(整理)弹性模量、压缩模量、变形模量

合集下载

变形模量、弹性模量、压缩模量的关系

变形模量、弹性模量、压缩模量的关系

变形模量的定义在表达式上和弹性模量是一样的E=σ/ε,对于变形模量ε是指应变,包括弹性应变εe 和塑性应变εp,对于弹性模量而言,ε就是指εe(计算变形模量时,应变ε包括了弹性应变和塑性应变)。

岩土的弹性模量要远大于压缩模量和变形模量,而压缩模量又大于变形模量。

弹性模量>压缩模量>变形模量。

弹性模量也叫杨氏模量(岩土体在弹性限度内应力与应变的比值)压缩模量是有侧限的,杨氏模量是无侧限的。

同样的土体,同样的荷载,有侧限的土体应变小,所以压缩模量更大才对。

这只是弹性理论上的关系,对土体这种自然物不一定适用。

土体计算中所用的称为“弹性模量”不一定是在弹性限度内。

E——弹性模量;Es——压缩模量;Eo——变形模量。

弹性模量=应力/弹性应变,它主要用于计算瞬时沉降。

压缩模量和变形模量均=应力/总应变。

压缩模量是通过现场取原状土进行实验室有侧限压缩实验得出的,而变形模量则是通过现场的原位载荷试验得出的,它是无侧限的。

弹性模量要远大于压缩模量和变形模量,而压缩模量又大于变形模量。

地堪报告中,一般给出的是土的压缩模量Es与变形模量Eo,而一般不会给出弹性模量E。

数值模拟中一般用Eo,E(50),达到峰值应力(应变)50%时的割线模量。

Es(勘查报告中提供),有侧限,E=2.0~5.0Es(看别人这么弄的)。

具体请查阅资料。

Eo应该是变形模量,E是弹性模量,Es是压缩模量,弹性模量与压缩模量应该有上百倍的关系吧,不应该只有五倍,一般e =3~5 Es ;根据结果调整参数;问题是地质报告上只会提供压缩模量;工程上,土的弹性模量就是指变形模量,因为土发生弹性变形的时间非常短,变形模量与压缩模量是一个量级,但是由于土体的泊松比小于0.5,所以土的变形模量(弹性模量)总是小于压缩模量的。

在钱家欢主编的《土力学》P86中有公式:E = Es(1-2v^2/(1-v)) Es为变形模量,E为变形模量(弹性模量)。

变形模量、弹性模量、压缩模量的关系

变形模量、弹性模量、压缩模量的关系

岩土地弹性模量要远大于压缩模量和变形模量,而压缩模量又大于变形模量.弹性模量>压缩模量>变形模量.弹性模量也叫杨氏模量(岩土体在弹性限度内应力与应变地比值)压缩模量是有侧限地,杨氏模量是无侧限地.同样地土体,同样地荷载,有侧限地土体应变小,所以压缩模量更大才对.这只是弹性理论上地关系,对土体这种自然物不一定适用.土体计算中所用地称为“弹性模量”不一定是在弹性限度内.——弹性模量;——压缩模量;——变形模量.文档收集自网络,仅用于个人学习弹性模量=应力弹性应变,它主要用于计算瞬时沉降.压缩模量和变形模量均=应力总应变.压缩模量是通过现场取原状土进行实验室有侧限压缩实验得出地,而变形模量则是通过现场地原位载荷试验得出地,它是无侧限地.弹性模量要远大于压缩模量和变形模量,而压缩模量又大于变形模量.地堪报告中,一般给出地是土地压缩模量与变形模量,而一般不会给出弹性模量.文档收集自网络,仅用于个人学习数值模拟中一般用,(),达到峰值应力(应变)%时地割线模量.(勘查报告中提供),有侧限,=~(看别人这么弄地).具体请查阅资料.应该是变形模量是弹性模量是压缩模量,弹性模量与压缩模量应该有上百倍地关系吧,不应该只有五倍,一般;根据结果调整参数;问题是地质报告上只会提供压缩模量;文档收集自网络,仅用于个人学习工程上,土地弹性模量就是指变形模量,因为土发生弹性变形地时间非常短,变形模量与压缩模量是一个量级,但是由于土体地泊松比小于,所以土地变形模量(弹性模量)总是小于压缩模量地.在钱家欢主编地《土力学》中有公式:(^()) 为变形模量,为变形模量(弹性模量).文档收集自网络,仅用于个人学习上边地说法有点问题呀.变形模量与压缩模量之间有换算关系.=〔*()〕,而不是弹性模量与压缩模量之间有换算关系,弹性模量一般比,要大很多地.一般要大一个数量级地.再者土体进行弹性地数值模拟时要取地是那一个参数.一般工程地质报告中只提供一个.可见,数值计算中,有两种取法:)一种是按弹性理论推出地弹性模量与压缩模量地关系(^()),可以计算出所需要地弹性模量;)就是根据经验取=~,反复试算确定弹模;两种方法各有优点:第一种可以很方便地算出弹模,但与实际情况地弹模有一定地差别;第二种需要试算多次才能找到所需要地弹模,但比较符合实际情况;=~,有那么大么?应该是(~)* (^()).土地弹性模量是土抵抗弹性变形地能力,压缩模量是土在侧限条件下地,竖向附加应力与竖向应变地比值,土工试验得到和勘察报告提地是压缩模量.变形模量是无侧限条件下地应力与应变地比值.=〔*()〕公式是变形模量和压缩模量地理论公式,实际工程并不符合这个公式.至于弹性模量和变形模量地关系,土在弹性阶段地变形模量等于弹性模量.一般情况下比压缩模量要大,大多少,视具体工程而论.三轴试验得到弹性模量取得是轴向应力与轴向应变曲线中开始直线段(即弹性阶段)地斜率.看看高大钊编地《土质力学与土力学》(正文页),该书是提到压缩模量、变形模量、弹性模量三者关系及使用方法为数不多地教材.这本书超星上有,朋友们想弄清楚就找这本书看看,我也是刚弄明白地,讲压缩模量、变形模量地书是多,但讲到土地弹性模量地书就少了先由压缩模量转化为变形模量,再转化为体积模量岩石取弹性模量打折成岩体模量,土体取压缩模量.弹性模量一般可取为压缩模量地~倍上海地区经验一般为~倍(见同济大学杨敏教授相关论文),数值分析时可以适当加大一些.在土力学中变形模量就是杨氏模量.压缩模量变形模量*()()()高大钊编地《土质力学与土力学》(正文页),该书是提到压缩模量、变形模量、弹性模量三者关系及使用方法为数不多地教材.土地变形模量和压缩模量,是判断土地压缩性和计算地基压缩变形量地重要指标.为了建立变形模量和压缩模量地关系,在地基设计中,常需测量土地側压力系数ξ和側膨胀系数μ.側压力系数ξ:是指側向压力δ与竖向压力δ之比值,即:ξ=δδ土地側膨胀系数μ(泊松比):是指在側向自由膨胀条件下受压时,测向膨胀地应变ε与竖向压缩地应变ε之比值,即μ=εε根据材料力学广义胡克定律推导求得ξ和μ地相互关系,ξ=μ(-μ)或μ=ε(+ε),土地側压力系数可由专门仪器测得,但側膨胀系数不易直接测定,可根据土地側压力系数,按上式求得.在土地压密变形阶段,假定土为弹性材料,则可根据材料力学理论,推导出变形模量和压缩模量之间地关系.令β=*()则=β当μ=~时,β=~,即地比值在~之间变化,即一般小于.但很多情况下都大于.其原因为:一方面是土不是真正地弹性体,并具有结构性;另一方面就是土地结构影响;三是两种试验地要求不同;)μ、β地理论换算值土地种类μβ碎石土~~砂土~~粉土~~粉质粘土~~粘土~~注:与之间地关系是理论关系,实际上,由于各种因素地影响,值可能是β值地几倍,一般来说,土愈坚硬则倍数愈大,而软土地值与β值比较.--弹性模量--压缩模量--变形模量"^ 弹性模量=应力弹性应变,它主要用于计算瞬时沉降;压缩模量和变形模量均=应力总应变,压缩模量是通过现场取原状土进行实验室有侧限压缩实验得出地,而变形模量则是通过现场地原位载荷试验得出地,它是无侧限地.弹性模量要远大于压缩模量和变形模量,而压缩模量又大于变形模量.按规范地规定,在地基变形验算中要用地是压缩模量,但因是通过现场取原状土进行试验地,这对于粘性土来说很容易做到,但对于一些砂土和砾石土等粘聚力较小地土来说,取原状土是很困难地,很容易散掉,因此对砂土地砾石土通常都是通过现场载荷试验得到,所以在地堪报告上,对于砂土地砾石土一般都仅给出,即使给出,也是根据换算来地,而不是试验直接得出地.理论上和有一定地关系,但根据该关系换算误差较大,所以二者关系一般都根据地区经验进行换算.弹性模量和变形模量一般是岩石力学或者岩体分析中用,弹性模量一般是通过岩样测试而得;变形模量一般在探硐或者建基面加反力测得,只有大型工程才做,特别是水利工程.而压缩模量是土力学地中地参数.文档收集自网络,仅用于个人学习结论:、变形模量地定义在表达式上和弹性模量是一样地σε,对于变形模量地ε包括弹性应变ε和塑性应变ε,对于弹性模量而言,ε就是指ε.在弹性阶段,=(μ^(μ)).文档收集自网络,仅用于个人学习、土地实际地弹性模量因为结构性以及各向异性地原因要大于压缩模量,有经验说是()·(未考证出处,知道地请告知).文档收集自网络,仅用于个人学习、根据各个参数试验手段不同,在土体模拟分析时,一维压缩问题,推荐用;如果是三维变形问题,推荐用;如果是弹性变形或者初始变形用.在很多数值模拟软件中,除非特别说明,一般说地弹性模量均指变形模量,即土体在无侧限地条件下地弹性模量.文档收集自网络,仅用于个人学习、要应用于数值分析,除了做三轴试验,调整参数是必不可少地.以准则为例,是一个假设单元在弹性阶段为线弹性材料,在塑性阶段为理想塑性材料地弹塑性准则.在弹性阶段,如果根据经验感觉到位移不合常理,可以只考虑调整模量和泊松比来控制,在塑性阶段,除了要考虑模量和泊松比,还要根据流动法则来确定,这时,粘聚力、内摩擦角、剪涨角和抗拉强度都要参与进来.文档收集自网络,仅用于个人学习。

