10 圆锥曲线的综合问题

合集下载

高考数学最新真题专题解析—圆锥曲线综合(新高考卷)

高考数学最新真题专题解析—圆锥曲线综合(新高考卷)

高考数学最新真题专题解析—圆锥曲线综合(新高考卷)【母题来源】2022年新高考I卷【母题题文】已知点A(2,1)在双曲线C:x2a2−y2a2−1=1(a>1)上,直线l交C于P,Q两点,直线AP,AQ的斜率之和为0.(1)求l的斜率;(2)若tan∠PAQ=2√2,求△PAQ的面积.【答案】解:(1)将点A代入双曲线方程得4a2−1a2−1=1,化简得a4−4a2+4=0得:a2=2,故双曲线方程为x22−y2=1;由题显然直线l的斜率存在,设l:y=kx+m,设P(x1,y1),Q(x2,y2),则联立直线与双曲线得:(2k2−1)x2+4kmx+2m2+2=0,△>0,故x1+x2=−4km2k2−1,x1x2=2m2+22k2−1,k AP+k AQ=y1−1x1−2+y2−1x2−2=kx1+m−1x1−2+kx2+m−1x2−2=0,化简得:2kx1x2+(m−1−2k)(x1+x2)−4(m−1)=0,故2k(2m2+2)2k2−1+(m−1−2k)(−4km2k2−1)−4(m−1)=0,即(k+1)(m+2k−1)=0,而直线l不过A点,故k=−1.(2)设直线AP的倾斜角为α,由tan∠PAQ=2√2,得tan∠PAQ2=√22,由2α+∠PAQ=π,得k AP=tanα=√2,即y1−1x1−2=√2,联立y 1−1x1−2=√2,及x 122−y 12=1得x 1=10−4√23,y 1=4√2−53, 同理,x 2=10+4√23,y 2=−4√2−53, 故x 1+x 2=203,x 1x 2=689而|AP|=√3|x 1−2|,|AQ|=√3|x 2−2|, 由tan∠PAQ =2√2,得sin∠PAQ =2√23, 故S △PAQ =12|AP||AQ|sin∠PAQ =√2|x 1x 2−2(x 1+x 2)+4|=16√29. 【母题来源】2022年新高考II 卷【母题题文】.设双曲线C:x 2a 2−y2b2=1(a >0,b >0)的右焦点为F(2,0),渐近线方程为y =±√3x. (1)求C 的方程;(2)经过F 的直线与C 的渐近线分别交于A ,B 两点,点P(x 1,y 1),Q(x 2,y 2)在C 上,且x 1>x 2>0,y 1>0.过P 且斜率为−√3的直线与过Q 且斜率为√3的直线交于点M ,从下面三个条件 ① ② ③中选择两个条件,证明另一个条件成立: ①M 在AB 上; ②PQ//AB; ③|AM|=|BM|.【答案】解:(1)由题意可得ba =√3,√a 2+b 2=2,故a =1,b =√3. 因此C 的方程为x 2−y 23=1.(2)设直线PQ 的方程为y =kx +m(k ≠0),将直线PQ 的方程代入C 的方程得(3−k 2)x 2−2kmx −m 2−3=0, 则x 1+x 2=2km3−k 2,x 1x 2=−m 2+33−k 2,x 1−x 2=√(x 1+x 2)2−4x 1x 2=2√3(m 2+3−k 2)3−k 2.不段点M 的坐标为(x M ,y M ),则{y M −y 1=−√3(x M −x 1)y M −y 2=√3(x M −x 2).两式相减,得y 1−y 2=2√3x M −√3(x 1+x 2),而y 1−y 2=(kx 1+m)−(kx 2+m)=k(x 1−x 2),故2√3x M =k(x 1−x 2)+√3(x 1+x 2),解得x M =k√m 2+3−k 2+km3−k 2.两式相加,得2y M −(y 1+y 2)=√3(x 1−x 2),而y 1+y 2=(kx 1+m)+(kx 2+m)=k(x 1+x 2)+2m ,故2y M =k(x 1+x 2)+√3(x 1−x 2)+2m ,解得y M =3√m 2+3−k 2+3m3−k 2=3k x M ⋅因此,点M 的轨迹为直线y =3k x ,其中k 为直线PQ 的斜率. 若选择 ① ②:设直线AB 的方程为y =k(x −2),并设A 的坐标为(x A ,y A ),B 的坐标为(x B ,y B ). 则{y A =k(x A −2)y A =√3x A,解得x A =k−√3,y A =√3kk−√3.同理可得x B =k+√3,y B =√3kk+√3.此时x A +x B =4k 2k 2−3,y A +y B =12kk 2−3.而点M 的坐标满足{y M =k(x M −2)y M =3k x M , 解得x M =2k 2k 2−3=x A +x B2,y M =6kk 2−3=y A +y B2,故M 为AB 的中点,即|MA|=|MB|. 若选择 ① ③:当直线AB 的斜率不存在时,点M 即为点F(2,0),此时M 不在直线y =3k x 上,矛盾.故直线AB 的斜率存在,设直线AB 的方程为y =p(x −2)(p ≠0), 并设A 的坐标为(x A ,y A ),B 的坐标为(x B ,y B ). 则{y A =p(x A −2)y A =√3x A,解得x A =p−√3,y A =√3pp−√3.同理可得x B =p+√3,y B =−√3pp+√3.此时x M =x A +x B2=2p 2p 2−3,y M =y A +y B2=6pp 2−3.由于点M 同时在直线y =3k x 上,故6p =3k ·2p 2,解得k =p.因此PQ//AB . 若选择 ② ③:设直线AB 的方程为y =k(x −2),并设A 的坐标为(x A ,y A ),B 的坐标为(x B ,y B ). 则{y A =k(x A −2)y A =√3x A解得x A =k−√3,y A =√3kk−√3.同理可得x B =k+√3,y B =√3kk+√3,设AB 的中点为C(x C ,y C ),则x C =x A +x B2=2k 2k 2−3,y C =y A +y B2=6kk 2−3.由于|MA|=|MB|,故M 在AB 的垂直平分线上,即点M 在直线y −y C =−1k (x −x C )上.将该直线与y =3k x 联立,解得x M =2k 2k 2−3=x C ,y M =6kk 2−3=y C ,即点M 恰为AB 中点,故点而在直线AB 上. 【命题意图】本题考查双曲线的标准方程和几何性质,考查直线与双曲线的位置关系,考查开放探究能力,属于压轴题.主要考查直线与双曲线的位置关系及双曲线中面积问题,属于难题【命题方向】圆锥曲线综合大题是属于高考历年的压轴题之一,难度较大,对学生的综合要求较高。

圆锥曲线综合试题(全部大题目)含答案

圆锥曲线综合试题(全部大题目)含答案

1. 平面上一点向二次曲线作切线得两切点,连结两切点的线段我们称切点弦.设过抛物线22x py =外一点00(,)P x y 的任一直线与抛物线的两个交点为C 、D ,与抛物线切点弦AB的交点为Q 。

(1)求证:抛物线切点弦的方程为00()x x p y y =+; (2)求证:112||||PC PD PQ +=.2. 已知定点F (1,0),动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且.||||,0PN PM PF PM ==⋅ (1)动点N 的轨迹方程;(2)线l 与动点N 的轨迹交于A ,B 两点,若304||64,4≤≤-=⋅AB OB OA 且,求直线l 的斜率k 的取值范围.3. 如图,椭圆134:221=+y x C 的左右顶点分别为A 、B ,P 为双曲线134:222=-y x C 右支上(x 轴上方)一点,连AP 交C 1于C ,连PB 并延长交C 1于D ,且△ACD 与△PCD 的面积相等,求直线PD 的斜率及直线CD 的倾斜角.4. 已知点(2,0),(2,0)M N -,动点P 满足条件||||22PM PN -=.记动点P 的轨迹为W .(Ⅰ)求W 的方程;(Ⅱ)若,A B 是W 上的不同两点,O 是坐标原点,求OA OB ⋅的最小值.5. 已知曲线C 的方程为:kx 2+(4-k )y 2=k +1,(k ∈R) (Ⅰ)若曲线C 是椭圆,求k 的取值范围;(Ⅱ)若曲线C 是双曲线,且有一条渐近线的倾斜角是60°,求此双曲线的方程; (Ⅲ)满足(Ⅱ)的双曲线上是否存在两点P ,Q 关于直线l :y=x -1对称,若存在,求出过P ,Q 的直线方程;若不存在,说明理由。

6. 如图(21)图,M (-2,0)和N (2,0)是平面上的两点,动点P 满足: 6.PM PN +=(1)求点P 的轨迹方程; (2)若2·1cos PM PN MPN-∠=,求点P 的坐标.7. 已知F 为椭圆22221x y a b +=(0)a b >>的右焦点,直线l 过点F 且与双曲线1222=-b y a x 的两条渐进线12,l l 分别交于点,M N ,与椭圆交于点,A B . (I )若3MON π∠=,双曲线的焦距为4。

圆锥曲线综合大题练 分类题组-2023届高三数学一轮复习

圆锥曲线综合大题练 分类题组-2023届高三数学一轮复习

题组:圆锥曲线综合大题练题型1:定点问题1.椭圆C:x 2a2+y2b2=1(a>b>0)的离心率为12,其左焦点到点P(2,1)的距离为√10.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若直线l:y=kx+m与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点.求证:直线l过定点,并求出该定点的坐标.2.已知抛物线C:y2=2px经过点M(2,2),C在点M处的切线交x轴于点N,直线l1经过点N且垂直于x轴.(Ⅰ)求线段ON的长;(Ⅱ)设不经过点M和N的动直线l2:x=my+b交C于点A和B,交l1于点E,若直线MA、ME、MB的斜率依次成等差数列,试问:l2是否过定点?请说明理由.3.已知椭圆C:2222=1x ya b(a>b>0),四点P1(1,1),P2(0,1),P3(–1,32),P4(1,32)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.4.如图,椭圆E:x 2a2+y2b2=1(a>b>0)的左焦点为F1,右焦点为F2,离心率e=12.过F1的直线交椭圆于A、B两点,且∆ABF2的周长为8.(Ⅰ)求椭圆E的方程.(Ⅱ)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相交于点Q.试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由.5.如图,已知椭圆Γ:x 2b2+y2a2=1(a>b>0)的离心率e=√22,短轴右端点为A,M(1.0)为线段OA的中点.(Ⅰ)求椭圆Γ的方程;(Ⅱ)过点M任作一条直线与椭圆Γ相交于P,Q两点,试问在x轴上是否存在定点N,使得∠PNM=∠QNM,若存在,求出点N的坐标;若不存在,说明理由.题型2:定值问题1.已知椭圆C :22221+=x y a b (0a b >>)的离心率为 32 ,(,0)A a ,(0,)B b ,(0,0)O ,OAB ∆的面积为1.(1)求椭圆C 的方程;(2)设P 的椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N.求证:BM AN ⋅为定值.2.如图, 在平面直角坐标系中, 抛物线的准线与轴交于点,过点的直线与抛物线交于两点, 设到准线的距离. (1)若,求抛物线的标准方程;(2)若,求证:直线的斜率的平方为定值.xOy ()220y px p =>l x M M ,A B ()11,A x y l ()20d p λλ=>13y d ==0AM AB λ+=AB3.椭圆C:x 2a2+y2b2=1(a>b>0)的离心率√22,点(2,√2)在C上.(1)求椭圆C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与l的斜率的乘积为定值.4.已知椭圆C:x 2a2+y2b2=1(a>b>0)的离心率√22,的离心率为,点A(1,√32)在椭圆C上,O为坐标原点.(Ⅰ)求椭圆C的方程;(Ⅱ)设动直线l与椭圆C有且仅有一个公共点,且l与圆x2+y2=5的相交于不在坐标轴上的两点P1,P2,记直线OP1,OP2的斜率分别为k1,k2,求证:k1∙k2为定值.5.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率√22,若圆x 2+y 2=a 2被直线x − y −√2=0截得的弦长为2。

圆锥曲线综合问题

圆锥曲线综合问题

圆锥曲线综合问题1.题目要求计算双曲线上一点到两个圆心的距离之差的最大值。

已知两圆的圆心和双曲线的焦点,可以通过计算点到圆心的距离和圆的半径来求得点到圆心的距离之和。

然后再通过两个圆心的距离和1来计算点到双曲线焦点的距离,最后将两个距离之差求出来即可得到最大值为5.2.题目要求计算过原点的直线与双曲线的交点斜率的取值范围。

可以将直线的方程代入双曲线的方程,然后整理得到一个关于斜率的一元二次方程。

由于两个交点不同,因此判别式大于0,可以得到斜率的取值范围为负根号3到正根号3.3.题目要求证明椭圆的长轴大于短轴,并求出过三个点的三角形的最大面积。

可以将直线的方程代入椭圆的方程,然后得到一个关于y的二次方程。

根据判别式大于0可以得到椭圆的长轴大于短轴。

然后可以通过求出三角形的三条边的长度,代入海伦公式求出三角形的面积,再通过求导数的方法求出最大值。

最终可以得到△OAB的最大面积为3.已知在平面直角坐标系xOy中的一个椭圆,中心在坐标原点,左焦点为F(-3,10),右顶点为D(2,0),且点A的坐标是(1,2)。

