与试题解析一.选择题(共14小题)1.下列一元二次方程中,两根之和为2的是()A.x2﹣x+2=0 B.x2﹣2x+2=0 C.x2﹣x﹣2=0 D.2x2﹣4x+1=0考点:根与系数的关系.专题:方程思想.分析:利用一元二次方程的根与系数的关系x1+x2=﹣对以下选项进行一一验证并作出正确的选择.解答:解:A、∵x1+x2=1;故本选项错误;B、∵△=4﹣8=﹣4<0,所以本方程无根;故本选项错误;C、∵x1+x2=1;故本选项错误;D、∵x1+x2=2;故本选项正确;故选D.点评:本题考查了一元二次方程根与系数的关系.解答该题时,需注意,一元二次方程的根与系数的关系是在原方程有实数解的情况下成立的.2.小明和小华解同一个一元二次方程时,小明看错一次项系数,解得两根为2,﹣3,而小华看错常数项,解错两根为﹣2,5,那么原方程为()A.x2﹣3x+6=0 B.x2﹣3x﹣6=0 C.x2+3x﹣6=0 D.x2+3x+6=0考点:根与系数的关系.分析:利用根与系数的关系求解即可.解答:解:小明看错一次项系数,解得两根为2,﹣3,两根之积正确;小华看错常数项,解错两根为﹣2,5,两根之和正确,故设这个一元二次方程的两根是α、β,可得:α•β=﹣6,α+β=﹣3,那么以α、β为两根的一元二次方程就是x2﹣3x﹣6=0,故选:B.点评:此题主要考查了根与系数的关系,若x1、x2是方程ax2+bx+c=0的两根,则有x1+x2=﹣,x1x2=.3.(2011•锦江区模拟)若方程x2﹣3x﹣2=0的两实根为x1、x2,则(x1+2)(x2+2)的值为()A.﹣4 B.6C.8D.12考点:根与系数的关系.分析:根据(x1+2)(x2+2)=x1x2+2x1+2x2+4=x1x2+2(x1+x2)+4,根据一元二次方程根与系数的关系,即两根的和与积,代入数值计算即可.解答:解:∵x1、x2是方程x2﹣3x﹣2=0的两个实数根.∴x1+x2=3,x1•x2=﹣2.又∵(x1+2)(x2+2)=x1x2+2x1+2x2+4=x1x2+2(x1+x2)+4.将x1+x2=3、x1•x2=﹣2代入,得(x1+2)(x2+2)=x1x2+2x1+2x2+4=x1x2+2(x1+x2)+4=(﹣2)+2×3+4=8.故选C点评:将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.4.(2007•泰安)若x1,x2是方程x2﹣2x﹣4=0的两个不相等的实数根,则代数式2x12﹣2x1+x22+3的值是()A.19 B.15 C.11 D.3考点:根与系数的关系;一元二次方程的解.专题:压轴题.分析:欲求2x12﹣2x1+x22+3的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可.解答:解:∵x1,x2是方程x2﹣2x﹣4=0的两个不相等的实数根.∴x12﹣2x1=4,x1x2=﹣4,x1+x2=2.∴2x12﹣2x1+x22+3=x12﹣2x1+x12+x22+3=x12﹣2x1+(x1+x2)2﹣2x1x2+3=4+4+8+3=19.故选A.点评:将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.5.(2006•贺州)已知a,b是一元二次方程x2+4x﹣3=0的两个实数根,则a2﹣ab+4a的值是()A.6B.0C.7D.﹣1考点:根与系数的关系;一元二次方程的解.专题:压轴题.分析:由a,b是一元二次方程x2+4x﹣3=0的两个实数根,可以得到如下四个等式:a2+4a﹣3=0,b2+4b﹣3=0,a+b=﹣4,ab=﹣3;再根据问题的需要,灵活变形.解答:解:把a代入方程可得a2+4a=3,根据根与系数的关系可得ab=﹣3.∴a2﹣ab+4a=a2+4a﹣ab=3﹣(﹣3)=6.故选A点评:本题考查了一元二次方程根与系数的关系.解此类题目要利用解的定义找一个关于a、b的相等关系,再根据根与系数的关系求出ab的值,把所求的代数式化成已知条件的形式,代入数值计算即可.一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系为:x1+x2=﹣,x1•x2=.6.(1997•天津)若一元二次方程x2﹣ax﹣2a=0的两根之和为4a﹣3,则两根之积为()A.2B.﹣2 C.﹣6或2 D.6或﹣2考点:根与系数的关系.专题:方程思想.分析:由两根之和的值建立关于a的方程,求出a的值后,再根据一元二次方程根与系数的关系求两根之积.解答:解;由题意知x1+x2=a=4a﹣3,∴a=1,∴x1x2=﹣2a=﹣2.故选B.点评:本题考查了一元二次方程根与系数的关系,在列方程时要注意各系数的数值与正负,避免出现错误.7.已知x的方程x2+mx+n=0的一个根是另一个根的3倍.则()A.3n2=16m2B.3m2=16n C.m=3n D.n=3m2考点:根与系数的关系.分析:设方程的一个根为a,则另一个根为3a,然后利用根与系数的关系得到两根与m、n之间的关系,整理即可得到正确的答案;解答:解:∵方程x2+mx+n=0的一个根是另一个根的3倍,∴设一根为a,则另一根为3a,由根与系数的关系,得:a•3a=n,a+3a=﹣m,整理得:3m2=16n,故选B.点评:本题考查了根与系数的关系,解题的关键是熟练记忆根与系数的关系,难度不大.8.a、b是方程x2+(m﹣5)x+7=0的两个根,则(a2+ma+7)(b2+mb+7)=()A.365 B.245 C.210 D.175考点:根与系数的关系;一元二次方程的解.专题:计算题.分析:根据一元二次方程的解的意义,知a、b满足方程x2+(m﹣5)x+7=0①,又由韦达定理知a•b=7②;所以,根据①②来求代数式(a2+ma+7)(b2+mb+7)的值,并作出选择即可.解答:解:∵a、b是方程x2+(m﹣5)x+7=0的两个根,∴a、b满足方程x2+(m﹣5)x+7=0,∴a2+ma+7﹣5a=0,即a2+ma+7=5a;b2+mb+7﹣5b=0,即b2+mb+7=5b;又由韦达定理,知a•b=7;∴(a2+ma+7)(b2+mb+7)=25a•b=25×7=175.故选D.点评:本题综合考查了一元二次方程的解、根与系数的关系.求代数式(a2+ma+7)(b2+mb+7)的值时,采用了根与系数的关系与代数式变形相结合的解题方法.9.在斜边AB为5的Rt△ABC中,∠C=90°,两条直角边a、b是关于x的方程x2﹣(m﹣1)x+m+4=0的两个实数根,则m的值为()A.﹣4 B.4C.8或﹣4 D.8考点:根与系数的关系;勾股定理.分析:根据勾股定理求的a2+b2=25,即a2+b2=(a+b)2﹣2ab①,然后根据根与系数的关系求的a+b=m﹣1②ab=m+4③;最后由①②③联立方程组,即可求得m的值.解答:解:∵斜边AB为5的Rt△ABC中,∠C=90°,两条直角边a、b,∴a2+b2=25,又∵a2+b2=(a+b)2﹣2ab,∴(a+b)2﹣2ab=25,①∵a、b是关于x的方程x2﹣(m﹣1)x+m+4=0的两个实数根,∴a+b=m﹣1,②ab=m+4,③由①②③,解得m=﹣4,或m=8;当m=﹣4时,ab=0,∴a=0或b=0,(不合题意)∴m=8;故选D.点评:本题综合考查了根与系数的关系、勾股定理的应用.解答此题时,需注意作为三角形的两边a、b均不为零这一条件.10.设m、n是方程x2+x﹣2012=0的两个实数根,则m2+2m+n的值为()A.2008 B.2009 C.2010 D.2011考点:根与系数的关系;一元二次方程的解.专题:计算题.分析:由于m、n是方程x2+x﹣2012=0的两个实数根,根据根与系数的关系可以得到m+n=﹣1,并且m2+m﹣2012=0,然后把m2+2m+n可以变为m2+m+m+n,把前面的值代入即可求出结果解答:解:∵m、n是方程x2+x﹣2012=0的两个实数根,∴m+n=﹣1,并且m2+m﹣2012=0,∴m2+m=2011,∴m2+2m+n=m2+m+m+n=2012﹣1=2011.故选D.点评:此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.11.设x1、x2是二次方程x2+x﹣3=0的两个根,那么x13﹣4x22+19的值等于()A.﹣4 B.8C.6D.0考点:根与系数的关系.专题:计算题.分析:首先利用根的定义使多项式降次,对代数式进行化简,然后根据根与系数的关系代入计算.解答:解:由题意有x12+x1﹣3=0,x22+x2﹣3=0,即x12=3﹣x1,x22=3﹣x2,所以x13﹣4x22+19=x1(3﹣x1)﹣4(3﹣x2)+19=3x1﹣x12+4x2+7=3x1﹣(3﹣x1)+4x2+7=4(x1+x2)+4,又根据根与系数的关系知道x1+x2=﹣1,所以原式=4×(﹣1)+4=0.故选D.点评:本题考查根与系数的关系和代数式的化简.求出x1、x2的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如x12=3﹣x1,x22=3﹣x2.12.m,n是方程x2﹣2008x+2009=0的两根,则代数式(m2﹣2007m+2009)(n2﹣2007n+2009)的值是()A.2007 B.2008 C.2009 D.2010考点:根与系数的关系;一元二次方程的解.分析:首先根据方程的解的定义,得m2﹣2008m+2009=0,n2﹣2008n+2009=0,则有m2﹣2007m=m﹣2009,n2﹣2007n=n﹣2009,再根据根与系数的关系,得mn=2009,进行求解.解答:解:∵m,n是方程x2﹣2008x+2009=0的两根,∴m2﹣2008m+2009=0,n2﹣2008n+2009=0,mn=2009.∴(m2﹣2007m+2009)(n2﹣2007n+2009)=(m﹣2009+2009)(n﹣2009+2009)=mn=2009.故选C.点评:此题综合运用了方程的解的定义和根与系数的关系.13.已知x1、x2是一元二次方程x2+x﹣1=0两个实数根,则(x12﹣x1﹣1)(x22﹣x2﹣1)的值为()A.0B.4C.﹣1 D.﹣4考点:根与系数的关系.专题:计算题.分析:根据一元二次方程的解的定义,将x1、x2分别代入原方程,求得x12=﹣x1+1、x22=﹣x2+1;然后根据根与系数的关系求得x1x2=﹣1;最后将其代入所求的代数式求值即可.解答:解:∵x1、x2是一元二次方程x2+x﹣1=0两个实数根,∴x12+x1﹣1=0,即x12=﹣x1+1;x22+x2﹣1=0,即x22=﹣x2+1;又根据韦达定理知x1•x2=﹣1∴(x12﹣x1﹣1)(x22﹣x2﹣1)=﹣2x1•(﹣2x2)=4x1•x2=﹣4;故选D.点评:此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.14.设m,n是方程x2﹣x﹣2012=0的两个实数根,则m2+n的值为()A.1006 B.2011 C.2012 D.2013考点:根与系数的关系;一元二次方程的解.分析:利用一元二次方程解的定义,将x=m代入已知方程求得m2=m+2012;然后根据根与系数的关系知m+n=1;最后将m2、m+n的值代入所求的代数式求值即可.解答:解:∵m,n是方程x2﹣x﹣2012=0的两个实数根,∴m2﹣m﹣2012=0,即m2=m+2012;又由韦达定理知,m+n=1,∴m2+n=m+n+2012=1+2012=2013;故选D.点评:本题考查了根与系数的关系、一元二次方程的解.正确理解一元二次方程的解的定义是解题的关键.二.填空题(共5小题)15.(2014•广州)若关于x的方程x2+2mx+m2+3m﹣2=0有两个实数根x1、x2,则x1(x2+x1)+x22的最小值为.考点:根与系数的关系;二次函数的最值.专题:判别式法.分析:由题意可得△=b2﹣4ac≥0,然后根据不等式的最小值计算即可得到结论.解答:解:由题意知,方程x2+2mx+m2+3m﹣2=0有两个实数根,则△=b2﹣4ac=4m2﹣4(m2+3m﹣2)=8﹣12m≥0,∴m≤,∵x1(x2+x1)+x22=(x2+x1)2﹣x1x2=(﹣2m)2﹣(m2+3m﹣2)=3m2﹣3m+2=3(m2﹣m+﹣)+2=3(m﹣)2+;∴当m=时,有最小值;∵<,∴m=成立;∴最小值为;故答案为:.点评:本题考查了一元二次方程根与系数关系,考查了一元二次不等式的最值问题.总结一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.16.(2013•江阴市一模)若关于x的一元二次方程x2+x﹣3=0的两根为x1,x2,则2x1+2x2+x1x2=﹣5.考点:根与系数的关系.分析:根据根与系数的关系列式计算即可求出x1+x2与x1•x2的值,再整体代入即可求解.解答:解:根据根与系数的关系可得,x1•x2=﹣1,x1+x2=﹣23.则2x1+2x2+x1x2=2(x1+x2)+x1x2=﹣2﹣3=﹣5.故答案为:﹣5.点评:本题主要考查了一元二次方程的解和根与系数的关系等知识,在利用根与系数的关系x1+x2=﹣、x1•x2=时,要注意等式中的a、b、c所表示的含义.17.已知关于x的方程x2﹣2ax+a2﹣2a+2=0的两个实数根x1,x2,满足x12+x22=2,则a的值是1.考点:根与系数的关系;根的判别式.分析:先根据根与系数的关系,根据x12+x22=(x1+x2)2﹣2x1x2,即可得到关于a的方程,求出a的值.解答:解:根据一元二次方程的根与系数的关系知:x1+x2=2a,x1x2=a2﹣2a+2.x12+x22=(x1+x2)2﹣2x1x2=(2a)2﹣2(a2﹣2a+2)=2a2+4a﹣4=2.解a2+2a﹣3=0,得a1=﹣3,a2=1.又方程有两实数根,△≥0即(2a)2﹣4(a2﹣2a+2)≥0.解得a≥1.∴a=﹣3舍去.∴a=1.点评:应用了根与系数的关系得到方程两根的和与两根的积,根据两根的平方和可以用两根的和与两根的积表示,即可把求a的值的问题转化为方程求解的问题.18.一元二次方程2x2+3x﹣1=0和x2﹣5x+7=0所有实数根的和为﹣.考点:根与系数的关系.专题:计算题.分析:根据根与系数的关系可知,两根之和等于﹣,两根之积等于,由两个一元二次方程分别找出a,b和c的值,计算出两根之和,然后再把所有的根相加即可求出所求的值.解答:解:由2x2+3x﹣1=0,得到:a=2,b=3,c=﹣1,∵b2﹣4ac=9+8=17>0,即方程有两个不等的实数根,设两根分别为x1和x2,则x1+x2=﹣;由x2﹣5x+7=0,找出a=1,b=﹣5,c=7,∵b2﹣4ac=25﹣28=﹣3<0,∴此方程没有实数根.综上,两方程所有的实数根的和为﹣.故答案为:﹣点评:此题考查了一元二次方程的根与系数的关系,是一道基础题.