2015-2016学年广东省深圳市笋岗中学九年级上10月月考数学试卷.doc

合集下载

广东省深圳市罗湖区九校联考九年级(上)月考数学试卷(10月份)

广东省深圳市罗湖区九校联考九年级(上)月考数学试卷(10月份)

≌△CMB;③四边形 EBFD 是菱形;④MB:OE=3:2,其中正确结论


三.解答题(共 52 分) 17.(10 分)解下列一元二次方程 ①x2+6x﹣7=0; ②x2﹣2x=2(x﹣2). 18.(6 分)为弘扬中华传统文化,某中学今年 3 月份举行“太极拳”比赛,比
赛成绩评定为 A,B,C,D,E 五个等级,该校七(1)班全体学生参加了学 校的比赛,并将比赛结果绘制成如下两幅不完整的统计图,请根据图中信息, 解答下列问题:
D、E、F,已知 AB=1,BC=3,DE=2,求 EF 的长.
20.(6 分)小明借助没有刻度的直尺,按照如图的顺序作出了四边形 ACPB. (1)求证:AP 平分∠BAC; (2)若∠ABP=120°,AB=2,求四边形 ACPB 的面积.
21.(7 分)如图,有长为 22 米的篱笆,一面利用墙(墙的最大可用长度为 14

第2页(共6页)
15(3 分)已知如图,四边形 ABCD 为矩形,点 O 是 AC 的中点,过点 O 的一
直线分别与 AB、CD 交于点 E、F,连接 BF 交 AC 于点 M,连接 DE、BO,
若∠COB=60°,FO=FC,则下列结论:①FB⊥OC,OM=CM;②△EOB
(1)该校七(1)班共有
名学生,并补全条形统计图;
(2)A 等级的 4 名学生中有 2 名男生,2 名女生,现从中任意选取 2 名学生作
为全班训练的示范者,则恰好选到 1 名男生和 1 名女生的概率是

19.(6 分)如图,AD∥BE∥CF,直线 l1、l2 与三条平行线分别交于点 A、B、C、
第3页(共6页)
广东省深圳市罗湖区九校联考九年级(上)月考数学试卷(10

九年级十月月考数学测试卷.doc

九年级十月月考数学测试卷.doc

九年级十月月考数学测试卷(试卷满分120分,答卷时间为120分钟)得分 ___________卷首语:亲爱的同学,祝贺你完成了前面知识的学习, 在是展现你学习成果之时,尽情的发挥吧,祝你成功! 一•选择题(12X3)1. 若有意义,则x 的取值范围是()A x$3B xW5C x$3 或 xW5D 3WxW52. 化简根式得 J(-5)2x3 得()• A -5V3 B -3^5 C±5V33. 一元二次方@-3x 2+16x+3=0,?E 二次项系数变为正数,下列变化正确的是 A 3x 2+16x+3=0 B 3X 2-1 6X ・3=0 C 3X 24-16x ・3=0 D 3x 2-l 6x+3=04已知一元二次方程(2-m )x 2+2(m-2)x+4=0有两个相等的实数根,则m 的值为 A-2 BO C2 D±24. 要组织一次篮球赛,赛制为单循环形式(即每两队之间都要赛一场),计划安排21场比赛,应邀请()支球队. A5 B6 C7 D85.下列图形中,既是中心对称图形乂是轴对称图形的是()ABCD7・己知:如图,©O 中,圆心角ZBOD=110°,则圆周角ZBCD 的度数 X ). A 115° B 125° C 135° D 145°8. 小芳同学在手工制作中把一个边长为6cm 的等边三角形纸片帖到-个圆形的纸片上,若三角形的三个顶点恰好在这个圆上,则该圆 的半径为()・ AV3cmB 2 爺 cm C373cm D4V3cm9. 下列说法:⑴圆是轴对称图形,又是中心对称图形;⑵顶点在圆上的角叫做圆周 角;⑶平分弦的直径乖直于弦;⑷经过半径的端点且垂直于半径的直线是圆的切线,其 中错误的说法有()个. Al B2 C3 D410. 在半径为10的OO 中,弓玄AB 为6,弦CD 为8,且AB 〃CD ,贝lj AB 与CD 之间的距离为(). Al B2 C7 D1或711. 老师让同学们观察如图所示的图形,问:它绕着圆心O 旋转多少度 后和它自身重合?甲说:45°;乙说:60°;丙说:90°; 丁说:135°・以上四位同学的回答中,错误的是()A •甲B.乙C.丙D. 丁 第11题图 12. 如图,锐角AABC 内接于(DO,它的高AD, BE 相交与点H,连接............... 启....................................... 躱......................................匹載S沪決—7—现ACBG、CG、CH,下列结论:(l)ZBFD二ZACD; (2)ZCFD=ZABD ;(3)BF二BG; (4)若ZACD=60°则CG等于半径。

2015-2016学年度九年级上第二次月考数学试卷及答案

2015-2016学年度九年级上第二次月考数学试卷及答案

广东深圳锦华实验学校2015-2016学年度第一学期九年级第二次月考数学试题一、选择题(本大题共小题,每小题3分,共24分)每小题只有一个正确选项 1.下列方程是关于x 的一元二次方程的是【 】 A .ax 2+bx +c=0B .21x + x =2 C .x 2+2x =x 2-1 D .3x 2+1=2x +22.下列关于x 的方程有实数根的是【 】A .x 2-x +1=0B .x 2+x +1=0C .(x -1)(x +2)=0D .(x -1)2+1=0 3.具有四条边都相等且四个角都是直角的性质的四边形只有【 】 A .平行四边形 B .矩形 C .菱形 D .正方形4.袋子里有4个球,标有2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,所抽取的两个球数字之和大于6的概率是【 】 A .43 B .85 C .127 D .215.下列四幅图形中,表示两棵圣诞树在同一时刻阳光下的影子的图形可能是【 】A .B .C .D .6.关于反比例函数y =x2的图象,下列说法正确的是【 】 A .图象经过点(1,1) B .两个分支分布在第二、四象限 C .两个分支关于x 轴成轴对称 D .当x <0时,y 随x 的增大而减小7.如图,10×2网格中有一个△ABC ,下图中与△ABC 相似的三角形的个数有【 】A .1个B .2个C .3个 D.4个8.如图,在△ABC 中,∠ACB =90°,∠ABC =60°, BD 平分∠ABC ,P 点是BD 的中点,若AD =6, 则CP 的长为【 】A .3B .3.5C .4D .4.5二、填空题(本大题共6小题,每小题3分,共18分)9.在矩形ABCD 中, AB =5,BC =15,则CD 的长为______. 10.菱形的两条对角线长分别是方程x 2-14x +48=0的两实根,则菱形的面积是 ____.11.在平面直角坐标系中,△ABC 顶点A 的坐标为(2,3),若以原点O 为位似中心,画△ABC 的位似图形△A ′B ′C ′,使△ABC 与△A ′B ′C ′的相似比等于1:2,则点A ′的坐标__________.12.蓄电池电压为定值,使用此电源时,电流I (安) 与电阻R (欧)之间关系图象如图所示,若点P 在图 象上,当电流为2安时,电阻R 为________ 欧.13.请将六棱柱的三视图名称填在相应的横线上(填 “主视图”、“左视图”、“俯视图”). (1)________;(2)________;(3)________. 14.△ABC 中,D 、E 分别是边AB 与AC 的中点,BC =4,下面四个结论:①DE =2;②△ADE ∽△ABC ;③△ADE 的面积与△ABC的面积之比为 1:4;④△ADE 的周长与△ABC 的周长之比为 1:4;其中正确的有___________.(只填序号) 三、(本大题共2小题,每小题5分,共10分) 15.用适当的方法解下列方程:x(x -2)+x -2=0 四、(本大题共2小题,每小题7分,共14分)16.已知:如图,AB 和DE 是直立在地面上的两根立柱,AB =5m ,某一时刻,AB 在阳光下的投影BC =4m .(1)请你在图中画出此时DE 在阳光下的投影;(2)在测量AB 的投影长时,同时测出DE 在阳光下的投影长为6m ,请你计算DE 的长17.如图,矩形ABCD ,AE ,CF 分别垂直对角线BD 于E ,F .(1)求证:△ABE ≌△CDF ; (2)若∠ABD =60°,AB =2,求AD 的长.CA B④③②①E AB C DABCDPI( FA BCD E(1) (2) (3) 正面五、(本大题共2小题,每小题8分,共16分)18.现有2个红球,1个白球和1个蓝球,它们除颜色外其它均相同,把这些球放入若干个不透明袋中搅匀,求恰好摸到1个红球和1个蓝球的概率,列表格. (1)把这4个球放入一个袋中,任意摸出两个球;(2)把一个红球和一个白球放入一个袋中,再把一个红球和一个篮球放入另一个袋中,分别从这两个袋中各摸一个球.19.已知:如图,一次函数y =x+b 的图象与反比例函数y =xk(k <0)的图象交于A 、B 两点,A 点坐标为(1,m ),连接OB ,过点B 作BC ⊥x 轴,垂足为点C ,且△BOC 的面积为23(1)求k 的值;(2)求这个一次函数的解析式.(3)根据图象直接写出:当x 取何值时,反比例函数 的值大于一次函数的值.六、(本大题共2小题,每小题9分,共18分)20.某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?21.已知:关于x 的一元二次方程x 2-(3m +1)x +2m 2+m =0 (1)求证:无论k 取何值,这个方程总有实数根;(2)若△ABC 的两边的长是这个方程的两个实数要根,第三边的长为3,当 △ABC 为等腰三角形时,求m 的值及△ABC 的周长. 七、(本大题共小题,每小题10分,共20分)22.在△ABC 中,D 是BC 的中点,且AD =AC ,DE ⊥BC ,与AB 相交于点E ,EC 与AD 相交于点F .过C 点作CG ∥AD ,交BA 的延长线于G , 过A 作BC 的平行线交CG 于H 点.(1)若∠BAC =900,求证:四边形ADCH 是菱形; (2)求证:△ABC ∽△FCD ;(3)若DE =3,BC =8,求△FCD 的面积.23.如图.己知四边形ABCD 中,AB ∥DC ,AB =DC ,且AB =6cm ,BC =8cm ,对角线AC =l0cm .(1)求证:四边形ABCD 是矩形; (2)如图(2),若动点Q 从点C 出发,在CA 边上以每秒5 cm 的速度向点A 匀速运动,同时动点P 从点B 出发,在BC 边上以每秒4 cm 的速度向点C 匀速运动,运动时间为t 秒(0≤t <2),连接BQ 、AP ,若AP ⊥BQ ,求t 的值; (3)如图(3),若点Q 在对角线AC 上,CQ =4cm ,动点P 从B 点出发,以每秒1cm 的速度沿BC 运动至点C 止.设点P 运动了t 秒,请你探索:从运动开始,经过多少时间,以点Q 、P 、C 为顶点的三角形是等腰三角形?请求出所有可能的结果.GHA B C D E F 图(1) A B C D图(2) A Q P B C D 图(3)A Q PB CD2015—2016学年度九年级第一学期第二次月考试题数学试卷 答题卡__________ 班级__________ 姓名_________ 考号_________—————CD。