土的压缩模量,变形模量,弹性模量

土的压缩模量,变形模量,弹性模量

土体弹性模量,压缩模量及变形模量是常用的也是很容易混淆的三个概念。

压缩模量也叫侧限压缩模量是土在完全侧限条件下竖向附加应力与相应竖向应变的比值。

变形模量是在现场原位测得的,是无侧限条件下应力与应变的比值,可以比较准确地反映土在天然状态下的压缩性,这也是为什么砂土要用变形模量指标的缘故。

压缩模量和变形模量之间可以互相换算,两者间是倍数的关系,土越坚硬倍数越大,软土则两者比较接近。

弹性模量是正应力与弹性(即可恢复)正应变的比值。

}&p8{;GT:z-S压缩模量E s 是土在完全侧限的条件下得到的,为竖向正应力与相应的正应变的比值。

该参数将用于地基最终沉降量计算的分层总和法、应力面积法等方法中。

变形模量E 0 是根据现场载荷试验得到的,它是指土在侧向自由膨胀条件下正应力与相应的正应变的比值。

该参数将用于弹性理论法最终沉降估算中,但载荷试验中所规定的沉降稳定标准带有很大的近似性。

弹性模量E i 可通过静力法或动力法测定,它是指正应力s 与弹性(即可恢复)正应变e 的比值该参数常用于用弹性理论公式估算建筑物的初始瞬时沉降。

根据上述三种模量的定义可看出:压缩模量和变形模量的应变为总的应变,既包括可恢复的弹性应变,又包括不可恢复的塑性应变。

而弹性模量的应变只包含弹性应变。

从理论上可以得到压缩模量与变形模量之间的换算关系:1-刈上式给出了变形模量与压缩模量之间的理论关系,由于0W卩< 0.5,所以0 < B < 1。

由于土体不是完全弹性体,加上二种试验的影响因素较多,使得理论关系与实测关系有一定差距。

实测资料表明,E 0与E s的比值并不象理论得到的在0〜I间变化,而可能出现E 0 / E s 超过1的情况,且土的结构性越强或压缩性越小,其比值越大。

土的弹性模量要比变形模量、压缩模量大得多,可能是它们的十几倍或者更大。

变形模量、弹性模量、压缩模量的关系

变形模量、弹性模量、压缩模量的关系

变形模量的定义在表达式上和弹性模量是一样的E=σ/ε,对于变形模量ε是指应变,包括弹性应变εe ,对于弹性模量而言,ε就是指εe(计算变形模量时,应变ε包括了弹性应变和塑性和塑性应变εp应变)。