学生必须掌握利用根与系数关系的前提是根的判别式大于等于0即方程有实数根.19.已知m、n是关于x的一元二次方程x2﹣3x+a=0的两个解,若(m﹣1)(n﹣1)=﹣6,则a的值为﹣4.考点:根与系数的关系.分析:由m、n是关于x的一元二次方程x2﹣3x+a=0的两个解,得出m+n=3,mn=a,整理(m﹣1)(n﹣1)=﹣6,整体代入求得a的数值即可.解答:解:∵m、n是关于x的一元二次方程x2﹣3x+a=0的两个解,∴m+n=3,mn=a,∵(m﹣1)(n﹣1)=﹣6,∴mn﹣(m+n)+1=﹣6即a﹣3+1=﹣6解得a=﹣4.故答案为:﹣4.点评:此题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.三.解答题(共11小题)20.(2004•重庆)已知关于x的一元二次方程x2+(2m﹣3)x+m2=0的两个不相等的实数根α、β满足,求m的值.考点:根与系数的关系;解一元二次方程-因式分解法;根的判别式.分析:首先根据根的判别式求出m的取值范围,利用根与系数的关系可以求得方程的根的和与积,将转化为关于m的方程,求出m的值并检验.解答:解:由判别式大于零,得(2m﹣3)2﹣4m2>0,解得m<.∵即.∴α+β=αβ.又α+β=﹣(2m﹣3),αβ=m2.代入上式得3﹣2m=m2.解之得m1=﹣3,m2=1.∵m2=1>,故舍去.∴m=﹣3.点评:本题主要考查一元二次方程根的判别式,根与系数的关系的综合运用.21.(1998•内江)是否存在实数m,使关于x的方程2x2+mx+5=0的两实根的平方的倒数和等于?若存在,求出m;若不存在,说明理由.考点:根与系数的关系;根的判别式.分析:根据根与系数的关系,两实根的平方的倒数和.即可确定m的取值情况.解答:解:设原方程的两根为x1、x2,则有:,∴.又∵,∴m2﹣20=29,解得m=±7,∴△=m2﹣4×2×5=m2﹣40=(±7)2﹣40=9>0∴存在实数±7,使关于原方程的两实根的平方的倒数和等于.点评:利用根与系数的关系和根的判别式来解决.容易出现的错误是忽视所求的m的值是否满足判别式△.22.已知关于x的方程kx2﹣2x+3=0有两个不相等的实数根x1、x2,则当k为何值时,方程两根之比为1:3?考点:根与系数的关系.分析:利用一元二次方程根与系数的关系可得:,不妨设x1:x2=1:3,则可得x2=3x1,分别代入两个式子,即可求出k的值,再利用一元二次方程根的判别式进行取舍即可.解答:解:由根与系数的关系可得:,不妨设x1:x2=1:3,则可分别代入上面两个式子,消去x1和x2,整理得:4k2﹣k=0,解得k=0或k=,当k=0时,显然不合题意,当k=时,其判别式△=1≥0,所以当k=时,方程两根之比为1:3.点评:本题主要考查一元二次方程根与系数的关系,解题的关键是利用一元二次方程根与系数的关系得到关于k的方程,注意检验是否满足判别式大于0.23.已知斜边为5的直角三角形的两条直角边a、b的长是方程x2﹣(2m﹣1)x+4(m﹣1)=0的两个根,求m的值.考点:根与系数的关系;勾股定理.分析:先利用一元二次方程根与系数的关系得:a+b=2m﹣1,ab=4(m﹣1),再由勾股定理可得a2+b2=52,即(a+b)2﹣2ab=25,把上面可得关于m的方程,解出m的值,再利用一元二次方程根的判别式满足大于或等于0及实际问题对所求m的值进行取舍即可.解答:解:由一元二次方程根与系数的关系得:a+b=2m﹣1,ab=4(m﹣1),再由勾股定理可得a2+b2=52,即(a+b)2﹣2ab=25,把上面两个式子代入可得关于m的方程:(2m﹣1)2﹣8(m﹣1)=25,整理可得:m2﹣3m﹣4=0,解得m=4或m=﹣1,当m=4或m=﹣1一元二次方程的判别式都大于0,但当m=﹣1时,ab=﹣8,不合题意(a,b为三角形的边长,所以不能为负数),所以m=4.点评:本题主要考查一元二次方程根与系数的关系及勾股定理的应用,解题的关键是得出关于m的方程进行求解,容易忽略实际问题所满足的条件而导致错误.24.实数k为何值时,方程x2+(2k﹣1)x+1+k2=0的两实数根的平方和最小,并求出这两个实数根.考点:根与系数的关系;根的判别式.分析:利用一元二次方程根与系数的关系表示出两实根的平方和,得到一个关于k的二次函数,求出取得最小值时k的值,再利用根的判别式进行验证.解答:解:设方程的两根分别为x1和x2,由一元二次方程根与系数的关系可得:,令y=,则y==(2k﹣1)2﹣2(1+k2)=2k2﹣4k﹣1=2(k﹣1)2﹣3,其为开口向上的二次函数,当k=1时,有最小值,但当k=1时,一元二次方程的判别式为△=﹣7<0,所以没有满足△≥0的k的值,所以该题目无解.点评:本题主要考查地一元二次方程根与系数的关系,解题时容易忽略还需要满足一元二次方程有实数根.25.已知关于x的方程x2+(2k﹣1)x﹣2k=0的两个实数根x1、x2满足x1﹣x2=2,试求k的值.考点:根与系数的关系;解一元二次方程-配方法;根的判别式.分析:先根据根与系数的关系,可求出x1+x2,x1•x2的值,再结合x1﹣x2=2,可求出k的值,再利用根的判别式,可求出k的取值范围,从而确定k的值.解答:解:根据题意得x1+x2=﹣=﹣(2k﹣1),x1•x2==﹣2k,又∵x1﹣x2=2,∴(x1﹣x2)2=22,∴(x1+x2)2﹣4x1x2=4,∴(2k﹣1)2﹣4(﹣2k)=4,∴(2k+1)2=4,∴k1=,k2=﹣,又∵△=(2k﹣1)2﹣4×1×(﹣2k)=(2k+1)2,方程有两个不等的实数根,∴(2k+1)2>0,∴k≠﹣,∴k1=,k2=﹣.点评:一元二次方程的两个根x1、x2具有这样的关系:x1+x2=﹣,x1•x2=.26.已知x1、x2是方程x2﹣kx+k(k+4)=0的两个根,且满足(x1﹣1)(x2﹣1)=,求k的值.考点:根与系数的关系;根的判别式.分析:(x1﹣1)(x2﹣1)=,即x1x2﹣(x1+x2)+1=,根据一元二次方程中根与系数的关系可以表示出两个根的和与积,代入x1x2﹣(x1+x2)+1=,即可得到一个关于k的方程,从而求得k的值.解答:解:∵x1+x2=k,x1x2=k(k+4),∵(x1﹣1)(x2﹣1)=,∴x1x2﹣(x1+x2)+1=,∴k(k+4)﹣k+1=,解得k=±3,当k=3时,方程为x2﹣3x+=0,△=9﹣21<0,不合题意舍去;当k=﹣3时,方程为x2+3x﹣=0,△=9+3>0,符合题意.故所求k的值为﹣3.点评:本题考查了根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=.注意运用根与系数的关系的前提条件是:一元二次方程ax2+bx+c=0的根的判别式△≥0.27.(2011•南充)关于x的一元二次方程x2+2x+k+1=0的实数解是x1和x2.(1)求k的取值范围;(2)如果x1+x2﹣x1x2<﹣1且k为整数,求k的值.考点:根与系数的关系;根的判别式;解一元一次不等式组.专题:代数综合题;压轴题.分析:(1)方程有两个实数根,必须满足△=b2﹣4ac≥0,从而求出实数k的取值范围;(2)先由一元二次方程根与系数的关系,得x1+x2=﹣2,x1x2=k+1.再代入不等式x1+x2﹣x1x2<﹣1,即可求得k的取值范围,然后根据k为整数,求出k的值.解答:解:(1)∵方程有实数根,∴△=22﹣4(k+1)≥0,(2分)解得k≤0.故K的取值范(4分)围是k≤0.(2)根据一元二次方程根与系数的关系,得x1+x2=﹣2,x1x2=k+1(5分)x1+x2﹣x1x2=﹣2﹣(k+1).由已知,得﹣2﹣(k+1)<﹣1,解得k>﹣2.(6分)又由(1)k≤0,∴﹣2<k≤0.(7分)∵k为整数,∴k的值为﹣1和0.(8分)点评:本题综合考查了根的判别式和根与系数的关系.在运用一元二次方程根与系数的关系解题时,一定要注意其前提是此方程的判别式△≥0.28.(2012•怀化)已知x1,x2是一元二次方程(a﹣6)x2+2ax+a=0的两个实数根.(1)是否存在实数a,使﹣x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,请你说明理由;(2)求使(x1+1)(x2+1)为负整数的实数a的整数值.考点:根与系数的关系;根的判别式.分析:根据根与系数的关系求得x1x2=,x1+x2=﹣;根据一元二次方程的根的判别式求得a的取值范围;(1)将已知等式变形为x1x2=4+(x2+x1),即=4+,通过解该关于a的方程即可求得a的值;(2)根据限制性条件“(x1+1)(x2+1)为负整数”求得a的取值范围,然后在取值范围内取a的整数值.解答:解:∵x1,x2是一元二次方程(a﹣6)x2+2ax+a=0的两个实数根,∴由根与系数的关系可知,x1x2=,x1+x2=﹣;∵一元二次方程(a﹣6)x2+2ax+a=0有两个实数根,∴△=4a2﹣4(a﹣6)•a≥0,且a﹣6≠0,解得,a≥0,且a≠6;(1)∵﹣x1+x1x2=4+x2,∴x1x2=4+(x1+x2),即=4﹣,解得,a=24>0;∴存在实数a,使﹣x1+x1x2=4+x2成立,a的值是24;(2)∵(x1+1)(x2+1)=x1x2+(x1+x2)+1=﹣+1=﹣,∴当(x1+1)(x2+1)为负整数时,a﹣6>0,且a﹣6是6的约数,∴a﹣6=6,a﹣6=3,a﹣6=2,a﹣6=1,∴a=12,9,8,7;∴使(x1+1)(x2+1)为负整数的实数a的整数值有12,9,8,7.点评:本题综合考查了根与系数的关系、根的判别式.注意:一元二次方程ax2+bx+c=0(a、b、c是常数)的二次项系数a≠0.29.(2010•东莞)已知一元二次方程x2﹣2x+m=0.(1)若方程有两个实数根,求m的范围;(2)若方程的两个实数根为x1,x2,且x1+3x2=3,求m的值.考点:根与系数的关系;根的判别式.专题:压轴题.分析:(1)一元二次方程x2﹣2x+m=0有两个实数根,△≥0,把系数代入可求m的范围;(2)利用两根关系,已知x1+x2=2结合x1+3x2=3,先求x1、x2,再求m.解答:解:(1)∵方程x2﹣2x+m=0有两个实数根,∴△=(﹣2)2﹣4m≥0,解得m≤1;(2)由两根关系可知,x1+x2=2,x1•x2=m,解方程组,解得,∴m=x1•x2=.点评:本题考查了一元二次方程根的判别式,两根关系的运用,要求熟练掌握.30.(2005•福州)已知x1、x2是一元二次方程2x2﹣2x+m+1=0的两个实根.(1)求实数m的取值范围;(2)如果m满足不等式7+4x1x2>x12+x22,且m为整数.求m的值.考点:根与系数的关系;根的判别式.分析:(1)方程有两个实数根,必须满足△=b2﹣4ac≥0,从而求出实数m的取值范围;(2)利用根与系数的关系,不等式7+4x1x2>x12+x22,即(x1+x2)2﹣6x1x2﹣7<0.由一元二次方程根与系数的关系,得x1+x2=1,x1x2=.代入整理后的不等式,即可求得m的值.解答:解:(1)∵a=2,b=﹣2,c=m+1.∴△=(﹣2)2﹣4×2×(m+1)=﹣4﹣8m.当﹣4﹣8m≥0,即m≤﹣时.方程有两个实数根.(2)整理不等式7+4x1x2>x12+x22,得(x1+x2)2﹣6x1x2﹣7<0.由一元二次方程根与系数的关系,得x1+x2=1,x1x2=.代入整理后的不等式得1﹣3(m+1)﹣7<0,解得m>﹣3.又∵m≤﹣,且m为整数.∴m的值为﹣2,﹣1.点评:一元二次方程ax2+bx+c=0(a,b,c为常数,且a≠0,b2﹣4ac≥0),根与系数的关系是:x1+x2=,x1x2=.选择是难,更何况是心灵选择。
一元二次方程根与系数的关系专项练习(含解析)
同步测验一、选择题(本题共计10小题,每题3分,共计30分)1.若关于x的一元二次方程x2−4x−m2=0有两个实数根x1,x2,则m2(1x1+1x2)=()A.m 44B.−m44C.4D.−42.关于x的一元二次方程x2+mx−6=0的一个根是3,则另一个根是()A.−1B.1C.−2D.23.已知x1,x2是方程x2−2x−1=0的两根,则x1+x2的值为()A.1B.−2C.−1D.24.一元二次方程x2+4x−3=0的两根为x1、x2,则x1⋅x2的值是()A.4B.−4C.3D.−35.已知a、b是方程x2−4x+2=0的两个根,则a2−2a+2b的值为()A.−4B.6C.−8D.86.若x1、x2是一元二次方程2x2−3x+1=0的两个根,则x12+x22的值是()A.54B.94C.114D.77.已知x1,x2是关于x的元二次方程x2−(5m−6)x+m2=0的两个不相等的实根,且满足x1+x2=m2,则m的值是()A.2B.3C.2或3D.−2或−38.x1,x2是关于x的一元二次方程x2−mx+m−2=0的两个实数根,是否存在实数m使1x1+1x2=0成立?则正确的结论是()A.m=0时成立B.m=2时成立C.m=0或2时成立D.不存在9.关于x的方程x2−(k+3)x+3k=0的两根为x1,x2,1x1+1x2=23,则k值为()A.1B.2C.3D.410.下列方程中,两根是−2和−3的方程是()A.x2−5x+6=0B.x2−5x−6=0C.x2+5x−6=0D.x2+5x+6=0二、填空题(本题共计10小题,每题3分,共计30分)11.一元二次方程x2−2x−1=0的两根为x1,x2,则x12+2x1−2x1x2的值为________.12.设x1,x2是方程2x2+4x−3=0的两个根,则x12+x22=________.13.方程x2−2ax+3=0有一个根是1,则另一根为________,a的值是________.14.已知2−√5是一元二次方程x2−4x+c=0的一个根,则方程的另一个根是________.15.已知x1,x2分别是一元二次方程x2−x−6=0的两个实数根,则x1+x2=________.16.请写出方程两个根互为相反数的一个一元二次方程________.17.已知m,n是方程x2−2017x+2018=0的两根,则(n2−2018n+2 019)(m2−2018m+2019)=________.18.以−3,4为解的一元二次方程可以为________.19.已知关于x的一元二次方程x2+bx+c=0的两根分别为x1=1,x2=2,则b=________;c=________.20.关于x的方程x2−2√3x+1=0的两根分别为x1,x2,则x1x2+x2x1=________.三、解答题(本题共计6小题,每题10分,共计60分)21.已知方程x2−2x−15=0的两个根分别是a和b,求代数式(a−b)2+4b(a−b)+4b2的值.22.已知关于x的一元二次方程x2−2(k−1)x+k2−1=0有两个不相等的实数根.(1)求k的取值范围;(2)若该方程的两根分别为x1,x2,且满足|x1+x2|=2x1x2,求k的值.23.