2019-2020学年高三上学期10月月考数学试题

合集下载

四川省成都市2024-2025学年高三上学期10月月考 数学含答案

四川省成都市2024-2025学年高三上学期10月月考 数学含答案

成都2024~2025学年度上期高2025届十月考试数学试卷(答案在最后)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确的选项填涂在答题卡相应位置.1.已知集合{}1,2,4A =,2{|20}B x N x x =∈+-≤,则A B = A.{}2,1,0,1,2,4-- B.{}0,1,2,4 C.{}1,2,4D.{}12.2024年巴黎奥运会中国代表队获得金牌榜第一,奖牌榜第二的优异成绩.首金是中国组合黄雨婷和盛李豪在10米气步枪混合团体赛中获得,两人在决赛中14次射击环数如右图,则A.盛李豪的平均射击环数超过10.6B.黄雨婷射击环数的第80百分位数为10.65C.盛李豪射击环数的标准差小于黄雨婷射击环数的标准差D.黄雨婷射击环数的极差小于盛李豪射击环数的极差3.已知0.10.6a =,0.6log 0.3b =,0.6log 0.4c =,则a ,b ,c 的大小关系为A.b c a>> B.a b c>> C.c b a>> D.a c b>>4.已知实数a ,b ,c 满足a b c >>,且0a b c ++=,则下列说法正确的是A.22ab cb > B.222a c c a+≥ C.||||a b > D.0ab bc +>5.“函数2()ln(22)f x x ax =-+的值域为R”的一个充分不必要条件是A.[2,2]- B.(0,2⎤⎦C.(,2[2,)⎤-∞+∞⎦U D.[2,)+∞6.核燃料是重要的能量来源之一,在使用核燃料时,为了冷却熔化的核燃料,可以不断向反应堆注入水,但会产生大量放射性核元素污染的冷却水,称为核废水.核废水中含有一种放射性同位素氚,它有可能用辐射损伤细胞和组织,影响生物的繁殖和生态平衡.已知氚的半衰期约为12年,则氚含量变成初始量的110000大约需要经过()年.(lg 20.3010≈)A.155 B.159C.162D.1667.若函数()y f x =的图象如图1所示,则如图2对应的函数可能是A.(12)y f x =-B.1(1)2y f x =-C.(12)y f x =-- D.1(1)2y f x =--8.已知函数11,0,()2221,0.x x x f x x ⎧+>⎪=⎨⎪-≤⎩,则方程()(3)2f x f x +-=的所有根之和为A.0B.3C.6D.9二、选择题:本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求。

湖北省金太阳百校联考高三上学期数学10月月考试卷及答案

湖北省金太阳百校联考高三上学期数学10月月考试卷及答案

高三上学期数学10月月考试卷一、单选题1.已知集合,,则()A. B. C. D.2.如图所示的复古时钟显示的时刻为10:10,将时针与分针视为两条线段,则该时刻的时针与分针所夹的钝角为()A. B. C. D.3.若函数的定义域为,且,,,,则的解析式可能为()A. B. C. D.4.将函数()的图象向右平移个单位长度后,得到函数的图象,若为偶函数,则()A. 5B.C. 4D.5.已知命题:,,,则为()A.,, B. ,,C.,, D. ,,6.函数在上的部分图象大致为()A. B. C. D.7.已知,,,则()A. B. C. D.8.已知点为角终边上一点,,且,则()A. 2B. 2±C. 1D. ±1二、多选题9.关于充分必要条件,下列判断正确的有()A. “ ”是“ ”的充分不必要条件B. “ ”是“ ,,成等比数列”的充分不必要条件C. “ 的图象经过点”是“ 是幂函数”的必要不充分条件D. “直线与平行”是“直线与的倾斜角相等”的充要条件10.血压(bloodpressure,BP)是指血液在血管内流动时作用于单位面积血管壁的侧压力,它是推动血液在血管内流动的动力,血压的最大值、最小值分别称为收缩压和舒张压.未使用抗高血压药的前提下,18岁以上成人收缩压或舒张压,则说明这位成人有高血压,设从未使用抗高血压药的李华今年40岁,从某天早晨6点开始计算(即早晨6点时,),他的血压()与经过的时间()满足关系式,则()A. 函数的最小正周期为6B. 当天早晨7点时李华的血压为C. 当天李华有高血压D. 当天李华的收缩压与舒张压之差为11.已知函数的定义域为,,,当时,,则()A. B. 的图象关于直线对称C.当时, D. 函数有4个零点12.若存在,则称为二元函数在点处对的偏导数,记为;若存在,则称为一元函数在点处对的偏导数,记为,已知二元函数(,),则()A. B.C. 的最小值为D. 的最小值为三、填空题13.函数的图象在点处的切线方程为 .14.设集合,或,若,则的取值范围是 .15.设函数关于的方程有四个实根,,,,则的最小值为 .16.已知函数,则的最小值为,图象的一条对称轴方程可以是 .四、解答题17.已知.(1).求的值;(2).求值.18.如图,在三棱锥中,平面,,与的长度之和为6米,,现要给三棱锥的侧面刷油漆,每平方米需要0.5升油漆,油漆价格为60元/升.(1).设米,三棱锥的侧面共需要油漆升,试写出关于的函数表达式;(2).刷油漆需要请油漆工来完成,工费按照每平方米10元计算,若油漆工工费及油漆费用的总预算为400元,试问最后油漆工工费及油漆费用是否有可能会超预算?说明你的理由.19.已知函数的部分图象如图所示.(1).求的解析式;(2).把的图象上所有点的横坐标伸长到原来的倍(纵坐标不变),得到函数的图象,证明:在上有最大值的充要条件是.20.已知函数.(1).讨论在上的单调性;(2).若曲线的一条切线的斜率为,证明:这条切线与曲线只有一个公共点.21.已知函数(且)经过定点,函数(且)的图象经过点.(1).求函数的定义域与值域;(2).若函数在上有两个零点,求的取值范围.22.已知函数.(1).若,求的取值范围;(2).若,证明:.答案解析部分一、单选题1.【答案】D【解析】【解答】,,.故答案为:D.【分析】首先由一元二次不等式的解法求解出不等式的解集,由此得出集合M,再由并集的定义结合不等式的性质即可得出答案。

江苏省无锡市市北高级中学2019届高三上学期10月月考数学(理科)试卷

江苏省无锡市市北高级中学2019届高三上学期10月月考数学(理科)试卷

无锡市市北高级中学2018—2019学年第一学期高三年级数学学科阶段性测试检测卷(理科)命题人:孙 红 审题人:徐敏蓉 校对人:孙 红时 间:120分钟 分 值: 160 分 日 期:2018.10一、填空题:本大题共14小题,每小题5分,共70分。

1. 已知集合}22{},1{2++==≤=x x y y B x x A ,则B A =___________2. 由命题“02,2≤++∈∃m x x R x ”是假命题,求得实数m 的取值范围是),(+∞a ,则实数a 的值是_____3. 函数)32lg()(x x x f -=的定义域为____________4. 函数])2,1[(log 2)(2∈+=x x x f x 的值域为____________5. “6πα=”是“1sin 2α=”的 条件.(填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”)6. 已知函数⎪⎩⎪⎨⎧>-≤=-0),1(0,)21()(1x x f x x f x ,则)3log 1(2+f =____________7. 已知函数⎩⎨⎧>+≤+=0,0,)(22x bx ax x x x x f 为奇函数,则b a +=___________ 8. 已知函数],[,2)(2b a x x x x f ∈-=的值域为]3,1[-,则a b -的取值范围是__________9. 已知定义在R 上的偶函数)(x f 在),0[+∞上是增函数,且1)2(=f ,若1)(≤+a x f 对]1,1[-∈x 恒成立,则实数 a 的取值范围是____________10. 已知直线y = k x 与曲线y = 2e x 相切,则实数k =11. 已知f (x ) 是定义在R 上的奇函数,当0 ≤ x ≤ 1时,f (x ) = x 2,当x > 1时,f (x +1) = f (x ) + f (1).若直线y = k x 与函数y = f (x ) 的图象恰有5个不同的公共点,则实数k 的值为12. 若函数f (x ) = x 3- ax 2 ( a > 0 )在区间(320,+∞)上是单调函数,则使方程f (x ) = 1000有整数解的实数a 的个数是13. 设f (x ) 是定义在R 上的可导函数,且满足f (x ) + xf’ (x ) > 0,则不等式f(1+x )>1-x f (12-x )的解集为14. .设a > 0,函数f (x ) =xa x 2+,g (x ) = x -ln x ,若对任意的x 1,x 2∈[1,e ],都有f (x 1) ≥ g (x 2)成立,则实数a 的取值范围为_______二、解答题:本大题共6题,15、16、17每题14分,18、19、20每题16分,共90分。

湖北省武汉市武汉外国语学校2024-2025学年高三上学期10月考试 数学(含答案)

湖北省武汉市武汉外国语学校2024-2025学年高三上学期10月考试 数学(含答案)

武汉外国语学校2024—2025学年度上学期10月月考高三数学试卷命题教师: 审题教师:考试时间:2024年10月9日 考试时长:120分钟 试卷满分:150分一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则( )A .B .C .D .2.复数的共轭复数是( )A .B .C .D .3,且,则与的夹角为( )A .B .C .D .4. 已知,则下列不等关系中不恒成立的是( )A .B .C .D .5. 将体积为1的正四面体放置于一个正方体中,则此正方体棱长的最小值为( )A .3B .C .D .6. 武汉外校国庆节放7天假(10月1日至10月7日),马老师、张老师、姚老师被安排到校值班,每人至少值班两天,每天安排一人值班,同一人不连续值两天班,则不同的值班方法共有( )种A .114B. 120C .126D .1327.已知,设函数,若关于的不等式在上恒成立,则的取值范围为( )A .B .C .D .8. 已知函数,,函数,若为偶函数,则的值为( )A .B .C .D .二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列关于概率统计的知识,其中说法正确的是( )A .数据,0,2,4,5,6,8,9的第25百分位数是1B .已知随机变量,若,,则C .若一组样本数据(,2,…,n )的对应样本点都在直线上,则这组样本数据的相关系数为D .若事件M ,N 的概率满足,且,则M 与N 相互独立10. 连接抛物线上任意四点组成的四边形可能是( )A .平行四边形B .梯形C .有三条边相等的四边形D .有一组对角相等的四边形11. 设函数,则( )A .当时,直线是曲线的切线B .若有三个不同的零点,则C .存在a ,b ,使得为曲线的对称轴D .当时,在处的切线与函数的图象有且仅有两个交点 三、填空题:本题共3小题,每小题5分,共15分.12. 已知是等差数列的前n 项和,若,,则 .13. 已知函数,写出函数的单调递减区间.14. 掷一个质地均匀的骰子,向上的点数不小于3得2分,向上的点数小于3得1分,反复掷这个骰子,(1)恰好得3分的概率为 ;(2)恰好得n 分的概率为.(用与n 有关的式子作答){}2|230A x x x =+-≥{}|22B x x =-≤<A B = []2,1--[)1,2-[]1,1-[)1,2ii 212+-3i5-3i 5i -ib a -=c a c ⊥a b 6π3π23π56π(0,),(0,)22ππαβ∈∈()sin sin sin αβαβ+<+()sin cos cos αβαβ+<+()cos sin sin αβαβ+<+()cos cos cos αβαβ+<+33333a R ∈222,1()ln ,1x ax a x f x x a x x ⎧-+≤=⎨->⎩x ()0f x …R a[]0,1[]0,e []0,2[]1,e ()()f x f x x R =-∈,()15.5=f ()()()1g x x f x =-⋅()1+x g ()0.5-g 32.521.51-(),X B n p :()40E X =()30D X =160n =(),i i x y 1i =132y x =-+12-()()0,1P M ∈()()0,1P N ∈()()1P N M P N +=32()231f x x ax =-+0a =1y =()y f x =()f x 123,,x x x 12312x x x ⋅⋅=-x b =()y f x =02ax ≠()f x 0x x =()y f x =n S {}n a 320S =990S =6S =()()π2,0,cos 2sin ∈+=x xxx f ()x f四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. (本题满分13分)已知的面积为,且满足,设和的夹角为,(1)求的取值范围;(2)求函数16.(本题满分15分)如图,已知四棱锥,,侧面为正三角形,底面是边长为4的菱形,侧面与底面所成的二面角为120°.(1)求四棱锥的体积;(2)求二面角的正弦值.17.(本题满分15分)已知函数(1)当时,求曲线在点处的切线方程;(2)若不等式恒成立,求的取值范围.18.(本题满分17分)已知椭圆的左、右焦点分别为,离心率为,且经过点A (1)求椭圆E 的方程;(2)求的角平分线所在直线的方程;(3)在椭圆E 上是否存在关于直线对称的相异两点?若存在,请找出;若不存在,说明理由.19.(本题满分17分)设使定义在区间上的函数,其导函数为.如果存在实数和函数,其中对任意的都有>0,使得,则称函数具有性质.(1)设函数,其中为实数① 求证:函数具有性质;② 讨论函数的单调性;(2)已知函数具有性质,给定,,且,若,求的取值范围.ABC ∆3360≤⋅≤AC AB AB ACθθ()2cos sin 3f πθθθθ⎛⎫=⋅+ ⎪⎝⎭ABCD P -AD PB ⊥PAD ABCD PAD ABCD ABCD P -A PB C --()2()e ln0x af x a a x-=+>a e =()y f x =()()1,1f ()2f x ≥a 2222:1(0)x y E a b a b +=>>12,F F 2352,3⎛⎫ ⎪⎝⎭21AF F ∠l l )(x f ),1(+∞)('x f a )(x h )(x h ),1(+∞∈x )(x h )1)(()('2+-=ax x x h x f )(x f )(a P )(x f 2ln (1)1b x x x +=+>+b )(x f )(b P )(x f )(x g )2(P 为正实数,设m x x x x ,),,1(,2121<+∞∈21)1(x m mx -+=α21)1(mx x m +-=β1,1>>βα12()()()()g g g x g x αβ-<-m2024-2025学年度高三10月月考数学试题参考答案一、选择题题号1234567891011答案DDBCCABDABDBCDABD二、填空题12.13. 14. (1);(2)三、解答题15、解:(1)由题,可得,又,所以,得到或因为,所以6分(2),化简得进一步计算得,因为,故故可得13分16、解:(1)过点作垂直于平面,垂足为,连接交于,连接,则有,又,所以,因为,所以,又,所以为得中点依题侧面与底面所成的二面角为120°,即有,所以,因为侧面为正三角形,502433ππ⎛⎫⎪⎝⎭,132713425153n -⎛⎫-⋅- ⎪⎝⎭3sin 21==∆θbc S ABC θsin 6=bc 36cos 0≤=⋅≤θbc AC AB 36sin cos 60≤≤θθ33tan≥θ2πθ=()πθ,0∈,62ππθ⎡⎤∈⎢⎥⎣⎦()2cos sin 3f πθθθθ⎛⎫=⋅+ ⎪⎝⎭()21sin 24f θθθ=()1sin 223f πθθ⎛⎫=- ⎪⎝⎭,62ππθ⎡⎤∈⎢⎥⎣⎦22033ππθ⎡⎤-∈⎢⎥⎣⎦,()102f θ⎡⎤∈⎢⎥⎣⎦,P PO ABCD O BO AD E PE AD PB AD PO ⊥⊥,P PB PO =⋂POB AD 平面⊥POB PE 平面⊂PE AD ⊥PD PA =E AD PAD ABCD 32π=∠PEB 3π=∠PEO PAD所以,则,所以7分(2)如图,在平面内过点作得垂线,依题可得两两垂直,以为建立空间直角坐标系可得,,,取得中点为,则因为,所以,由(1),,知所以,可得所成角即为二面角的平面角,求得,,则则15分17、解:(1)当时,,,所求切线方程为:,即5分(2)转化为,可得构造函数,易得在单调递增所以有,由在单调递增,故可得,即有在恒成立令,,得到,可得时,;时,,所以在时取最大值所以,得到15分323sin4=⋅=πPE 323323sin=⋅=⋅=πPE PO 38323443131=⋅⋅⋅⋅==-PO S V ABCD ABCD P ABCD O OB Ox Ox OB OP ,,Ox OB OP ,,轴轴,轴,x y z ()0,3,2A ()0,0,0P ()0,33,0B PB N ⎪⎪⎭⎫⎝⎛23,233,0N AB AP =PB AN ⊥POB AD 平面⊥AD BC //POB BC 平面⊥PB BC ⊥NA BC ,A PB C --⎪⎪⎭⎫⎝⎛-=23,23,2AN ()0,0,2=BC 72724-=-BC NA sin A PB C --=a e =1()e lnx e f x x -=+0(1)e ln 2f e =+=11()e ,(1)0x f x f x-''=-=)1(02-=-x y 2y =()2≥x f ln 2e ln ln 2a x a x +-+-≥ln 2e ln +2ln 0a x a x x x x +-+-≥+>,()e x g x x =+()g x R ()(ln 2)ln g a x g x +-≥()g x R ln 2ln a x x +-≥ln ln 2a x x ≥-+()∞+,0()2ln +-=x x x h ()011=-='xx h 1=x ()10,∈x ()0>'x h ()∞+∈,1x ()0<'x h ()x h 1=x ()ln 11a h ≥=ea ≥18、解:(1)∵椭圆E 经过点A ,∴,解得E :;4分(2)由(1)可知,,思路一:由题意,,设角平分线上任意一点为,则得或∵斜率为正,∴的角平分线所在直线为思路二:椭圆在点A 处的切线方程为,根据椭圆的光学性质,的角平分线所在直线的斜率为,∴,的角平分线所在直线即10分(3)思路一:假设存在关于直线对称的相异两点,设,∴∴线段中点为在的角平分线上,即得∴与点A 重合,舍去,故不存在满足题设条件的相异的两点.思路二:假设存在关于直线对称的相异两点,线段中点,52,3⎛⎫⎪⎝⎭23e =222222549123a b a b c c e a ⎧⎪+=⎪⎪⎨=+⎪⎪==⎪⎩32a b c =⎧⎪=⎨⎪=⎩22195x y +=1(2,0)F -2(2,0)F 1:512100AF l x y -+=2:2AF l x =(),P x y 51210213x y x -+=-9680x y --=2390x y +-=21AF F ∠9680x y --=52,3⎛⎫⎪⎝⎭2319x y +=23k =-切21AF F ∠l 32l k =21AF F ∠34:23l y x =-9680x y --=l ()()1122,,,B x y C x y 2:3BC l y x m =-+2222195912945023x y x mx m y x m ⎧+=⎪⎪⇒-+-=⎨⎪=-+⎪⎩BC 25,39m mM ⎛⎫⎪⎝⎭21AF F ∠106803m m --=3m =52,3M ⎛⎫⎪⎝⎭l ()()1122,,,B x y C x y BC ()00,M x y由点差法,,∴,∴,与点A 重合,舍去,故不存在满足题设条件的相异的两点.17分19、解:(1)① ,∵,恒成立,∴函数具有性质;3分② 设,(i) 当即时,,,故此时在区间上递增;(ii) 当时当即时,,,故此时在区间上递增;当即时,,∴时,,,此时在上递减;时,,,此时在上递增.综上所述,当时,在上递增;当时,在上递减,在上递增.9分()()()222121()111b f x x bx x x x x +=-=-+'++1x >()()2101h x x x =>+()f x ()P b ()0f x '>()f x ()1,+∞()0f x '>()f x ()1,+∞x ⎛∈ ⎝()0f x '<()fx ⎛ ⎝()fx ∞⎫+⎪⎪⎭2b ≤()f x ()1,+∞2b >()fx ⎛ ⎝∞⎫+⎪⎪⎭2211222212122222195095195x y x x y y x y ⎧+=⎪⎪⇒+=⎨⎪+=⎪--⎩0121212120552993BC x y y x x k x x y y y -+==-=-=--+0065OM y k x ==:968052,63:5AM OM l x y M l y x --=⎧⎪⎛⎫⇒⎨⎪=⎝⎭⎪⎩()()211u x x bx x =-+>0b -≥0b ≤()0u x >0b >240b ∆=-≤02b <≤()0u x >240b ∆=->2b>1211x x ==<=>,()0u x<x ∞⎫∈+⎪⎪⎭()0u x >()0f x '<(2)由题意, ,又对任意的都有,所以对任意的都有,在上递增.10分∵,,∴①先考虑的情况即,得,此时,∴∴满足题意13分②当时,,,∴∴,∴,不满足题意,舍去16分综上所述,17分()()22()()21()1g x h x x x h x x =-+=-'()h x ()1,x ∈+∞()0h x >()1,x ∈+∞()0g x '>()g x ()1,+∞12(1)mx m x α=+-12(1)m x mx β=-+()()1212,21x x m x x αβαβ+=+-=--12x x αβ-<-()()121221m x x x x --<-01m <<1122(1)x mx m x x α<=+-<1122(1)x m x mx x β<=-+<1212()()(),()()()g x g g x g x g g x αβ<<<<12()()()()g g g x g x αβ-<-1m ≥11112(1)(1)mx m x mx m x x α--≤==++12222(1)(1)m x mx m x mx x β=--+≥=+12x x αβ≤<≤12()()()()g g x g x g αβ≤<≤12()()()()g g g x g x αβ-≥-01m <<。

数学丨黑龙江省哈尔滨市第三中学2025届高三10月月考数学试卷及答案

数学丨黑龙江省哈尔滨市第三中学2025届高三10月月考数学试卷及答案

哈三中2024—2025学年度上学期高三学年十月月考数学试卷考试说明:本试卷分第I卷(选择题)和第II卷(非选择题)两部分,满分150分.考试时间为120分钟.1.答题前,考生先将自己的姓名、准考证号码填写清楚.2.选择题必须使用2B铅笔填涂,非选择题必须使用0.5毫米黑色字迹签字笔书写,字体工整,字迹清楚.3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效.4.保持卡面清洁,不得折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀.第I卷(选择题,共58分)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则()A. B.C. D.2.已知是关于的方程的一个根,则()A.20B.22C.30D.323.已知,,,则的最小值为()A.2B.C.D.44.数列中,若,,,则数列的前项和()A. B. C. D.5.在中,为中点,,,若,则()A. B. C. D.6.在三棱柱中,点在棱上,且,点为中点,点在棱上,若平面,则()A.2B.3C.4D.57.已知偶函数定义域为,且,当时,,则函数在区间上所有零点的和为()A.B. C.D.8.已知平面向量,,,满足,且,,则的最小值为()A.B.0C.1D.2二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.对于函数,下列说法正确的是()A.函数最大值为B.是函数图象的一个对称中心C.是函数图象的一个对称轴D.将函数的图象向右平移个单位,即可得到函数的图象10.在正方形中,,为中点,将沿直线翻折至位置,使得二面角为直二面角,若为线段的中点,则下列结论中正确的是()A.若点在线段上,则的最小值为B.三棱锥的体积为C.异面直线、所成的角为D.三棱锥外接球的表面积为11.已知函数,则下列结论中正确的是()A.函数有两个零点B.恒成立C.若方程有两个不等实根,则的范围是D.直线与函数图象有两个交点第II卷(非选择题,共92分)三、填空题:本大题共3小题,每小题5分,共15分.将答案填在答题卡相应的位置上.12.等差数列中,是其前项和.若,,则______.13.在中,,的平分线与交于点,且,,则的面积为______.14.已知三棱锥中,平面,,,,,、分别为该三棱锥内切球和外接球上的动点,则线段的长度的最小值为______.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤.15.在三棱柱中,,,,,为中点.(1)求证:平面;(2)求直线与平面所成角的正弦值.16.已知函数.(1)讨论函数的单调性;(2)设函数,若在恒成立,求实数的取值范围.17.已知在锐角中,,,分别为内角,,的对边,.(1)求;(2)若,为中点,,求;(3)若,求内切圆半径的取值范围.18.某汽车销售公司为了提升公司的业绩,将最近一段时间内每日的汽车销售情况进行了统计,如图所示.(1)求的值,并求该公司这段时间内每日汽车销售量的第60百分位数;(2)以频率估计概率,若在这段时间内随机选择4天,设每日汽车销售量在内的天数为,在恰有1天的汽车销售量不超过150辆的条件下,求的分布列及数学期望;(3)为增加销售量,公司规定顾客每购买一辆汽车可以进行一次抽奖活动,规则如下:在三棱锥中,、均是边长为2的正三角形,,现从写有数字1~8的八个标签中随机选择两个分别贴在、两个顶点,记顶点、上的数字分别为和,若为侧棱上一个动点,满足,当“二面角大于”即为中奖,求中奖的概率.19.如图,在四棱锥中,底面为正方形,,是中点,平面,.(1)求四棱锥体积最大值;(2)设,为线段上的动点.①求平面与平面的夹角余弦值的取值范围;②四棱锥外接球记为球,当为线段中点时,求平面截球所得的截面面积.数学试卷考试说明:本试卷分第I卷(选择题)和第II卷(非选择题)两部分,满分150分.考试时间为120分钟.1.答题前,考生先将自己的姓名、准考证号码填写清楚.2.选择题必须使用2B铅笔填涂,非选择题必须使用0.5毫米黑色字迹签字笔书写,字体工整,字迹清楚.3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效.4.保持卡面清洁,不得折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀.第I卷(选择题,共58分)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则()A. B.C. D.【答案】B【解析】【分析】分别求出集合,,再根据交集的定义求.【详解】对集合:因为,所以,即;对集合:因为恒成立,所以.所以.故选:B2.已知是关于的方程的一个根,则()A.20B.22C.30D.32【答案】D【解析】【分析】根据虚根成对原理可知方程的另一个虚根为,再由韦达定理计算可得.【详解】因为是关于的方程的一个根,所以方程的另一个虚根为,所以,解得,所以.故选:D.3.已知,,,则的最小值为()A.2B.C.D.4【答案】D【解析】【分析】由已知可得,利用,结合基本不等式可求最小值.【详解】因为,所以,所以,所以,所以,当且仅当,即时等号成立,所以的最小值为.故选:D.4.数列中,若,,,则数列的前项和()A. B. C. D.【答案】C【解析】【分析】结合递推关系利用分组求和法求.【详解】因为,,所以,,,,,又,,,所以.故选:C.5.在中,为中点,,,若,则()A. B. C. D.【答案】C【解析】【分析】选择为平面向量的一组基底,表示出,再根据表示的唯一性,可求的值.【详解】选择为平面向量的一组基底.因为为中点,所以;又.由.故选:C6.在三棱柱中,点在棱上,且,点为中点,点在棱上,若平面,则()A.2B.3C.4D.5【答案】B【解析】【分析】根据已知条件及线面平行的判定定理,利用面面平行的判定定理和性质定理,结合平行四边形的性质即可得结论.【详解】依题意,作出图形如图所示设为的中点,因为为的中点,所以,又平面,平面,所以平面,连接,又因为平面,,平面,所以平面平面,又平面平面,平面,所以,又,所以四边形是平行四边形,所以,所以,又,所以,所以,所以.故选:B.7.已知偶函数定义域为,且,当时,,则函数在区间上所有零点的和为()A. B. C. D.【答案】A【解析】【分析】函数在区间上的零点的集合等于函数和函数在区间内的交点横坐标的集合,分析函数的图象特征,作出两函数的图象,观察图象可得结论.【详解】因为函数,的零点的集合与方程在区间上的解集相等,又方程可化为,所以函数,的零点的集合与函数和函数在区间内的交点横坐标的集合相等,因为函数为定义域为的偶函数,所以,函数的图象关于轴对称,因为,取可得,,所以函数为偶函数,所以函数的图象关于对称,又当时,,作出函数,的区间上的图象如下:观察图象可得函数,的图象在区间上有个交点,将这个交点的横坐标按从小到大依次记为,则,,,,所以函数在区间上所有零点的和为.故选:A.8.已知平面向量,,,满足,且,,则的最小值为()A. B.0 C.1 D.2【答案】B【解析】【分析】可设,,,由得到满足的关系,再求的最小值.【详解】可设,,,则.可设:,则.故选:B【点睛】方法点睛:由题意可知:,都是单位向量,且夹角确定,所以可先固定,,这样就只有发生变化,求最值就简单了一些.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.对于函数,下列说法正确的是()A.函数的最大值为B.是函数图象的一个对称中心C.是函数图象的一个对称轴D.将函数的图象向右平移个单位,即可得到函数的图象【答案】ACD【解析】【分析】先利用两角和与差的三角函数公式和二倍角公式,把函数化成的形式,再对函数的性质进行分析,判断各选项是否正确.【详解】因为.所以,故A正确;函数对称中心的纵坐标必为,故B错误;由,得函数的对称轴方程为:,.令,得是函数的一条对称轴.故C正确;将函数的图象向右平移个单位,得,即将函数的图象向右平移个单位,可得到函数的图象.故D正确.故选:ACD10.在正方形中,,为中点,将沿直线翻折至位置,使得二面角为直二面角,若为线段的中点,则下列结论中正确的是()A.若点在线段上,则的最小值为B.三棱锥的体积为C.异面直线、所成角为D.三棱锥外接球的表面积为【答案】AC【解析】【分析】对于A,的最小值为可判断A;对于B,过作于,求得,可求三棱锥的体积判断B;对于C;取的中点,则,取的中点,连接,求得,由余弦定理可求异面直线、所成的角判断C;对于D,取的中点,过点在平面内作的垂线交于,求得外接球的半径,进而可求表面积判断D.【详解】对于A,将沿直线翻折至,可得的最小值为,故A正确;对于B,过作于,因为二面角为直二面角,所以平面平面,又平面平面,所以平面,由题意可得,由勾股定理可得,由,即,解得,因为为线段的中点,所以到平面的距离为,又,所以,故B错误;对于C,取的中点,则,且,,所以,因为,所以是异面直线、所成的角,取的中点,连接,可得,所以,在中,可得,由余弦定理可得,所以,在中,由余弦定理可得,所以,所以异面直线、所成的角为,故C正确;对于D,取的中点,过点在平面内作的垂线交于,易得是的垂直平分线,所以是的外心,又平面平面,又平面平面,所以平面,又因为直角三角形的外心,所以是三棱锥的外球的球心,又,所以,所以三棱锥外接球的表面积为,故D错误.故选:AC.11.已知函数,则下列结论中正确的是()A.函数有两个零点B.恒成立C.若方程有两个不等实根,则的范围是D.直线与函数图象有两个交点【答案】BCD【解析】【分析】分和两种情况探讨的符号,判断A的真假;转化为研究函数的最小值问题,判断B的真假;把方程有两个不等实根,为有两个根的问题,构造函数,分析函数的图象和性质,可得的取值范围,判断C的真假;直线与函数图象有两个交点转化为有两解,分析函数的零点个数,可判断D的真假.【详解】对A:当时,;当时,;时,,所以函数只有1个零点.A错误;对B:欲证,须证在上恒成立.设,则,由;由.所以在上单调递减,在上单调递增.所以的最小值为,因为,所以.故B正确;对C:.设,则,.由;由.所以在上单调递增,在单调递减.所以的最大值为:,又当时,.如图所示:所以有两个解时,.故C正确;对D:问题转化为方程:有两解,即有两解.设,,所以.由;由.所以在上单调递增,在上单调递减.所以的最大值为.因为,,所以所以.且当且时,;时,.所以函数的图象如下:所以有两解成立,所以D 正确.故选:BCD【点睛】方法点睛:导数问题中,求参数的取值范围问题,通常有如下方法:(1)分离参数,转化为不含参数的函数的值域问题求解.(2)转化为含参数的函数的极值问题求解.第II 卷(非选择题,共92分)三、填空题:本大题共3小题,每小题5分,共15分.将答案填在答题卡相应的位置上.12.等差数列中,是其前项和.若,,则______.【答案】【解析】【分析】设数列的公差为,将条件关系转化为的方程,解方程求,由此可求结论.【详解】设等差数列的公差为,因为,,所以,,所以,,所以,故答案为:.13.在中,,的平分线与交于点,且,,则的面积为______.【答案】【解析】【分析】根据三角形面积公式,余弦定理列方程求,再由三角形面积公式求结论.【详解】因为,为的平分线,所以,又,所以,由余弦定理可得,又,所以所以,所以的面积.故答案为:.14.已知三棱锥中,平面,,,,,、分别为该三棱锥的内切球和外接球上的动点,则线段的长度的最小值为______.【答案】【解析】【分析】根据已知可得的中点外接球的球心,求得外接球的半径与内切球的半径,进而求得两球心之间的距离,可求得线段的长度的最小值.【详解】因为平面,所以是直角三角形,所以,,在中,由余弦定理得,所以,所以,所以是直角三角形,所以,因为平面,平面,所以,又,平面,结合已知可得平面,所以是直角三角形,从而可得的中点外接球的球心,故外接球的半径为,设内切球的球心为,半径为,由,根据已知可得,所以,所以,解得,内切球在平面的投影为内切球的截面大圆,且此圆与的两边相切(记与的切点为),球心在平面的投影为在的角平分线上,所以,由上易知,所以,过作于,,从而,所以,所以两球心之间的距离,因为、分别为该三棱锥的内切球和外接球上的动点,所以线段的长度的最小值为.故答案为:.【点睛】关键点点睛:首先确定内外切球球心位置,进而求两球半径和球心距离,再利用空间想象判断两球心与位置关系求最小值.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤.15.在三棱柱中,,,,,为中点.(1)求证:平面;(2)求直线与平面所成角的正弦值.【答案】(1)证明见解析(2)【解析】【分析】(1)由题意可得,利用勾股定理的逆定理可得,可证结论;(2)以为坐标原点,所在直线为,过作的平行线为轴建立如图所示的空间直角坐标系,利用向量法可求得直线与平面所成角的正弦值.【小问1详解】连接,因为,为中点,所以,因为,所以,所以,又,所以,所以,又,平面,所以平面;【小问2详解】以为坐标原点,所在直线为,过作平行线为轴建立如图所示的空间直角坐标系,因为,所以,则,则,设平面的一个法向量为,则,令,则,所以平面的一个法向量为,又,所以,设直线与平面所成的角为,则,所以直线与平面所成角的正弦值为.16.已知函数.(1)讨论函数的单调性;(2)设函数,若在恒成立,求实数的取值范围.【答案】(1)答案见解析(2)的取值范围为.【解析】【分析】(1)求函数的定义域及导函数,分别在,,,条件下研究导数的取值情况,判断函数的单调性;(2)由条件可得,设,利用导数求其最小值,由此可得结论.【小问1详解】函数的定义域为,导函数,当时,,函数在上单调递增,当且时,即时,,函数在上单调递增,当时,,当且仅当时,函数在上单调递增,当时,方程有两个不等实数根,设其根为,,则,,由,知,,,所以当时,,函数在上单调递增,当时,,函数在上单调递减,当时,,函数在上单调递增,所以当时,函数在上单调递增,当时,函数在上单调递增,函数在上单调递减,函数在上单调递增,【小问2详解】因为,,所以,不等式可化为,因为在恒成立,所以设,则,当时,,函数在上单调递增,当时,,函数在上单调递减,所以当时,函数取最小值,最小值为,故,所以的取值范围为.17.已知在锐角中,,,分别为内角,,的对边,.(1)求;(2)若,为中点,,求;(3)若,求内切圆半径的取值范围.【答案】(1)(2)(3)【解析】【分析】(1)利用正弦定理进行边化角,再结合三角形内角和定理及两角和与差的三角函数公式,可求,进而得到角.(2)利用向量表示,借助向量的数量积求边.(3)利用与正弦定理表示出,借助三角函数求的取值范围.【小问1详解】因为,根据正弦定理,得,所以,因为,所以,所以.【小问2详解】因为为中点,所以,所以,所以,解得或(舍去),故.【小问3详解】由正弦定理:,所以,,因为,所以,所以,,设内切圆半径为,则.因为为锐角三角形,所以,,所以,所以,即,即内切圆半径的取值范围是:.18.某汽车销售公司为了提升公司的业绩,将最近一段时间内每日的汽车销售情况进行了统计,如图所示.(1)求的值,并求该公司这段时间内每日汽车销售量的第60百分位数;(2)以频率估计概率,若在这段时间内随机选择4天,设每日汽车销售量在内的天数为,在恰有1天的汽车销售量不超过150辆的条件下,求的分布列及数学期望;(3)为增加销售量,公司规定顾客每购买一辆汽车可以进行一次抽奖活动,规则如下:在三棱锥中,、均是边长为2的正三角形,,现从写有数字1~8的八个标签中随机选择两个分别贴在、两个顶点,记顶点、上的数字分别为和,若为侧棱上一个动点,满足,当“二面角大于”即为中奖,求中奖的概率.【答案】(1),175(2)分布列见解析,(3)【解析】【分析】(1)根据频率之和为1可求的值,再根据百分位数的概念求第60百分位数.(2)根据条件概率计算,求的分布列和期望.(3)根据二面角大于,求出可对应的情况,再求中奖的概率.【小问1详解】由.因为:,,所以每日汽车销售量的第60百分位数在,且为.【小问2详解】因为抽取的1天汽车销售量不超过150辆的概率为,抽取的1天汽车销售量在内的概率为.所以:在恰有1天的汽车销售量不超过150辆的条件下,抽取的1天汽车销售量在内的概率为.由题意,的值可以为:0,1,2,3.且,,,.所以的分布列为:0123所以.【小问3详解】如图:取中点,链接,,,,.因为,都是边长为2的等边三角形,所以,,,平面,所以平面.平面,所以.所以为二面角DE平面角.在中,,所以.若,在中,由正弦定理:.此时:,.所以,要想中奖,须有.由是从写有数字1~8的八个标签中随机选择的两个,所以基本事件有个,满足的基本事件有:,,,,,,,,共9个,所以中奖的概率为:.【点睛】关键点点睛:在第(2)问中,首先要根据条件概率的概念求出事件“在恰有1天的汽车销售量不超过150辆的条件下,抽取的1天汽车销售量在内的概率”.19.如图,在四棱锥中,底面为正方形,,是中点,平面,.(1)求四棱锥体积的最大值;(2)设,为线段上的动点.①求平面与平面的夹角余弦值的取值范围;②四棱锥的外接球记为球,当为线段中点时,求平面截球所得的截面面积.【答案】(1)(2)①;②【解析】【分析】(1)设,用表示四棱锥体积,分析函数的单调性,可求四棱锥体积的最大值.(2)①建立空间直角坐标系,设点坐标,用空间向量求二面角的余弦,结合二次函数的值域,可得二面角余弦的取值范围.②先确定球心,求出球心到截面的距离,利用勾股定理可求截面圆的半径,进而得截面圆的面积.【小问1详解】设则,所以四棱锥体积,.所以:.由;由.所以在上单调递增,在上单调递减.所以四棱锥体积的最大值为.【小问2详解】①以为原点,建立如图空间直角坐标系.则,,,所以,,.设平面的法向量为,则.令,则.取平面的法向量.因为平面与平面所成的二面角为锐角,设为.所以.因为,,所以.②易得,则,此时平面的法向量,所以点到平面的距离为:,设四棱锥的外接球半径为,则,所以平面截球所得的截面圆半径.所以平面截球所得的截面面积为:.【点睛】关键点点睛:平面截球的截面面积问题,要搞清球心的位置,球的半径,球心到截面的距离,再利用勾股定理,求出截面圆的半径.。