岩土的弹性模量要远大于压缩模量和变形模量,而压缩模量又大于变形模量。

弹性模量>压缩模量>变形模量。

弹性模量也叫杨氏模量(岩土体在弹性限度内应力与应变的比值)压缩模量是有侧限的,杨氏模量是无侧限的。

同样的土体,同样的荷载,有侧限的土体应变小,所以压缩模量更大才对。

这只是弹性理论上的关系,对土体这种自然物不一定适用。

土体计算中所用的称为“弹性模量”不一定是在弹性限度内。

E——弹性模量;Es——压缩模量;Eo——变形模量。

弹性模量=应力/弹性应变,它主要用于计算瞬时沉降。

压缩模量和变形模量均=应力/总应变。

压缩模量是通过现场取原状土进行实验室有侧限压缩实验得出的,而变形模量则是通过现场的原位载荷试验得出的,它是无侧限的。

弹性模量要远大于压缩模量和变形模量,而压缩模量又大于变形模量。

地堪报告中,一般给出的是土的压缩模量Es与变形模量Eo,而一般不会给出弹性模量E。

数值模拟中一般用Eo,E,达到峰值应力(应变)50%时的割线模量。

(50)Es(勘查报告中提供),有侧限,E=2.0~5.0Es(看别人这么弄的)。

具体请查阅资料。

Eo应该是变形模量,E是弹性模量,Es是压缩模量,弹性模量与压缩模量应该有上百倍的关系吧,不应该只有五倍,一般e =3~5 Es ;根据结果调整参数;问题是地质报告上只会提供压缩模量;工程上,土的弹性模量就是指变形模量,因为土发生弹性变形的时间非常短,变形模量与压缩模量是一个量级,但是由于土体的泊松比小于0.5,所以土的变形模量(弹性模量)总是小于压缩模量的。

在钱家欢主编的《土力学》P86中有公式:E = Es(1-2v^2/(1-v)) Es为变形模量,E为变形模量(弹性模量)。

变形模量、弹性模量、压缩模量的关系5页word文档

变形模量、弹性模量、压缩模量的关系5页word文档

变形模量的定义在表达式上和弹性模量是一样的E=σ/ε,对于变形模量ε是指应变,包括弹性应变εe和塑性应变εp,对于弹性模量而言,ε就是指εe(计算变形模量时,应变ε包括了弹性应变和塑性应变)。

岩土的弹性模量要远大于压缩模量和变形模量,而压缩模量又大于变形模量。

弹性模量>压缩模量>变形模量。

弹性模量也叫杨氏模量(岩土体在弹性限度内应力与应变的比值)压缩模量是有侧限的,杨氏模量是无侧限的。

同样的土体,同样的荷载,有侧限的土体应变小,所以压缩模量更大才对。

这只是弹性理论上的关系,对土体这种自然物不一定适用。

土体计算中所用的称为“弹性模量”不一定是在弹性限度内。

E——弹性模量;Es——压缩模量;Eo——变形模量。

弹性模量=应力/弹性应变,它主要用于计算瞬时沉降。

压缩模量和变形模量均=应力/总应变。

压缩模量是通过现场取原状土进行实验室有侧限压缩实验得出的,而变形模量则是通过现场的原位载荷试验得出的,它是无侧限的。

弹性模量要远大于压缩模量和变形模量,而压缩模量又大于变形模量。

地堪报告中,一般给出的是土的压缩模量Es与变形模量Eo,而一般不会给出弹性模量E。

数值模拟中一般用Eo,E,达到峰值应力(应变)50%时的割线模量。

(50)Es(勘查报告中提供),有侧限,E=2.0~5.0Es(看别人这么弄的)。

具体请查阅资料。

Eo应该是变形模量,E是弹性模量,Es是压缩模量,弹性模量与压缩模量应该有上百倍的关系吧,不应该只有五倍,一般e =3~5 Es ;根据结果调整参数;问题是地质报告上只会提供压缩模量;工程上,土的弹性模量就是指变形模量,因为土发生弹性变形的时间非常短,变形模量与压缩模量是一个量级,但是由于土体的泊松比小于0.5,所以土的变形模量(弹性模量)总是小于压缩模量的。

在钱家欢主编的《土力学》P86中有公式:E = Es(1-2v^2/(1-v)) Es 为变形模量,E为变形模量(弹性模量)。

变形模量、压缩模量及弹性模量的关系

变形模量、压缩模量及弹性模量的关系

变形模量的定义在表达式上和弹性模量是一样的E=ζ/ε,对于变形模量ε是指应变,包括弹性应变εe和塑性应变εp,对于弹性模量而言,ε就是指εe(计算变形模量时,应变ε包括了弹性应变和塑性应变)。

岩土的弹性模量要远大于压缩模量和变形模量,而压缩模量又大于变形模量。

弹性模量>压缩模量>变形模量。

弹性模量也叫杨氏模量(岩土体在弹性限度内应力与应变的比值)压缩模量是有侧限的,杨氏模量是无侧限的。

同样的土体,同样的荷载,有侧限的土体应变小,所以压缩模量更大才对。

这只是弹性理论上的关系,对土体这种自然物不一定适用。

土体计算中所用的称为“弹性模量”不一定是在弹性限度内。

E——弹性模量;Es——压缩模量;Eo——变形模量。

弹性模量=应力/弹性应变,它主要用于计算瞬时沉降。

压缩模量和变形模量均=应力/总应变。

压缩模量是通过现场取原状土进行实验室有侧限压缩实验得出的,而变形模量则是通过现场的原位载荷试验得出的,它是无侧限的。

弹性模量要远大于压缩模量和变形模量,而压缩模量又大于变形模量。

地堪报告中,一般给出的是土的压缩模量Es与变形模量Eo,而一般不会给出弹性模量E。

数值模拟中一般用Eo,E(50),达到峰值应力(应变)50%时的割线模量。

Es(勘查报告中提供),有侧限,E=2.0~5.0Es(看别人这么弄的)。

具体请查阅资料。

Eo应该是变形模量,E是弹性模量,Es是压缩模量,弹性模量与压缩模量应该有上百倍的关系吧,不应该只有五倍,一般e =3~5 Es ;根据结果调整参数;问题是地质报告上只会提供压缩模量;工程上,土的弹性模量就是指变形模量,因为土发生弹性变形的时间非常短,变形模量与压缩模量是一个量级,但是由于土体的泊松比小于0.5,所以土的变形模量(弹性模量)总是小于压缩模量的。

在钱家欢主编的《土力学》P86中有公式:E = Es(1-2v^2/(1-v)) Es为变形模量,E为变形模量(弹性模量)。

上边的说法有点问题呀。

变形模量、压缩模量及弹性模量的关系

变形模量、压缩模量及弹性模量的关系

变形模量的定义在表达式上和弹性模量是一样的E=ζ/ε,对于变形模量ε是指应变,包括弹性应变εe和塑性应变εp,对于弹性模量而言,ε就是指εe(计算变形模量时,应变ε包括了弹性应变和塑性应变)。