回答下列问题:(1)解方程:x2−2x−1=0;(2)已知α,β是方程x2+2x−3=0的两个实数根,求α2β+αβ2的值.24.已知关于x的一元二次方程x2+4x+m−1=0.(1)若m是使得方程有两个不相等的实数根的最大正整数,求m的值;(2)设x1、x2是(1)中你所得到的方程的两个实数根,求:−x1−x2+x1x2的值.25.设x1、x2是方程x2+2x−2=0的两个实数根,求x2x1+x1x2的值.26.已知x1、x2为方程x2+3x+1=0的两实根.(1)填空:x1+x2=________;x1⋅x2=________.(2)求代数式x12+x22的值.同步测验学校:__________班级:__________姓名:__________考号:__________ 一、选择题(本题共计10小题,每题3分,共计30分)1.若关于x的一元二次方程x2−4x−m2=0有两个实数根x1,x2,则m2(1x1+1x2)=()A.m 44B.−m44C.4D.−4【解答】解:∵x2−4x−m2=0有两个实数根x1,x2,∴{x1+x2=4,x1x2=−m2,∴则m2(1x1+1x2)=m2⋅x1+x2x1x2=m2⋅4−m2=−4.故选D.2.关于x的一元二次方程x2+mx−6=0的一个根是3,则另一个根是()A.−1B.1C.−2D.2【解答】解:设关于x的一元二次方程x2+mx−6=0的另一个根为t,则3t=−6,解得t=−2.故选C.3.已知x1,x2是方程x2−2x−1=0的两根,则x1+x2的值为()A.1B.−2C.−1D.2【解答】解:∵x1,x2是方程x2−2x−1=0的两根,∴x1+x2=2.故选D.4.一元二次方程x2+4x−3=0的两根为x1、x2,则x1⋅x2的值是()A.4B.−4C.3D.−3【解答】解:x 1⋅x 2=−3. 故选D .5.已知a 、b 是方程x 2−4x +2=0的两个根,则a 2−2a +2b 的值为( ) A.−4 B.6 C.−8 D.8【解答】解:∵a 、b 是方程x 2−4x +2=0的两个根, ∴a 2−4a +2=0,a +b =4, ∴a 2−4a =−2,2a +2b =8, ∴a 2−4a +2a +2b =6, ∴a 2−2a +2b =6, 故选B .6.若x 1、x 2是一元二次方程2x 2−3x +1=0的两个根,则x 12+x 22的值是( )A.54 B.94C.114D.7【解答】 解:由题意知,x 1x 2=12,x 1+x 2=32,∴x 12+x 22=(x 1+x 2)2−2x 1x 2=(32)2−2×12=54.故选A .7.已知x 1,x 2是关于x 的元二次方程x 2−(5m −6)x +m 2=0的两个不相等的实根,且满足x 1+x 2=m 2,则m 的值是( ) A.2 B.3 C.2或3 D.−2或−3【解答】∵x 1,x 2是关于x 的元二次方程x 2−(5m −6)x +m 2=0的两个不相等的实根, ∴x 1+x 2=5m −6,△=[−(5m −6)]2−4m 2>0, 解得m <67或m >2, ∵x 1+x 2=m 2, ∴5m −6=m 2,解得m =2(舍)或m =3,8.x 1,x 2是关于x 的一元二次方程x 2−mx +m −2=0的两个实数根,是否存在实数m 使1x 1+1x 2=0成立?则正确的结论是()A.m=0时成立B.m=2时成立C.m=0或2时成立D.不存在【解答】解:∵x1,x2是关于x的一元二次方程x2−mx+m−2=0的两个实数根,∴x1+x2=m,x1x2=m−2.假设存在实数m使1x1+1x2=0成立,则x1+x2x1x2=0,∴mm−2=0,∴m=0.当m=0时,方程x2−mx+m−2=0即为x2−2=0,此时Δ=8>0,∴m=0符合题意.故选A.9.关于x的方程x2−(k+3)x+3k=0的两根为x1,x2,1x1+1x2=23,则k值为()A.1B.2C.3D.4【解答】解:∵关于x的方程x2−(k+3)x+3k=0的两根为x1,x2,∴x1+x2=k+3,x1⋅x2=3k,∵1x1+1x2=23,∴x1+x2x1⋅x2=23,即k+33k =23,解得k=3.经检验k=3符合题意.故选C.10.下列方程中,两根是−2和−3的方程是()A.x2−5x+6=0B.x2−5x−6=0C.x2+5x−6=0D.x2+5x+6=0【解答】解:设两根是−2和−3的方程为:x2+ax+b=0,根据根与系数的关系,∴(−2)+(−3)=−a=5,(−2)×(−3)=b=6,故方程为:x2+5x+6=0.故选D.二、填空题(本题共计10小题,每题3分,共计30分)11.一元二次方程x2−2x−1=0的两根为x1,x2,则x12+2x1−2x1x2的值为________.【解答】解:∵一元二次方程x2−2x−1=0的两根为x1,x2,∴x12=1+2x1,x1x2=−1,x1+x2=2,∴x12+2x2−2x1x2=1+2(x1+x2)−2x1x2=1+4+2=7.故答案为:7.12.设x1,x2是方程2x2+4x−3=0的两个根,则x12+x22=________.【解答】,解:根据题意得x1+x2=−2,x1x2=−32)=7.所以x12+x22=(x1+x2)2−2x1x2=(−2)2−2×(−32故答案为7.13.方程x2−2ax+3=0有一个根是1,则另一根为________,a的值是________.【解答】解:设方程的另一根为x2,根据题意得1⋅x2=3,则x2=3;∵1+x2=2a,∴1+3=2a,∴a=2;故答案为3,2.14.已知2−√5是一元二次方程x2−4x+c=0的一个根,则方程的另一个根是________.【解答】解:设方程的另一根为x1,由x1+2−√5=4,得x1=2+√5.15.已知x1,x2分别是一元二次方程x2−x−6=0的两个实数根,则x1+x2=________.【解答】解:∵一元二次方程x2−x−6=0的二次项系数a=1,一次项系数b=−1,又∵x1,x2分别是一元二次方程x2−x−6=0的两个实数根,∴根据韦达定理,知x 1+x 2=−b a =−−11=1;故答案是:1.16.请写出方程两个根互为相反数的一个一元二次方程________. 【解答】解:例如,x 2−4=0.(答案不唯一).17.已知m ,n 是方程x 2−2017x +2018=0的两根,则(n 2−2018n +2 019)(m 2−2018m +2019)=________. 【解答】∵m 、n 是方程x 2−2 017x +2 018=0的两根,∴m 2−2017m =−2018,n 2−2017n =−2018,m +n =2017,mn =2018, ∴原式=(−n +1)(−m +1)=mn −(m +n)+1=2018−2017+1=2. 18.以−3,4为解的一元二次方程可以为________. 【解答】解:根据根与系数的关系可知:在二次项系数为1时,一次项系数等于两根之和的相反数即−(−3+4)=−1,常数项等于两根之积即−3×4=−12, 故以−3,4为解的一元二次方程为:x 2−x +12=0, 故答案为:x 2−x +12=0.19.已知关于x 的一元二次方程x 2+bx +c =0的两根分别为x 1=1,x 2=2,则b =________;c =________. 【解答】解:∵关于x 的一元二次方程x 2+bx +c =0的两根分别为x 1=1,x 2=2, ∴1+2=−b ,1×2=c , ∴b =−3,c =2, 故答案为:−3,2.20.关于x 的方程x 2−2√3x +1=0的两根分别为x 1,x 2,则x 1x 2+x2x 1=________.【解答】解:根据题意得x 1+x 2=2√3,x 1x 2=1, 所以原式=x 12+x 22x 1x 2=(x 1+x 2)2x 1x 2=(2√3)2−2×11=10.故答案为10.三、解答题(本题共计6小题,每题10分,共计60分)21.已知方程x2−2x−15=0的两个根分别是a和b,求代数式(a−b)2+4b(a−b)+4b2的值.【解答】解:根据题意得a+b=2,ab=−15,原式=(a+b)2−4ab+4ab−4b2+4b2=(a+b)2,所以原式=22=4.22.已知关于x的一元二次方程x2−2(k−1)x+k2−1=0有两个不相等的实数根.(1)求k的取值范围;(2)若该方程的两根分别为x1,x2,且满足|x1+x2|=2x1x2,求k的值.【解答】解:(1)由题意知:Δ=[−2(k−1)]2−4(k2−1)=−8k+8,∵方程有两个不相等的实数根,∴−8k+8>0,解得:k<1.故k的取值范围是k<1.(2)由韦达定理可知:x1x2=k2−1,x1+x2=2(k−1),∵|x1+x2|=2x1x2,∴|2(k−1)|=2k2−2,∵k<1,∴2−2k=2k2−2,整理得:k2+k−2=0,解得:k=1(舍去)或k=−2.故k的值为−2.23.回答下列问题:(1)解方程:x2−2x−1=0;(2)已知α,β是方程x2+2x−3=0的两个实数根,求α2β+αβ2的值.【解答】解:(1)x2−2x−1=0,x2−2x=1,(x−1)2=2,x−1=±√2,∴x=√2+1或x=1−√2(2)由根与系数的关系可知,α+β=−2,αβ=−3,∴α2β+αβ2=αβ(α+β)=−3×(−2)=6..24.已知关于x的一元二次方程x2+4x+m−1=0.(1)若m是使得方程有两个不相等的实数根的最大正整数,求m的值;(2)设x1、x2是(1)中你所得到的方程的两个实数根,求:−x1−x2+x1x2的值.【解答】解:(1)当Δ>0时,方程有两个不相等的实数根,即42−4(m−1)>0,解得m<5,∴m的最大正整数为m=4.(2)由(1)得x1x2=3,x1+x2=−4,则−x1−x2+x1x2=−(x1+x2)+x1x2=−(−4)+3=7.25.设x1、x2是方程x2+2x−2=0的两个实数根,求x2x1+x1x2的值.【解答】解:根据题意得x1+x2=−2,x1x2=−2,所以x2x1+x1x2=x12+x22x1x2=(x1+x2)2−2x1x2x1x2=(−2)2−2×(−2)−2=−4.26.已知x1、x2为方程x2+3x+1=0的两实根.(1)填空:x1+x2=________;x1⋅x2=________.(2)求代数式x12+x22的值.【解答】解:(1)x1+x2=−3,x1x2=1;(2)x12+x22=(x1+x2)2−2x1x2=(−3)2−2×1=7.11。
一元二次方程根与系数的关系习题精选(含答案)
一元二次方程根与系数的关系习题精选〔含答案〕一.选择题〔共22小题〕1.〔2021•宜宾〕假设关于x的一元二次方程的两个根为x1=1,x2=2,那么这个方程是〔〕A.x2+3x﹣2=0 B.x2﹣3x+2=0 C.x2﹣2x+3=0 D.x2+3x+2=02.〔2021•昆明〕x1,x2是一元二次方程x2﹣4x+1=0的两个实数根,那么x1•x2等于〔〕A.﹣4 B.﹣1 C.1D.43.〔2021•玉林〕x1,x2是关于x的一元二次方程x2﹣mx+m﹣2=0的两个实数根,是否存在实数m使+=0成立?那么正确的结论是〔〕A.m=0时成立B.m=2时成立C.m=0或2时成立D.不存在4.〔2021•南昌〕假设α,β是方程x2﹣2x﹣3=0的两个实数根,那么α2+β2的值为〔〕A.10 B.9C.7D.55.〔2021•贵港〕假设关于x的一元二次方程x2+bx+c=0的两个实数根分别为x1=﹣2,x2=4,那么b+c的值是〔〕A.﹣10 B.10 C.﹣6 D.﹣16.〔2021•烟台〕关于x的方程x2﹣ax+2a=0的两根的平方和是5,那么a的值是〔〕A.﹣1或5 B.1C.5D.﹣17.〔2021•攀枝花〕假设方程x2+x﹣1=0的两实根为α、β,那么以下说法不正确的选项是〔〕A.α+β=﹣1 B.αβ=﹣1 C.α2+β2=3 D.+=﹣18.〔2021•威海〕方程x2﹣〔m+6〕x+m2=0有两个相等的实数根,且满足x1+x2=x1x2,那么m的值是〔〕A.﹣2或3 B.3C.﹣2 D.﹣3或29.〔2021•长沙模拟〕假设关于x的一元二次方程x2+〔k+3〕x+2=0的一个根是﹣2,那么另一个根是〔〕A.2B.1C.﹣1 D.010.〔2021•黄冈样卷〕设a,b是方程x2+x﹣2021=0的两个实数根,那么a2+2a+b的值为〔〕A.2021 B.2021 C.2021 D.202111.〔2021•江西模拟〕一元二次方程x2﹣2x﹣3=0与3x2﹣11x+6=0的所有根的乘积等于〔〕A.﹣6 B.6C.3D.﹣312.〔2021•峨眉山市二模〕x1、x2是方程x2﹣〔k﹣2〕x+k2+3k+5=0的两个实数根,那么的最大值是〔〕A.19 B.18 C.15 D.1313.〔2021•陵县模拟〕:x1、x2是一元二次方程x2+2ax+b=0的两根,且x1+x2=3,x1x2=1,那么a、b的值分别是〔〕A.a=﹣3,b=1 B.a=3,b=1 C.a=﹣,b=﹣1 D.a=﹣,b=114.〔2021•湖北〕α,β是一元二次方程x2﹣5x﹣2=0的两个实数根,那么α2+αβ+β2的值为〔〕A.﹣1 B.9C.23 D.2715.〔2021•桂林〕关于x的一元二次方程x2+2x+a﹣1=0有两根为x1和x2,且x12﹣x1x2=0,那么a的值是〔〕A.a=1 B.a=1或a=﹣2 C.a=2 D.a=1或a=216.〔2021•天河区二模〕一元二次方程x2﹣4x+3=0两根为x1、x2,那么x1+x2=〔〕A.4B.3C.﹣4 D.﹣317.〔2021•青神县一模〕m和n是方程2x2﹣5x﹣3=0的两根,那么的值等于〔〕A.B.C.D.18.〔2021•莱芜〕m、n是方程x2+2x+1=0的两根,那么代数式的值为〔〕A.9B.±3 C.3D.519.〔2021•天门〕如果关于x的一元二次方程x2+4x+a=0的两个不相等实数根x1,x2满足x1x2﹣2x1﹣2x2﹣5=0,那么a的值为〔〕A.3B.﹣3 C.13 D.﹣1320.〔2021•锦江区模拟〕假设方程x2﹣3x﹣2=0的两实根为x1、x2,那么〔x1+2〕〔x2+2〕的值为〔〕A.﹣4 B.6C.8D.1221.〔2021•鄂州模拟〕p2﹣p﹣1=0,1﹣q﹣q2=0,且pq≠1,那么的值为〔〕A.1B.2C.D.22.〔2021•滨湖区一模〕假设△ABC的一边a为4,另两边b、c分别满足b2﹣5b+6=0,c2﹣5c+6=0,那么△ABC 的周长为〔〕A.9B.10 C.9或10 D.8或9或10二.填空题〔共4小题〕23.〔2021•莱芜〕假设关于x的方程x2+〔k﹣2〕x+k2=0的两根互为倒数,那么k=_________.24.〔2021•呼和浩特〕m,n是方程x2+2x﹣5=0的两个实数根,那么m2﹣mn+3m+n=_________.25.〔2021•广州〕假设关于x的方程x2+2mx+m2+3m﹣2=0有两个实数根x1、x2,那么x1〔x2+x1〕+x22的最小值为_________.26.