1) 求该椭圆的标准方程。

根据题意,椭圆的长轴长度为4,短轴长度为2,且焦点在x轴上。

因此,椭圆的标准方程为x^2/4+y^2=1.2) 过坐标原点O的直线交椭圆于点B、C,求△ABC面积的最大值。

当直线BC垂直于x轴时,|BC|=2,△ABC=1.当直线BC 不垂直于x轴时,设直线BC的方程为y=kx,代入椭圆的标准方程得到x^2=4k^2+1/(1+4k^2),再根据点到直线的距离公式求得△ABC的面积。

通过求导可得当k=-1/2时,△ABC的面积最大,此时△XXX的面积为2.变式:若直线l:y=kx+m(k≠0)与椭圆C交于不同的两点B、C且线段BC的垂直平分线恒过点A(0,-1),求m的范围。

根据题意,直线l与椭圆C交于两点,因此可以得到方程(4k^2+1)x^2+8kmx+4(m^2-1)=y^2.同时,由于线段BC的垂直平分线恒过点A(0,-1),因此可以得到3m=4k^2+1.结合两个方程可以得到m^21,因此m的范围为3/2<m<3.知识归纳:1.求参数范围的方法:建立等式或不等式的函数关系,再求参数范围。

圆锥曲线综合训练题(分专题,含答案)

圆锥曲线综合训练题(分专题,含答案)

圆锥曲线综合训练题一、求轨迹方程:1、(1)已知双曲线1C 与椭圆2C :2213649x y +=有公共的焦点,并且双曲线的离心率1e 与椭圆的离心率2e 之比为73,求双曲线1C 的方程. (2)以抛物线28y x =上的点M 与定点(6,0)A 为端点的线段MA 的中点为P ,求P 点的轨迹方程. (1)解:1C 的焦点坐标为(0,13).±213e =由1273e e =得113e =设双曲线的方程为22221(,0)y x a b a b -=>则2222213139a b a b a ⎧+=⎪⎨+=⎪⎩ 解得229,4a b == 双曲线的方程为22194y x -= (2)解:设点00(,),(,)M x y P x y ,则00622x x y y +⎧=⎪⎪⎨⎪=⎪⎩,∴00262x x y y =-⎧⎨=⎩.代入2008y x =得:2412y x =-.此即为点P 的轨迹方程.2、(1)ABC ∆的底边16=BC ,AC 和AB 两边上中线长之和为30,建立适当的坐标系求此三角形重心G 的轨迹和顶点A 的轨迹.(2)△ABC 中,B(-5,0),C(5,0),且sinC-sinB=53sinA,求点A 的轨迹方程.解: (1)以BC 所在的直线为x 轴,BC 中点为原点建立直角坐标系.设G 点坐标为()y x ,,由20=+GB GC ,知G 点的轨迹是以B 、C 为焦点的椭圆,且除去轴上两点.因10=a ,8=c ,有6=b ,故其方程为()013610022≠=+y y x .设()y x A ,,()y x G '',,则()013610022≠'='+'y y x . ①由题意有⎪⎪⎩⎪⎪⎨⎧='='33yy x x ,代入①,得A 的轨迹方程为()0132490022≠=+y y x ,其轨迹是椭圆(除去x 轴上两点).(2)分析:由于sinA 、sinB 、sinC 的关系为一次齐次式,两边乘以2R (R 为外接圆半径),可转化为边长的关系. 解:sinC-sinB=53sinA 2RsinC-2RsinB=53·2RsinA ∴BC AC AB 53=- 即6=-AC AB (*)∴点A 的轨迹为双曲线的右支(去掉顶点) ∵2a=6,2c=10 ∴a=3, c=5, b=4所求轨迹方程为116922=-y x (x>3) 点评:要注意利用定义直接解题,这里由(*)式直接用定义说明了轨迹(双曲线右支) 3、如图,两束光线从点M (-4,1)分别射向直线y = -2上两点P (x 1,y 1)和Q (x 2,y 2)后,反射光线恰好通过椭圆C :12222=+by a x (a >b >0)的两焦点,已知椭圆的离心率为21,且x 2-x 1=56,求椭圆C 的方程. 解:设a =2k ,c =k ,k ≠0,则b =3k ,其椭圆的方程为1342222=-ky k x . 由题设条件得:114)2(120x x k ----=--+, ①224)2(120x x k ----=--+, ②x 2-x 1=56, ③ 由①、②、③解得:k =1,x 1=511-,x 2=-1,所求椭圆C 的方程为13422=+y x . 4、在面积为1的PMN ∆中,21tan =M ,2tan -=N ,建立适当的坐标系,求出以M 、N 为焦点且过P 点的椭圆方程.∴所求椭圆方程为1315422=+y x 解:以MN 的中点为原点,MN 所在直线为x 轴建立直角坐标系,设),(y x P .则⎪⎪⎪⎩⎪⎪⎪⎨⎧==+-=-.1,21,2cy c x yc x y∴⎪⎪⎩⎪⎪⎨⎧===233435c c y c x 且即)32,325(P ∴⎪⎪⎩⎪⎪⎨⎧=-=+,43,13412252222b a ba 得⎪⎩⎪⎨⎧==.3,41522b a (1)求线段PQ 的中点的轨迹方程;(2)设∠POQ 的平分线交PQ 于点R (O 为原点),求点R 的轨迹方程.解:(1)设线段PQ 的中点坐标为M (x ,y ),由Q (4,0)可得点P (2x -4,2y ),代入圆的方程x 2+y 2=4可得(2x -4)2+(2y )2=4,整理可得所求轨迹为(x -2)2+y 2=1.(2)设点R (x ,y ),P (m ,n ),由已知|OP |=2,|OQ |=4,∴21||||=OQ OP ,由角平分线性质可得||||||||RQ PR OQ OP ==21,又∵点R 在线段PQ 上,∴|PR |=21|RQ |,∴点R 分有向线段PQ 的比为21,由定比分点坐标公式可得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+⨯+=+=+⨯+=32211021342211421n n y m m x ,即⎪⎪⎩⎪⎪⎨⎧=-=23243y n x m ,∴点P 的坐标为⎪⎭⎫ ⎝⎛-23 ,243y x ,代入圆的方程x 2+y 2=4可得42324322=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-y x , 即234⎪⎭⎫ ⎝⎛-x +y 2=916(y ≠0). ∴点R 的轨迹方程为234⎪⎭⎫ ⎝⎛-x +y 2=916(y ≠0).6、已知动圆过定点()1,0,且与直线1x =-相切.(1) 求动圆的圆心轨迹C 的方程;(2) 是否存在直线l ,使l 过点(0,1),并与轨迹C 交于,P Q 两点,且满足0OP OQ ⋅=uu u v uuu v若存在,求出直线l 的方程;若不存在,说明理由.解:(1)如图,设M 为动圆圆心, F ()1,0,过点M 作直线1x =-的垂线,垂足为N ,由题意知:MF MN =, 即动点M 到定点F 与定直线1x =-的距离相等,由抛物线的定义知,点M 的轨迹为抛物线,其中()1,0F 为焦点,1x =-为准线, ∴ 动点R 的轨迹方程为x y 42=(2)由题可设直线l 的方程为(1)(0)x k y k =-≠, 由2(1)4x k y y x=-⎧⎨=⎩得2440y ky k -+=△216160k =->,11k k <->或设),(11y x P ,),(22y x Q ,则124y y k +=,124y y k =由0OP OQ ⋅=u u u r u u u r ,即 ()11,OP x y =u u u r ,()22,OQ x y =u u u r,于是12120x x y y +=,即()()21212110ky y y y --+=,2221212(1)()0k y y k y y k +-++=,2224(1)40k k k k k +-+=g ,解得4k =-或0k =(舍去),又41k =-<-, ∴ 直线l 存在,其方程为440x y +-=7、设双曲线y ax 22231-=的两个焦点分别为F F 12、,离心率为2.(I )求此双曲线的渐近线l l 12、的方程;(II )若A 、B 分别为l l 12、上的点,且2512||||AB F F =,求线段AB 的中点M 的轨迹方程,并说明轨迹是什么曲线;(III )过点N ()10,能否作出直线l ,使l 与双曲线交于P 、Q 两点,且OP OQ →→=·0.若存在,求出直线l 的方程;若不存在,说明理由.解:(I )Θe c a =∴=2422, Θc a a c 22312=+∴==,,∴-=双曲线方程为y x 2231,渐近线方程为y x =±334分(II )设A x y B x y ()()1122,,,,AB 的中点()M x y ,[]Θ2552522101033332233333331012121221221122121212121212122122||||||||()()()()()()AB F F AB F F c x x y y y x y x x x x y y y y y x x y y x x y y x x =∴==⨯=∴-+-===-=+=+∴+=--=+∴+++⎡⎣⎢⎤⎦⎥=又,,,, ∴+=+=321321007532512222()()y x x y ,即则M 的轨迹是中心在原点,焦点在x 轴上,长轴长为103,短轴长为1033的椭圆.(9分) (III )假设存在满足条件的直线l设l y k x l P x y Q x y :,与双曲线交于,、,=-()()()11122[]ΘOP OQ x x y y x x k x x x x k x x x x i →→=∴+=∴+--=∴+-++=·00110101212122121221212()()()()由得则,y k x y x k x k x k x x k k x x k k ii =--=⎧⎨⎪⎩⎪--+-=+=-=--()()()13131633063133312222212221222由(i )(ii )得k 230+= ∴k 不存在,即不存在满足条件的直线l .8、设M 是椭圆22:1124x y C +=上的一点,P 、Q 、T 分别为M 关于y 轴、原点、x 轴的对称点,N 为椭圆C 上异于M 的另一点,且MN⊥MQ,QN 与PT 的交点为E ,当M 沿椭圆C 运动时,求动点E 的轨迹方程.解:设点的坐标112211(,),(,)(0),(,),M x y N x y x y E x y ≠则111111(,),(,),(,),P x y Q x y T x y ----……1分221122221,(1)124 1.(2)124x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩L L L L L L L L ………3分 由(1)-(2)可得1.3MN QN k k •=-…6分又MN⊥MQ,111,,MN MQ MN x k k k y ⋅=-=-所以11.3QN y k x =直线QN 的方程为1111()3yy x x y x =+-,又直线PT 的方程为11.x y x y =-从而得1111,.22x x y y ==-所以112,2.x x y y ==-代入(1)可得221(0),3x y xy +=≠此即为所求的轨迹方程. 9、已知:直线L 过原点,抛物线C 的顶点在原点,焦点在x 轴正半轴上。

2022届高考数学一轮复习(新高考版) 第8章 强化训练10 圆锥曲线中的综合问题

2022届高考数学一轮复习(新高考版) 第8章 强化训练10 圆锥曲线中的综合问题
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
由题意可知O→A⊥O→B,即O→A·O→B=0, ∴x1·x2+y1·y2=(1+k2)x1·x2+2k(x1+x2)+4=0, ∴121+1+4kk22-13+2k42k2+4=0, 解得 k2=4>34, ∴|AB|= 1+k2|x1-x2|= 1+k2· x1+x22-4x1x2
= 1+k2·4 1+4k42-k2 3=41765. 综上,直线 l 的方程为 2x-y+2=0 或 2x+y-2=0,|AB|=41765.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
技能提升练
13.焦点为F的抛物线C:y2=4x的对称轴与准线交于点E,点P在抛物线C
所以△PAB的面积
S△PAB=12|PM|·|y1-y2|=342
y02 4x0
3
2.
因为 x20+y420=1(-1≤x0<0),
所以 y20-4x0=-4x20-4x0+4∈[4,5],
所以△PAB 面积的取值范围是6
2,15
4
10.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
7.已知双曲线 C:ax22-by22=1,且圆 E:(x-2)2+y2=1 的圆心是双曲线 C 的右焦点.若圆 E 与双曲线 C 的渐近线相切,则双曲线 C 的方程为 __x32_-__y_2_=__1__.
解析 ∵c=2⇒a2+b2=4.
12.已知椭圆 L:ax22+by22=1(a>b>0)的离心率为 23,短轴长为 2. (1)求椭圆L的标准方程; 解 由 e2=ac22=a2-a2b2=1-ba22=34,得 a2=4b2, 又短轴长为2,可得b=1,a2=4, ∴椭圆 L 的标准方程为x42+y2=1.