九年级数学10月月考试题(含解析) 新人教版-新人教版初中九年级全册数学试题

九年级数学10月月考试题(含解析) 新人教版-新人教版初中九年级全册数学试题

某某省某某市夏津实验中学2016届九年级数学上学期月考试题一、选择题(每小题3分,共36分)1.一元二次方程3x2﹣4x﹣5=0的二次项系数、一次项系数、常数项分别是( ) A.3,﹣4,﹣5 B.3,﹣4,5 C.3,4,5 D.3,4,﹣52.关于x的一元二次方程(a﹣2)x2+x+a2=0的一个根是0,则a的值为( )A.2 B.﹣2 C.2或﹣2 D.03.用配方法解一元二次方程x2﹣6x﹣10=0时,下列变形正确的为( )A.(x+3)2=1 B.(x﹣3)2=1 C.(x+3)2=19 D.(x﹣3)2=194.若一元二次方程x2+2x+a=0的有实数解,则a的取值X围是( )A.a<1 B.a≤4 C.a≤1 D.a≥15.二次函数y=﹣x2+2x+4的最大值为( )A.3 B.4 C.5 D.66.在平面直角坐标系中,二次函数y=a(x﹣h)2(a≠0)的图象可能是( ) A.B. C.D.7.三角形两边长分别为3和6,第三边的长是方程x2﹣13x+36=0的两根,则该三角形的周长为( )A.13 B.15 C.18 D.13或188.某县大力推进义务教育均衡发展,加强学校标准化建设,计划用三年时间对全县学校的设施和设备进行全面改造,2014年县政府已投资4亿元人民币.若每年投资的增长率相同,预计2016年投资5.76亿元人民币,那么每年投资的增长率为( )A.40% B.20% C.﹣220% D.30%9.若点A(2,y1),B(﹣3,y2),C(﹣1,y3)三点在抛物线y=x2﹣4x﹣m的图象上,则y1、y2、y3的大小关系是( )A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y1>y210.如图,在△ABC中,∠B=90°,AB=6cm,BC=12cm,动点P从点A开始沿边AB向B以1cm/s 的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以2m/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过( )秒,四边形APQC的面积最小.A.1 B.2 C.3 D.411.某某省赵县的赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为y=﹣x2,当水面离桥拱顶的高度DO是4m时,这时水面宽度AB为( )A.﹣20m B.10m C.20m D.﹣10m12.如图,抛物线y=﹣2x2+8x﹣6与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1向右平移得C2,C2与x轴交于点B,D.若直线y=x+m与C1、C2共有3个不同的交点,则m的取值X围是( )A.﹣2<m<B.﹣3<m<﹣C.﹣3<m<﹣2 D.﹣3<m<﹣二、填空题(每小题4分,共20分)13.已知m是方程x2﹣x﹣1=0的一个根,则代数式m2﹣m的值等于__________.14.已知实数x1,x2满足x1+x2=7,x1x2=12,则以x1,x2为根的一元二次方程是__________.15.给出下列两条抛物线:y=x2+2x+1,y=2x2+4x+1请尽可能多地找出这两条抛物线的共同点:(至少三条)①__________②__________③__________.16.已知抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,若点A的坐标为(﹣2,0),抛物线的对称轴为直线x=2,则线段AB的长为__________.17.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x 轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,其中正确的是__________.三、解答题(共64分)18.解方程:(1)(x﹣5)2=2(x﹣5)(2)x2﹣4x﹣2=0.19.向阳中学数学兴趣小组对关于x的方程(m+1)+(m﹣2)x﹣1=0提出了下列问题:(1)是否存在m的值,使方程为一元二次方程?若存在,求出m的值,并解此方程;(2)是否存在m的值,使方程为一元一次方程?若存在,求出m的值,并解此方程.20.已知关于x的一元二次方程x2+4x+m+4=0的实数根是x1,x2.(1)求m的取值X围.(2)当x1+x2﹣x1x2<﹣6,且m为整数时,求m的值.21.如表给出了一个二次函数的一些取值情况:x … 0 1 2 3 4 …y … 3 0 ﹣1 0 3 …请在坐标系中画出这个二次函数的图象,并根据图象说明:(1)当y随x的增大而增大时自变量x的取值X围;(2)当0≤y<3时x的取值X围.22.一种进价为每件40元的T恤,若销售单价为60元,则每周可卖出300件,为提高利益,就对该T恤进行涨价销售,经过调查发现,每涨价1元,每周要少卖出10件,请确定该T恤涨价后每周销售利润y(元)与销售单价x(元)之间的函数关系式,并求出销售单价定为多少元时,每周的销售利润最大?23.先阅读理解下面的例题,再按要求解答下列问题:例题:解一元二次不等式x2﹣4>0解:∵x2﹣4=(x+2)(x﹣2)∴x2﹣4>0可化为(x+2)(x﹣2)>0由有理数的乘法法则“两数相乘,同号得正”,得解不等式组①,得x>2,解不等式组②,得x<﹣2,∴(x+2)(x﹣2)>0的解集为x>2或x<﹣2,即一元二次不等式x2﹣4>0的解集为x>2或x<﹣2.(1)一元二次不等式x2﹣16>0的解集为__________;(2)分式不等式的解集为__________;(3)解一元二次不等式2x2﹣3x<0.24.已知抛物线的顶点(1,1)抛物线与y轴交于点(0,2),点A为抛物线上一动点.(1)求此抛物线的解析式;(2)过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连结BD,求对角线BD的最小值.2015-2016学年某某省某某市夏津实验中学九年级(上)月考数学试卷(10月份)一、选择题(每小题3分,共36分)1.一元二次方程3x2﹣4x﹣5=0的二次项系数、一次项系数、常数项分别是( ) A.3,﹣4,﹣5 B.3,﹣4,5 C.3,4,5 D.3,4,﹣5【考点】一元二次方程的一般形式.【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0).其中a,b,c 分别叫二次项系数,一次项系数,常数项.【解答】解:一元二次方程3x2﹣4x﹣5=0的二次项系数、一次项系数、常数项分别是3,﹣4,﹣5.故选A.【点评】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.2.关于x的一元二次方程(a﹣2)x2+x+a2=0的一个根是0,则a的值为( )A.2 B.﹣2 C.2或﹣2 D.0【考点】一元二次方程的解.【分析】把x=0代入方程(a﹣2)x2+x+a2=0得到一个关于a的方程,求出方程的解即可.【解答】解:把x=0代入方程(a﹣2)x2+x+a2=0得:a2=0,∴a=0.故选:D.【点评】本题主要考查对一元二次方程的解,解一元二次方程等知识点的理解和掌握,能得到方程a2=0是解此题的关键.3.用配方法解一元二次方程x2﹣6x﹣10=0时,下列变形正确的为( )A.(x+3)2=1 B.(x﹣3)2=1 C.(x+3)2=19 D.(x﹣3)2=19【考点】解一元二次方程-配方法.【专题】计算题.【分析】方程移项变形后,利用完全平方公式化简得到结果,即可做出判断.【解答】解:方程移项得:x2﹣6x=10,配方得:x2﹣6x+9=19,即(x﹣3)2=19,故选D.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.4.若一元二次方程x2+2x+a=0的有实数解,则a的取值X围是( )A.a<1 B.a≤4 C.a≤1 D.a≥1【考点】根的判别式.【分析】若一元二次方程x2+2x+a=0的有实数解,则根的判别式△≥0,据此可以列出关于a 的不等式,通过解不等式即可求得a的值.【解答】解:因为关于x的一元二次方程有实根,所以△=b2﹣4ac=4﹣4a≥0,解之得a≤1.故选C.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.5.二次函数y=﹣x2+2x+4的最大值为( )A.3 B.4 C.5 D.6【考点】二次函数的最值.【分析】先利用配方法得到y=﹣(x﹣1)2+5,然后根据二次函数的最值问题求解.【解答】解:y=﹣(x﹣1)2+5,∵a=﹣1<0,∴当x=1时,y有最大值,最大值为5.故选:C.【点评】此题考查二次函数的最值,掌握二次函数的性质是解决问题的关键.6.在平面直角坐标系中,二次函数y=a(x﹣h)2(a≠0)的图象可能是( ) A.B. C.D.【考点】二次函数的图象.【专题】压轴题.【分析】根据二次函数y=a(x﹣h)2(a≠0)的顶点坐标为(h,0),它的顶点坐标在x轴上,即可解答.【解答】解:二次函数y=a(x﹣h)2(a≠0)的顶点坐标为(h,0),它的顶点坐标在x轴上,故选:D.【点评】本题考查了二次函数的图象,解决本题的关键是明二次函数的顶点坐标.7.三角形两边长分别为3和6,第三边的长是方程x2﹣13x+36=0的两根,则该三角形的周长为( )A.13 B.15 C.18 D.13或18【考点】解一元二次方程-因式分解法;三角形三边关系.【分析】先求出方程x2﹣13x+36=0的两根,再根据三角形的三边关系定理,得到合题意的边,进而求得三角形周长即可.【解答】解:解方程x2﹣13x+36=0得,x=9或4,即第三边长为9或4.边长为9,3,6不能构成三角形;而4,3,6能构成三角形,所以三角形的周长为3+4+6=13,故选:A.【点评】此题主要考查了因式分解法解一元二次方程以及三角形的三边关系,求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否成三角形的好习惯.8.某县大力推进义务教育均衡发展,加强学校标准化建设,计划用三年时间对全县学校的设施和设备进行全面改造,2014年县政府已投资4亿元人民币.若每年投资的增长率相同,预计2016年投资5.76亿元人民币,那么每年投资的增长率为( )A.40% B.20% C.﹣220% D.30%【考点】一元二次方程的应用.【专题】增长率问题.【分析】首先设每年投资的增长率为x.根据2014年县政府已投资4亿元人民币,若每年投资的增长率相同,预计2016年投资5.76亿元人民币,列方程求解.【解答】解:设每年投资的增长率为x,根据题意,得:4(1+x)2=5.76,解得:x1=0.2=20%,x2=﹣2.2(舍去),故每年投资的增长率为为20%.故选:B.【点评】此题主要考查了一元二次方程的实际应用,解题的关键是掌握增长率问题中的一般公式为a(1+x)n,其中n为共增长了几年,a为第一年的原始数据,x是增长率.9.若点A(2,y1),B(﹣3,y2),C(﹣1,y3)三点在抛物线y=x2﹣4x﹣m的图象上,则y1、y2、y3的大小关系是( )A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y1>y2【考点】二次函数的性质;二次函数的图象.【分析】先求出二次函数y=x2﹣4x﹣m的图象的对称轴,然后判断出A(2,y1),B(﹣3,y2),C(﹣1,y3)在抛物线上的位置,再根据二次函数的增减性求解.【解答】解:∵二次函数y=x2﹣4x﹣m中a=1>0,∴开口向上,对称轴为x=﹣=2,∵A(2,y1)中x=2,∴y1最小,又∵B(﹣3,y2),C(﹣1,y3)都在对称轴的左侧,而在对称轴的左侧,y随x得增大而减小,故y2>y3.∴y2>y3>y1.故选C.【点评】本题考查了二次函数的性质.关键是(1)找到二次函数的对称轴;(2)掌握二次函数y=ax2+bx+c(a≠0)的图象性质.10.如图,在△ABC中,∠B=90°,AB=6cm,BC=12cm,动点P从点A开始沿边AB向B以1cm/s 的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以2m/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过( )秒,四边形APQC的面积最小.A.1 B.2 C.3 D.4【考点】二次函数的应用.【分析】根据等量关系“四边形APQC的面积=三角形ABC的面积﹣三角形PBQ的面积”列出函数关系求最小值.【解答】解:设P、Q同时出发后经过的时间为ts,四边形APQC的面积为Smm2,则有:S=S△ABC﹣S△PBQ=×12×6﹣(6﹣t)×2t=t2﹣6t+36=(t﹣3)2+27.∴当t=3s时,S取得最小值.故选C.【点评】本题考查了函数关系式的求法以及最值的求法,解题的关键是根据题意列出函数关系式,并根据二次函数的性质求出最值.11.某某省赵县的赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为y=﹣x2,当水面离桥拱顶的高度DO是4m时,这时水面宽度AB为( )A.﹣20m B.10m C.20m D.﹣10m【考点】二次函数的应用.【分析】根据题意,把y=﹣4直接代入解析式即可解答.【解答】解:根据题意B的纵坐标为﹣4,把y=﹣4代入y=﹣x2,得x=±10,∴A(﹣10,﹣4),B(10,﹣4),∴AB=20m.即水面宽度AB为20m.故选C.【点评】本题考查了点的坐标的求法及二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题.12.如图,抛物线y=﹣2x2+8x﹣6与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1向右平移得C2,C2与x轴交于点B,D.若直线y=x+m与C1、C2共有3个不同的交点,则m的取值X围是( )A.﹣2<m<B.﹣3<m<﹣C.﹣3<m<﹣2 D.﹣3<m<﹣【考点】抛物线与x轴的交点;二次函数图象与几何变换.【专题】压轴题.【分析】首先求出点A和点B的坐标,然后求出C2解析式,分别求出直线y=x+m与抛物线C2相切时m的值以及直线y=x+m过点B时m的值,结合图形即可得到答案.【解答】解:令y=﹣2x2+8x﹣6=0,即x2﹣4x+3=0,解得x=1或3,则点A(1,0),B(3,0),由于将C1向右平移2个长度单位得C2,则C2解析式为y=﹣2(x﹣4)2+2(3≤x≤5),当y=x+m1与C2相切时,令y=x+m1=y=﹣2(x﹣4)2+2,即2x2﹣15x+30+m1=0,△=﹣8m1﹣15=0,解得m1=﹣,当y=x+m2过点B时,即0=3+m2,m2=﹣3,当﹣3<m<﹣时直线y=x+m与C1、C2共有3个不同的交点,故选:D.【点评】本题主要考查抛物线与x轴交点以及二次函数图象与几何变换的知识,解答本题的关键是正确地画出图形,利用数形结合进行解题,此题有一定的难度.二、填空题(每小题4分,共20分)13.已知m是方程x2﹣x﹣1=0的一个根,则代数式m2﹣m的值等于1.【考点】一元二次方程的解;代数式求值.【专题】计算题.【分析】因为m是方程的一个根,所以可以把m代入方程,就能求出代数式的值.【解答】解:∵m是方程的一个根,∴把m代入方程有:m2﹣m﹣1=0,∴m2﹣m=1.故答案是1.【点评】本题考查的是一元二次方程的解,把方程的解代入方程,求出代数式的值.14.已知实数x1,x2满足x1+x2=7,x1x2=12,则以x1,x2为根的一元二次方程是x2﹣7x+12=0.【考点】根与系数的关系.【专题】开放型.【分析】直接利用根与系数的关系求解.【解答】解:∵x1+x2=7,x1x2=12,∴以x1,x2为根的一元二次方程可为x2﹣7x+12=0.故答案为x2﹣7x+12=0.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.15.给出下列两条抛物线:y=x2+2x+1,y=2x2+4x+1请尽可能多地找出这两条抛物线的共同点:(至少三条)①开口方向都是向上②对称轴都是直线x=﹣1③都存在最小值,且在顶点处取得.【考点】二次函数的性质.【专题】压轴题.【分析】对两个函数共同点的比较可以从性质的各个方面入手,如开口方向、对称轴、顶点坐标、增减性等.【解答】解:①开口方向都是向上;②对称轴都是直线x=﹣1;③都存在最小值,且在顶点处取得.【点评】本题考查了二次函数的性质,属于主观类型,阐述应具体、详细.16.已知抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点,若点A的坐标为(﹣2,0),抛物线的对称轴为直线x=2,则线段AB的长为8.【考点】抛物线与x轴的交点.【分析】由抛物线y=ax2+bx+c的对称轴为直线x=2,交x轴于A、B两点,其中A点的坐标为(﹣2,0),根据二次函数的对称性,求得B点的坐标,再求出AB的长度.【解答】解:∵对称轴为直线x=2的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,∴A、B两点关于直线x=2对称,∵点A的坐标为(﹣2,0),∴点B的坐标为(6,0),AB=6﹣(﹣2)=8.故答案为:8.【点评】此题考查了抛物线与x轴的交点.此题难度不大,解题的关键是求出B点的坐标.17.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x 轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,其中正确的是①⑤.【考点】二次函数图象与系数的关系;抛物线与x轴的交点.【分析】利用对称轴是直线x=1判定①;利用开口方向,对称轴与y轴的交点判定a、b、c 得出②;利用顶点坐标和平移的规律判定③;利用对称轴和二次函数的对称性判定④;利用图象直接判定⑤即可.【解答】解:∵对称轴x=﹣=1,∴2a+b=0,①正确;∵a<0,∴b>0,∵抛物线与y轴的交点在正半轴上,∴c>0,∴abc<0,②错误;∵把抛物线y=ax2+bx+c向下平移3个单位,得到y=ax2+bx+c﹣3,∴顶点坐标A(1,3)变为(1,0),抛物线与x轴只有一个交点,∴方程ax2+bx+c=3有一个实数根,③错误;∵对称轴是直线x=1,与x轴的一个交点是(4,0),∴与x轴的另一个交点是(﹣2,0),④错误;∵当1<x<4时,由图象可知y2<y1,∴⑤正确.正确的有①⑤.故答案为:①⑤.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),当a >0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点,抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.三、解答题(共64分)18.解方程:(1)(x﹣5)2=2(x﹣5)(2)x2﹣4x﹣2=0.【考点】解一元二次方程-因式分解法;解一元二次方程-配方法.【分析】(1)直接提取公因式(x﹣5),进而利用因式分解法解一元二次方程即可;(2)利用公式法解一元二次方程即可.【解答】解:(1)(x﹣5)2=2(x﹣5)(x﹣5)[(x﹣5)﹣2]=0,解得:x1=5 x2=7(2)x2﹣4x﹣2=0b2﹣4ac=16﹣4×1×(﹣2)=24,∴x==2±,解得:x1=2+,x2=2﹣.【点评】此题主要考查了因式分解法和公式法解一元二次方程,熟练记忆求根公式是解题关键.19.向阳中学数学兴趣小组对关于x的方程(m+1)+(m﹣2)x﹣1=0提出了下列问题:(1)是否存在m的值,使方程为一元二次方程?若存在,求出m的值,并解此方程;(2)是否存在m的值,使方程为一元一次方程?若存在,求出m的值,并解此方程.【考点】一元二次方程的定义;一元一次方程的定义.【分析】(1)根据一元二次方程的定义可得,可求得m的值,进一步可求出方程的解;(2)当m2+1=1或m+1=0时方程为一元一次方程,求出m的值,进一步解方程即可.【解答】解:(1)根据一元二次方程的定义可得,解得m=1,此时方程为2x2﹣x﹣1=0,解得x1=1,x2=﹣;(2)由题可知m2+1=1或m+1=0时方程为一元一次方程当m2+1=1时,解得m=0,此时方程为﹣x﹣1=0,解得x=﹣1,当m+1=0时,解得m=﹣1,此时方程为﹣3x﹣1=0,解得x=﹣.【点评】本题主要考查一元二次和一元一次方程的定义,对(2)中容易漏掉m2+1=1的情况.20.已知关于x的一元二次方程x2+4x+m+4=0的实数根是x1,x2.(1)求m的取值X围.(2)当x1+x2﹣x1x2<﹣6,且m为整数时,求m的值.【考点】根的判别式;根与系数的关系.【分析】(1)由一元二次方程x2+4x+m+4=0有实数根,可得判别式△=42﹣4×1×(m+4)=﹣4m≥0,解此不等式即可求得m的取值X围;(2)根据根与系数的关系,可得x1+x2=﹣4,x1x2=m+4,继而可得﹣4﹣m﹣4<﹣6,根据(1)可得:m≤0,则可求得答案.【解答】解:(1)∵方程有实数根,∴△≥0,∴△=42﹣4×1×(m+4)=﹣4m≥0,∴m≤0,∴m的取值X围为m≤0;(2)由根与系数的关系得:x1+x2=﹣4,x1x2=m+4,∵x1+x2﹣x1x2<﹣6,∴﹣4﹣m﹣4<﹣6,∴m>﹣2,由(1)知m≤0,∵m为整数,∴m=﹣1或0.【点评】此题考查了一元二次方程根与系数的关系与根的判别式.此题难度不大,解题的关键是掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.21.如表给出了一个二次函数的一些取值情况:x … 0 1 2 3 4 …y … 3 0 ﹣1 0 3 …请在坐标系中画出这个二次函数的图象,并根据图象说明:(1)当y随x的增大而增大时自变量x的取值X围;(2)当0≤y<3时x的取值X围.【考点】二次函数的图象;二次函数的性质.【分析】(1)根据二次函数图象的作法画出图象,然后求出对称轴,再根据二次函数的增减性解答;(2)根据函数图象写出即可.【解答】解:(1)如图所示,y随x的增大而增大时自变量x的取值X围为x>2;(2)如图,当0≤y<3时0<x≤1或3≤x<4.【点评】本题考查了二次函数图象,二次函数的性质,熟练掌握二次函数图象的画法并作出图形是解题的关键.22.一种进价为每件40元的T恤,若销售单价为60元,则每周可卖出300件,为提高利益,就对该T恤进行涨价销售,经过调查发现,每涨价1元,每周要少卖出10件,请确定该T 恤涨价后每周销售利润y(元)与销售单价x(元)之间的函数关系式,并求出销售单价定为多少元时,每周的销售利润最大?【考点】二次函数的应用.【专题】销售问题.【分析】用每件的利润乘以销售量即可得到每周销售利润,即y=(x﹣40)[300﹣20(x﹣60)],再把解析式整理为一般式,然后根据二次函数的性质确定销售单价定为多少元时,每周的销售利润最大.【解答】解:根据题意得y=(x﹣40)[300﹣10(x﹣60)]=﹣10x2+1300x﹣36000,∵x﹣60≥0且300﹣10(x﹣60)≥0,∴60≤x≤90,∵a=﹣10<0,而抛物线的对称轴为直线x=65,即当x>65时,y随x的增大而减小,而60≤x≤90,∴当x=65时,y的值最大,即销售单价定为65元时,每周的销售利润最大.【点评】本题考查了二次函数的应用:利用二次函数解决利润问题,在商品经营活动中,经常会遇到求最大利润,最大销量等问题.解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x的取值X围.23.先阅读理解下面的例题,再按要求解答下列问题:例题:解一元二次不等式x2﹣4>0解:∵x2﹣4=(x+2)(x﹣2)∴x2﹣4>0可化为(x+2)(x﹣2)>0由有理数的乘法法则“两数相乘,同号得正”,得解不等式组①,得x>2,解不等式组②,得x<﹣2,∴(x+2)(x﹣2)>0的解集为x>2或x<﹣2,即一元二次不等式x2﹣4>0的解集为x>2或x<﹣2.(1)一元二次不等式x2﹣16>0的解集为x>4或x<﹣4;(2)分式不等式的解集为x>3或x<1;(3)解一元二次不等式2x2﹣3x<0.【考点】一元二次方程的应用;分式方程的应用;一元一次不等式组的应用.【专题】压轴题.【分析】(1)将一元二次不等式的左边因式分解后化为两个一元一次不等式组求解即可;(2)据分式不等式大于零可以得到其分子、分母同号,从而转化为两个一元一次不等式组求解即可;(3)将一元二次不等式的左边因式分解后化为两个一元一次不等式组求解即可;【解答】解:(1)∵x2﹣16=(x+4)(x﹣4)∴x2﹣16>0可化为(x+4)(x﹣4)>0由有理数的乘法法则“两数相乘,同号得正”,得解不等式组①,得x>4,解不等式组②,得x<﹣4,∴(x+4)(x﹣4)>0的解集为x>4或x<﹣4,即一元二次不等式x2﹣16>0的解集为x>4或x<﹣4.(2)∵∴或解得:x>3或x<1(3)∵2x2﹣3x=x(2x﹣3)∴2x2﹣3x<0可化为x(2x﹣3)<0由有理数的乘法法则“两数相乘,异号得负”,得或解不等式组①,得0<x<,解不等式组②,无解,∴不等式2x2﹣3x<0的解集为0<x<.【点评】本题考查了一元一次不等式组及方程的应用的知识,解题的关键是根据已知信息经过加工得到解决此类问题的方法.24.已知抛物线的顶点(1,1)抛物线与y轴交于点(0,2),点A为抛物线上一动点.(1)求此抛物线的解析式;(2)过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连结BD,求对角线BD的最小值.【考点】待定系数法求二次函数解析式;二次函数图象上点的坐标特征;矩形的性质.【分析】(1)设出顶点式y=a(x﹣1)2+1,代入点(0,2)求得a即可;(2)先利用配方法得到抛物线的顶点坐标为(1,1),再根据矩形的性质得BD=AC,由于AC 的长等于点A的纵坐标,所以当点A在抛物线的顶点时,点A到x轴的距离最小,最小值为1,从而得到BD的最小值.【解答】解:(1)∵抛物线的顶点为(1,1),∴抛物线的解析式y=a(x﹣1)2+1,代入点(0,2),解得:a=1,∴抛物线的解析式y=(x﹣1)2+1=x2﹣2x+2;(2)∵抛物线的顶点坐标为(1,1),四边形ABCD为矩形,∴BD=AC,∵AC⊥x轴,∴AC的长等于点A的纵坐标,当点A在抛物线的顶点时,点A到x轴的距离最小,最小值为1,∴对角线BD的最小值为1.【点评】本题考查了待定系数法求函数解析式,二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了矩形的性质.。

2015-2016学年第一学期九年级10月份月考

2015-2016学年第一学期九年级10月份月考

第 1 页 共 4 页 2015-2016学年第一学期九年级10月份月考数学试卷(考试时间:120分钟,满分150分)学校:__________ 班级:_________ 座号:______ 姓名:___________一、选择题(共10小题,每题3分,满分30分)1、抛物线2(1)3y x =-+的对称轴是( )A .直线1x =B .直线3x =C .直线1x =-D .直线3x =-2、二次函数2365y x x =--+的图象的顶点坐标是( )A .(1,8)B .(-1,8)C .(-1,2)D .( 1,-4)3、已知抛物线y=ax 2+bx+c 与x 轴有两个不同的交点,则关于x 的一元二次方程ax 2+bx+c=0 根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定4、在平面直角坐标系中,将二次函数22x y =的图象向上平移2个单位,所得图象的解析式为( )A .222+=x yB . 222-=x yC .2)2(2+=x yD .2)2(2-=x y5、将函数2y x x =+的图象向右平移a (0)a >个单位,得到函数232y x x =-+的图象,则的值a 为( )A .1B .2C .3D .46、二次函数221y x x =+-的图象与x 轴的交点的个数是( )A .0B .1C .2D .37、设A (-2,y 1),B (1,y 2),C (2,y 3)是抛物线y=-(x+1)2+k 上的三点,则y 1,y 2,y 3的大小关系为( )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 2>y 1D .y 3>y 1>y 28、二次函数y=ax 2+bx+c 的图象如图所示,则函数值y <0时x 的取值范围是( )A .x <-1B .x >3C .-1<x <3D .x <-1或x >3第 2 页 共 4页 8题图 9题图 10题图9、已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,有下列4个结论:①0abc >; ②b a c <+;③420a b c ++>;④240b ac ->;其中正确的结论有( )A .1个B .2个C .3个D .4个10、如图,某幢建筑物,从10m 高的窗口A 用水管向外喷水,喷出的水成抛物线状(抛物线所在平面与地面垂直)。