〔2021•桂林〕关于x的一元二次方程x2+〔2k+1〕x+k2﹣2=0的两根为x1和x2,且〔x1﹣2〕〔x1﹣x2〕=0,那么k的值是_________.三.解答题〔共4小题〕27.〔2021•泸州〕x1,x2是关于x的一元二次方程x2﹣2〔m+1〕x+m2+5=0的两实数根.〔1〕假设〔x1﹣1〕〔x2﹣1〕=28,求m的值;〔2〕等腰△ABC的一边长为7,假设x1,x2恰好是△ABC另外两边的边长,求这个三角形的周长.28.〔2021•日照二模〕x1,x2是关于x的一元二次方程x2+〔3a﹣1〕x+2a2﹣1=0的两个实数根,其满足〔3x1﹣x2〕〔x1﹣3x2〕=﹣80.求实数a的所有可能值.29.〔2021•孝感〕关于x的一元二次方程x2﹣〔2k+1〕x+k2+2k=0有两个实数根x1,x2.〔1〕求实数k的取值范围;〔2〕是否存在实数k使得x1•x2﹣x12﹣x22≥0成立?假设存在,请求出k的值;假设不存在,请说明理由.30.〔2001•苏州〕关于x的一元二次方程,〔1〕求证:不管k取何值,方程总有两个不相等的实数根;〔2〕设x1、x2是方程的两个根,且x12﹣2kx1+2x1x2=5,求k的值.一元二次方程根与系数的关系习题精选〔含答案〕参考答案与试题解析一.选择题〔共22小题〕1.〔2021•宜宾〕假设关于x的一元二次方程的两个根为x1=1,x2=2,那么这个方程是〔〕A.x2+3x﹣2=0 B.x2﹣3x+2=0 C.x2﹣2x+3=0 D.x2+3x+2=0考点:根与系数的关系.分析:解决此题可用验算法,因为两实数根的和是1+2=3,两实数根的积是1×2=2.解题时检验两根之和是否为3及两根之积是否为2即可.解答:解:两个根为x1=1,x2=2那么两根的和是3,积是2.A、两根之和等于﹣3,两根之积等于﹣2,所以此选项不正确;B、两根之和等于3,两根之积等于2,所以此选项正确;C、两根之和等于2,两根之积等于3,所以此选项不正确;D、两根之和等于﹣3,两根之积等于2,所以此选项不正确,应选:B.点评:验算时要注意方程中各项系数的正负.2.〔2021•昆明〕x1,x2是一元二次方程x2﹣4x+1=0的两个实数根,那么x1•x2等于〔〕A.﹣4 B.﹣1 C.1D.4考点:根与系数的关系.专题:计算题.分析:直接根据根与系数的关系求解.解答:解:根据韦达定理得x1•x2=1.应选:C.点评:此题考查了一元二次方程ax2+bx+c=0〔a≠0〕的根与系数的关系:假设方程两个为x1,x2,那么x1+x2=﹣,x1•x2=.3.〔2021•玉林〕x1,x2是关于x的一元二次方程x2﹣mx+m﹣2=0的两个实数根,是否存在实数m使+=0成立?那么正确的结论是〔〕A.m=0时成立B.m=2时成立C.m=0或2时成立D.不存在考点:根与系数的关系.分析:先由一元二次方程根与系数的关系得出,x1+x2=m,x1x2=m﹣2.假设存在实数m使+=0成立,那么=0,求出m=0,再用判别式进行检验即可.解答:解:∵x1,x2是关于x的一元二次方程x2﹣mx+m﹣2=0的两个实数根,∴x1+x2=m,x1x2=m﹣2.假设存在实数m使+=0成立,那么=0,∴=0,∴m=0.当m=0时,方程x2﹣mx+m﹣2=0即为x2﹣2=0,此时△=8>0,∴m=0符合题意.应选:A.点评:此题主要考查了一元二次方程根与系数的关系:如果x1,x2是方程x2+px+q=0的两根时,那么x1+x2=﹣p,x1x2=q.4.〔2021•南昌〕假设α,β是方程x2﹣2x﹣3=0的两个实数根,那么α2+β2的值为〔〕A.10 B.9C.7D.5考点:根与系数的关系.分析:根据根与系数的关系求得α+β=2,αβ=﹣3,那么将所求的代数式变形为〔α+β〕2﹣2αβ,将其整体代入即可求值.解答:解:∵α,β是方程x2﹣2x﹣3=0的两个实数根,∴α+β=2,αβ=﹣3,∴α2+β2=〔α+β〕2﹣2αβ=22﹣2×〔﹣3〕=10.应选:A.点评:此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.5.〔2021•贵港〕假设关于x的一元二次方程x2+bx+c=0的两个实数根分别为x1=﹣2,x2=4,那么b+c的值是〔〕A.﹣10 B.10 C.﹣6 D.﹣1考点:根与系数的关系.分析:根据根与系数的关系得到﹣2+4=﹣b,﹣2×4=c,然后可分别计算出b、c的值,进一步求得答案即可.解答:解:∵关于x的一元二次方程x2+bx+c=0的两个实数根分别为x1=﹣2,x2=4,∴根据根与系数的关系,可得﹣2+4=﹣b,﹣2×4=c,解得b=﹣2,c=﹣8∴b+c=﹣10.应选:A.点评:此题考查根与系数的关系,解答此题的关键是熟知一元二次方程根与系数的关系:x1+x2=﹣,x1x2=.6.〔2021•烟台〕关于x的方程x2﹣ax+2a=0的两根的平方和是5,那么a的值是〔〕A.﹣1或5 B.1C.5D.﹣1考点:根与系数的关系;根的判别式.专题:计算题.分析:设方程的两根为x1,x2,根据根与系数的关系得到x1+x2=a,x1•x2=2a,由于x12+x22=5,变形得到〔x1+x2〕2﹣2x1•x2=5,那么a2﹣4a﹣5=0,然后解方程,满足△≥0的a的值为所求.解答:解:设方程的两根为x1,x2,那么x1+x2=a,x1•x2=2a,∵x12+x22=5,∴〔x1+x2〕2﹣2x1•x2=5,∴a2﹣4a﹣5=0,∴a1=5,a2=﹣1,∵△=a2﹣8a≥0,∴a=﹣1.应选:D.点评:此题考查了一元二次方程ax2+bx+c=0〔a≠0〕的根与系数的关系:假设方程的两根为x1,x2,那么x1+x2=﹣,x1•x2=.也考查了一元二次方程的根的判别式.7.〔2021•攀枝花〕假设方程x2+x﹣1=0的两实根为α、β,那么以下说法不正确的选项是〔〕A.α+β=﹣1 B.αβ=﹣1 C.α2+β2=3 D.+=﹣1考点:根与系数的关系.专题:计算题.分析:先根据根与系数的关系得到α+β=﹣1,αβ=﹣1,再利用完全平方公式变形α2+β2得到〔α+β〕2﹣2αβ,利用通分变形+得到,然后利用整体代入的方法分别计算两个代数式的值,这样可对各选项进行判断.解答:解:根据题意得α+β=﹣1,αβ=﹣1.所以α2+β2=〔α+β〕2﹣2αβ=〔﹣1〕2﹣2×〔﹣1〕=3;+===1.应选:D.点评:此题考查了一元二次方程ax2+bx+c=0〔a≠0〕的根与系数的关系:假设方程两个为x1,x2,那么x1+x2=﹣,x1•x2=.8.〔2021•威海〕方程x2﹣〔m+6〕x+m2=0有两个相等的实数根,且满足x1+x2=x1x2,那么m的值是〔〕A.﹣2或3 B.3C.﹣2 D.﹣3或2考点:根与系数的关系;根的判别式.专题:判别式法.分析:根据根与系数的关系有:x1+x2=m+6,x1x2=m2,再根据x1+x2=x1x2得到m的方程,解方程即可,进一步由方程x2﹣〔m+6〕+m2=0有两个相等的实数根得出b2﹣4ac=0,求得m的值,由相同的解解决问题.解答:解:∵x1+x2=m+6,x1x2=m2,x1+x2=x1x2,∴m+6=m2,解得m=3或m=﹣2,∵方程x2﹣〔m+6〕x+m2=0有两个相等的实数根,∴△=b2﹣4ac=〔m+6〕2﹣4m2=﹣3m2+12m+36=0解得m=6或m=﹣2∴m=﹣2.应选:C.点评:此题考查了一元二次方程ax2+bx+c=0〔a≠0,a,b,c为常数〕根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.同时考查了一元二次方程ax2+bx+c=0〔a≠0〕的根与系数的关系:假设方程的两根为x1,x2,那么x1+x2=﹣,x1•x2=.9.〔2021•长沙模拟〕假设关于x的一元二次方程x2+〔k+3〕x+2=0的一个根是﹣2,那么另一个根是〔〕A.2B.1C.﹣1 D.0考点:根与系数的关系.分析:根据一元二次方程的根与系数的关系x1•x2=来求方程的另一个根.解答:解:设x1、x2是关于x的一元二次方程x2+〔k+3〕x+2=0的两个根,由韦达定理,得x1•x2=2,即﹣2x2=2,解得,x2=﹣1.即方程的另一个根是﹣1.应选C.点评:此题主要考查了根与系数的关系.在利用根与系数的关系x1+x2=﹣、x1•x2=时,要注意等式中的a、b、c所表示的含义.10.〔2021•黄冈样卷〕设a,b是方程x2+x﹣2021=0的两个实数根,那么a2+2a+b的值为〔〕A.2021 B.2021 C.2021 D.2021考点:根与系数的关系;一元二次方程的解.专题:计算题.分析:先根据一元二次方程的解的定义得到a2+a﹣2021=0,即a2+a=2021,那么a2+2a+b变形为a+b+2021,再根据根与系数的关系得到a+b=﹣1,然后利用整体代入的方法计算.解答:解:∵a是方程x2+x﹣2021=0的根,∴a2+a﹣2021=0,即a2+a=2021,∴a2+2a+b=a+b+2021,∵a,b是方程x2+x﹣2021=0的两个实数根∴a+b=﹣1,∴a2+2a+b=a+b+2021=﹣1+2021=2021.应选C.点评:此题考查了根与系数的关系:假设x1,x2是一元二次方程ax2+bx+c=0〔a≠0〕的两根时,x1+x2=,x1x2=.也考查了一元二次方程的解.11.〔2021•江西模拟〕一元二次方程x2﹣2x﹣3=0与3x2﹣11x+6=0的所有根的乘积等于〔〕A.﹣6 B.6C.3D.﹣3考点:根与系数的关系.分析:由一元二次方程x2﹣2x﹣3=0和3x2﹣11x+6=0先用判别式判断方程是否有解,再根据根与系数的关系,即可直接得出答案.解答:解:由一元二次方程x2﹣2x﹣3=0,∵△=4+16=20>0,∴x1x2=﹣3,由一元二次方程3x2﹣11x+6=0,∵△=121﹣4×3×6=49>0,∴x1x2=2∴﹣3×2=﹣6应选A.点评:此题考查了一元二次方程根与系数的关系.解此类题目要把代数式变形为两根之积的形式.12.〔2021•峨眉山市二模〕x1、x2是方程x2﹣〔k﹣2〕x+k2+3k+5=0的两个实数根,那么的最大值是〔〕A.19 B.18 C.15 D.13考点:根与系数的关系;二次函数的最值.分析:根据x1、x2是方程x2﹣〔k﹣2〕x+〔k2+3k+5〕=0的两个实根,由△≥0即可求出k的取值范围,然后根据根与系数的关系求解即可.解答:解:由方程有实根,得△≥0,即〔k﹣2〕2﹣4〔k2+3k+5〕≥0所以3k2+16k+16≤0,所以〔3k+4〕〔k+4〕≤0解得﹣4≤k≤﹣.又由x1+x2=k﹣2,x1•x2=k2+3k+5,得x12+x22=〔x1+x2〕2﹣2x1x2=〔k﹣2〕2﹣2〔k2+3k+5〕=﹣k2﹣10k﹣6=19﹣〔k+5〕2,当k=﹣4时,x12+x22取最大值18.应选:B.点评:此题考查了根与系数的关系,属于根底题,关键是根据△≥0先求出k的取值范围再根据根与系数的关系进行求解.13.〔2021•陵县模拟〕:x1、x2是一元二次方程x2+2ax+b=0的两根,且x1+x2=3,x1x2=1,那么a、b的值分别是〔〕A.a=﹣3,b=1 B.a=3,b=1 C.a=﹣,b=﹣1 D.a=﹣,b=1考点:根与系数的关系.专题:计算题.分析:根据根与系数的关系得到得x1+x2=﹣2a,x1x2=b,即﹣2a=3,b=1,然后解一次方程即可.解答:解:根据题意得x1+x2=﹣2a,x1x2=b,所以﹣2a=3,b=1,解得a=﹣,b=1.应选D.点评:此题考查了根与系数的关系:假设x1,x2是一元二次方程ax2+bx+c=0〔a≠0〕的两根时,x1+x2=,x1x2=.14.〔2021•湖北〕α,β是一元二次方程x2﹣5x﹣2=0的两个实数根,那么α2+αβ+β2的值为〔〕A.﹣1 B.9C.23 D.27考点:根与系数的关系.分析:根据根与系数的关系α+β=﹣,αβ=,求出α+β和αβ的值,再把要求的式子进行整理,即可得出答案.解答:解:∵α,β是方程x2﹣5x﹣2=0的两个实数根,∴α+β=5,αβ=﹣2,又∵α2+αβ+β2=〔α+β〕2﹣βα,∴α2+αβ+β2=52+2=27;应选D.点评:此题考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法,假设方程两个为x1,x2,那么x1+x2=﹣,x1x2=.15.〔2021•桂林〕关于x的一元二次方程x2+2x+a﹣1=0有两根为x1和x2,且x12﹣x1x2=0,那么a的值是〔〕A.a=1 B.a=1或a=﹣2 C.a=2 D.a=1或a=2考点:根与系数的关系;一元二次方程的解.专题:压轴题.分析:根据x12﹣x1x2=0可以求得x1=0或者x1=x2,所以①把x1=0代入原方程可以求得a=1;②利用根的判别式等于0来求a的值.解答:解:解x12﹣x1x2=0,得x1=0,或x1=x2,①把x1=0代入方程,得a﹣1=0,解得:a=1;②当x1=x2时,△=4﹣4〔a﹣1〕=0,即8﹣4a=0,解得:a=2.综上所述,a=1或a=2.应选:D.点评:此题考查了根与系数的关系、一元二次方程的解的定义.解答该题的技巧性在于巧妙地利用了根的判别式等于0来求a的另一值.16.〔2021•天河区二模〕一元二次方程x2﹣4x+3=0两根为x1、x2,那么x1+x2=〔〕A.4B.3C.﹣4 D.﹣3考点:根与系数的关系.分析:根据一元二次方程x2﹣4x+3=0两根为x1、x2,直接利用x1+x2=﹣求出即可.解答:解:∵一元二次方程x2﹣4x+3=0两根为x1、x2,∴x1+x2=﹣=4.应选A.点评:此题主要考查了一元二次方程根与系数的关系,正确记忆根与系数关系公式是解决问题的关键.17.〔2021•青神县一模〕m和n是方程2x2﹣5x﹣3=0的两根,那么的值等于〔〕A.B.C.D.考点:根与系数的关系.专题:计算题.分析:根据根与系数的关系得到m+n=,mn=﹣,再变形+得到,然后利用整体思想计算.解答:解:根据题意得m+n=,mn=﹣,所以+===﹣.应选D.点评:此题考查了一元二次方程ax2+bx+c=0〔a≠0〕的根与系数的关系:假设方程两个为x1,x2,那么x1+x2=﹣,x1•x2=.18.〔2021•莱芜〕m、n是方程x2+2x+1=0的两根,那么代数式的值为〔〕A.9B.±3 C.3D.5考点:根与系数的关系;二次根式的化简求值.专题:整体思想.分析:根据一元二次方程ax2+bx+c=0〔a≠0〕的根与系数的关系得到m+n=﹣2,mn=1,再变形得,然后把m+n=﹣2,mn=1整体代入计算即可.解答:解:∵m、n是方程x2+2x+1=0的两根,∴m+n=﹣2,mn=1,∴====3.应选C.点评:此题考查了一元二次方程ax2+bx+c=0〔a≠0〕的根与系数的关系:假设方程两根分别为x1,x2,那么x1+x2=﹣,x1•x2=.也考查了二次根式的化简求值.19.