圆锥曲线大题综合:五个方程型(学生版)

圆锥曲线大题综合:五个方程型(学生版)

圆锥曲线大题综合归类:五个方程型目录重难点题型归纳 1【题型一】基础型 1【题型二】直线设为:x=ty+m型 4【题型三】直线无斜率不过定点设法:双变量型 7【题型四】面积最值 10【题型五】最值与范围型 13【题型六】定点:直线定点 15【题型七】定点:圆过定点 18【题型八】定值 21【题型九】定直线 23【题型十】斜率型:斜率和定 26【题型十一】斜率型:斜率和 29【题型十二】斜率型:斜率比 31【题型十三】斜率型:三斜率 34【题型十四】定比分点型:a=tb 36【题型十五】切线型 38【题型十六】复杂的“第六个方程” 41好题演练 45重难点题型归纳重难点题型归纳题型一基础型【典例分析】1已知椭圆x2a21+y2b21=1a1>b1>0与双曲线x2a22-y2b22=1a2>0,b2>0有共同的焦点,双曲线的左顶点为A-1,0,过A斜率为3的直线和双曲线仅有一个公共点A,双曲线的离心率是椭圆离心率的3倍.(1)求双曲线和椭圆的标准方程;(2)椭圆上存在一点P x P,y P-1<x P<0,y P>0,过AP的直线l与双曲线的左支相交于与A不重合的另一点B,若以BP为直径的圆经过双曲线的右顶点E,求直线l的方程.1已知F 是椭圆C :x 2a 2+y 2b2=1(a >b >0)的一个焦点,过点P t ,b 的直线l 交C 于不同两点A ,B .当t =a ,且l 经过原点时,AB =6,AF +BF =22.(1)求C 的方程;(2)D 为C 的上顶点,当t =4,且直线AD ,BD 的斜率分别为k 1,k 2时,求1k 1+1k 2的值.题型二直线设为:x =ty +m 型【典例分析】1已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1,F 2,右顶点为P ,点Q 0,b ,PF 2=1,∠F 1PQ =60°.(1)求双曲线C 的方程;(2)直线l 经过点F 2,且与双曲线C 相交于A ,B 两点,若△F 1AB 的面积为610,求直线l 的方程.1已知椭圆C:x2a2+y2b2=1a>b>0的左焦点为F,右顶点为A,离心率为22,B为椭圆C上一动点,△FAB面积的最大值为2+1 2.(1)求椭圆C的方程;(2)经过F且不垂直于坐标轴的直线l与C交于M,N两点,x轴上点P满足PM=PN,若MN=λFP,求λ的值.题型三直线无斜率不过定点设法:双变量型【典例分析】1已知抛物线:y 2=2px p >0 ,过其焦点F 的直线与抛物线交于A 、B 两点,与椭圆x 2a 2+y 2=1a >1 交于C 、D 两点,其中OA ⋅OB =-3.(1)求抛物线方程;(2)是否存在直线AB ,使得CD 是FA 与FB 的等比中项,若存在,请求出AB 的方程及a ;若不存在,请说明理由.1已知双曲线E 的顶点为A -1,0 ,B 1,0 ,过右焦点F 作其中一条渐近线的平行线,与另一条渐近线交于点G ,且S △OFG =324.点P 为x 轴正半轴上异于点B 的任意点,过点P 的直线l 交双曲线于C ,D 两点,直线AC 与直线BD 交于点H .(1)求双曲线E 的标准方程;(2)求证:OP ⋅OH 为定值.题型四面积最值【典例分析】1已知椭圆x 23+y 22=1的左、右焦点分别为F 1,F 2.过F 1的直线交椭圆于B ,D 两点,过F 2的直线交椭圆于A ,C 两点,且AC ⊥BD ,垂足为P .(1)设P 点的坐标为(x 0,y 0),证明:x 203+y 202<1;(2)求四边形ABCD 的面积的最小值.1已知椭圆C :x 2a 2+y 2b2=1(a >b >0)过点M (2,3),点A 为其左顶点,且AM 的斜率为12,(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.2020年新高考全国卷Ⅱ数学试题(海南卷)题型五最值与范围型【典例分析】1设F 1、F 2分别是椭圆x 24+y 2=1的左、右焦点.(1)若P 是该椭圆上的一个动点,求PF 1 ⋅PF 2 =-54,求点P 的坐标;(2)设过定点M (0,2)的直线l 与椭圆交于不同的两点A 、B ,且∠AOB 为锐角(其中O 为坐标原点),求直线l 的斜率k 的取值范围.1已知椭圆E:x2a2+y2b2=1(a>b>0)一个顶点A(0,-2),以椭圆E的四个顶点为顶点的四边形面积为45.(1)求椭圆E的方程;(2)过点P(0,-3)的直线l斜率为k的直线与椭圆E交于不同的两点B,C,直线AB,AC分别与直线交y=-3交于点M,N,当|PM|+|PN|≤15时,求k的取值范围.2021年北京市高考数学试题题型六定点:直线定点【典例分析】1已知F为抛物线C:y2=2px(p>0)的焦点,O为坐标原点,M为C的准线l上的一点,直线MF的斜率为-1,△OFM的面积为1.(1)求C的方程;(2)过点F作一条直线l ,交C于A,B两点,试问在l上是否存在定点N,使得直线NA与NB的斜率之和等于直线NF斜率的平方?若存在,求出点N的坐标;若不存在,请说明理由.1已知椭圆C :x 2a 2+y 2b2=1(a >b >0),四点P 12,2 ,P 20,2 ,P 3-2,2 ,P 42,2 中恰有三点在椭圆C 上.(1)求椭圆C 的方程;(2)设直线l 不经过P 2点且与椭圆C 相交于A ,B 两点,线段AB 的中点为M ,若∠AMP 2=2∠ABP 2,试问直线l 是否经过定点?若经过定点,请求出定点坐标;若不过定点,请说明理由.题型七定点:圆过定点【典例分析】1如图,等边三角形OAB的边长为83,且其三个顶点均在抛物线E:x2=2py(p>0)上.(1) 求抛物线E的方程;(2) 设动直线l与抛物线E相切于点P,与直线y=-1相交于点Q.证明以PQ为直径的圆恒过y轴上某定点【变式演练】1已知动点P到点F1,0的距离与到直线l:x=4的距离之比为12,记点P的轨迹为曲线E.(1)求曲线E的方程;(2)曲线E与x轴正半轴交于点M,过F的直线交曲线E于A,B两点(异于点M),连接AM,BM并延长分别交l于D,C,试问:以CD为直径的圆是否恒过定点,若是,求出定点,若不是,说明理由.【典例分析】1如图,已知抛物线C :x 2=4y ,过点M (0,2)任作一直线与C 相交于A ,B 两点,过点B 作y 轴的平行线与直线AO 相交于点D (O 为坐标原点).(1)证明:动点D 在定直线上;(2)作C 的任意一条切线l (不含x 轴)与直线y =2相交于点N 1,与(1)中的定直线相交于点N 2,证明:|MN 2|2-|MN 1|2为定值,并求此定值.【变式演练】1已知抛物线C :y 2=2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N .(Ⅰ)求直线l 的斜率的取值范围;(Ⅱ)设O 为原点,QM =λQO ,QN =μQO ,求证:1λ+1μ为定值..【典例分析】1已知直线l:x=my-1,圆C:x2+y2+4x=0.(1)证明:直线l与圆C相交;(2)设直线l与C的两个交点分别为A、B,弦AB的中点为M,求点M的轨迹方程;(3)在(2)的条件下,设圆C在点A处的切线为l1,在点B处的切线为l2,l1与l2的交点为Q.证明:Q,A,B,C四点共圆,并探究当m变化时,点Q是否恒在一条定直线上?若是,请求出这条直线的方程;若不是,说明理由.【变式演练】1已知双曲线E:x2a2-y2b2=1a>0,b>0的左、右焦点分别为F1、F2,F1F2=23且双曲线E经过点A3,2.(1)求双曲线E的方程;(2)过点P2,1作动直线l,与双曲线的左、右支分别交于点M、N,在线段MN上取异于点M、N的点H,满足PMPN=MHHN,求证:点H恒在一条定直线上.【典例分析】1已知点F是椭圆E:x2a2+y2b2=1(a>b>0)的右焦点,P是椭圆E的上顶点,O为坐标原点且tan∠PFO=33.(1)求椭圆的离心率e;(2)已知M1,0,N4,3,过点M作任意直线l与椭圆E交于A,B两点.设直线AN,BN的斜率分别为k1,k2,若k1+k2=2,求椭圆E的方程.【变式演练】1在平面直角坐标系中,己知圆心为点Q的动圆恒过点F(1,0),且与直线x=-1相切,设动圆的圆心Q的轨迹为曲线Γ.(Ⅰ)求曲线Γ的方程;(Ⅱ)过点F的两条直线l1、l2与曲线Γ相交于A、B、C、D四点,且M、N分别为AB、CD的中点.设l1与l2的斜率依次为k1、k2,若k1+k2=-1,求证:直线MN恒过定点.【典例分析】1设椭圆方程为x2a2+y2b2=1a>b>0,A-2,0,B2,0分别是椭圆的左、右顶点,动直线l过点C6,0,当直线l经过点D-2,2时,直线l与椭圆相切.(1)求椭圆的方程;(2)若直线l与椭圆交于P,Q(异于A,B)两点,且直线AP与BQ的斜率之和为-12,求直线l的方程.【变式演练】1已知点M1,3 2在椭圆x2a2+y2b2=1a>b>0上,A,B分别是椭圆的左、右顶点,直线MA和MB的斜率之和满足:k MA+k MB=-1.(1)求椭圆的标准方程;(2)斜率为1的直线交椭圆于P,Q两点,椭圆上是否存在定点T,使直线PT和QT的斜率之和满足k PT+k QT=0(P,Q与T均不重合)?若存在,求出T点坐标;若不存在,说明理由.【典例分析】1已知圆F 1:x 2+y 2+2x -15=0和定点F 2(1,0),P 是圆F 1上任意一点,线段PF 2的垂直平分线交PF 1于点M ,设动点M 的轨迹为曲线E .(1)求曲线E 的方程;(2)设A (-2,0),B (2,0),过F 2的直线l 交曲线E 于M ,N 两点(点M 在x 轴上方),设直线AM 与BN 的斜率分别为k 1,k 2,求证:k 1k 2为定值.【变式演练】1已知椭圆E :x 2a 2+y 2b2=1(a >0,b >0),离心率e =55,P 为椭圆上一点,F 1,F 2分别为椭圆的左、右焦点,若△PF 1F 2的周长为2+25.(1)求椭圆E 的方程;(2)已知四边形ABCD (端点不与椭圆顶点重合)为椭圆的内接四边形,且AF 2 =λF 2C ,BF 2 =μF 2D ,若直线CD 斜率是直线AB 斜率的52倍,试问直线AB 是否过定点,若是,求出定点坐标,若不是,说明理由.江西省重点中学协作体2023届高三下学期第一次联考数学(理)试题题型十三斜率型:三斜率【典例分析】1已知F是椭圆C:x2a2+y2b2=1(a>b>0)的右焦点,且P1,32在椭圆C上,PF垂直于x轴.(1)求椭圆C的方程.(2)过点F的直线l交椭圆C于A,B(异于点P)两点,D为直线l上一点.设直线PA,PD,PB的斜率分别为k1,k2,k3,若k1+k3=2k2,证明:点D的横坐标为定值.【变式演练】1在平面内动点P与两定点A1(-3,0),A2(3,0)连线斜率之积为-23.(1)求动点P的轨迹E的方程;(2)已知点F1(-1,0),F2(1,0),过点P作轨迹E的切线其斜率记为k(k≠0),当直线PF1,PF2斜率存在时分别记为k1,k2.探索1k⋅1k1+1k2是否为定值.若是,求出该定值;若不是,请说明理由.题型十四定比分点型:a =tb【典例分析】1已知椭圆C :x 2a 2+y 2b2=1(a >b >0),倾斜角为30°的直线过椭圆的左焦点F 1和上顶点B ,且S △ABF 1=1+32(其中A 为右顶点).(1)求椭圆C 的标准方程;(2)若过点M (0,m )的直线l 与椭圆C 交于不同的两点P ,Q ,且PM =2MQ ,求实数m 的取值范围.【变式演练】1已知点M ,N 分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的右顶点与上顶点,原点O 到直线MN 的距离为32,且椭圆的离心率为63.(1)求椭圆C 的方程;(2)斜率不为0的直线经过椭圆右焦点F 2,并且与椭圆交于A ,B 两点,若AF 2 =12F 2B ,求直线AB 的方程.题型十五切线型【典例分析】1法国数学家加斯帕尔·蒙日被誉为画法几何之父.他在研究椭圆切线问题时发现了一个有趣的重要结论:一椭圆的任两条互相垂直的切线交点的轨迹是一个圆,尊称为蒙日圆,且蒙日圆的圆心是该椭圆的中心,半径为该椭圆的长半轴与短半轴平方和的算术平方根.已知在椭圆C :x 2a 2+y 2b 2=1(a >b >0)中,离心率e =12,左、右焦点分别是F 1、F 2,上顶点为Q ,且QF 2 =2,O 为坐标原点.(1)求椭圆C 的方程,并请直接写出椭圆C 的蒙日圆的方程;(2)设P 是椭圆C 外一动点(不在坐标轴上),过P 作椭圆C 的两条切线,过P 作x 轴的垂线,垂足H ,若两切线斜率都存在且斜率之积为-12,求△POH 面积的最大值.【变式演练】1已知椭圆C:x2a2+y2b2=1a>b>0的上顶点为A,左、右焦点分别为F1、F2,三角形AF1F2的周长为6,面积为3.(1)求椭圆C的方程;(2)已知点M是椭圆C外一点,过点M所作椭圆的两条切线互相垂直,求三角形AF2M面积的最大值.题型十六复杂的“第六个方程”【典例分析】1如图,已知点B2,1,点N为直线OB上除O,B两点外的任意一点,BK,NH分别垂直y轴于点K,H,NA⊥BK于点A,直线OA,NH的交点为M.(1)求点M的轨迹方程;(2)若E3,0,C,G是点M的轨迹在第一象限的点(C在G的右侧),且直线EC,EG的斜率之和为0,若△CEG的面积为152,求tan∠CEG.【变式演练】1已知椭圆C的中心在原点O,焦点在x轴上,离心率为32,且椭圆C上的点到两个焦点的距离之和为4.(1)求椭圆C的方程;(2)设A为椭圆C的左顶点,过点A的直线l与椭圆交于点M,与y轴交于点N,过原点且与l平行的直线与椭圆交于点P.求SΔPAN⋅SΔPAM(SΔAOP)2的值.好题演练1(2023·贵州毕节·统考模拟预测)已知椭圆C的下顶点M,右焦点为F,N为线段MF的中点,O为坐标原点,ON=32,点F与椭圆C任意一点的距离的最小值为3-2.(1)求椭圆C的标准方程;(2)直线l:y=kx+m k≠0与椭圆C交于A,B两点,若存在过点M的直线l ,使得点A与点B关于直线l 对称,求△MAB的面积的取值范围.2(2023·天津南开·统考二模)已知椭圆x2a2+y2b2=1a>b>0的离心率为32,左、右顶点分别为A,B,上顶点为D,坐标原点O到直线AD的距离为255.(1)求椭圆的方程;(2)过A点作两条互相垂直的直线AP,AQ与椭圆交于P,Q两点,求△BPQ面积的最大值.3(2023·河北·统考模拟预测)已知直线l :x =12与点F 2,0 ,过直线l 上的一动点Q 作直线PQ ⊥l ,且点P 满足PF +2PQ ⋅PF -2PQ =0.(1)求点P 的轨迹C 的方程;(2)过点F 作直线与C 交于A ,B 两点,设M -1,0 ,直线AM 与直线l 相交于点N .试问:直线BN 是否经过x 轴上一定点?若过定点,求出该定点坐标;若不过定点,请说明理由.4(2023·北京东城·统考二模)已知焦点为F 的抛物线C :y 2=2px (p >0)经过点M (1,2).(1)设O 为坐标原点,求抛物线C 的准线方程及△OFM 的面积;(2)设斜率为k (k ≠0)的直线l 与抛物线C 交于不同的两点A ,B ,若以AB 为直径的圆与抛物线C 的准线相切,求证:直线l 过定点,并求出该定点的坐标.5(2023·四川自贡·统考三模)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的离心率e =22,设A 62,12 ,B -62,12,P 0,2 ,其中A ,B 两点在椭圆C 上.(1)求椭圆C 的方程;(2)过点P 的直线交椭圆C 于M ,N 两点(M 在线段AB 上方),在AN 上取一点H ,连接MH 交线段AB 于T ,若T 为MH 的中点,证明:直线MH 的斜率为定值.6(2023·江西赣州·统考二模)在平面直角坐标系xOy 中,F 1(-1,0),F 2(1,0),点P 为平面内的动点,且满足∠F 1PF 2=2θ,PF 1 ⋅PF 2 cos 2θ=2.(1)求PF 1 +PF 2 的值,并求出点P 的轨迹E 的方程;(2)过F 1作直线l 与E 交于A 、B 两点,B 关于原点O 的对称点为点C ,直线AF 2与直线CF 1的交点为T .当直线l 的斜率和直线OT 的斜率的倒数之和的绝对值取得值最小值时,求直线l 的方程.7(2023·四川乐山·统考三模)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (2,0),短轴长等于焦距.(1)求C 的方程;(2)过F 的直线交C 于P ,Q ,交直线x =22于点N ,记OP ,OQ ,ON 的斜率分别为k 1,k 2,k 3,若(k 1+k 2)k 3=1,求|OP |2+|OQ |2的值.8(2023·贵州贵阳·统考模拟预测)已知椭圆C 1:x 2a 2+y 2b2=1a >b >0 与椭圆C 2:x 22+y 2=1的离心率相等,C 1的焦距是22.(1)求C 1的标准方程;(2)P 为直线l :x =4上任意一点,是否在x 轴上存在定点T ,使得直线PT 与曲线C 1的交点A ,B 满足PA PB =AT TB?若存在,求出点T 的坐标.若不存在,请说明理由.。