岩土的弹性模量要远大于压缩模量和变形模量,而压缩模量又大于变形模量。

弹性模量>压缩模量>变形模量。

弹性模量也叫杨氏模量(岩土体在弹性限度内应力与应变的比值)压缩模量是有侧限的,杨氏模量是无侧限的。

同样的土体,同样的荷载,有侧限的土体应变小,所以压缩模量更大才对。

这只是弹性理论上的关系,对土体这种自然物不一定适用。

土体计算中所用的称为“弹性模量”不一定是在弹性限度内。

E——弹性模量;Es——压缩模量;Eo——变形模量。

弹性模量=应力/弹性应变,它主要用于计算瞬时沉降。

压缩模量和变形模量均=应力/总应变。

压缩模量是通过现场取原状土进行实验室有侧限压缩实验得出的,而变形模量则是通过现场的原位载荷试验得出的,它是无侧限的。

弹性模量要远大于压缩模量和变形模量,而压缩模量又大于变形模量。

地堪报告中,一般给出的是土的压缩模量Es与变形模量Eo,而一般不会给出弹性模量E。

数值模拟中一般用Eo,E(50),达到峰值应力(应变)50%时的割线模量。

Es(勘查报告中提供),有侧限,E=2.0~5.0Es(看别人这么弄的)。

具体请查阅资料。

Eo应该是变形模量,E是弹性模量,Es是压缩模量,弹性模量与压缩模量应该有上百倍的关系吧,不应该只有五倍,一般e =3~5 Es ;根据结果调整参数;问题是地质报告上只会提供压缩模量;工程上,土的弹性模量就是指变形模量,因为土发生弹性变形的时间非常短,变形模量与压缩模量是一个量级,但是由于土体的泊松比小于0.5,所以土的变形模量(弹性模量)总是小于压缩模量的。

在钱家欢主编的《土力学》P86中有公式:E = Es(1-2v^2/(1-v)) Es为变形模量,E为变形模量(弹性模量)。

上边的说法有点问题呀。

压缩模量、变形模量、弹性模量

压缩模量、变形模量、弹性模量

压缩模量与变形模量得区别 (一)、第一种压缩模量:在完全侧限条件下,土得竖向附加应力增量与相应得应变增量之比值,它可以通过室内压缩试验获得。

变形模量:就是通过现场载荷试验求得得压缩性指标,即在部分侧限条件下,其应力增量与相应得应变增量得比值。

结论:从上述定义来瞧,由于压缩模量附带了完全侧限条件,与实际地基得部分侧限条件不一致,故沉降计算必须进行大误差修正(通常修正系数可达0、25~2、0);而变形模量就是现场原位测试指标(载荷试验计算指标),较好得模拟了实际地层侧限条件,故理论上由变形模量计算沉降更准确、基本不需修正,承载板得尺寸越接近基础尺寸,计算得精度越高,如果由实体基础沉降资料反算变形模量,来指导相邻场地沉降计算会有很高得准确性,故由变形模量计算沉降在理论上应该比由压缩模量计算更准确、更符合实际。

2、试验方法得差异: 压缩模量:由室内压缩(固结)试验测定,有试验成本低、可操作性强、便于分层大量取样试验得特点。

变形模量:由现场载荷试验来测定,有成本高、周期长、试验点数有限、特别就是深层载荷试验费用极高、深度有限、载荷板尺寸通常难以达到实体基础尺寸相当得宽度级别,因而变形模量得测定属于高成本得测试。

结论:从上述两试验测定方法得不同可见,压缩模量得测定通常更容易、成本低廉、易于试验,就是勘察报告必须完成得工作,故设计用压缩模量计算沉降依据与数据更充分,这或许就就是采用压缩模量计算沉降得公式与经验更多得原因;而变形模量得测定由于其高成本与高精度,更适合于大型、高荷载、大基础得重要工程,对于中小工程项目(一般基础荷载较小、基础尺寸较小),采用高成本得载荷试验确定变形模量再计算沉降反而不适用(老板愿意花钱另当别论)。

3、试验土类差异:压缩模量:由于采用土样压缩(固结)试验测定,对于不能采取原状土得地层(如碎石土)与不能切环刀得岩土(如大部分岩石),显然我们难以获得压缩模量。

变形模量:由于我们基本可以在任何基坑底面岩土层进行载荷试验,故变形模量得测定几乎适合任何岩土类别,对于不能获取原状土得地层她就有显著得优越性。

压缩模量、变形模量、弹性模量的关系

压缩模量、变形模量、弹性模量的关系

压缩模量、变形模量、弹性模量的关系 Es--压缩模量 E0--变形模量E--弹性模量1、压缩模量也叫侧限压缩模量:是土在完全侧限条件(无侧向)下竖向附加应力与相应竖向应变的比值。

(室内试验换算求得)应用:地基最终沉降量计算的分层总和法、应力面积法等方法中。

2、变形模量:是在现场原位测得的,是无侧限条件(有侧向)下应力与应变的比值。

(现场载荷试验测定)(砂土要用变形模量指标)【压缩模量和变形模量之间可以互相换算,两者间是倍数的关系,土越坚硬倍数越大,软土则两者比较接近。

E0=βEs,理论上Es≥E0,0≤β≤1,实际可能E0>Es,土的结构性越强或压缩性越小,其比值越大】应用:弹性理论法最终沉降估算中。

3、弹性模量:是正应力与弹性(即可恢复)正应变的比值。

在计算饱和粘性土地基上瞬时加荷所产生的瞬时沉降时,就要采用弹性模量。

〖弹性模量=应力/弹性应变=s/e,它主要用于计算瞬时沉降,用静力法或动力法测定〗应用:用弹性理论公式估算建筑物的初始瞬时沉降。

E>Es>E0弹性模量要远大于压缩模量和变形模量(十几倍或更大),而压缩模量又大于变形模量Es、E0的应变为总应变(包括弹性应变和塑性应变),E的应变只包含弹性应变。

回弹模量:是指路基,路面及筑路材料在荷载作用下产生的应力与其相应的回弹应变的比值。

土基回弹模量:表示土基在弹性变形阶段内,在垂直荷载作用下,抵抗竖向变形的能力,如果垂直荷载为定值,土基回弹模量值愈大则产生的垂直位移就愈小;如果竖向位移是定值,回弹模量值愈大,则土基承受外荷载作用的能力就愈大,因此,路面设计中采用回弹模量作为土基抗压强度的指标。

土基回弹模量由弯沉实验测定。

岩石取弹性模量打折成岩体模量,土体取压缩模量. 弹性模量一般可取为压缩模量的3~5倍上海地区经验一般为2.5~3.5倍(见同济大学杨敏教授相关论文) ,数值分析时可以适当加大一些。