〔2021•天门〕如果关于x的一元二次方程x2+4x+a=0的两个不相等实数根x1,x2满足x1x2﹣2x1﹣2x2﹣5=0,那么a的值为〔〕A.3B.﹣3 C.13 D.﹣13考点:根与系数的关系;根的判别式.分析:利用根与系数的关系求得x1x2=a,x1+x2=﹣4,然后将其代入x1x2﹣2x1﹣2x2﹣5=x1x2﹣2〔x1+x2〕﹣5=0列出关于a的方程,通过解方程即可求得a的值.解答:解:∵x1,x2是关于x的一元二次方程x2+4x+a=0的两个不相等实数根,∴x1x2=a,x1+x2=﹣4,∴x1x2﹣2x1﹣2x2﹣5=x1x2﹣2〔x1+x2〕﹣5=a﹣2×〔﹣4〕﹣5=0,即a+3=0,解得,a=﹣3;应选B.点评:此题考查了根与系数的关系.将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.20.〔2021•锦江区模拟〕假设方程x2﹣3x﹣2=0的两实根为x1、x2,那么〔x1+2〕〔x2+2〕的值为〔〕A.﹣4 B.6C.8D.12考点:根与系数的关系.分析:根据〔x1+2〕〔x2+2〕=x1x2+2x1+2x2+4=x1x2+2〔x1+x2〕+4,根据一元二次方程根与系数的关系,即两根的和与积,代入数值计算即可.解答:解:∵x1、x2是方程x2﹣3x﹣2=0的两个实数根.∴x1+x2=3,x1•x2=﹣2.又∵〔x1+2〕〔x2+2〕=x1x2+2x1+2x2+4=x1x2+2〔x1+x2〕+4.将x1+x2=3、x1•x2=﹣2代入,得〔x1+2〕〔x2+2〕=x1x2+2x1+2x2+4=x1x2+2〔x1+x2〕+4=〔﹣2〕+2×3+4=8.应选C点评:将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.21.〔2021•鄂州模拟〕p2﹣p﹣1=0,1﹣q﹣q2=0,且pq≠1,那么的值为〔〕A.1B.2C.D.考点:根与系数的关系.专题:计算题.分析:首先把1﹣q﹣q2=0变形为,然后结合p2﹣p﹣1=0,根据一元二次方程根与系数的关系可以得到p与是方程x2﹣x﹣1=0的两个不相等的实数根,那么利用根与系数的关系即可求出所求代数式的值.解答:解:由p2﹣p﹣1=0和1﹣q﹣q2=0,可知p≠0,q≠0,又∵pq≠1,∴,∴由方程1﹣q﹣q2=0的两边都除以q2得:,∴p与是方程x2﹣x﹣1=0的两个不相等的实数根,那么由韦达定理,得p+=1,∴=p+=1.应选A.点评:此题考查了根与系数的关系.首先把1﹣q﹣q2=0变形为是解题的关键,然后利用根与系数的关系就可以求出所求代数式的值.22.〔2021•滨湖区一模〕假设△ABC的一边a为4,另两边b、c分别满足b2﹣5b+6=0,c2﹣5c+6=0,那么△ABC 的周长为〔〕A.9B.10 C.9或10 D.8或9或10考点:根与系数的关系;三角形三边关系.专题:压轴题.分析:由于两边b、c分别满足b2﹣5b+6=0,c2﹣5c+6=0,那么b、c可以看作方程x2﹣5x+6=0的两根,根据根与系数的关系可以得到b+c=5,bc=6,而△ABC的一边a为4,由此即可求出△ABC的一边a为4周长.解答:解:∵两边b、c分别满足b2﹣5b+6=0,c2﹣5c+6=0,∴b、c可以看作方程x2﹣5x+6=0的两根,∴b+c=5,bc=6,而△ABC的一边a为4,①假设b=c,那么b=c=3或b=c=2,但2+2=4,所以三角形不成立,故b=c=3.∴△ABC的周长为4+3+3=10或4+2+2②假设b≠c,∴△ABC的周长为4+5=9.应选C.点评:此题把一元二次方程的根与系数的关系与三角形的周长结合起来,利用根与系数的关系来三角形的周长.此题要注意分类讨论.二.填空题〔共4小题〕23.〔2021•莱芜〕假设关于x的方程x2+〔k﹣2〕x+k2=0的两根互为倒数,那么k=﹣1.考点:根与系数的关系.专题:判别式法.分析:根据和根与系数的关系x1x2=得出k2=1,求出k的值,再根据原方程有两个实数根,求出符合题意的k的值.解答:解:∵x1x2=k2,两根互为倒数,∴k2=1,解得k=1或﹣1;∵方程有两个实数根,△>0,∴当k=1时,△<0,舍去,故k的值为﹣1.故答案为:﹣1.点评:此题考查了根与系数的关系,根据x1,x2是关于x的一元二次方程ax2+bx+c=0〔a≠0,a,b,c为常数〕的两个实数根,那么x1+x2=﹣,x1x2=进行求解.24.〔2021•呼和浩特〕m,n是方程x2+2x﹣5=0的两个实数根,那么m2﹣mn+3m+n=8.考点:根与系数的关系;一元二次方程的解.专题:常规题型.分析:根据m+n=﹣=﹣2,m•n=﹣5,直接求出m、n即可解题.解答:解:∵m、n是方程x2+2x﹣5=0的两个实数根,∴mn=﹣5,m+n=﹣2,∵m2+2m﹣5=0∴m2=5﹣2mm2﹣mn+3m+n=〔5﹣2m〕﹣〔﹣5〕+3m+n=10+m+n=10﹣2=8故答案为:8.点评:此题主要考查了一元二次方程根根的计算公式,根据题意得出m和n的值是解决问题的关键.25.〔2021•广州〕假设关于x的方程x2+2mx+m2+3m﹣2=0有两个实数根x1、x2,那么x1〔x2+x1〕+x22的最小值为.考点:根与系数的关系;二次函数的最值.专题:判别式法.分析:由题意可得△=b2﹣4ac≥0,然后根据不等式的最小值计算即可得到结论.解答:解:由题意知,方程x2+2mx+m2+3m﹣2=0有两个实数根,那么△=b2﹣4ac=4m2﹣4〔m2+3m﹣2〕=8﹣12m≥0,∴m≤,∵x1〔x2+x1〕+x22=〔x2+x1〕2﹣x1x2=〔﹣2m〕2﹣〔m2+3m﹣2〕=3m2﹣3m+2=3〔m2﹣m+﹣〕+2=3〔m﹣〕2 +;∴当m=时,有最小值;∵<,∴m=成立;∴最小值为;故答案为:.点评:此题考查了一元二次方程根与系数关系,考查了一元二次不等式的最值问题.总结一元二次方程根的情况与判别式△的关系:〔1〕△>0⇔方程有两个不相等的实数根;〔2〕△=0⇔方程有两个相等的实数根;〔3〕△<0⇔方程没有实数根.26.〔2021•桂林〕关于x的一元二次方程x2+〔2k+1〕x+k2﹣2=0的两根为x1和x2,且〔x1﹣2〕〔x1﹣x2〕=0,那么k的值是﹣2或﹣.考点:根与系数的关系;根的判别式.分析:先由〔x1﹣2〕〔x1﹣x2〕=0,得出x1﹣2=0或x1﹣x2=0,再分两种情况进行讨论:①如果x1﹣2=0,将x=2代入x2+〔2k+1〕x+k2﹣2=0,得4+2〔2k+1〕+k2﹣2=0,解方程求出k=﹣2;②如果x1﹣x2=0,那么将x1+x2=﹣〔2k+1〕,x1x2=k2﹣2代入可求出k的值,再根据判别式进行检验.解答:解:∵〔x1﹣2〕〔x1﹣x2〕=0,∴x1﹣2=0或x1﹣x2=0.①如果x1﹣2=0,那么x1=2,将x=2代入x2+〔2k+1〕x+k2﹣2=0,得4+2〔2k+1〕+k2﹣2=0,整理,得k2+4k+4=0,解得k=﹣2;②如果x1﹣x2=0,那么〔x1﹣x2〕2=〔x1+x2〕2﹣4x1x2=[﹣〔2k+1〕]2﹣4〔k2﹣2〕=4k+9=0,解得k=﹣.又∵△=〔2k+1〕2﹣4〔k2﹣2〕≥0.解得:k≥﹣.所以k的值为﹣2或﹣.故答案为:﹣2或﹣.点评:此题考查了一元二次方程的根与系数的关系,根的判别式,注意在利用根与系数的关系时,需用判别式进行检验.三.解答题〔共4小题〕27.〔2021•泸州〕x1,x2是关于x的一元二次方程x2﹣2〔m+1〕x+m2+5=0的两实数根.〔1〕假设〔x1﹣1〕〔x2﹣1〕=28,求m的值;〔2〕等腰△ABC的一边长为7,假设x1,x2恰好是△ABC另外两边的边长,求这个三角形的周长.考点:根与系数的关系;三角形三边关系;等腰三角形的性质.专题:代数几何综合题.分析:〔1〕利用〔x1﹣1〕〔x2﹣1〕=x1•x2﹣〔x1+x2〕+1=m2+5﹣2〔m+1〕+1=28,求得m的值即可;〔2〕分7为底边和7为腰两种情况分类讨论即可确定等腰三角形的周长.解答:解:〔1〕∵x1,x2是关于x的一元二次方程x2﹣2〔m+1〕x+m2+5=0的两实数根,∴x1+x2=2〔m+1〕,x1•x2=m2+5,∴〔x1﹣1〕〔x2﹣1〕=x1•x2﹣〔x1+x2〕+1=m2+5﹣2〔m+1〕+1=28,解得:m=﹣4或m=6;当m=﹣4时原方程无解,∴m=6;〔2〕①当7为底边时,此时方程x2﹣2〔m+1〕x+m2+5=0有两个相等的实数根,∴△=4〔m+1〕2﹣4〔m2+5〕=0,解得:m=2,∴方程变为x2﹣6x+9=0,解得:x1=x2=3,∵3+3<7,∴不能构成三角形;②当7为腰时,设x1=7,代入方程得:49﹣14〔m+1〕+m2+5=0,解得:m=10或4,当m=10时方程变为x2﹣22x+105=0,解得:x=7或15∵7+7<15,不能组成三角形;当m=4时方程变为x2﹣10x+21=0,解得:x=3或7,此时三角形的周长为7+7+3=17.点评:此题考查了根与系数的关系及三角形的三边关系,解题的关键是熟知两根之和和两根之积分别与系数的关系.28.〔2021•日照二模〕x1,x2是关于x的一元二次方程x2+〔3a﹣1〕x+2a2﹣1=0的两个实数根,其满足〔3x1﹣x2〕〔x1﹣3x2〕=﹣80.求实数a的所有可能值.考点:根与系数的关系;根的判别式.专题:计算题.分析:根据△的意义由一元二次方程x2+〔3a﹣1〕x+2a2﹣1=0的两个实数根得到△≥0,即〔3a﹣1〕2﹣4〔2a2﹣1〕=a2﹣6a+5≥0,根据根与系数的关系得到x1+x2=﹣〔3a﹣1〕,x1•x2=2a2﹣1,由〔3x1﹣x2〕〔x1﹣3x2〕=﹣80变形得到3〔x1+x2〕2﹣16x1x2=﹣80,于是有3〔3a﹣1〕2﹣16〔2a2﹣1〕=﹣80,解方程得到a=3或a=﹣,然后代入△验算即可得到实数a的值.解答:解:∵x1,x2是关于x的一元二次方程x2+〔3a﹣1〕x+2a2﹣1=0的两个实数根,∴△≥0,即〔3a﹣1〕2﹣4〔2a2﹣1〕=a2﹣6a+5≥0所以a≥5或a≤1.…〔3分〕∴x1+x2=﹣〔3a﹣1〕,x1•x2=2a2﹣1,∵〔3x1﹣x2〕〔x1﹣3x2〕=﹣80,即3〔x12+x22〕﹣10x1x2=﹣80,∴3〔x1+x2〕2﹣16x1x2=﹣80,∴3〔3a﹣1〕2﹣16〔2a2﹣1〕=﹣80,整理得,5a2+18a﹣99=0,∴〔5a+33〕〔a﹣3〕=0,解得a=3或a=﹣,当a=3时,△=9﹣6×3+5=﹣4<0,故舍去,当a=﹣时,△=〔﹣〕2﹣6×〔﹣〕+6=〔〕2+6×+6>0,∴实数a的值为﹣点评:此题考查了一元二次方程ax2+bx+c=0〔a≠0〕的根与系数的关系:如果方程的两根为x1,x2,那么x1+x2=﹣,x1•x2=.也考查了一元二次方程根的判别式以及代数式的变形能力.29.〔2021•孝感〕关于x的一元二次方程x2﹣〔2k+1〕x+k2+2k=0有两个实数根x1,x2.〔1〕求实数k的取值范围;〔2〕是否存在实数k使得x1•x2﹣x12﹣x22≥0成立?假设存在,请求出k的值;假设不存在,请说明理由.考点:根与系数的关系;根的判别式.专题:压轴题.分析:〔1〕根据一元二次方程的根的情况,得到根的判别式△≥0,据此列出关于k的不等式[﹣〔2k+1〕]2﹣4〔k2+2k〕≥0,通过解该不等式即可求得k的取值范围;〔2〕假设存在实数k使得≥0成立.利用根与系数的关系可以求得,然后利用完全平方公式可以把不等式转化为含有两根之和、两根之积的形式≥0,通过解不等式可以求得k的值.解答:解:〔1〕∵原方程有两个实数根,∴[﹣〔2k+1〕]2﹣4〔k2+2k〕≥0,∴4k2+4k+1﹣4k2﹣8k≥0∴1﹣4k≥0,∴k≤.∴当k≤时,原方程有两个实数根.〔2〕假设存在实数k使得≥0成立.∵x1,x2是原方程的两根,∴.由≥0,得≥0.∴3〔k2+2k〕﹣〔2k+1〕2≥0,整理得:﹣〔k﹣1〕2≥0,∴只有当k=1时,上式才能成立.又∵由〔1〕知k≤,∴不存在实数k使得≥0成立.点评:此题综合考查了根的判别式和根与系数的关系,在解不等式时一定要注意数值的正负与不等号的变化关系.30.〔2001•苏州〕关于x的一元二次方程,〔1〕求证:不管k取何值,方程总有两个不相等的实数根;〔2〕设x1、x2是方程的两个根,且x12﹣2kx1+2x1x2=5,求k的值.考点:根与系数的关系;根的判别式.专题:计算题;证明题;压轴题.分析:〔1〕要保证方程总有两个不相等的实数根,就必须使△>0恒成立;〔2〕欲求k的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可.解答:解:〔1〕关于x的一元二次方程,∴△=〔﹣2k〕2﹣4×〔k2﹣2〕=2k2+8,∵2k2+8>0恒成立,∴不管k取何值,方程总有两个不相等的实数根.〔2〕∵x1、x2是方程的两个根,∴x1+x2=2k,x1•x2=k2﹣2,∴x12﹣2kx1+2x1x2=x12﹣〔x1+x2〕x1+2x1x2=x1x2=k2﹣2=5,解得k=±.点评:此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.。
一元二次方程根与系数的关系习题精选(含答案解析)