圆锥曲线解题技巧和方法综合(全)

圆锥曲线解题技巧和方法综合(全)

圆锥曲线的解题技巧一、常规七大题型:(1)中点弦问题具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为,,代入方程,然后两方程相减,再应用中点关系及斜率公式(当然在这里也要注意斜率不存在的请款讨论),消去四个参数。

如:(1)与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有。

(2)与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有(3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p.典型例题 给定双曲线。

过A (2,1)的直线与双曲线交于两点 及,求线段的中点P 的轨迹方程。

(2)焦点三角形问题椭圆或双曲线上一点P ,与两个焦点、构成的三角形问题,常用正、余弦定理搭桥。

典型例题 设P(x,y)为椭圆上任一点,,为焦点,,。

(1)求证离心率;(2)求的最值。

(3)直线与圆锥曲线位置关系问题直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式、根与系数的关系、求根公式等来处理,应特别注意数形结合的思想,通过图形的直观性帮助分析解决问题,如果直线过椭圆的焦点,结合三大曲线的定义去解。

典型例题(1)求证:直线与抛物线总有两个不同交点(2)设直线与抛物线的交点为A 、B ,且OA ⊥OB ,求p 关于t 的函数f(t)的表达式。

(,)x y 11(,)x y 22)0(12222>>=+b a b y a x 02020=+k b y a x )0,0(12222>>=-b a b y a x 02020=-k b y a x x y 2221-=P 1P 2P 1P 2F 1F 2x a y b 22221+=F c 10(,)-F c 20(,)∠=PF F 12α∠=PF F 21ββαβαsin sin )sin(++=e |||PF PF 1323+抛物线方程,直线与轴的交点在抛物线准线的右边。

圆锥曲线的综合经典例题(有答案)

圆锥曲线的综合经典例题(有答案)

经典例题精析类型一:求曲线的标准方程1. 求中心在原点,一个焦点为且被直线截得的弦AB的中点横坐标为的椭圆标准方程.思路点拨:先确定椭圆标准方程的焦点的位置(定位),选择相应的标准方程,再利用待定系数法确定、(定量).解析:方法一:因为有焦点为,所以设椭圆方程为,,由,消去得,所以解得故椭圆标准方程为方法二:设椭圆方程,,,因为弦AB中点,所以,由得,(点差法)所以又故椭圆标准方程为.举一反三:【变式】已知椭圆在x轴上的一个焦点与短轴两端点连线互相垂直,且该焦点与长轴上较近的端点的距离为.求该椭圆的标准方程.【答案】依题意设椭圆标准方程为(),并有,解之得,,∴椭圆标准方程为2.根据下列条件,求双曲线的标准方程.(1)与双曲线有共同的渐近线,且过点;(2)与双曲线有公共焦点,且过点解析:(1)解法一:设双曲线的方程为由题意,得,解得,所以双曲线的方程为解法二:设所求双曲线方程为(),将点代入得,所以双曲线方程为即(2)解法一:设双曲线方程为-=1由题意易求又双曲线过点,∴又∵,∴,故所求双曲线的方程为.解法二:设双曲线方程为,将点代入得,所以双曲线方程为.总结升华:先根据已知条件确定双曲线标准方程的焦点的位置(定位),选择相应的标准方程,再利用待定系数法确定、.在第(1)小题中首先设出共渐近线的双曲线系方程.然后代点坐标求得方法简便.第(2)小题实轴、虚轴没有唯一给出.故应答两个标准方程.(1)求双曲线的方程,关键是求、,在解题过程中应熟悉各元素(、、、及准线)之间的关系,并注意方程思想的应用.(2)若已知双曲线的渐近线方程,可设双曲线方程为().举一反三:【变式】求中心在原点,对称轴在坐标轴上且分别满足下列条件的双曲线的标准方程.(1)一渐近线方程为,且双曲线过点.(2)虚轴长与实轴长的比为,焦距为10.【答案】(1)依题意知双曲线两渐近线的方程是,故设双曲线方程为,∵点在双曲线上,∴,解得,∴所求双曲线方程为.(2)由已知设, ,则()依题意,解得.∴双曲线方程为或.3.求满足下列条件的抛物线的标准方程,并求对应抛物线的准线方程:(1)过点;(2)焦点在直线:上思路点拨:从方程形式看,求抛物线的标准方程仅需确定一次项系数;从实际分析,一般需结合图形确定开口方向和一次项系数两个条件,否则,应展开相应的讨论解析:(1)∵点在第二象限,∴抛物线开口方向上或者向左当抛物线开口方向左时,设所求的抛物线方程为(),∵过点,∴,∴,∴,当抛物线开口方向上时,设所求的抛物线方程为(),∵过点,∴,∴,∴,∴所求的抛物线的方程为或,对应的准线方程分别是,.(2)令得,令得,∴抛物线的焦点为或当焦点为时,,∴,此时抛物线方程;焦点为时,,∴,此时抛物线方程为∴所求的抛物线的方程为或,对应的准线方程分别是,.总结升华:这里易犯的错误就是缺少对开口方向的讨论,先入为主,设定一种形式的标准方程后求解,以致失去一解.求抛物线的标准方程关键是根据图象确定抛物线开口方向,选择适当的方程形式,准确求出焦参数P.举一反三:【变式1】分别求满足下列条件的抛物线的标准方程.(1)焦点为F(4,0);(2)准线为;(3)焦点到原点的距离为1;(4)过点(1,-2);(5)焦点在直线x-3y+6=0上.【答案】(1)所求抛物线的方程为y2=16x;(2)所求抛物线的标准方程为x2=2y;(3)所求抛物线的方程y2=±4x或x2=±4y;(4)所求抛物线的方程为或;(5)所求抛物线的标准方程为y2=-24x或x2=8y.【变式2】已知抛物线的顶点在原点,焦点在轴负半轴上,过顶点且倾角为的弦长为,求抛物线的方程.【答案】设抛物线方程为(),又弦所在直线方程为由,解得两交点坐标,∴,解得.∴抛物线方程为.类型二:圆锥曲线的焦点三角形4.已知、是椭圆()的两焦点,P是椭圆上一点,且,求的面积.思路点拨:如图求的面积应利用,即.关键是求.由椭圆第一定义有,由余弦定理有,易求之.解析:设,,依题意有(1)2-(2)得,即.∴.举一反三:【变式1】设为双曲线上的一点,是该双曲线的两个焦点,若,则的面积为()A.B.C.D.【答案】依据双曲线的定义有,由得、,又,则,即,所以,故选A.【变式2】已知双曲线实轴长6,过左焦点的弦交左半支于、两点,且,设右焦点,求的周长.【答案】:由双曲线的定义有: ,,两式左、右分别相加得(.即∴.故的周长.【变式3】已知椭圆的焦点是,直线是椭圆的一条准线.①求椭圆的方程;②设点P在椭圆上,且,求.【答案】①.②设则,又.【变式4】已知双曲线的方程是.(1)求这双曲线的焦点坐标、离心率和渐近线方程;(2)设和是双曲线的左、右焦点,点在双曲线上,且,求的大小【答案】(1)由得,∴,,.焦点、,离心率,渐近线方程为.(2),∴∴【变式5】中心在原点,焦点在x轴上的一个椭圆与双曲线有共同焦点和,且,又椭圆长半轴与双曲线实半轴之差为4,离心率之比.(1)求椭圆与双曲线的方程;(2)若为这两曲线的一个交点,求的余弦值.【答案】(1)设椭圆方程为(),双曲线方程,则,解得∵,∴, .故所求椭圆方程为,双曲线方程为.(2)由对称性不妨设交点在第一象限.设、.由椭圆、双曲线的定义有:解得由余弦定理有.类型三:离心率5.已知椭圆上的点和左焦点,椭圆的右顶点和上顶点,当,(O为椭圆中心)时,求椭圆的离心率.思路点拨:因为,所以本题应建立、的齐次方程,使问题得以解决.解析:设椭圆方程为(),,,则,即.∵,∴,即,∴.又∵,∴.总结升华:求椭圆的离心率,即求的比值,则可由如下方法求.(1)可直接求出、;(2)在不好直接求出、的情况下,找到一个关于、的齐次等式或、用同一个量表示;(3)若求的取值范围,则想办法找不等关系.举一反三:【变式1】如图,和分别是双曲线的两个焦点,和是以为圆心,以为半径的圆与该双曲线左支的两个交点,且是等边三角形,则双曲线的离心率为()A.B.C.D.【答案】连接,则是直角三角形,且,令,则,,即,,所以,故选D.【变式2】已知椭圆()与x轴正半轴交于A点,与y轴正半轴交于B点,F点是左焦点,且,求椭圆的离心率.法一:,,∵, ∴,又,,代入上式,得,利用代入,消得,即由,解得,∵,∴.法二:在ΔABF中,∵,,∴,即下略)【变式3】如图,椭圆的中心在原点, 焦点在x轴上, 过其右焦点F作斜率为1的直线, 交椭圆于A、B两点, 若椭圆上存在一点C, 使. 求椭圆的离心率.【答案】设椭圆的方程为(),焦距为,则直线l的方程为:,由,消去得,设点、,则∵+, ∴C点坐标为.∵C点在椭圆上,∴.∴∴又∴∴【变式4】设、为椭圆的两个焦点,点是以为直径的圆与椭圆的交点,若,则椭圆离心率为_____.【答案】如图,点满足,且.在中,有:∵,∴,令此椭圆方程为则由椭圆的定义有,,∴又∵,∴,,∴∴,∴,即.6.已知、为椭圆的两个焦点,为此椭圆上一点,且.求此椭圆离心率的取值范围;解析:如图,令, ,,则在中,由正弦定理,∴,令此椭圆方程为(),则,,∴即(),∴, ∴,∵,且为三角形内角,∴,∴,∴, ∴.即此椭圆离心率的取值范围为.举一反三:【变式1】已知椭圆,F1,F2是两个焦点,若椭圆上存在一点P,使,求其离心率的取值范围.【答案】△F1PF2中,已知,|F1F2|=2c,|PF1|+|PF2|=2a,由余弦定理:4c2=|PF1|2+|PF2|2-2|PF1||PF2|cos120°①又|PF1|+|PF2|=2a ②联立①②得4c2=4a2-|PF1||PF2|,∴【变式2】椭圆的焦点为,,两条准线与轴的交点分别为,若,则该椭圆离心率的取值范围是()A.B.C.D.【答案】由得,即,解得,故离心率.所以选D.【变式3】椭圆中心在坐标系原点,焦点在x轴上,过椭圆左焦点F的直线交椭圆P、Q两点,且OP⊥OQ,求其离心率e的取值范围.【答案】e∈[,1)【变式4】双曲线(a>1,b>0)的焦距为2c,直线过点(a,0)和(0,b),且点(1,0)到直线的距离与点(-1,0)到直线的距离之和s≥c.求双曲线的离心率e的取值范围.【答案】直线的方程为bx+ay-ab=0.由点到直线的距离公式,且a>1,得到点(1,0)到直线的距离.同理得到点(-1,0)到直线的距离.=.由s≥c,得≥c,即5a≥2c2.于是得5≥2e2.即4e4-25e2+25≤0.解不等式,得≤e2≤5.由于e>1,所以e的取值范围是.类型五:轨迹方程7.已知中,,,为动点,若、边上两中线长的和为定值15.求动点的轨迹方程.思路点拨:充分利用定义直接写出方程是求轨迹的直接法之一.应给以重视解法一:设动点,且,则、边上两中点、的坐标分别为,.∵,∴,即.从上式知,动点到两定点,的距离之和为常数30,故动点的轨迹是以,为焦点且,,的椭圆,挖去点.∴动点的轨迹方程是().解法二:设的重心,,动点,且,则.∴点的轨迹是以,为焦点的椭圆(挖去点),且,,.其方程为().又, 代入上式,得()为所求.总结升华:求动点的轨迹,首先要分析形成轨迹的点和已知条件的内在联系,选择最便于反映这种联系的坐标形式,建立等式,利用直接法或间接法得到轨迹方程.举一反三:【变式1】求过定点且和圆:相切的动圆圆心的轨迹方程.【答案】设动圆圆心, 动圆半径为,.(1)动圆与圆外切时,,(2)动圆与圆内切时,,由(1)、(2)有.∴动圆圆心M的轨迹是以、为焦点的双曲线,且,,.故动圆圆心的轨迹方程为.【变式3】已知圆的圆心为M1,圆的圆心为M2,一动圆与这两个圆外切,求动圆圆心P的轨迹方程.【答案】设动圆圆心P(x,y),动圆的半径为R,由两圆外切的条件可得:,.∴.∴动圆圆心P的轨迹是以M1、M2为焦点的双曲线的右支,其中c=4,a=2,∴b2=12,故所求轨迹方程为.【变式4】若动圆与圆:相外切,且与直线:相切,求动圆圆心的轨迹方程.法一:设,动圆半径,动圆与直线切于点,点.依题意点在直线的左侧,故∵,∴.化简得, 即为所求.法二:设,作直线:.过作于,交于,依题意有, ∴,由抛物线定义可知,点的轨迹是以为顶点,为焦点,:为准线的抛物线.故为所求.。

