傅里叶变换--fortran
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SUBROUTINE FOUR1(DATA,NN,ISIGN)
! ISIGN: -1:反变换1:正变换
REAL*8 WR, WI, WPR, WPI, WTEMP, THETA DIMENSION DATA(2*NN)
N = 2*NN
J = 1
DO 11 I = 1, N, 2
IF(J.GT.I) THEN
TEMPR = DATA(J)
TEMPI = DATA(J+1)
DATA(J) = DATA(I)
DATA(J+1) = DATA(I+1)
DATA(I) = TEMPR
DATA(I+1) = TEMPI
END IF
M = N / 2
1 IF((M.GE.2).AND.(J.GT.M)) THEN
J = J - M
M = M / 2
GO TO 1
END IF
J = J + M
11 CONTINUE
MMAX = 2
2 IF(N.GT.MMAX) THEN
ISTEP = 2 * MMAX
THETA = 6.28318530717959D0 / (ISIGN*MMAX)
WPR = -2.D0 * DSIN(0.5D0*THETA)**2
WPI = DSIN(THETA)
WR = 1.D0
WI = 0.D0
DO 13 M = 1, MMAX, 2
DO 12 I = M, N, ISTEP
J = I + MMAX
TEMPR = SNGL(WR) * DATA(J) - SNGL (WI) * DATA(J+1)
TEMPI = SNGL(WR) * DATA(J+1) + SN GL(WI) * DATA(J)
DATA(J) = DATA(I) - TEMPR
DATA(J+1) = DATA(I+1) - TEMPI
DATA(I) = DATA(I) + TEMPR
DATA(I+1) = DATA(I+1) + TEMPI
12 CONTINUE
WTEMP = WR
WR = WR * WPR - WI * WPI + WR
WI = WI * WPR + WTEMP * WPI + WI 13 CONTINUE
MMAX = ISTEP
GO TO 2
END IF
RETURN
END
这个程序也很不错!
c-------------------------------------------------------------c
c
c
c Subroutine sffteu( x, y, n, m, itype )
c
c
c
c This routine is a slight modification of a complex spli t c
c radix FFT routine presente
d by C.S. Burrus. Th
e origin al c
c program header is shown below.
c
c
c
c Arguments:
c
c x - real array containing real parts of transform
c
c sequence (in/out)
c
c y - real array containing imag parts of transform
c
c sequence (in/out)
c
c n - integer length of transform (in)
c
c m - integer such that n = 2**m (in)
c
c itype - integer job specifier (in)
c
c itype .ne. -1 --> fowar
d transform
c
c itype .eq. -1 --> backwar
d transfor m c
c
c
c The forwar
d transform computes
c
c X(k) = sum_{j=0}^{N-1} x(j)*exp(-2ijk*pi/N)
c
c
c
c The backwar
d transform computes
c
c x(j) = (1/N) * sum_{k=0}^{N-1} X(k)*exp(2ijk*pi/N)
c
c
c
c
c
c Requires standar
d FORTRAN functions - sin, cos
c
c
c
c Steve Kifowit, 9 July 1997
c
c
c
C-------------------------------------------------------------C
C A Duhamel-Hollman Split-Radix DIF FFT
C
C Reference: Electronics Letters, January 5, 1984
C
C Complex input and output in data arrays X and Y
C
C Length is N = 2**M
C
C
C
C C.S. Burrus Rice University
Dec 1984 C
C-------------------------------------------------------------C
c
SUBROUTINE SFFTEU( X, Y, N, M, ITYPE )
INTEGER N, M, ITYPE
REAL X(*), Y(*)
INTEGER I, J, K, N1, N2, N4, IS, ID, I0, I1, I2, I3
REAL TWOPI, E, A, A3, CC1, SS1, CC3, SS3
REAL R1, R2, S1, S2, S3, XT
INTRINSIC SIN, COS
PARAMETER ( TWOPI = 6.2831853071795864769 )
c
IF ( N .EQ. 1 ) RETURN
c
IF ( ITYPE .EQ. -1 ) THEN
DO 1, I = 1, N
Y(I) = - Y(I)
1 CONTINUE
ENDIF
c
N2 = 2 * N
DO 10, K = 1, M-1
N2 = N2 / 2
N4 = N2 / 4
E = TWOPI / N2
A = 0.0
DO 20, J = 1, N4
A3 = 3 * A
CC1 = COS( A )
SS1 = SIN( A )
CC3 = COS( A3 )