广东省深圳市九年级上学期数学10月月考试卷

广东省深圳市九年级上学期数学10月月考试卷

广东省深圳市九年级上学期数学10月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2020九上·株洲期中) 若方程可以直接用开平方法解,则的取值范围是()A .B .C .D .【考点】2. (2分) (2019九上·钢城月考) 不解方程,判断方程2x2-3x+1=0的根的情况是()A . 有两个不相等的实数根B . 有两个相等的实数根C . 只有一个实数根D . 没有实数根【考点】3. (2分) (2017八下·郾城期中) 将直角三角形三边扩大同样的倍数,得到的新的三角形是()A . 锐角三角形B . 直角三角形C . 钝角三角形D . 任意三角形【考点】4. (2分) (2015九上·丛台期末) 芳芳有一个无盖的收纳箱,该收纳箱展开后的图形(实线部分)如图所示,将该图形补充四个边长为10cm的小正方形后,得到一个矩形,已知矩形的面积为2000cm2 ,根据图中信息,可得x的值为()C . 25D . 30【考点】5. (2分)如图,若BC∥DE,则下面比例式不能成立的是()A .B .C .D .【考点】6. (2分) (2018九上·东台月考) △ABC中,∠B=90°,AB=1,BC=2,则sinA=()A .B .C .D .【考点】7. (2分) (2019八下·北京期末) 在相同时刻,物高与影长成正比.如果高为1.5米的标杆影长为2.5米,那么此时高为18米的旗杆的影长为()A . 20米D . 15米【考点】8. (2分) (2017九上·深圳期中) 如图,ΔABC中,P为AB上一点,在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,任选一个,使ΔAPC与ΔACB相似的条件可以是()A . ①或②或③B . ①或③或④C . ②或③或④D . ①或②或④【考点】二、填空题 (共6题;共6分)9. (1分) (2019八下·北京房山期末) 方程的解为________.【考点】10. (1分) (2020九上·嘉陵期末) 若一元二次方程2x2-2x+m=0有两个相等的实数根,则m的值为________。

最新人教版九年级数学上册10月份月考模拟试题及答案解析.docx

最新人教版九年级数学上册10月份月考模拟试题及答案解析.docx

九年级(上)月考数学试卷(10月份)一、选择题(共10小题,每小题3分,共30分)1.下列图形中,不是中心对称图形的是()A.B. C.D.2.下列方程中是关于x的一元二次方程的是()A.x2+=5 B.3x2+xy﹣y2=0 C.x2+x+1=0 D.ax2+bx+c=03.如图可以看作是一个等腰直角三角形旋转若干次而生成的,则每次旋转的度数可以是()A.90°B.60°C.45°D.30°4.下列一元二次方程中,有两个相等的实数根的是()A.x2﹣2x+1=0 B.x2+2x﹣4=0 C.x2﹣2x﹣5=0 D.x2+2x+4=05.抛物线y=2(x+3)2+1的顶点坐标是()A.(3,1)B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)6.若(2,5)、(4,5)是抛物线y=ax2+bx+c上的两个点,则它的对称轴是()A.x=﹣ B.x=1 C.x=2 D.x=37.如图,在6×4方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是()A.点M B.格点N C.格点P D.格点Q8.用配方法解方程x2+8x+7=0,则配方正确的是()A.(x+4)2=9 B.(x﹣4)2=9 C.(x﹣8)2=16 D.(x+8)2=579.某品牌电脑2009年的销售单价为7200元,由于科技进步和新型电子原材料的开发运用,该品牌电脑成本不断下降,销售单价也逐年下降.至2011年该品牌电脑的销售单价为4900元,设2009年至2010年,2010年至2011年这两年该品牌电脑的销售单价年平均降低率均为x,则可列出的正确的方程为()A.4900(1+x)2=7200 B.7200(1﹣2x)=4900C.7200(1﹣x)=4900(1+x) D.7200(1﹣x)2=490010.若x1,x2(x1<x2)是关于x的方程(x﹣a)(x﹣b)=a﹣b(a<b)的两个根,则实数x1,x2,a,b的大小关系为()A.x1<x2<a<b B.x1<a<b<x2 C.a<x1<x2<b D.a<x1<b<x2二、填空题(共6小题,每小题3分,共18分)11.函数y=x2﹣x+1的图象与y轴的交点坐标是.12.若x1,x2是一元二次方程x2+4x+3=0的两个根,则x1x2的值是.13.关于x的一元二次方程(p﹣1)x2﹣x+p2﹣1=0一个根为0,则实数p的值是.14.参加某次商品交易会的每两家公司之间都签订了一份合同,所有公司共签订了36份合同,则共有家公司参加了本次商品交易会.15.如图,从地面竖立向上抛出一个小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的关系式为h=30t﹣5t2,那么小球从抛出至回落到地面所需要的时间是:s.16.抛物线y=ax2﹣6ax+a的顶点与原点的距离为5,则a= .三、解答题(本大题共9个小题,共72分.)17.解方程(1)x2+x﹣1=0;(2)(x﹣1)(x+3)=5.18.已知:关于x的方程x2﹣4x+m=0.(1)方程有实数根,求实数m的取值范围.(2)若方程的一个根是1,求m的值及另一个根.19.如图,在正方形网格中,△ABC的三个顶点都在格点是,点A、B、C的坐标分别为(﹣2,4)、(﹣2,0)、(﹣4,1),结合所给的平面直角坐标系解答下列问题.(1)画出△ABC关于原点O对称的△A1B1C1;(2)平移△ABC,使点A移动到点A2(3,5),画出平移后的△A2B2C2,并写出点B2、C2的坐标.20.抛物线y=x2+x﹣2交x轴于点A、B,交y轴于点C,(1)求出抛物线的对称轴及顶点坐标;(2)求△ABC的面积.21.如图,某小区在宽20m,长32m的矩形地面上修筑同样宽的人行道(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540m2,求道路的宽.22.下表给出了代数式x2+bx+c与x的一些对应值:x …0 1 2 3 4 …x2+bx+c … 3 ﹣1 3 …(1)请在表内的空格中填入适当的数;(2)设y=x2+bx+c,则当x取何值时,y<0;(3)请说明经过怎样平移函数y=x2+bx+c的图象得到函数y=x2的图象?23.某商店经销一种成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500千克.若销售价每涨1元,则月销售量减少10千克.(1)要使月销售利润达到最大,销售单价应定为多少元?(2)要使月销售利润不低于8000元,请结合图象说明销售单价应如何定?24.如图,四边形ABCD、BEFG均为正方形.(1)如图1,连接AG、CE,判断AG和CE的数量关系和位置关系并证明.(2)将正方形BEFG绕点B顺时针旋转β角(0°<β<180°),如图2,连接AG、CE相交于点M,连接MB,求出∠EMB的度数.(3)若BE=2,BC=6,连接DG,将正方形BEFG绕点B顺时针旋转β角(0°<β<180°),则在这个旋转过程中线段DG长度的取值范围(直接填空,不写过程).25.如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点c(0,﹣3),图象经过(1,﹣4),(﹣2,5),点P是抛物线在第四象限上的一动点.(1)求二次函数解析式;(2)是否存在点P使得点P关于直线BC的对称点在y轴上?如果存在,求点P坐标,如果不存在请说明理由;(3)当点P运动到什么位置时,△BCP的面积最大?求出此时P点的坐标和△BCP的最大面积.参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.下列图形中,不是中心对称图形的是()A.B. C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念,即可求解.【解答】解:中心对称图形,即把一个图形绕一个点旋转180°后能和原来的图形重合,B、C、D都符合;不是中心对称图形的只有A.故选A.【点评】本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.2.下列方程中是关于x的一元二次方程的是()A.x2+=5 B.3x2+xy﹣y2=0 C.x2+x+1=0 D.ax2+bx+c=0【考点】一元二次方程的定义.【分析】根据一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程进行分析即可.【解答】解:A、是分式方程,故此选项错误;B、是二元二次方程,故此选项错误;C、是一元二次方程,故此选项正确;D、当a≠0时,a、b、c是常数时,ax2+bx+c=0是一元二次方程,故此选项错误;故选:C.【点评】此题主要考查了一元二次方程的定义,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.3.如图可以看作是一个等腰直角三角形旋转若干次而生成的,则每次旋转的度数可以是()A.90°B.60°C.45°D.30°【考点】旋转的性质.【分析】根据旋转的性质,观察图形,中心角是由8个度数相等的角组成,结合周角是360°求得每次旋转的度数.【解答】解:∵中心角是由8个度数相等的角组成,∴每次旋转的度数可以为360°÷8=45°.故选C.【点评】本题把一个周角是360°和图形的旋转的特点结合求解.注意结合图形解题的思想.4.下列一元二次方程中,有两个相等的实数根的是()A.x2﹣2x+1=0 B.x2+2x﹣4=0 C.x2﹣2x﹣5=0 D.x2+2x+4=0【考点】根的判别式.【分析】先判断出根的判别式△=b2﹣4ac的值的符号,再根据有两个相等实数根的一元二次方程就是判别式的值是0的一元二次方程,从而得出答案.【解答】解:A、△=(﹣2)2﹣4×1×1=0,有两个相等的实数根,故本选项正确;B、△=22﹣4×1×(﹣4)>0,有两个不相等实数根,故本选项错误;C、△=(﹣2)2﹣4×1×(﹣5)>0,有两个不相等实数根,故本选项错误;D、△=22﹣4×1×4<0,无实数根,故本选项错误.故选A.【点评】本题考查了根的判别式,掌握一元二次方程根的情况与判别式△的关系:△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根;△<0⇔方程没有实数根是本题的关键.5.抛物线y=2(x+3)2+1的顶点坐标是()A.(3,1)B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)【考点】二次函数的性质.【分析】已知抛物线的顶点式,可直接写出顶点坐标.【解答】解:由y=3(x+3)2+1,根据顶点式的坐标特点可知,顶点坐标为(﹣3,1),故选C.【点评】考查二次函数的性质及将解析式化为顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h.6.若(2,5)、(4,5)是抛物线y=ax2+bx+c上的两个点,则它的对称轴是()A.x=﹣ B.x=1 C.x=2 D.x=3【考点】二次函数的性质.【专题】函数思想.【分析】由已知,点(2,5)、(4,5)是该抛物线上关于对称轴对称的两点,所以只需求两对称点横坐标的平均数.【解答】解:因为抛物线与x轴相交于点(2,5)、(4,5),根据抛物线上纵坐标相等的两点,其横坐标的平均数就是对称轴,所以,对称轴x==3;故选D.【点评】本题考查了二次函数的对称性.二次函数关于对称轴成轴对称图形.7.如图,在6×4方格纸中,格点三角形甲经过旋转后得到格点三角形乙,则其旋转中心是()A.点M B.格点N C.格点P D.格点Q【考点】旋转的性质.【专题】网格型.【分析】此题可根据旋转前后对应点到旋转中心的距离相等来判断所求的旋转中心.【解答】解:如图,连接N和两个三角形的对应点;发现两个三角形的对应点到点N的距离相等,因此格点N就是所求的旋转中心;故选B.【点评】熟练掌握旋转的性质是确定旋转中心的关键所在.8.用配方法解方程x2+8x+7=0,则配方正确的是()A.(x+4)2=9 B.(x﹣4)2=9 C.(x﹣8)2=16 D.(x+8)2=57【考点】解一元二次方程-配方法.【专题】配方法.【分析】本题可以用配方法解一元二次方程,首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式.【解答】解:∵x2+8x+7=0,∴x2+8x=﹣7,⇒x2+8x+16=﹣7+16,∴(x+4)2=9.∴故选A.【点评】此题考查配方法的一般步骤:①把常数项移到等号的右边;②把二次项的系数化为1;③等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.9.某品牌电脑2009年的销售单价为7200元,由于科技进步和新型电子原材料的开发运用,该品牌电脑成本不断下降,销售单价也逐年下降.至2011年该品牌电脑的销售单价为4900元,设2009年至2010年,2010年至2011年这两年该品牌电脑的销售单价年平均降低率均为x,则可列出的正确的方程为()A.4900(1+x)2=7200 B.7200(1﹣2x)=4900C.7200(1﹣x)=4900(1+x) D.7200(1﹣x)2=4900【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】关系式为:原价×(1﹣降低率)2=现在的价格,把相关数值代入即可【解答】解:第一次降价后的价格为7200×(1﹣x),第二次降价后的价格为7200×(1﹣x)2,∴可列方程为6072(1﹣x)2=4900.故选D.【点评】考查列一元二次方程;得到现在价格的关系式是解决本题的关键;注意降价率的应用.10.若x1,x2(x1<x2)是关于x的方程(x﹣a)(x﹣b)=a﹣b(a<b)的两个根,则实数x1,x2,a,b的大小关系为()A.x1<x2<a<b B.x1<a<b<x2 C.a<x1<x2<b D.a<x1<b<x2【考点】根与系数的关系;根的判别式.【分析】因为x1和x2为方程的两根,所以满足方程(x﹣a)(x﹣b)=a﹣b,再由已知条件x1<x2、a<b结合图象,可得到x1,x2,a,b的大小关系.【解答】解:用作图法比较简单,首先作出(x﹣a)(x﹣b)=0图象,随便画一个(开口向上的,与x 轴有两个交点),再向下平移b﹣a单位,就是(x﹣a)(x﹣b)=a﹣b,这时与x轴的交点就是x1,x2,画在同一坐标系下,很容易发现:x1<a<b<x2.故选C.【点评】本题考查了一元二次方程根的情况,结合图象得出答案是解决问题的关键.二、填空题(共6小题,每小题3分,共18分)11.函数y=x2﹣x+1的图象与y轴的交点坐标是(0,1).【考点】二次函数图象上点的坐标特征.【专题】计算题.【分析】计算出自变量为0时的函数值即可得到图象与y轴的交点坐标.【解答】解:当x=0时,y=x2﹣x+1=1,所以抛物线与y轴的交点坐标为(0,1).故答案为(0,1).【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.12.若x1,x2是一元二次方程x2+4x+3=0的两个根,则x1x2的值是 3 .【考点】根与系数的关系.【分析】根据一元二次方程的根与系数的关系x1•x2=解答即可.【解答】解:解:∵一元二次方程x2+4x+3=0的二次项系数a=1,常数项c=3,∴x1•x2==3,故答案为:3.【点评】此题主要考查了根与系数的关系.解答此题时,注意,一元二次方程的根与系数的关系x1•x2=中的a与c的意义.13.关于x的一元二次方程(p﹣1)x2﹣x+p2﹣1=0一个根为0,则实数p的值是﹣1 .【考点】一元二次方程的解.【专题】方程思想.【分析】根据一元二次方程的解的定义,将x=0代入原方程,然后解关于p的一元二次方程.另外注意关于x的一元二次方程(p﹣1)x2﹣x+p2﹣1=0的二次项系数不为零.【解答】解:∵关于x的一元二次方程(p﹣1)x2﹣x+p2﹣1=0一个根为0,∴x=0满足方程(p﹣1)x2﹣x+p2﹣1=0,∴p2﹣1=0,解得,p=1或p=﹣1;又∵p﹣1≠0,即p≠1;∴实数p的值是﹣1.故答案是:﹣1.【点评】此题主要考查了方程解的定义.此类题型的特点是,将原方程的解代入原方程,建立关于p的方程,然后解方程求未知数p.14.参加某次商品交易会的每两家公司之间都签订了一份合同,所有公司共签订了36份合同,则共有9 家公司参加了本次商品交易会.【考点】一元二次方程的应用.【分析】每家公司都与其他公司鉴定了一份合同,设有x家公司参加,则每个公司要签(x﹣1)份合同,签订合同共有x(x﹣1)份.【解答】解:设有x家公司参加,依题意,得x(x﹣1)=36整理得:x2﹣x﹣72=0解得:x1=9,x2=﹣8(舍去)答:共有19公司参加商品交易会.故答案为:9.【点评】考查了一元二次方程的应用,甲乙之间互签合同,只能算一份,本题属于不重复记数问题,类似于若干个人,每两个人之间都握手,握手总次数;或者平面内,n个点(没有三点共线)之间连线,所有线段的条数.解答中注意舍去不符合题意的解.15.如图,从地面竖立向上抛出一个小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的关系式为h=30t﹣5t2,那么小球从抛出至回落到地面所需要的时间是: 6 s.【考点】二次函数的应用.【分析】由于小球从抛出至回落到地面时高度h为0,把h=0代入h=30t﹣5t2即可求出t,也就求出了小球从抛出至回落到地面所需要的时间.【解答】解:∵小球从抛出至回落到地面时高度h为0,∴把h=0代入h=30t﹣5t2得:5t2﹣30t=0,∴t=0或t=6,∴小球从抛出至回落到地面所需要的时间6s.故答案为:6.【点评】本题考查的是二次函数在实际生活中的应用,关键是正确理解题意,利用函数解决问题,比较简单.16.抛物线y=ax2﹣6ax+a的顶点与原点的距离为5,则a= 4或﹣4 .【考点】二次函数的性质.【分析】根据抛物线y=ax2﹣6ax+a求得顶点坐标(3,a),且顶点到原点的距离为5,根据勾股定理即可求得a的值.【解答】解:∵抛物线y=ax2﹣6ax+a=a(x﹣3)2+a,∴抛物线的顶点坐标为(3,a),∵顶点到原点的距离为5,∴a2+32=52,解得a=4或a=﹣4.故答案为:4或﹣4.【点评】本题考查了二次函数的性质,待定系数法求函数的解析式,勾股定理的应用是本题的关键.三、解答题(本大题共9个小题,共72分.)17.解方程(1)x2+x﹣1=0;(2)(x﹣1)(x+3)=5.【考点】解一元二次方程-因式分解法;解一元二次方程-公式法.【分析】(1)应用公式法即可求解;(2)应用因式分解法,从而得出两个一元一次方程,求解即可.【解答】解:(1)x2+x﹣1=0;a=1,b=1,c=﹣1,∵b2﹣4ac=5>0,∴x=,∴x1=,x2=;(2)(x﹣1)(x+3)=5.整理得,x2+2x﹣8=0,分解因式得,(x+4)(x﹣2)=0,∴x+4=0,x﹣2=0,∴x1=﹣4,x2=2;【点评】考查了解一元二次方程,解一元二次方程要注意选择适宜的解题方法,要学会先观察,再选择方法.18.已知:关于x的方程x2﹣4x+m=0.(1)方程有实数根,求实数m的取值范围.(2)若方程的一个根是1,求m的值及另一个根.【考点】根的判别式;根与系数的关系.【分析】(1)方程有实数根,则△≥0,建立关于m的不等式,求出m的取值范围.(2)将x=1代入原方程即可求得m及另一根的值.【解答】解:由题意知,△=16﹣4m≥0∴m≤4.∴当m≤4时,关于x的方程x2﹣4x+m=0有实数根;(2)把x=1代入得:1﹣4+m=0,解得:m=3,将m=3代入得:x2﹣4x+3=0,解得:x=1或x=3,故m=3,方程的另一根为3.【点评】本题考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.19.如图,在正方形网格中,△ABC的三个顶点都在格点是,点A、B、C的坐标分别为(﹣2,4)、(﹣2,0)、(﹣4,1),结合所给的平面直角坐标系解答下列问题.(1)画出△ABC关于原点O对称的△A1B1C1;(2)平移△ABC,使点A移动到点A2(3,5),画出平移后的△A2B2C2,并写出点B2、C2的坐标.【考点】作图-旋转变换;作图-平移变换.【分析】(1)分别作出点A、B、C关于原点O的对称点A1、B1、C1,连接A1、B1、C1即可得到△ABC关于原点O对称的△A1B1C1;(2)根据平移的性质,作出平移后△A2B2C2,并写出点B2、C2的坐标即可.【解答】解:(1)如图所示:△A1B1C1即为所求:(2)如图所示:△A2B2C2即为所求:由图可知:B2(3,1),C2(1,2).【点评】本题考查的是旋转变换及平移变换,熟知图形经过旋转及平移后与原图形全等是解答此题的关键.20.抛物线y=x2+x﹣2交x轴于点A、B,交y轴于点C,(1)求出抛物线的对称轴及顶点坐标;(2)求△ABC的面积.【考点】抛物线与x轴的交点.【分析】(1)直接利用配方法求出二次函数对称轴和顶点坐标即可;(2)首先求出抛物线与坐标轴交点,进而得出AB、CO的长,进而得出答案.【解答】解:(1)y=x2+x﹣2=(x+)2﹣﹣2=(x+)2﹣,故抛物线的对称轴为直线x=﹣,顶点坐标为:(﹣,﹣);(2)如图所示:∵抛物线y=x2+x﹣2交x轴于点A、B,交y轴于点C,∴y=0时,0=x2+x﹣2则(x+2)(x﹣1)=0,解得;x1=﹣2,x2=1,故A(﹣2,0),B(1,0),当x=0,则y=﹣2,故C(0,﹣2),则S△ABC=×AB×CO=×3×2=3.【点评】此题主要考查了抛物线与坐标轴交点坐标求法以及三角形面积求法和配方法求二次函数顶点坐标,正确利用数形结合得出三角形面积是解题关键.21.如图,某小区在宽20m,长32m的矩形地面上修筑同样宽的人行道(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540m2,求道路的宽.【考点】一元二次方程的应用.【专题】几何图形问题.【分析】本题中我们可以根据矩形的性质,先将道路进行平移,然后根据矩形的面积公式列方程求解.【解答】解法一:原图经过平移转化为图1.设道路宽为X米,根据题意,得(20﹣x)(32﹣x)=540.整理得x2﹣52x+100=0.解得x1=50(不合题意,舍去),x2=2.答:道路宽为2米.解法二:原图经过平移转化为图2.设道路宽为x米,根据题意,20×32﹣(20+32)x+x2=540整理得x2﹣52x+100=0.解得x1=50(不合题意,舍去),x2=2.答:道路宽为2米.【点评】对于面积问题应熟记各种图形的面积公式.本题中按原图进行计算比较复杂时,可根据图形的性质适当的进行转换化简,然后根据题意列出方程求解.22.下表给出了代数式x2+bx+c与x的一些对应值:x …0 1 2 3 4 …x2+bx+c … 3 0 ﹣1 0 3 …(1)请在表内的空格中填入适当的数;(2)设y=x2+bx+c,则当x取何值时,y<0;(3)请说明经过怎样平移函数y=x2+bx+c的图象得到函数y=x2的图象?【考点】二次函数的性质;二次函数图象与几何变换.【专题】几何变换.【分析】(1)先根据两组值(0,3)、(2,﹣1)得到关于b、c的方程组,解方程组求出b、c的值,确定代数式,然后计算x=1和3时的代数式的值即可;(2)根据抛物线的性质得抛物线开口向上,然后找出x轴下方的抛物线所对应的自变量的范围即可;(3)根据表中数据得到抛物线y=x2+bx+c的顶点坐标为(2,﹣1),然后利用点的平移规律确定抛物线的平移.【解答】解:(1)根据题意得,解得,当x=1时,x2+bx+c=x2﹣4x+3=1﹣4+3=0;当x=3时,x2+bx+c=x2﹣4x+3=9﹣12+3=0,故答案为0,0;(2)因为抛物线y=x2﹣4x+3的开口向上,当1<x<3时,y<0;(3)抛物线y=x2+bx+c的顶点坐标为(2,﹣1),把点(2,﹣1)向左平移2个单位,再向上平移1个单位得到点的坐标为(0,0),所以函数y=x2+bx+c的图象向左平移2个单位,再向上平移1个单位得到函数y=x2的图象.【点评】本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:当a>0时,抛物线y=ax2+bx+c (a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点;当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.23.某商店经销一种成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500千克.若销售价每涨1元,则月销售量减少10千克.(1)要使月销售利润达到最大,销售单价应定为多少元?(2)要使月销售利润不低于8000元,请结合图象说明销售单价应如何定?【考点】二次函数的应用.【分析】(1)设销售单价定为每千克x元,获得利润为w元,则可以根据成本,求出每千克的利润,以及按照销售价每涨1元,月销售量就减少10千克,可求出销量.从而得到总利润关系式;(2)先计算出y=8000时所对应的x的值,然后画出函数的大致图象,再根据图象回答即可.【解答】解:(1)设销售单价定为每千克x元,获得利润为w元,则:w=(x﹣40)[500﹣(x﹣50)×10],=(x﹣40)(1000﹣10x),=﹣10x2+1400x﹣40000,=﹣10(x﹣70)2+9000,故当x=70时,利润最大为9000元.答:要使月销售利润达到最大,销售单价应定为70元;(2)令y=8000,则﹣10(x﹣20)2+9000=8000,解得x1=10,x2=30.函数的大致图象为:观察图象当10≤x≤30时,y不低于8000.所以当销售单价不小于60元而不大于80元时,商场获得的周销售利润不低于8000元.【点评】本题主要考查了二次函数的应用,能正确表示出月销售量是解题的关键.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法.24.如图,四边形ABCD、BEFG均为正方形.(1)如图1,连接AG、CE,判断AG和CE的数量关系和位置关系并证明.(2)将正方形BEFG绕点B顺时针旋转β角(0°<β<180°),如图2,连接AG、CE相交于点M,连接MB,求出∠EMB的度数.(3)若BE=2,BC=6,连接DG,将正方形BEFG绕点B顺时针旋转β角(0°<β<180°),则在这个旋转过程中线段DG长度的取值范围6﹣2≤DG<10 (直接填空,不写过程).【考点】全等三角形的判定与性质;正方形的性质;旋转的性质.【分析】(1)由条件证明Rt△GBA≌Rt△EBC可得出AG=CE,且∠GAB=∠BCE,可判定出其位置关系;(2)过B作BP⊥EC,BQ⊥MA,垂足分别为P、Q,证明△BPE≌△BQG可得BP=BQ,而可知PM=BQ,所以可得出△BPM为等腰直角三角形,可求出∠EMB的度数;(3)当点G在线段BD上时最短,当在初始位置时,DG最大,利用勾股定理可求得其长度,但旋转不到180°,可得出其范围.【解答】解:(1)AG=CE,AG⊥CE,证明如下:∵四边形ABCD、BEFG均为正方形,∴∠GBA=∠EBC=90°,BG=BE,BA=BC,在△GBA和△EBC中,,∴△GBA≌△EBC(SAS),∴AG=CE,∠GAB=∠BCE,∴∠BGA+∠BCE=∠BGA+∠GAB=90°,∴AG⊥CE;(2)如图,过B作BP⊥EC,BQ⊥MA,垂足分别为P、Q,可知四边形BPMQ为矩形,∴∠PBE+∠PBG=∠QBG+∠PBG=90°,∴∠PBE=∠QBG,在△BPE和△BQG中,,∴△BPE≌△BQG(AAS),∴BP=BQ,且BQ=PM,∴BP=PM,∴△BPM为等腰直角三角形,∴∠PMB=45°;(3)当在初始位置时,DG最大,此时GC=6+2=8,CD=6,由勾股定理可求得DG=10,当G点在线段BD上时,DG最小,此时BG=2,BD=6,所以DG=6﹣2,而旋转角取不到180°,所以DG的范围为:6﹣2≤DG<10,故答案为:6﹣2≤DG<10.【点评】本题主要考查全等三角形的判定和性质及正方形的性质的应用,(2)中构造三角形全等、(3)中确定出最大值和最小值的位置是解题的关键.25.如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点c(0,﹣3),图象经过(1,﹣4),(﹣2,5),点P是抛物线在第四象限上的一动点.(1)求二次函数解析式;(2)是否存在点P使得点P关于直线BC的对称点在y轴上?如果存在,求点P坐标,如果不存在请说明理由;(3)当点P运动到什么位置时,△BCP的面积最大?求出此时P点的坐标和△BCP的最大面积.【考点】二次函数综合题.【分析】(1)直接利用待定系数法求出二次函数解析式即可;(2)首先求出二次函数与坐标轴交点,进而利用点P关于直线BC的对称点在y轴上,得出y=﹣3,则x2﹣2x﹣3=﹣3,求出P点即可;(3)首先得出PE=PD﹣DE=﹣n2+2n+3﹣(3﹣n)=﹣n2+3n,再利用S△PBC=S△PCE+S△PBE得出函数关系式,进而求出答案.【解答】解:(1)将(0,﹣1),(1,﹣4),(﹣2,5)代入y=ax2+bx+c得:,解得:,故二次函数解析式为:y=x2﹣2x﹣3;(2)存在,理由:如图1,令y=0,则0=x2﹣2x﹣3,解得:x1=3,x2=﹣1,故B(3,0),令x=0,则y=﹣3,故C(0,﹣3),则OB=OC,∴∠BCO=∠OBC=45°,∵P关于直线BC的对称点总在y轴上,∴∠PCB=∠BCO=45°,令y=﹣3,则x2﹣2x﹣3=﹣3,解得:x3=0,x4=2,故P(2,﹣3);(3)如图2,作PD⊥x轴于点D,交BC于点E,设P(n,n2﹣2n﹣3),则PD=﹣n2+2n+3,OD=n,BD=3﹣n,∵∠ABC=45°,∴DE=BD=3﹣n,∵∠ABC=45°,∴DE=BD=3﹣n,∴PE=PD﹣DE=﹣n2+2n+3﹣(3﹣n)=﹣n2+3n,∴S△PBC=S△PCE+S△PBE=PE•OD+PE•BD=PE•OB=×(﹣n2+3n)×3=﹣(n﹣)2+,故当n=时,P(,﹣),△BCP的面积最大为:.【点评】此题主要考查了二次函数综合以及二次函数最值求法以及三角形面积求法和待定系数法求二次函数解析式等知识,利用数形结合表示出线段PE的长是解题关键.。