高二数学圆锥曲线综合试题答案及解析

高二数学圆锥曲线综合试题答案及解析

高二数学圆锥曲线综合试题答案及解析1.已知曲线C上任意一点P到两定点F1(-1,0)与F2(1,0)的距离之和为4.(1)求曲线C的方程;(2)设曲线C与x轴负半轴交点为A,过点M(-4,0)作斜率为k的直线l交曲线C于B、C两点(B在M、C之间),N为BC中点.(ⅰ)证明:k·kON为定值;(ⅱ)是否存在实数k,使得F1N⊥AC?如果存在,求直线l的方程,如果不存在,请说明理由.【答案】(1);(2)(ⅰ);(ⅱ)不存在.【解析】(1)由于曲线C上任意一点P到两定点F1(-1,0)与F2(1,0)的距离之和为4,结合椭圆的定义可知曲线C是以两定点F1(-1,0)和F2(1,0)为焦点,长轴长为4的椭圆,从而可写出曲线C的方程;(2)由已知可设出过点直线l的方程,并设出直线l与曲线C所有交点的坐标;然后联立直线方程与曲线C的方程,消去y就可获得一个关于x的一元二次方程,应用韦达定理就可写出两交点模坐标的和与积;(ⅰ)应用上述结果就可以用k的代数式表示出弦的中点坐标,这样就可求出ON的斜率,再乘以k就可证明k·kON 为定值;(ⅱ)由F1N⊥AC,得kAC•kFN= -1,结合前边结果就可将此等式转化为关于k的一个方程,解此方程,若无解,则对应直线不存在,若有解,则存在且对应直线方程很易写出来.试题解析:(1)由已知可得:曲线C是以两定点F1(-1,0)和F2(1,0)为焦点,长轴长为4的椭圆,所以,故曲线C的方程为:. 4分(2)设过点M的直线l的方程为y=k(x+4),设B(x1, y1),C(x2, y2)(x2>y2).(ⅰ)联立方程组,得,则, 5分故,, 7分所以,所以k•kON=为定值. 8分(ⅱ)若F1N⊥AC,则kAC•kFN= -1,因为F1(-1,0),故, 10分代入y2=k(x2+4)得x2=-2-8k2,y2="2k" -8k3,而x2≥-2,故只能k=0,显然不成立,所以这样的直线不存在. 13分【考点】1.椭圆的方程;2.直线与椭圆的位置关系.2.双曲线+=1的离心率,则的值为.【答案】-32【解析】由题意可得,a=2,又∵e==3,∴c=3a=6,∴b2=c2-a2=36-4=32,而k=-b2,∴k=-32【考点】双曲线离心率的计算.3.已知椭圆,直线是直线上的线段,且是椭圆上一点,求面积的最小值。

2020年高考山东版高考理科数学 10.4 圆锥曲线的综合问题

2020年高考山东版高考理科数学      10.4 圆锥曲线的综合问题
2
(1)求C的方程; (2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的 中点为M.证明:直线OM的斜率与直线l的斜率的乘积为定值.
解析
(1)由题意有
a2 a
b2
= 2 2
, a42 + b22 =1,解得a2=8,b2=4.
所以C的方程为x 2 +y 2 =1.
84
(2)证明:设直线l:y=kx+b(k≠0,b≠0),A(x1,y1),B(x2,y2),M(xM,yM).将y=kx+b代
入x 2 +y 2 =1得(2k2+1)x2+4kbx+2b2-8=0.
84
故xM=x1 x2
2
= 2kb
2k 2 1
,yM=k·xM+b=2 k 2b1
.
于是直线OM的斜率kOM=xy MM =-2 1k ,即kOM·k=-12 .
消去y得(4k2+3)x2-8k2x+4k2-12=0,
得xM= 12 · 4k82k2
3
= 4k 2
4k 2
3
,yM=k(xM-1)=-4 k32k
3
,
同理可得xN= 4
4 3k
2
,yN=- 1 (xN-1)= 3k
k
4 3k
2
,
若M,N关于x轴对称后得到M',N',
则得到的直线M'N'与MN关于x轴对称,
是k>0,k≠3.
由(1)得OM的方程为y=- 9 x.
k
设点P的横坐标为xP.


y


9 k

2022版高考数学大一轮复习第10章圆锥曲线与方程第4讲圆锥曲线的综合应用1

2022版高考数学大一轮复习第10章圆锥曲线与方程第4讲圆锥曲线的综合应用1

第十章 圆锥曲线与方程第四讲 圆锥曲线的综合问题拓展变式1。

[2017浙江,21,15分]如图10—4—2,已知抛物线x 2=y ,点A (−12,14),B (32,94),抛物线上的点P (x ,y )(−12<x 〈32)。

过点B 作直线AP 的垂线,垂足为Q.图10—4-2(1)求直线AP 斜率的取值范围; (2)求|PA |·|PQ |的最大值。

2。

[2020全国卷Ⅰ,21,12分][文]已知A ,B 分别为椭圆E :x 2a 2+y 2=1(a 〉1)的左、右顶点,G 为E 的上顶点,AG ⃗⃗⃗⃗⃗ ·GB⃗⃗⃗⃗⃗ =8。

P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D.(1)求E 的方程;(2)证明:直线CD 过定点。

3.[2021武汉四地六校高三联考]已知椭圆C:x2a2+y2b2=1(a〉b〉0)的离心率为12,以原点为圆心,椭圆的短半轴为半径的圆与直线√7x−√5y+12=0相切。

(1)求椭圆C的方程.(2)已知A(-4,0),过点R(3,0)作与x轴不重合的直线l交椭圆C于P,Q两点,连接AP,AQ,分别交直线x=163于M,N两点,若直线MR,NR的斜率分别为k1,k2,问:k1k2是否为定值?若是,求出该定值;若不是,请说明理由.4。

[2021湖北省部分重点中学摸底联考]已知点A(1,−√32)在椭圆C:x2a2+y2b2=1(a〉b>0)上,O为坐标原点,直线l:xa2−√3y2b2=1的斜率与直线OA的斜率之积为−14.(1)求椭圆C的方程。

(2)不经过点A的直线m:y=√32x+t(t≠0)与椭圆C交于P,Q两点,P关于原点的对称点为R(与点A不重合),直线AQ,AR与y轴分别交于点M,N,求证:|AM|=|AN|.5。

[2020山西大同一联]已知椭圆C的中心在原点,焦点在坐标轴上,直线y=32x与椭圆C在第一象限内的交点是M,点M在x 轴上的射影恰好是椭圆C的右焦点F2,椭圆C的另一个焦点是F1,且MF1⃗⃗⃗⃗⃗⃗⃗⃗ ·MF2⃗⃗⃗⃗⃗⃗⃗⃗ =94。