在土力学中变形模量就是杨氏模量~~。

压缩模量=变形模量*(1-u)/(1+u)/(1-2u)E = Es(1-2v^2/(1-v))。

变形模量、压缩模量及弹性模量关系

变形模量、压缩模量及弹性模量关系

理清变形模量、压缩模量及弹性模量关系一理论上的区别与联系变形模量的定义在表达式上和弹性模量是一样的E=σ/ε,对于变形模量ε是指应变,包括弹性应变εe和塑性应变εp,对于弹性模量而言,ε就是指εe(计算变形模量时,应变ε包括了弹性应变和塑性应变) 。

从σ-ε曲线上可以较为直观测出弹性模量,显然变形模量小于弹性模量。

压缩模量和变形模量均等于应力/总应变,两者区别在于获取的测量方法不同。

二获取方法上的区别压缩模量是通过现场取原状土进行实验室有侧限压缩实验得出的,而变形模量则是通过现场的原位载荷试验得出的,它是无侧限的。

三轴试验得到弹性模量取的是轴向应力与轴向应变曲线中开始直线段(即弹性阶段)的斜率。

三数值上的转换关系大小关系弹性模量>压缩模量>变形模量比较明确的是压缩模量和变形模量之间的关系(通过广义虎克定义推导)。

Ed = Es(1-2v^2/(1-v)) Ed指变形模量 Es指压缩模量 v 为泊松比μ、β的理论换算值土的种类μβ碎石土0.15~0.20 0.95~0.90砂土0.20~0.25 0.90~0.83粉土0.23~0.31 0.86~0.726粉质粘土0.25~0.35 0.83~0.62粘土0.25~0.40 0.83~0.47弹性模量一般比变形模量和压缩模量大十倍以上,两者之间并无理论推导公式。

E=2.0~5.0Es 经验公式(不一定准确)四用途及用法E弹性模量和Eo变形模量一般是岩石力学或者岩体分析中用,弹性模量一般是通过岩样测试而得;变形模量一般在探硐或者建基面加反力测得,只有大型工程才做,特别是水利工程。

而压缩模量是土力学的中的参数,勘测报告中一般有提供。

数值模拟中,当需要体积模量和剪切模量时,须由杨氏模量转换而来,此时需要知晓杨氏模量。

当不需要体积模量和剪切模量参数时,依据土质软硬,软土可以直接取变形模量(考虑不存在明显的弹性阶段)。

杨氏模量可以在经验公式E=2.0~5.0Es 通过试算法获得,如在flac中,编制fish程序,使E在2.0~5.0Es 之间变动至初始土体模块恰好不出现塑性区值(plot block state plastic)。

土的压缩模量变形模量和弹性模量

土的压缩模量变形模量和弹性模量

土的压缩模量变形模量和弹性模量This model paper was revised by the Standardization Office on December 10, 2020土的压缩模量、变形模量和弹性模量压缩模量、变形模量和弹性模量都是对土的变形能力的不同表达,各自适用于不同情况。

压缩模量Es也叫侧限压缩模量,是土在完全侧限条件(无侧向变形)下,竖向附加应力与相应竖向应变的比值。

其大小反映了土体在单向压缩条件下对压缩变形的抵抗能力。

变形模量Eo是在现场原位测得的,是无侧限条件下应力与应变的比值,相当于理想弹性体的弹性模量,但是由于土体不是理想弹性体,故称为变形模量。

可以比较准确地反映土在天然状态下的压缩性。

压缩模量和变形模量之间可以互相换算,两者间是倍数的关系,土越坚硬倍数越大,软土则两者比较接近。

弹性模量是正应力与弹性(即可恢复)正应变的比值。

在计算饱和粘性土地基上瞬时加荷所产生的瞬时沉降时,就要采用弹性模量。

弹性模量=应力/弹性应变,它主要用于计算瞬时沉降;压缩模量和变形模量均=应力/总应变,压缩模量是通过现场取原状土进行实验室有侧限压缩实验得出的,而变形模量则是通过现场的原位载荷试验得出的,它是无侧限的。

弹性模量要远大于压缩模量和变形模量,而压缩模量又大于变形模量。

地堪报告中,一般给出的是土的压缩模量Es与变形模量Eo,而一般不会给出弹性模量E。

按规范的规定,在地基变形验算中要用的是压缩模量Es,但因Es是通过现场取原状土进行试验的,这对于粘性土来说很容易做到,但对于一些砂土和砾石土等粘聚力较小的土来说,取原状土是很困难的,很容易散掉,因此对砂土的砾石土通常都是通过现场载荷试验得到Eo,所以在地堪报告上,对于砂土的砾石土一般都仅给出Eo,即使给出Es,也是根据Eo换算来的,而不是试验直接得出的。

理论上Es和Eo有一定的关系,但根据该关系换算误差较大,所以二者关系一般都根据地区经验进行换算。

土的压缩模量变形模量和弹性模量

土的压缩模量变形模量和弹性模量

土的压缩模量变形模量和弹性模量The latest revision on November 22, 2020土的压缩模量、变形模量和弹性模量压缩模量、变形模量和弹性模量都是对土的变形能力的不同表达,各自适用于不同情况。

压缩模量Es也叫侧限压缩模量,是土在完全侧限条件(无侧向变形)下,竖向附加应力与相应竖向应变的比值。

其大小反映了土体在单向压缩条件下对压缩变形的抵抗能力。

变形模量Eo是在现场原位测得的,是无侧限条件下应力与应变的比值,相当于理想弹性体的弹性模量,但是由于土体不是理想弹性体,故称为变形模量。

可以比较准确地反映土在天然状态下的压缩性。

压缩模量和变形模量之间可以互相换算,两者间是倍数的关系,土越坚硬倍数越大,软土则两者比较接近。

弹性模量是正应力与弹性(即可恢复)正应变的比值。

在计算饱和粘性土地基上瞬时加荷所产生的瞬时沉降时,就要采用弹性模量。

弹性模量=应力/弹性应变,它主要用于计算瞬时沉降;压缩模量和变形模量均=应力/总应变,压缩模量是通过现场取原状土进行实验室有侧限压缩实验得出的,而变形模量则是通过现场的原位载荷试验得出的,它是无侧限的。

弹性模量要远大于压缩模量和变形模量,而压缩模量又大于变形模量。

地堪报告中,一般给出的是土的压缩模量Es与变形模量Eo,而一般不会给出弹性模量E。

按规范的规定,在地基变形验算中要用的是压缩模量Es,但因Es是通过现场取原状土进行试验的,这对于粘性土来说很容易做到,但对于一些砂土和砾石土等粘聚力较小的土来说,取原状土是很困难的,很容易散掉,因此对砂土的砾石土通常都是通过现场载荷试验得到Eo,所以在地堪报告上,对于砂土的砾石土一般都仅给出Eo,即使给出Es,也是根据Eo换算来的,而不是试验直接得出的。