北师大版九年级数学上深圳笋岗中学-十月份月考试卷

北师大版九年级数学上深圳笋岗中学-十月份月考试卷

初中数学试卷灿若寒星整理制作深圳笋岗中学2015-2016学年九年级上十月份月考数学试卷(总分:100分;时间: 90 分钟)姓名 学号 成绩一、选择题(36分)1、下列方程中,是关于x 的一元二次方程的是( ) A .2)1)(2(x x x =++ B.02112=-+x xC. 52=xD. 1222-=+x x x 2、同时掷两枚骰子,和是7的概率是( ) A .367 B. 61 C. 365D. 913、用配方法解方程0622=--x x 时,原方程应变形为 ( ) A.7)1(2=+x B.7)1(2=-x C.10)2(2=+x D.10)2(2=-x 4、已知一口袋中放有红、白、黑三种颜色的球共50个,它们除颜色外其他都一样,一位同学通过多次试验后发现摸到红、白色的频率基本稳定是45%和15%,则袋中黑球的个数可能是 ( )A. 16B. 18C. 20D. 225、关于x 的方程(x +m )2= n ,下列说法正确的是( ) A.有两个解x =±nB.当n ≥0时,有两个解x =±n -mC.当n ≥0时,有两个解x =±n m -D.当n ≤0时,方程无实根6、矩形具有而菱形不一定具有的性质是( )A .对角线互相平分B .对角相等C .对角线互相垂直D .4个内角都相等7、 如图,在矩形ABCD 中,两条对角线AC 、BD 相交于点O ,AB =OA =2,则AD =( ) A.3 B. 52 C. 5 D. 328、为解决群众看病贵的问题,有关部门决定降低药价,对某种 原价为289元的药品进行连续两次降价后为256元,设平均每次ODC B A(第7题)降价的百分率为x ,则下面所列方程正确的是( )A. 289(1-x )2= 256 B. 256(1-x )2=289 C. 289(1-2x )= 256 D. 256(1-2x )= 2899、在正方形ABCD 中,AB =10 cm ,对角线AC 、BD 相交于O ,则△ABO 的周长是( ) A .10+52 B .10+2 C .20+52 D .10+10210、如图,E 、F 、G 、H 分别是四边形ABCD 四条边的中点,要使四边形EFGH 为矩形,四边形ABCD 应具备的条件是 ( )A .一组对边平行而另一组对边不平行B .对角线相等C .对角线互相垂直D .对角线互相平分11、方程0122=--kx x 的根的情况是( )A .方程有两个相等的实数根B .方程有两个不相等的实数根C .方程没有实数根D .方程的根的情况与k 的取值有关 12、如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①△ABG ≌△AFG ;②BG =GC ;③AG ∥CF ;④S △FGC =3.其中正确结论的个数是( )A .1B .2C .3D .4二、填空题(12分)13、方程62=x 的二次项系数是 、一次项系数是 ,常数项是 14、关于x 的方程(m -2)x22-m -x =5是一元二次方程,则m =_________.15、已知正方形的对角线长为3,则它的面积为 .16、如图,△ABC 中,AC 的垂直平分线分别交AC 、AB 于点D 、F ,BE ⊥DF 交DF 的延长线于点E ,已知∠A =30°,BC =2,AF =BF,则四边形BCDE 的面积是三、解答题(52分)17、解下列方程(每题4分,共16分)DCBA HG FE(1)09922=--x x (配方法) (2)752=+x x (公式法)(3))12(3)12(4+=+x x (分解因式法) (4)5)1)(3(=-+x x (适当的方法)18、(6分)一布袋中放有红、黄、白三种颜色的球各一个,它们除颜色外其他都一样,小亮从布袋中摸出一个球后放回去摇匀,再摸出一个球.请你利用列举法(列表或画树状图)分析并求出小亮两次都能摸到白球的概率 19、(6分)已知:如图,在菱形ABCD 中,对角线AC=16㎝,BD=12㎝,BE ⊥DC 于点E,求菱形ABCD 的面积和BE 的长.O BCDAE20、(7分)如图,矩形ABCD 的对角线AC 、BD 相交于点O ,E 、F 、G 、H 分别是OA 、OB 、OC 、OD 的中点,顺次连结E 、F 、G 、H 所得的四边形EFGH 是矩形吗?说明理由.21、(8分)某商场将进货价为30元的台灯以40元售出,平均每月能售出600个,调查发现,售价在40元至60元范围内,这种台灯的售价每上涨1元,其销售量就减少10个,为了实现平均每月10000元的销售利润,这种台灯的售价应为多少?这时应至少进台灯多少? 22、(9分)已知,矩形ABCD 中,4AB cm =,8BC cm =,AC 的垂直平分线EF 分别交AD 、BC 于点E 、F ,垂足为O .(1)如图22-1,连接AF 、CE .求证四边形AFCE 为菱形,并求AF 的长; (2)如图22-2,动点P 、Q 分别从A 、C 两点同时出发,沿AFB ∆和CDE ∆各边匀速运动一周.即点P 自A →F →B →A 停止,点Q 自C →D →E →C 停止.在运动过程中,已知点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,当A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,求t 的值.ABCDEF图22-1O图22-2ABCDEFPQ备用图ABCDEFP Q。