圆锥曲线解题技巧与方法综合如何通过平移与旋转变换简化解析几何问题

圆锥曲线解题技巧与方法综合如何通过平移与旋转变换简化解析几何问题

圆锥曲线解题技巧与方法综合如何通过平移与旋转变换简化解析几何问题解析几何是数学中的一个重要分支,它通过运用几何图形和代数方法解决各种问题。

而在解析几何中,圆锥曲线是一个特别重要的概念,包括椭圆、双曲线和抛物线。

在解析几何问题中,我们可以运用平移与旋转变换的方法,来简化解答问题的过程。

本文将介绍圆锥曲线解题技巧与方法,并探讨如何通过平移与旋转变换来简化解析几何问题。

一、椭圆的解析几何问题对于椭圆的解析几何问题,我们可以运用平移与旋转变换的方法来简化解答问题的过程。

首先,我们将椭圆的中心平移到坐标原点上,这样可以将椭圆的方程形式简化为标准方程。

对于椭圆的标准方程,可以通过旋转变换来使其长轴与坐标轴重合。

通过变换后的方程,我们可以更加方便地求解椭圆的焦点、顶点、离心率等重要参数。

二、双曲线的解析几何问题对于双曲线的解析几何问题,同样可以通过平移与旋转变换来简化解答问题的过程。

首先,我们可以将双曲线的中心平移到坐标原点上,使其方程形式变为标准方程。

通过旋转变换,我们可以将双曲线的方程转化为标准方程,使其对称轴与坐标轴重合。

这样,我们就可以更方便地求解双曲线的焦点、渐近线等重要参数。

三、抛物线的解析几何问题对于抛物线的解析几何问题,同样可以利用平移与旋转变换来简化解答问题的过程。

将抛物线的焦点平移到坐标原点上,将其方程形式转化为标准方程,从而更便捷地求解抛物线的顶点、焦点、直径等重要参数。

通过旋转变换,使抛物线的方程转化为标准方程,使其对称轴与坐标轴重合,进一步简化计算过程。

四、通过平移与旋转变换简化解析几何问题的优势通过平移与旋转变换来简化解析几何问题,可以将图形的方程形式转化为标准方程,从而更方便地计算图形的重要参数。

这种方法的优势在于能够减少问题的复杂度,简化计算过程,提高解题的效率。

通过合理运用平移与旋转变换,可以将解析几何问题转变为更加简单直观的形式,使问题更易于理解和解答。

总结:对于解析几何问题中的圆锥曲线,我们可以运用平移与旋转变换的方法来简化解答问题的过程。

直线与圆锥曲线综合性问题(含答案)

直线与圆锥曲线综合性问题(含答案)

直线与圆锥曲线综合性问题(含答案)一.考点分析。

⑴直线与圆锥曲线的位置关系和判定直线与圆锥曲线的位置关系有三种情况:相交、相切、相离.直线方程是二元一次方程,圆锥曲线方程是二元二次方程,由它们组成的方程组,经过消元得 到一个一元二次方程 ,直线和圆锥曲线相交、相切、相离的充分必要条件分别是 A >0、A =0、△ < 0.⑵直线与圆锥曲线相交所得的弦长直线具有斜率 k ,直线与圆锥曲线的两个交点坐标分别为(1)1 AB 1= Jl+k' * 1 — 梵2 1= Jl + Q • +黑2)2或|AB|= Jl + p • Ivi -73!=+ * 丁(珀 + 兀)'-幻吐・上面的公式实质上是由两点间距离公式推导出来的(因为y i - y 2 =k (X i -X 2),运用韦达定理来进行计算 注: 1.圆锥曲线,一要重视定义,这是学好圆锥曲线最重要的思想方法,二要数形结合,既 熟练掌握方程组理论,又关注图形的几何性质,以简化运算;2. 当涉及到弦的中点时,通常有两种处理方法:一是韦达定理,二是点差法;3. 圆锥曲线中参数取值范围问题通常从两个途径思考:一是建立函数,用求值域的方法求范围二是建立不等式,通过解不等式求范围 .二.考试探究圆锥曲线是解析几何的核心内容,也是高考命题的热点之一.高考对圆锥曲线的考查,总体上是以知识应用和问题探究为主, 一般是给出曲线方程,讨论曲线的基本元素和简单的几何 性质;或给出曲线满足的条件,判断(求)其轨迹;或给出直线与曲线、曲线与曲线的位置 关系,讨论与其有关的其他问题(如直线的方程、直线的条数、弦长、曲线中参变量的取值 范围等);或考查圆锥曲线与其他知识综合(如不等式、函数、向量、导数等)的问题等 1. (2006年北京卷,文科,19)2 2椭圆C:务+^y2 =1(a Ab A0)的两个焦点为F1,F2,点P 在椭圆Ca b标及直线方程,联立直线方程和椭圆方程后利用一元二次方程根与系数关系即可求出直线方 程,也可以利用“点差法”求出直线的斜率,然后利用点斜式求出直线方程.A(X i ,y i ),B(X 2, y 2),则它的弦长,只是用了交点坐标设而不求的技巧而已当直线斜率不存在是,则AB=yi-y2.PF 1丄FF 』PF 彳4 PF 巳扌4C 的方程;(I )求椭圆(n )若直线I 过圆X +y +4x-2y=0的圆心M ,交椭圆C 于A 、B 两点,且 A 、B 对称,求直线〖解析〗(I )由椭圆的定义及勾股定理求出a,b,c 的值即可,(n )可以设出 A 、关于点M I 的方程.B 点的坐〖答案〗解法一:22) (I )因为点p 在椭圆C 上,所以2a = PF i + PF 2=6 , a=3. X y 已知曲线G : — +丄=1(a Ab >0)所围成的封闭图形的面积为a b在 Rt△ PF1F2 中,F I F2 =JI PF 2 -PF , 2= 2 J 5,故椭圆的半焦距c= J 5,从而b2=a2 —c2=4.2所以椭圆C 的方程为x_92丄=1.4(n)设 A , B 的坐标分别为(x1,y1 )、(x2,y2).已知圆的方程为(x+2) 2+(y — 1)2=5,所以圆心M 的坐标为(一2 , 1). 从而可设直线l 的方程为y=k(x+2)+1,代入椭圆 C 的方程得(4+9k2) x2+(36k2+18k)x+36k2+36k — 27=0. 因为A , B 关于点M 对称.2所以 Xj^—18k +9k =224 + 9k 2 解得k98 所以直线l 的方程为y =-(x +2)+1, 9 (经检验,所求直线方程符合题意 ) 解法二: (I )同解法一.2 2=(n)已知圆的方程为(x+2 ) +(y — 1) 5,所以圆心 M 的坐标为(一2, 1). 设A , B 的坐标分别为(x1,y1 ) ,(x2,y2).由题意x1 H x2且即 8x-9y+25=0.由①一②得因为A 、 代入③得所以直线 2X 12X 2(X 1 -X 2)(X 1 +x 2) +(y 1 -y 2)(y 1 +y 2)_0B 关于点M 对称,所以x1+ x2= — 4, y1+ y2=2,y 1 -y 2 = X 1 -X 2 -,即直线I 的斜率为8 ,9 98y — 1 = - (x+2 ),即 8x — 9y+25=0. 9所求直线方程符合题意 .)l 的方程为 (经检验2. ( 2008年山东卷,文科, W 5,曲线C i 的内切圆半径为 迹.记C 2为以曲线C i 与坐标轴的交点为顶点的椭圆.3(I)求椭圆C 2的标准方程;(n)设AB 是过椭圆C 2中心的任意弦,I 是线段AB 的垂直平分线.M 是I 上异于椭圆中心的点.(1 )若MO =A OA ( O 为坐标原点),当点A 在椭圆C 2上运动时,求点M 的轨迹方程;(2)若M 是I 与椭圆C 2的交点,求 △ AMB 的面积的最小值. 1解析〗(I)由三角形面积公式和点到直线的距离公式可得关于与坐标轴的交点为椭圆的顶点,显然C 2为焦点在X 轴的椭圆;(n) (1)设出AB 的方程y=kx(kHO), A(X A, g , M (x , y),联立直线与椭圆得到方程组后,由M0 = A 0A(A 工0)可得M 的轨迹方程,注意k = 0或不存在时所得方程仍1 1 2然成立;(2)由直线I 的方程:y=-—X 和椭圆方程联立后表示出 S ^AMB =2AB []OM I由不等式放缩即可求出最小值 .2ab=475,〖答案〗(I)由题意得《 a b2/5又a A b A 0,解得a 2 = 5 , b 2 = 4 .J a 2+b232 2因此所求椭圆的标准方程为0+£ = 1. 5 4AB 所在的直线斜率存在且不为零,设 AB 所在直线方程为a, b 的方程组,曲线C i(n) ( 1)假设y =kx(k 工0), A(X A,Y A).r 2区+解方程组{5 4l y = 田 2 20 2 20k2得X A = -- 2,y A = -------------- 2所以OA 2Y A20 丄20k220(1 +k2) = ------ +------ = ---------2 2 2设M(X, y),由题意知MO = A OA仏丰0),当且仅当4 +5k 2=5 +4k 2时等号成立,即k = ±1时等号成立,40此时△ AMB 面积的最小值是 S A AMB =40.92后2=245.9所以MO2,即x 2+y2、2 20(1 +k 2)=扎 --------因为I 是AB 的垂直平分线, 所以直线 I 的方程为y1一匚X ,因此X 2 + y 2 =入2 r20 1 + V V y 丿 2~ 4+5L 笃 y、2 20(x 2 +y 2) =h -------- 2 ------- T~4y +5x2又 X 2 +y2H 0,所以 5x 2 +4y 2 =20 几2,故—+ 乂4 5又当k = 0或不存在时,上式仍然成立.2 2综上所述,M 的轨迹方程为 .七L = 'd (k 丰0、.45(2)当k 存在且k H0时,由(1 )得2X A20 = 2,4+5k 2y A 220k— 24 +"2 2z 丄=1, 由{5 4解得 I 1 L 1x,220k 2X M _5 +4k 22y M20 5 +所以OA2 =xA 中2 y A 220(1+k 2)=2~ 4+5kAB 2=4 OA80(1+ k 2) 4 +5k 2,OM220(1 + k 2) = 2~ 5 + 4k解法一:由于S A AMBT AB 2臥2 280(1+k )汽 20(1 +k )400(1 +k 2)22 2400(1+= 22f 22昭「4 + 5k 2+5 +1600(1 +k 2)2 <40 f—2 2— I81(1 + k 2)2l 9 丿J沢亦沢4=275>坐. 当k不存在时,S A AMB2 9综上所述,△ AMB的面积的最小值为409解法二:因为1OA2+OM 220(1+k )4+5k2+ ——4+5k2+5+4k220(1+ k)= 20*)5 + 4k29"20OA1+ --OMOA|[|OM[,OA J OM I当且仅当4 +5k2 =5 +4k2时等号成立,即k = ±1时等号成立, 40 此时△ AMB面积的最小值是S AAMB =—.9当k =0,S SMB =丄咒2翕咒2 =275>402当k不存在时,S AAMB=丄咒=2亦294O>一•9 40综上所述,△ AMB的面积的最小值为上.93.(广东省实验中学 2008届高三第三次模拟考试,理科, 20)已知抛物线 x2= — y,直线L: (m+1)y+(3-m)x+m+1=0 (m € R且m^— 1)与抛物线交于 A,B两点•(1)当m=0时,试用x,y的不等式组表示由直线L和抛物线围成的封闭图形所在平面区域(包边界),并求该区域的面积•为直径的圆C上;并求(3)将抛物线x2= — y的图像按向量a = (4, 16)移动后得到函数y=f(x)的图像,若g(x) =6lnx+m,问是否存在实数 m,使得y=f (x)的图象与y=g (X)的图象有且只有两个不同的交点?若存在,求出m的值;若不存在,说明理由•〖解析〗(1)所要表示的平面区域包括边界,要注意不等式取等号,由定积分即可求出相应的面积,计算时可以整体代入;(2)证明抛物线的顶点在以线段 AB为直径的圆C上,即证明0AQB=0,圆C的圆心的轨迹可由中点坐标公式利用“代入法”求得;(3)构造函数®(x) =g(x) - f(X)=x2 -8x +6In x + m,因为x^O,所以 y=f (x)的图象与y=g (X)的图象有且只有两个不同的交点问题就可以转化为函数W(x)有两个正零点的问题,要对®(x)的单调性进行讨论,从而求出使得®(x)由两个正零点的m的取值范围x€( 0,(1)当m=0时,直线L 的方程为:y+3x+1=0,故所求区域2对应的不等式组为[y +x 乞0;[y + 3x + 1 > 0 y = -X e 2得x 2-3x-仁 0*) y + 3x+1 = 0贝x 2为方程(* 的两解,即 X t + X 2 = 3,X 1X 2 = — 1,X 2 - X t = = J 13/.所求区域面积亠X2设A (X 1,y 1), B(X 2,y 2),不妨x^X 1,则由*S =「(-x 2+3x +1 dx(X 33x 2Y x / 1 r -—+ ——+X l |x : = (X 2 -X 1 1 --収13 2 丿1V 3、_13J13+ X2 ) -X 1X 2】+3(X 1 +X2)+1]2 丿(2)令k=y^,则直线L 的方程为y = kxm +1L2由* y X 得:X 2+ kx -1=0,方程有解,且x 1, x 2为其两解, y = kx -1 贝 y X 1 + X 2 = —k, X 1X 2 = -1,-1,设A(X i ,y i ),B(X 2,y 2)/. OA ”OB = X 1X 2 + 丫』2 = X1X 2 +(X 1X 2 ) = —1 + 1 = 0.以AB 为直径的圆 恒过抛物线顶点(0,0设以AB 为直径的圆的圆心坐标为(X, y),2 2milX 1 +X 2 k y 1 + y 2X 1 + X 2贝寸 X = ------ = 一 一2(X 1 + X2 ) - 2X 1X 22 2 2 2 2 得y =-2x 2-1,即所求的圆心轨迹方程 为y = -2x 2-1k 2—— 一1(3)依题意,f(x)=-x2+8x,令护(X)=g(x) -f(x) = x2-8x+6lnx + m.因为x> 0,要使函数f(X)与函数g (x)有且仅有2个不同的交点,则函数®(x) =x 2 -8x +61 nx +m 的图象与x 轴的正半轴有且只有两个不同的交点 平'6 ■■申(X) =2x -8 + -= 2空二g =2(x -1)(x -3)(x 〉0) x€( 1, (X)c0,®(x)是减函数 x€( 3,®'(x) >0,®(x)是增函数当 x=1 或 x=3 时,cp'(X)=0•••甲(x)极大值为申⑴=m-7;申(X)极小值为W(3) =m +6In3-15又因为当X70时,W(X)T 二当X T P时,申(X)T 邑所以要使W(x) =0有且仅有两个不同的正根,必须且只须『⑴"或r⑶=0即或^十6"3-15=0[◎(3) <0 [护(1)>0 t m+61 n3-15c0 [m-7A0•- m=7 或m =15 -61 n3.•••当m=7或m =15-61 n3.时,函数f (x)与g (x)的图象有且只有两个不同交点4. ( 2008年广东卷,文科,20)2 2设b,椭圆方程为二+占=1,抛物线方程为X2 =8( y- b).如图所示,过点2b2 b2F(0, b +2)作x轴的平行线,与抛物线在第一象限的交点为G,已知抛物线在点G的切线经过椭圆的右焦点F i .(1)求满足条件的椭圆方程和抛物线方程;(2 )设A, B分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点为直角三角形?若存在,请指出共有几个这样的点?并说明理由标).〖解析〗(1)由已知可求出 G点的坐标,从而求出抛物线在点G的切线方程,进而求出F i点的坐标,由椭圆方程也可以求出F i点的坐标,从而求出b =1,得出椭圆方程和抛物线方程;(2)以NPAB为直角和以NPBA为直角的直角三角形显然各一个,NAPB为直角的直角三角形是否存在可以转化成PA 'PB = 0 对应的方程是否有解的问题,从而可以求出满足条件的个数.P,使得△ ABP (不必具体求出这些点的坐以P点的1 答案〗(1)由x2=8(y-b)得y=1x2+b ,81当y =b +2 得x = ±4,二G 点的坐标为(4,b +2) , y'= —x ,4过点G的切线方程为y-(b+2) =x-4即y=x + b-2,F i点的坐标为(b,0),令y=0得x=2-b,二F i点的坐标为(2-b,0),由椭圆方程得2二2—b =b即b=1,即椭圆和抛物线的方程分别为一+ y2=1和x2 =8(y-1);2(2) •••过A 作x 轴的垂线与抛物线只有一个交点 PA 以N PAB 为直角的RtAAB P 只有一个,同理二 以N PBA 为直角的RUABP 只有一个。