. . .一元二次方程根与系数的关系习题精选(含答案)一.选择题(共 22 小题)1.( 2014?宜宾)若关于 x 的一元二次方程的两个根为 x1=1, x2=2,则这个方程是()2 2 ﹣3x+2=0 22A .x +3x ﹣ 2=0B . xC . x ﹣ 2x+3=0D .x +3x+2=02.( 2014?昆明)已知x 1, x 2 是一元二次方程 x 2﹣ 4x+1=0 的两个实数根,则x1?x2 等于( ) A .﹣4B .﹣1C . 1D .43.( 2014?玉林) x1, x2 是关于 x 的一元二次方程 x 2﹣ mx+m ﹣ 2=0 的两个实数根,是否存在实数m 使 + =0 成立?则正确的结论是()A .m=0 时成立B . m=2 时成立C . m=0 或 2 时成立D .不存在 4.( 2014?南昌)若 α, β是方程2 2 2)x ﹣2x ﹣ 3=0 的两个实数根,则 α+β 的值为( A .10 B . 9 C . 7 D .55.( 2014?贵港)若关于2的两个实数根分别为 x1=﹣2, x2=4,则 b+c 的值是()x 的一元二次方程 x +bx+c=0A .﹣10B . 10C .﹣6D .﹣16.( 2014?烟台)关于 x 的方程x2﹣ax+2a=0 的两根的平方和是 5,则 a 的值是( )A .﹣1或 5B . 1C . 5D .﹣17.( 2014?攀枝花)若方程A .α+β=﹣1 2 的两实根为 α、 β,那么下列说法不正确的是( )x +x ﹣ 1=0 B . αβ=﹣ 1 2 2D .C . α+β=3 + =﹣18.( 2014?威海)方程 x 2﹣( m+6)x+m2 =0 有两个相等的实数根,且满足 x1+x 2=x 1x2,则 m 的值是()A .﹣2或 3B . 3C .﹣2D .﹣3 或 29.( 2014?长沙模拟)若关于2( k+3) x+2=0 的一个根是﹣ 2,则另一个根是()x 的一元二次方程 x + A .2 B . 1 C .﹣1 D .0 2 2)10.( 2014?黄冈样卷)设 a , b 是方程 x +x ﹣ 2015=0 的两个实数根,则 a +2a+b 的值为( A .2012 B . 2013 C . 2014 D .2015 11.(2014?江西模拟)一元二次方程x 2﹣ 2x ﹣ 3=0 与 3x 2﹣ 11x+6=0 的所有根的乘积等于( )A .﹣6B . 6C . 3D .﹣312.( 2014?峨眉山市二模)已知 x1、 x2是方程 x2﹣( k﹣ 2)x+k 2+3k+5=0 的两个实数根,则的最大值是()A .19 B. 18 C. 15 D .1313.( 2014?陵县模拟)已知:x1、 x2是一元二次方程2的两根,且 x1+x 2=3, x1x2=1,则 a、 b 的值分别x+2ax+b=0是()参考学习A .a=﹣ 3, b=1B . a=3, b=1C .D .a=﹣ , b=1a=﹣ , b=﹣ 114.( 2013?湖北)已知 α, β是一元二次方程222) x ﹣ 5x ﹣ 2=0 的两个实数根,则 α+αβ+β 的值为( A .﹣1 B . 9 C . 23 D .2715.( 2013?桂林)已知关于 x 的一元二次方程2 ﹣ 1=0 有两根为x1 2﹣x1x2=0,则 a 的值是( )x+2x+a 和 x2,且 x1A .a=1B . a=1 或 a=﹣2 C . a=2 D .a=1 或a=216.( 2013?天河区二模)已知一元二次方程x2﹣4x+3=0 两根为 x 1、x 2,则 x 1+x 2=( )A .4B . 3C .﹣4D .﹣317.( 2013?青神县一模)已知m 和 n 是方程2x2﹣ 5x ﹣ 3=0 的两根,则 的值等于( )A .B .C .D .2 x+1=0 的两根,则代数式的值为( ) 18.( 2012?莱芜)已知 m 、 n 是方程 x +2 A .9 B . ±3 C .3D .519.( 2012?天门)如果关于 x 的一元二次方程2x +4x+a=0 的两个不相等实数根 x1, x2 满足 x1x2﹣ 2x1﹣ 2x2﹣5=0, 那么 a 的值为( )A .3B .﹣3C . 13D .﹣13 20.( 2011?锦江区模拟)若方程x 2﹣ 3x ﹣ 2=0 的两实根为 x 1、 x 2,则( x 1+2)( x 2+2)的值为( )A .﹣4B . 6C .8 D .1221.( 2011?鄂州模拟)已知 p 2﹣ p ﹣ 1=0 , 1﹣q ﹣q 2 =0,且 pq ≠1,则 的值为( ) A .1B . 2C .D .22.( 2010?滨湖区一模)若 △ ABC 的一边 a 为 4,另两边 b 、c 分别满足2 2,则 △ ABC 的周b ﹣ 5b+6=0,c ﹣5c+6=0 长为( )A .9B . 10C .9 或 10D .8或 9或 10二.填空题(共 4 小题)2 223.( 2014?莱芜)若关于k= _________ .x 的方程 x +(k ﹣ 2) x+k =0 的两根互为倒数,则24.( 2014?呼和浩特)已知2 2﹣mn+3m+n= _________ .m ,n 是方程 x +2x ﹣ 5=0 的两个实数根,则m25.( 2014?广州)若关于x 的方程x 2+2mx+m 2 +3m﹣2=0 有两个实数根x1、 x2,则 x1( x2+x 1) +x22的最小值为_________ .26.(2014?桂林)已知关于x 的一元二次方程x2+( 2k+1 )x+k2﹣ 2=0 的两根为 x1和 x2,且( x1﹣ 2)(x1﹣x2)=0,则 k 的值是_________ .三.解答题(共 4 小题)27.( 2014?泸州)已知 x1, x2 是关于 x 的一元二次方程 22x ﹣ 2( m+1 ) x+m +5=0 的两实数根.( 1)若( x 1﹣ 1)( x 2﹣1) =28 ,求 m 的值;( 2)已知等腰 △ ABC 的一边长为 7,若 x 1, x 2 恰好是 △ ABC 另外两边的边长,求这个三角形的周长.28.( 2014?日照二模)已知 x 1, x 2 是关于 x 的一元二次方程 2 2的两个实数根,其满足( 3x 1 x +( 3a ﹣ 1) x+2a ﹣1=0 ﹣ x 2)( x 1﹣ 3x 2) =﹣ 80.求实数 a 的所有可能值.29.( 2013?孝感)已知关于 2 2x1,x2. x 的一元二次方程 x ﹣( 2k+1) x+k +2k=0 有两个实数根 ( 1)求实数 k 的取值范围;2﹣ x 22≥0 成立?若存在,请求出 ( 2)是否存在实数 k 使得 x 1 ?x 2﹣x 1 k 的值;若不存在,请说明理由.30.( 2001?苏州)已知关于 x 的一元二次方程 ,( 1)求证:不论 k 取何值,方程总有两个不相等的实数根; ( 2)设 x 1 、x 2 是方程的两个根,且 x 12﹣ 2kx 1+2x 1x 2=5,求 k 的值.一元二次方程根与系数的关系习题精选(含答案)参考答案与试题解析一.选择题(共 22 小题)1.( 2014?宜宾)若关于 x 的一元二次方程的两个根为x =1, x =2,则这个方程是()1 22 2 ﹣3x+2=02D .x2A .x +3x ﹣ 2=0 B. x C. x ﹣ 2x+3=0 +3x+2=0 考点:根与系数的关系.分析:解决此题可用验算法,因为两实数根的和是1+2=3,两实数根的积是1×2=2 .解题时检验两根之和是否为 3 及两根之积是否为 2 即可.解答:解:两个根为 x1=1,x2=2 则两根的和是3,积是 2.A 、两根之和等于﹣3,两根之积等于﹣2,所以此选项不正确;B 、两根之和等于3,两根之积等于2,所以此选项正确;C、两根之和等于2,两根之积等于3,所以此选项不正确;D 、两根之和等于﹣3,两根之积等于2,所以此选项不正确,故选: B.点评:验算时要注意方程中各项系数的正负.2.( 2014?昆明)已知 x1, x2 是一元二次方程x2﹣ 4x+1=0 的两个实数根,则x1?x2等于()A.﹣4 B.﹣1 C. 1 D .4考点:根与系数的关系.专题:计算题.分析:直接根据根与系数的关系求解.解答:解:根据韦达定理得x1?x2=1.故选: C.点评:本题考查了一元二次方程ax2+bx+c=0( a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x 2=﹣,x1?x2= .3.( 2014?玉林) x1, x2 是关于 x 的一元二次方程x2﹣ mx+m ﹣ 2=0 的两个实数根,是否存在实数m 使+ =0成立?则正确的结论是()A .m=0 时成立B. m=2 时成立C. m=0 或 2 时成立D.不存在考点:根与系数的关系.分析:先由一元二次方程根与系数的关系得出,x1+x 2=m, x1x2=m ﹣2.假设存在实数m 使 + =0 成立,则=0,求出 m=0,再用判别式进行检验即可.解答:解:∵ x1,x2是关于 x 的一元二次方程 x2﹣ mx+m ﹣ 2=0 的两个实数根,∴x1+x 2=m , x1x2=m﹣ 2.假设存在实数m 使+ =0 成立,则=0,∴=0,∴m=0.当m=0 时,方程 x2﹣ mx+m ﹣ 2=0 即为 x2﹣ 2=0,此时△ =8> 0,∴ m=0 符合题意.故选: A.点评:本题主要考查了一元二次方程根与系数的关系:如果22=﹣p,x1, x2 是方程 x +px+q=0 的两根时,那么x1+xx1x2=q .4.( 2014?南昌)若α,β是方程2 ﹣2x﹣ 3=0 的两个实数根,则2 2)x α+β的值为(A .10 B. 9 C. 7 D .5考点:根与系数的关系.分析:根据根与系数的关系求得α+β=2,αβ=﹣ 3,则将所求的代数式变形为(α+β)2﹣ 2αβ,将其整体代入即可求值.解答:解:∵α,β是方程 x2﹣ 2x﹣ 3=0 的两个实数根,∴ α+β=2 ,αβ=﹣ 3,2 2 2﹣ 2αβ=22∴ α+β=(α+β)﹣ 2×(﹣ 3)=10.故选: A.点评:此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.21 25.( 2014?贵港)若关于x 的一元二次方程 x +bx+c=0 的两个实数根分别为=4,则 b+c 的值是()x =﹣2, xA.﹣10 B. 10 C.﹣6 D.﹣1 考点:根与系数的关系.分析:根据根与系数的关系得到﹣2+4= ﹣ b,﹣ 2×4=c,然后可分别计算出b、 c 的值,进一步求得答案即可.解答:解:∵关于 x 的一元二次方程x2+bx+c=0 的两个实数根分别为x1=﹣ 2,x2=4,∴根据根与系数的关系,可得﹣2+4= ﹣b,﹣2×4=c,解得 b=﹣2, c=﹣ 8 ∴ b+c= ﹣ 10.故选: A.点评:此题考查根与系数的关系,解答此题的关键是熟知一元二次方程根与系数的关系:x1+x 2=﹣,x1x2= .6.( 2014?烟台)关于 x 的方程 x 2﹣ ax+2a=0 的两根的平方和是5,则 a 的值是()A.﹣1或 5 B. 1 C. 5 D.﹣1 考点:根与系数的关系;根的判别式.专题 : 计算题.2 2 分析: 设方程的两根为 x1,x2,根据根与系数的关系得到x1+x2=a ,x1?x2=2a ,由于 x1 +x 2 =5 ,变形得到( x1+x2)2 2△≥0 的 a 的值为所求.﹣2x1?x2=5,则 a ﹣ 4a ﹣5=0 ,然后解方程,满足解答: 解:设方程的两根为 x1, x2,则 x1+x 2=a , x1?x2=2a ,2 2∵ x1 +x 2 =5,∴( x 1+x 2)2﹣ 2x 1?x 2=5, ∴ a 2﹣ 4a ﹣ 5=0,∴ a1=5 , a2=﹣ 1,∵△ =a 2﹣ 8a ≥0, ∴ a=﹣ 1.故选: D .点评: 本题考查了一元二次方程 2 ( a ≠0)的根与系数的关系:若方程的两根为 x1, x2,则 x1+x 2=﹣ ,ax +bx+c=0 x ?x = .也考查了一元二次方程的根的判别式. 1 27.( 2014?攀枝花)若方程A .α+β=﹣1 2 的两实根为 α、 β,那么下列说法不正确的是( )x +x ﹣ 1=0 B . αβ=﹣ 12 2D .C . α+β=3+ =﹣1考点 : 根与系数的关系.专题 : 计算题.分析: 先根据根与系数的关系得到2 2 2﹣2αβ,利用 α+β=﹣1,αβ=﹣ 1,再利用完全平方公式变形 α +β 得到( α+β)通分变形+ 得到,然后利用整体代入的方法分别计算两个代数式的值,这样可对各选项进行判断.解答: 解:根据题意得α+β=﹣ 1, αβ=﹣1.2 2 2 2; 所以 α+β=( α+β) ﹣ 2αβ=(﹣ 1) ﹣ 2×(﹣ 1)=3 + ===1.故选: D .点评:本题考查了一元二次方程 ax 2+bx+c=0( a ≠0)的根与系数的关系: 若方程两个为x 1,x 2,则x 1+x 2=﹣ ,x 1?x 2=.2﹣( m+6)x+m 21 2 1 x 2,则 m 的值是( )8.( 2014?威海)方程 x =0 有两个相等的实数根,且满足 x +x =xA .﹣2或 3B . 3C .﹣2D .﹣3 或 2考点 : 根与系数的关系;根的判别式.专题 : 判别式法.2,再根据 x1+x 2=x 1 分析: 根据根与系数的关系有: x1+x2=m+6 , x1x2=m x2 得到 m 的方程,解方程即可,进一步由 2 +m 2 有两个相等的实数根得出 2方程 x ﹣( m+6)=0 b ﹣ 4ac=0,求得 m 的值,由相同的解解决问题. 解答:解:∵ x1+x2=m+6 ,x1x2=m2, x 1+x 2=x 1x 2, ∴ m+6=m 2,解得 m=3 或 m=﹣2,2﹣( m+6) x+m 2 ∵方程 x =0 有两个相等的实数根,∴△ =b2﹣ 4ac=( m+6)2﹣4m2=﹣3m 2+12m+36=0解得 m=6 或 m=﹣ 2 ∴m=﹣ 2.故选: C.点评:本题考查了一元二次方程2 2ax +bx+c=0 ( a≠0,a,b,c 为常数)根的判别式△ =b ﹣ 4ac.当△> 0,方程有两个不相等的实数根;当△ =0,方程有两个相等的实数根;当△< 0,方程没有实数根.同时考查了一元二次方程 ax2+bx+c=0 ( a≠0)的根与系数的关系:若方程的两根为x1, x2,则 x1+x 2=﹣, x1?x2= .9.( 2014?长沙模拟)若关于x 的一元二次方程2 )x+2=0 的一个根是﹣ 2,则另一个根是()x +( k+3A .2 B. 1 C.﹣1 D .0考点 : 根与系数的关系.分析:根据一元二次方程的根与系数的关系 x 1?x 2= 来求方程的另一个根.2解答: 解:设 x 1、x 2 是关于 x 的一元二次方程 x +( k+3 )x+2=0 的两个根, 由韦达定理,得 x1?x2=2 ,即﹣ 2x2=2, 解得, x2=﹣1.即方程的另一个根是﹣ 1.故选 C .点评: 此题主要考查了根与系数的关系.在利用根与系数的关系 x1+x 2=﹣ 、 x1?x2= 时,要注意等式中的 a 、 b 、c 所表示的含义.2 的两个实数根,则 2 的值为( )10.( 2014?黄冈样卷)设 a , b 是方程 x +x ﹣2015=0 a +2a+b A .2012 B . 2013 C . 2014 D .2015 考点 : 根与系数的关系;一元二次方程的解.专题 : 计算题.2 2 2分析: 先根据一元二次方程的解的定义得到 a +a ﹣ 2015=0 ,即 a +a=2015,则 a +2a+b 变形为a+b+2015,再根据根与系数的关系得到 a+b=﹣ 1,然后利用整体代入的方法计算.2 ﹣ 2015=0 的根,解答: 解:∵ a 是方程 x+x2 2∴ a +a ﹣ 2015=0,即 a +a=2015,2∴ a +2a+b=a+b+2015 ,∵ a , b 是方程 x 2+x ﹣2015=0 的两个实数根∴ a+b=﹣ 1,2∴ a +2a+b=a+b+2015= ﹣ 1+2015=2014 .故选 C .点评:本题考查了根与系数的关系: 若 x1,x2 是一元二次方程ax 2 1 2 1 2 .也 +bx+c=0(a ≠0)的两根时, x +x = ,x x = 考查了一元二次方程的解. 11.(2014?江西模拟)一元二次方程 x 2﹣ 2x ﹣ 3=0 与 3x 2﹣ 11x+6=0 的所有根的乘积等于()A .﹣6B . 6C .3D .﹣3考点 : 根与系数的关系.