2020-2021学年江苏省扬州中学高三(上)月考数学试卷(10月份)

2020-2021学年江苏省扬州中学高三(上)月考数学试卷(10月份)

2020-2021学年江苏省扬州中学高三(上)月考数学试卷(10月份)试题数:22,总分:1501.(单选题,5分)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=()A.{1,4}B.{2,3}C.{9,16}D.{1,2}2.(单选题,5分)点P从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达Q点,则Q 点的坐标为()A. (−12,√32)B. (−√32,−12)C. (−12,−√32)D. (−√32,12)3.(单选题,5分)若幂函数f(x)的图象过点(√22,12),则函数g(x)=f(x)e x的递增区间为()A.(0,2)B.(-∞,0)∪(2,+∞)C.(-2,0)D.(-∞,-2)∪(0,+∞)4.(单选题,5分)已知函数f(x)的部分图象如图所示,则f(x)的解析式可能为()A. f(x)=sin|x|2+cosxB. f(x)=sinx•ln|x|2+cosxC. f(x)=cosx•ln|x|2+cosxD. f(x)=cosxx5.(单选题,5分)2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就.实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L2点的轨道运行.L2点是平衡点,位于地月连线的延长线上.设地球质量为M1,月球质量为M2,地月距离为R,L2点到月球的距离为r,根据牛顿运动定律和万有引力定律,r满足方程:M1(R+r)2 + M2r2=(R+r)M1R3.设α=rR .由于α的值很小,因此在近似计算中3α3+3α4+α5(1+α)2≈3α3,则r的近似值为()A. √M2M1RB. √M22M1RC. √3M2M13 RD. √M23M13 R6.(单选题,5分)已知函数f(x)={x,0≤x≤1,ln(2x),1<x≤2,若存在实数x1,x2满足0≤x1<x2≤2,且f(x1)=f(x2),则x2-x1的最大值为()A. e2B. e2−1C.1-ln2D.2-ln47.(单选题,5分)若2x-2y<3-x-3-y,则()A.ln(y-x+1)>0B.ln(y-x+1)<0C.ln|x-y|>0D.ln|x-y|<08.(单选题,5分)设平行于x轴的直线l分别与函数y=2x和y=2x+1的图象相交于点A,B,若函数y=2x的图象上存在点C,使得△ABC为等边三角形,则这样的直线l()A.不存在B.有且只有一条C.至少有两条D.有无数条9.(多选题,5分)5G时代已经到来,5G的发展将直接带动包括运营、制造、服务在内的通信行业整体的快速发展,进而对GDP增长产生直接贡献,并通过产业间的关联效应,间接带动国民经济各行业的发展,创造出更多的经济增加值.如图,某单位结合近年数据,对今后几年的5G经济产出做出预测.由如图提供的信息可知()A.运营商的经济产出逐年增加B.设备制造商的经济产出前期增长较快,后期放缓C.设备制造商在各年的总经济产出中一直处于领先地位D.信息服务商与运营商的经济产出的差距有逐步拉大的趋势10.(多选题,5分)下列说法正确的是()A.“a>1”是“a2>1”的充分不必要条件<a<2”是“(a-1)-2<(2a-3)-2”的充要条件B.“ 43C.命题“∀x∈R,x2+1<0”的否定是“∃x∈R,使得 x2+1≥0”D.已知函数 y=f (x)的定义域为 R,则“f (0)=0”是“函数 y=f (x)为奇函数”的必要不充分条件11.(多选题,5分)已知函数y=f(x)是奇函数,且对定义域内的任意x都有f(1+x)=-f (1-x),当x∈(2,3)时,f(x)=log2(x-1),以下4个结论正确的有()A.函数 y=f (x)的图象关于点(1,0)成中心对称B.函数 y=f (x)是以2为周期的周期函数C.当x∈(-1,0)时,f (x)=-log2 (1-x)D.函数 y=f (|x|)在(-1,0)上单调递增12.(多选题,5分)关于函数f(x)=alnx+ 2x,下列判断正确的是()A.当a=1时,f (x)≥ln2+1B.当a=-1时,不等式 f (2x-1)-f (x)>0 的解集为(12,1)C.当a>e时,函数 f (x)有两个零点D.当f (x)的最小值为2时,a=213.(填空题,5分)已知f(x)为偶函数,当x<0时,f(x)=ln(-x)+3x,则曲线y=f (x)在点(1,-3)处的切线斜率是___ .14.(填空题,5分)函数y=cosx+cos2x的最小值是___ .15.(填空题,5分)设a=log49,b=2-1.2,c= (827)−13,则将a,b,c按从大到小排序:___ .16.(填空题,5分)若函数f(x)=x(x-1)(x-a),(a>1)的两个不同极值点x1,x2满足f(x1)+f(x2)≤0恒成立,则实数a的取值范围为___ .17.(问答题,10分)在① A⊆B;② ∁R B⊆∁R A;③ A∩B=A;这三个条件中任选一个,补充在下面问题中.若问题中的实数a存在,求a的取值范围;若不存在,说明理由.问题:已知集合A={x|log2(x-1)>1,x∈R},B={x|(x-a)(x-4+a)>0,x∈R},是否存在实数a,使得______?18.(问答题,12分)已知f(α)= sin(5π−α)cos(π+α)cos(3π2+α)cos(α+π2)tan(3π−α)sin(α−3π2).(1)化简f(α);(2)若α是第三象限角,且cos(3π2−α)=35,求f(α)的值.19.(问答题,12分)随着城市规模的扩大和人们生活水平的日益提高,某市近年机动车保有量逐年递增.根据机动车管理部门的统计数据,以5年为一个研究周期,得到机动车每5年纯增数据情况为:i i 对应的机动车纯增数量y (单位:万辆)具有线性相关关系.(1)求机动车纯增数量(单位:万辆)关于时间变量x 的回归方程,并预测2025~2030年间该市机动车纯增数量的值;附:回归直线方程 y ̂=b ̂x +a ̂ 中斜和截距的最小二乘估计公式分别为: b̂=∑x i y i −nxyn i=1∑x i 2n i=1−nx2=i −x )i −y n i=1)∑(x −x )2n â=y −b̂x . (2)该市交通管理部门为广解市民对“单双号限行”的赞同情况,随机采访了220名市民,将他们的见和是否拥有私家车情况进行了统计,得到如下的2×2列联表:附:K 2=n (ad−bc )2(a+b )(c+d )(a+c )(b+d ),n=a+b+c+d .20.(问答题,12分)如图,三棱柱ABC-A 1B 1C 1中,平面AA 1C 1C⊥平面AA 1B 1B ,∠BAA 1=45°,CA=CB ,点O 在棱AA 1上,CO⊥AA 1. (1)求证:AA 1⊥BC ;(2)若BB 1= √2 AB=2,直线BC 与平面ABB 1A 1所成角为45°,D 为CC 1的中点,求二面角B 1-A 1D-C 1的余弦值.21.(问答题,12分)已知函数f(x)=x|2a-x|+2x,a∈R.(1)若函数f(x)在R上是增函数,求实数a的取值范围;(2)若存在实数a∈[-2,2],使得关于x的方程f(x)-tf(2a)=0有3个不相等的实数根,求实数t的取值范围.22.(问答题,12分)若函数f(x)=e x-ae-x-mx(m∈R)为奇函数,且x=x0时f(x)有极小值f(x0).(1)求实数a的值;(2)求实数m的取值范围;恒成立,求实数m的取值范围.(3)若f(x0)≥- 2e2020-2021学年江苏省扬州中学高三(上)月考数学试卷(10月份)参考答案与试题解析试题数:22,总分:1501.(单选题,5分)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=()A.{1,4}B.{2,3}C.{9,16}D.{1,2}【正确答案】:A【解析】:由集合A中的元素分别平方求出x的值,确定出集合B,找出两集合的公共元素,即可求出交集.【解答】:解:根据题意得:x=1,4,9,16,即B={1,4,9,16},∵A={1,2,3,4},∴A∩B={1,4}.故选:A.【点评】:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(单选题,5分)点P从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达Q点,则Q点的坐标为()A. (−12,√32)B. (−√32,−12)C. (−12,−√32)D. (−√32,12)【正确答案】:A【解析】:由题意推出∠QOx角的大小,然后求出Q点的坐标.【解答】:解:点P从(0,1)出发,沿单位圆逆时针方向运动2π3弧长到达Q点,所以∠QOx= 2π3,所以Q(cos 2π3,sin 2π3),所以Q (−12,√32).故选:A.【点评】:本题通过角的终边的旋转,求出角的大小是解题的关键,考查计算能力,注意旋转方向.3.(单选题,5分)若幂函数f(x)的图象过点(√22,12),则函数g(x)=f(x)e x的递增区间为()A.(0,2)B.(-∞,0)∪(2,+∞)C.(-2,0)D.(-∞,-2)∪(0,+∞)【正确答案】:A【解析】:先求幂函数f(x),再利用导数判定函数g(x)的单调递增区间.【解答】:解:设幂函数f(x)=xα,它的图象过点(√22,12),∴(√22)α= 12,∴α=2;∴f(x)=x2;∴g(x)= x2e x ,g′(x)= x(2−x)e x,令g′(x)>0,即2-x>0,解得:0<x<2,故g(x)在(0,2)递增,故选:A.【点评】:本题考查了幂函数的定义以及利用导数判定函数的单调区间问题,是中档题.4.(单选题,5分)已知函数f(x)的部分图象如图所示,则f(x)的解析式可能为()A. f (x )=sin|x|2+cosx B. f (x )=sinx•ln|x|2+cosxC. f (x )=cosx•ln|x|2+cosx D. f (x )=cosx x【正确答案】:B【解析】:根据题意,依次分析选项中函数是否符合函数的图象,综合即可得答案.【解答】:解:根据题意,依次分析选项: 对于A , f (x )=sin|x|2+cosx,其定义域为R ,不符合题意;排除A ;对于C ,f (x )= cosx•ln|x|2+cosx,其定义域为{x|x≠0},有f (-x )=cos (−x )ln|−x|2+cos (−x ) = cosx•ln|x|2+cosx=f (x ), 即函数f (x )为偶函数,其图象关于y 轴对称,不符合题意;排除C , 对于D ,f (x )= cosxx,其定义域为{x|x≠0}, 有f (-x )=cos (−x )x =- cosx x=-f (x ), 即函数f (x )为奇函数,其图象关于原点对称, 当x→+∞时,f (x )→0,不符合题意;排除D ; 故选:B .【点评】:本题考查根据函数的图象选择解析式,注意结合函数的奇偶性、定义域等性质运用排除法进行分析,属于基础题.5.(单选题,5分)2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就.实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通讯联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L 2点的轨道运行.L 2点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,L 2点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r满足方程: M 1(R+r )2+ M 2r 2 =(R+r ) M1R 3 . 设α= rR .由于α的值很小,因此在近似计算中 3α3+3α4+α5(1+α)2≈3α3,则r 的近似值为( )A. √M2M1RB. √M22M 1RC. √3M2M 13RD. √M23M 13R【正确答案】:D【解析】:由α= rR.推导出 M 2M 1= 3α3+3α4+α5(1+α)2≈3α3,由此能求出r=αR= √M 23M 13R .【解答】:解:∵α= rR .∴r=αR ,r 满足方程: M 1(R+r )2 + M 2r 2 =(R+r ) M1R3 . ∴11+2•r R +r 2R2•M 1 + R 2r2•M 2 =(1+ r R)M 1,把 α=r R代入,得: 1(1−α)2•M 1+1α2•M 2 =(1+α)M 1, ∴ M 2α2 =[(1+α)- 1(1−α)2 ]M 1=(1+α)3−1(1+α)2•M 1 =α(α2+3α+3)(1+α)2M 1, ∴ M2M 1=3α3+3α4+α5(1+α)2≈3α3, ∴r=αR= √M23M 13R .故选:D .【点评】:本题考查点到月球的距离的求法,考查函数在我国航天事业中的灵活运用,考查化归与转化思想、函数与方程思想,考查运算求解能力,是中档题. 6.(单选题,5分)已知函数 f (x )={x ,0≤x ≤1,ln (2x ),1<x ≤2,若存在实数x 1,x 2满足0≤x 1<x 2≤2,且f (x 1)=f (x 2),则x 2-x 1的最大值为( ) A. e 2B. e 2−1C.1-ln2D.2-ln4【正确答案】:B【解析】:画出函数图象得到x2-x1=x2-ln(2x2),令g(x)=x-ln(2x),x∈(1,e2],根据函数的单调性求出其最大值即可.【解答】:解:画出函数f(x)的图象,如图示:结合f(x)的图象可知,因为x1=ln(2x2),所以x2∈(1,e2],则x2-x1=x2-ln(2x2),令g(x)=x-ln(2x),x∈(1,e2],则g′(x)=x−1x,所以g(x)在(1,e2]上单调递增,故g(x)max=g(e2)=e2−1,故选:B.【点评】:本题考查了函数的单调性,最值问题,考查导数的应用以及数形结合思想,转化思想,是一道常规题.7.(单选题,5分)若2x-2y<3-x-3-y,则()A.ln(y-x+1)>0B.ln(y-x+1)<0C.ln|x-y|>0D.ln|x-y|<0【正确答案】:A【解析】:方法一:由2x-2y<3-x-3-y,可得2x-3-x<2y-3-y,令f(x)=2x-3-x,则f(x)在R上单调递增,且f(x)<f(y),结合函数的单调性可得x,y的大小关系,结合选项即可判断.方法二:根据条件取x=-1,y=0,即可排除错误选项.【解答】:解:方法一:由2x-2y<3-x-3-y,可得2x-3-x<2y-3-y,令f(x)=2x-3-x,则f(x)在R上单调递增,且f(x)<f(y),所以x<y,即y-x>0,由于y-x+1>1,故ln(y-x+1)>ln1=0.方法二:取x=-1,y=0,满足2x-2y<3-x-3-y,此时ln(y-x+1)=ln2>0,ln|x-y|=ln1=0,可排除BCD.故选:A.【点评】:本题主要考查了函数的单调性在比较变量大小中的应用,属于基础试题.8.(单选题,5分)设平行于x轴的直线l分别与函数y=2x和y=2x+1的图象相交于点A,B,若函数y=2x的图象上存在点C,使得△ABC为等边三角形,则这样的直线l()A.不存在B.有且只有一条C.至少有两条D.有无数条【正确答案】:B【解析】:设AB方程为y=m,根据△ABC是等边三角形计算m的值,得出结论.【解答】:解:根据题意,设直线l的方程为y=m,则A(log2m,m),B(log2m-1,m),AB=1,设C(x,2x),∵△ABC是等边三角形,∴点C到直线AB的距离为√32,∴m-2x= √32,∴x=log2(m- √32),又x= 12(log2m+log2m-1)=log2m- 12,∴log 2(m- √32 )=log 2m- 12 =log 2 m √2∴m - √32 = m√2 ,解得m=2√3+√62, 故而符合条件的直线l 只有1条. 故选:B .【点评】:本题考查了指数函数图象与性质的应用问题,也考查了指数,对数的运算问题,属于中档题.9.(多选题,5分)5G 时代已经到来,5G 的发展将直接带动包括运营、制造、服务在内的通信行业整体的快速发展,进而对GDP 增长产生直接贡献,并通过产业间的关联效应,间接带动国民经济各行业的发展,创造出更多的经济增加值.如图,某单位结合近年数据,对今后几年的5G 经济产出做出预测.由如图提供的信息可知( ) A.运营商的经济产出逐年增加B.设备制造商的经济产出前期增长较快,后期放缓C.设备制造商在各年的总经济产出中一直处于领先地位D.信息服务商与运营商的经济产出的差距有逐步拉大的趋势 【正确答案】:ABD【解析】:根据统计图中的信息,逐个分析选项,即可判断出正误.【解答】:解:对于选项A:由图可知,运营商的经济产出逐年增加,所以选项A正确,对于选项B:由图可知,设备制造商的经济产出在2020~2023年间增长较快,后几年增长逐渐趋于平缓,所以选项B正确,对于选项C:由图可知,设备制造商在各年的总经济产出中在前期处于领先地位,而2029年、2030年信息服务商在总经济产出中处于领先地位,所以选项C错误,对于选项D:由图可知,在2020~2025年间信息服务商与运营商的经济产出的差距不大,后几年中信息服务商的经济产出增长速度明显高于运营商的经济产出增长速度,两种差距有逐步拉大的趋势,所以选项D正确,故选:ABD.【点评】:本题主要考查了简单的合情推理,考查了统计图的应用,考查了学生逻辑思维能力,是基础题.10.(多选题,5分)下列说法正确的是()A.“a>1”是“a2>1”的充分不必要条件<a<2”是“(a-1)-2<(2a-3)-2”的充要条件B.“ 43C.命题“∀x∈R,x2+1<0”的否定是“∃x∈R,使得 x2+1≥0”D.已知函数 y=f (x)的定义域为 R,则“f (0)=0”是“函数 y=f (x)为奇函数”的必要不充分条件【正确答案】:ACD【解析】:直接利用充分条件和必要条件判定A和B的结论,直接利用命题的否定的应用判定C的结论,直接利用奇函数的性质判定D的结论.【解答】:解:对于A:当“a>1”时,“a2>1”成立,但是当“a2>1”时,“a>1或a<-1”,故选项A正确.对于B:“(a-1)-2<(2a-3)-2”的充要条件是:a-1>2a-3,整理得a<2,故选项B错误.对于C:命题“∀x∈R,x2+1<0”的否定是“∃x∈R,使得 x2+1≥0”.故选项C正确.对于D:函数y=f (x)的定义域为R,当“f(0)=0”时,函数f(x)不一定为奇函数,但是,当函数f(x)为奇函数,则f(0)=0,故选项D正确.故选:ACD.【点评】:本题考查的知识要点:充分条件和必要条件,奇函数的性质,命题的否定,主要考查学生的运算能力和转换能力及思维能力,属于基础题.11.(多选题,5分)已知函数y=f(x)是奇函数,且对定义域内的任意x都有f(1+x)=-f (1-x),当x∈(2,3)时,f(x)=log2(x-1),以下4个结论正确的有()A.函数 y=f (x)的图象关于点(1,0)成中心对称B.函数 y=f (x)是以2为周期的周期函数C.当x∈(-1,0)时,f (x)=-log2 (1-x)D.函数 y=f (|x|)在(-1,0)上单调递增【正确答案】:ABC【解析】:直接利用函数的周期确定B的结论,直接利用函数的对称性判定A的结论,直接利用函数的解析式的求法判定C的结论,直接利用函数的图象和偶函数的性质判定D的结论.【解答】:解:对于B:函数y=f(x)是奇函数,且对定义域内的任意x都有f(1+x)=-f(1-x),整理得f(x+2)=f(x),所以函数为周期为2的函数,故B正确.对于C:由于0<x<1,所以2<x+2<3,由于x∈(2,3)时,f(x)=log2(x-1),所以f(x)=f(x+2)=log2(x+1),设-1<x<0,则0<-x<1,由于f(x)=-f(-x)=-log2(-x+1),故C正确.对于A:根据函数的性质,函数的图象关于(1,0)对称,故A正确.对于选项D:函数 y=f (|x|)的图象是将函数y=f(x)的图象关于y轴对称,在(-1,0)上单调递减,故D错误.故选:ABC.【点评】:本题考查的知识要点:函数的性质,单调性,周期性,函数的解析式的求法,主要考查学生的运算能力和转换能力及思维能力,属于中档题.12.(多选题,5分)关于函数f(x)=alnx+ 2,下列判断正确的是()xA.当a=1时,f (x)≥ln2+1B.当a=-1时,不等式 f (2x-1)-f (x)>0 的解集为(1,1)2C.当a>e时,函数 f (x)有两个零点D.当f (x ) 的最小值为2时,a=2 【正确答案】:ABD【解析】:对于A ,代入a 的值,求出函数的导数,求出函数的单调区间,得到函数的最小值即可,对于B ,代入a 的值,求出函数的导数,得到函数的单调性,问题转化为关于x 的不等式组,解出即可,对于C ,求出函数的单调性,求出函数的最小值,根据a 的范围判断最小值的范围即可判断, 对于D ,由最小值是2,得到关于a 的方程,解出即可.【解答】:解:对于A :a=1时,f (x )=lnx+ 2x ,f′(x )= x−2x 2 , 令f′(x )>0,解得:x >2,令f′(x )<0,解得:0<x <2, 故f (x )在(0,2)递减,在(2,+∞)递增, 故f (x )≥f (2)=ln2+1, 故A 正确;对于B :a=-1时,f (x )=-lnx+ 2x,f′(x )= −x−2x 2 <0, f (x )在(0,+∞)递减,不等式f (2x-1)-f (x )>0,即f (2x-1)>f (x ),故 {2x −1>0x >02x −1<x ,解得: 12<x <1,故B 正确;对于C :f′(x )= a x- 2x2 =ax−2x 2, ∵a >e ,令ax-2>0,解得:x > 2a,令ax-2<0,解得:0<x < 2a, 故f (x )在(0, 2a )递减,在( 2a ,+∞)递增, 故f (x )min =f ( 2a )=aln 2a+ 22a=a (ln2-lna )+a=aln 2e a,∵0< 2e a <2,故1< 2e a <2时,ln 2ea >0,f (x )min >0,函数无零点, 故C 错误;对于D :结合C ,f (x )min =aln 2e a=2,解得:a=e , 故D 正确; 故选:ABD .【点评】:本题考查了函数的单调性,最值问题,考查导数的应用以及转化思想,是一道常规题.13.(填空题,5分)已知f(x)为偶函数,当x<0时,f(x)=ln(-x)+3x,则曲线y=f (x)在点(1,-3)处的切线斜率是___ .【正确答案】:[1]-2【解析】:由偶函数的定义可求得x>0时,f(x)的解析式,求得导数,由导数的几何意义,代入x=1,计算可得所求值.【解答】:解:f(x)为偶函数,当x<0时,f(x)=ln(-x)+3x,可得x>0时,-x<0,f(x)=f(-x)=lnx-3x,导数为f′(x)= 1x-3,则曲线y=f(x)在点(1,-3)处的切线斜率是k=1-3=-2.故答案为:-2.【点评】:本题考查函数的奇偶性和解析式的求法,以及导数的运用:求切线的斜率,考查转化思想和运算能力,属于中档题.14.(填空题,5分)函数y=cosx+cos2x的最小值是___ .【正确答案】:[1]- 54【解析】:利用二倍角公式整理函数解析式,值函数的解析式关于cosx的一元二次函数,设cosx=t,函数的顶点为最低点,此时函数值为最小值.【解答】:解:y=cosx+cos2x=cosx+2cos2x-1,设cosx=t,则-1≤t≤1,函数f(t)min=f(- 14)= 12- 14-1=- 54,故答案为:- 54.【点评】:本题主要考查了二次函数的性质.考查了学生的换元思想的运用.15.(填空题,5分)设a=log49,b=2-1.2,c= (827)−13,则将a,b,c按从大到小排序:___ .【正确答案】:[1]a>c>b【解析】:可以得出 log 49>32>1 , (827)−13=32,2-1.2<1,然后即可得出a ,b ,c 的大小关系.【解答】:解:∵ log 49>log 48=log 4432=32>1 , (827)−13=32 ,2-1.2<20=1,∴a >c >b .故答案为:a >c >b .【点评】:本题考查了对数的运算性质,分数指数幂的运算,对数函数和指数函数的单调性,考查了计算能力,属于基础题.16.(填空题,5分)若函数f (x )=x (x-1)(x-a ),(a >1)的两个不同极值点x 1,x 2满足f (x 1)+f (x 2)≤0恒成立,则实数a 的取值范围为___ . 【正确答案】:[1]a≥2【解析】:把x 1,x 2代入到f (x )中求出函数值代入不等式f (x 1)+f (x 2)≤0中,在利用根与系数的关系化简得到关于a 的不等式,求出解集即可.【解答】:解:因f (x 1)+f (x 2)≤0,故得不等式x 13+x 23-(1+a )(x 12+x 22)+a (x 1+x 2)≤0.即(x 1+x 2)[(x 1+x 2)2-3x 1x 2]-(1+a )[(x 1+x 2)2-2x 1x 2]+a (x 1+x 2)≤0. 由于f′(x )=3x 2-2(1+a )x+a .令f′(x )=0得方程3x 2-2(1+a )x+a=0. 因△=4(a 2-a+1)≥4a >0,故 {x 1+x 2=23(1+a )x 1x 2=a3 代入前面不等式, 两边除以(1+a ),并化简得 2a 2-5a+2≥0.解不等式得a≥2或a≤ 12 (舍去)因此,当a≥2时,不等式f (x 1)+f (x 2)≤0成立.【点评】:考查学生求导数及利用导数研究函数极值的能力,灵活运用一元二次方程根与系数的关系解决数学问题的能力.17.(问答题,10分)在① A⊆B;② ∁R B⊆∁R A;③ A∩B=A;这三个条件中任选一个,补充在下面问题中.若问题中的实数a存在,求a的取值范围;若不存在,说明理由.问题:已知集合A={x|log2(x-1)>1,x∈R},B={x|(x-a)(x-4+a)>0,x∈R},是否存在实数a,使得______?【正确答案】:【解析】:由集合知识可以解出集合A,对集合B进行分类求解,再利用集合的子集,交集,补集解出.【解答】:解:由log2(x-1)>1得x-1>2即x>3,故A=(3,+∞)选① :A⊆B当a>2时,B=(-∞,4-a)∪(a,+∞),∵A⊆B∴2<a≤3;当a<2时,B=(-∞,a)∪(4-a,+∞),∵A⊆B∴4-a≤3即1≤a<2;当a=2时,B=(-∞,2)∪(2,+∞),此时A⊆B综上:1≤a≤3选② ③ :答案同①故答案为:1≤a≤3.【点评】:本题属于结构不良试题,补充条件后,试题完整,利用集合的相关知识解决,属于基础题.18.(问答题,12分)已知f(α)= sin(5π−α)cos(π+α)cos(3π2+α)cos(α+π2)tan(3π−α)sin(α−3π2).(1)化简f(α);(2)若α是第三象限角,且cos(3π2−α)=35,求f(α)的值.【正确答案】:【解析】:(1)利用诱导公式,和同角三角函数的基本关系关系,可将f (α)的解析式化简为f (α)=-cosα;(2)由α是第三象限角,且 cos (3π2−α)=35 ,可得cosα=- 45 ,结合(1)中结论,可得答案.【解答】:解:(1)f (α)= sin (5π−α)cos (π+α)cos(3π2+α)cos(α+π2)tan (3π−α)sin(α−3π2)= sinα•(−cosα)•sinα(−sinα)•(−tanα)•cosα =-sinα•cosα•sinαsinα•sinα=-cosα (2)∵ cos (3π2−α) =-sinα= 35,∴sinα=- 35 ,又由α是第三象限角, ∴cosα=- 45 , 故f (α)=-cosα= 45【点评】:本题考查的知识点是三角函数的化简求值,熟练掌握和差角公式,诱导公式,同角三角函数的基本关系关系,是解答的关键.19.(问答题,12分)随着城市规模的扩大和人们生活水平的日益提高,某市近年机动车保有量逐年递增.根据机动车管理部门的统计数据,以5年为一个研究周期,得到机动车每5年纯增数据情况为:i i 对应的机动车纯增数量y (单位:万辆)具有线性相关关系.(1)求机动车纯增数量(单位:万辆)关于时间变量x 的回归方程,并预测2025~2030年间该市机动车纯增数量的值;附:回归直线方程 y ̂=b ̂x +a ̂ 中斜和截距的最小二乘估计公式分别为:b ̂=∑x i y i −nxyni=1∑xi 2n i=1−nx2=i −x )i −y ni=1)∑(x −x )2n a ̂=y −b ̂x . (2)该市交通管理部门为广解市民对“单双号限行”的赞同情况,随机采访了220名市民,将他们的见和是否拥有私家车情况进行了统计,得到如下的2×2列联表:附:K 2=n (ad−bc )2(a+b )(c+d )(a+c )(b+d ),n=a+b+c+d .【正确答案】:【解析】:(1)由已知求得 b ̂ 与 a ̂ 的值,可得线性回归方程,取x=7求得y 值得结论; (2)求出K 2的值,结合临界值表得结论.【解答】:解:(1) x =1+2+3+4+55=3 , y =3+6+9+15+275=12 ,∑x i 5i=1y i =1×3+2×6+3×9+4×15+5×27 =237.b ̂=i 5i=1i −5xy∑x 25−5(x )2= 237−5×3×1255−45=5.7 ,a ̂=y −b̂x =12−5.7×3=−5.1 , 则y 关于x 的线性回归方程为 y ̂=5.7x −5.1 . 取x=7,可得 y ̂=5.7×7−5.1=34.8 .故预测2025~2030年间该市机动车纯增数量的值约为34.8万辆; (2)根据2×2列联表,计算可得 K 2=220×(90×40−20×70)2110×110×160×60=556≈9.167>6.635, ∴有99%的把握认为“对限行的意见与是拥有私家车”有关.【点评】:本题考查线性回归方程的求法,考查独立性检验的应用,考查计算能力,是中档题. 20.(问答题,12分)如图,三棱柱ABC-A 1B 1C 1中,平面AA 1C 1C⊥平面AA 1B 1B ,∠BAA 1=45°,CA=CB ,点O 在棱AA 1上,CO⊥AA 1. (1)求证:AA 1⊥BC ;(2)若BB 1= √2 AB=2,直线BC 与平面ABB 1A 1所成角为45°,D 为CC 1的中点,求二面角B 1-A 1D-C 1的余弦值.【正确答案】:【解析】:(1)由平面AA 1C 1C⊥平面AA 1B 1B ,推出OC⊥平面AA 1B 1B ,故OC⊥OB ;易证Rt△AOC≌Rt△BOC ,故OA=OB ,从而得AA 1⊥OB ,再由线面垂直的判定定理得证;(2)以O 为原点,OA 、OB 、OC 所在的直线分别为x 、y 、z 轴建立空间直角坐标系,由(1)知,OC⊥平面AA 1B 1B ,故∠CBO 为直线BC 与平面ABB 1A 1所成角,可得OA=OB=OC=1,写出B 、A 1、B 1、D 的坐标,根据法向量的性质求得平面A 1B 1D 的法向量 m ⃗⃗ ,由OB⊥平面AA 1C 1C ,知平面A 1C 1D 的一个法向量 n ⃗ = OB ⃗⃗⃗⃗⃗ ,再由cos < m ⃗⃗ , n ⃗ >= m ⃗⃗⃗ •n ⃗ |m ⃗⃗⃗ |•|n ⃗ |即可得解.【解答】:(1)证明:∵平面AA 1C 1C⊥平面AA 1B 1B ,平面AA 1C 1C∩平面AA 1B 1B=AA 1,OC⊥AA 1,∴OC⊥平面AA 1B 1B , ∴OC⊥OB ,∵CA=CB ,OC=OC ,∠COA=∠COB=90°, ∴Rt△AOC≌Rt△BOC , ∴OA=OB , ∵∠BAA 1=45°,∴∠ABO=∠BAA 1=45°,∠AOB=90°,即AA 1⊥OB , 又OC⊥AA 1,OB∩OC=O ,OB 、OC⊂平面BOC , ∴AA 1⊥平面BOC , ∴AA 1⊥BC .(2)解:以O 为原点,OA 、OB 、OC 所在的直线分别为x 、y 、z 轴建立如图所示的空间直角坐标系,由(1)知,OC⊥平面AA 1B 1B , ∵直线BC 与平面ABB 1A 1所成角为45°, ∴∠CBO=45°,∵AB= √2 ,∴OA=OB=OC=1,∴B (0,1,0),A 1(-1,0,0),B 1(-2,1,0),D (-1,0,1), ∴ A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =(0,0,1), B 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =(1,-1,1), 设平面A 1B 1D 的法向量为 m ⃗⃗ =(x ,y ,z ),则 {m ⃗⃗ •A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =0m ⃗⃗ •B 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =0 ,即 {z =0x −y +z =0 ,令x=1,则y=1,z=0,所以 m ⃗⃗ =(1,1,0),∵OB⊥平面AA 1C 1C ,∴平面A 1C 1D 的一个法向量 n ⃗ = OB ⃗⃗⃗⃗⃗ =(0,1,0), ∴cos < m ⃗⃗ , n ⃗ >= m⃗⃗⃗ •n ⃗ |m ⃗⃗⃗ |•|n ⃗ |= √2×1= √22 , 由图可知,二面角B 1-A 1D-C 1为锐角, 故二面角B 1-A 1D-C 1的余弦值为 √22 .【点评】:本题考查空间中线与面的位置关系、二面角的求法,熟练掌握线面、面面垂直的判定定理与性质定理,以及利用空间向量处理二面角的方法是解题的关键,考查学生的空间立体感、逻辑推理能力和运算能力,属于中档题.21.(问答题,12分)已知函数f (x )=x|2a-x|+2x ,a∈R . (1)若函数f (x )在R 上是增函数,求实数a 的取值范围;(2)若存在实数a∈[-2,2],使得关于x 的方程f (x )-tf (2a )=0有3个不相等的实数根,求实数t 的取值范围.【正确答案】:【解析】:(1)写出f (x )的分段函数,求出对称轴方程,由二次函数的单调性,可得a-1≤2a ,2a≤a+1,解不等式即可得到所求范围;(2)方程f (x )-tf (2a )=0的解即为方程f (x )=tf (2a )的解.讨论 ① 当-1≤a≤1时, ② 当a >1时, ③ 当a <-1时,判断f (x )的单调性,结合函数和方程的转化思想,即可得到所求范围.【解答】:解:(1)∵ f (x )={x 2+(2−2a )x ,x ≥2a−x 2+(2+2a )x ,x <2a 为增函数,由于x≥2a 时,f (x )的对称轴为x=a-1; x <2a 时,f (x )的对称轴为x=a+1, ∴ {a −1≤2a 2a ≤a +1解得-1≤a≤1; (2)方程f (x )-tf (2a )=0的解即为方程f (x )=tf (2a )的解. ① 当-1≤a≤1时,f (x )在R 上是增函数,关于x 的方程f (x )=tf (2a )不可能有3个不相等的实数根. ② 当1<a≤2时,2a >a+1>a-1,∴f (x )在(-∞,a+1)上单调递增,在(a+1,2a )上单调递减, 在(2a ,+∞)上单调递增,所以当f (2a )<tf (2a )<f (a+1)时,关于x 的方程f (x )=tf (2a )有3个不相等的实数根,即4a <t•4a <(a+1)2. ∵a >1,∴ 1<t <14(a +1a +2) .设 ℎ(a )=14(a +1a +2) ,因为存在a∈[-2,2],使得关于x 的方程f (x )=tf (2a )有3个不相等的实数根,∴1<t <h (a )max .又h (a )在(1,2]递增,所以 ℎ(a )max =98,∴ 1<t <98. ③ 当-2≤a <-1时,2a <a-1<a+1,所以f (x )在(-∞,2a )上单调递增, 在(2a ,a-1)上单调递减,在(a-1,+∞)上单调递增, 所以当f (a-1)<tf (2a )<f (2a )时,关于x 的方程f (x )=tf (2a )有3个不相等的实数根, 即-(a-1)2<t•4a <4a .∵a <-1,∴ 1<t <−14(a +1a−2) . 设 g (a )=−14(a +1a −2) ,因为存在a∈[-2,2],使得关于x 的方程f (x )=tf (2a )有3个不相等的实数根,所以1<t <g (a )max . 又可证 g (a )=−14(a +1a −2) 在[-2,-1)上单调递减, 所以 g (a )max =98 ,所以 1<t <98 ..综上,1<t<98【点评】:本题考查分段函数的单调性的判断和运用,注意运用二次函数的对称轴和区间的关系,考查存在性问题的解法,注意运用分类讨论的思想方法,以及函数方程的转化思想的运用,考查运算化简能力,属于中档题.22.(问答题,12分)若函数f(x)=e x-ae-x-mx(m∈R)为奇函数,且x=x0时f(x)有极小值f(x0).(1)求实数a的值;(2)求实数m的取值范围;恒成立,求实数m的取值范围.(3)若f(x0)≥- 2e【正确答案】:【解析】:(1)依题意,f(x)+f(-x)=0在定义域上恒成立,由此建立方程,解出即可;(2)求导后分m≤2及m>2讨论即可;(3)可知e x0+e−x0=m,进而得到f(x0),研究其单调性,结合已知可得x0≤1,由此可求得实数m的取值范围.【解答】:解:(1)由函数f(x)为奇函数,得f(x)+f(-x)=0在定义域上恒成立,∴e x-ae-x-mx+e-x-ae x+mx=0,化简可得(1-a)(e x+e-x)=0,故a=1;,(2)由(1)可得f(x)=e x-e-x-mx,则f′(x)=e x+e−x−m=e2x−me x+1e x① 当m≤2时,由于e2x-me x+1≥0恒成立,即f′(x)≥0恒成立,故不存在极小值;② 当m>2时,令e x=t,则方程t2-mt+1=0有两个不等的正根t1,t2(t1<t2),故可知函数f(x)=e x-e-x-mx在(-∞,lnt1),(lnt2,+∞)上单调递增,在(lnt1,lnt2)上单调递减,即在lnt2出取到极小值,所以,实数m的取值范围为(2,+∞);(3)由x0满足e x0+e−x0=m代入f(x)=e x-e-x-mx,消去m得f(x0)=(1−x0)e x0−(1+x0)e−x0,构造函数h(x)=(1-x)e x-(1+x)e-x,则h′(x)=x(e-x-e x),当x≥0时,e−x−e x=1−e2xe x≤0,故当x≥0时,h′(x)≤0恒成立,故函数h(x)在[0,+∞)上单调减函数,其中ℎ(1)=−2e ,则f(x0)≥−2e,可转化为h(x0)≥h(1),故x0≤1,由e x0+e−x0=m,设y=e x+e-x,可得当x≥0时,y′=e x-e-x≥0,∴y=e x+e-x在(0,1]上递增,故m≤e+1e,综上,实数m的取值范围为(2,e+1e].【点评】:本题考查利用导数研究函数的单调性,极值及最值,同时也涉及了奇函数的定义,考查转化思想及逻辑推理能力,属于中档题.。