2023年高考数学(文科)一轮复习讲义——圆锥曲线的综合问题 第一课时 定点问题

2023年高考数学(文科)一轮复习讲义——圆锥曲线的综合问题 第一课时 定点问题

第一课时 定点问题题型一 直线过定点问题例1 (2020·全国Ⅰ卷)已知A ,B 分别为椭圆E :x 2a 2+y 2=1(a >1)的左、右顶点,G 为E 的上顶点,AG →·GB →=8,P 为直线x =6上的动点,P A 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程;(2)证明:直线CD 过定点.(1)解 由题设得A (-a ,0),B (a ,0),G (0,1). 则AG→=(a ,1),GB →=(a ,-1). 由AG →·GB →=8,得a 2-1=8, 解得a =3或a =-3(舍去). 所以椭圆E 的方程为x 29+y 2=1.(2)证明 设C (x 1,y 1),D (x 2,y 2),P (6,t ).若t ≠0,设直线CD 的方程为x =my +n ,由题意可知-3<n <3. 易知直线P A 的方程为y =t9(x +3), 所以y 1=t9(x 1+3).易知直线PB 的方程为y =t3(x -3), 所以y 2=t3(x 2-3).可得3y 1(x 2-3)=y 2(x 1+3).① 由于x 229+y 22=1, 故y 22=-(x 2+3)(x 2-3)9,②由①②可得27y 1y 2=-(x 1+3)(x 2+3), 结合x =my +n ,得(27+m 2)y 1y 2+m (n +3)(y 1+y 2)+(n +3)2=0.③ 将x =my +n 代入x 29+y 2=1, 得(m 2+9)y 2+2mny +n 2-9=0. 所以y 1+y 2=-2mnm 2+9,y 1y 2=n 2-9m 2+9.代入③式,得(27+m 2)(n 2-9)-2m (n +3)mn +(n +3)2(m 2+9)=0. 解得n =-3(舍去)或n =32. 故直线CD 的方程为x =my +32, 即直线CD 过定点⎝ ⎛⎭⎪⎫32,0.若t =0,则直线CD 的方程为y =0,过点⎝ ⎛⎭⎪⎫32,0.综上,直线CD 过定点⎝ ⎛⎭⎪⎫32,0.感悟提升 圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数没有关系,找到定点.(2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.训练1 已知点P ⎝ ⎛⎭⎪⎫-1,32是椭圆C :x 2a 2+y 2b 2=1(a >b >0)上一点,F 1,F 2分别是椭圆的左、右焦点,|PF 1|+|PF 2|=4. (1)求椭圆C 的标准方程;(2)设直线l 不经过P 点且与椭圆C 相交于A ,B 两点.若直线P A 与直线PB 的斜率之和为1,问:直线l 是否过定点?证明你的结论. 解 (1)由|PF 1|+|PF 2|=4,得a =2, 又P ⎝ ⎛⎭⎪⎫-1,32在椭圆上,代入椭圆方程有1a 2+94b 2=1,解得b =3,所以椭圆C 的标准方程为x 24+y 23=1. (2)当直线l 的斜率不存在时, 设A (x 1,y 1),B (x 1,-y 1),k 1+k 2=y 1-32-y 1-32x 1+1=1,解得x 1=-4,与椭圆无交点,不符合题意;当直线l 的斜率存在时,设直线l 的方程y =kx +m ,A (x 1,y 1),B (x 2,y 2), 由⎩⎪⎨⎪⎧y =kx +m ,3x 2+4y 2-12=0,整理得(3+4k 2)x 2+8kmx +4m 2-12=0, x 1+x 2=-8km3+4k 2,x 1x 2=4m 2-123+4k 2, Δ=48(4k 2-m 2+3)>0. 由k 1+k 2=1,整理得(2k -1)x 1x 2+⎝ ⎛⎭⎪⎫k +m -52(x 1+x 2)+2m -4=0,即(m -4k )(2m -2k -3)=0.当m =k +32时,此时,直线l 过P 点,不符合题意;当m =4k 时,Δ=4k 2-m 2+3>0有解,此时直线l :y =k (x +4)过定点(-4,0).题型二 圆过定点问题例2 (2021·湖南三湘名校联考)已知椭圆C :y 2a 2+x 2b 2=1(a >b ≥1)的离心率为22,它的上焦点到直线bx +2ay -2=0的距离为23. (1)求椭圆C 的方程;(2)过点P ⎝ ⎛⎭⎪⎫13,0的直线l 交椭圆C 于A ,B 两点,试探究以线段AB 为直径的圆是否过定点.若过,求出定点坐标;若不过,请说明理由. 解 (1)由题意得,e =c a =22. 又a 2=b 2+c 2, 所以a =2b ,c =b . 又|2ac -2|4a 2+b 2=23,a >b ≥1,所以b 2=1,a 2=2, 故椭圆C 的方程为y 22+x 2=1.(2)当AB ⊥x 轴时,以线段AB 为直径的圆的方程为⎝ ⎛⎭⎪⎫x -132+y 2=169.当AB ⊥y 轴时,以线段AB 为直径的圆的方程为x 2+y 2=1. 可得两圆交点为Q (-1,0).由此可知,若以线段AB 为直径的圆过定点,则该定点为Q (-1,0). 下证Q (-1,0)符合题意. 设直线l 的斜率存在,且不为0, 其方程设为y =k ⎝ ⎛⎭⎪⎫x -13,代入y 22+x 2=1,并整理得(k 2+2)x 2-23k 2x +19k 2-2=0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2k 23(k 2+2),x 1x 2=k 2-189(k 2+2), 所以QA →·QB →=(x 1+1)(x 2+1)+y 1y 2=x 1x 2+x 1+x 2+1+k 2⎝ ⎛⎭⎪⎫x 1-13⎝ ⎛⎭⎪⎫x 2-13 =(1+k 2)x 1x 2+⎝ ⎛⎭⎪⎫1-13k 2(x 1+x 2)+1+19k 2=(1+k 2)·k 2-189(k 2+2)+⎝⎛⎭⎪⎫1-13k 2·2k 23(k 2+2)+1+19k 2 =0.故QA→⊥QB →,即Q (-1,0)在以线段AB 为直径的圆上.综上,以线段AB 为直径的圆恒过定点(-1,0).感悟提升 1.定点问题,先猜后证,可先考虑运动图形是否有对称性及特殊(或极端)位置猜想,如直线的水平位置、竖直位置,即k =0或k 不存在时.2.圆过定点问题,一般从圆的直径所对的圆心角为直角入手,利用垂直关系找到突破口,从而解决问题.训练2 (2022·江西红色七校联考)已知椭圆C :y 2a 2+x 2b 2=1(a >b >0)的离心率为22,且椭圆上一点到两个焦点的距离之和为2 2. (1)求椭圆C 的标准方程;(2)过点S ⎝ ⎛⎭⎪⎫-13,0的动直线l 交椭圆C 于A ,B 两点,试问:在x 轴上是否存在一个定点T ,使得无论直线l 如何转动,以AB 为直径的圆恒过点T ?若存在,求出点T 的坐标;若不存在,请说明理由. 解 (1)由椭圆的定义可得2a =22, 则a =2,∵椭圆C 的离心率e =c a =22, ∴c =1,则b =a 2-c 2=1,∴椭圆C 的标准方程为y 22+x 2=1.(2)当直线l 不与x 轴重合时,设直线l 的方程为x =my -13,A (x 1,y 1),B (x 2,y 2),T (t ,0),由⎩⎪⎨⎪⎧x =my -13,y 22+x 2=1消去x 并整理,得(18m 2+9)y 2-12my -16=0,Δ=144m 2+64(18m 2+9)=144(9m 2+4)>0恒成立, 则y 1+y 2=12m 18m 2+9=4m 6m 2+3,y 1y 2=-1618m 2+9. 由于以AB 为直径的圆恒过点T , 则TA ⊥TB ,TA →=⎝ ⎛⎭⎪⎫my 1-t -13,y 1,TB →=⎝ ⎛⎭⎪⎫my 2-t -13,y 2,则TA →·TB →=⎝ ⎛⎭⎪⎫my 1-t -13⎝ ⎛⎭⎪⎫my 2-t -13+y 1y 2 =(m 2+1)y 1y 2-m ⎝ ⎛⎭⎪⎫t +13(y 1+y 2)+⎝ ⎛⎭⎪⎫t +132=-16(m 2+1)-m ⎝ ⎛⎭⎪⎫t +13×12m18m 2+9+⎝ ⎛⎭⎪⎫t +132 =⎝ ⎛⎭⎪⎫t +132-(12t +20)m 2+1618m 2+9=0, ∵点T 为定点,∴t 为定值,与m 无关, ∴12t +2018=169,解得t =1,此时TA →·TB→=⎝ ⎛⎭⎪⎫432-169=0,符合题意. 当直线l 与x 轴重合时,AB 为椭圆C 的短轴,易知以AB 为直径的圆过点(1,0). 综上所述,存在定点T (1,0),使得无论直线l 如何转动,以AB 为直径的圆恒过定点T .圆锥曲线中的“伴侣点”问题在圆锥曲线的很多性质中,常常出现一对活跃的点A (m ,0)和B ⎝ ⎛⎭⎪⎫a 2m ,0,这一对点总是同时出现在圆锥曲线的对称轴上,形影不离,相伴而行,我们把这对特殊的点形象地称作圆锥曲线的“伴侣点”.圆锥曲线的“伴侣点”在我们研究圆锥曲线的性质中具有重要的地位,蕴涵着圆锥曲线许多有趣的性质. 例 已知双曲线x 2a 2-y 2b 2=1(a >0,b >0),设A (m ,0)和B ⎝ ⎛⎭⎪⎫a 2m ,0(0<m <a )是x 轴上的两点,过点A 作斜率不为0的直线l ,使得l 交双曲线于C ,D 两点,作直线BC 交双曲线于另一点E .证明:直线DE 垂直于x 轴. 证明 设点C (x 1,y 1),D (x 2,y 2),E (x 3,y 3), 则直线l 的方程为y =y 1x 1-m(x -m ). 把直线l 的方程代入双曲线方程,整理得(b 2x 21-a 2y 21-2b 2mx 1+b 2m 2)x 2+2a 2my 21x -a 2y 21m 2-a 2b 2(x 1-m )2=0, 由b 2x 21-a 2y 21=a 2b 2(点C 在双曲线上),上面方程可化简为(a 2b 2-2b 2mx 1+b 2m 2)x 2+2a 2my 21x -a 2[(y 21+b 2)m 2+b 2x 21-2b 2mx 1]=0, 又因为b 2x 21-a 2y 21=a 2b 2, 所以a 2(y 21+b 2)=b 2x 21,代入上式,方程又可化简为(a 2b 2-2b 2mx 1+b 2m 2)x 2+2a 2my 21x -b 2x 21m 2-a 2b 2x 21+2a 2b 2mx 1=0,由已知,显然a 2b 2-2b 2mx 1+b 2m 2≠0,于是x 1x 2=-x 21m 2+a 2x 21-2a 2mx 1a 2-2mx 1+m 2,因为x 1≠0,得x 2=-x 1m 2+a 2x 1-2a 2ma 2-2mx 1+m 2(*) 同理,直线BC 的方程为y =y 1x 1-a 2m ⎝ ⎛⎭⎪⎫x -a 2m , 所以只要把(*)中m 换成a 2m,就可以得到x 3=-x 1⎝ ⎛⎭⎪⎫a 2m 2+a 2x 1-2a 2a 2m a 2-2a 2m x 1+⎝ ⎛⎭⎪⎫a 2m 2=-x 1m 2+a 2x 1-2a 2m a 2-2mx 1+m 2, 所以x 2=x 3,故直线DE 垂直于x 轴.1.