广东省深圳市九年级上学期数学10月月考试卷

广东省深圳市九年级上学期数学10月月考试卷

广东省深圳市九年级上学期数学10月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019九上·长春月考) tan30°的值为()A .B .C .D .2. (2分) 2012年雁荡山风景区全年共接待国内外游客约为3 300 000人次,该数据用科学记数法表示为()A . 3.3×107B . 3.3×106C . 0.33×107D . 33×1053. (2分)(2017·阜宁模拟) 下列几何体的主视图是三角形的是()A .B .C .D .4. (2分)(2020·福田模拟) 下列图案是中心对称图形的是()A .B .C .D .5. (2分)下列事件中,不可能事件是()A . 掷一枚六个面分别刻有1~6数码的均匀正方体骰子,向上一面的点数是“5”B . 任意选择某个电视频道,正在播放动画片C . 肥皂泡会破碎D . 在平面内,度量一个三角形的内角度数,其和为360°6. (2分) (2017七下·安顺期末) 《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为()A .B .C .D .7. (2分) (2016九上·桐乡期中) 小强、小亮、小文三位同学玩投硬币游戏.三人同时各投出一枚均匀硬币,若出现三个正面向上或三个反面向上,则小强赢;若出现2个正面向上一个反面向上,则小亮赢;若出现一个正面向上2个反面向上,则小文赢.下面说法正确的是()A . 三人赢的概率都相等B . 小文赢的概率最小C . 小亮赢的概率最小D . 小强赢的概率最小8. (2分) (2018九上·丰城期中) 如图,将绕直角顶点C顺时针旋转,得到,连接,若,则的度数是)A .B .C .D .9. (2分)如图,关于抛物线y=(x﹣1)2﹣2,下列说法错误的是()A . 顶点坐标为(1,﹣2)B . 对称轴是直线x=lC . 开口方向向上D . 当x>1时,y随x的增大而减小10. (2分) (2020八下·西安期末) 用配方法解方程x2﹣6x+3=0,下列变形正确的是()A . (x﹣3)2=6B . (x﹣3)2=3C . (x﹣3)2=0D . (x﹣3)2=1二、填空题 (共5题;共6分)11. (1分) (2018八上·太原期中) 计算( +1)( -1)的结果为________.12. (1分)(2017·枣阳模拟) 已知不等式组:,其解集为________.13. (1分)(2018·成华模拟) 若 x1 , x2是方程x2-2mx+m2-m-1 的两个实数根,且x1+x2=1-x1x2 ,则m 的值为________.14. (2分) (2018九上·濮阳期末) 如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交弧AB 于点E,以点O为圆心,OC为半径作弧CD交OB于点D,若OA=2,则阴影部分的面积为________.15. (1分)(2020·湖州) 在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点,顶点都是格点的三角形称为格点三角形,如图,已知Rt△ABC是6×6网格图形中的格点三角形,则该图中所有与Rt△ABC 相似的格点三角形中,面积最大的三角形的斜边长是________.三、解答题 (共8题;共64分)16. (5分) (2017九下·盐都期中) 计算:|﹣8|+(﹣2)3+tan45°﹣.17. (7分) (2019九上·官渡期末) 某超市为庆祝开业举办大酬宾抽奖活动,凡在开业当天进店购物的顾客,都能获得一次抽奖的机会,抽奖规则如下:在一个不透明的盒子里装有分别标有数字1、2、3的3个小球,它们的形状、大小、质地完全相同,顾客先从盒子里随机取出一个小球,记下小球上标有的数字,然后把小球放回盒子并搅拌均匀,再从盒子中随机取出一个小球,记下小球上标有的数字,并计算两次记下的数字之和,若两次所得的数字之和为6,则可获得50元代金券一张;若所得的数字之和为5,则可获得30元代金券一张;若所得的数字之和为4,则可获得15元代金券一张;其它情况都不中奖.(1)请用列表或树状图的方法(选其中一种即可),把抽奖一次可能出现的结果表示出来.(2)假如你参加了该超市开业当天的一次抽奖活动,求能中奖的概率.18. (6分)(2020·镇平模拟) 如图,在Rt△ABC中,∠ACB=90°,点D是AB边上一点,以BD为直径的⊙O 与边AC相切于点E,连接DE并延长DE交BC的延长线于点F.(1)求证:BD=BF;(2)填空:①若⊙O的半径为5,tanB=,则CF=________;②若⊙O与BF相交于点H,当∠B的度数为________时,四边形OBHE为菱形.19. (5分)北京时间2015年04月25日14时11分,尼泊尔发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作.如图,某探测队在地面A、B两处均探测出建筑物下方C处有生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB=4米,求该生命迹象所在位置C的深度.(结果精确到1米.参考数据:sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,≈1.7)20. (10分)(2016·台湾) 如图,正方形ABCD是一张边长为12公分的皮革.皮雕师傅想在此皮革两相邻的角落分别切下△PDQ与△PCR后得到一个五边形PQABR,其中PD=2DQ,PC=RC,且P、Q、R三点分别在CD、AD、BC上,如图所示.(1)当皮雕师傅切下△PDQ时,若DQ长度为x公分,请你以x表示此时△PDQ的面积.(2)承(1),当x的值为多少时,五边形PQABR的面积最大?请完整说明你的理由并求出答案.21. (10分)(2019·宣城模拟) 我市某乡镇在农业产业合作化销售中,其中一农产品经分析发现月销售量y(万件)与月份x(月)的关系为:,每件产品的利润z(元)与月份x(月)的关系如下表:x123456789101112z1918171615141312111098(1)请你根据表格求出每件产品利润(元)与月份x(月)的关系式;(2)若月利润w(万元)=当月销售量y(万件)×当月每件产品的利润z(元),求月利润(万元)与月份x(月)的关系式;(3)当x为何值时,月利润w有最大值,最大值为多少?22. (11分)(2018·抚顺) 如图,△ABC中,AB=BC,BD⊥AC于点D,∠FAC= ∠ABC,且∠FAC在AC下方.点P,Q分别是射线BD,射线AF上的动点,且点P不与点B重合,点Q不与点A重合,连接CQ,过点P作PE⊥CQ于点E,连接DE.(1)若∠ABC=60°,BP=AQ.①如图1,当点P在线段BD上运动时,请直接写出线段DE和线段AQ的数量关系和位置关系;②如图2,当点P运动到线段BD的延长线上时,试判断①中的结论是否成立,并说明理由;(2)若∠ABC=2α≠60°,请直接写出当线段BP和线段AQ满足什么数量关系时,能使(1)中①的结论仍然成立(用含α的三角函数表示).23. (10分) (2018九上·绍兴月考) 如图,直线与轴、轴分别交于、两点,抛物线经过、两点,与轴的另一个交点为,连接.(1)求抛物线的解析式及点的坐标;(2)点在抛物线上,连接,当时,求点的坐标;(3)点从点出发,沿线段由向运动,同时点从点出发,沿线段由向运动,、的运动速度都是每秒个单位长度,当点到达点时,、同时停止运动,试问在坐标平面内是否存在点,使、运动过程中的某一时刻,以、、、为顶点的四边形为菱形?若存在,直接写出点的坐标;若不存在,说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共6分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共64分)16-1、17-1、17-2、18-1、18-2、19-1、20-1、20-2、21-1、21-2、21-3、22-1、23-1、23-2、23-3、。

广东省深圳市九年级上学期数学10月月考试卷

广东省深圳市九年级上学期数学10月月考试卷

广东省深圳市九年级上学期数学10月月考试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2018·防城港模拟) 如图是几何体的三视图,该几何体是()A . 圆锥B . 圆柱C . 三棱柱D . 三棱锥2. (2分)(2018·临沂) 如图,点E,F,G,H分别是四边形ABCD边AB,BC,CD,DA的中点.则下列说法:①若AC=BD,则四边形EFGH为矩形;②若AC⊥BD,则四边形EFGH为菱形;③若四边形EFGH是平行四边形,则AC与BD互相平分;④若四边形EFGH是正方形,则AC与BD互相垂直且相等.其中正确的个数是()A . 1B . 2C . 3D . 43. (2分)已知下列命题:①若a﹥b则a+b﹥0;②若a≠b则a2≠b2;③角的平分线上的点到角两边的距离相等;④平行四边形的对角线互相平分。

其中原命题和逆命题都正确的个数是()A . 1个B . 2个C . 3个D . 4个4. (2分) (2019九上·凤翔期中) 用配方法解方程时,可变形为()A .B .C .D .5. (2分)如图,在平行四边形ABCD中,E是AB的中点,CE和BD交于点O,设△OCD的面积为m,△OEB 的面积为,则下列结论中正确的是()A . m=5B . m=4C . m=3D . m=106. (2分) (2017九上·潮阳月考) 一元二次方程的根的情况是()A . 有两个相等的实数根B . 有两个不相等的实数根C . 只有一个相等的实数根D . 没有实数根7. (2分)在元旦游园晚会上有一个闯关活动:将5张分别画有等腰梯形、平行四边形、等腰三角形、圆、菱形的卡片任意摆放,将有图形的一面朝下,从中任意翻开一张,如果翻开的图形是中心对称图形,就可以过关,那么一次过关的概率是()A .B .C .D .8. (2分)如图,在△ABC中,∠C=90°,点E在边BC上,把△ACE沿AE翻折,点C恰好与AB上的点D重合,若AC=BC=8,则△EBD的周长为()A . 8B .C .D .9. (2分)某中学标准化建设规划在校园内的一块长36米,宽20米的矩形场地ABCD上修建三条同样宽的人行道,使其中两条与AB平行,另一条与AD平行,其余部分种草(如图所示),若使每一块草坪的面积都为96平方米.设人行道的宽为x米,下列方程:①(36-2x)(20-x)=96×6;②2×20x+(36-2x)x=36×20-96×6;③ (18-x)(10-)=×96×6,其中正确的个数为()A . 0个B . 1个C . 2个D . 3个10. (2分)如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=()A .B . 2C . 3D .11. (2分)如图在平面直角坐标系xOy中,直线y=kx(k为常数)与抛物线y= x2﹣2交于A,B两点,且A点在y轴左侧,P点坐标为(0,﹣4),连接PA,PB.以下说法正确的是()①PO2=PA•PB;②当k>0时,(PA+AO)(PB﹣BO)的值随k的增大而增大;③当k=﹣时,BP2=BO•BA;④三角形PAB面积的最小值为.A . ③④B . ①②C . ②④D . ①④12. (2分)(2019·武汉模拟) 如图,⊙O内切于正方形ABCD,边AD,CD分别与⊙O切于点E,F,点M、N 分别在线段DE,DF上,且MN与⊙O相切,若△MBN的面积为8,则⊙O的半径为()A .B . 2C .D . 2二、填空题 (共4题;共4分)13. (1分) (2018九上·新洲月考) 若关于x的方程-x2+5x+c=0的一个根为3,则c=________.14. (1分) (2019七上·梁子湖期中) 已知是关于x , y的七次单项式,则的值为________15. (1分)在一个不透明的口袋中,装有5个红球4个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为________.16. (1分)(2017·商丘模拟) 如图,矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD上,折痕的一端E点在边BC上,BE=10.则折痕的长为________.三、解答题 (共7题;共95分)17. (5分) (2019七上·东莞期中) 计算:-14- ×[2-(3)2]18. (20分) (2019八上·北京期中) 分式计算:(1)(2)(3)(4)先化简,再求值:,其中m=1.19. (15分) (2019七下·江门期末) 联合国规定每年6月25日是“世界环境日”,某校编写了关于环境保护的个问答题让学生学习,为了解学生对个问答题的掌握情况,随机抽查了部分学生进行答题测试,并根据测试结果得出下面两个不完整的统计图,请根据统计图提供的信息,回答下列问题(其中分别表示答对个题,答对个题,答对个题,答对个题,答对个题的人数):(1)参加测试的学生有多少人?其中“答对个题”的有多少人数?(2)把条形统计图补充完整;(3)若该校共有名学生,估计该校能“答对个题”以上(含个题)的人数20. (15分)如图,在△ABC中,AC=BC,∠BAC=30°,D是EF的中点,E是线段BC延长线上一点,过点A作A F∥BE,与线段ED的延长线交于点F,连结AE、CF.(1)求证:AF=CE;(2)若BC=2CE,试判断四边形AFCE是什么样的四边形,并证明你的结论;(3)若C为BE的中点,求证:EF⊥AC.21. (10分)(2017·锡山模拟) 要在一块长52m,宽48m的矩形绿地上,修建同样宽的两条互相垂直的甬路.下面分别是小亮和小颖的设计方案.(1)求小亮设计方案中甬路的宽度x;(2)求小颖设计方案中四块绿地的总面积(友情提示:小颖设计方案中的x与小亮设计方案中的x取值相同)22. (15分) (2017八上·云南月考) 如图①,CA=CB,CD=CE,∠ACB=∠DCE=α,AD、BE相交于点M,连接CM.(1)求证:BE=AD;(2)用含α的式子表示∠AMB的度数;(3)当α=90°时,取AD,BE的中点分别为点P、Q,连接CP,CQ,PQ,如图②,判断△CPQ的形状,并加以证明.23. (15分)(2019·沈阳模拟) 如图,在△ABC中,AB=7.5,AC=9,S△ABC= .动点P从A点出发,沿AB方向以每秒5个单位长度的速度向B点匀速运动,动点Q从C点同时出发,以相同的速度沿CA方向向A点匀速运动,当点P运动到B点时,P、Q两点同时停止运动,以PQ为边作正△PQM(P、Q、M按逆时针排序),以QC为边在AC上方作正△QCN,设点P运动时间为t秒.(1)求cosA的值;(2)当△PQM与△QCN的面积满足S△PQM= S△QCN时,求t的值;(3)当t为何值时,△PQM的某个顶点(Q点除外)落在△QCN的边上.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共95分)17-1、18-1、18-2、18-3、18-4、19-1、19-2、19-3、20-1、20-2、20-3、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、。

九年级数学上学期第一次月考10月试题无答案新人教版

九年级数学上学期第一次月考10月试题无答案新人教版

2016年10月九年级数学月考试卷本试卷分为第一卷(选择题,填空题)和第二卷(解答题)两部份试卷满分共120分,考试时刻为90分钟 第一卷 选择题,填空题(共70分)一、选择题(本大题共10个小题,每小题3分,共30分,在每小题给出的四个备选答案中,只有一个是正确的,请你将正确答案的字母填在第二卷答题栏所对应题号下面的空格内,答到第一卷不得分)。

1. 一元二次方程x 2-9=0的根为( ) A. x=3 B. x=-3C. x 1=3,x 2=-3D. x 1=0,x 2=3 2.方程(3)(2)0x x +-=的根是( ) A .3x =-B .2x =C .13x =,22x =-D .13x =-,22x =.3.把方程2890x x ++=的配方后,得( ) A .2(4)7x +=B .2(4)25x +=C .2(4)9x +=-D .2(8)7x +=4.若是关于x 的一元二次方程20x px q ++=的两根别离为13x =,21x =,那么那个一元二次方程是( )A .2340x x ++=B .2430x x -+=C .2430x x +-=D .2340x x +-=5. 在一幅长80 cm,宽50 cm 的矩形风光画的周围镶上一条金色纸边,制成一幅矩形挂图,如图所示.若是要使整个挂图的面积是5 400 cm 2,设金色纸边的宽为x cm,那么x 知足的方程是( ) +130x-1 400=0 +65x-350=0 400=0 =06.下列各式中,y 是x 的二次函数的个数为( )①y =2x 2+2x +5;②y =-5+8x -x 2;③y =(3x +2)(4x -3)-12x 2;④y =ax 2+bx +c ;⑤y =mx 2+x ;⑥y =bx 2+1(b 为常数,b ≠0).A .3B .4C .5D .67.将抛物线y =3x 2平移取得抛物线y =3(x -4)2-1 的步骤是( )A .向左平移4个单位,再向上平移1个单位B .向左平移4个单位,再向下平移1个单位C .向右平移4个单位,再向上平移1个单位D .向右平移4个单位,再向下平移1个单位8.若二次函数y =x 2+bx +5配方后为y =(x -2)2+k ,则b ,k 的值别离为( )A . 0,5B . 0,1C .-4,5D .-4,19.二次函数y =x 2-2x -3的图象如图.当y <0时,自变量x 的取值范围是( )A .-1<x <3B .x <-1C .x >3D .x <-1或x >310.已知抛物线y =ax 2+bx +c (a ≠0)在平面直角坐标系中的位置如图,则下列结论中正确的是( )A .a >0B .b <0C .c <0D .a +b +c >0二、填空题(本大题共10个小题,每小题4分,共40分,请把结果写到第二卷的答题处,答在第一卷上不得分)。