四川省绵阳2023-2024学年高三上学期10月月考(一诊模拟)理科数学试题含解析

四川省绵阳2023-2024学年高三上学期10月月考(一诊模拟)理科数学试题含解析

绵阳南山高2021级高三(上)一诊模拟考试理科数学(答案在最后)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将答题卡交回.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U =R ,集合{}220A x x x =-<,{}1B x x =>,则()UA B = ð()A.{}12x x << B.{}12x x ≤< C.{}01x x << D.{}01x x <≤【答案】D 【解析】【分析】先解一元二次不等式,化简集合A,再利用数轴进行集合的补集和交集运算可得.【详解】解一元二次不等式化简集合A,得{|02}A x x =<<,由{|1}B x x =>得{|1}U C B x x =≤,所以(){|01}U A C B x x ⋂=<≤.故选D.【点睛】本题考查了一元二次不等式的解法,集合的交集和补集运算,用数轴运算补集和交集时,注意空心点和实心点的问题,属基础题.2.若复数5i43iz =-,则z =()A.34i 55+ B.34i 55-+ C.34i 55-- D.34i 55-【答案】C 【解析】【分析】由复数的四则运算结合共轭复数的概念求解.【详解】由()5i 43i 5i 34i43i 2555z +===-+-,得34i 55z =--.故选:C3.设n S 是等差数列{}n a 的前n 项和,若25815a a a ++=,则9S =()A.15B.30C.45D.60【答案】C 【解析】【分析】根据等差数列的性质求出5a ,再根据等差数列前n 项和公式即可得解.【详解】由题意得2585315a a a a ++==,所以55a =,所以()199599452a a S a +===.故选:C.4.已知命题p :x ∃∈R ,使得2210ax x ++<成立为真命题,则实数a 的取值范围是()A.(],0-∞ B.(),1-∞ C.[)0,1 D.(]0,1【答案】B 【解析】【分析】由一次函数和二次函数的图象和性质,知当0a ≤时,命题为真命题,当0a >时,需0∆>,最后综合讨论结果,可得答案.【详解】命题p 为真命题等价于不等式2210ax x ++<有解.当0a =时,不等式变形为210x +<,则12x <-,符合题意;当0a >时,Δ440a =->,解得01a <<;当a<0时,总存在x ∃∈R ,使得2210ax x ++<;综上可得实数a 的取值范围为(),1-∞.故选:B5.在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A.3144AB AC -B.1344AB AC -C.3144+AB AC D.1344+AB AC 【答案】A 【解析】【分析】分析:首先将图画出来,接着应用三角形中线向量的特征,求得1122BE BA BD =+,之后应用向量的加法运算法则-------三角形法则,得到BC BA AC =+,之后将其合并,得到3144BE BA AC =+ ,下一步应用相反向量,求得3144EB AB AC =-,从而求得结果.【详解】根据向量的运算法则,可得()111111222424BE BA BD BA BC BA BA AC=+=+=++1113124444BA BA AC BA AC=++=+,所以3144EB AB AC =-,故选A.【点睛】该题考查的是有关平面向量基本定理的有关问题,涉及到的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.6.执行如图所示的程序框图,若输出的a 的值为17,则输入的最小整数t 的值为()A.9B.12C.14D.16【答案】A 【解析】【分析】根据流程框图代数进行计算即可,当进行第四次循环时发现输出的a 值恰好满足题意,然后停止循环求出t 的值.【详解】第一次循环,2213a =⨯-=,3a t =>不成立;第二次循环,2315a =⨯-=,5a t =>不成立;第三次循环,2519a =⨯-=.9a t =>不成立;第四次循环,29117a =⨯-=,17a t =>,成立,所以917t <≤,输入的最小整数t 的值为9.故选:A7.纯电动汽车是以车载电源为动力,用电机驱动车轮行驶,符合道路交通、安全法规各项要求的车辆,它使用存储在电池中的电来发动.因其对环境影响较小,逐渐成为当今世界的乘用车的发展方向.研究发现电池的容量随放电电流的大小而改变,1898年Peukert 提出铅酸电池的容量C 、放电时间t 和放电电流I 之间关系的经验公式:C I t λ=,其中λ为与蓄电池结构有关的常数(称为Peukert 常数),在电池容量不变的条件下,当放电电流为15A 时,放电时间为30h ;当放电电流为50A 时,放电时间为7.5h ,则该萻电池的Peukert 常数λ约为()(参考数据:lg20.301≈,lg30.477≈)A.1.12 B.1.13C.1.14D.1.15【答案】D 【解析】【分析】根据题意可得1530507.5C λλ=⨯=⨯,再结合对数式与指数式的互化及换底公式即可求解.【详解】由题意知1530507.5C λλ=⨯=⨯,所以50304157.5λ⎛⎫== ⎪⎝⎭,两边取以10为底的对数,得10lg 2lg23λ=,所以2lg220.3011.151lg310.477λ⨯=≈≈--.故选:D .8.若cos 0,,tan 222sin παααα⎛⎫∈= ⎪-⎝⎭,则tan α=()A.15B.C.3D.3【答案】A 【解析】【分析】由二倍角公式可得2sin 22sin cos tan 2cos 212sin αααααα==-,再结合已知可求得1sin 4α=,利用同角三角函数的基本关系即可求解.【详解】cos tan 22sin ααα=- 2sin 22sin cos cos tan 2cos 212sin 2sin αααααααα∴===--,0,2πα⎛⎫∈ ⎪⎝⎭ ,cos 0α∴≠,22sin 112sin 2sin ααα∴=--,解得1sin 4α=,215cos 1sin 4αα∴=-=,sin 15tan cos 15ααα∴==.故选:A.【点睛】关键点睛:本题考查三角函数的化简问题,解题的关键是利用二倍角公式化简求出sin α.9.函数π()412sin 2x xf x x -⎛⎫=-⋅⋅+ ⎪⎝⎭的大致图象为()A.B. C.D.【答案】D 【解析】【分析】对函数化简后,利用排除法,先判断函数的奇偶性,再取特殊值判断即可【详解】因为()|22|cos x x f x x -=-⋅,()22cos()()xx f x x f x --=-⋅-=,所以()f x 为偶函数,所以函数图象关于y 轴对称,所以排除A ,C 选项;又1(2)4cos 204f =-<,所以排除B 选项,故选:D .10.设函数π()sin 3f x x ω⎛⎫=+⎪⎝⎭在区间(0,π)恰有三个极值点、两个零点,则ω的取值范围是()A.513,36⎫⎡⎪⎢⎣⎭B.519,36⎡⎫⎪⎢⎣⎭C.138,63⎛⎤ ⎥⎝⎦D.1319,66⎛⎤ ⎥⎝⎦【答案】C【解析】【分析】由x 的取值范围得到3x πω+的取值范围,再结合正弦函数的性质得到不等式组,解得即可.【详解】解:依题意可得0ω>,因为()0,x π∈,所以,333x πππωωπ⎛⎫+∈+ ⎪⎝⎭,要使函数在区间()0,π恰有三个极值点、两个零点,又sin y x =,,33x ππ⎛⎫∈⎪⎝⎭的图象如下所示:则5323ππωππ<+≤,解得13863ω<≤,即138,63ω⎛⎤∈ ⎥⎝⎦.故选:C .11.已知函数()1ex x f x +=.若过点()1,P m -可以作曲线()y f x =三条切线,则m 的取值范围是()A.40,e ⎛⎫ ⎪⎝⎭B.80,e ⎛⎫ ⎪⎝⎭C.14,e e ⎛⎫- ⎪⎝⎭D.18,e e ⎛⎫ ⎪⎝⎭【答案】A 【解析】【分析】切点为0001,e x x x +⎛⎫ ⎪⎝⎭,利用导数的几何意义求切线的斜率,设切线为:()000001e ex x x x y x x +--=-,可得()021ex x m +=,设()()21exx g x +=,求()g x ',利用导数求()g x 的单调性和极值,切线的条数即为直线y m =与()g x 图象交点的个数,结合图象即可得出答案.【详解】设切点为0001,e x x x +⎛⎫ ⎪⎝⎭,由()1e x x f x +=可得()()2e e 1e ex x xx x x f x -⋅+-==',所以在点0001,e x x x +⎛⎫ ⎪⎝⎭处的切线的斜率为()00e x x kf x -'==,所以在点0001,e x x x +⎛⎫ ⎪⎝⎭处的切线为:()000001e ex x x x y x x +--=-,因为切线过点()1,P m -,所以()0000011e ex x x x m x +--=--,即()021ex x m +=,即这个方程有三个不等根即可,切线的条数即为直线y m =与()g x 图象交点的个数,设()()21e xx g x +=,则()()()2222211e e xxx x x x g x +-++'-+==由()0g x '>可得11x -<<,由()0g x '<可得:1x <-或1x >,所以()()21exx g x +=在(),1-∞-和()1,+∞上单调递减,在()1,1-上单调递增,当x 趋近于正无穷,()g x 趋近于0,当x 趋近于负无穷,()g x 趋近于正无穷,()g x 的图象如下图,且()41eg =,要使y m =与()()21e xx g x +=的图象有三个交点,则40em <<.则m 的取值范围是:40,e ⎛⎫ ⎪⎝⎭.故选:A.12.已知函数()323,0,31,0x x f x x x x ->⎧=⎨-+≤⎩,函数()()()g x f f x m =-恰有5个零点,则m 的取值范围是()A.()3,1- B.()0,1 C.[)1,1- D.()1,3【答案】C【分析】由题意可先做出函数()f x 的大致图象,利用数形结合和分类讨论,即可确定m 的取值范围.【详解】当0x ≤时,()233f x x ¢=-.由()0f x ¢>,得1x <-,由()0f x '<,得10-<≤x ,则()f x 在(]1,0-上单调递减,在(),1-∞-上单调递增,故()f x 的大致图象如图所示.设()t f x =,则()m f t =,由图可知当3m >时,()m f t =有且只有1个实根,则()t f x =最多有3个不同的实根,不符合题意.当3m =时,()m f t =的解是11t =-,23t =.1f x t =()有2个不同的实根,2f x t =()有2个不同的实根,则()t f x =有4个不同的实根,不符合题意.当13m ≤<时,()m f t =有3个不同的实根3t ,4t ,5t ,且()321t ∈--,,(]41,0t ∈-,[)52,3t ∈.3f x t =()有2个不同的实根,4f x t =()有2个不同的实根,5f x t =()有3个不同的实根,则()t f x =有7个不同的实根,不符合题意.当11m -≤<时,()m f t =有2个不同的实根6t ,7t ,且()631t ∈--,,[)71,2t ∈.6f x t =()有2个不同的实根,7f x t =()有3个不同的实根,则()t f x =有5个不同的实根,符合题意.当3<1m -<-时,()m f t =有2个不同的实根8t ,9t ,且()831t ∈--,,()901t ∈,,8f x t =()有2个不同的实根,9f x t =(),有2个不同的实根,则()t f x =有4个不同的实根,不符合题意.当3m ≤-时,()m f t =有且只有1个实根,则()t f x =最多有3个不同的实根,不符合题意,综上,m 的取值范围是[)1,1-.【点睛】方法点睛:对于函数零点问题,若能够画图时可作出函数图像,利用数形结合与分类讨论思想,即可求解.本题中,由图看出,m 的讨论应有3m =,13m ≤<,11m -≤<,3<1m -<-,3m ≤-这几种情况,也是解题关键.二、填空题:本大题共4小题,每小题5分,共20分.13.已知向量()()3,1,1,0,a b c a kb ===+ .若a c ⊥,则k =________.【答案】103-.【解析】【分析】利用向量的坐标运算法则求得向量c的坐标,利用向量的数量积为零求得k 的值【详解】()()()3,1,1,0,3,1a b c a kb k ==∴=+=+,(),33110a c a c k ⊥∴⋅=++⨯= ,解得103k =-,故答案为:103-.【点睛】本题考查平面向量的坐标运算,平面向量垂直的条件,属基础题,利用平面向量()()1122,,,p x y q x y ==垂直的充分必要条件是其数量积12120x x y y +=.14.如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点,从A 点测得M 点的仰角60MAN ∠=︒,C 点的仰角45CAB ∠=︒以及75MAC ∠=︒;从C 点测得60MCA ∠=︒.已知山高200BC =m ,则山高MN =______m .【答案】300【解析】【分析】先求,AC AMC ∠,由正弦定理得sin sin MCA AMCAM AC∠∠=,最后由sin MN AM MAN =⋅∠可求.【详解】由题意,sin BCAC CAB==∠m ,18045AM C M AC M CA ∠=︒-∠-∠=︒,由正弦定理得2sin sin 22MCA AMC AM AM AC AM ∠∠=⇒=⇒=m ,所以sin 3002MNAM MAN =⋅∠==m.故答案为:30015.已知等比数列{}n a 的前3项和为25168,42a a -=,则6a =___________.【答案】3【解析】【分析】设等比数列{}n a 的公比为q ,根据已知条件利用等比数列的定义计算可得12q =,196a =,即可求得6a 的值.【详解】解:设等比数列{}n a 的公比为q ,0q ≠,由题意1q ≠,因为前3项和为168,故()3112311681a q a a a q-++==-,又()43251111a a a q a q a q q-=-=-,所以12q =,196a =,则561196332a a q ==⨯=.故答案为:3.16.已知函数()y f x =是R 的奇函数,对任意x R ∈,都有(2)()(2)f x f x f -=+成立,当12,,1[]0x x ∈,且12x x ≠时,都有()()12120f x f x x x ->-,有下列命题①(1)(2)(3)(2019)0f f f f ++++= ②直线5x =-是函数()y f x =图象的一条对称轴③函数()y f x =在[7,7]-上有5个零点④函数()y f x =在[7,5]--上为减函数则结论正确的有____________.【答案】①②④【解析】【分析】根据题意,利用特殊值法求得()20f =,进而分析得到1x =时函数()f x 的一条对称轴,,函数()f x 时周期为4的周期函数,且函数()f x 在[1,1]-上单调递增,据此结合选项,逐项判定,即可求解.【详解】由题意,函数()y f x =是R 的奇函数,则()00f =,对任意x R ∈,都有(2)()(2)f x f x f -=+成立,当2x =,有()()0220f f ==,即()20f =,则有(2)()f x f x -=,即1x =时函数()f x 的一条对称轴,又由()f x 为奇函数,则(2)()f x f x -=--,即()()2f x f x +=-,可得()()()42f x f x f x +=-+=,所以函数()f x 时周期为4的周期函数,当12,,1[]0x x ∈,且12x x ≠时,都有()()12120f x f x x x ->-,可函数()f x 在[1,1]-上单调递增,对于①中,由()()2f x f x +=-,则(1)(2)(3)(4)0f f f f +++=,所以(1)(2)(3)(2019)504[(1)(2)(3)(4)]f f f f f f f f ++++=+++ ()(1)(2)(3)20f f f f +++==,所以①正确;对于②中,由1x =时函数()f x 的一条对称轴,且函数()f x 时周期为4的周期函数,则直线5x =-是函数()y f x =图象的一条对称轴,所以②正确;对于③中,函数()y f x =在[7,7]-上有7个零点,分别为6,4,2,0,2,4,6---,所以C 错误;对于④中,函数()y f x =在[1,1]-上为增函数且周期为4,可得()y f x =在[5,3]--上为增函数,又由5x =-是函数()y f x =图象的一条对称轴,则函数()y f x =在[7,5]--上为减函数,所以④正确.故答案为:①②④三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象,如图所示.(1)求函数()f x 的解析式;(2)将函数()f x 的图象向右平移3π个单位长度,再将得到的图象上各点的横坐标缩短为原来的12,纵坐标不变,得到函数()g x 的图象,当0,3x π⎡⎤∈⎢⎥⎣⎦时,求函数()g x 的值域.【答案】(1)()323f x x π⎛⎫=+ ⎪⎝⎭(2)332⎡-⎢⎣【解析】【分析】(1)根据正弦型函数的图像求三角函数的解析式,根据最大值求出A ,由最小正周期求出ω,并确定ϕ.(2)根据平移后得到新的正弦型函数解析式,由函数解析式求出函数值域.【小问1详解】解:根据函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象可得3A =1252632ππππω=-=⋅,所以2ω=.再根据五点法作图可得23πϕπ⋅+=,所以3πϕ=,()323f x x π⎛⎫=+ ⎪⎝⎭.【小问2详解】将函数()f x 的图象向右平移3π个单位后,可得323sin 2333y x x x πππ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎢⎥⎝⎭⎝⎭⎣⎦的图象,再将得到的图象上各点的横坐标缩短为原来的12,纵坐标不变,得到函数()343g x x π⎛⎫=- ⎪⎝⎭的图象.由0,3x π⎡⎤∈⎢⎥⎣⎦,可得4,33x πππ⎡⎤-∈-⎢⎥⎣⎦又 函数()g x 在50,24π⎡⎤⎢⎥⎣⎦上单调递增,在5,243ππ⎡⎤⎢⎥⎣⎦单调递减∴3(0)2g =-,524g π⎛⎫= ⎪⎝⎭03g π⎛⎫= ⎪⎝⎭∴3()4,32g x x π⎛⎫⎡=-∈- ⎪⎢⎝⎭⎣∴函数()g x 在0,3π⎡⎤⎢⎥⎣⎦的值域32⎡-⎢⎣.18.已知数列{}n a 的前n 项和为n S ,313log 1log n n b b +-=,且()1122n n n a a a n +-=+≥.339S b ==,414b a =.(1)求数列{}n a 和{}n b 的通项公式;(2)若11n n n c a b ++=⋅,求数列{}n c 的前n 项和n T .【答案】(1)13n n b -=,21n a n =-(2)13n n T n +=⋅【解析】【分析】(1)根据对数运算得13n nb b +=,利用等比数列定义求通项公式,利用等差中项判断数列{}n a 为等差数列,建立方程求出公差,从而可得{}n a 的通项;(2)利用错位相减法计算即可.【小问1详解】∵313log 1log n n b b +-=,∴313log log (3)n n b b +=,则13n nb b +=,所以{}n b 为等比数列,又39b =,得11b =,所以13n n b -=,由112n n n a a a +-=+知{}n a 是等差数列,且41427b a ==,39S =,∴111327339a d a d +=⎧⎨+=⎩,得11a =,2d =.∴21n a n =-.【小问2详解】因为21n a n =-,13n n b -=,所以()11213nn n n c a b n ++=⋅=+,所以()()1231335373213213n n n T n n -=⋅+⋅+⋅+⋅⋅⋅+-⋅++⋅则()()23413335373213213n n n T n n +=⋅+⋅+⋅+⋅⋅⋅+-⋅++⋅上面两式作差得()223123232323213n n n T n +-=+⋅+⋅+⋅⋅⋅+⋅-+⋅()()111913922132313n n n n n -++⎛⎫- ⎪=+-+⋅=-⋅ ⎪-⎝⎭,∴13n n T n +=⋅19.记ABC 是内角A ,B ,C 的对边分别为a ,b ,c .已知2b ac =,点D 在边AC 上,sin sin BD ABC a C ∠=.(1)证明:BD b =;(2)若2AD DC =,求cos ABC ∠.【答案】(1)证明见解析;(2)7cos 12ABC ∠=.【解析】【分析】(1)根据正弦定理的边角关系有ac BD b=,结合已知即可证结论.(2)方法一:两次应用余弦定理,求得边a 与c 的关系,然后利用余弦定理即可求得cos ABC ∠的值.【详解】(1)设ABC 的外接圆半径为R ,由正弦定理,得sin sin ,22b c R ABC C R==∠,因为sin sin BD ABC a C ∠=,所以22b c BD a R R ⋅=⋅,即BD b ac ⋅=.又因为2b ac =,所以BD b =.(2)[方法一]【最优解】:两次应用余弦定理因为2AD DC =,如图,在ABC 中,222cos 2a b c C ab+-=,①在BCD △中,222()3cos 23b a b b a C +-=⋅.②由①②得2222223(3b a bc a b ⎡⎤+-=+-⎢⎥⎣⎦,整理得22211203a b c -+=.