理论上Es和Eo有一定的关系,但根据该关系换算误差较大,所以二者关系一般都根据地区经验进行换算。

********************************************************************* **********土的变形模量:土的变形模量是通过现场载荷试验求得的压缩性指标,即在部分侧限条件下,其应力增量与相应的应变增量的比值。

压缩模量、变形模量、弹性模量

压缩模量、变形模量、弹性模量

压缩模量与变形模量的区别(一)、第一种压缩模量:在完全侧限条件下,土的竖向附加应力增量与相应的应变增量之比值,它可以通过室内压缩试验获得。

变形模量:是通过现场载荷试验求得的压缩性指标,即在部分侧限条件下,其应力增量与相应的应变增量的比值。

结论:从上述定义来看,由于压缩模量附带了完全侧限条件,与实际地基的部分侧限条件不一致,故沉降计算必须进行大误差修正(通常修正系数可达0.25~2.0);而变形模量是现场原位测试指标(载荷试验计算指标),较好的模拟了实际地层侧限条件,故理论上由变形模量计算沉降更准确、基本不需修正,承载板的尺寸越接近基础尺寸,计算的精度越高,如果由实体基础沉降资料反算变形模量,来指导相邻场地沉降计算会有很高的准确性,故由变形模量计算沉降在理论上应该比由压缩模量计算更准确、更符合实际。

2、试验方法的差异:压缩模量:由室内压缩(固结)试验测定,有试验成本低、可操作性强、便于分层大量取样试验的特点。

变形模量:由现场载荷试验来测定,有成本高、周期长、试验点数有限、特别是深层载荷试验费用极高、深度有限、载荷板尺寸通常难以达到实体基础尺寸相当的宽度级别,因而变形模量的测定属于高成本的测试。

结论:从上述两试验测定方法的不同可见,压缩模量的测定通常更容易、成本低廉、易于试验,是勘察报告必须完成的工作,故设计用压缩模量计算沉降依据和数据更充分,这或许就是采用压缩模量计算沉降的公式和经验更多的原因;而变形模量的测定由于其高成本和高精度,更适合于大型、高荷载、大基础的重要工程,对于中小工程项目(一般基础荷载较小、基础尺寸较小),采用高成本的载荷试验确定变形模量再计算沉降反而不适用(老板愿意花钱另当别论)。

3、试验土类差异:压缩模量:由于采用土样压缩(固结)试验测定,对于不能采取原状土的地层(如碎石土)和不能切环刀的岩土(如大部分岩石),显然我们难以获得压缩模量。

变形模量:由于我们基本可以在任何基坑底面岩土层进行载荷试验,故变形模量的测定几乎适合任何岩土类别,对于不能获取原状土的地层他就有显著的优越性。

弹性模量压缩模量变形模量

弹性模量压缩模量变形模量

E--弹性模量Es--压缩模量Eo--变形模量在工程中土的弹性模量要远大于压缩模量和变形模量,而压缩模量又大于变形模量。

但在勘察报告中却只提供变形模量,在模拟计算的时侯我们要用弹性模量。

变形模量的定义在表达式上和弹性模量是一样的E=σ/ε,对于变形模量ε是指应变,包括弹性应变εe和塑性应变εp,对于弹性模量而言,ε就是指εe。

压缩模量指的是侧限压缩模量,通过固结试验可以测定。

如果土体是理想弹性体,那么E=Es(1-2μ^2/(1-μ))=E0。

在土体模拟分析时,如果时一维压缩问题,选用Es;如果是变形问题,一般用E0;如果是瞬时变形,或弹性变形用E。

土的变形模量与压缩模量的关系土的变形模量和压缩模量,是判断土的压缩性和计算地基压缩变形量的重要指标。

为了建立变形模量和压缩模量的关系,在地基设计中,常需测量土的側压力系数ξ和側膨胀系数μ。

側压力系数ξ:是指側向压力δx与竖向压力δz之比值,即:ξ=δx/δz土的側膨胀系数μ(泊松比):是指在側向自由膨胀条件下受压时,测向膨胀的应变εx与竖向压缩的应变εz之比值,即μ=εx/εz根据材料力学广义胡克定律推导求得ξ和μ的相互关系,ξ=μ/(1-μ)或μ=ε/(1+ε)土的側压力系数可由专门仪器测得,但側膨胀系数不易直接测定,可根据土的側压力系数,按上式求得。

在土的压密变形阶段,假定土为弹性材料,则可根据材料力学理论,推导出变形模量E0和压缩模量Es之间的关系。

,令β=则Eo=βEs当μ=0~0.5时,β=1~0,即Eo/Es的比值在0~1之间变化,即一般Eo小于Es。

但很多情况下Eo/Es 都大于1。

其原因为:一方面是土不是真正的弹性体,并具有结构性;另一方面就是土的结构影响;三是两种试验的要求不同;μ、β的理论换算值土的种类μβ碎石土0.15~0.20 0.95~0.90砂土0.20~0.25 0.90~0.83粉土0.23~0.31 0.86~0.72粉质粘土0.25~0.35 0.83~0.62粘土0.25~0.40 0.83~0.47注:E0与Es之间的关系是理论关系,实际上,由于各种因素的影响,E0值可能是βEs值的几倍,一般来说,土愈坚硬则倍数愈大,而软土的E0值与βEs 值比较弹性模量的数值随材料而异,是通过实验测定的,其值表征材料抵抗弹性变形的能力。

(整理)变形模量、弹性模量、压缩模量的关系.

(整理)变形模量、弹性模量、压缩模量的关系.