广东初三初中数学月考试卷带答案解析

广东初三初中数学月考试卷带答案解析

广东初三初中数学月考试卷班级:___________ 姓名:___________ 分数:___________一、选择题1.(2009•庆阳)方程x2﹣4=0的根是()A.x=2B.x=﹣2C.x1=2,x2=﹣2D.x=42.(2009•宝安区一模)下列一元二次方程无解的是()A.x2﹣2x+1=0B.x2+3x﹣2=0C.2x2+x+3=0D.2x2﹣3x﹣1=03.(2015秋•深圳校级月考)如果一个三角形的两边的垂直平分线的交点在第三边上,那么这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.不能确定4.(2015秋•深圳校级月考)把下列方程化成一般形式后,系数和为0的方程是()A.x2﹣2x+3=0B.x2+2x﹣3=0C.x2﹣4x﹣3=0D.2x2﹣5=3x5.(2014•雁塔区校级模拟)如图,由∠1=∠2,BC=DC、AC=EC,最后推出△ABC≌△EDC的根据是()A.SAS B.ASA C.AAS D.SSS6.(2011秋•宝安区校级期中)下列命题,假命题是()A.有一个内角等于60°的等腰三角形是等边三角形B.有一个角是40°,腰相等的两个等腰三角形全等C.在直角三角形中,最大边的平方等于其他两边的平方和D.三角形两个内角平分线的交点到三边的距离相等7.(2007•乌兰察布)如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数为()A.45°B.60°C.55°D.75°8.(2014•雁塔区校级模拟)如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且AB=6cm,则△DEB的周长为()A.4cm B.6cm C.8cm D.10cm9.(2015秋•深圳校级月考)某商品经过两次连续提价,每件售价由原来的35元提到了55元.设平均每次提价的百分率为x ,则下列方程中正确的是( )A .55 (1+x )2=35B .35(1+x )2=55C .55(1﹣x )2=35D .35(1﹣x )2=5510.(2015秋•会理县校级期中)如图,直线l 1、l 2、l 3表示三条相互交叉的公路,现要建一个货物中转站,要求它的三条公路的距离相等,则可供选择的地址有( )A .一处B .二处C .三处D .四处二、填空题1.(2015秋•深圳校级月考)方程2x 2﹣x ﹣2=0的二次项系数是 ,一次项系数是 ,常数项是 .2.(2006•浙江)如图,点B 在AE 上,∠CAB=∠DAB ,要使△ABC ≌△ABD ,可补充的一个条件是: .(答案不唯一,写一个即可)3.(2015秋•深圳校级月考)已知方程3x 2﹣2x+m=0的一个根是1,则m 的值为 .4.(2012•成都模拟)三角形两边的长分别是8和6,第3边的长是一元二次方程x 2﹣16x+60=0的一个实数根,则该三角形的面积是 .5.(2013•成都模拟)如图所示,∠E=∠F=90°,∠B=∠C ,AE=AF .给出下列结论:①∠1=∠2;②BE=CF ;③△ACN ≌△ABM ;④CD=DN .其中正确的结论是 .(将你认为正确的结论的序号都填上)三、解答题1.(2010•西藏)解方程:x 2+4x ﹣5=0.2.(2012秋•合川区校级期末)解方程:3x 2+5(2x+1)=0.3.(2012秋•高安市期末)解方程:3x (x ﹣1)=2﹣2x .4.(2011•沧浪区校级二模)已知:点O 到△ABC 的两边AB 、AC 所在直线的距离相等,且OB=OC .(1)如图1,若点O 在BC 上,求证:AB=AC ;(2)如图2,若点O 在△ABC 的内部,求证:AB=AC .5.(2013秋•自贡期末)如图,某小区规划在长32米,宽20米的矩形场地ABCD 上修建三条同样宽的3条小路,使其中两条与AD 平行,一条与AB 平行,其余部分种草,若使草坪的面积为570米2,问小路应为多宽?6.(2015秋•深圳校级月考)在△ABC 中,∠B=22.5°,∠C=30°,AB 的垂直平分线OD 交BC 边于点D ,连结AD(1)求∠DAC 的度数;(2)若AC=4cm ,求△ABC 的面积(结果保留根号)7.(2015秋•深圳校级月考)如图1,在Rt △ABC 中,∠ACB=90°,AC=6cm ,BC=8cm ,点P 从A 出发沿AC 向C 点以1厘米/秒的速度匀速移动;点Q 从C 出发沿CB 向B 点以2厘米/秒的速度匀速移动.点P 、Q 分别从起点同时出发,移动到某一位置时所需时间为t 秒.(1)当t=2时,求线段PQ 的长度;(2)当t 为何值时,△PCQ 的面积等于5cm 2?(3)在P 、Q 运动过程中,在某一时刻,若将△PQC 翻折,得到△EPQ ,如图2,PE 与AB 能否垂直?若能,求出相应的t 值;若不能,请说明理由.广东初三初中数学月考试卷答案及解析一、选择题1.(2009•庆阳)方程x 2﹣4=0的根是( )A .x=2B .x=﹣2C .x 1=2,x 2=﹣2D .x=4【答案】C【解析】先移项,然后利用数的开方解答.解:移项得x 2=4,开方得x=±2,∴x 1=2,x 2=﹣2.故选C .【考点】解一元二次方程-直接开平方法.2.(2009•宝安区一模)下列一元二次方程无解的是( )A .x 2﹣2x+1=0B .x 2+3x ﹣2=0C .2x 2+x+3=0D .2x 2﹣3x ﹣1=0【答案】C【解析】根据一元二次方程的根的判别式与0的大小关系就可以判断各选项的根的情况.解:A:△=b2﹣4ac=4﹣4=0,方程有相等的两实数根;B:△=b2﹣4ac=9+8>0,方程有不相等的两实数根;C:△=b2﹣4ac=1﹣24=﹣23<0,方程无实数根;D:△=b2﹣4ac=9+8=17>0,方程有两个不相等的实数根.故选C.【考点】根的判别式.3.(2015秋•深圳校级月考)如果一个三角形的两边的垂直平分线的交点在第三边上,那么这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.不能确定【答案】C【解析】根据题意,画出图形,用线段垂直平分线的性质解答.解:如图,CA、CB的中点分别为D、E,CA、CB的垂直平分线OD、OE相交于点O,且点O落在AB边上,连接CO,∵OD是AC的垂直平分线,∴OC=OA,同理OC=OB,∴OA=OB=OC,∴A、B、C都落在以O为圆心,以AB为直径的圆周上,∴C是直角.故选C.【考点】线段垂直平分线的性质.4.(2015秋•深圳校级月考)把下列方程化成一般形式后,系数和为0的方程是()A.x2﹣2x+3=0B.x2+2x﹣3=0C.x2﹣4x﹣3=0D.2x2﹣5=3x【答案】B【解析】根据一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项进行计算即可.解:A、1+(﹣2)+3=2,故此选项错误;B、1+2﹣3=0,故此选项正确;C、1﹣4﹣3≠0,故此选项错误;D、1﹣3﹣5≠0,故此选项错误.故选:B.【考点】一元二次方程的一般形式.5.(2014•雁塔区校级模拟)如图,由∠1=∠2,BC=DC、AC=EC,最后推出△ABC≌△EDC的根据是()A.SAS B.ASA C.AAS D.SSS【答案】A【解析】先看有哪些条件证得△ABC≌△EDC:∠1=∠2,即∠ACB=∠DCE;BC=DC,AC=EC;因此判定两三角形全等的依据是SAS.解:∵∠1=∠2∴∠ACD+∠2=∠ACD+∠1,即∠ACB=∠ECD又∵BC=DC,AC=EC∴△ABC≌△EDC(SAS)故选A.【考点】全等三角形的判定.6.(2011秋•宝安区校级期中)下列命题,假命题是()A.有一个内角等于60°的等腰三角形是等边三角形B.有一个角是40°,腰相等的两个等腰三角形全等C.在直角三角形中,最大边的平方等于其他两边的平方和D.三角形两个内角平分线的交点到三边的距离相等【答案】B【解析】利用等边三角形的判定定理,勾股定理以及角平分线的性质定理即可判断.解:A、是等边三角形的判定定理,正确;B、40°的角可能是顶角也可能是底角,故是假命题,选项错误;C、根据勾股定理即可得到,故正确;D、根据角平分线上的点到角的两边的距离相等,即可得到,故正确.故选B、【考点】命题与定理.7.(2007•乌兰察布)如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数为()A.45°B.60°C.55°D.75°【答案】B【解析】通过证△ABD≌△BCE得∠BAD=∠CBE;运用外角的性质求解.解:等边△ABC中,有∵∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE∴∠APE=∠BAD+∠ABP=∠ABP+∠PBD=∠ABD=60°.故选:B.【考点】全等三角形的判定与性质;等边三角形的性质.8.(2014•雁塔区校级模拟)如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于点D,DE⊥AB,垂足为E,且AB=6cm,则△DEB的周长为()A.4cm B.6cm C.8cm D.10cm【答案】B【解析】先利用AAS判定△ACD≌△AED得出AC=AE,CD=DE;再对构成△DEB的几条边进行变换,可得到其周长等于AB的长.解:∵AD 平分∠CAB 交BC 于点D∴∠CAD=∠EAD ∵DE ⊥AB ∴∠AED=∠C=90 ∵AD=AD ∴△ACD ≌△AED .(AAS ) ∴AC=AE ,CD=DE ∵∠C=90°,AC=BC ∴∠B=45° ∴DE=BE ∵AC=BC ,AB=6cm ,∴2BC 2=AB 2,即BC===3,∴BE=AB ﹣AE=AB ﹣AC=6﹣3, ∴BC+BE=3+6﹣3=6cm , ∵△DEB 的周长=DE+DB+BE=BC+BE=6(cm ).另法:证明三角形全等后,∴AC=AE ,CD=DE . ∵AC=BC , ∴BC=AE . ∴△DEB 的周长=DB+DE+EB=DB+CD+EB=CB+BE=AE+BE=6cm .故选B .【考点】角平分线的性质;全等三角形的判定与性质.9.(2015秋•深圳校级月考)某商品经过两次连续提价,每件售价由原来的35元提到了55元.设平均每次提价的百分率为x ,则下列方程中正确的是( )A .55 (1+x )2=35B .35(1+x )2=55C .55(1﹣x )2=35D .35(1﹣x )2=55【答案】B【解析】可先表示出第一次提价后的价格,那么第一次提价后的价格×(1+提价的百分率)=55,把相应数值代入即可求解.解:设平均每次提价的百分率为x ,第一次提价后的价格为35(1+x ),两次连续提价后售价在第一次提价后的价格的基础上提高x ,为35(1+x )×(1+x ),则列出的方程是35(1+x )2=55.故选:B .【考点】由实际问题抽象出一元二次方程.10.(2015秋•会理县校级期中)如图,直线l 1、l 2、l 3表示三条相互交叉的公路,现要建一个货物中转站,要求它的三条公路的距离相等,则可供选择的地址有( )A .一处B .二处C .三处D .四处【答案】D【解析】作直线l 1、l 2、l 3所围成的三角形的外角平分线和内角平分线,外角平分线相交于点P 1、P 2、P 3,内角平分线相交于点P 4,然后根据角平分线的性质进行判断.解:作直线l 1、l 2、l 3所围成的三角形的外角平分线和内角平分线,外角平分线相交于点P 1、P 2、P 3,内角平分线相交于点P 4,根据角平分线的性质可得到这4个点到三条公路的距离分别相等.故选D .【考点】角平分线的性质.二、填空题1.(2015秋•深圳校级月考)方程2x 2﹣x ﹣2=0的二次项系数是 ,一次项系数是 ,常数项是 . 【答案】2,﹣1,﹣2.【解析】根据一元二次方程的一般形式是:ax 2+bx+c=0(a ,b ,c 是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax 2叫二次项,bx 叫一次项,c 是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项进行分析即可.解:方程2x 2﹣x ﹣2=0的二次项系数是2,一次项系数是﹣1,常数项是﹣2,故答案为:2,﹣1,﹣2.【考点】一元二次方程的一般形式.2.(2006•浙江)如图,点B 在AE 上,∠CAB=∠DAB ,要使△ABC ≌△ABD ,可补充的一个条件是: .(答案不唯一,写一个即可)【答案】见解析【解析】△ABC 和△ABD 已经满足一条边相等(公共边AB )和一对对应角相等(∠CAB=∠DAB ),只要再添加一边(SAS )或一角(ASA 、AAS )即可得出结论.解:根据判定方法,可填AC=AD (SAS );或∠CBA=∠DBA (ASA );或∠C=∠D (AAS );∠CBE=∠DBE (ASA ).【考点】全等三角形的判定.3.(2015秋•深圳校级月考)已知方程3x 2﹣2x+m=0的一个根是1,则m 的值为 .【答案】﹣1【解析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.本题根据一元二次方程的根的定义、一元二次方程的定义求解.解:把x=1代入方程3x 2﹣2x+m=0,可得3﹣2+m=0,解得m=﹣1.故答案为:﹣1.【考点】一元二次方程的解.4.(2012•成都模拟)三角形两边的长分别是8和6,第3边的长是一元二次方程x 2﹣16x+60=0的一个实数根,则该三角形的面积是 .【答案】24或8.【解析】由x 2﹣16x+60=0,可利用因式分解法求得x 的值,然后分别从x=6时,是等腰三角形;与x=10时,是直角三角形去分析求解即可求得答案.解:∵x 2﹣16x+60=0,∴(x ﹣6)(x ﹣10)=0,解得:x 1=6,x 2=10,当x=6时,则三角形是等腰三角形,如图①:AB=AC=6,BC=8,AD 是高,∴BD=4,AD==2,∴S △ABC =BC•AD=×8×2=8;当x=10时,如图②,AC=6,BC=8,AB=10,∵AC 2+BC 2=AB 2,∴△ABC 是直角三角形,∠C=90°,S △ABC =BC•AC=×8×6=24.∴该三角形的面积是:24或8.故答案为:24或8.【考点】解一元二次方程-因式分解法;等腰三角形的性质;勾股定理;勾股定理的逆定理.5.(2013•成都模拟)如图所示,∠E=∠F=90°,∠B=∠C ,AE=AF .给出下列结论:①∠1=∠2;②BE=CF ;③△ACN ≌△ABM ;④CD=DN .其中正确的结论是 .(将你认为正确的结论的序号都填上) 【答案】①②③ 【解析】此题考查的是全等三角形的判定和性质的应用,只要先找出图中的全等三角形就可判断题中结论是否正确. 解:∵∠E=∠F=90°,∠B=∠C ,AE=AF ,∴△ABE ≌△ACF , ∴AC=AB ,BE=CF ,即结论②正确; ∵AC=AB ,∠B=∠C ,∠CAN=∠BAM , ∴ACN ≌△ABM ,即结论③正确; ∵∠BAE=∠CAF , ∵∠1=∠BAE ﹣∠BAC ,∠2=∠CAF ﹣∠BAC , ∴∠1=∠2,即结论①正确; ∴△AEM ≌△AFN , ∴AM=AN ,∴CM=BN , ∴△CDM ≌△BDN ,∴CD=BD , ∴题中正确的结论应该是①②③.故答案为:①②③.【考点】全等三角形的判定与性质.三、解答题1.(2010•西藏)解方程:x 2+4x ﹣5=0.【答案】x 1=﹣5,x 2=1.【解析】通过观察方程形式,利用二次三项式的因式分解法解方程比较简单.解:原方程变形为(x ﹣1)(x+5)=0∴x 1=﹣5,x 2=1.【考点】解一元二次方程-因式分解法.2.(2012秋•合川区校级期末)解方程:3x 2+5(2x+1)=0.【答案】x 1=,x 2=.【解析】去括号把原方程整理为一般式,找出a ,b 及c 的值,先求出b 2﹣4ac 的值,根据其中大于0,得到方程有解,故把a ,b 及c 的值代入求根公式,化简后即可得到方程的两根.解:3x 2+5(2x+1)=0,整理得:3x 2+10x+5=0,∵a=3,b=10,c=5, ∴b 2﹣4ac=100﹣60=40>0,∴x==,则原方程的解为x 1=,x 2=. 【考点】解一元二次方程-公式法.3.(2012秋•高安市期末)解方程:3x (x ﹣1)=2﹣2x .【答案】x 1=1,x 2=﹣.【解析】把右边的项移到左边,用提公因式法因式分解求出方程的根.解:3x (x ﹣1)+2(x ﹣1)=0,(x ﹣1)(3x+2)=0,∴x ﹣1=0,3x+2=0,解得x 1=1,x 2=﹣.【考点】解一元二次方程-因式分解法;因式分解-提公因式法.4.(2011•沧浪区校级二模)已知:点O 到△ABC 的两边AB 、AC 所在直线的距离相等,且OB=OC .(1)如图1,若点O 在BC 上,求证:AB=AC ;(2)如图2,若点O 在△ABC 的内部,求证:AB=AC .【答案】见解析【解析】(1)先利用斜边直角边定理证明△OEC 和△OFB 全等,根据全等三角形对应角相等得到∠B=∠C ,再根据等角对等边的性质即可得到AB=AC ;(2)过O 作OE ⊥AB ,OF ⊥AC ,与(1)的证明思路基本相同.证明:(1)在Rt △OEC 和Rt △OFB 中∵,∴Rt △OEC ≌Rt △OFB (HL ), ∴∠B=∠C (全等三角形的对应角相等), ∴AB=AC (等角对等边);(2)在Rt △OEC 和Rt △OFB 中,∵,∴Rt △OEC ≌Rt △OFB (HL ), ∴∠OBF=∠OCE ,又∵OB=OC ,∴∠OBC=∠OCB , ∴∠FBO+∠OBC=∠OCE+∠OCB ,即∠ABC=∠ACB , ∴AB=AC .【考点】角平分线的性质;全等三角形的判定与性质.5.(2013秋•自贡期末)如图,某小区规划在长32米,宽20米的矩形场地ABCD 上修建三条同样宽的3条小路,使其中两条与AD 平行,一条与AB 平行,其余部分种草,若使草坪的面积为570米2,问小路应为多宽?【答案】1米【解析】设小路的宽为x 米,能分别表示出三条小路的面积,从图上可以看出相加的时候重复加了2x 2.可列方程求解.解:设小路宽为x 米,则小路总面积为:20x+20x+32x ﹣2•x 2=32×20﹣570,整理,得2x 2﹣72x+70=0,x 2﹣36x+35=0,∴(x ﹣35)(x ﹣1)=0, ∴x 1=35(舍),x 2=1,∴小路宽应为1米.【考点】一元二次方程的应用.6.(2015秋•深圳校级月考)在△ABC 中,∠B=22.5°,∠C=30°,AB 的垂直平分线OD 交BC 边于点D ,连结AD(1)求∠DAC的度数;(2)若AC=4cm,求△ABC的面积(结果保留根号)【答案】(1)∠DAC=105°;(2)【解析】(1)根据线段的垂直平分线的性质得到AD=BD,得到∠B=∠BAD=22.5°,根据三角形外角的性质求出∠ADC=45°,根据三角形内角和定理计算即可;(2)过A点作AE⊥BC于点E,则AE=DE,根据直角三角形的性质求出AE、BC的长,根据三角形面积公式计算即可.解:(1)∵OD是AB的垂直平分线;∴AD=BD,∴∠B=∠BAD=22.50,∴∠ADC=45°,∵∠A=30°,∴∠DAC=105°;(2)过A点作AE⊥BC于点E,则AE=DE,在Rt△ACE中,∵AC=4,∴AE=2,EC=2,∴DE=2,在Rt△AED中,AD=2,∴AD=BD=2,∴BC=2+2+2∴S==()=().△ABC【考点】线段垂直平分线的性质.7.(2015秋•深圳校级月考)如图1,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,点P从A出发沿AC 向C点以1厘米/秒的速度匀速移动;点Q从C出发沿CB向B点以2厘米/秒的速度匀速移动.点P、Q分别从起点同时出发,移动到某一位置时所需时间为t秒.(1)当t=2时,求线段PQ的长度;(2)当t为何值时,△PCQ的面积等于5cm2?(3)在P、Q运动过程中,在某一时刻,若将△PQC翻折,得到△EPQ,如图2,PE与AB能否垂直?若能,求出相应的t值;若不能,请说明理由.【答案】(1)厘米;(2)当t=1秒时,△PCQ的面积等于5cm2;(3)当t=时,PE⊥AB.【解析】(1)当t=2时,可求出CP,CQ的长,根据勾股定理即可求出线段即斜边PQ的长;(2)由三角形面积公式可建立关于t的方程,解方程求出t的值即可;(3)延长QE交AC于点D,若PE⊥AB,则QD∥AB,所以可得△CQD∽△CBA,由相似三角形的性质:对应边的比值相等可求出DE=0.5t,易证△ABC∽△DPE,再由相似三角形的性质可得,把已知数据代入即可求出t的值.解:(1)当t=2时,∵点P从A出发沿AC向C点以1厘米/秒的速度匀速移动;点Q从C出发沿CB向B点以2厘米/秒的速度匀速移动,∴AP=2厘米,QC=4厘米,∴PC=4,在Rt △PQC 中PQ==厘米;(2)∵点P 从A 出发沿AC 向C 点以1厘米/秒的速度匀速移动;点Q 从C 出发沿CB 向B 点以2厘米/秒的速度匀速移动,∴PC=AC ﹣AP=6﹣t ,CQ=2t ,∴S △CPQ=CP•CQ=,∴t 2﹣6t+5=0解得t 1=1,t 2=5(不合题意,舍去)∴当t=1秒时,△PCQ 的面积等于5cm 2;(3)能垂直,理由如下:延长QE 交AC 于点D ,∵将△PQC 翻折,得到△EPQ , ∴△QCP ≌△QEP , ∴∠C=∠QEP=90°,若PE ⊥AB ,则QD ∥AB ,∴△CQD ∽△CBA ,∴, ∴,∴QD=2.5t , ∵QC=QE=2t ∴DE=0.5t易证△ABC ∽△DPE ,∴∴, 解得:t=(0≤t≤4),综上可知:当t=时,PE ⊥AB .【考点】相似形综合题.。

2015-2016学年第一学期福田区期末调研测试卷含答案(九年级数学)

2015-2016学年第一学期福田区期末调研测试卷含答案(九年级数学)