又因为2b ac =,所以2261130a ac c -+=,解得3c a =或32c a =,当22,33c c a b ac ===时,333c c a b c +=+<(舍去).当2233,22c c a b ac ===时,22233()722cos 31222c c ABC c c c +⋅-==⋅∠.所以7cos 12ABC ∠=.[方法二]:等面积法和三角形相似如图,已知2AD DC =,则23ABD ABC S S =△△,即21221sin sin 2332b ac AD A B BC ⨯=⨯⨯∠∠,而2b ac =,即sin sin ADB ABC ∠=∠,故有ADB ABC ∠=∠,从而ABD C ∠=∠.由2b ac =,即b c a b =,即CA BA CB BD=,即ACB ABD ∽,故AD AB AB AC =,即23b c c b =,又2b ac =,所以23c a =,则2227cos 212c a b ABC ac +-==∠.[方法三]:正弦定理、余弦定理相结合由(1)知BD b AC ==,再由2AD DC =得21,33AD b CD b ==.在ADB 中,由正弦定理得sin sin AD BD ABD A=∠.又ABD C ∠=∠,所以s 3sin n 2i C b A b =,化简得2sin sin 3C A =.在ABC 中,由正弦定理知23c a =,又由2b ac =,所以2223b a =.在ABC 中,由余弦定理,得222222242793cos 221223a a a a c b ABC ac a +--⨯∠+===.故7cos 12ABC ∠=.[方法四]:构造辅助线利用相似的性质如图,作DE AB ∥,交BC 于点E ,则DEC ABC △∽△.由2AD DC =,得2,,333c a a DE EC BE ===.在BED 中,2222(()33cos 2323BED a c b a c -=⋅∠+⋅.在ABC 中222cos 2a a BC c A b c+-=∠.因为cos cos ABC BED ∠=-∠,所以2222222()()3322233a c b a c b a c ac +-+-=-⋅⋅,整理得22261130a b c -+=.又因为2b ac =,所以2261130a ac c -+=,即3c a =或32a c =.下同解法1.[方法五]:平面向量基本定理因为2AD DC =,所以2AD DC =uuu r uuu r .以向量,BA BC 为基底,有2133BD BC BA =+ .所以222441999BD BC BA BC BA =+⋅+ ,即222441cos 999b ac c ABC a ∠=++,又因为2b ac =,所以22944cos ac a ac ABC c ⋅∠=++.③由余弦定理得2222cos b a c ac ABC =+-∠,所以222cos ac a c ac ABC =+-∠④联立③④,得2261130a ac c -+=.所以32a c =或13a c =.下同解法1.[方法六]:建系求解以D 为坐标原点,AC 所在直线为x 轴,过点D 垂直于AC 的直线为y 轴,DC 长为单位长度建立直角坐标系,如图所示,则()()()0,0,2,0,1,0D A C -.由(1)知,3BD b AC ===,所以点B 在以D 为圆心,3为半径的圆上运动.设()(),33B x y x -<<,则229x y +=.⑤由2b ac =知,2BA BC AC ⋅=,2222(2)(1)9x y x y ++-+=.⑥联立⑤⑥解得74x =-或732x =≥(舍去),29516y =,代入⑥式得36||||6,32a BC c BA b =====,由余弦定理得2227cos 212a cb ABC ac +-∠==.【整体点评】(2)方法一:两次应用余弦定理是一种典型的方法,充分利用了三角形的性质和正余弦定理的性质解题;方法二:等面积法是一种常用的方法,很多数学问题利用等面积法使得问题转化为更为简单的问题,相似是三角形中的常用思路;方法三:正弦定理和余弦定理相结合是解三角形问题的常用思路;方法四:构造辅助线作出相似三角形,结合余弦定理和相似三角形是一种确定边长比例关系的不错选择;方法五:平面向量是解决几何问题的一种重要方法,充分利用平面向量基本定理和向量的运算法则可以将其与余弦定理充分结合到一起;方法六:建立平面直角坐标系是解析几何的思路,利用此方法数形结合充分挖掘几何性质使得问题更加直观化.20.已知函数()()e xf x a a x =+-.(1)讨论()f x 的单调性;(2)证明:当0a >时,()32ln 2f x a >+.【答案】(1)答案见解析(2)证明见解析【解析】【分析】(1)先求导,再分类讨论0a ≤与0a >两种情况,结合导数与函数单调性的关系即可得解;(2)方法一:结合(1)中结论,将问题转化为21ln 02a a -->的恒成立问题,构造函数()()21ln 02g a a a a =-->,利用导数证得()0g a >即可.方法二:构造函数()e 1x h x x =--,证得e 1x x ≥+,从而得到2()ln 1f x x a a x ≥+++-,进而将问题转化为21ln 02a a -->的恒成立问题,由此得证.【小问1详解】因为()()e x f x a a x =+-,定义域为R ,所以()e 1xf x a '=-,当0a ≤时,由于e 0x >,则e 0x a ≤,故()0e 1xf x a -'=<恒成立,所以()f x 在R 上单调递减;当0a >时,令()e 10xf x a '=-=,解得ln x a =-,当ln x a <-时,()0f x '<,则()f x 在(),ln a -∞-上单调递减;当ln x a >-时,()0f x ¢>,则()f x 在()ln ,a -+∞上单调递增;综上:当0a ≤时,()f x 在R 上单调递减;当0a >时,()f x 在(),ln a -∞-上单调递减,()f x 在()ln ,a -+∞上单调递增.【小问2详解】方法一:由(1)得,()()()ln min 2ln ln ln e1a f a a x a f a a a --+=++=+=,要证3()2ln 2f x a >+,即证2312ln 2ln a a a ++>+,即证21ln 02a a -->恒成立,令()()21ln 02g a a a a =-->,则()21212a g a a a a-'=-=,令()0g a '<,则02a <<;令()0g a '>,则2a >;所以()g a 在0,2⎛⎫ ⎪ ⎪⎝⎭上单调递减,在,2⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增,所以()2min 1ln ln 02222g a g ⎛⎫⎛==--= ⎪ ⎪ ⎪⎝⎭⎝⎭,则()0g a >恒成立,所以当0a >时,3()2ln 2f x a >+恒成立,证毕.方法二:令()e 1x h x x =--,则()e 1x h x '=-,由于e x y =在R 上单调递增,所以()e 1xh x '=-在R 上单调递增,又()00e 10h '=-=,所以当0x <时,()0h x '<;当0x >时,()0h x '>;所以()h x 在(),0∞-上单调递减,在()0,∞+上单调递增,故()()00h x h ≥=,则e 1x x ≥+,当且仅当0x =时,等号成立,因为()2ln 22()e e e ln 1x x x a f x a a x a a x a x x a a x +=+-=+-=+-≥+++-,当且仅当ln 0x a +=,即ln x a =-时,等号成立,所以要证3()2ln 2f x a >+,即证23ln 12ln 2x a a x a +++->+,即证21ln 02a a -->,令()()21ln 02g a a a a =-->,则()21212a g a a a a-'=-=,令()0g a '<,则02a <<;令()0g a '>,则2a >;所以()g a 在0,2⎛⎫ ⎪ ⎪⎝⎭上单调递减,在,2⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增,所以()2min 1ln ln 02222g a g ⎛⎫⎛==--= ⎪ ⎪ ⎪⎝⎭⎝⎭,则()0g a >恒成立,所以当0a >时,3()2ln 2f x a >+恒成立,证毕.21.已知函数()()ln 1e x f x x ax -=++(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)若()f x 在区间()()1,0,0,-+∞各恰有一个零点,求a 的取值范围.【答案】(1)2y x=(2)(,1)-∞-【解析】【分析】(1)先算出切点,再求导算出斜率即可(2)求导,对a 分类讨论,对x 分(1,0),(0,)-+∞两部分研究【小问1详解】()f x 的定义域为(1,)-+∞当1a =时,()ln(1),(0)0e x x f x x f =++=,所以切点为(0,0)11(),(0)21e xx f x f x ''-=+=+,所以切线斜率为2所以曲线()y f x =在点(0,(0))f 处的切线方程为2y x=【小问2详解】()ln(1)e xaxf x x =++()2e 11(1)()1e (1)e x x x a x a x f x x x '+--=+=++设()2()e 1x g x a x =+-1︒若0a >,当()2(1,0),()e 10x x g x a x ∈-=+->,即()0f x '>所以()f x 在(1,0)-上单调递增,()(0)0f x f <=故()f x 在(1,0)-上没有零点,不合题意2︒若10a -≤≤,当,()0x ∈+∞,则()e 20x g x ax '=->所以()g x 在(0,)+∞上单调递增所以()(0)10g x g a >=+≥,即()0f x '>所以()f x 在(0,)+∞上单调递增,()(0)0f x f >=故()f x 在(0,)+∞上没有零点,不合题意3︒若1a <-(1)当,()0x ∈+∞,则()e 20x g x ax '=->,所以()g x 在(0,)+∞上单调递增(0)10,(1)e 0g a g =+<=>所以存在(0,1)m ∈,使得()0g m =,即()0'=f m 当(0,),()0,()x m f x f x '∈<单调递减当(,),()0,()x m f x f x '∈+∞>单调递增所以当(0,),()(0)0x m f x f ∈<=,令(),1,e x x h x x =>-则1(),1,e x x h x x -'=>-所以()x x h x e =在()1,1-上单调递增,在()1,+∞上单调递减,所以()1()1e h x h ≤=,又e e 10a -->,e 1e 10e e a a f a -⎛⎫-≥-+⋅= ⎪⎝⎭,所以()f x 在(,)m +∞上有唯一零点又(0,)m 没有零点,即()f x 在(0,)+∞上有唯一零点(2)当()2(1,0),()e 1x x g x a x∈-=+-设()()e 2x h x g x ax '==-()e 20x h x a '=->所以()g x '在(1,0)-单调递增1(1)20,(0)10eg a g ''-=+<=>所以存在(1,0)n ∈-,使得()0g n '=当(1,),()0,()x n g x g x '∈-<单调递减当(,0),()0,()x n g x g x '∈>单调递增,()(0)10g x g a <=+<又1(1)0eg -=>所以存在(1,)t n ∈-,使得()0g t =,即()0f t '=当(1,),()x t f x ∈-单调递增,当(,0),()x t f x ∈单调递减,当()1,0x ∈-,()()1e h x h >-=-,又e 1e 10a -<-<,()e e 1e e 0a f a a -<-=而(0)0f =,所以当(,0),()0x t f x ∈>所以()f x 在(1,)t -上有唯一零点,(,0)t 上无零点即()f x 在(1,0)-上有唯一零点所以1a <-,符合题意所以若()f x 在区间(1,0),(0,)-+∞各恰有一个零点,求a 的取值范围为(,1)-∞-【点睛】方法点睛:本题的关键是对a 的范围进行合理分类,否定和肯定并用,否定只需要说明一边不满足即可,肯定要两方面都说明.(二)选考题:共10分.请考生在第22、23题中任选一题做答.如果多做,则按所做的第一题记分.选修4—4:坐标系与参考方程22.在直角坐标系xOy 中,曲线M 的方程为24y x x =-+,曲线N 的方程为9xy =,以坐标原点O 为极点,x 轴的正半轴为极轴,建立极坐标系.(1)求曲线M ,N 的极坐标方程;(2)若射线00π:(0,02l θθρθ=≥<<与曲线M 交于点A (异于极点),与曲线N 交于点B ,且||||12OA OB ⋅=,求0θ.【答案】(1)π4cos 02ρθθ⎛⎫=≤≤⎪⎝⎭;2sin 218ρθ=(2)π4【解析】【分析】(1)根据极坐标与直角坐标的互化公式,即可求解曲线M 和N 的极坐标方程;(2)将0θθ=代入曲线M 和N的方程,求得||OB ρ==0||4cos OA ρθ==,结合题意求得0tan 1θ=,即可求解.【小问1详解】解:由y =224(0)y x x y =-+≥,即224(04,0)x y x x y +=≤≤≥,又由cos sin x y ρθρθ=⎧⎨=⎩,可得2π4cos (0)2ρρθθ=≤≤,所以曲线M 的极坐标方程为π4cos 02ρθθ⎛⎫=≤≤⎪⎝⎭.由9xy =,可得2cos sin 9ρθθ=,即2sin 218ρθ=,即曲线N 的极坐标方程为2sin 218ρθ=.【小问2详解】解:将0θθ=代入2sin 218ρθ=,可得||OB ρ==将0θθ=代入4cos ρθ=,可得0||4cos OA ρθ==,则||||OA OB ⋅=,因为||||12OA OB ⋅=,所以0tan 1θ=,又因为0π02θ<<,所以0π4θ=.选修4—5:不等式选讲23.已知函数()121f x x x =++-.(1)求不等式()8f x <的解集;(2)设函数()()1g x f x x =--的最小值为m ,且正实数a ,b ,c 满足a b c m ++=,求证:2222a b c b c a++≥.【答案】(1)7,33⎛⎫- ⎪⎝⎭(2)证明见详解【解析】【分析】(1)分段讨论去绝对值即可求解;(2)利用绝对值不等式可求得2m =,再利用基本不等式即可证明.【小问1详解】由题意可得:()31,11213,1131,1x x f x x x x x x x -≥⎧⎪=++-=--<<⎨⎪-+≤-⎩,当1x ≥时,则()318f x x =-<,解得23x ≤<;当11x -<<时,则()38f x x =-<,解得11x -<<;当1x ≤-时,则()318f x x =-+<,解得713x -<≤-;综上所述:不等式()8f x <的解集为7,33⎛⎫-⎪⎝⎭.【小问2详解】∵()()1112g x f x x x x =++---≥=,当且仅当[]1,1x ∈-时等号成立,∴函数()g x 的最小值为2m =,则2a b c ++=,又∵22a b a b +≥=,当且仅当2a b b =,即a b =时等号成立;22b c b c +≥=,当且仅当2b c c =,即b c =时等号成立;22c a c a +≥=,当且仅当2c a a =,即a c =时等号成立;上式相加可得:222222a b c b c a a b c b c a ⎛⎫⎛⎫⎛⎫+++++≥++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当且仅当a b c ==时等号成立,∴2222a b c a b c b c a ++≥++=.。

黑龙江哈尔滨市黑龙江省实验中学2024-2025学年高三上学期第二次月考(10月)数学试题(无答案)

黑龙江哈尔滨市黑龙江省实验中学2024-2025学年高三上学期第二次月考(10月)数学试题(无答案)

黑龙江省实验中学2024-2025学年高三学年上学期第二次月考数学试题考试时间:120分钟 总分:150分 命题人:高三数学备课组一、单项选择题(共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合要求)1.若集合,其中且,则实数的取值范围是( )A. B. C. D.2.“”是“”的( )A.充要条件 B.既不充分又不必要条件C.必要不充分条件 D.充分不必要条件3.已知复数满足,则复数的共轭复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限4.若正数满足,则的最小值为( )A.3 B.6 C.9 D.125.已知函数的定义域为,且,若函数的图象与函数的图象有交点,且交点个数为奇数,则( )A. B.0 C.1 D.26.在中,,设点为的中点,在上,且,则( )A.16B.12C.8D.7.已知函数在上有且仅有两个零点,则正数的取值范围是( )A. B. C. D.{}230,A xmx m =->∈R ∣2A ∈1A ∉m 33,42⎛⎤ ⎥⎝⎦33,42⎡⎫⎪⎢⎣⎭33,42⎛⎫ ⎪⎝⎭33,42⎡⎤⎢⎥⎣⎦5π12α=22cos sin αα-=z ()22i (1i)z -=+z z ,a b 1232ab a b =++ab ()y f x =R ()()f x f x -=()y f x =()2log 22x x y -=+()0f =1-ABC V π6,4,2BC AB CBA ∠===D AC E BC 0AE BD ⋅= BC AE ⋅= 4-()445sin cos 8f x x x ωω=+-π0,4⎛⎤⎥⎝⎦ω48,33⎛⎤ ⎥⎝⎦48,33⎡⎫⎪⎢⎣⎭816,33⎛⎤ ⎥⎝⎦816,33⎡⎫⎪⎢⎣⎭8.在中,内角所对的边分别为.已知的外接圆半径是边的中点,则长为( )B.C.二、多项选择题(共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,部分选对得部分分,有错选得0分)9.函数的部分图象如图所示,则()A.该图像向右平移个单位长度可得的图象B.函数的图像关于点对称C.函数的图像关于直线对称D.函数在上单调递减10.已知是平面上的三个非零向量,那么( )A.若,则B.若,则C.若,则与的夹角为D.若,则在方向上的投影向量相同ABC V ,,A B C ,,a b c 222π,24,3A b c ABC =+=V R D =AC BD 1+()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭π63sin2y x =()y f x =π,06⎛⎫- ⎪⎝⎭()y f x =5π12x =-()y f x =2ππ,36⎡⎤--⎢⎥⎣⎦,,a b c ()()a b c b c a ⋅=⋅ a ∥ca b a b +=- 0a b ⋅= a b a b ==+ a a b - π3a b a c ⋅=⋅ ,b c a11.定义在上的函数满足,则( )A.是周期函数B.C.的图象关于直线对称D.三、填空题(共3小题,每小题5分,共15分)12.已知,则__________.13.若数列满足,则__________.14.已知函数及其导函数的定义域均为,且为偶函数,若时,,且,则不等式的解集为__________.四、解答题(本大题共5个小题,共77分,解答应写出文字说明,证明过程或演算步骤)15.(本题满分13分)在中,内角,C 所对的边分别为.已知.(1)求角的大小;(2)若且,求的外接圆半径.16.(本题满分15分)在中,角所对的边分别为,设向量.(1)求函数的最小值;(2)若,求的面积.17.(本题满分15分)R ()f x ()()()()()322,6,12f x f x f f x f x f ⎛⎫++=+=-=⎪⎝⎭()f x ()20240f =()f x ()21x k k =-∈Z 20241120242k k f k=⎛⎫-= ⎪⎝⎭∑πsin 6x ⎛⎫+= ⎪⎝⎭ππcos 2cos 233πcos 2sin cos 3x x x x x ⎛⎫⎛⎫+-- ⎪ ⎪⎝⎭⎝⎭=⎛⎫+ ⎪⎝⎭{}n a 21111,1n na a a +==-985a =()f x ()f x 'ππ,22⎛⎫-⎪⎝⎭()f x 0x ≥()()tan f x f x x ≥'π23f ⎛⎫= ⎪⎝⎭()1cos f x x <ABC V ,A B ,,a b c 12cos sin 2sin sin B C A B =+C 32a b c +=3a =ABC V ABC V ,,A B C ,,a b c ()()()π2π2sin ,cos ,cos sin ,,,63m A A A n A A A f A m n A ⎡⎤=+=-=⋅∈⎢⎥⎣⎦ ()f A ()0,sin f A a B C ==+=ABC V已知锐角的三个内角,C 所对的边为.(1)求角的大小;(2)求的取值范围.18.(本题满分17分)已知函数.(1)当时,求的极值;(2)若,当时,恒成立,求的取值范围.19.(本题满分17分)已知函数.(1)当时,设,求在处的切线方程;(2)当时,求的单调区间;(3)证明:若曲线与直线有且仅有两个交点,求的取值范围.ABC ,A B ()()(),,,cos cos cos cos sin sin a b c A B A B C C A +-=B 222a c b+()()()22ln 1f x ax a x x a =-+++∈R 1a =()f x ()12,0,x x ∞∀∈+12x x ≠()()12122f x f x x x ->--a ()log a a x f x x =e a =()()e 1F x xf x -=()F x 1x =2a =()f x ()y f x =21y a =a。