分析: 由一元二次方程 x 2﹣2x ﹣ 3=0 和 3x 2﹣ 11x+6=0 先用判别式判断方程是否有解,再根据根与系数的关系,即可直接得出答案.解答: 解:由一元二次方程 x 2﹣ 2x ﹣3=0 ,∵△ =4+16=20 > 0,∴ x1x2=﹣ 3,由一元二次方程 3x 2﹣11x+6=0 ,∵△ =121﹣ 4×3×6=49> 0,∴x1x2=2∴﹣ 3×2=﹣6故选 A.点评:本题考查了一元二次方程根与系数的关系.解此类题目要把代数式变形为两根之积的形式.12.( 2014?峨眉山市二模)已知x1、 x2是方程 x2﹣( k﹣ 2)x+k 2+3k+5=0 的两个实数根,则的最大值是()A .19 B. 18 C. 15 D .13考点 : 根与系数的关系;二次函数的最值. 2 2 ) =0 的两个实根,由 △ ≥0 即可求出 k 的取值范围,然后根据分析: 根据 x 1、x 2 是方程 x ﹣( k ﹣ 2) x+( k +3k+5根与系数的关系求解即可.解答: 解:由方程有实根,得 2 2△ ≥0,即( k ﹣2) ﹣ 4( k+3k+5 )≥0所以3k 2 +16k+16≤0,所以 ( 3k+4 )( k+4)≤0 解得﹣ 4≤k ≤﹣ .2 又由 x1+x2 =k ﹣ 2, x1?x2=k +3k+5 ,得 2 2 2 2 2 2 2x1 +x 2 =( x1+x2) ﹣ 2x 1x2=( k ﹣ 2) ﹣ 2( k +3k+5 )=﹣ k ﹣10k ﹣ 6=19﹣( k+5) ,2 2当 k= ﹣ 4 时, x1 +x 2 取最大值 18.故选: B .点评: 本题考查了根与系数的关系,属于基础题,关键是根据△ ≥0 先求出 k 的取值范围再根据根与系数的关系进 行求解. 13.( 2014?陵县模拟)已知: x 1、 x2 是一元二次方程 x 2 1 2 =3 1 2 +2ax+b=0 的两根,且 x +x , x x =1,则 a 、 b 的值分别是( )A .a=﹣ 3, b=1B . a=3, b=1C .D .a=﹣ , b=1 a=﹣ , b=﹣ 1考点 : 根与系数的关系.专题 : 计算题.分析: 根据根与系数的关系得到得 x1+x 2=﹣ 2a , x1x2=b ,即﹣ 2a=3, b=1,然后解一次方程即可.解答: 解:根据题意得 x1+x2=﹣ 2a , x1x2=b ,所以﹣ 2a=3, b=1 ,解得 a=﹣ , b=1.故选 D .点评:本题考查了根与系数的关系:若 x1,x2是一元二次方程 ax 2 1 2=1 2= .+bx+c=(a ≠0)的两根时, x+x ,x x14.( 2013?湖北)已知 α, β是一元二次方程 2 ﹣ 2=0 的两个实数根,则 2 2 )x ﹣ 5x α+αβ+β 的值为(A .﹣1B . 9C . 23D .27考点 : 根与系数的关系.分析:根据根与系数的关系 α+β=﹣ , αβ= ,求出 α+β和 αβ的值,再把要求的式子进行整理,即可得出答案.2解答: 解:∵ α,β是方程 x ﹣ 5x ﹣ 2=0 的两个实数根,2 2 2 ﹣ βα,又∵α+αβ+β=(α+β)2 2 2∴α+αβ+β=5 +2=27 ;故选 D.点评:此题考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法,若方程两个为x1, x2,则 x1+x 2=﹣, x1 x2= .15.( 2013?桂林)已知关于x 的一元二次方程2﹣ 1=0 有两根为2﹣x1x2=0,则 a 的值是()x+2x+ax1 和 x2,且x1A .a=1 B. a=1 或 a=﹣2C. a=2 D .a=1 或 a=2考点 : 根与系数的关系;一元二次方程的解. 专题 : 压轴题.分析: 根据 x12﹣ x1 x2=0 可以求得 x1=0 或者 x1=x 2,所以 ① 把 x1=0 代入原方程可以求得a=1;② 利用根的判别式 等于 0 来求 a 的值.解答: 解:解 x 1 2﹣x 1x 2=0,得x1=0 ,或 x1=x2,① 把 x1=0 代入已知方程,得a ﹣ 1=0 ,解得: a=1;② 当 x 1=x 2 时, △ =4﹣ 4( a ﹣ 1) =0,即 8﹣4a=0,解得: a=2.综上所述, a=1 或 a=2.故选: D .点评: 本题考查了根与系数的关系、一元二次方程的解的定义.解答该题的技巧性在于巧妙地利用了根的判别式等于 0 来求 a 的另一值.16.( 2013?天河区二模)已知一元二次方程x 2﹣4x+3=0 两根为 x 1、x 2,则 x 1+x 2=( ) A .4 B . 3 C .﹣4 D .﹣3考点 : 根与系数的关系.分析:根据一元二次方程 x 2﹣ 4x+3=0 两根为 x 1、 x 2,直接利用 x 1+x 2=﹣ 求出即可.解答: 解:∵一元二次方程x 2﹣ 4x+3=0 两根为 x1、 x2, ∴ x1+x 2=﹣=4.故选 A .点评: 此题主要考查了一元二次方程根与系数的关系,正确记忆根与系数关系公式是解决问题的关键.17.( 2013?青神县一模)已知 m 和 n 是方程 2x 2﹣ 5x ﹣ 3=0 的两根,则 的值等于( ) A .B .C .D .考点 : 根与系数的关系. 专题 : 计算题.分析: 根据根与系数的关系得到 m+n= , mn=﹣ ,再变形+ 得到 ,然后利用整体思想计算. 解答: 解:根据题意得 m+n= , mn= ﹣ ,所以 + = ==﹣ .故选 D.点评:本题考查了一元二次方程ax2+bx+c=0( a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x 2=﹣,x1?x2= .2 x+1=0 的两根,则代数式的值为( )18.( 2012?莱芜)已知 m 、 n 是方程 x +2 A .9 B . ±3 C . 3D .5考点 : 根与系数的关系;二次根式的化简求值.专题 : 整体思想.分析:根据一元二次方程 2 ,mn=1 ,再变形 得 ax +bx+c=0( a ≠0)的根与系数的关系得到 m+n= ﹣ 2,然后把 m+n= ﹣2,mn=1 整体代入计算即可.解答: 解:∵ m 、 n 是方程x 2+2 x+1=0 的两根,∴ m+n= ﹣ 2 , mn=1 ,∴ = == =3.故选 C .点评:本题考查了一元二次方程ax 2x 1,x2,则 x1 2+bx+c=0 ( a ≠0)的根与系数的关系: 若方程两根分别为+x =﹣ ,x1?x2= .也考查了二次根式的化简求值.19.( 2012?天门)如果关于 x 的一元二次方程 2的两个不相等实数根 x 1, x 2 满足 x 1x 2﹣ 2x 1﹣ 2x 2﹣5=0,x +4x+a=0那么 a 的值为( )A .3B .﹣3C . 13D .﹣13考点 : 根与系数的关系;根的判别式.分析: 利用根与系数的关系求得 x1x2=a , x1+x 2=﹣ 4,然后将其代入x 1x 2﹣2x 1﹣ 2x 2﹣ 5=x 1x 2﹣ 2(x 1+x 2)﹣ 5=0列 出关于 a 的方程,通过解方程即可求得 a 的值.解答: 解:∵ x1,x2 是关于 x 的一元二次方程2 的两个不相等实数根, x+4x+a=0∴ x1x2=a , x1 +x2=﹣ 4, ∴ x 1x 2﹣ 2x 1﹣2x 2﹣ 5=x 1x 2﹣ 2( x 1+x 2)﹣ 5=a ﹣2×(﹣ 4)﹣ 5=0 ,即 a+3=0, 解得, a=﹣3;故选 B .点评: 本题考查了根与系数的关系.将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.20.( 2011?锦江区模拟)若方程 x 2﹣ 3x ﹣ 2=0 的两实根为 x1、 x2,则( x1+2)( x2+2)的值为( )A .﹣4B . 6C . 8D .12考点 : 根与系数的关系.分析:根据( x1+2)( x2+2) =x1 x2+2x 1+2x 2+4=x 1x2+2( x1+x 2) +4,根据一元二次方程根与系数的关系,即两根的和与积,代入数值计算即可.解答:解:∵ x1、x2是方程 x2﹣ 3x﹣ 2=0 的两个实数根.∴x1+x 2=3, x1?x2=﹣ 2.又∵( x1+2)( x2+2)=x 1x2+2x 1+2x2+4=x 1x2+2( x1+x 2) +4.将x1+x 2=3、x1?x2=﹣ 2 代入,得(x1+2)( x2+2 ) =x 1x2 +2x1+2x 2+4=x 1x2+2( x1+x2) +4= (﹣ 2) +2×3+4=8.故选 C点评:将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.21.( 2011?鄂州模拟)已知p 2﹣ p ﹣ 1=0 , 1﹣q ﹣q 2=0,且 pq ≠1,则的值为( ) A .1 B . 2 C .D .考点 : 根与系数的关系.专题 : 计算题.分析:首先把 1﹣q ﹣ q 2=0 变形为,然后结合 p 2﹣ p ﹣ 1=0,根据一元二次方程根与系数的关系可以得到 p 与 是方程 x 2﹣ x ﹣ 1=0 的两个不相等的实数根,那么利用根与系数的关系即可求出所求代数式的值.解答:22,可知 p ≠0,q ≠0,解:由 p ﹣p ﹣1=0 和 1﹣ q ﹣q =0又∵ pq ≠1, ∴,∴由方程 1﹣ q ﹣ q 2=0 的两边都除以 q 2 得: ,∴ p 与 是方程 x 2﹣ x ﹣ 1=0 的两个不相等的实数根, 则由韦达定理,得 p+ =1, ∴=p+ =1.故选 A .点评: 本题考查了根与系数的关系. 首先把 2 变形为是解题的关键, 然后利用1﹣ q ﹣q =0根与系数的关系就可以求出所求代数式的值.22.( 2010?滨湖区一模)若 △ ABC 的一边 a 为 4,另两边 b 、c 分别满足 2 ﹣ 5b+6=0 2b ,c ﹣ 5c+6=0,则 △ ABC的周长为( ) A .9B . 10C .9 或 10D .8或 9或 10考点 : 根与系数的关系;三角形三边关系.专题 : 压轴题.分析: 由于两边 b 、c 分别满足 b 2﹣ 5b+6=0,c 2﹣ 5c+6=0 ,那么 b 、c 可以看作方程 x 2﹣ 5x+6=0 的两根,根据根与系数的关系可以得到 b+c=5 , bc=6,而 △ABC 的一边 a 为 4,由此即可求出 △ABC 的一边 a 为 4 周长.解答: 解:∵两边 b 、 c 分别满足 b 2﹣5b+6=0 ,c 2﹣ 5c+6=0, ∴ b 、 c 可以看作方程 x 2﹣ 5x+6=0 的两根,∴ b+c=5 , bc=6,而 △ ABC 的一边 a 为 4,①若 b=c,则 b=c=3 或 b=c=2 ,但 2+2=4,所以三角形不成立,故b=c=3.∴△ ABC 的周长为4+3+3=10 或 4+2+2②若 b≠c,∴△ ABC 的周长为4+5=9 .故选 C.点评: 此题把一元二次方程的根与系数的关系与三角形的周长结合起来, 利用根与系数的关系来三角形的周长. 此 题要注意分类讨论. 二.填空题(共 4 小题) 2 2k= ﹣ 1 . 23.( 2014?莱芜)若关于 x 的方程 x +(k ﹣ 2) x+k =0 的两根互为倒数,则 考点 : 根与系数的关系.专题 : 判别式法.分析: 根据已知和根与系数的关系x 1x 2= 2得出 k =1,求出 k 的值,再根据原方程有两个实数根,求出符合题意的k 的值.2,两根互为倒数, 解答: 解:∵ x 1x 2=k∴ k 2=1,解得 k=1 或﹣ 1;∵方程有两个实数根, △>0, ∴当 k=1 时, △ < 0,舍去,故 k 的值为﹣ 1.故答案为:﹣ 1.点评:本题考查了根与系数的关系,根据 x 1, x 2 是关于 x 的一元二次方程 ax 2+bx+c=0 ( a ≠0, a ,b ,c 为常数)的两个实数根,则 x1+x2=﹣ , x1x2= 进行求解.24.( 2014?呼和浩特)已知 2 ﹣ 5=0 的两个实数根,则 2﹣mn+3m+n=8. m ,n 是方程 x +2x m考点 : 根与系数的关系;一元二次方程的解. 专题 : 常规题型.分析:根据 m+n= ﹣ =﹣ 2, m?n=﹣ 5,直接求出 m 、 n 即可解题.解答: 解:∵ m 、 n 是方程 x 2+2x ﹣ 5=0 的两个实数根,∴ mn=﹣ 5, m+n=﹣ 2,∵ m 2+2m ﹣5=0 ∴ m 2=5﹣ 2mm 2 ﹣mn+3m+n= ( 5﹣ 2m )﹣(﹣ 5)+3m+n =10+m+n =10﹣2 =8故答案为: 8.点评: 此题主要考查了一元二次方程根根的计算公式,根据题意得出m 和n 的值是解决问题的关键.2 2﹣2=0 有两个实数根x1、x ,则 x ( x)+x 2 的最小值为. 25.( 2014?广州)若关于 x 的方程 x +2mx+m +3m 21 2+x 1 2考点:根与系数的关系;二次函数的最值.专题:判别式法.分析:由题意可得△ =b 2﹣ 4ac≥0,然后根据不等式的最小值计算即可得到结论.解答:解:由题意知,方程2 2x+2mx+m+3m﹣ 2=0 有两个实数根,则△ =b2﹣ 4ac=4m2﹣ 4( m2+3m﹣ 2) =8﹣12m≥0,∴ m≤,∵ x1( x2+x 1)+x 22 =( x2+x 1)2﹣ x1x2=(﹣ 2m ) 2﹣( m 2+3m ﹣2) =3m 2 ﹣3m+2 =3 ( m 2﹣ m+﹣ ) +22=3 ( m ﹣ ) + ; ∴当 m= 时,有最小值 ; ∵ < ,∴ m= 成立;∴最小值为 ;故答案为: .点评: 本题考查了一元二次方程根与系数关系,考查了一元二次不等式的最值问题.总结一元二次方程根的情况与判别式 △的关系:( 1) △ > 0? 方程有两个不相等的实数根;( 2) △ =0? 方程有两个相等的实数根;( 3) △ < 0? 方程没有实数根.26.(2014?桂林)已知关于x 的一元二次方程 x 2+( 2k+1 )x+k 2﹣ 2=0 的两根为 x1 和 x2,且( x1﹣ 2)(x1 ﹣x2)=0, 则 k 的值是 ﹣ 2 或﹣ .考点 : 根与系数的关系;根的判别式.分析: 先由( x 1﹣ 2)( x 1﹣ x 2) =0,得出 x 1﹣ 2=0 或 x 1﹣ x 2=0,再分两种情况进行讨论:① 如果 x 1﹣2=0 ,将 x=2代入 x 2 2﹣ 2=0,得 4+2(2k+1 )+k 2﹣ 2=0 ,解方程求出 k= ﹣ 2;② 如果x1﹣ x21 2 = +( 2k+1 )x+k =0 ,那么将 x +x ﹣( 2k+1 ), x 1x 2=k2﹣ 2 代入可求出 k 的值,再根据判别式进行检验.解答: 解:∵( x 1﹣ 2)( x 1﹣ x 2) =0,∴ x 1﹣ 2=0 或 x 1﹣ x 2=0 .