变形模量的定义在表达式上和弹性模量是一样的E=σ/ε,对于变形模量ε是指应变,包括弹性应变εe 和塑性应变εp,对于弹性模量而言,ε就是指εe(计算变形模量时,应变ε包括了弹性应变和塑性应变)。

岩土的弹性模量要远大于压缩模量和变形模量,而压缩模量又大于变形模量。

弹性模量>压缩模量>变形模量。

弹性模量也叫杨氏模量(岩土体在弹性限度内应力与应变的比值)压缩模量是有侧限的,杨氏模量是无侧限的。

同样的土体,同样的荷载,有侧限的土体应变小,所以压缩模量更大才对。

这只是弹性理论上的关系,对土体这种自然物不一定适用。

土体计算中所用的称为“弹性模量”不一定是在弹性限度内。

E——弹性模量;Es——压缩模量;Eo——变形模量。

弹性模量=应力/弹性应变,它主要用于计算瞬时沉降。

压缩模量和变形模量均=应力/总应变。

压缩模量是通过现场取原状土进行实验室有侧限压缩实验得出的,而变形模量则是通过现场的原位载荷试验得出的,它是无侧限的。

弹性模量要远大于压缩模量和变形模量,而压缩模量又大于变形模量。

地堪报告中,一般给出的是土的压缩模量Es与变形模量Eo,而一般不会给出弹性模量E。

数值模拟中一般用Eo,E(50),达到峰值应力(应变)50%时的割线模量。

Es(勘查报告中提供),有侧限,E=2.0~5.0Es(看别人这么弄的)。

具体请查阅资料。

Eo应该是变形模量,E是弹性模量,Es是压缩模量,弹性模量与压缩模量应该有上百倍的关系吧,不应该只有五倍,一般e =3~5 Es ;根据结果调整参数;问题是地质报告上只会提供压缩模量;工程上,土的弹性模量就是指变形模量,因为土发生弹性变形的时间非常短,变形模量与压缩模量是一个量级,但是由于土体的泊松比小于0.5,所以土的变形模量(弹性模量)总是小于压缩模量的。

在钱家欢主编的《土力学》P86中有公式:E = Es(1-2v^2/(1-v)) Es为变形模量,E为变形模量(弹性模量)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

E--弹性模量Es--压缩模量Eo--变形模量在工程中土的弹性模量要远大于压缩模量和变形模量,而压缩模量又大于变形模量。

但在勘察报告中却只提供变形模量,在模拟计算的时侯我们要用弹性模量。

变形模量的定义在表达式上和弹性模量是一样的E=σ/ε,对于变形模量ε是指应变,包括弹性应变εe和塑性应变εp,对于弹性模量而言,ε就是指εe。

压缩模量指的是侧限压缩模量,通过固结试验可以测定。

如果土体是理想弹性体,那么E=Es(1-2μ^2/(1-μ))=E0。

在土体模拟分析时,如果时一维压缩问题,选用Es;如果是变形问题,一般用E0;如果是瞬时变形,或弹性变形用E。

土的变形模量与压缩模量的关系土的变形模量和压缩模量,是判断土的压缩性和计算地基压缩变形量的重要指标。

为了建立变形模量和压缩模量的关系,在地基设计中,常需测量土的側压力系数ξ和側膨胀系数μ。

側压力系数ξ:是指側向压力δx与竖向压力δz之比值,即:ξ=δx/δz土的側膨胀系数μ(泊松比):是指在側向自由膨胀条件下受压时,测向膨胀的应变εx与竖向压缩的应变εz之比值,即μ=εx/εz根据材料力学广义胡克定律推导求得ξ和μ的相互关系,ξ=μ/(1-μ)或μ=ε/(1+ε)土的側压力系数可由专门仪器测得,但側膨胀系数不易直接测定,可根据土的側压力系数,按上式求得。

在土的压密变形阶段,假定土为弹性材料,则可根据材料力学理论,推导出变形模量E0和压缩模量Es之间的关系。

,令β=则Eo=βEs当μ=0~0.5时,β=1~0,即Eo/Es的比值在0~1之间变化,即一般Eo小于Es。

但很多情况下Eo/Es 都大于1。

其原因为:一方面是土不是真正的弹性体,并具有结构性;另一方面就是土的结构影响;三是两种试验的要求不同;μ、β的理论换算值土的种类μβ碎石土0.15~0.20 0.95~0.90砂土0.20~0.25 0.90~0.83粉土0.23~0.31 0.86~0.72粉质粘土0.25~0.35 0.83~0.62粘土0.25~0.40 0.83~0.47注:E0与Es之间的关系是理论关系,实际上,由于各种因素的影响,E0值可能是βEs值的几倍,一般来说,土愈坚硬则倍数愈大,而软土的E0值与βEs 值比较弹性模量的数值随材料而异,是通过实验测定的,其值表征材料抵抗弹性变形的能力。

压缩模量是土的压缩性指标:土体在完全侧限条件下,竖向附加应力与相应的应变增量之比称为压缩模量。

变形模量是在现场测试获得,土体压缩过程中无侧限;而压缩模量是通过室内压缩试验换算求得,土体在完全侧限条件下的压缩。

它们都与其他建筑材料的弹性模量不同,具有相当部分不可恢复的残余变形。

但理论上变形模量与压缩模量两者是完全可以互相换算的。

具体可参见:土力学的教科书。

第七节土的力学性质建筑物的建造使地基土中原有的应力状态发生变化,从而引起地基变形,出现基础沉降;当建筑荷载过大,地基会发生大的塑性变形,甚至地基失稳。

而决定地基变形、以至失稳危险性的主要因素除上部荷载的性质、大小、分布面积与形状及时间因素等条件外,还在于地基土的力学性质,它主要包括土的变形和强度特性。

由于建筑物荷载差异和地基不均匀等原因,基础各部分的沉降或多或少总是不均匀的,使得上部结构之中相应地产生额外的应力和变形。

基础不均匀沉降超过了一定的限度,将致建筑物的开裂、歪斜甚至破坏,例如砖墙出现裂缝、吊车出现卡轨或滑轨、高耸构筑物的倾斜、机器转轴的偏斜以及与建筑物连接管道的断裂等等。

因此,研究地基变形和强度问题,对于保证建筑物的正常使用和经济、牢固等,都具有很大的实际意义。

对土的变形和强度性质,必须从土的应力与应变的基本关系出发来研究。

根据土样的单轴压缩试验资料,当应力很小时土的应力一应变关系曲线就不是一根直线了(图2-29)。

就是说,土的变形具有明显的非线性特征。

然而,考虑到一般建筑物荷载作用下地基中应力的变化范围(应力增量Δσ还不很一、土的压缩性(一)基本概念土在压力作用下体积缩小的特性称为土的压缩性。

试验研究表明,在一般压力(100~600kpa)作用下,土粒和水的压缩与土的总压缩量之比是很微小的,因此完全可以忽略不计,所以把土的压缩看作为土中孔隙体积的减小。

此时,土粒调整位置,重行排列,互相挤紧,饱和土压缩时,随着孔隙体积的减少土中孔隙水则被排出。

在荷载作用下,透水性大的饱和无粘性土,其压缩过程在短时间内就可以结束。

然而,粘性土的透水性低,饱和粘性土中的水分只能慢慢排出,因此其压缩稳定所需的时间要比砂土长得多。

土的压缩随时间而增长的过程,称为土的固结。

饱和软粘性土的固结变形往往需要几年甚至几十年时间才能完成,因此必须考虑变形与时间的关系,以便控制施工加荷速率,确定建筑物的使用安全措施;有时地基各点由于土质不同或荷载差异,还需考虑地基沉降过程中某一时间的沉降差异。