湖南省长沙市雅礼中学2019-2020高三上学期月考二数学(文)试题解析版

湖南省长沙市雅礼中学2019-2020高三上学期月考二数学(文)试题解析版

雅礼中学2019届高三月考试卷(二)数学(文科)第Ⅰ卷一、选择题:本大题共12个小题,毎小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的1. 已知命题2:,0p x R x ∀∈>,则( ) A. 命题p ⌝:2,0x R x ∀∈≤,为假命题B. 命题p ⌝:2,0x R x ∀∈≤,为真命题C. 命题p ⌝:200,0x R x ∃∈≤,为假命题D. 命题p ⌝:200,0x R x ∃∈≤,为真命题2. 已知i 是虚数单位,则41()1i i+=-( ) A. iB. i -C. 1D. —13. “上医医国”出自《国语・晋语八》,比喻高贤能治理好国家.现把这四个字分别写在四张卡片上,其中“上”字已经排好,某幼童把剩余的三张卡片进行排列,则该幼童能将这句话排列正确的概率是( ) A.13B.16C.14D.1124. 中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,-2),则它的离心率为A.B.C.D.5. 已知△ABC 是边长为1的等边三角形,D 为BC 中点,则(AB +AC )•(AB -DB )的值为( ) A. 32-B.32C. 34-D.346. 已知0x 是()112xf x x⎛⎫=+ ⎪⎝⎭的一个零点,()()1020,,,0x x x x ∈-∞∈,则( ) A. ()()120,0f x f x << B. ()()120,0f x f x >> C. ()()120,0f x f x ><D. ()()120,0f x f x7. 已知等比数列{}n a 中,各项都是正数,且1321,,22a a a 成等差数列,则91078a a a a +=+( )A. 1B. 1C. 3+D. 3-8. 函数y =||2x sin2x 的图象可能是A. B.C. D.9. 正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( ) A.814πB. 16πC. 9πD.274π10. 若函数()sin(2))()2f x x x πθθθ=++<的图象关于点(,0)6π对称,则()f x 的单调速增区间为( ) A. 5[,],36k k k z ππππ++∈ B. [,],63k k k z ππππ-++∈C. 7[,],1212k k k z ππππ-+-+∈ D. 5[,],1212k k k z ππππ-++∈ 11. 设函数22()()(),,()x f x x t e t x R f x b =-+-∀∈≥恒成立,则实数b 的最大值为( )A.B.12C. 1D. e12. 设O 为坐标原点,P 是以F 为焦点的抛物线()220y px p =>上任意一点,M 是线段PF 上的点,且2PM MF =,则直线OM 的斜率的最大值为( )A.B.23C.2D. 1第Ⅱ卷二、填空题:本大题共4个小题,每小题5分,共20分13. 已知函数2()2()log xa f x +=,若()20f =,则a = _____.14. 一个六棱锥的体积为,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为 . 15. 设ABC ∆内角,,A B C 所对的边长分别为,,a b c ,且4cos ,25B b ==,则ABC ∆面积的最大值为_______.16. 已知数列{}n a 满足11a =,()()111n n na n a n n +=+++,且2cos3n n n b a π=⋅,记n S 为数列{}n b 的前n 项和,则24S =_____.三、解答题:本大題共70分.解答应写出文字说明、证明过程或演算步骤17. 已知函数2()sin 22sin f x x x =-. (1)求函数()f x 的最小正周期;(2当[0,]2x π∈时,求函数()f x 的值域.18. 已知四棱锥P ABCD -的三视图如图所示,其中正视图、侧视图是直角三角形,俯视图是有一条对角线的正方形,E 是侧棱PC 上的动点PC .(1)求证:平面PAC ⊥平面BDE ;(2)若E 为PC 的中点,求直线BE 与平面PBD 所成角的正弦值.19. 二手车经销商小王对其所经营的A 型号二手汽车的使用年数x (单位年)与销售价格y (单位:万元/辆)进行整理,得到如下数据:下面是z 关于x 的折线图.的(1)由折线图可以看出,可以用线性回归模型拟合z 与x 的关系,求z 关于x 的回归方程,并预测当某辆A 型号二手车使用年数为9年时售价约为多少?(,b a 小数点后保留两位有效数字) (2)基于成本考虑,该型号二手车的售价不得低于7118元,请根据(1)求出的回归方程预测在收购该型号二手车时车辆的使用年数不得超过多少年?参考公式:回归方程y bx a =+中斜率和截距的最小二乘估计公式分别为:1122211()()()()nni iiii i nniii i x y nx y x x yy b xn x x x ====---==--∑∑∑∑,a y bx =-,6621147.64,139,2,ln1.460.38,ln 0.7110.34i ii i i x zx z =====≈≈-∑∑.20. 已知椭圆2222:1(0)x y E a b a b+=>>的离心率为1,2F 为左焦点,过点F 作x 轴的垂线,交椭圆E 于,A B 两点,3AB =.(1)求椭圆E 的方程; (2)过圆22127x y +=上任意一点作圆切线交椭圆E 于,M N 两点,O 为坐标原点,问:OM ON ⋅是否为定值?若是,请求出定值;若不是,请说明理由. 21. 已知函数2()(2)ln f x x a x a x =-++,其中实数0a >. (1)讨论函数()f x 的单调性;(2)设定义在D 上的函数()y h x =在点()()00,P x h x 处的切线的方程为()y g x =,当0x x ≠时,若()()0h x g x x x ->-在D 内恒成立,则称P 为()y h x =的“类对称点”当4a =时,试问()y f x =是否存在“类对称点”?若存在,请至少求出一个“类对称点”的横坐标;若不存在,请说明理由.的请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目如果多做,则按所做的第一个题目计分坐标系与参数方程 22.在平面直角坐标系xOy 中,曲线C 的参数方程为3cos sin x y αα=⎧⎨=⎩(a 为参数),在以原点为极点,x 轴正半轴为极轴的极坐标系中,直线l的极坐标方程为sin 4πρθ⎛⎫-= ⎪⎝⎭. (1)求C 的普通方程和l 的倾斜角;(2)设点(0,2)P ,l 和C 交于A ,B 两点,求||+||PA PB . 不等式选讲23. 已知函数()223,()213f x x a x g x x =-++=++. (1)解不等式:()5g x <; (2)若对任意1x R ∈,都有2x R ∈,使得12()()f x g x =成立,求实数a 的取值范围.雅礼中学2019届高三月考试卷(二)数学(文科)第Ⅰ卷一、选择题:本大题共12个小题,毎小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的1. 已知命题2:,0p x R x ∀∈>,则( ) A. 命题p ⌝:2,0x R x ∀∈≤,假命题B. 命题p ⌝:2,0x R x ∀∈≤,为真命题C. 命题p ⌝:200,0x R x ∃∈≤,为假命题D. 命题p ⌝:200,0x R x ∃∈≤,为真命题【答案】D 【解析】 【分析】命题的否定,必须同时改变两个地方:①:“∀”;②:“>”即可,据此分析选项可得答案.【详解】命题2:,0p x R x ∀∈>,则命题p ⌝:200,0x R x ∃∈≤,为真命题的故选D【点睛】本题主要考查了命题的否定的写法,属于基础题. 2. 已知i 是虚数单位,则41()1i i+=-( ) A. i B. i -C. 1D. —1【答案】C 【解析】 【分析】利用复数代数形式的乘除法运算即可得到结果.【详解】41()1i i +-=()2441[]12i i +==, 故选C .【点睛】本题主要考查的是复数的乘法、除法运算,属于中档题.解题时一定要注意21i =-和()()()()a bi c di ac bd ad bc i ++=-++以及()()()()a bi c di a bi c di c di c di +-+=++- 运算的准确性,否则很容易出现错误.3. “上医医国”出自《国语・晋语八》,比喻高贤能治理好国家.现把这四个字分别写在四张卡片上,其中“上”字已经排好,某幼童把剩余的三张卡片进行排列,则该幼童能将这句话排列正确的概率是( ) A.13B.16C.14D.112【答案】A 【解析】 【分析】先排好医字,共有23C 种排法,再排国字,只有一种方法. 【详解】幼童把这三张卡片进行随机排列, 基本事件总数n=23C =3,∴该幼童能将这句话排列正确的概率p=13. 故选A【点睛】有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数:1.基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举;2.注意区分排列与组合,以及计数原理的正确使用.4. 中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(4,-2),则它的离心率为C.2【答案】D 【解析】由题意知,过点(4,-2)的渐近线方程为y=-b ax, ∴-2=-b a×4, ∴a=2b.设b=k,则∴e=c a .5. 已知△ABC 是边长为1的等边三角形,D 为BC 中点,则(AB +AC )•(AB -DB )的值为( ) A. 32-B.32C. 34-D.34【答案】B 【解析】 【分析】由题意得到AD ,进而由线性运算及数量积运算得到结果. 【详解】∵ABC ∆是边长为1的等边三角形,D 为BC 中点,∴AD =而()()23222AB AC AB DB AD AD AD +⋅-===故选B【点睛】平面向量数量积的类型及求法(1)求平面向量数量积有三种方法:一是夹角公式cos a b a b θ⋅=⋅;二是坐标公式1212a b x x y y ⋅=+;三是利用数量积的几何意义.(2)求较复杂的平面向量数量积的运算时,可先利用平面向量数量积的运算律或相关公式进行化简.6. 已知0x 是()112xf x x⎛⎫=+ ⎪⎝⎭的一个零点,()()1020,,,0x x x x ∈-∞∈,则( ) A. ()()120,0f x f x << B. ()()120,0f x f x >> C. ()()120,0f x f x >< D. ()()120,0f x f x【答案】C 【解析】 【分析】已知x 0是()11()2xf x x =+的一个零点,可令h (x )=1()2x ,g (x )=﹣1x,画出h (x )与g (x )的图象,判断h (x )与g (x )的大小,从而进行求解;【详解】∵已知x 0是()11()2x f x x=+的一个零点,x 1∈(﹣∞,x 0),x 2∈(x 0,0),可令h (x )=1()2x ,g (x )=﹣1x,如下图:当0>x >x 0,时g (x )>h (x ),h (x )﹣g (x )=112xx ⎛⎫+ ⎪⎝⎭<0;当x <x 0时,g (x )<h (x ),h (x )﹣g (x )=112xx⎛⎫+ ⎪⎝⎭>0; ∵x 1∈(﹣∞,x 0),x 2∈(x 0,0), ∴f (x 1)>0,f (x 2)<0, 故选C .【点睛】函数零点的求解与判断(1)直接求零点:令()0f x =,如果能求出解,则有几个解就有几个零点;(2)零点存在性定理:利用定理不仅要函数在区间[],a b 上是连续不断的曲线,且()()0f a f b ⋅<,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点;(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.7. 已知等比数列{}n a 中,各项都是正数,且1321,,22a a a 成等差数列,则91078a a a a +=+( )A. 1+B. 1C. 3+D. 3-【答案】C 【解析】试题分析:由已知3122a a a =+,所以21112a q a a q =+,因为数列{}n a的各项均为正,所以1q =,2229107878783a a a q a q q a a a a ++===+++C .考点:等差数列与等比数列的性质.8. 函数y =||2x sin2x 的图象可能是A. B.C. D.【答案】D 【解析】分析:先研究函数的奇偶性,再研究函数在π(,π)2上的符号,即可判断选择.详解:令||()2sin 2x f x x =, 因为,()2sin 2()2sin 2()xx x R f x x x f x -∈-=-=-=-,所以||()2sin 2x f x x =为奇函数,排除选项A,B; 因为π(,π)2x ∈时,()0f x <,所以排除选项C ,选D.点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.9. 正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( ) A.814πB. 16πC. 9πD.274π【答案】A 【解析】【详解】正四棱锥P-ABCD 的外接球的球心在它的高1PO 上, 记为O ,PO=AO=R ,14PO =,1OO =4-R ,在Rt △1AOO 中,1AO =由勾股定理()2224R R =+-得94R =, ∴球的表面积814S π=,故选A.考点:球的体积和表面积10. 若函数()sin(2))()2f x x x πθθθ=++<图象关于点(,0)6π对称,则()f x 的单调速增区间为( )A. 5[,],36k k k z ππππ++∈ B. [,],63k k k z ππππ-++∈C. 7[,],1212k k k z ππππ-+-+∈ D. 5[,],1212k k k z ππππ-++∈ 【答案】C 【解析】 【分析】利用两角和的正弦公式化成标准形式,根据图象关于点06π⎛⎫⎪⎝⎭,对称,求出θ的值,然后根据正弦函数的单调增区间求函数f (x )的单调增区间.【详解】f (x )=sin (2x+θ)(2x+θ), =2sin (2x+θ+3π), ∵图象关于点06π⎛⎫ ⎪⎝⎭,对称, ∴2×6π+θ+3π=kπ,(k ∈Z ) ∴θ=kπ23π-,(k ∈Z ),∵|θ|<2π,∴3πθ=,∴f (x )=2sin (2x+23π);由2222232k x k πππππ-+≤+≤+(k ∈Z ) 解得:71212k x k ππππ-+≤≤-+(k ∈Z ) ∴函数f (x )的增区间为71212k k k Z ππππ⎡⎤-+-+∈⎢⎥⎣⎦,. 故选C .【点睛】本题考查了三角函数式的化简及三角函数的图象与性质,解题的关键是把三角函数式化成标准形式,在求θ值时要注意其范围.11. 设函数22()()(),,()x f x x t e t x R f x b =-+-∀∈≥恒成立,则实数b 的最大值为( )A.2B.12C. 1D. e【答案】B 【解析】 【分析】()f x 的几何意义是函数x y e =上的点(),x x e 到直线y x =上的点(),t t 的距离的平方【详解】()f x 几何意义是函数xy e =上的点(),xx e到直线y x =上的点(),t t 的距离的平方,当切点为()0,1P 时,切线的斜率为1,P 到直线y x =, ∴12b ≤. 故选B【点睛】不等式恒成立问题往往转化为函数的最值问题,本题解题的关键是理解函数式隐含的几何意义. 12. 设O 为坐标原点,P 是以F 为焦点的抛物线()220y px p =>上任意一点,M 是线段PF 上的点,且2PM MF =,则直线OM 的斜率的最大值为( )A.B.23C.2D. 1【答案】C 【解析】试题分析:设200,)2y P y p (,由题意(,0)2p F ,显然00y <时不符合题意,故00y >,则 2001112()(,)3333633y y p OM OF FM OF FP OF OP OF OP OF p =+=+=+-=+=+,可得:200023263OM y k y p y p p y p ==≤=++,当且仅当22002,y p y =时取等号,故选C . 考点:1.抛物线的简单几何性质;2.均值不等式.【方法点晴】本题主要考查的是向量在解析几何中的应用及抛物线标准方程方程,均值不等式的灵活运用,属于中档题.解题时一定要注意分析条件,根据条件||2||PM MF =,利用向量的运算可知的200(,)633y y p M p +,写出直线的斜率,注意均值不等式的使用,特别是要分析等号是否成立,否则易出问题.第Ⅱ卷二、填空题:本大题共4个小题,每小题5分,共20分13. 已知函数2()2()log xa f x +=,若()20f =,则a = _____.【答案】3- 【解析】 【分析】推导出f (2)=log 2(4+a )=0,由此能求出a 的值. 【详解】∵函数f (x )=log 2(x 2+a ),f (2)=0, ∴f (2)=log 2(4+a )=0, 解得a=﹣3. 故答案为﹣3.【点睛】本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.14. 一个六棱锥的体积为,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为 . 【答案】12 【解析】【详解】试题分析:判断棱锥是正六棱锥,利用体积求出棱锥的高,然后求出斜高,即可求解侧面积.∵一个六棱锥的体积为2的正六边形,侧棱长都相等,∴棱锥是正六棱锥,设棱锥的高为h ,则216213h h ⨯⨯∴==,2==,该六棱锥的侧面积为1622122⨯⨯⨯=. 考点:棱柱、棱锥、棱台的体积15. 设ABC ∆的内角,,A B C 所对的边长分别为,,a b c ,且4cos ,25B b ==,则ABC ∆面积的最大值为_______. 【答案】3 【解析】 【分析】利用余弦定理得出ac 的最大值从而得出面积的最大值.【详解】由余弦定理可得cosB=2222a c b ac +-=2242a c ac +-=45, ∴a 2+c 2=85ac +4≥2ac ,解得ac ≤10, ∴S △ABC =12acsinB=310ac ≤3. ∴△ABC 面积的最大值是3. 故答案为3【点睛】解三角形的基本策略一是利用正弦定理实现“边化角”,二是利用余弦定理实现“角化变;求三角形面积的最大值也是一种常见类型,主要方法有两类,一是找到边之间的关系,利用基本不等式求最值,二是利用正弦定理,转化为关于某个角的函数,利用函数思想求最值.16. 已知数列{}n a 满足11a =,()()111n n na n a n n +=+++,且2cos3n n n b a π=⋅,记n S 为数列{}n b 的前n 项和,则24S =_____.【答案】304 【解析】 【分析】由na n+1=(n+1)a n +n (n+1),变形为11n a n ++﹣n a n =1,利用等差数列的通项公式可得:n an,可得a n .由b n =a n cos 23n π=223n n cos π,对n 分类讨论利用三角函数的周期性即可得出. 【详解】∵()()111n n na n a n n +=+++, ∴111n n a a n n +-=+,∴数列n a n ⎧⎫⎨⎬⎩⎭是公差与首项都为1的等差数列. ∴()111na n n=+-⨯,可得2n a n =. ∵2πcos 3n n n b a =,∴22πcos 3n n b n =,令32n k =-,k *∈N , 则()()()2232232π132cos 3232k k b k k --=-=--,k *∈N , 同理可得()2311322k b k -=--,k *∈N ,()233k b k =,k *∈N . ∴()()()22232313115323139222k k k b b b k k k k --++=----+=-,k *∈N ,则()245912883042S =⨯+++-⨯=.故答案为304【点睛】本题考查了等差数列的通项公式、递推关系、三角函数的周期性,考查了分类讨论方法、推理能力与计算能力,属于中档题.三、解答题:本大題共70分.解答应写出文字说明、证明过程或演算步骤17. 已知函数2()sin 22sin f x x x =-. (1)求函数()f x 的最小正周期; (2当[0,]2x π∈时,求函数()f x 的值域.【答案】(1)π;(2)1⎡⎤-⎣⎦.【解析】 【分析】(1)由三角函数的公式化简已知函数可得f (x )2?14x π⎛⎫+- ⎪⎝⎭,易得周期; (2)由x 的范围,结合不等式的性质,一步步可得值域,先求函数的单调区间,结合函数的定义域可得答案.【详解】(1)因为()()πsin21cos2214f x x x x ⎛⎫=--=+- ⎪⎝⎭,所以函数()f x 的最小正周期为2ππ2T ==. (2)π0,2x ⎡⎤⎢⎥⎣⎦时,ππ5π2,444x ⎡⎤+∈⎢⎥⎣⎦,∴πsin 242x ⎡⎤⎛⎫+∈-⎢⎥ ⎪⎝⎭⎣⎦.∴π24x ⎛⎫⎡+∈- ⎪⎣⎝⎭.∴()f x 的值域为()1f x ⎡⎤∈-⎣⎦.【点睛】本题考查三角函数的公式的应用,涉及正弦函数的单调性以及函数值域的求解,属中档题. 18. 已知四棱锥P ABCD -的三视图如图所示,其中正视图、侧视图是直角三角形,俯视图是有一条对角线的正方形,E 是侧棱PC 上的动点PC .(1)求证:平面PAC ⊥平面BDE ;(2)若E 为PC 的中点,求直线BE 与平面PBD 所成角的正弦值.【答案】(1)证明见解析;(2)6. 【解析】 【分析】(1)要证平面PAC ⊥平面BDE ,转证BD ⊥平面PAC ,即证BD AC BD PC ⊥⊥,;(2)过点E 作EH PO ⊥于H ,则EH ⊥平面PBD ,故EBH ∠为BE 与平面PBD 所成的角,解三角形即可得到结果.【详解】(1)由已知PC BC ⊥,PC DC PC ⊥⇒⊥平面ABCD , ∵BD ⊂平面ABCD BD PC ⇒⊥, 又∵BD AC ⊥,∴BD ⊥平面PAC .因BD ⊂平面EBD ,则平面PAC ⊥平面BDE . (2)法1:记AC 交BD 于点O ,连PO ,由(1)得平面PAC ⊥平面BDP ,且交于直线PO , 过点E 作EH PO ⊥于H ,则EH ⊥平面PBD , ∴EBH ∠为BE 与平面PBD 所成的角.∵EH PO OC PE ⋅=⋅,∴12EH =.∴13EH =.又BE =1sin6EBH ∠==.于是,直线BE 与平面PBD 所成角的正弦值是6. 法2:(等体积法)∵E PBD D PBE V V --=, ∴E 点到平面PBD 的距离为13.又BE =1sin6EBH ∠==.于是,直线BE 与平面PBD . 【点睛】求直线和平面所成角的关键是作出这个平面的垂线进而斜线和射影所成角即为所求,有时当垂线较为难找时也可以借助于三棱锥的等体积法求得垂线长,进而用垂线长比上斜线长可求得所成角的正弦值,当空间关系较为复杂时也可以建立空间直角坐标系,利用向量求解.19. 二手车经销商小王对其所经营的A 型号二手汽车的使用年数x (单位年)与销售价格y (单位:万元/辆)进行整理,得到如下数据:下面是z 关于x 的折线图.(1)由折线图可以看出,可以用线性回归模型拟合z 与x 的关系,求z 关于x 的回归方程,并预测当某辆A 型号二手车使用年数为9年时售价约为多少?(,b a 小数点后保留两位有效数字)(2)基于成本的考虑,该型号二手车的售价不得低于7118元,请根据(1)求出的回归方程预测在收购该型号二手车时车辆的使用年数不得超过多少年?参考公式:回归方程y bx a =+中斜率和截距的最小二乘估计公式分别为:1122211()()()()n ni iiii i nniii i x y nx y x x yy b xn x x x ====---==--∑∑∑∑,a y bx =-,6621147.64,139,2,ln1.460.38,ln 0.7110.34i ii i i x zx z =====≈≈-∑∑.【答案】(1)1.46万元;(2)11. 【解析】 【分析】(1)利用最小二乘估计公式计算ˆb 、ˆa ,写出z 与x 的线性回归方程,求出y 关于x 的回归方程,计算x=9时y ∧的值即可;(2)利用线性回归方程求出y ∧≥0.7118时x 的取值范围,即可得出预测结果. 【详解】(1)由题意,计算()1234567 4.56x =⨯+++++=, ()13 2.48 2.08 1.86 1.48 1.1026z =⨯+++++=,且6147.64i ii x z==∑,621139i i x ==∑,利用最小二乘估计公式计算616222147.646 4.52 6.360.36139ˆ6 4.517.5i i i i i x z nxz b x nx==--⨯⨯===-≈--⨯-∑∑, ∴20.36ˆˆ 4.5 3.62a z bx=-=+⨯=, ∴z 关于x 的线性回归方程是0.36 3.6ˆ2zx =-+, 又ln z y =,∴y 关于x 的回归方程是0.36 3.62ˆx y e -+=;令9x =,解得0.369 3.62.6ˆ14ye -⨯+=≈,即预测当某辆A 型号二手车使用年数为9年时售价约1.46万元.(2)当0.18ˆ71y≥时,0.36 3.62ln0.71180.340.7118x e e e -+-≥==, ∴0.36 3.620.34x -+≥-,解得11x ≤,因此预测在收购该型号二手车时车辆的使用年数不得超过11年. 【点睛】求线性回归直线方程的步骤(1)用散点图或进行相关性检验判断两个变量是否具有线性相关关系;(2)求系数ˆb:公式有两种形式,即()()()1122211ˆn n i i i i i i n n i i i i x x y y x y nxyb x nx x x ====∑--∑-==∑-∑-.当数据较复杂时,题目一般会给出部分中间结果,观察这些中间结果来确定选用公式的哪种形式求ˆb ; (3)求ˆa: ˆˆa y bx =-; (4)写出回归直线方程ˆˆˆybx a =+. 20. 已知椭圆2222:1(0)x y E a b a b+=>>的离心率为1,2F 为左焦点,过点F 作x 轴的垂线,交椭圆E 于,A B 两点,3AB =.(1)求椭圆E 的方程; (2)过圆22127x y +=上任意一点作圆的切线交椭圆E 于,M N 两点,O 为坐标原点,问:OM ON ⋅是否为定值?若是,请求出定值;若不是,请说明理由.【答案】(1)22143x y +=;(2)0. 【解析】 【分析】(1)根据椭圆的离心率及通径公式,即可求得a 和b 的值,求得椭圆方程; (2)对k 分类讨论,利用设而不求法即可得到OM ON ⋅为定值.【详解】(1)∵离心率为12,则12c a =.∴2234b a =.∵3AB =,∴223b a=.∴24a =,23b =.则椭圆E 的标准方程为22143x y +=.(2)当切线斜率不存在时,取切线为x =代入椭圆方程是M,N,或M,N .∴1207OM ON ⋅==, 同理,取切线为x =0OM ON ⋅=. 当切线斜率存在时,设切线y kxb =+,则d ==()227121b k =+. ①联立()222223484120143y kx b k x kbx b x y =+⎧⎪⇒+++-=⎨+=⎪⎩. 设()11,M x y ,()22,N x y ,则122212283441234kb x x kb x x k -⎧+=⎪⎪+⎨-⎪=⎪+⎩②③ ()()()()221212*********x x y y x x kx b kx b k x x x x kb b +=+++=++++, ④把①②③代入④得12120x x y y +=,0OM ON ⋅=. 综合以上,OM ON ⋅为定值0. 【点睛】求定值问题常见的方法①从特殊入手,求出定值,再证明这个值与变量无关.②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值. 21. 已知函数2()(2)ln f x x a x a x =-++,其中实数0a >. (1)讨论函数()f x 的单调性;(2)设定义在D 上的函数()y h x =在点()()00,P x h x 处的切线的方程为()y g x =,当0x x ≠时,若()()0h x g x x x ->-在D 内恒成立,则称P 为()y h x =的“类对称点”当4a =时,试问()y f x =是否存在“类对称点”?若存在,请至少求出一个“类对称点”的横坐标;若不存在,请说明理由.【答案】(1)①当2a =时,()f x 的单调递增区间为()0,∞+;②当2a >时,()f x 的单调递增区间为()0,1和,2a ⎛⎫+∞ ⎪⎝⎭,单调递减区间为1,2a ⎛⎫ ⎪⎝⎭;③当02a <<时,()f x 的单调递增区间为0,2a ⎛⎫ ⎪⎝⎭和()1,+∞,单调递减区间为,12a ⎛⎫⎪⎝⎭;(2)见解析. 【解析】【分析】(1)f (x )的定义域是(0,+∞),求出函数的导数,对a 分情况进行讨论,(2)当a=4时,f (x )=x 2﹣6x+4lnx ,求出f′(x )=2x +4x﹣6,得到令φ(x )=f (x )﹣g (x )=x 2﹣6x+4lnx ﹣(2x 0+04x ﹣6)(x ﹣x 0)+20x ﹣6x 0+4lnx 0,求出函数φ(x )的导数,再通过讨论x 的范围得出结论. 【详解】(1)()f x 的定义域是()0,+∞.()()()()()2222122x a x a x a x a f x x a x x x-++-'-=-++==. ①当12a =,即2a =时,()()2210x f x x-'=≥, ∴()f x 的单调递增区间为()0,+∞. ②当12a >,即2a >时,由()0f x '>得01x <<或2a x >,由()0f x '<得12a x <<, ∴()f x 的单调递增区间为()0,1和,2a ⎛⎫+∞⎪⎝⎭,单调递减区间为1,2a ⎛⎫ ⎪⎝⎭. ③当12a <,即02a <<时,由()0f x '>得02a x <<或1x >,由()0f x '<得12a x <<. ∴()f x 的单调递增区间为0,2a ⎛⎫ ⎪⎝⎭和()1,+∞,单调递减区间为,12a ⎛⎫ ⎪⎝⎭. (2)当4a =时,()264ln f x x x x =-+,()426f x x x+'=-, ()()200000042664ln y g x x x x x x x x ⎛⎫==+--+-+ ⎪⎝⎭.令()()()()22000000464ln 2664ln x f x g x x x x x x x x x x x ϕ⎛⎫=-=-+-+---+- ⎪⎝⎭, 则()00x ϕ=.()()()000000044222262621x x x x x x x x x x x x x x ϕ⎛⎫⎛⎫⎛⎫=+--+-=--=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ()00022x x x x x x -⎛⎫=- ⎪⎝⎭,当00x <<()x ϕ在002,x x ⎛⎫ ⎪⎝⎭上单调递减. ∴当002,x x x ⎛⎫∈ ⎪⎝⎭时,()()00x x ϕϕ<=,从而有002,x x x ⎛⎫∈ ⎪⎝⎭时,()00x x x ϕ<-.当0x ()x ϕ002,x x ⎛⎫ ⎪⎝⎭上单调递减. ∴当002,x x x ⎛⎫∈ ⎪⎝⎭时,()()00x x ϕϕ>=,从而有002,x x x ⎛⎫∈ ⎪⎝⎭时,()00x x x ϕ<-.∴当()x ∈⋃+∞时,()y f x =不存在“类对称点”.当0x ()(22x x x ϕ'=, ∴()x ϕ在()0,+∞上是增函数,故()00x x x ϕ>-.所以当0x =()y f x =存在“类对称点”.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出 ,本专题在高考中的命题方向及命题角度 从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目如果多做,则按所做的第一个题目计分坐标系与参数方程22.在平面直角坐标系xOy 中,曲线C 的参数方程为3cos sin x y αα=⎧⎨=⎩(a 为参数),在以原点为极点,x 轴正半轴为极轴的极坐标系中,直线l的极坐标方程为sin 4πρθ⎛⎫-= ⎪⎝⎭. (1)求C 的普通方程和l 的倾斜角;(2)设点(0,2)P ,l 和C 交于A ,B 两点,求||+||PA PB . 【答案】(1) 2219x y +=.4π.(2) ||||5PA PB +=. 【解析】【分析】(1)直接利用参数方程和极坐标方程公式得到普通方程,再计算倾斜角.(2)判断点(0,2)P 在直线l 上,建立直线参数方程,代入椭圆方程,利用韦达定理得到答案.【详解】(1)3cos ,sin ,x y αα=⎧⎨=⎩消去参数α得2219x y +=, 即C 的普通方程为2219x y +=.由sin 4πρθ⎛⎫-= ⎪⎝⎭,得sin cos 2ρθρθ-=,(*) 将cos sin x y ρθρθ=⎧⎨=⎩,代入(*),化简得+2y x =, 所以直线l 的倾斜角为4π. (2)由(1),知点(0,2)P 在直线l 上,可设直线l 的参数方程为cos 42sin 4x t y t ππ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),即222x t y t ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),代入2219x y +=并化简,得25270t ++=,245271080∆=-⨯⨯=>,设A ,B 两点对应的参数分别为1t ,2t ,则120t t +=<,122705t t =>, 所以10t <,20t <,所以()1212||||5PA PB t t t t +=+=-+=. 【点睛】本题考查了参数方程,极坐标方程,倾斜角,利用直线的参数方程可以简化运算.不等式选讲23. 已知函数()223,()213f x x a x g x x =-++=++.(1)解不等式:()5g x <;(2)若对任意的1x R ∈,都有2x R ∈,使得12()()f x g x =成立,求实数a 的取值范围.【答案】(1)3122x x ⎧⎫-<<⎨⎬⎩⎭;(2){|0a a ≥或}6a ≤-. 【解析】【分析】(1)利用||x ﹣1|+2|<5,转化为﹣7<|x ﹣1|<3,然后求解不等式即可.(2)利用条件说明{y|y=f (x )}⊆{y|y=g (x )},通过函数最值,列出不等式求解即可.【详解】(1)由2135x ++<,得52135x -<++<,所以8212x -<+<,解不等式得321x -<<,即3122x -<<, 所以原不等式的解集是3122x x ⎧⎫-<<⎨⎬⎩⎭. (2)因为对任意的1x R ∈,都有2x R ∈,使得()()12f x g x =成立, 所以(){}(){}y y f x y y g x =⊆=, 又()()2232233f x x a x x a x a =-++≥--+=+,()2133g x x =++≥, 所以33a +≥,解得0a ≥或6a ≤-, 的所以实数a 的取值范围是{|0a a ≥或}6a ≤-.【点睛】本题考查函数的恒成立,绝对值不等式的解法,考查分析问题解决问题的能力以及转化思想的应用,属于中档题.。

2020年高考数学(理)大题分解专题01 三角函数与解三角形(含答案)

2020年高考数学(理)大题分解专题01 三角函数与解三角形(含答案)