2015-2016学年广东省深圳市福田区九年级(上)期末数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)sin30°的值是()A.B.C.1 D.2.(3分)已知反比例函数y=,下列各点不在该函数图象上的是()A.(2,3) B.(﹣2,﹣3)C.(2,﹣3)D.(1,6)3.(3分)一元二次方程x2﹣x﹣2=0的解是()A.x1=﹣1,x2=﹣2 B.x1=1,x2=﹣2 C.x1=1,x2=2 D.x1=﹣1,x2=2 4.(3分)下面四个几何体中,主视图与俯视图不同的共有()A.1个 B.2个 C.3个 D.4个5.(3分)抛物线y=2(x﹣1)2+1的顶点坐标是()A.(1,1) B.(1,﹣1)C.(﹣1,1)D.(﹣1,﹣1)6.(3分)口袋里有除颜色不同外其它都相同的红、蓝、白三种颜色的小球共30个,摸到红球的概率是,摸到蓝球的概率是,则袋子里有白球()个.A.15 B.10 C.5 D.67.(3分)华为手机营销按批量投入市场,第一次投放20000台,第三次投放80000台,每次按相同的增长率投放,设增长率为x,则可列方程()A.20000(1+x)2=80000B.20000(1+x)+20000(1+x)2=80000C.20000(1+x2)=80000D.20000+20000(1+x)+20000(1+x)2=800008.(3分)如图,某汽车在路面上朝正东方向匀速行驶,在A处观测到楼H在北偏东60°方向上,行驶1小时后到达B处,此时观测到楼H在北偏东30°方向上,那么该车继续行驶()分钟可使汽车到达离楼H距离最近的位置.A.60 B.30 C.15 D.459.(3分)如图,在△ABC中,D、E分别是线段AB、AC的中点,则△ABC与△ADE的面积之比为()A.1:2 B.1:4 C.4:1 D.2:110.(3分)身高1.8米的人在阳光下的影长是1.2米,同一时刻一根旗杆的影长是6米,则它的高度是()A.10米B.9米 C.8米 D.10.8米11.(3分)如图,直线y=1与抛物线y=x2﹣2x相交于M、N两点,则M、N两点的横坐标是下列哪个方程的解?()A.x2﹣2x+1=0 B.x2﹣2x﹣1=0 C.x2﹣2x﹣2=0 D.x2﹣2x+2=012.(3分)如图,点A、B在反比例函数y=的图象上,过点A、B作x轴的垂线,垂足分别是M、N,射线AB交x轴于点C,若OM=MN=NC,四边形AMNB 的面积是3,则k的值为()A.2 B.4 C.﹣2 D.﹣4二、填空题(本大题共有4小题,每小题3分,共12分)13.(3分)二次函数y=ax2﹣2ax+3的对称轴是x=.14.(3分)已知菱形的两条对角线长分别为10和24,则菱形的边长为.15.(3分)二次函数y1=ax2+bx+c的图象与一次函数y2=kx+b的图象如图所示,当y2>y1时,根据图象写出x的取值范围.16.(3分)如图,在Rt△ABC中,∠B=90°,∠ACB=45°,∠D=30°,B、C、D在同一直线上,连接AD,若AB=,则sin∠CAD=.三、解答题(本大题共52分)17.(5分)2cos60°﹣sin245°+(﹣tan45°)2016.18.(6分)解方程:2(x+1)2=x+1.19.(7分)小鹏和小娟玩一种游戏:小鹏手里有三张扑克牌分别是3、4、5,小娟有两张扑克牌6、7,现二人各自把自己的牌洗匀,小鹏从小娟的牌中任意抽取一张,小娟从小鹏的牌中任意抽取一张,计算两张数字之和,如果和为奇数,则小鹏胜;如果和为偶数则小娟胜.(1)用列表或画树状图的方法,列出小鹏和小娟抽得的数字之和所有可能出现的情况;(2)请判断该游戏对双方是否公平?并说明理由.20.(8分)如图,AD∥BC,AF平分∠BAD交BC于点F,BE平分∠ABC交AD于点E.求证:(1)△ABF是等腰三角形;(2)四边形ABFE是菱形.21.(8分)某商场一种商品的进价为每件30元,售价为每件40元,每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?(3)在(2)的条件下,每件商品的售价为多少元时,每天可获得最大利润?最大利润是多少元?22.(9分)如图,一次函数y=k1x﹣1的图象经过A(0,﹣1)、B(1,0)两点,与反比例函数y=的图象在第一象限内的交点为M,若△OBM的面积为1.(1)求一次函数和反比例函数的表达式;(2)在x轴上是否存在点P,使AM⊥PM?若存在,求出点P的坐标;若不存在,说明理由;(3)x轴上是否存在点Q,使△QBM∽△OAM?若存在,求出点Q的坐标;若不存在,说明理由.23.(9分)已知△ABC是边长为4的等边三角形,BC在x轴上,点D为BC的中点,点A在第一象限内,AB与y轴的正半轴交与点E,已知点B(﹣1,0).(1)点A的坐标:,点E的坐标:;(2)若二次函数y=﹣x2+bx+c过点A、E,求此二次函数的解析式;(3)P是AC上的一个动点(P与点A、C不重合)连结PB、PD,设l是△PBD 的周长,当l取最小值时,求点P的坐标及l的最小值并判断此时点P是否在(2)中所求的抛物线上,请充分说明你的判断理由.2015-2016学年广东省深圳市福田区九年级(上)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.(3分)sin30°的值是()A.B.C.1 D.【解答】解:sin30°=.故选:A.2.(3分)已知反比例函数y=,下列各点不在该函数图象上的是()A.(2,3) B.(﹣2,﹣3)C.(2,﹣3)D.(1,6)【解答】解:A、∵2×3=6,点在反比例函数图象上,故本选项错误;B、∵﹣2×(﹣3)=6,点在反比例函数图象上,故本选项错误;C、∵2×(﹣3)=﹣6≠6,点不在反比例函数图象上,故本选项正确;D、∵1×6=6,点在反比例函数图象上,故本选项错误;故选:C.3.(3分)一元二次方程x2﹣x﹣2=0的解是()A.x1=﹣1,x2=﹣2 B.x1=1,x2=﹣2 C.x1=1,x2=2 D.x1=﹣1,x2=2【解答】解:(x﹣2)(x+1)=0,x﹣2=0或x+1=0,所以x1=2,x2=﹣1.故选:D.4.(3分)下面四个几何体中,主视图与俯视图不同的共有()A.1个 B.2个 C.3个 D.4个【解答】解:圆柱的主视图是矩形,俯视图是圆,它的主视图与俯视图不同;圆锥的主视图是等腰三角形,俯视图式圆,它的主视图与俯视图不同;球体的三视图均为圆,故它的主视图和俯视图相同;正方体的三视图均为正方形,故它的主视图和俯视图也相同;所以主视图与俯视图不同的是圆柱和圆锥,故选B.5.(3分)抛物线y=2(x﹣1)2+1的顶点坐标是()A.(1,1) B.(1,﹣1)C.(﹣1,1)D.(﹣1,﹣1)【解答】解:∵抛物线y=2(x﹣1)2+1,∴抛物线的顶点坐标为(1,1).故选:A.6.(3分)口袋里有除颜色不同外其它都相同的红、蓝、白三种颜色的小球共30个,摸到红球的概率是,摸到蓝球的概率是,则袋子里有白球()个.A.15 B.10 C.5 D.6【解答】解:因为摸到红球的概率是,摸到蓝球的概率是,所以红球的个数为,蓝球的个数为,所以袋子里有白球有30﹣15﹣10=5.故选:C.7.(3分)华为手机营销按批量投入市场,第一次投放20000台,第三次投放80000台,每次按相同的增长率投放,设增长率为x,则可列方程()A.20000(1+x)2=80000B.20000(1+x)+20000(1+x)2=80000C.20000(1+x2)=80000D.20000+20000(1+x)+20000(1+x)2=80000【解答】解:设增长率为x,由题意得20000(1+x)2=80000.故选:A.8.(3分)如图,某汽车在路面上朝正东方向匀速行驶,在A处观测到楼H在北偏东60°方向上,行驶1小时后到达B处,此时观测到楼H在北偏东30°方向上,那么该车继续行驶()分钟可使汽车到达离楼H距离最近的位置.A.60 B.30 C.15 D.45【解答】解:作HC⊥AB交AB的延长线于C,由题意得,∠HAB=60°,∠ABH=120°,∴∠AHB=30°,∴BA=BH,∵∠ABH=120°,∴∠CBH=60°,又HC⊥AB,∴∠BHC=30°,∴BC=BH,∴BC=AB,则该车继续行驶30分钟可使汽车到达离楼H距离最近的位置,故选:B.9.(3分)如图,在△ABC中,D、E分别是线段AB、AC的中点,则△ABC与△ADE的面积之比为()A.1:2 B.1:4 C.4:1 D.2:1【解答】解:∵D、E分别为AB、AC的中点,∴BC=2DE,DE∥BC,∴△ADE∽△ABC,∴△ABC与△ADE的面积之比=()2=4:1.故选:C.10.(3分)身高1.8米的人在阳光下的影长是1.2米,同一时刻一根旗杆的影长是6米,则它的高度是()A.10米B.9米 C.8米 D.10.8米【解答】解:设旗杆的高度约为hm,∵同一时刻物高与影长成正比,∴=,解得:h=9(米).故选:B.11.(3分)如图,直线y=1与抛物线y=x2﹣2x相交于M、N两点,则M、N两点的横坐标是下列哪个方程的解?()A.x2﹣2x+1=0 B.x2﹣2x﹣1=0 C.x2﹣2x﹣2=0 D.x2﹣2x+2=0【解答】解:把y=1代入抛物线y=x2﹣2x得,x2﹣2x=1,即x2﹣2x﹣1=0.故选:B.12.(3分)如图,点A、B在反比例函数y=的图象上,过点A、B作x轴的垂线,垂足分别是M、N,射线AB交x轴于点C,若OM=MN=NC,四边形AMNB 的面积是3,则k的值为()A.2 B.4 C.﹣2 D.﹣4【解答】解:∵点A、B在反比例函数y的图象上,=|k|,∴S△AOM∵OM=MN=NC,∴AM=2BN,=S△AOC,S△ACM=4S△BCN,S△ACM=2S△AOM,∴S△AOM∵四边形AMNB的面积是3,=1,∴S△BCN∴S=2,△AOM∴|k|=4,∵反比例函数y=的图象在第二四象限,∴k=﹣4,故选:D.二、填空题(本大题共有4小题,每小题3分,共12分)13.(3分)二次函数y=ax2﹣2ax+3的对称轴是x=1.【解答】解:∵二次函数y=ax2﹣2ax+3∴此抛物线的对称轴为:x=﹣,故答案为:1.14.(3分)已知菱形的两条对角线长分别为10和24,则菱形的边长为13.【解答】解:如图,BD=10,AC=24,∵四边形ABCD是菱形,∴OA=AC=12,OB=BD=5,AC⊥BD,∴AB==13,故答案为:13.15.(3分)二次函数y1=ax2+bx+c的图象与一次函数y2=kx+b的图象如图所示,当y2>y1时,根据图象写出x的取值范围﹣2<x<1.【解答】解:当y2>y1时,即一次函数y2=kx+b的图象在二次函数y1=ax2+bx+c 的图象的上面,可得x的取值范围是:﹣2<x<1.故答案为:﹣2<x<1.16.(3分)如图,在Rt△ABC中,∠B=90°,∠ACB=45°,∠D=30°,B、C、D在同一直线上,连接AD,若AB=,则sin∠CAD=.【解答】解:∵在Rt△ABC中,∠B=90°,∠ACB=45°,∴△ABC是等腰直角三角形,∵AB=,∴BC=AB=,AC=AB=.∵在Rt△ABD中,∠B=90°,∠D=30°,AB=,∴AD=2AB=2,BD=AB=3,∴CD=BD﹣BC=3﹣.过C点作CE⊥AD于E.=AD•CE=CD•AB,∵S△ACD∴CE===,∴sin∠CAD===.故答案为.三、解答题(本大题共52分)17.(5分)2cos60°﹣sin245°+(﹣tan45°)2016.【解答】解:原式=2×﹣()2+(﹣1)2016=1﹣+1=.18.(6分)解方程:2(x+1)2=x+1.【解答】解:2(x+1)2=x+12(x+1)2﹣(x+1)=0,(x+1)[2(x+1)﹣1]=0,解得:x1=﹣1,x2=﹣.19.(7分)小鹏和小娟玩一种游戏:小鹏手里有三张扑克牌分别是3、4、5,小娟有两张扑克牌6、7,现二人各自把自己的牌洗匀,小鹏从小娟的牌中任意抽取一张,小娟从小鹏的牌中任意抽取一张,计算两张数字之和,如果和为奇数,则小鹏胜;如果和为偶数则小娟胜.(1)用列表或画树状图的方法,列出小鹏和小娟抽得的数字之和所有可能出现的情况;(2)请判断该游戏对双方是否公平?并说明理由.【解答】解:(1)画出树状图如下:(2)此游戏公平,由树形图可知:小娟赢的概率==小鹏赢的概率.20.(8分)如图,AD∥BC,AF平分∠BAD交BC于点F,BE平分∠ABC交AD于点E.求证:(1)△ABF是等腰三角形;(2)四边形ABFE是菱形.【解答】证明:(1)∵AD∥BC,∴∠AFB=∠EBF,∵BF平分∠ABC,∴∠ABF=∠EBF,∴∠AFB=∠ABF,∴AB=AF,即△ABF是等腰三角形;(2)由(1)得:AB=AF,同理:AB=BE,∴AF=BE,∵AF∥BE,∴四边形ABFE是平行四边形,又∵AB=AF,∴四边形ABFE是菱形.21.(8分)某商场一种商品的进价为每件30元,售价为每件40元,每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?(3)在(2)的条件下,每件商品的售价为多少元时,每天可获得最大利润?最大利润是多少元?【解答】解:(1)设每次降价的百分率为x.40×(1﹣x)2=32.4,解得x=10%或190%(190%不符合题意,舍去).答:该商品连续两次下调相同的百分率后售价降至每件32.4元,两次下降的百分率为10%;(2)设每天要想获得510元的利润,且更有利于减少库存,则每件商品应降价y元,由题意,得(40﹣30﹣y)(4×+48)=510,解得:y1=1.5,y2=2.5,∵有利于减少库存,∴y=2.5.答:要使商场每月销售这种商品的利润达到510元,且更有利于减少库存,则每件商品应降价2.5元;(3)设每件商品应降价y元,获得利润为W,由题意得,W=(40﹣30﹣y)(4×+48)=﹣8y2+32y+480=﹣8(y﹣2)2+512,故每件商品的售价为38元时,每天可获得最大利润,最大利润是512元.22.(9分)如图,一次函数y=k1x﹣1的图象经过A(0,﹣1)、B(1,0)两点,与反比例函数y=的图象在第一象限内的交点为M,若△OBM的面积为1.(1)求一次函数和反比例函数的表达式;(2)在x轴上是否存在点P,使AM⊥PM?若存在,求出点P的坐标;若不存在,说明理由;(3)x轴上是否存在点Q,使△QBM∽△OAM?若存在,求出点Q的坐标;若不存在,说明理由.【解答】解:(1)如图1,过点M作MN⊥x轴于点N,∵一次函数y=k1x﹣1的图象经过A(0,﹣1)、B(1,0)两点,∴0=k1﹣1,AO=BO=1,解得:k1=1,故一次函数解析式为:y=x﹣1,∵△OBM的面积为1,BO=1,∴M点纵坐标为:2,∵∠OAB=∠MNB,∠OBA=∠NBM,∴△AOB∽△MNB,∴==,则BN=2,故M(3,2),则xy=k2=6,故反比例函数解析式为:y=;(2)如图2,过点M作PM⊥AM,垂足为M,∵∠AOB=∠PMB,∠OBA=∠MBP,∴△AOB∽△PMB,∴=,由(1)得:AB==,BM==2,故=,解得:BP=4,故P(5,0);(3)如图3,∵△QBM∽△OAM,∴=,由(2)可得AM=3,故=,解得:QB=,则OQ=,故Q点坐标为:(,0).23.(9分)已知△ABC是边长为4的等边三角形,BC在x轴上,点D为BC的中点,点A在第一象限内,AB与y轴的正半轴交与点E,已知点B(﹣1,0).(1)点A的坐标:(1,2),点E的坐标:(0,);(2)若二次函数y=﹣x2+bx+c过点A、E,求此二次函数的解析式;(3)P是AC上的一个动点(P与点A、C不重合)连结PB、PD,设l是△PBD 的周长,当l取最小值时,求点P的坐标及l的最小值并判断此时点P是否在(2)中所求的抛物线上,请充分说明你的判断理由.【解答】解:(1)连接AD,如图1,∵△ABC是边长为4的等边三角形,又B的坐标为(﹣1,0),BC在x轴上,A 在第一象限,∴点C在x轴的正半轴上,∴C的坐标为(3,0),由中点坐标公式,得:D的坐标为(1,0).显然AD⊥BC且AD=BD=2,∴A的坐标是(1,2).OE=AD,得E(0,);(2)因为抛物线y=﹣x2+bx+c过点A、E,由待定系数法得:c=,b=,抛物线的解析式为y=﹣x2+x+;(3)作点D关于AC的对称点D',连接BD'交AC于点P,则PB与PD的和取最小值,即△PBD的周长L取最小值,如图2.∵D、D′关于直线AC对称,∴DD′⊥AC,即∠D′DC=30°,DF=,DD'=2,求得点D'的坐标为(4,),直线BD'的解析式为:y=x+,直线AC的解析式为:y=﹣x+3,求直线BD'与AC的交点可,得点P的坐标(,).此时BD'===2,所以△PBD的最小周长L为2+2,把点P的坐标代入y=﹣+x+成立,所以此时点P在抛物线上.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广东省深圳市笋岗中学2016届九年级上学期月考数学试卷(10月份)一、选择题1.下列方程中,是关于x的一元二次方程的是()A.(x+2)(x+1)=x2B.﹣2=0 C.x2=5 D.x2+2x=x2﹣1 2.同时掷两枚骰子,和是7的概率是()A.B.C.D.3.用配方法解方程x2﹣2x﹣6=0时,原方程应变形为()A.(x+1)2=7 B.(x﹣1)2=7 C.(x+2)2=10 D.(x﹣2)2=10 4.已知一口袋中放有红、白、黑三种颜色的球共50个,它们除颜色外其他都一样,一位同学通过多次试验后发现摸到红、白色的频率基本稳定是45%和15%,则袋中黑球的个数可能是()A.16 B.18 C.20 D.225.关于x的方程(x+m)2=n,下列说法正确的是()A.有两个解x=±B.当n≥0时,有两个解x=±﹣mC.当n≥0时,有两个解x=±D.当n≤0时,方程无实根6.矩形具有而菱形不一定具有的性质是()A.对角线互相平分B.对角相等C.对角线互相垂直D.4个内角都相等7.在矩形ABCD中,两条对角线AC,BD相交于点O,若AB=OB=4,则AD=()A.8B.4C.8 D.48.为解决群众看病贵的问题,有关部门决定降低药价,对某种原价为289元的药品进行连续两次降价后为256元,设平均每次降价的百分率为x,则下面所列方程正确的是()A.289(1﹣x)2=256 B.256(1﹣x)2=289 C.289(1﹣2x)=256D.256(1﹣2x)=2899.在正方形ABCD中,AB=10cm,对角线AC、BD相交于O,则△ABO的周长是()A.10+5B.10+C.20+5D.10+1010.如图,E,F,G,H分别是四边形ABCD四条边的中点,要使四边形EFGH为矩形,则四边形ABCD应具备的条件是()A.一组对边平行而另一组对边不平行B.对角线相等C.对角线互相垂直D.对角线互相平分11.方程2x2﹣kx﹣1=0的根的情况是()A.方程有两个相等的实数根B.方程有两个不相等的实数根C.方程没有实数根D.方程的根的情况与k的取值有关12.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是()A.1 B.2 C.3 D.4二、填空题13.方程x2=6的二次项系数是,一次项系数是,常数项是.14.关于x的方程(m﹣2)﹣x=5是一元二次方程,则m=.15.已知正方形的对角线长为3,则它的面积为.16.如图.△ABC中,AC的垂直平分线分别交AC、AB于点D、F,BE⊥DF交DF的延长线于点E,已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是.三、解答题17.解下列方程(1)x2﹣2x﹣99=0(配方法)(2)x2+5x=7(公式法)(3)4(2x+1)=3(2x+1)(分解因式法)(4)(x+3)(x﹣1)=5(适当的方法)18.一布袋中有红、黄、白三种颜色的球各一个,它们除颜色外,其它都一样,小亮从布袋摸出一个球后放回去摇匀,再摸出一个球,请你用列举法(列表法或树形图)分析并求出小亮两次都能摸到白球的概率.19.已知:菱形ABCD中,对角线AC=16cm,BD=12cm,BE⊥DC于点E,求菱形ABCD 的面积和BE的长.20.