所以,对于饱和软粘性土而言,土的固结问题是十分重要的。

计算地基沉降量时,必须取得土的压缩性指标,无论用室内试验或原位试验来测定它,应该力求试验条件与上的天然状态及其在外荷作用下的实际应力条件相适应。

在一般工程中,常用不允许土样产生侧向变形(完全侧限条件)的室内压缩试验来测定土的压缩性指标,其试验条件虽未能完全符合土的实际工作情况,但有其实用价值。

(二)压缩曲线和压缩性指标1.压缩试验和压缩曲线压缩曲线是室内土的压缩试验成果,它是土的孔隙比与所受压力的关系曲线,压缩试验时,用金属环刀切取保持天然结构的原状土样,并置于圆筒形压缩容器(图2-30)的刚性护环内,土样上下各垫有一块透水石,土样受压后上中水可以自由排出。

由于金属环刀和刚性护环的限制,土样在压力作用下只可能发生竖向压缩,而无侧向变形。

土样在天然状态下或经人工饱和后,进行逐级加压固结,以便测定各级压力p作用下土样压缩稳定后的孔隙比变化。

设土样的初始高度为H0,受压后土样高度为H,则H=H0-S为外压力p作用下土样压缩稳定后的变形量。

根据土的孔隙比的定义,假设土粒体积Vs=1(不变),则土样孔隙体积VV在受压前相应于初始孔隙比e0,在受压后相应于孔隙比e(图2-31)。

为求土样压缩稳定后的孔隙比e,利用受压前后土粒体积不变和土样横截面积不变的两个条件,得出(见图2-31):(2-19a) 或(2-19b)式中G、w0、γ0,分别为土粒比重、土样的初始含水量和初始重度。

这样,只要测定土样在各级压力p作用下的稳定压缩量S后,就可按上式算出相应的孔隙比e,从而绘制土的压缩曲线。

压缩曲线可按两种方式绘制,一种是采用普通直角座标绘制的e一p曲线〔图2-32a〕,在常规试验中,一般按户一0.05、0.1、0.2、0.3、0.4MPa五级加荷;另一种的横座标则取p的常用对数取值,即采用半对数直角座标纸绘制成e-logp 曲线图〔2一32b〕,试验时以较小的压力开始,采取小增量多级加荷,并加到较大的荷载(例如1~1.6MPa)为止。

2.土的压缩系数和压缩指数压缩性不同的土,其e-p曲线的形状是不一样的。

曲线愈陡,说明随着压力的增加,土孔隙比的减小愈显著,因而土的压缩性愈高。

所以,曲线上任一点的切线斜率口就表示了相应于压力p作用下土的压缩性,故称a为压缩系数。

(2-21)式中α——土的压缩系数MPa-1;p1——般是指地基某深度处土中竖向自重应力,MPa;p2——地基某深度处土中自重应力与附加应力之和,MPa;e1——相应于p1作用下压缩稳定后的孔隙比;e2——相应于p2作用下压缩稳定后的孔隙比。

压缩系数愈大,表明在同一压力变化范围内土的孔隙比减小得愈多,也就是上的压缩性愈大。

为了便于应用和比较,并考虑到一般建筑物地基通常受到的压力变化范围,一般采用压力间隔由p1=0.1MPa增加到p2=0.2MPa时所得的压缩系数α0.1-0.2来评定土的压缩性:α0.1-0.2<0.1Mpa-1时,属低压缩性土;0.1≤α0.1-0.2<0.5MP a-1时,属中压缩性土;α0.1-0.2≥0.5MP a-1时,属高压缩性土。

土的e-p曲线改绘成半对数压缩曲线e-logp曲线时,它的后段接近直线(图2-34)。

其斜率Cc为:(2-22) 式中Cc称为土的压缩指数;其他符号意义同式(2-21)。

同压缩系数α一样,压缩指数Cc值越大,土的压缩性越高。

从图2-34可见Cc与α不同,它在直线段范围内并不随压力而变,试验时要求斜率确定得很仔细,否则出入很大,低压缩性土的Cc值一般小于0.2,Cc值大于0.4一般属于高压缩性土。

采用e-1ogp曲线可分析研究应力历史对土的压缩性的影响,这对重要建筑物的沉降计算具有现实意义。

3.压缩模量根据e-p曲线,可以求算另一个压缩性指标——压缩模量Es。

它的定义是土在完全侧限条件下的竖向附加压应力与相应的应变增量之比值。

土的压缩模量Es的计算式可由其定义导得:(2-23)式中 Es--土的压缩模量,MPa;α、e1--意义同式(2-21)。

土的压缩模量Es是以另一种方式表示土的压缩性指标,Es越小,土的压缩性越高。

为了便于比较和应用,通常采用压力间隔p1=0.1Mpa和p2=0.2MPa所得的压缩模量Es(0.1-0.2),则式(2-23)改为:(2-24)式中Es(0.1-0.2)——相应于压力间隔为0.1~0.2MPa时土的压缩模量,MPa;α0.1-0.2一一压力间隔为0.1~0.2MPa时土的压缩系数;e1——意义同式(2-21)。

4.土的回弹曲线和再压缩曲线在室内压缩试验过程中,如加压到某一值A(相应于图235e卞曲线中的心点)后不再压,相反地,逐级进行卸压,则可观察到土样的回弹。

若测得其回弹稳定后的孔隙比,则绘制相应的孔隙比与压力的关系曲线(如图中&曲线),称为回弹曲线由于土样已在压力pi作用下压缩变形,卸压完毕后,土样并不能完全恢复到相当于初孔隙比e0的a点处,这就显示出土的压缩变形是由弹性变形和残余变形两部分组成的,且以后者为主、如重新逐级加压,则可测得土样在各级荷载下再压缩稳定后的孔隙比;从而绘制再压缩曲线,如图中cdf所示。

其中df段象是ab段的延续,犹如其问没有经过卸压和再加压过程一样。

在半对数曲线(图2-35中e-1ogp曲线)中也同样可以看到这种现象。

某些类型的基础,其底面积和埋深往往都较大,开挖基坑后地基受到较大的减压(应力解除)作用,因而发生土的膨胀,造成坑底回弹。

因此,在预估基础沉降时,应该适当考虑这种影响。

此外,利用压缩、回弹、再压缩的e-1ogp曲线,可以分析应力历史对粘性土压缩性的影响。

(三)荷载试验测定土的变形模量1.基本概念上的压缩性指标,除从室内压缩试验测定外,还可以通过现场原位测试取得。

例如可以通过载荷试验(或旁压试验)所测得的土体变形与压力之间近似的比例关系,从而利用计算地基沉降的弹性力学公式反算土的变形模量。

相关文档
最新文档