已知向量(sin cos ,2cos )x x x =+m ,sin co,s )s in (x x x =-n ,()1f x =⋅+m n . (1)求()f x 的解析式,并求函数()f x 的单调增区间; (2)求()f x 在[0,]2π上的值域.【肢解1】在已知条件下求出,函数()f x 的解析式.【肢解2】在“肢解1”的基础上,完成问题:函数()f x 的单调增区间. 【肢解3】在已知条件下,求()f x 在[0,]2π上的值域.【解析】(1)22()sin cos 2sin cos 1sin 2cos21)14f x x x x x x x x π=-++=-+=-+.(3分)令222242k x k ππππ-≤-≤π+,k ∈Z ,得88k x k π3ππ-≤≤π+,k ∈Z . 故函数()f x 的单调增区间为[,]88k k π3ππ-π+,k ∈Z .(6分)(2)因为02x π≤≤,所以2444x ππ3π-≤-≤,从而sin(2)14x π≤-≤,(8分)大题肢解一三角函数的图象及其性质所以0)114x π-+≤,所以()f x 在[0,]2π上的值域为1].(12分)此类问题通常先通过三角恒等变换化简函数解析式为si (n )y A x B ωϕ++=的形式,再结合正弦函数sin y x =的性质研究其相关性质.(1)已知三角函数解析式求单调区间:①求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律“同增异减”; ②求形如sin()y A x ωϕ=+或cos()y A x ωϕ=+(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错. (2)函数图象的平移变换解题策略:①对函数sin y x =,sin()y A x ωϕ=+或cos()y A x ωϕ=+的图象,无论是先平移再伸缩,还是先伸缩再平移,只要平移|φ|个单位,都是相应的解析式中的x 变为x ±|φ|,而不是ωx 变为x ωϕ±.②注意平移前后两个函数的名称是否一致,若不一致,应用诱导公式化为同名函数再平移.【拓展1】已知向量()sin ,cos x x =a ,()cos ,cos x x =b ,x ∈R ,已知函数()()f x =⋅+a a b . 求()f x 的最值与最小正周期;【解析】由向量()sin ,cos x x =a ,()cos ,cos x x =b ,所以()sin cos ,2cos x x x +=+a b , 所以()()()2sin sin cos 2cos f x x x x x =⋅+=++a a b ()111sin 2cos 2122x x =+++32224x π⎛⎫=++ ⎪⎝⎭,又[]sin 2-1,14x π⎛⎫+∈ ⎪⎝⎭,即()f x的最大值是322+,最小值是322-,()f x 的最小正周期是22T π==π. 【拓展2】已知函数23()cos cos 2f x x x x =++,当[,]63x ππ∈-时,求函数()y f x =的值域.【解析】由题得1cos 23()2sin(2)22226x f x x x +π=++=++, ∵[,]63x ππ∈-, ∴2[,]666x ππ5π+∈-, ∴1sin(2)126x π-≤+≤, ∴函数()y f x =的值域为3[,3]2.(2019年河北省存瑞中学高三上一质检)已知向量)1cos ,,,cos2,2x x x x ⎛⎫=-=∈ ⎪⎝⎭R a b ,设函数()f x =⋅a b .(1)求()f x 的最小正周期; (2)求函数()f x 的单调递减区间;(3)求()f x 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.【解析】由已知可得:变式训练一()11·cos cos2cos2sin 22226f x x x x x x x π⎛⎫==-=-=- ⎪⎝⎭a b ,(3分)(1)()f x 的最小正周期2π2T π==;(5分) (2)由3222,262k x k k ππππ+≤-≤π+∈Z ,可得5,36k x k k πππ+≤≤π+∈Z , ()f x ∴的单调递减区间为()5,36k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z .(7分)(3)0,2x π⎡⎤∈=⎢⎥⎣⎦,52,666x πππ⎡⎤∴-∈-⎢⎥⎣⎦,1sin 2,162x π⎛⎫⎡⎤∴-∈- ⎪⎢⎥⎝⎭⎣⎦,(10分)()f x ∴的最大值为1,最小值为12-.(12分)在锐角ABC △中,角,,AB C 的对边分别为,,a b c ,已知ππsin 2)cos()44B B B =+-. (1)求角B 的大小;(2)若1b =,ABC △的面积为2,求ABC △的周长.【肢解1】在已知条件下化解二倍角公式和余弦和差公式. 【肢解2】根据正、余弦定理求解即可.大题肢解二解三角形【解析】(1)因为在锐角ABC △中,ππsin 2)cos()44B B B =+-,所以ππsin 2cos()sin()44B B B =++,所以sin 22B B =,(3分) 因为cos20B ≠,所以tan 2B =因为π02B <<, 所以π6B =.(6分) (2)由余弦定理2222cos b a c ac B =+-,得2212cos a c ac B =+-,所以221a c =+,(8分)因为ABC △的面积为2,所以1πsin 26ac =,即ac = 所以227a c +=,(10分)所以22()7(2a c +=+=+,所以2a c +=+所以3a b c ++=+ABC △的周长为3(12分)(1)利用正、余弦定理求边和角的方法:①根据题目给出的条件(即边和角)作出相应的图形,并在图形中标出相关的位置.②选择正弦定理或余弦定理或二者结合求出待解问题.一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.③在运算求解过程中注意三角恒等变换与三角形内角和定理的应用. (2)求三角形面积的方法:①若三角形中已知一个角(角的大小,或该角的正、余弦值),结合题意求夹这个角的两边或该两边之积,套公式求解.②若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,套公式求面积,总之,结合图形恰当选择面积公式是解题的关键.【拓展1】已知在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,且ca bA B A C +=--sin sin sin sin , (1)求角C 的大小; (2)若3=c ,求b a +的取值范围. 【答案】(1)由c a b A B A C +=--sin sin sin sin ,则ca ba b a c +=--.⇒ab c b a =-+222,所以2122cos 222==-+=ab ab ab c b a C 而),0(π∈C 故3π=C , (2)由ab c b a =-+222 且3=c ,⇒ab ab b a =--+92)(2, ⇒22)2(339)(b a ab b a +≤=-+, ⇒36)(2≤+b a 所以6≤+b a ,又3=>+c b a ,所以b a +的取值范围是]6,3(.【拓展2】在ABC ∆中,设边,,a b c 所对的角分别为,,A B C ,cos cos 2A aC b c=-+. (1)求角A 的大小;(2)若2,bc =ABC ∆的周长为3,求a 的值.【答案】(1)23A π=(2)a =【解析】(1)因为cos cos 2A aC b c=-+ 由正弦定理得cos sin cos 2sin sin A A C B C=-+ sin cos cos sin 2cos sin 0A C A C A B ++=sin()2cos sin 0A C A B ++=sin 2cos sin 0B A B +=,(0,)B π∈, 1cos 2A =-,(0,)A π∈,23A π=(2)由余弦定理得2222222cos 2a b c bc Aa b c =+-⇒=++因为周长3a b c ++=,又222a b c =+-(),所以2232a a =+-(),所以a =【点睛】本题考查正、余弦定理的综合运用,考查了逻辑推理能力,考查了方程思想,属于中档题.(百校联盟2019-2020学年高三上学期10月尖子生联考数学理科试题)已知ABC △的内角A 、B 、C 所对的边分别为a 、b 、c .且cos 2sin cos 6B C A π⎛⎫=-⋅ ⎪⎝⎭. (1)求角A ;(2)若ABC △的面积为ABC ∆周长的最小值.【解析】(1)cos 2sin cos 6B C A π⎛⎫=-⋅ ⎪⎝⎭,且A B C ++=π,()1cos 2cos cos 2A C C C A ⎫∴-+=-⋅⎪⎪⎝⎭,(2分)sin sin cos A C C A ∴⋅=,0C <<π,且0A <<π,sin 0,sin C A A ∴>∴=,3A π∴=.(6分) 变式训练二(2)由1sin 2S bc A ==,得8bc =.(8分) 又222a b c bc =+-,28a bc ∴≥=,(当且仅当b c =时取等号),(10分) ()2224b c a ∴+=+,l a b c a a ∴=++=+≥,l ∴≥=ABC∴△周长的最小值为.(12分)已知函数πππ()cos(2)2sin()cos()()344f x x x x x =-+--∈R .(1)求函数的最小正周期及在区间π2π[,]123上的值域;(2)在ABC△中,ABC △的面积.【肢解1】在已知条件下化解二倍角公式和余弦和差公式. 【肢解2】根据正、余弦定理及三角形的面积公式求解即可.()f x ()f x 5AB =大题肢解三三角函数与解三角形的综合问题【解析】(1)∵πππ()cos(2)2sin()cos()344f x x x x =-+--1πcos 22sin(2)222x x x =++-12cos 2cos 2x x x =+-12cos 22x x =- πsin(2)6x =-.(3分)的最小正周期为2ππ2T ==;∵π2π[,]123x ∈, ∴π7π2[0,]66x -∈,(4分) ∴max ππππ()()sin(2)sin 13362f x f ==⨯-==,min 2π2ππ7π1()()sin(2)sin 33662f x f ==⨯-==-, ∴在区间π2π[,]123(6分)(2π1sin(2)62A -=,即π6A =,(7分) 由余弦定理得2725(0b b b =+-⇒--=,∴b =b =(10分))(x f ∴()f x∴ABC △(12分)此类问题是将三角函数的图象与性质、解三角形综合命题进行考查,解题时,只需从条件出发,其间只需熟练掌握三角函数的图象与性质的求解方法以及解三角形的相关知识即可顺利解决.【拓展1】已知函数()22sin 24f x x x π⎛⎫=+⎪⎝⎭. (1)求()f x 的最小正周期;(2)设ABC △的内角,,A B C 的对边分别为,,a b c ,且12C c f ⎛⎫== ⎪⎝⎭,若sin 2sin B A =,求,a b 的值.【解析】(1)1cos 22()221sin 2212sin 223x f x x x x x π⎛⎫-+ ⎪π⎛⎫⎝⎭=-=+=+- ⎪⎝⎭,所以22T π==π.(4分) (2)因为12sin 1sin 0233C f C C ππ⎛⎫⎛⎫⎛⎫=+-=⇒-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因为0C <<π,所以3C π=.(5分) 因为222222cos 3c a b ab C a b ab =+-⇒=+-①,因为sin sin a b A B=,sin 2sin B A =,所以2b a =②,联立方程①②得:1,2a b ==.(12分)[广东省珠海市2019-2020学年高三上学期期末数学(理)]已知A 、B 、C 是ABC ∆的内角,a 、b 、c 分别是其对边长,向量(),m a b c =+,()sin sin ,sin sin n B A C B =--,且m n ⊥. (1)求角A 的大小;(2)若2a =,求ABC ∆面积的最大值. 【答案】(1)3A π=;(2【解析】(1)(),m a b c =+,()sin sin ,sin sin n B A C B =--,m n ⊥,()()()sin sin sin sin 0a b B A c C B ∴+-+-=,由正弦定理得()()()0b a b a c c b +-+-=,整理得222b c a bc +-=,2221cos 22b c a A bc +-∴==,0A π<<,3A π∴=;(2)在ABC ∆中,3A π=,2a =,由余弦定理知2222242cos a b c bc A b c bc ==+-=+-,由基本不等式得2242bc b c bc +=+≥,当且仅当b c =时等号成立,4bc ∴≤,11sin 422ABC S bc A ∆∴=≤⨯=ABC ∆.【点睛】本题考查利用余弦定理解三角形,同时也考查了三角形面积最值的计算,涉及基本不等式以及正变式训练三弦定理边角互化思想的应用,考查计算能力,属于中等题.1.(2019年10月广东省广州市天河区高考数学一模试题)在ABC △中,角A 、B 、C 所对的边分别为a 、b、c ,且22sin 30C C -++=.(1)求角C 的大小;(2)若b =,ABC △sin A B ,求sin A 及c 的值.【解析】(1)22sin 30C C -++=,可得:22(1cos )30C C --++=,22cos 10C C ∴++=, cos C ∴=0C π<<,34C π∴=. (2)2222222cos 325c a b ab C a a a =+-=+=,c ∴,sin C A ∴=,sinA C ∴=,1sin sin 2ABC S ab C A B ∆=,∴1sin sin 2ab C A B =,∴2sin ()sin sin sin sin a b c C C A B C=1c ∴=.2.(2019·沙雅县第二中学押题卷)已知点)P,(cos ,sin )Q x x ,O 为坐标原点,函数()f x OP QP =⋅.(1)求函数()f x 的解析式及最小正周期;(2)若A 为ABC △的内角,()4f A =,3BC =,ABC ∆ABC △的周长. 【解析】(1).()3,1OP =,()3cos ,1sin QP x x =-.∴()f x OP QP =⋅)3cos 1sin x x =-+-42sin 3x π⎛⎫=-+ ⎪⎝⎭,()f x 的最小正周期为2π.(2).因为()4f A =,所以sin 03A π⎛⎫+= ⎪⎝⎭,因为0A <<π,所以23A π=,因为1sin 2ABC S bc A ∆=12sin 234bc π==,所以3bc =,根据余弦定理22222cos3a b c b π=+-2()29b c bc bc =+-+=,所以b c +=即三角形的周长为3+3.(四川省遂宁市射洪县射洪中学2020届高三上学期10月月考数学试题)锐角ABC △的内角,,A B C 的对边分别为,,a b c cos sin C c B +=. (1)求角B 的大小;(2)若b =ABC △的周长的取值范围.【解析】(1cos sin C c B +=,cos sin sin B C C B A +=, 又由sin sin()sin cos cos sin A B C B C B C =+=+,代入整理得sin sin sin C B B C =,又由(0,)C ∈π,则sin 0C >,所以sin B B =,即tan B =又因为(0,)B ∈π,所以3B π=. (2)因为3b B π==,且由正弦定理,可得2sin sin sin a b cA B C====, 即2sin ,2sin a A c C ==,所以周长22(sin sin )2(sin sin())3L a b c a c A C A A π=++=+=+=+-32(sin ))26A A A π=+=+,即)6L A π=+又因ABC △为锐角三角形,且23A C π+=, 所以203202A A ππ⎧<-<⎪⎪⎨π⎪<<⎪⎩,解得62A ππ<<,所以2(,)633A πππ+∈,则有sin()6A π+∈ 即(3L ∈, 即ABC △的周长取值范围为(3+.4.(2019年河北省唐山市高三上学期摸底考试数学试题)ABC △的内角A B C ,,的对边分别为a b c ,,,已知ABC △的面积21tan 6S b A =. (1)证明:3cos b c A =;(2)若a c ==,求tanA .【解析】(1)由211sin tan 26S bc A b A ==得3sin tan c A b A = . 因为sin tan cos A A A =,所以sin 3sin cos b A c A A=, 又因为0A π<<,所以0sinA ≠ , 因此3b ccosA =.(2)由(1)得3cos b c A A ==,所以2230bccosA cos A =由余弦定理得2222a b c bccosA =+-,所以22845530cos A cos A -=+,解得21cos 5A =因此24sin 5A =,即2tan 4A = 由(1)得cos 0A >,所以tan 0A > , 故tan 2A =.5.(黑龙江省大庆市2019-2020学年高三上学期第一次教学质量检测数学试题)在ABC △中,角A 、B 、C 所对的边分别为a ,b ,c ,已知sin sin sin sin b B c C a A c B +=+.(1)求角A 的大小;(2)若cos 7B =,a =ABC △的面积S 的值. 【解析】(1)∵由正弦定理2sin sin sin a b cR A B C===, ∴有sin 2a A R =,sin 2b B R =,sin 2c C R=, 则sin sin sin sin b B c C a A c B +=+可化为2222b c a bb c a c R R R R⋅+⋅=⋅+⋅, 即222b c a bc +=+,即222a b c bc =+-, 又∵余弦定理2222cos a b c bc A =+-,∴1cos 2A =, 由()0,A ∈π,得3A π=; (2)由(1)知,3A π=,则sin 2A =,1cos 2A =,∵cos B =,()0,B ∈π,∴1sin 7B ==, ∴()1113sin sin 272714C A B =+=+⨯=,由正弦定理得,13sin 13sin a C c A===,∴111sin 132272S ac B ==⨯⨯=. 6.(河南省郑州市第一中学2019届高三高考适应性考试数学试题)在ABC △中,三边a ,b ,c 的对角分别为A ,B ,C ,已知3a =,cos cos cos sin cos B A C B C b+=.(1)若c =,求sin A ;(2)若AB 边上的中线长为2,求ABC △的面积.【解析】(1)因为cos cos cos sin cos B A C B C b+=,由正弦定理,得cos cos cos sin cos B A C B C +=,所以cos()cos cos sin cos A C A C B C -++=.所以sin sin cos A C A C =.又因为sin 0A ≠,所以tan C =因为(0,)C ∈π,所以3C π=.又因为sin sin a c A C =,所以3sin A =,所以3sin 4A =. (2)设AB 边上的中线为CD ,则2CD CA CB =+,所以22224()2cos CD CA CB b a ab C =+=++,即23793b b =++,23280b b +-=. 解得4b =或7b =-(舍去).所以11sin 4322ABC S ab C ∆==⨯⨯=.7.(河南、河北两省重点高中2019届高三考前预测试卷数学试题)在ABC △中,角A ,B ,C 的对边分别是a ,b ,c ,30B =︒,且()()2sin 2sin 2sin a A b c B c b C -+=+.(1)求()sin A C -的大小;(2)若ABC △的面积为ABC ∆的周长.【解析】(1)因为()()2sin 2sin 2sin a A b c B c b C -+=+,由正弦定理可得:()()2222a b b c c c b -+=+,整理得222b c a bc +-=-,∴2221cos 22b c a A bc +-==-,解得120A =︒.又30B =︒,所以1801203030C =︒-︒-︒=︒,即30C B ==︒, ∴()()sin sin 120301A C -=︒-︒=. (2)由(1)知b c =,120A =︒,∴21sin1202b ︒=bc ==. 由余弦定理,得22212cos 1212212362a b c bc A ⎛⎫=+-=+-⨯⨯-= ⎪⎝⎭,即6a =.∴ABC 的周长为6.8.(重庆市2019届高三高考全真模拟考试数学试题)已知锐角ABC △中,角A ,B ,C 所对的边分别为a,b ,c ,sin cos (sin )0A C B B -+=.(1)求角C ;(2)若b =c =AB 边上的高长.【解析】(1)()sin cos sin 0A C B B -=,()()sin cos sin 0B C C B B ∴+-=, ()cos sin 0B C C ∴=,tan C ∴=3C π∴=.(2)由余弦定理可得:2222cos c a b ab C =+-,可得:210a -=,可得:a =,由等面积可得:11sin 22S ab C ch ==,可得:h =. 9.[惠州市2020届高三第三次调研考试数学(理)]【答案】(1)在ABC ∆中,因为2BC =,π3ABC ∠=,1sin 22ABC S AB BC ABC ∆=⋅∠=,所以22AB =,解得3AB =. 在ABC ∆中,由余弦定理得2222cos 7AC AB BC AB BC ABC =+-⋅∠=,因为0AC >,所以AC =(2)设ACD α∠=,则ππ33ACB ACD α∠=∠+=+. 在Rt ACD ∆中,因为AD =sin AD AC α==. 在ABC ∆中,ππ3BAC ACB ABC α∠=-∠-∠=-, 由正弦定理得sin sin BC AC BAC ABC =∠∠,即2πsin()3α=-, 所以2sin()sin 3παα-=,所以12(cos sin )sin 22ααα-=,2sin αα=,所以tan α=,即tan ACD ∠=。

2021-2022年高三上学期10月月考数学(理)试题含答案

2021-2022年高三上学期10月月考数学(理)试题含答案

2021-2022年高三上学期10月月考数学(理)试题含答案一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集集合{}{}1,2,5,4,5,6U A C B ==,则集合A. B. C. D.2.若,则下列不等式中成立的是A. B. C. D.3.函数的零点有A.0个B.1个C.2个D.3个 4.设0.13592,1,log 210a b g c ===,则a,b,c 的大小关系是 A. B. C. D.5.下面几种推理过程是演绎推理的是A.两条直线平行,同旁内角互补,如果是两条平行直线的同旁内角,则B.由平面三角形的性质,推测空间四面体的性质C.某校高三共有10个班,1班有51人,2班有53人,三班有52人,由此推测各班都超过50人D.在数列中,()11111,221n n n a a a n a -⎛⎫==+≥ ⎪-⎝⎭,计算,由此猜测通项 6.已知函数的导函数为,且满足,则A. B. C.1 D.e7.函数)0,0y a a =>≠的定义域和值域都是,则A.1B.2C.3D.48.函数满足,那么函数的图象大致为9.设函数是定义在R 上周期为3的奇函数,若,则有 A. B. C.D.10.已知()32log ,03,,,,1108,333x x f x a b c d x x x ⎧<≤⎪=⎨-+>⎪⎩是互不相同的正数,且()()()()f a f b f c f d ===,则abcd 的取值范围是A.B. C. D.第II 卷(非选择题,共100分)二、填空题:本大题共5小题,每小题5分,共25分.请把答案填在题中横线上.11. __________.12.设实数满足240,0,0.x y x y y +-≤⎧⎪-≥⎨⎪>⎩则的最大值为_________.13.观察下列式子222222131151117:1,1,1222332344+<++<+++<,…,根据上述规律,第n 个不等式应该为__________________________.14.在等式“”的两个括号内各填入一个正整数,使它们的和最小,则填入的两个数依次为_______、_______.15.下列四个命题:①命题“若a=0,则ab=0”的否命题是“若a=0,则ab ”;②若命题,则;③若命题“”与命题“”都是真命题,则命题q 一定是真命题;④命题“若,则()1log 1log 1a a a a ⎛⎫+<+ ⎪⎝⎭”是真命题. 其中正确命题的序号是_________.(把所有正确命题序号都填上)三、解答题:本大题有6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤16. (本题满分12分)已知集合{}{}22log 8,0,14x A x x B xC x a x a x +⎧⎫=<=<=<<+⎨⎬-⎩⎭. (I )求集合;(II )若,求实数a 的取值范围.17. (本题满分12分)设命题p :函数在R 上是增函数,命题()2:,2310q x R x k x ∃∈+-+=,如果是假命题,是真命题,求k 的取值范围.18. (本题满分12分)已知函数.(I )若函数的图象在处的切线方程为,求a,b 的值;(II )若函数在R 上是增函数,求实数a 的最大值.19. (本题满分12分)已知二次函数()()2,f x x bx c b c R =++∈. (I )若,且函数的值域为,求函数的解析式;(II )若,且函数在上有两个零点,求的取值范围.20. (本题满分13分)某地空气中出现污染,须喷洒一定量的去污剂进行处理.据测算,每喷洒1个单位的去污剂,空气中释放的浓度y (单位:毫克/立方米)随着时间x (单位:天)变化的函数关系式近似为161,04815,42x x y x x ⎧-≤≤⎪⎪-=⎨⎪-<≤10⎪⎩,若多次喷洒,则某一时刻空气中的去污剂浓度为每次投放的去污剂在相应时刻所释放的浓度之和.由实验知,当空气中去污剂的浓度不低于4(毫克/立方米)时,它才能起到去污作用.(I )若一次喷洒4个单位的去污剂,则去污时间可达几天?(II )若第一次喷洒2个单位的去污剂,6天后再喷洒a (1≤a ≤4)个单位的去污剂,要使接下来的4天中能够持续有效去污,试求a 的最小值(精确到0.1,参考数据:取1.4).21. (本题满分14分)设,函数.(I)求的单调递增区间;(II)设,问是否存在极值,若存在,请求出极值;若不存在,请说明理由;(III)设是函数图象上任意不同的两点,线段AB的中点为,直线AB的斜率为为k.证明:.T *35356 8A1C 訜21153 52A1 务24278 5ED6 廖37058 90C2 郂40714 9F0A 鼊B21961 55C9 嗉35803 8BDB 诛e24194 5E82 庂F。

天津市经济技术开发区第一中学2021届高三上学期10月月考数学试题 Word版含解析

天津市经济技术开发区第一中学2021届高三上学期10月月考数学试题 Word版含解析
当 时, , 单调递增,无极值;
当 时, 时, ,当 时, , 是极大值点.
∴ 极大值 .
(3)由(2)知 时, 的极大值为 ,
∴ ,即 ,
设 ,易知函数 在 上是增函数,而 ,
∴由 得 .
【点睛】本题考查用导数研究函数的极值,掌握导数与极值的关系是解题关键.本题属于中档题.
2Hale Waihona Puke .已知函数(1)若 ,求函数 在 处的切线方程;
(2)讨论函数 的单调性;
(3)若关于 的不等式 恒成立,且 的最小值是 ,求证: .
【答案】(1) ;(2)答案见解析;(3)证明见解析.
【答案】
【解析】
【分析】
不等式变形为 ( ),然后求出函数 的最小值即可得.
【详解】∵ ,∴不等式 可化为 ,
设 , ,
当 时, , 递减, 时, , 递增,
∴ ,
不等式 在 上恒成立,则 .
故答案为: .
【点睛】本题考查不等式恒成立问题,解题方法是分离参数法,转化为求函数的最值.
16.函数 是定义在 上的奇函数,对任意的 ,满足 ,且当 时, ,则 __________.
故选:D.
【点睛】本题考查命题的真假判断,考查了充分不必要条件的定义,命题的否定,基本不等式,函数的奇偶性与对称性等知识,属于中档题.
8.将函数 的图象上所有点的纵坐标缩短为原来的 ,再把所得图象上的所有点向右平移 个单位长度后,得到函数 的图象,若函数 在 处取得最大值,则函数 的图象()
A 关于点 对称B. 关于点 对称
10.函数 ,若函数 恰有 个零点,则 的取值范围为()
A. 或 B. 或 C. D.
【答案】D
【解析】
【分析】