如图所示,矩形ABCD的对角线AC,BD相交于点O,E,F,G,H分别是OA,OB,OC,OD的中点,求证:四边形EFGH是矩形.21.某商场将进货价为30元的台灯以40元售出,平均每月能售出600个,调查表明:售价在40~60元范围内,这种台灯的售价每上涨1元,其销售量就将减少10个.为了实现平均每月10000元的销售利润,这种台灯的售价应定为多少?这时应进台灯多少个?22.已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC与点E、F,垂足为O.(1)如图1,连接AF、CE.求证四边形AFCE为菱形,并求AF的长;(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周,即点P自A→F→B→A停止,点Q自C→D→E→C停止,在运动过程中,已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.广东省深圳市笋岗中学2016届九年级上学期月考数学试卷(10月份)参考答案与试题解析一、选择题1.下列方程中,是关于x的一元二次方程的是()A.(x+2)(x+1)=x2B.﹣2=0 C.x2=5 D.x2+2x=x2﹣1【考点】一元二次方程的定义.【分析】根据一元二次方程的定义:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:A、是一元一次方程,故A错误;B、是分式方程,故B错误;C、是一元二次方程,故C正确;D、是一元一次方程,故D错误;故选:C.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.同时掷两枚骰子,和是7的概率是()A.B.C.D.【考点】列表法与树状图法.【专题】计算题.【分析】先画树状图展示所有36种等可能的结果数,再找出和是7的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有36种等可能的结果数,其中和是7的结果数为6,所以和是7的概率==.故选B.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率3.用配方法解方程x2﹣2x﹣6=0时,原方程应变形为()A.(x+1)2=7 B.(x﹣1)2=7 C.(x+2)2=10 D.(x﹣2)2=10【考点】解一元二次方程-配方法.【分析】在本题中,把常数项﹣6移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方.【解答】解:把方程x2﹣2x﹣6=0的常数项移到等号的右边,得到x2﹣2x=6,方程两边同时加上一次项系数一半的平方,得到x2﹣2x+1=6+1,配方得(x﹣1)2=7.故选B.【点评】本题考查了用配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.4.已知一口袋中放有红、白、黑三种颜色的球共50个,它们除颜色外其他都一样,一位同学通过多次试验后发现摸到红、白色的频率基本稳定是45%和15%,则袋中黑球的个数可能是()A.16 B.18 C.20 D.22【考点】利用频率估计概率.【分析】由于通过多次试验后发现其中摸到红色、白色的频率基本稳定在45%和15%,由此可以确定摸到袋中黑球的概率,然后就可以求出袋中黑球的个数.【解答】解:∵通过多次试验后发现其中摸到红色、白色的频率基本稳定在45%和15%,∴摸到袋中黑球的概率为1﹣45%﹣15%=40%,∴袋中黑球的个数为50×40%=20.故选C.【点评】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.5.关于x的方程(x+m)2=n,下列说法正确的是()A.有两个解x=±B.当n≥0时,有两个解x=±﹣mC.当n≥0时,有两个解x=±D.当n≤0时,方程无实根【考点】解一元二次方程-直接开平方法.【专题】计算题.【分析】由于(x+m)2=n,左边是一个完全平方式,所以n必须大于等于0才会有意义,然后用直接开平方法进行解答.【解答】解:在方程(x+m)2=n中,因为(x+m)2≥0,所以当n≥0时,方程才有意义.即有两个解x=±﹣m.故选B.【点评】(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)运用整体思想,会把被开方数看成整体.(3)用直接开方法求一元二次方程的解,要仔细观察方程的特点.6.矩形具有而菱形不一定具有的性质是()A.对角线互相平分B.对角相等C.对角线互相垂直D.4个内角都相等【考点】多边形.【分析】根据矩形的性质、菱形的性质,可得答案.【解答】解:矩形的对角线相等且互相平分,四个内角都相等,菱形的对角线相等且互相平分,菱形的对角相等,故选:D.【点评】本题考查了多边形,熟记特殊平行四边形的性质是解题关键.7.在矩形ABCD中,两条对角线AC,BD相交于点O,若AB=OB=4,则AD=()A.8B.4C.8 D.4【考点】矩形的性质.【分析】先证明△OAB是等边三角形,再求出BD,然后运用勾股定理即可求出AD.【解答】解:如图所示:∵四边形ABCD是矩形,∴OA=AC,OB=BD,AC=BD,∠BAD=90°,∴OA=OB,又∵AB=OB=4,∴OA=OB=AB=4,∴∠ABO=60°,BD=2OB=8,∴AD===4;故选:B.【点评】本题考查了矩形的性质、等边三角形的判定与性质以及勾股定理的运用;证明三角形是等边三角形是解决问题的关键.8.为解决群众看病贵的问题,有关部门决定降低药价,对某种原价为289元的药品进行连续两次降价后为256元,设平均每次降价的百分率为x,则下面所列方程正确的是()A.289(1﹣x)2=256 B.256(1﹣x)2=289 C.289(1﹣2x)=256D.256(1﹣2x)=289【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】设平均每次的降价率为x,则经过两次降价后的价格是289(1﹣x)2,根据关键语句“连续两次降价后为256元,”可得方程289(1﹣x)2=256.【解答】解:设平均每次降价的百分率为x,则第一降价售价为289(1﹣x),则第二次降价为289(1﹣x)2,由题意得:289(1﹣x)2=256.故选:A.【点评】此题主要考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.9.在正方形ABCD中,AB=10cm,对角线AC、BD相交于O,则△ABO的周长是()A.10+5B.10+C.20+5D.10+10【考点】正方形的性质.【分析】由正方形的性质和勾股定理求出AC,得出OA、OB,即可得出△ABO的周长.【解答】解:在正方形ABCD中,AB=BC=10cm,AC==10cm,∴AO=BO=AC=5cm,则△AOB的周长=OA+OB+AB=5+5+10=10+10(cm).故选:D.【点评】本题考查了正方形的性质、勾股定理、三角形周长的计算;熟练掌握正方形的性质,由勾股定理求出AC是解决问题的关键.10.如图,E,F,G,H分别是四边形ABCD四条边的中点,要使四边形EFGH为矩形,则四边形ABCD应具备的条件是()A.一组对边平行而另一组对边不平行B.对角线相等C.对角线互相垂直D.对角线互相平分【考点】矩形的判定;三角形中位线定理.【分析】根据三角形的中位线定理得到四边形EFGH一定是平行四边形,再推出一个角是直角,由矩形的判定定理可求解.【解答】解:要是四边形EHGF是矩形,应添加条件是对角线互相垂直,理由是:连接AC、BD,两线交于O,根据三角形的中位线定理得:EF∥AC,EF=AC,GH∥AC,GH=AC,∴EF∥GH,EF=GH,∴四边形EFGH一定是平行四边形,∴EF∥AC,EH∥BD,∵BD⊥AC,∴EH⊥EF,∴∠HEF=90°,故选C.【点评】能够根据三角形的中位线定理证明:顺次连接四边形各边中点所得四边形是平行四边形;顺次连接对角线互相垂直的四边形各边中点所得四边形是矩形;顺次连接对角线相等的四边形各边中点所得四边形是菱形.掌握这些结论,以便于运用.11.方程2x2﹣kx﹣1=0的根的情况是()A.方程有两个相等的实数根B.方程有两个不相等的实数根C.方程没有实数根D.方程的根的情况与k的取值有关【考点】根的判别式.【分析】首先可得根的判别式△=b2﹣4ac=k2+4>0,即可判定根的情况.【解答】解:∵a=2,b=﹣k,c=﹣1,∴△=b2﹣4ac=(﹣k)2﹣4×2×(﹣1)=k2+4>0,∴方程有两个不相等的实数根.故选B.【点评】此题考查了根的判别式.注意△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根;△<0⇔方程没有实数根.12.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是()A.1 B.2 C.3 D.4【考点】翻折变换(折叠问题);全等三角形的判定与性质;勾股定理.【专题】几何综合题;压轴题.【分析】根据翻折变换的性质和正方形的性质可证Rt△ABG≌Rt△AFG;在直角△ECG中,根据勾股定理可证BG=GC;通过证明∠AGB=∠AGF=∠GFC=∠GCF,由平行线的判定可得AG∥CF;由于S△FGC=S△GCE﹣S△FEC,求得面积比较即可.【解答】解:①正确.理由:∵AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴Rt△ABG≌Rt△AFG(HL);②正确.理由:EF=DE=CD=2,设BG=FG=x,则CG=6﹣x.在直角△ECG中,根据勾股定理,得(6﹣x)2+42=(x+2)2,解得x=3.∴BG=3=6﹣3=GC;③正确.理由:∵CG=BG,BG=GF,∴CG=GF,∴△FGC是等腰三角形,∠GFC=∠GCF.又∵Rt△ABG≌Rt△AFG;∴∠AGB=∠AGF,∠AGB+∠AGF=2∠AGB=180°﹣∠FGC=∠GFC+∠GCF=2∠GFC=2∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;④错误.理由:∵S△GCE=GC•CE=×3×4=6∵GF=3,EF=2,△GFC和△FCE等高,∴S△GFC:S△FCE=3:2,∴S△GFC=×6=≠3.故④不正确.∴正确的个数有3个.故选:C.【点评】本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算,有一定的难度.二、填空题13.方程x2=6的二次项系数是1,一次项系数是0,常数项是﹣6.【考点】一元二次方程的一般形式.【分析】首先利用移项把一元二次方程右边变为零,再确定二次项系数,一次项系数,常数项.【解答】解:x2=6,x2﹣6=0,二次项系数是1,一次项系数是0,常数项是﹣6.故答案为:1;0;﹣6.【点评】此题主要考查了一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.14.关于x的方程(m﹣2)﹣x=5是一元二次方程,则m=﹣2.【考点】一元二次方程的定义.【分析】根据一元二次方程定义可得m2﹣2=2.且m﹣2≠0,再解即可.【解答】解:由题意得:m2﹣2=2.且m﹣2≠0,解得:m=﹣2,故答案为:﹣2.【点评】此题主要考查了一元二次方程定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.15.已知正方形的对角线长为3,则它的面积为.【考点】正方形的性质.【分析】根据正方形的面积等于对角线乘积的一半列式计算即可得解.【解答】解:∵正方形的对角线长为3,∴正方形的面积=×3×3=.故答案为:.【点评】本题考查了正方形的性质,熟练掌握利用对角线求正方形的面积的方法是解题的关键.16.如图.△ABC中,AC的垂直平分线分别交AC、AB于点D、F,BE⊥DF交DF的延长线于点E,已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是2.【考点】矩形的判定与性质;全等三角形的判定与性质;线段垂直平分线的性质;含30度角的直角三角形.【专题】计算题.【分析】由AF=BF得到F为AB的中点,又DF垂直平分AC,得到D为AC的中点,可得出DF为三角形ABC的中位线,根据三角形中位线定理得到DF平行于CB,且DF等于BC 的一半,由BC的长求出DF的长,由两直线平行同旁内角互补得到∠C=90°,同时由DE 与EB垂直,ED与DC垂直,根据垂直的定义得到两个角都为直角,利用三个角为直角的四边形为矩形得到四边形BCDE为矩形,在直角三角形ADF中,利用锐角三角函数定义及特殊角的三角函数值,由∠A=30°,DF的长,求出AD的长,即为DC的长,由矩形的长BC于宽CD的乘积即可求出矩形BCED的面积.【解答】解:∵AF=BF,即F为AB的中点,又DE垂直平分AC,即D为AC的中点,∴DF为三角形ABC的中位线,∴DE∥BC,DF=BC,又∠ADF=90°,∴∠C=∠ADF=90°,又BE⊥DE,DE⊥AC,∴∠CDE=∠E=90°,∴四边形BCDE为矩形,∵BC=2,∴DF=BC=1,在Rt△ADF中,∠A=30°,DF=1,∴tan30°=,即AD=,∴CD=AD=,则矩形BCDE的面积S=CD•BC=2.故答案为:2【点评】此题考查了矩形的判定与性质,线段垂直平分线的性质,锐角三角函数定义,三角形的中位线定理,以及平行线的性质,是一道多知识的综合性题,熟练掌握性质及定理是解本题的关键.三、解答题17.解下列方程(1)x2﹣2x﹣99=0(配方法)(2)x2+5x=7(公式法)(3)4(2x+1)=3(2x+1)(分解因式法)(4)(x+3)(x﹣1)=5(适当的方法)【考点】解一元二次方程-因式分解法;解一元二次方程-配方法;解一元二次方程-公式法.【专题】计算题.【分析】(1)利用配方法得(x﹣1)2=100,然后利用直接开平方法解方程;(2)先把方程化为一般式,然后利用求根公式法解方程;(3)先移项得到4x(2x+1)﹣3(2x+1)=0,然后利用因式分解法解方程;(4)先把方程化为一般式,然后利用因式分解法解方程.【解答】解:(1)x2﹣2x+1=100,(x﹣1)2=100,x﹣1=±10,所以x1=11,x2=﹣9;(2)x2+5x﹣7=0,△=52﹣4×1×(﹣7)=53,x=所以x1=,x2=;(3)4x(2x+1)﹣3(2x+1)=0,(2x+1)(4x﹣3)=0,2x+1=0或4x﹣3=0,所以x1=﹣,x2=;(4)x2+2x﹣8=0,(x+4)(x﹣2)=0,x+4=0或x﹣2=0,所以x1=﹣4,x2=2.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了公式法和配方法解一元二次方程.18.一布袋中有红、黄、白三种颜色的球各一个,它们除颜色外,其它都一样,小亮从布袋摸出一个球后放回去摇匀,再摸出一个球,请你用列举法(列表法或树形图)分析并求出小亮两次都能摸到白球的概率.【考点】列表法与树状图法.【分析】解此题的关键是准确列表,找出所有的可能情况,即可求得概率.【解答】答:解法一:画树状图:P(白,白)=;解法二:列表得P(白,白)=.【点评】此题可以采用列表法或者采用树状图法,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.树状图法适用于两步或两步以上完成的事件.解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.19.已知:菱形ABCD中,对角线AC=16cm,BD=12cm,BE⊥DC于点E,求菱形ABCD 的面积和BE的长.【考点】菱形的性质.【专题】计算题.【分析】由菱形的性质知,菱形的面积等于它的两条对角线的乘积的一半.【解答】解:菱形ABCD的面积S=×16×12=96,∵AC⊥BD,∴AB=10,∴CD=AB=10,∴×CD×BE=48,∴BE=cm,所以菱形ABCD的面积为96cm2,BE的长为cm.【点评】本题考查了菱形的性质,属于基础题,关键是掌握菱形的面积等于它的两条对角线的乘积的一半.20.如图所示,矩形ABCD的对角线AC,BD相交于点O,E,F,G,H分别是OA,OB,OC,OD的中点,求证:四边形EFGH是矩形.【考点】矩形的判定与性质;三角形中位线定理.【专题】证明题.【分析】根据三角形中位线定理和矩形的性质和判定证明.【解答】证明:∵E是OA的中点,G是OC的中点,∴OE=AO,OG=CO.∵四边形ABCD是矩形,∴AO=CO,∴OE=OG.同理可证OF=OH.∴四边形EFGH是平行四边形.∵OE=AO,OG=OC,∴EG=OE+OG=AC,同理FH=BD.又∵AC=BD,∴EG=FH,∴四边形EFGH是矩形.【点评】解答此题关键是找到四个三角形的中位线,熟练运用矩形的判定方法.21.某商场将进货价为30元的台灯以40元售出,平均每月能售出600个,调查表明:售价在40~60元范围内,这种台灯的售价每上涨1元,其销售量就将减少10个.为了实现平均每月10000元的销售利润,这种台灯的售价应定为多少?这时应进台灯多少个?【考点】一元二次方程的应用.【分析】设售价定为x,那么就少卖出10(x﹣40)个,根据利润=售价﹣进价,可列方程求解.【解答】解:设售价定为x元,[600﹣10(x﹣40)](x﹣30)=10000,整理,得x2﹣130x+4000=0,解得:x1=50,x2=80(舍去).600﹣10(x﹣40)=600﹣10×(50﹣40)=500(个).答:台灯的定价定为50元,这时应进台灯500个.【点评】本题考查一元二次方程的应用,关键是看到定价和销售量的关系,根据利润列方程求解.22.已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC与点E、F,垂足为O.(1)如图1,连接AF、CE.求证四边形AFCE为菱形,并求AF的长;(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周,即点P自A→F→B→A停止,点Q自C→D→E→C停止,在运动过程中,已知点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.【考点】四边形综合题.【分析】(1)根据全等推出OE=OF,得出平行四边形AFCE,根据菱形判定推出即可,根据菱形性质得出AF=CF,根据勾股定理得出方程,求出方程的解即可;(2)分情况讨论可知,当P点在BF上、Q点在ED上时,才能构成平行四边形,根据平行四边形的性质列出方程求解即可.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠EAO=∠FCO,∵AC的垂直平分线EF,∴OA=OC,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴OE=OF,∵OA=OC,∴四边形AFCE是平行四边形,∵EF⊥AC,∴四边形AFCE是菱形.∴AF=FC,设AF=xcm,则CF=xcm,BF=(8﹣x)cm,∵四边形ABCD是矩形,∴∠B=90°,∴在Rt△ABF中,由勾股定理得:42+(8﹣x)2=x2,解得x=5,即AF=5cm;(2)显然当P点在AF上时,Q点在CD上,此时A、C、P、Q四点不可能构成平行四边形;同理P点在AB上时,Q点在DE或CE上或P在BF,Q在CD时不构成平行四边形,也不能构成平行四边形.因此只有当P点在BF上、Q点在ED上时,才能构成平行四边形,∴以A、C、P、Q四点为顶点的四边形是平行四边形时,PC=QA,∵点P的速度为每秒5cm,点Q的速度为每秒4cm,运动时间为t秒,∴PC=5t,QA=12﹣4t,∴5t=12﹣4t,解得t=.∴以A、C、P、Q四点为顶点的四边形是平行四边形时,t=秒.【点评】本题考查的是四边形综合题型,主要考查了矩形的性质,全等三角形的判定与性质,翻折变换的性质,菱形的判定与性质,平行四边形的性质.。

相关文档
最新文档