① 如果 x1﹣2=0,那么 x1=2,2 2将 x=2 代入 x +( 2k+1 ) x+k ﹣2=0,得 4+2 ( 2k+1) +k 2﹣2=0 ,2整理,得 k +4k+4=0 , 解得 k= ﹣2; ② 如果 x1﹣x2=0,那么( x1﹣x2)2=( x1+x 2)2﹣ 4x1x2=[ ﹣( 2k+1 )] 2﹣ 4(k2﹣ 2)=4k+9=0 ,解得 k= ﹣.又∵△ =(2k+1 )2﹣4( k2﹣ 2)≥0.解得: k≥﹣.所以 k 的值为﹣ 2 或﹣.故答案为:﹣ 2 或﹣.点评:本题考查了一元二次方程的根与系数的关系,根的判别式,注意在利用根与系数的关系时,需用判别式进行检验.三.解答题(共 4 小题)27.( 2014?泸州)已知 x1, x2 是关于 x 的一元二次方程2 2x ﹣ 2( m+1) x+m +5=0 的两实数根.(1)若( x1﹣ 1)( x2﹣1) =28 ,求 m 的值;(2)已知等腰△ ABC 的一边长为 7,若 x1, x2恰好是△ ABC 另外两边的边长,求这个三角形的周长.考点:根与系数的关系;三角形三边关系;等腰三角形的性质.专题:代数几何综合题.分析:( 1)利用( x1﹣ 1)(x2﹣ 1) =x1?x2﹣( x1+x 2)+1=m 2+5﹣2( m+1) +1=28,求得 m 的值即可;( 2)分 7 为底边和7 为腰两种情况分类讨论即可确定等腰三角形的周长.2 2解答:解:( 1)∵ x1, x2是关于 x 的一元二次方程 x ﹣ 2( m+1) x+m +5=0 的两实数根,2∴ x1+x 2=2( m+1), x1?x2=m+5,∴( x1﹣ 1)( x2﹣ 1)=x 1?x2﹣( x1+x 2)+1=m 2+5﹣2( m+1)+1=28,解得: m=﹣ 4 或 m=6;当 m=﹣ 4 时原方程无解,∴ m=6;( 2)①当 7 为底边时,此时方程2 2x﹣ 2( m+1) x+m +5=0 有两个相等的实数根,∴△ =4( m+1)2﹣2,4( m +5)=0解得: m=2,2∴方程变为x ﹣ 6x+9=0 ,∵ 3+3< 7,∴不能构成三角形;②当 7 为腰时,设x1=7,2代入方程得: 49﹣ 14( m+1) +m +5=0 ,解得: m=10 或 4,当m=10 时方程变为 x2﹣22x+105=0 ,解得: x=7 或 15∵ 7+7< 15,不能组成三角形;当m=4 时方程变为 x2﹣10x+21=0 ,解得: x=3 或 7,此时三角形的周长为 7+7+3=17 .点评:本题考查了根与系数的关系及三角形的三边关系,解题的关键是熟知两根之和和两根之积分别与系数的关系.28.( 2014?日照二模)已知 x1, x2 是关于 x 的一元二 2 2 3x1次方程x +( 3a﹣ 1)x+2a ﹣1=0 的两个实数根,其满足(﹣ x2)( x1﹣ 3x2) =﹣ 80.求实数 a 的所有可能值.考点:根与系数的关系;根的判别式.专题:计算题.x22﹣ 1=0 的两个实数根得到△ ≥0,即( 3a﹣ 1)2﹣4(2a2﹣1)分析:根据△ 的意义由一元二次方程+( 3a﹣ 1)x+2a= a 2﹣ 6a+5≥0,根据根与系数的关系得到x1+x2=﹣( 3a﹣ 1),x1?x2=2a2﹣1,由( 3x 1﹣x2)( x1﹣ 3x2)=﹣802 2 2,变形得到 3( x1+x 2)﹣ 16x1x2=﹣ 80,于是有 3(3a﹣ 1)﹣ 16(2a ﹣ 1)=﹣ 80,解方程得到a=3 或 a=﹣然后代入 △验算即可得到实数 a 的值.解答: 解:∵ x 1,x 2 是关于 x 的一元二次方程 2 2 ﹣ 1=0 的两个实数根, x +( 3a ﹣ 1) x+2a22 2∴△ ≥0,即( 3a ﹣ 1) ﹣ 4( 2a ﹣1) =a ﹣ 6a+5≥0∴ x1+x 2=﹣( 3a ﹣ 1),x1?x2=2a 2﹣ 1,∵( 3x 1﹣ x 2)( x 1﹣ 3x 2) =﹣ 80,即 3( x 12+x 22)﹣ 10x 1x 2=﹣ 80, ∴ 3( x1+x2 )2﹣ 16x1x2 =﹣ 80, ∴ 3( 3a ﹣ 1) 2﹣ 16(2a 2﹣ 1) =﹣ 80,2整理得, 5a +18a ﹣ 99=0,∴( 5a+33)( a ﹣ 3) =0,解得 a=3 或 a=﹣ ,当 a=3 时, △ =9 ﹣ 6×3+5= ﹣ 4<0,故舍去,当 a=﹣时, △=(﹣ 2 )+6=(2+6> 0,) ﹣ 6×(﹣) +6× ∴实数 a 的值为﹣点评: 本题考查了一元二次方程 2x1,x2,则 x1+x 2=﹣ , ax +bx+c=0 ( a ≠0)的根与系数的关系: 如果方程的两根为x1?x2= .也考查了一元二次方程根的判别式以及代数式的变形能力.29.( 2013?孝感)已知关于 2 2x 的一元二次方程 x ﹣( 2k+1) x+k +2k=0 有两个实数根 x1,x2. ( 1)求实数 k 的取值范围;2﹣ x22 ( 2)是否存在实数 k 使得 x1 ?x2﹣ x1 ≥0 成立?若存在,请求出 k 的值;若不存在,请说明理由. 考点 : 根与系数的关系;根的判别式.专题 : 压轴题.△ ≥0,据此列出关于 k 的不等式 [﹣( 2k+1 ) ]2分析: ( 1)根据已知一元二次方程的根的情况,得到根的判别式2k 的取值范围; ﹣ 4( k +2k ) ≥0,通过解该不等式即可求得( 2)假设存在实数 k 使得≥0 成立.利用根与系数的关系可以求得,然后利用完全平方公式可以把已知不等式转化为含有两根之和、两根之积的形式≥0,通过解不等式可以求得 k 的值.解答: 解:( 1)∵原方程有两个实数根,2 2∴ [﹣( 2k+1 )] ﹣ 4(k +2k ) ≥0,2 2﹣8k ≥0 ∴ 4k +4k+1 ﹣ 4k∴ 1﹣ 4k ≥0,∴ k ≤ .∴当 k≤时,原方程有两个实数根.( 2)假设存在实数 k 使得≥0 成立.∵ x1, x2是原方程的两根,∴.由≥0,得≥0.2 2 2∴ 3( k +2k)﹣( 2k+1)≥0,整理得:﹣( k﹣ 1)≥0,∴只有当 k=1 时,上式才能成立.又∵由( 1)知 k≤,∴不存在实数 k 使得≥0 成立.点评:本题综合考查了根的判别式和根与系数的关系,在解不等式时一定要注意数值的正负与不等号的变化关系.30.( 2001?苏州)已知关于 x 的一元二次方程,( 1)求证:不论 k 取何值,方程总有两个不相等的实数根;( 2)设 x1、x2是方程的两个根,且x12﹣ 2kx 1+2x 1x2=5,求 k 的值.考点:根与系数的关系;根的判别式.专题:计算题;证明题;压轴题.分析:( 1)要保证方程总有两个不相等的实数根,就必须使△>0 恒成立;( 2)欲求 k 的值,先把此代数式变形为两根之积或两根之和的形式,代入数值计算即可.解答:解:( 1)已知关于 x 的一元二次方程,∴△ =(﹣ 2k)2﹣ 4×( k2﹣ 2)=2k2+8,2∵ 2k +8> 0 恒成立,∴不论 k 取何值,方程总有两个不相等的实数根.(2)∵ x1、 x2是方程的两个根,∴ x1+x 2=2k, x1?x2= k2﹣ 2,∴ x12﹣ 2kx 1+2x 1x2=x 12﹣( x1+x 2)x1+2x1x2=x 1x2=k2﹣ 2=5,解得 k= ±.点评:此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.欢迎您的光临,Wor文档下载后可修改编辑双击可删除页眉页脚谢谢!希望您提出您宝贵的意见,你的意见是我进步的动力。
韦达定理习题-(2)
韦达定理习题-(2)(一元二次方程根与系数的关系习题1、如果方程)0(02≠=++a c bx ax 的两根是1x 、2x ,那么21x x += ,21x x ?= 。
2、已知1x 、2x 是方程04322=-+x x 的两个根,那么:21x x += ;21x x ?= ;=+2111x x ;=+2221x x ;=++)1)(1(21x x ;||21x x -= 。
3、以2和3为根的一元二次方程(二次项系数为1)是。
4、如果关于x 的一元二次方程022=++a x x 的一个根是1-2,那么另一个根是,a 的值为。
5、如果关于x 的方程x 2+6x+k=0的两根差为2,那么k= 。
6、已知方程2x 2+mx -4=0两根的绝对值相等,则m= 。
7、一元二次方程px 2+qx+r=0(p ≠0)的两根为0和-1,则q ∶p= 。
^8、已知方程x 2-mx+2=0的两根互为相反数,则m= 。
9、已知关于x 的一元二次方程(a 2-1)x 2-(a+1)x+1=0两根互为倒数,则a = 。
10、已知关于x 的一元二次方程mx 2-4x -6=0的两根为x 1和x 2,且21x x +=-2,则m= ,21x x ? = 。
11、已知方程3x 2+x -1=0,要使方程两根的平方和为913,那么常数项应改为。
12、已知二次项系数为1的一元二次方程,它的两根之和为5,两根之积为6,则这个方程为。
13、若α、β为实数且|α+β-3|+(2-αβ)2=0,则以α、β为根的一元二次方程为。
(其中二次项系数为1)14、已知关于x 的一元二次方程x 2-2(m -1)x+m 2=0。
若方程的两根互为倒数,则m= ;若方程两根之和与两根积互为相反数,则m= 。
15、已知方程x 2+4x -2m=0的一个根α比另一个根β小4,则α= ;β= ;m= 。
—16、已知关于x 的方程x 2-3x+k=0的两根立方和为0,则k=17、已知关于x 的方程x 2-3mx+2(m -1)=0的两根为1x 、2x ,且43x 1x 121-=+,则m= 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程根与系数的关系(韦达定理)
韦达定理:对于一元二次方程20(0)ax bx c a ++=≠,如果方程有两个实数根12,x x ,那么
1212,b c x x x x a a
+=-= 说明:(1)定理成立的条件0∆≥
(2)注意公式重12b x x a
+=-的负号与b 的符号的区别 已知x1,x2是方程2x 2-x-5=0的两个根
考点:根与系数的关系.专题:应用题.
分析:利用根与系数的关系,分别求得x1+x2,x1/x2的值,整体代入所求的代数式即可.
解:∵x1,x2是方程2x 2-x-5=0的两个根
∴x1+x2=-b/a=12,x1×x2=c/a=-5/2
本题考查了一元二次方程根与系数的关系.要掌握根与系数的关系式:x1+x2=-b/a ,x1×x2=c/a .
(1)计算对称式的值
例一 若12,x x 是方程2220070x x +-=的两个根,试求下列各式的值:
(1) 2212x x +; (2)
1211x x +; (3) 12(5)(5)x x --; (4) 12||x x -.
(2)定性判断字母系数的取值范围
例二 一个三角形的两边长是方程
的两
根,第三边长为2,求k 的取值范围。
例三 已知关于x 的方程221(1)104
x k x k -+++=,根据下列条件,分别求出k 的值. (1) 方程两实根的积为5; (2) 方程的两实根12,x x 满足12||x x =.
例四 已知12,x x 是一元二次方程24410kx kx k -++=的两个实数根.
(1) 是否存在实数k ,使12123(2)(2)2
x x x x --=-成立若存在,求出k 的值;若
不存在,请您说明理由.
(2) 求使
1221
2x x x x +-的值为整数的实数k 的整数值.
一元二次方程根与系数的关系练习题 A 组
1.一元二次方程2(1)210k x x ---=有两个不相等的实数根,则k 的取值范围是( )
A .2k >
B .2,1k k <≠且
C .2k <
D .2,1k k >≠且
2.若12,x x 是方程22630x x -+=的两个根,则
1211x x +的值为( ) A .2 B .2- C .12 D .92
3.已知菱形ABCD 的边长为5,两条对角线交于O 点,且OA 、OB 的长分别是关于x 的方程22(21)30x m x m +-++=的根,则m 等于( )
A .3-
B .5
C .53-或
D .53-或
4.若t 是一元二次方程20 (0)ax bx c a ++=≠的根,则判别式24b ac ∆=-和完全平方式2(2)M at b =+的关系是( )
A .M ∆=
B .M ∆>
C .M ∆<
D .大小关系不能确定
5.若实数a b ≠,且,a b 满足22850,850a a b b -+=-+=,则代数式1111
b a a b --+--的值为( )
A .20-
B .2
C .220-或
D .220或 6.如果方程2()()()0b c x c a x a b -+-+-=的两根相等,则,,a b c 之间的关系是 ______
7.已知一个直角三角形的两条直角边的长恰是方程22870x x -+=的两个根,则这
个直角三角形的斜边长是 _______ .
8.若方程22(1)30x k x k -+++=的两根之差为1,则k 的值是 _____ .
9.设12,x x 是方程20x px q ++=的两实根,121,1x x ++是关于x 的方程20x qx p ++=的两实根,则p = _____ ,q = _____ .
10.已知实数,,a b c 满足26,9a b c ab =-=-,则a = _____ ,b =
_____ ,c = _____ . 11.对于二次三项式21036x x -+,小明得出如下结论:无论x 取什么实数,其值都不可能等于10.您是否同意他的看法请您说明理由.
12.若0n >,关于x 的方程21(2)04
x m n x mn --+=有两个相等的的正实数根,求m n
的值.
13.已知关于x 的一元二次方程2(41)210x m x m +++-=.
(1) 求证:不论为任何实数,方程总有两个不相等的实数根;
(2) 若方程的两根为12,x x ,且满足
121112
x x +=-,求m 的值.
14.已知关于x 的方程221(1)104
x k x k -+++=的两根是一个矩形两边的长. (1) k 取何值时,方程存在两个正实数根
(2) k 的值.
B 组
1.已知关于x 的方程2(1)(23)10k x k x k -+-++=有两个不相等的实数根12,x x .
(1) 求k 的取值范围;
(2) 是否存在实数k ,使方程的两实根互为相反数如果存在,求出k 的值;如果不存在,请您说明理由.
2.已知关于x 的方程230x x m +-=的两个实数根的平方和等于11.求证:关于x 的方程22(3)640k x kmx m m -+-+-=有实数根.
3.若12,x x 是关于x 的方程22(21)10x k x k -+++=的两个实数根,且12,x x 都大于1.
(1) 求实数k 的取值范围;
(2) 若1212
x x =,求k 的值.。