湖北省襄阳市2024-2025学年高三上学期10月月考数学试题含答案

湖北省襄阳市2024-2025学年高三上学期10月月考数学试题含答案

襄阳2025届高三上学期10月月考数学试卷(答案在最后)命题人:一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1.已知集合31A x x ⎧⎫=∈∈⎨⎬-⎩⎭Z Z ,则用列举法表示A =()A.{}2,0,1,2,4- B.{}2,0,2,4- C.{}0,2,4 D.{}2,4【答案】B 【解析】【分析】由题意可得1x -可为1±、3±,计算即可得.【详解】由题意可得1x -可为1±、3±,即x 可为0,2,2,4-,即{}2,0,2,4A =-.故选:B.2.设3i,ia a z +∈=R ,其中i 为虚数单位.则“1a <-”是“z >”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】首先根据复数代数形式的除法运算化简z ,再求出z,令z >求出相应的a 的取值范围,最后根据充分条件、必要条件的定义判断即可.【详解】因为23i 3i 3i i ia az a +-===-,所以z =令z >,即>1a >或1a <-,所以1a <-推得出z >,故充分性成立;由z >推不出1a <-,故必要性不成立;所以“1a <-”是“z >”的充分不必要条件.故选:A3.已知向量a ,b 不共线,且c a b λ=+ ,()21d a b λ=++ ,若c 与d 同向共线,则实数λ的值为()A.1B.12C.1或12-D.1-或12【答案】B 【解析】【分析】先根据向量平行求参数λ,再根据向量同向进行取舍.【详解】因为c与d 共线,所以()2110λλ+-=,解得1λ=-或12λ=.若1λ=-,则c a b =-+,d a b =- ,所以d c =- ,所以c 与d 方向相反,故舍去;若12λ=,则12c a b =+ ,2d a b =+ ,所以2d c = ,所以c与d 方向相同,故12λ=为所求.故选:B4.已知3322x y x y ---<-,则下列结论中正确的是()A.()ln 10y x -+>B.ln0yx> C.ln 0y x +> D.ln 0y x ->【答案】A 【解析】【分析】构造函数()32xf x x -=-,利用()f x 的单调性可得x y <,进而可得.【详解】由3322x y x y ---<-得3322x y x y ---<-,设()32xf x x -=-,因函数3y x =与2x y -=-都是R 上的增函数,故()f x 为R 上的增函数,又因3322x y x y ---<-,故x y <,()ln 1ln10y x -+>=,故A 正确,因y x,y x +,y x -与1的大小都不确定,故B ,C ,D 错误,故选:A5.从0,1,2,3,4,5,6这7个数中任选5个组成一个没有重复数字的“五位凹数12345a a a a a ”(满足12345a a a a a >><<),则这样的“五位凹数”的个数为()A.126个B.112个C.98个D.84个【答案】A 【解析】【分析】利用分步乘法计数原理可得.【详解】第一步,从0,1,2,3,4,5,6这7个数中任选5个共有57C 种方法,第二步,选出的5个数中,最小的为3a ,从剩下的4个数中选出2个分给12,a a ,由题意可知,选出后1245,,,a a a a 就确定了,共有24C 种方法,故满足条件的“五位凹数”5274C C 126=个,故选:A6.若数列{}n a 满足11a =,21a =,12n n n a a a --=+(3n ≥,n 为正整数),则称数列{}n a 为斐波那契数列,又称黄金分割数列.在现代物理、准晶体结构、化学等领域,斐波那契数列都有直接的应用.设n S 是数列{}n a 的前n 项和,则下列结论成立的是()A.78a =B.135********a a a a a +++⋅⋅⋅+=C.754S =D.24620202021a a a a a +++⋅⋅⋅+=【答案】B 【解析】【分析】按照斐波那契数列的概念,找出规律,得出数列的性质后逐个验证即可.【详解】解析:按照规律有11a =,21a =,32a =,43a =,55a =,68a =,713a =,733S =,故A 、C 错;21112123341n n n n n n n n n n n n n n a a a a a a a a a a a a a S ++--------=+=+++=+++++==+ ,则202020181220183520191352019111a S a a a a a a a a a a =+=++++=++++=++++ ,故B 对;24620202234520182019a a a a a a a a a a a ++++=+++++++ 1234520182019201920211a a a a a a a S a =+++++++==- ,故D 错.故选:B .7.已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的左,右焦点,A ,B 是椭圆C 上的两点.若122F A F B = ,且12π4AF F ∠=,则椭圆C 的离心率为()A.13B.23C.33D.23【答案】B 【解析】【分析】设1AF =,结合题意可得2AF ,根据椭圆定义整理可得22b c m -=,根据向量关系可得1F A ∥2F B ,且2BF =2b c m+=,进而可求离心率.【详解】由题意可知:()()12,0,,0F c F c -,设1,0AF m =>,因为12π4AF F ∠=,则()2,2A c m m -+,可得2AF =由椭圆定义可知:122AF AF a +=,即2a =,整理可得22b c m-=;又因为122F A F B = ,则1F A ∥2F B ,且2112BF AF ==,则(),B c m m +,可得1BF =由椭圆定义可知: 䁕2a =,2bcm+=;即2c c-=+3c=,所以椭圆C的离心率3cea==.故选:B.【点睛】方法点睛:椭圆的离心率(离心率范围)的求法求椭圆的离心率或离心率的范围,关键是根据已知条件确定a,b,c的等量关系或不等关系,然后把b用a,c代换,求e的值.8.圆锥的表面积为1S,其内切球的表面积为2S,则12SS的取值范围是()A.[)1,+∞ B.[)2,+∞C.)∞⎡+⎣ D.[)4,+∞【答案】B【解析】【分析】选择OBC∠(角θ)与内切球半径R为变量,可表示出圆锥底面半径r和母线l,由圆锥和球的表面积公式可得()122212tan1tanSSθθ=-,再由2tan(0,1)tθ=∈换元,转化为求解二次函数值域,进而得12SS的取值范围.【详解】设圆锥的底面半径为r,母线长为l,圆锥内切球半径为R,如图作出圆锥的轴截面,其中设O为外接圆圆心,,D E为切点,,AB AC为圆锥母线,连接,,,OB OD OA OE.设OBCθ∠=,tanRrθ=,0tan1θ<<tanRrθ∴=.OD AB⊥,OE BC⊥,πDBE DOE∴∠+∠=,又πAOD DOE∠+∠=,2AOD DBE θ∴∠=∠=,tan 2AD R θ∴=,22tan 2tan Rl r AD BD r AD r R θθ∴+=++=+=+,则圆锥表面积()21πππS r rl r l r =+=+,圆锥内切球表面积224πS R =,所求比值为()212222π2tan 21tan 1tan tan 4π2tan 1tan R R R S S R θθθθθθ⎛⎫+ ⎪-⎝⎭==-,令2tan 0t θ=>,则()2211()2122222g t t t t t t ⎛⎫=-=-+=--+ ⎪⎝⎭,则10()2g t <≤,且当12t =时,()g t 取得最大值12,故122S S ≥,即12S S 的取值范围是[)2,+∞.故选:B.【点睛】关键点点睛:求解立体几何中的最值问题一般方法有两类,一是设变量(可以是坐标,也可以是关键线段或关键角)将动态问题转化为代数问题,利用代数方法求目标函数的最值;二是几何法,利用图形的几何性质,将空间问题平面化,将三维问题转化为二维问题来研究,以平面几何中的公理、定义、定理为依据,以几何直观为主要手段直接推理出最值状态何时取到,再加以求解.二、多选题:本题共3小题,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.设A ,B 为随机事件,且()P A ,()P B 是A ,B 发生的概率.()P A ,()()0,1P B ∈,则下列说法正确的是()A.若A ,B 互斥,则()()()P A B P A P B ⋃=+B.若()()()P AB P A P B =,则A ,B 相互独立C .若A ,B 互斥,则A ,B 相互独立D.若A ,B 独立,则()(|)P B A P B =【答案】ABD 【解析】【分析】利用互斥事件的概率公式可判断A 选项;由相互独立事件的概念可判断B 选项;由互斥事件和相互独立事件的概念可判断C 选项;由相互独立事件的概念,可判断D 选项.【详解】对于选项A ,若,A B 互斥,根据互斥事件的概率公式,则()()()P A B P A P B ⋃=+,所以选项A 正确,对于选项B ,由相互独立事件的概念知,若()()()P AB P A P B =,则事件,A B 是相互独立事件,所以选项B 正确,对于选项C ,若,A B 互斥,则,A B 不一定相互独立,例:抛掷一枚硬币的试验中,事件A :“正面朝上”,事件B :“反面朝上”,事件A 与事件B 互斥,但()0P AB =,1()()2P A P B ==,不满足相互独立事件的定义,所以选项C 错误,对于选项D ,由相互独立事件的定义知,若A ,B 独立,则()(|)P B A P B =,所以选项D 正确,故选:ABD.10.已知函数()sin sin cos 2f x x x x =-,则()A.()f x 的图象关于点(π,0)对称B.()f x 的值域为[1,2]-C.若方程1()4f x =-在(0,)m 上有6个不同的实根,则实数m 的取值范围是17π10π,63⎛⎤⎥⎝⎦D.若方程[]22()2()1(R)f x af x a a -+=∈在(0,2π)上有6个不同的实根(1,2,,6)i x i = ,则61ii ax=∑的取值范围是(0,5π)【答案】BCD 【解析】【分析】根据(2π)()f f x =-是否成立判断A ,利用分段函数判断BC ,根据正弦函数的单调性画出分段函数()f x 的图象,求出的取值范围,再利用对称性判断D.【详解】因为()sin sin cos 2f x x x x =-,所以(2π)sin(2π)sin(2π)cos 2(2π)sin sin cos 2()f x x x x x x x f x -=----=--≠-,所以()f x 的图象不关于点(π,0)对称,故A 错误;当sin 0x ≥时,()222()sin 12sin 3sin 1f x x x x =--=-,由[]sin 0,1x ∈可得[]()1,2f x ∈-,当sin 0x <时,()222()sin 12sin sin 1f x x x x =---=-,由[)sin 1,0x ∈-可得(]()1,0f x ∈-,综上[]()1,2f x ∈-,故B 正确:当sin 0x ≥时,由21()3sin 14f x x =-=-解得1sin 2x =,当sin 0x <时,由21()sin 14f x x =-=-解得3sin 2x =-,所以方程1()4f x =-在(0,)+∞上的前7个实根分别为π6,5π6,4π3,5π3,13π6,17π6,10π3,所以17π10π63m <≤,故C 正确;由[]22()2()1f x af x a -+=解得()1f x a =-或()1f x a =+,又因为()223sin 1,sin 0sin 1,sin 0x x f x x x ⎧-≥=⎨-<⎩,所以根据正弦函数的单调性可得()f x 图象如图所示,所以()1f x a =-有4个不同的实根,()1f x a =+有2个不同的实根,所以110012a a -<-<⎧⎨<+<⎩,解得01a <<,设123456x x x x x x <<<<<,则1423πx x x x +=+=,563πx x +=,所以615πii x==∑,所以61i i a x =∑的取值范围是(0,5π),故D 正确.故选:BCD.11.在平面直角坐标系中,定义(){}1212,max ,d A B x x y y =--为两点()11,A x y 、()22,B x y 的“切比雪夫距离”,又设点P 及l 上任意一点Q ,称(),d P Q 的最小值为点P 到直线l 的“切比雪夫距离”,记作(),d P l ,给出下列四个命题,正确的是()A .对任意三点,,A B C ,都有()()(),,,d C A d C B d A B +≥;B.已知点()2,1P 和直线:220l x y --=,则()83d P l =,;C.到定点M 的距离和到M 的“切比雪夫距离”相等的点的轨迹是正方形.D.定点()1,0F c -、()2,0F c ,动点(),P x y 满足()()()12,,2220d P F d P F a c a =>>-,则点P 的轨迹与直线y k =(k 为常数)有且仅有2个公共点.【答案】AD 【解析】【分析】对于选项A ,根据新定义,利用绝对值不等性即可判断;对于选项B ,设点Q 是直线21y x =-上一点,且(,21)Q x x -,可得()1,max 2,22d P Q x x ⎧⎫=--⎨⎬⎩⎭,讨论|2|x -,1|2|2x -的大小,可得距离d ,再由函数的性质,可得最小值;对于选项C ,运用新定义,求得点的轨迹方程,即可判断;对于选项D ,根据定义得{}{}max ,max ,2x c y x c y a +--=,再根据对称性进行讨论,求得轨迹方程,即可判断.【详解】A 选项,设()()(),,,,,A A B B C C A x y B x y C x y ,由题意可得:()(){}{},,max ,max ,,A C A CBC B C A C B C A B d C A d C B x x y y x x y y x x x x x x +=--+--≥-+-≥-同理可得:()(),,A B d C A d C B y y +≥-,则:()(){}(),,max ,,A B A B d C A d C B x x y y d A B +≥--=,则对任意的三点A ,B ,C ,都有()()(),,,d C A d C B d A B +≥;故A 正确;B 选项,设点Q 是直线220x y --=上一点,且1,12Q x x ⎛⎫- ⎪⎝⎭,可得()1,max 2,22d P Q x x ⎧⎫=--⎨⎬⎩⎭,由1222x x -≥-,解得0x ≤或83x ≥,即有(),2d P Q x =-,当83x =时,取得最小值23;由1222x x -<-,解得803x <<,即有()1,22d P Q x =-,(),d P Q 的范围是2,23⎛⎫⎪⎝⎭,无最值,综上可得,P ,Q 两点的“切比雪夫距离”的最小值为23,故B 错误;C 选项,设(),M a b{}max ,x a y b =--,若y b x a -≥-,y b =-,两边平方整理得x a =;此时所求轨迹为x a =(y b ≥或)y b ≤-若y b x a -<-,则x a =-,两边平方整理得y b =;此时所求轨迹为y b =(x a ≥或)x a ≤-,故没法说所求轨迹是正方形,故C 错误;D 选项,定点()1,0F c -、()2,0F c ,动点(),P x y 满足()()12,,2d P F d P F a -=(220c a >>),则:{}{}max ,max ,2x c y x c y a +--=,显然上述方程所表示的曲线关于原点对称,故不妨设x ≥0,y ≥0.(1)当x c yx c y ⎧+≥⎪⎨-≥⎪⎩时,有2x c x c a +--=,得:0x a y a c =⎧⎨≤≤-⎩;(2)当x c y x c y ⎧+≤⎪⎨-≤⎪⎩时,有02a =,此时无解;(3)当x c y x c y⎧+>⎪⎨-<⎪⎩时,有2,x c y a a x +-=<;则点P 的轨迹是如图所示的以原点为中心的两支折线.结合图像可知,点P 的轨迹与直线y k =(k 为常数)有且仅有2个公共点,故D 正确.故选:AD.【点睛】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.对于此题中的新概念,对阅读理解能力有一定的要求.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.三、填空题:本题共3小题,每小题5分,共15分.12.若)nax的展开式的二项式系数和为32,且2x -的系数为80,则实数a 的值为________.【答案】 【解析】【分析】由二项式系数和先求n ,再利用通项53215C ()r r rr T a x -+=-得到2x -的指数确定r 值,由2x -的系数为80,建立关于a 的方程求解可得.【详解】因为)na x-的展开式的二项式系数和为32,所以012C C C C 232nnn n n n ++++== ,解得5n =.所以二项式展开式的通项公式为5352155C ()C ()rr rr r rr a T a x x--+=-=-,由5322r-=-,解得3r =,所以2x -的系数为3335C ()1080a a -=-=,解得2a =-.故答案为:2-.13.已知函数()()()2f x x a x x =--在x a =处取得极小值,则a =__________.【答案】1【解析】【分析】求得()()()221f x x x x a x =-+--',根据()0f a ¢=,求得a 的值,结合实数a 的值,利用函数的单调性与极值点的概念,即可求解.【详解】由函数()()()2f x x a x x =--,可得()()()221f x x x x a x =-+--',因为x a =处函数()f x 极小值,可得()20f a a a =-=',解得0a =或1a =,若0a =时,可得()(32)f x x x '=-,当0x <时,()0f x '>;当203x <<时,()0f x '<;当23x >时,()0f x '>,此时函数()f x 在2(,0),(,)3-∞+∞单调递增,在2(0,)3上单调递减,所以,当0x =时,函数()f x 取得极大值,不符合题意,(舍去);若1a =时,可得()(1)(31)f x x x '=--,当13x <时,()0f x '>;当113x <<时,()0f x '<;当1x >时,()0f x '>,此时函数()f x 在1(,),(1,)3-∞+∞单调递增,在(0,1)上单调递减,所以,当1x =时,函数()f x 取得极小值,符合题意,综上可得,实数a 的值为1.故答案为:1.14.数学老师在黑板上写上一个实数0x ,然后老师抛掷一枚质地均匀的硬币,如果正面向上,就将黑板上的数0x 乘以2-再加上3得到1x ,并将0x 擦掉后将1x 写在黑板上;如果反面向上,就将黑板上的数0x 除以2-再减去3得到1x ,也将0x 擦掉后将1x 写在黑板上.然后老师再抛掷一次硬币重复刚才的操作得到黑板上的数为2x .现已知20x x >的概率为0.5,则实数0x 的取值范围是__________.【答案】()(),21,-∞-+∞ 【解析】【分析】构造函数()23f x x =-+,()32xg x =--,由两次复合列出不等式求解即可.【详解】由题意构造()23f x x =-+,()32xg x =--,则有()()43f f x x =-,()()9f g x x =+,()()92g f x x =-,()()342x g g x =-.因为()()f g x x >,()()g f x x <恒成立,又20x x >的概率为0.5,所以必有43,3,42x x x x ->⎧⎪⎨-≤⎪⎩或者43,3,42x x x x -≤⎧⎪⎨->⎪⎩解得()(),21,x ∈-∞-⋃+∞.故答案为:()(),21,-∞-+∞ 四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15.在ABC V 中,角,,A B C 所对的边分别为,,a b c ,已知()()()sin sin sin b c B C a c A +-=-.(1)求B ;(2)若ABC的面积为4,且2AD DC = ,求BD 的最小值.【答案】(1)π3(2.【解析】【分析】(1)利用正弦定理可得()()()b c b c a c a +-=-,再结合余弦定理得2221cos 22a cb B ac +-==,从而可求解.(2)结合ABC V 的面积可求得3ac =,再由112333BD BC CA BA BC =+=+ ,平方后得,()222142993BD c a =++ ,再结合基本不等式即可求解.【小问1详解】由正弦定理得()()()b c b c a c a +-=-,即222a c b ac +-=,由余弦定理可得2221cos 222a cb ac B ac ac +-===,因为()0,πB ∈,所以π3B =.【小问2详解】因为ABC V 的面积为33π,43B =,所以133sin 24ac B =,所以3ac =.因为()11123333BD BC CA BC BA BC BA BC =+=+-=+,所以()()()()22222221421441422cos 999999993BD BA BC BA BC c a ac B c a =++⋅⋅=++=++ ,所以2214212222993333c a c a ++≥⋅⋅+=,当且仅当6,2a c ==时取等号,所以BD .16.已知抛物线2:2(0)E y px p =>与双曲线22134x y -=的渐近线在第一象限的交点为Q ,且Q 点的横坐标为3.(1)求抛物线E 的方程;(2)过点(3,0)M -的直线l 与抛物线E 相交于,A B 两点,B 关于x 轴的对称点为B ',求证:直线AB '必过定点.【答案】(1)24y x =(2)证明见解析【解析】【分析】(1)由双曲线求其渐近线方程,求出点Q 的坐标,由此可求抛物线方程;(2)联立直线AB 的方程与抛物线方程可得关于x 的一元二次方程,设 , ,()22,B x y '-,根据韦达定理求出12124,12y y m y y +==,求出直线AB '的方程并令0y =,求出x 并逐步化简可得3x =,则直线AB '过定点(3,0).【小问1详解】设点Q 的坐标为()03,y ,因为点Q 在第一象限,所以00y >,双曲线22134x y -=的渐近线方程为233y x =±,因为点Q在双曲线的渐近线上,所以0y =,所以点Q的坐标为(3,,又点(3,Q 在抛物线22y px =上,所以1223p =⨯,所以2p =,故抛物线E 的标准方程为:24y x =;【小问2详解】设直线AB 的方程为3x my =-,联立243y xx my ⎧=⎨=-⎩,消x 得,24120y my -+=,方程24120y my -+=的判别式216480m ∆=->,即230m ->,设 , ,则12124,12y y m y y +==,因为点A 、B 在第一象限,所以121240,120y y m y y +=>=>,故0m >,设B 关于x 轴的对称点为()22,B x y '-,则直线AB '的方程为212221()y y y y x x x x ---+=-,令0y =得:212221x x x y x y y -=+-⨯-122121x y x y y y +=+()()12211233y my y my y y -+-=+()21121223my y y y y y -+=+241212344m m mmm-===.直线AB '过定点(3,0).【点睛】方法点睛:联立直线AB 的方程与抛物线方程可得关于x 的一元二次方程,设 , ,()22,B x y '-,根据韦达定理求出12124,12y y m y y +==,求出直线AB '的方程并令0y =,求出x 并逐步化简可得3x =,则直线AB '过定点(3,0).17.如图,已知正方形ABCD 的边长为4,,E F 分别为,AD BC 的中点,沿EF 将四边形EFCD 折起,使二面角A EF C --的大小为60°,点M 在线段AB 上.(1)若M 为AB 的中点,且直线MF 与直线EA 的交点为O ,求OA 的长,并证明直线OD //平面EMC ;(2)在线段AB 上是否存在点M ,使得直线DE 与平面EMC 所成的角为60°;若存在,求此时二面角M EC F --的余弦值,若不存在,说明理由.【答案】(1)2OA =;证明见解析.(2)存在点M ,使得直线DE 与平面EMC 所成的角为60°;此时二面角M EC F --的余弦值为14.【解析】【分析】(1)根据中位线性质可求得OA ,由//MN OD ,结合线面平行判定定理可证得结论;(2)由二面角平面角定义可知60DEA ∠=︒,取AE ,BF 中点O ,P ,由线面垂直的判定和勾股定理可知OD ,OA ,OP 两两互相垂直,则以O 为坐标原点建立空间直角坐标系;设()1,,0M m ()04m ≤≤,利用线面角的向量求法可求得m ;利用二面角的向量求法可求得结果.【小问1详解】,E F 分别为,AD BC 中点,////EF AB CD ∴,且2AE FB ==,又M 为AB 中点,且,AB OE AB BF ⊥⊥,易得OAM FBM ≅ ,2OA FB AE ∴===,连接,CE DF ,交于点N ,连接MN ,由题设,易知四边形CDEF 为平行四边形,N Q 为DF 中点,//,AM EF A 是OE 的中点,M ∴为OF 中点,//MN OD ∴,又MN ⊂平面EMC ,OD ⊄平面EMC ,//OD ∴平面EMC ;【小问2详解】////EF AB CD ,EF DE ⊥ ,EF AE ⊥,又DE ⊂平面CEF ,AE ⊂平面AEF ,DEA ∴∠即为二面角A EF C --的平面角,60DEA ∴=︒∠;取,AE BF 中点,O P ,连接,OD OP ,如图,60DEA ∠=︒ ,112OE DE ==,2414cos 603OD ∴=+-︒=,222OD OE DE +=,OD AE ∴⊥,//OP EF ,OP DE ⊥,OP AE ⊥,又,AE DE ⊂平面AED ,AE DE E = ,OP ∴⊥平面AED ,,OD AE ⊂ 平面AED ,,OD OP AE OP ∴⊥⊥,则以O 为坐标原点,,,OA OP OD方向为,,x y z轴正方向建立空间直角坐标系如下图所示,则(D ,()1,0,0E -,()1,4,0F -,(0,C ,设()()1,,004M m m ≤≤,则(1,0,DE =-,()2,,0EM m =,(1,EC = ,设平面EMC 的法向量,则1111111·20·40EM n x my EC n x y ⎧=+=⎪⎨=++=⎪⎩,令12y =,则1x m =-,1z=1,m m ⎛∴=- ⎝,∵直线DE 与平面EMC 所成的角为60o ,·sin 60cos ,·DE n DE n DE n∴︒==11132=,解得1m =或3m =,存在点M ,当1AM =或3AM =时,使得直线DE 与平面EMC 所成的角为60o ;设平面CEF 的法向量()2222,,n x yz =,又(1,EC = ,(FC =,2222222·40·0EC n x y FC n x ⎧=++=⎪∴⎨=+=⎪⎩ ,令21z =,则2x =,20y =,()2m ∴=;当1m =时,11,2,n ⎛=- ⎝,12121243·13cos ,84·2n n n n n n ∴=== ;当3m =时,23,2,n ⎛=- ⎝,12121243·13cos ,84·2n n n n n n ∴=== ;综上所述:二面角M EC F --的余弦值为14.【点睛】关键点点睛:本题第二步的关键在于证明三线互相垂直,建立空间直角坐标系,设出动点M 的坐标,熟练利用空间向量的坐标运算,求法向量,求二面角、线面角是解题的关键.18.已知函数()12ex xf x x λ-=-.(1)当1λ=时,求()f x 的图象在点 h 处的切线方程;(2)若1x ≥时,()0f x ≤,求λ的取值范围;(3)求证:()1111111232124e 2e*n n n n nnn +++-+++->∈N .【答案】(1)0y =(2)[)1,+∞(3)证明见详解【解析】【分析】(1)利用导数的几何意义求解即可;(2)根据题意,由条件式恒成立分离参数,转化为212ln xx xλ≥+,求出函数()212ln x g x x x =+的最大值得解;(3)先构造函数()12ln x x x x ϕ=-+,利用导数证明11ln 2x x x ⎛⎫<- ⎪⎝⎭,1x >,令11x n=+,可得()111ln 1ln 21n n n n ⎛⎫+-<+ ⎪+⎝⎭,迭代累加可证得结果.【小问1详解】当1λ=时,()12ex xf x x -=-,h t ,则()12121e x x f x x x -⎛⎫=-+ ⎪⎝'⎭,则()0122e 0f =-=',所以()f x 在点 h 处的切线方程为0y =.【小问2详解】由1x ≥时,()0f x ≤,即12e0x xx λ--≤,整理得212ln x x xλ≥+,对1x ≥恒成立,令()212ln x g x x x =+,则()()42321ln 222ln x x x x x g x x x x---=-+'=,令()1ln h x x x x =--,1x ≥,所以()ln 0h x x '=-≤,即函数 在1x ≥上单调递减,所以()()10h x h ≤=,即()0g x '≤,所以函数()g x 在1x ≥上单调递减,则()()11g x g ≤=,1λ∴≥.【小问3详解】设()12ln x x x xϕ=-+,1x >,则()()222221212110x x x x x x x xϕ---+-='=--=<,所以 在 ∞上单调递减,则()()10x ϕϕ<=,即12ln 0x x x-+<,11ln 2x x x ⎛⎫∴<- ⎪⎝⎭,1x >,令11x n=+,*N n ∈,可得1111111ln 1112211n n n n n ⎛⎫⎪⎛⎫⎛⎫+<+-=+ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎪+⎝⎭,所以()111ln 1ln 21n n n n ⎛⎫+-<+ ⎪+⎝⎭,()()111ln 2ln 1212n n n n ⎛⎫+-+<+ ⎪++⎝⎭,()()111ln 3ln 2223n n n n ⎛⎫+-+<+ ⎪++⎝⎭,…()()111ln 2ln 212212n n n n ⎛⎫--<+ ⎪-⎝⎭,以上式子相加得()112221ln 2ln 212212n n n n n n n ⎛⎫-<+++++ ⎪++-⎝⎭,整理得,11111ln 2412212n n n n n-<++++++-L ,两边取指数得,11111ln 2412212e e n n n n n -++++++-<L ,即得111114122122e e n n n n n -++++-<L ,()*Nn ∈得证.【点睛】关键点点睛:本题第三问解题的关键是先构造函数()12ln x x x xϕ=-+,利用导数证明11ln 2x x x ⎛⎫<- ⎪⎝⎭,1x >,令11x n=+,得到()111ln 1ln 21n n n n ⎛⎫+-<+ ⎪+⎝⎭.19.已知整数4n ,数列{}n a 是递增的整数数列,即12,,,n a a a ∈Z 且12n a a a <<<.数列{}n b 满足11b a =,n n b a =.若对于{}2,3,,1i n ∈- ,恒有1i i b a --等于同一个常数k ,则称数列{}n b 为{}n a 的“左k 型间隔数列”;若对于{}2,3,,1i n ∈- ,恒有1i i a b +-等于同一个常数k ,则称数列{}n b 为{}n a 的“右k型间隔数列”;若对于{}2,3,,1i n ∈- ,恒有1i i a b k +-=或者1i i b a k --=,则称数列{}n b 为{}n a 的“左右k 型间隔数列”.(1)写出数列{}:1,3,5,7,9n a 的所有递增的“左右1型间隔数列”;(2)已知数列{}n a 满足()81n a n n =-,数列{}n b 是{}n a 的“左k 型间隔数列”,数列{}n c 是{}n a 的“右k 型间隔数列”,若10n =,且有1212n n b b b c c c +++=+++ ,求k 的值;(3)数列{}n a 是递增的整数数列,且10a =,27a =.若存在{}n a 的一个递增的“右4型间隔数列{}n b ”,使得对于任意的{},2,3,,1i j n ∈- ,都有i j i j a b b a +≠+,求n a 的关于n 的最小值(即关于n 的最小值函数()f n ).【答案】(1)1,2,4,6,9或1,2,4,8,9或1,2,6,8,9或1,4,6,8,9.(2)80k =(3)()()382n n f n -=+【解析】【分析】(1)由“左右k 型间隔数列”的定义,求数列{}:1,3,5,7,9n a 的所有递增的“左右1型间隔数列”;(2)根据“左k 型间隔数列”和“右k 型间隔数列”的定义,由1212n n b b b c c c +++=+++ ,则有1291016a a k a a ++=+,代入通项计算即可;(3)由“右4型间隔数列”的定义,有144i i i b a a +=->-,可知{}3i i b a nn -∈≥-∣,则有()()()232431n n n a a a a a a a a -=+-+-++- ()()()()413216n n ≥-+-+-+-++- ,化简即可.【小问1详解】数列{}:1,3,5,7,9n a 的“左右1型间隔数列”为1,2,4,6,9或1,2,4,8,9或1,2,6,8,9或1,4,6,8,9.【小问2详解】由12101210b b b c c c +++=+++ ,可得239239b b b c c c +++=+++ ,即128341088a a a k a a a k ++++=+++- ,即1291016a a k a a ++=+,即16168988109k +=⨯⨯+⨯⨯,所以80k =.【小问3详解】当{}2,3,,1i n ∈- 时,由144i i i b a a +=->-,可知{}3i i b a nn -∈≥-∣.又因为对任意{},2,3,,1i j n ∈- ,都有i j i j a b b a +≠+,即当{}2,3,,1i n ∈- 时,i i b a -两两不相等.因为()()()232431n n n a a a a a a a a -=+-+-++- ()()()2233117444n n b a b a b a --=++-++-+++- ()()()()223311742n n n b a b a b a --=+-+-+-++- ()()()()413216n n ≥-+-+-+-++- ()382n n -=+.所以n a 的最小值函数()()382n n f n -=+.另外,当数列䁕 的通项()0,1,38,2,2i i a i i i n =⎧⎪=⎨-+≤≤⎪⎩间隔数列 的通项(),1,13,21,2i i a i i n b i i i n ==⎧⎪=⎨-+≤≤-⎪⎩或时也符合题意.【点睛】方法点睛:在实际解决“新定义”问题时,关键是正确提取新定义中的新概念、新公式、新性质、新模式等信息,确定新定义的名称或符号、概念、法则等,并进行信息再加工,寻求相近知识点,明确它们的共同点和不同点,探求解决方法,在此基础上进行知识转换,有效输出,合理归纳,结合相关的数学技巧与方法来分析与解决!。

辽宁省实验中学2024-2025学年高三上学期10月月考 数学试题

辽宁省实验中学2024-2025学年高三上学期10月月考 数学试题

辽宁省实验中学高三年级10月份月考数学试卷满分:150分时间:120分钟一、单项选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.若()12:log 11,:39a p a q --<<,则p 是q 的()条件A.充分不必要 B.必要不充分C.充要D.既不充分也不必要2.若sin 2cos θθ=-,则sin (sin cos )θθθ+=()A.65-B.25-C.25D.653.已知函数()()22ln 3=--+f x x ax a在[)1,+∞上单调递增,则a 的取值范围是()A.(],1-∞- B.(),1∞-- C.(],2-∞ D.()2,+∞4.在ABC V 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin sin sin (34A B Ck k ==为非零实数),则下列结论错误..的是()A.当5k =时,ABC V 是直角三角形B.当3k =时,ABC V 是锐角三角形C.当2k =时,ABC V 是钝角三角形D.当1k =时,ABC V 是钝角三角形5.耳机的降噪效果成为衡量一个耳机好坏的标准之一,降噪的工作原理就是通过麦克风采集周围环境的噪音,通过数字化分析,以反向声波进行处理,实现声波间的抵消,使噪音降为0,完成降噪(如图所示),已知噪音的声波曲线是3cos2y x =,通过主动降噪芯片生成的反向声波曲线是()sin y A x ωϕ=+(其中0A >,0ω>,0πϕ≤<2),则ϕ=().A.π3B.π2C.πD.3π26.已知函数是定义在R 上的偶函数,且在区间[)0,+∞单调递减,若a +∈R ,且满足()()313log log 22f a f a f ⎛⎫+≤ ⎪⎝⎭,则a 的取值范围是()A.1,99⎡⎤⎢⎥⎣⎦B.1,9⎛⎤-∞ ⎥⎝⎦ C.1,22⎡⎤⎢⎥⎣⎦D.[)10,9,9⎛⎤+∞ ⎥⎝⎦7.已知正数x y z ,,,满足346x y z ==,则下列说法不正确的是()A.1112x y z+= B.x y z >>C.112x z y+< D.346x y z<<8.设函数()()π2sin 106f x x ωω⎛⎫=--> ⎪⎝⎭在[]π,2π上至少有两个不同零点,则实数ω的取值范围是()A.3,2⎡⎫+∞⎪⎢⎣⎭B.375,,232⎡⎤⎡⎫+∞⎪⎢⎥⎢⎣⎦⎣⎭C.1319,3,66⎡⎤⎡⎫+∞⎪⎢⎥⎢⎣⎦⎣⎭D.1,2⎡⎫+∞⎪⎢⎣⎭二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求。

北京市2025届高三上学期10月月考数学试题含答案

北京市2025届高三上学期10月月考数学试题含答案

北京市2024-2025学年高三上学期10月月考数学试题(答案在最后)(清华附中朝阳望京学校)2024.10.10姓名____________一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知全集{}0U x x =>,集合{}23A x x =≤≤,则U A =ð()A.(][)0,23,+∞B.()()0,23,+∞ C.(][),23,-∞⋃+∞ D.()(),23,-∞⋃+∞【答案】B 【解析】【分析】由补集定义可直接求得结果.【详解】()0,U =+∞ ,[]2,3A =,()()0,23,U A ∴=+∞ ð.故选:B.2.若等差数列{}n a 和等比数列{}n b 满足11a b =,222a b ==,48a =,则{}n b 的公比为()A.2B.2- C.4D.4-【答案】B 【解析】【分析】根据等差数列的基本量运算可得111a b ==-,然后利用等比数列的概念结合条件即得.【详解】设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,则242822a a d d +=+==,所以3d =,∴22123b a a ===+,111a b ==-,所以212b q b ==-.故选:B.3.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于直线y x =对称.若3sin 5α=,则cos β=()A.45-B.45C.35-D.35【答案】D 【解析】【分析】根据对称关系可得()22k k παβπ+=+∈Z ,利用诱导公式可求得结果.【详解】y x = 的倾斜角为4π,α\与β满足()22242k k k ππαβππ+=⨯+=+∈Z ,3cos cos 2cos sin 225k ππβπααα⎛⎫⎛⎫∴=+-=-==⎪ ⎪⎝⎭⎝⎭.故选:D.4.若点()1,1M 为圆22:40C x y x +-=的弦AB 的中点,则直线AB 的方程是()A.20x y --=B.20x y +-=C.0x y -=D.0x y +=【答案】C 【解析】【分析】由垂径定理可知MC AB ⊥,求出直线AB 的斜率,利用点斜式可得出直线AB 的方程.【详解】圆C 的标准方程方程为()2224x y -+=,()221214-+< ,即点M 在圆C 内,圆心()2,0C ,10112MC k -==--,由垂径定理可知MC AB ⊥,则1AB k =,故直线AB 的方程为11y x -=-,即0x y -=.故选:C.5.已知D 是边长为2的正△ABC 边BC 上的动点,则AB AD ⋅的取值范围是()A.B.2]C.[0,2]D.[2,4]【答案】D 【解析】【分析】根据向量数量积的几何意义可得||cos [1,2]AD DAB ∠∈ ,再由||||cos AD AB D A A B AD B =∠⋅即可求范围.【详解】由D 在边BC 上运动,且△ABC 为边长为2的正三角形,所以03DAB π≤∠≤,则[]cos 1,2AB DAB ∠∈ ,由||||cos [2,4]AD AB D D B A A A B =∠⋅∈.故选:D6.若0a b >>,则①11b a >;②11a ab b +>+>的序号是()A.①②B.①③C.②③D.①②③【答案】A 【解析】【分析】对①,由a b >两边同除ab 化简即可判断;对②,由a b >得a ab b ab +>+,两边同除()1b b +化简即可判断;>>【详解】对①,0a b a b ab ab>>⇒>,即11b a >,①对;对②,由()()011a b a ab b ab a b b a >>⇒+>+⇒+>+,则()()()()111111a b b a a a b b b b b b +++>⇒>+++,②对;对③,由>,>,与0a b >>矛盾,③错;故选:A7.若命题“2,20x x x m ∃∈++≤R ”是真命题,则实数m 的取值范围是()A.1m < B.1m ≤ C.1m > D.1m ≥【答案】B 【解析】【分析】不等式能成立,等价于方程有实数解,用判别式计算求参数即可.【详解】由题可知,不等式220x x m ++≤在实数范围内有解,等价于方程220x x m ++=有实数解,即440m ∆=-≥,解得1m ≤.8.“1a =”是“函数()22x x af x a+=-具有奇偶性”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据充分、必要性的定义,及奇偶性的定义求参数a ,判断题设条件间的关系即可.【详解】当1a =时21()21x x f x +=-,则定义域为{|0}x x ≠,211221()()211221x x x x xx f x f x --+++-===-=----,故()f x 为奇函数,充分性成立;若2()2x x af x a+=-具有奇偶性,当()f x 为偶函数,则212()()212x x x xa a f x f x a a --++⋅-===--⋅,所以212212x xx xa a a a ++⋅=--⋅恒成立,可得0a =;当()f x 为奇函数,则212()()212x x x xa a f x f x a a --++⋅-===---⋅,所以212212x xx xa a a a ++⋅-=--⋅恒成立,可得1a =或=−1;所以必要性不成立;综上,“1a =”是“函数()22x x af x a+=-具有奇偶性”的充分而不必要条件.故选:A9.已知函数()32x x f x =-,则()A.()f x 在R 上单调递增B.对R,()1x f x ∀∈>-恒成立C.不存在正实数a ,使得函数()xf x y a=为奇函数D.方程()f x x =只有一个解【答案】B【分析】对()f x 求导,研究()f x '在0x ≥、0x <上的符号,结合指数幂的性质判断()f x '零点的存在性,进而确定单调性区间、最小值,进而判断A 、B 的正误;利用奇偶性定义求参数a 判断C ;由(0)0f =、(1)1f =即可排除D.【详解】由3ln 3ln 22[(ln 3ln ()322]2x x x xf x =-'=-,而20x >,当0x ≥时()0f x '>,即(0,)+∞上()f x 递增,且(30)2x x f x =->恒成立;而0x <,令()0f x '=,可得3ln 2()2ln 3x=,所以00x x ∃=<使03ln 2(2ln 3x =,综上,0(,)x -∞上()0f x '<,()f x 递减;0(,)x +∞上()0f x '>,()f x 递增;故在R 上不单调递增,A 错误;所以0x x =时,有最小值0000002()323()3ln 3[1]3(1)ln 2x x x x xf x ===---,而0031x <<,ln 310ln 2<-,所以0ln 3ln 4111ln 2()ln 2f x >-->=-,故R,()1x f x ∀∈>-恒成立,B 正确;令()()x f x y g x a ==为奇函数且0a >,则3232()()x x x x x xg x g x a a ------==-=-恒成立,所以6(23)23x x x x x xxaa --=恒成立,则a =满足要求,C 错误;显然000)20(3f -==,故0x =为一个解,且(1)321f =-=,即1x =为另一个解,显然不止有一个解,D 错误.故选:B【点睛】关键点点睛:A 、B 判断注意分类讨论()f x '的符号,结合指数幂的性质确定导函数的零点位置,C 、D 应用奇偶性定义得到等式恒成立求参、特殊值法直接确定()f x x =的解.10.如图为某无人机飞行时,从某时刻开始15分钟内的速度()V x (单位:米/分钟)与时间x (单位:分钟)的关系.若定义“速度差函数”()v x 为无人机在时间段[]0,x 内的最大速度与最小速度的差,则()v x 的图像为()A. B.C. D.【答案】C 【解析】【分析】根据速度差函数的定义,分[0,6],[6,10],[10,12],[12,15]x x x x ∈∈∈∈四种情况,分别求得函数解析式,从而得到函数图像.【详解】由题意可得,当[0,6]x ∈时,无人机做匀加速运动,40()603V x x =+,“速度差函数”40()3v x x =;当[6,10]x ∈时,无人机做匀速运动,()140V x =,“速度差函数”()80v x =;当[10,12]x ∈时,无人机做匀加速运动,()4010V x x =+,“速度差函数”()2010v x x =-+;当[12,15]x ∈时,无人机做匀减速运动,“速度差函数”()100v x =,结合选项C 满足“速度差函数”解析式,故选:C.二、填空题共5小题,每小题5分,共25分.11.函数()1ln 1f x x x =+-的定义域是____________.【答案】()()0,11+,⋃∞.【解析】【分析】根据分母不为零、真数大于零列不等式组,解得结果.【详解】由题意得,10x x -≠⎧⎨>⎩故答案为:()()0,11,+∞ .【点睛】本题考查函数定义域,考查基本分析求解能力,属基础题.12.直线:1l x y +=截圆22220x y x y +--=的弦长=___________.【答案】【解析】【分析】由圆的弦长与半径、弦心距的关系,求直线l 被圆C 截得的弦长.【详解】线l 的方程为10x y +-=,圆心(1,1)C 到直线l 的距离2d ==.∴此时直线l 被圆C 截得的弦长为=..13.如图,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥底面ABCD ,2PA AB ==,E 为线段PB 的中点,F 为线段BC 上的动点,平面AEF 与平面PBC ____________(填“垂直”或“不垂直”);AEF △的面积的最大值为_____________.【答案】①.垂直②.【解析】【分析】根据线面垂直的的性质定理,判定定理,可证AE ⊥平面PBC ,根据面面垂直的判定定理,即可得证.分析可得,当点F 位于点C 时,面积最大,代入数据,即可得答案.【详解】因为PA ⊥底面ABCD ,⊂BC 平面ABCD ,所以PA BC ⊥,又底面ABCD 为正方形,所以AB BC ⊥,又AB PA A = ,,AB PA ⊂平面PAB ,所以⊥BC 平面PAB ,因为AE ⊂平面PAB ,所以BC AE ⊥,又2PA AB ==,所以PAB 为等腰直角三角形,且E 为线段PB 的中点,所以AE PB ⊥,又BC PB B ⋂=,,BC PB ⊂平面PBC ,所以AE ⊥平面PBC ,因为AE ⊂平面AEF ,所以平面AEF ⊥与平面PBC .因为AE ⊥平面PBC ,EF ⊂平面PBC ,所以AE EF ⊥,所以当EF 最大时,AEF △的面积的最大,当F 位于点C 时,EF 最大且EF ==,所以AEF △的面积的最大为12⨯⨯=.14.设函数()221,,x x af x x a x a⎧-<=⎨+≥⎩①若2a =-,则()f x 的最小值为__________.②若()f x 有最小值,则实数a 的取值范围是__________.【答案】①.2-②.1a ≤-【解析】【分析】对①,分别计算出每段的范围或最小值即可得;对②,由指数函数在开区间内没有最小值,可得存在最小值则最小值一定在x a ≥段,结合二次函数的性质即可得.【详解】①当2a =-时,()221,22,2x x f x x x ⎧-<-=⎨-≥-⎩,则当2x <-时,()3211,4xf x ⎛⎫=-∈--⎪⎝⎭,当2x ≥-时,()222f x x =-≥-,故()f x 的最小值为2-;②由()221,,x x a f x x a x a⎧-<=⎨+≥⎩,则当x a <时,()()211,21x af x =-∈--,由()f x 有最小值,故当x a ≥时,()f x 的最小值小于等于1-,则当1a ≤-且x a ≥时,有()min 1f x a =≤-,符合要求;当1>-a 时,21y x a a =+≥>-,故不符合要求,故舍去.综上所述,1a ≤-.故答案为:2-;1a ≤-.15.设数列{}n a 的前n 项和为n S ,10a >,21(R)n n n a a a λλ+-=∈.给出下列四个结论:①{}n a 是递增数列;②{}R,n a λ∀∈都不是等差数列;③当1λ=时,1a 是{}n a 中的最小项;④当14λ≥时,20232022S >.其中所有正确结论的序号是____________.【答案】③④【解析】【分析】利用特殊数列排除①②,当0λ≠时显然有0n a ≠,对数列递推关系变形得到1n n na a a λ+=+,再判断③④即可.【详解】当数列{}n a 为常数列时,210n n n a a a +-=,{}n a 不是递增数列,是公差为0的等差数列,①②错误;当1λ=时,211n n na a a +-=,显然有0n a ≠,所以11n n na a a +=+,又因为10a >,所以由递推关系得0n a >,所以110n n na a a +-=>,故数列{}n a 是递增数列,1a 是{}n a 中的最小项,③正确;当14λ≥时,由③得0n a >,所以由基本不等式得11n n n a a a λ+=+≥=≥,当且仅当n na a λ=时等号成立,所以2320232022a a a ++⋅⋅⋅+≥,所以20232022S >,④正确.故选:③④.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.在ABC V 中,角,,A B C 所对的边分别为,,,a b c 已知222b c a bc +=+.(1)求A 的大小;(2)如果cos 2B b ==,求ABC V 的面积.【答案】(1)3π;(2)2【解析】【分析】(1)利用余弦定理的变形:222cos 2b c a A bc+-=即可求解.(2)利用正弦定理求出3a =,再根据三角形的内角和性质以及两角和的正弦公式求出sin C ,由三角形的面积公式即可求解.【详解】(1)222b c a bc +=+。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省泰州中学、江都中学、宜兴中学2019-2020学年高三上学期10月月考数学试题xxx注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明第II 卷(非选择题)请点击修改第II 卷的文字说明一、填空题1.已知集合{}1|0A x x =-<<,{}|B x x a =≤,若A B ⊆,则a 的取值范围为:_______.2.若幂函数()k f x x =的图像过点()4,2,则()9f =____. 3.函数()sin cos f x x x =⋅的最小正周期是_________.4.已知角α的顶点在原点,始边为x 轴非负半轴,则“α的终边在第一象限”是“sin 0α>”的_________________条件.(从“充分不必要、必要不充分、充要、既不充分又不必要”中选填)5.已知向量a 、b 的夹角为60,2a =,1b =,则a b -=____.6.已知P(−√3,a)为角θ的终边上的一点,且sinθ=12,则实数a 的值为____. 7.曲线()1e xy ax =+在点()01,处的切线的斜率为2-,则a =________. 8.已知函数2,02()28,2x x x f x x x ⎧+<<=⎨-+≥⎩,若()(2)f a f a =+,则1f a ⎛⎫ ⎪⎝⎭的值是_____. 9.平行四边形ABCD 中,已知6,5,2AB AD CP PD ===,12AP CP ⋅=-,则AB AD ⋅=________.10.已知函数()y f x =是定义在R 上的奇函数,且满足()()2f x f x +=-,当[]2,0x ∈-时,()22f x x x =--,则当[]4,6x ∈时,()y f x =的最小值为_________. 11.如图,在四边形ABCD 中,90BAC ∠=︒,4BC =,1CD =,2AB AD =,AC 是BCD ∠的角平分线,则BD =_____.12.已知函数()ln ,111,122x x f x x x >⎧⎪=⎨+≤⎪⎩,若m n <,且()()f m f n =,则n m -的最小值是_____.13.在ABC ∆sin sin A B C +的最大值为:____________.二、解答题14.已知函数()2π2cos 214f x x x ⎛⎫=-++ ⎪⎝⎭. (1)求函数()f x 的最小正周期;(2)求函数()f x 在区间ππ,64⎡⎤-⎢⎥⎣⎦上的取值范围. 15.在ABC ∆中,内角A ,B ,C的对边分别为a ,b ,c .已知sin 3sin B C =,tan A =ABC ∆的面积为(1)求cos2A 的值;(2)求ABC ∆的周长.16.已知函数()161x f x a a+=-+(0,1)a a >≠是定义在R 上的奇函数. (1)求实数a 的值及函数()f x 的值域;(2)若不等式()33x tf x ≥-在[1,2]x ∈上恒成立,求实数t 的取值范围.17.某同学大学毕业后,决定利用所学专业进行自主创业,经过市场调查,生产一小型电子产品需投入固定成本2万元,每生产x 万件,需另投入流动成本()C x 万元,当年产量小于7万件时,21()23C x x x =+(万元);当年产量不小于7万件时,3()6ln 17e C x x x x=++-(万元).已知每件产品售价为6元,假若该同学生产的商品当年能全部售完.(1)写出年利润()P x (万年)关于年产量x (万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)(2)当年产量约为多少万件时,该同学的这一产品所获年利润最大?最大年利润是多少?(取320e =).18.设二次函数()()20f x ax bx c a =++≠,集合(){}|A x f x x ==. (1)若{}1,2A =,()00f >,且方程()0f x =的两根都小于-1,求实数a 的取值范围;(2)若{}2A =,求函数()f x 在区间[]22-,上的最大值M (结果用a 表示).19.已知函数()251f x x x =-+,()xg x e =. (1)求函数()()f x yg x =的极小值; (2)设函数()()()'y f x a g x a R =+⋅∈,讨论函数在(],4-∞上的零点的个数; (3)若存在实数[]0,2t ∈,使得对任意[]1,x m ∈,不等式()()xf x t g x x +⋅≤⎡⎤⎣⎦恒成立,求正整数m 的最大值.参考答案1.[)0,+∞【解析】【分析】根据A B ⊆,列式解得.【详解】因为{}1|0A x x =-<<,{}|B x x a =≤,且A B ⊆,所以0a ≥.故答案为:[0,)+∞.【点睛】本题考查了子集关系,属于基础题.2.3【解析】【分析】根据(4)2f =解得12k =,由此可得12()f x x =,然后可得(9)f . 【详解】因为幂函数()k f x x =的图像过点()4,2, 所以(4)2f =,即42k =,所以222k =,所以21k =,所以12k =, 所以12()f x x =, 所以12(9)9f =122(3)3==,故答案为:3.【点睛】本题考查了求幂函数的解析式,属于基础题.3.π【解析】【分析】利用降幂公式化简再求最小正周期即可.【详解】1()sin cos sin 22f x x x x =⋅=,故最小正周期是22ππ=. 故答案为:π【点睛】本题主要考查了降幂公式与三角函数最小正周期,属于基础题型.4.充分不必要【解析】【分析】根据第一象限角,y 轴非负半轴上的角以及第二象限的角的正弦值都大于零可得.【详解】由α的终边在第一象限可以推出sin 0α>,由sin 0α>,可以推出α的终边在第一象限或者在y 轴非负半轴上或者在第二象限, 所以“α的终边在第一象限”是“sin 0α>”的充分不必要条件.故答案为: 充分不必要.【点睛】本题考查了充分必要条件,正弦函数的符号法则,属于中档题.5【解析】【分析】 利用2||()a b a b -=-可得.【详解】因为222()24221cos ,1a b a a b b a b -=-⋅+=-⨯⨯⨯<>+144132=-⨯+=, 所以||3a b -=.故答案为.【点睛】本题考查了利用向量的数量积求向量的模,属于基础题.6.1【解析】【分析】由三角函数的定义,即可求解a 得值,得到答案.【详解】由三角函数的定义可知sinθ=√(−√3)2+a 2=12,解得a =±1, 又由sinθ>0,所以a =1.【点睛】本题主要考查了三角函数的定义的应用,其中解答中熟记三角函数的定义,列出方程求解是解答的关键,着重考查了退与运算能力,属于基础题.7.3-【解析】【分析】求导,利用导数的几何意义计算即可.【详解】解:()y 1x x ae ax e =++' 则()f 012a =+=-'所以3a =-故答案为-3.【点睛】本题主要考查导数的计算和导数的几何意义,属于基础题.8.2【解析】【分析】根据分段函数的解析式,结合已知条件,求得参数a ;再求函数值即可.【详解】由2x ≥时,()28f x x =-+是减函数可知,当2a ≥,则()(2)f a f a ≠+,所以02a <<,由()(2)f a f a =+得22(2)8a a a +=-++,解得1a =, 则21(1)112f f a ⎛⎫==+= ⎪⎝⎭. 故答案为:2.【点睛】本题考查分段函数值得求解,以及由分段函数函数值情况求参数值,属综合基础题. 9.6【解析】【分析】以,AB AD 为基底表示,AP CP ,代入12AP CP ⋅=-,即求AB AD ⋅.【详解】平行四边形ABCD 中,2CP PD =,122,333AP AD DP AD AB CP CD AB ∴=+=+==-, 212223339AP CP AD AB AB AD AB AB ⎛⎫⎛⎫∴⋅=+-=-- ⎪ ⎪⎝⎭⎝⎭. 6,5,12AB AD AP CP ==⋅=-,222126,639AD AB AD AB ∴-=--⨯∴=. 故答案为:6.【点睛】本题考查平面向量基本定理和数量积的运算,属于基础题.10.-1【解析】【分析】先根据()()2f x f x +=-推出周期为4,再根据奇函数推出[0,2]x ∈时的表达式,再根据周期性推出[4,6]x ∈时的表达式,再用二次函数求最小值,【详解】因为()()2f x f x +=-,所以(22)(2)f x f x ++=-+,所以(4)[()]()f x f x f x +=--=,即(4)()f x f x +=,所以函数()f x 是以4为周期的周期函数,设[0,2]x ∈,则[2,0]x -∈-,所以22()()2()2f x x x x x -=----=-+,因为函数()y f x =是定义在R 上的奇函数,所以22()()(2)2f x f x x x x x =--=--+=-,所以当[4,6]x ∈时,4[0,2]x -∈,所以22()(4)(4)2(4)1024f x f x x x x x =-=---=-+2(5)1x =--,所以当5x =时,函数()f x 取得最小值1-.故答案为:1-.【点睛】本题考查了函数的周期性,奇偶性,二次函数求最小值,属于中档题.11【解析】【分析】设出AD x =,根据ACB ACD ∠=∠,利用余弦定理建立等式解出AD ACB ACD ∠=∠的值,在BCD 中利用余弦定理,解出BD 的值.【详解】设AD x =,则2AB x =,AC =又AC 是BCD ∠的角平分线,即ACB ACD ∠=∠,222cos cos 2ACAC CD ADACB ACD BC AC CD +-∠==∠=⋅x ⇒=即AD =2AC =,=60o ACB ACD ∠=∠,=120o BCD ∠BD ==【点睛】本题考查利用余弦定理解三角形,属于基础题.12.32ln 2-【解析】【分析】根据分段函数在两段上都单调,可得1,1m n ≤>,且2ln 1m n =-,所以2ln 1n m n n -=-+,然后构造函数,利用导数求得最小值即可.【详解】因为函数()f x 在(,1]-∞上递增,在(1,)+∞上也递增,且m n <时,()()f m f n =, 所以1,1m e n ≤≥>,所以11()22f m m =+,()ln f n n =, 所以11ln 22m n +=,即2ln 1m n =-, 所以2ln 1n m n n -=-+,1e n ≥>,令()2ln 1(1)h x x x e x =-+≥>, 则22()1x h x x x-'=-=, 当(1,2)x ∈时,()0h x '<,当(2,)x ∈+∞时,()0h x '>,所以()h x 在(1,2)上递减,在(2,)+∞上递增,所以2x =时,()h x 取得最小值(2)22ln 2132ln 2h =-+=-. 即n m -的最小值是:32ln 2-.故答案为: 32ln 2-.【点睛】本题考查了构造法,利用导数求函数的最小值,属于中档题.13.2【解析】【分析】 根据积化和差公式得11sin sin cos cos()22B C A B C =+-11cos 22A ≤+,再化成辅助角的形式可解得最大值. 【详解】由积化和差公式可得,1sin sin [cos()cos()]2B C B C B C =-+--1[cos()cos()]2A B C π=----11cos cos()22A B C =+-11cos 22A ≤+,当且仅当BC =时,等号成立,sin sin A B C+11cos 22A A ≤++11)2A A =+1312(cos )332222A A =++,令cos 332ϕ==,112sin 332ϕ==,则tan ϕ==,取arctan ϕ=, 所以sin sin A B C +31(sin cos cos sin )22A A ϕϕ≤++31sin()22A ϕ=++31222≤+=,当arctan24A π=-,22A B C π==-时,等号成立.故答案为:2 【点睛】本题考查了积化和差公式,两角和的正弦的逆用公式,属于难题. 14.(1) T =2π4=π.2;(2)取值范围为2⎡⎤⎣⎦. 【解析】试题分析:(1)利用和角公式化简之后即可求出周期, (2)根据x 的范围,求出4x +π3的范围,然后结合三角函数的图象解答. 试题解析:(1)由题意知,()f x x -cos π42x ⎛⎫+ ⎪⎝⎭cos 4x +sin 4x =2sin π43x ⎛⎫+ ⎪⎝⎭,∴函数()f x 的最小正周期T =2π4=π.2(2)∵-π6≤x ≤π4, ∴-π3≤4x +π3≤4π3,∴-π43x ⎛⎫+ ⎪⎝⎭≤1,≤2sin π43x ⎛⎫+ ⎪⎝⎭≤2,∴函数()f x 的取值范围为2⎡⎤⎣⎦.点睛:三角函数式的化简要遵循“三看”原则:一看角,这是重要一环,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式 ;二看函数名称,看函数名称之间的差异,从而确定使用的公式,常见的有切化弦;三看结构特征,分析结构特征,可以帮助我们找到变形的方向,如遇到分式要通分等.15.(1)79(2)8 【解析】 【分析】(1)由tan A =和22sin cos 1A A +=可得sinA 和cosA ,再由二倍角公式即得cos2A ;(2)由面积公式1sin 2bc A =bc 的值,再由sin 3sin B C =和正弦定理可知b 和c 的值,用余弦定理可计算出a ,即得ABC ∆的周长. 【详解】解:(1)因为sin tan cos AA A ==sin A A =,02A π<<.因为22sin cos 1A A +=,所以sin A =,1cos 3A =,则217cos 22cos 12199A A =-=⨯-=.(2)由题意可得,ABC ∆的面积为1sin 2bc A ==,即12bc =.因为sin 3sin B C =,所以3b c =,所以6b =,2c =.由余弦定理可得a === 故ABC ∆的周长为8a b c ++=. 【点睛】本题考查用正弦定理和余弦定理解三角形,以及二倍角公式,属于常考题型. 16.(1)3a =;(1,1)-; (2)15[,)2+∞. 【解析】 【分析】(1)根据()00f =解得3a =,并检验3a =时,满足题意,得出函数解析式,求解值域;(2)根据函数值域,将问题转化()313331x xx t +≥-⋅-,故()max 313331x x x t ⎡⎤+≥-⋅⎢⎥-⎣⎦,利用换元法求解最值即可得解. 【详解】(1)由()00f =解得3a =,反之3a =时,()16133x f x +=-+ 23113131x x x-=-=++ ()()31313131x x x x f x f x -----==-=-++,符合题意,故3a =,据此()()1301xf x f x +=>-,()()1,1f x ∈-,即值域为()1,1- (2)()2131x f x =-+在[]1,2x ∈显然是单调增函数,()14,25f x ⎡⎤∈⎢⎥⎣⎦为正数, 所以()313331x xx t +≥-⋅-,故()max 313331x x x t ⎡⎤+≥-⋅⎢⎥-⎣⎦,令[]31,2,8xm m -=∈,则()()3133231x xx m +-⋅=-- 24m m m m +⋅=-随m 的增大而增大,最大值为152,∴实数t 范围是15,2⎡⎫+∞⎪⎢⎣⎭. 【点睛】此题考查根据函数奇偶性求参数的取值,根据不等式恒成立求解参数的取值范围,涉及参变分离,换元法求解最值.17.(1)23142,073()15,7x x x P x e lnx x x ⎧-+-<<⎪⎪=⎨⎪--≥⎪⎩;(2)当年产量约为20万件,该同学的这一产品所获年利润最大,最大利润为11万元 【解析】 【分析】(1)根据年利润=年销售收入-固定成本-流动成本,分07x <<和7x ≥两种情况,得到()P x 与x 的关系式即可;(2)求出两种情况的最大值,作比较即可得到本题答案. 【详解】(1)产品售价为6元,则万件产品销售收入为6x 万元. 依题意得,当07x <<时,2211()6224233P x x x x x x =---=-+-, 当7x ≥时,33()6(6ln 17)215ln e e x x x x x x P x=-++--=--,23142,073()15,7x x x P x e lnx x x ⎧-+-<<⎪⎪∴=⎨⎪--≥⎪⎩. (2)当07x <<时,21()(6)103P x x =--+, 所以当6x =时,()P x 的最大值为(6)10P =(万元),当7x ≥时,333221()15ln ()e e e xP x x P x x x x x -=--∴'=-+=, ∴当37x e ≤<时,()P x 单调递增,当3,()x e P x ≥单调递减,∴当3x e =时,()P x 取最大值33()15ln 111P e e =--=(万元),1110>,∴当320x e =≈时,()P x 取得最大值11万元,即当年产量约为20万件,该同学的这一产品所获年利润最大,最大利润为11万元. 【点睛】本题主要考查利用分段函数解决实际问题,其中涉及到二次函数的值域问题以及用导数求最值问题.18.(1)136a <≤-(2)()max 12,0041162,4a a f x a a ⎧<<<⎪⎪=⎨⎪-≥⎪⎩或.【解析】 【分析】(1)根据{}1,2A =,可得132b ac a =-⎧⎨=⎩,由二次函数的图象列式可解得;(2)根据{}2A =,可得144b ac a=-⎧⎨=⎩,再讨论二次函数的图象开口方向和对称轴可解得.【详解】(1)因为{}1,2A =,所以1和2是()210ax b x c +-+=的两根,所以由韦达定理得11212b ac a-⎧-=+⎪⎪⎨⎪=⨯⎪⎩,解得132b a c a =-⎧⎨=⎩,因为()00f >,所以20c a =>,即0a >,此时2222(1)498b ac a a a =--=-=0> ,又因为方程()0f x =的两根都小于-1,所以()2401210b ac ba f abc ⎧-≥⎪⎪-<-⎨⎪-=-+>⎪⎩,将13,2b a c a =-=代入得()()2213801321320a a a a a a a ⎧--≥⎪->⎨⎪--+>⎩,所以26101516a a a a ⎧⎪-+≥⎪⎪<⎨⎪⎪>⎪⎩,解得136a <≤- (2)因为{}2A =,所以()210ax b x c +-+=有两个相等的两根2,故12222bac a-⎧=+⎪⎪⎨⎪=⨯⎪⎩,解得144b a c a =-⎧⎨=⎩,此时2222(1)41688b ac a a a =--=-= 0>, 所以()()2144f x ax a x a =+-+,对称轴为411222a x a a-==-, ①当0a <时,则1222a->,()f x 在[]22-,上单调递增,所以()()max 22f x f ==; ②当104a <<时,则1222022a -+-<=,()()max 22f x f ==; ③当14a ≥时,则1222022a -+-≥=,()()max 2162f x f a =-=-, 综上:()max12,0041162,4a a f x a a ⎧<<<⎪⎪=⎨⎪-≥⎪⎩或.【点睛】本题考查了二次方程实根的分布,解一元二次不等式,分类讨论思想,二次函数在指定区间上的最值,属于中档题.19.(1)3e-;(2)分类讨论,详见解析;(3)4. 【解析】 【分析】(1)求导后,利用导数可求得极小值;(2)转化为讨论25xx a e -=-在(],4-∞上的解的个数,再利用导数可解决; (3) 转化为对任意的[]1,x m ∈,不等式()2511xx x e -+≤恒成立后,构造函数利用导数可解得, 【详解】(1)()()251xf x x x yg x e -+==,x ∈R . 则()()22261(25)(51)76'()x x x x xx x x e x x e x x y e e e -----+-+==-=-,令'0y >,得16x <<;令'0y <,得1x <或6x >(或列表求) ∴函数()()f x yg x =在(),1-∞单调减,在()1,6单调增,在()6,+∞上单调减, ∴函数()()f x y g x =在1x =处取得极小值3e-;(2)()()'250xy f x a g x x a e =+⋅=-+⋅=,∵0x e >,∴25xx a e-=-, 设()25x x h x e -=-,则()27'x x h x e -=,令()'0h x >,则72x >. ∴()25xx h x e -=-在7,2⎛⎫-∞ ⎪⎝⎭上单调减,在7,42⎛⎫⎪⎝⎭上单调增,且x →-∞,()h x →+∞,min()h x =72722h e -⎛⎫=- ⎪⎝⎭,()443h e -=-.∴当43a e ->-或722a e -=-时,()h x a =有1解,即()()'y f x a g x =+⋅在(],4-∞上的零点的个数为1个;当74223e a e ---<≤-时,()h x a =有2解,即()()'y f x a g x =+⋅在(],4-∞上的零点的个数为2个;当722a e -<-时,()h x a =有0解,即()()'y f x a g x =+⋅在(],4-∞上的零点的个数为0个.(3)∵0x e >,存在实数[]0,2t ∈,使对任意的[]1,x m ∈,不等式()()xf x t g x x +⋅≤⎡⎤⎣⎦恒成立,∴存在实数[]0,2t ∈,使对任意的[]1,x m ∈,不等式()()xt xf x g x ≤-恒成立. ∵min0t =,∴对任意的[]1,x m ∈,不等式()()10f x g x ≤-恒成立. 即对任意的[]1,x m ∈,不等式()2511xx x e -+≤恒成立. 设()()251xG x x x e =-+,[)1,x ∈+∞,∴()()()2'2551xxG x x e x x e =-+-+()()()23441xxx x e x x e =--=-+,可求得()G x 在(),1-∞-上单调增,在()1,4-上单调减,在()4,+∞上单调增,则()()251xG x x x e =-+在[)1,4上单调减,在()4,+∞上单调增,当4m ≤时,()()251xG x x x e =-+在[1,]m 上递减,所以()()max 131G x G e ==-≤恒成立;当4m >时,()()251xG x x x e =-+在[1,4]上递减,在(4,]m 上递增,所以()()(){}max max 1,G x G G m =,因为()131G e =-≤, ()4431G e =-≤,而()551G e =>;所以()2511xx x e -+≤在[1,]m 上不恒成立, ∴正整数m 的最大值为4. 【点睛】本题考查了利用导数求函数的极小值,利用导数讨论函数的零点的个数,利用导数处理不等式恒成立问题,本题属于难题.。

相关文档
最新文档