已知抛物线C 的顶点在原点,焦点在坐标轴上,点A (1,2)为抛物线C 上一点. (1)求抛物线C 的方程;(2)若点B (1,-2)在抛物线C 上,过点B 作抛物线C 的两条弦BP 与BQ ,如k BP ·k BQ =-2,求证:直线PQ 过定点.(1)解 若抛物线的焦点在x 轴上,设抛物线方程为y 2=ax ,代入点A (1,2),可得a =4,所以抛物线方程为y 2=4x .若抛物线的焦点在y 轴上,设抛物线方程为x 2=my ,代入点A (1,2),可得m =12,所以抛物线方程为x 2=12y .综上所述,抛物线C 的方程是y 2=4x 或x 2=12y .(2)证明 因为点B (1,-2)在抛物线C 上,所以由(1)可得抛物线C 的方程是y 2=4x .易知直线BP ,BQ 的斜率均存在,设直线BP 的方程为y +2=k (x -1),将直线BP 的方程代入y 2=4x ,消去y ,得 k 2x 2-(2k 2+4k +4)x +(k +2)2=0.设P (x 1,y 1),则x 1=(k +2)2k 2,所以P ⎝⎛⎭⎪⎫(k +2)2k 2,2k +4k . 用-2k 替换点P 坐标中的k ,可得Q ((k -1)2,2-2k ),从而直线PQ 的斜率为2k +4k -2+2k(k +2)2k 2-(k -1)2=2k 3+4k-k 4+2k 3+4k +4=2k-k 2+2k +2,故直线PQ 的方程是 y -2+2k =2k -k 2+2k +2·[x -(k -1)2]. 在上述方程中,令x =3,解得y =2, 所以直线PQ 恒过定点(3,2).2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-3,0),F 2(3,0),且经过点A ⎝ ⎛⎭⎪⎫3,12.(1)求椭圆C 的标准方程;(2)过点B (4,0)作一条斜率不为0的直线l 与椭圆C 相交于P ,Q 两点,记点P 关于x 轴对称的点为P ′.证明:直线P ′Q 经过x 轴上一定点D ,并求出定点D 的坐标.(1)解 由椭圆的定义,可知 2a =|AF 1|+|AF 2|=(23)2+⎝ ⎛⎭⎪⎫122+12=4.解得a =2.又b 2=a 2-(3)2=1.∴椭圆C 的标准方程为x 24+y 2=1. (2)证明 由题意,设直线l 的方程为 x =my +4(m ≠0).设P (x 1,y 1),Q (x 2,y 2),则P ′(x 1,-y 1).由⎩⎨⎧x =my +4,x 24+y 2=1,消去x ,可得(m 2+4)y 2+8my +12=0. ∵Δ=16(m 2-12)>0,∴m 2>12. ∴y 1+y 2=-8mm 2+4,y 1y 2=12m 2+4.∵k P ′Q =y 2+y 1x 2-x 1=y 2+y 1m (y 2-y 1).∴直线P ′Q 的方程为 y +y 1=y 2+y 1m (y 2-y 1)(x -x 1).令y =0,可得x =m (y 2-y 1)y 1y 1+y 2+my 1+4.∴x =2my 1y 2y 1+y 2+4=2m ·12m 2+4-8m m 2+4+4=24m-8m+4=1.∴D (1,0).∴直线P ′Q 经过x 轴上定点D ,其坐标为(1,0).3.如图,已知直线l :y =kx +1(k >0)关于直线y =x +1对称的直线为l 1,直线l ,l 1与椭圆E :x 24+y 2=1分别交于点A ,M 和A ,N ,记直线l 1的斜率为k 1.(1)求kk 1的值;(2)当k 变化时,求证:直线MN 恒过定点,并求出该定点的坐标.(1)解 设直线l 上任意一点P (x ,y )关于直线y =x +1对称的点为P 0(x 0,y 0), 直线l 与直线l 1的交点为(0,1),所以l :y =kx +1,l 1:y =k 1x +1,k =y -1x ,k 1=y 0-1x 0, 由y +y 02=x +x 02+1,得y +y 0=x +x 0+2,①由y -y 0x -x 0=-1,得y -y 0=x 0-x ,②由①②得⎩⎪⎨⎪⎧y =x 0+1,y 0=x +1,所以kk 1=yy 0-(y +y 0)+1xx 0=(x +1)(x 0+1)-(x +x 0+2)+1xx 0=1. (2)证明 由⎩⎨⎧y =kx +1,x 24+y 2=1,得 (4k 2+1)x 2+8kx =0,设M (x M ,y M ),N (x N ,y N ),所以x M =-8k 4k 2+1,所以y M =1-4k 24k 2+1.同理可得x N =-8k 14k 21+1=-8k4+k 2,y N =1-4k 214k 21+1=k 2-44+k 2. k MN =y M -y N x M -x N =1-4k 24k 2+1-k 2-44+k 2-8k 4k 2+1--8k4+k 2 =8-8k 48k (3k 2-3)=-k 2+13k , 直线MN :y -y M =k MN (x -x M ),即y -1-4k 24k 2+1=-k 2+13k ⎝ ⎛⎭⎪⎪⎫x --8k 4k 2+1, 即y =-k 2+13k x -8(k 2+1)3(4k 2+1)+1-4k 24k 2+1=-k 2+13k x -53.所以当k 变化时,直线MN 过定点⎝ ⎛⎭⎪⎫0,-53. 4.已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别是双曲线C 2:x 2m 2-y 2=1的左、右焦点,且C 1与C 2相交于点⎝ ⎛⎭⎪⎫233,33. (1)求椭圆C 1的标准方程;(2)设直线l :y =kx -13与椭圆C 1交于A ,B 两点,以线段AB 为直径的圆是否恒过定点?若恒过定点,求出该定点;若不恒过定点,请说明理由.解 (1)将⎝ ⎛⎭⎪⎫233,33代入x 2m 2-y 2=1,解得m 2=1, ∴a 2=m 2+1=2,将⎝ ⎛⎭⎪⎫233,33代入x 22+y 2b 2=1,解得b 2=1,∴椭圆C 1的标准方程为x 22+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx -13,x 22+y 2=1,整理得(9+18k 2)x 2-12kx -16=0, ∴x 1+x 2=12k 9+18k 2,x 1x 2=-169+18k 2, Δ=144k 2+64(9+18k 2)>0.由对称性可知,以AB 为直径的圆若恒过定点,则定点必在y 轴上. 设定点为M (0,y 0),则MA →=(x 1,y 1-y 0),MB →=(x 2,y 2-y 0) MA →·MB →=x 1x 2+(y 1-y 0)(y 2-y 0) =x 1x 2+y 1y 2-y 0(y 1+y 2)+y 20=x 1x 2+k 2x 1x 2-k 3(x 1+x 2)-y 0⎣⎢⎡⎦⎥⎤k (x 1+x 2)-23+19+y 20 =(1+k 2)x 1x 2-k ⎝ ⎛⎭⎪⎫13+y 0(x 1+x 2)+y 20+23y 0+19 =18(y 20-1)k 2+9y 20+6y 0-159+18k 2=0,∴⎩⎪⎨⎪⎧y 20-1=0,9y 20+6y 0-15=0,解得y 0=1, ∴M (0,1),∴以线段AB 为直径的圆恒过定点(0,1).。

高中数学圆锥曲线的教学难点与解决策略

高中数学圆锥曲线的教学难点与解决策略

高中数学圆锥曲线的教学难点与解决策略圆锥曲线是高中数学中的重要内容,包括椭圆、双曲线和抛物线。

它不仅在数学学科中具有重要地位,也在实际生活和其他科学领域有着广泛的应用。

然而,对于学生和教师来说,圆锥曲线的教学和学习都存在着一定的难度。

一、教学难点1、概念抽象圆锥曲线的概念较为抽象,学生难以直观地理解和把握。

例如,椭圆的定义是“平面内到两个定点的距离之和等于常数(大于两定点间的距离)的点的轨迹”,双曲线的定义是“平面内到两个定点的距离之差的绝对值等于常数(小于两定点间的距离)的点的轨迹”。

这些定义涉及到距离的运算和比较,对于学生的空间想象能力和逻辑思维能力要求较高。

2、图形复杂圆锥曲线的图形较为复杂,其形状和性质随着参数的变化而变化。

学生在绘制图形和分析图形时容易出现错误,难以准确把握图形的特点和规律。

3、计算量大在求解圆锥曲线的相关问题时,往往需要进行大量的计算,如联立方程、求解方程组、化简表达式等。

这些计算过程繁琐,容易出错,对学生的计算能力和耐心是一个很大的考验。

4、综合应用难度高圆锥曲线常常与其他数学知识,如函数、不等式、向量等综合考查。

学生需要具备较强的知识整合能力和综合运用能力,才能解决这些综合性的问题。

二、解决策略1、加强直观教学利用多媒体技术,如动画、视频等,直观地展示圆锥曲线的形成过程和图形特点,帮助学生理解抽象的概念。

例如,通过动画演示动点到两个定点的距离之和或之差的变化过程,让学生直观地看到椭圆和双曲线的形成。

2、注重图形分析在教学中,引导学生仔细观察圆锥曲线的图形,分析图形的对称性、顶点、焦点、准线等重要元素的位置和性质。

通过大量的图形练习,培养学生的图形感知能力和分析能力。

3、优化计算方法教给学生一些简化计算的方法和技巧,如设而不求、整体代换等。

同时,加强学生的计算训练,提高计算的准确性和速度。

4、强化知识整合在教学中,有意识地引导学生将圆锥曲线与其他数学知识进行联系和整合,通过综合性的例题和练习,让学生体会知识之间的相互关系,提高综合运用能力。

人教A版高中同步学案数学选择性必修第一册精品习题课件 第三章 习题课 圆锥曲线的综合问题

人教A版高中同步学案数学选择性必修第一册精品习题课件 第三章 习题课 圆锥曲线的综合问题
4),则
(16+2 )2
+ 2
=
1
2
1
2
= |1 − 2 | = |||1 − 2 |.
)2
− 41 2 ] = 12 ⋅ 16 ⋅

2 +24+144
=
时,△ = 1,所以△ 面积的最大值为1.
1
144
+ +24

4+2
,设
(16+2 )2
1
,当且仅当
[−(2 2 + 4)]2 − 4 2 ⋅ 2 = 16( 2 + 1) > 0,设点(1 , 1 ),(2 , 2 ),
∴ 1 + 2 =
2 2 +4
,1 2
2
= 1.由抛物线的定义知|| = 1 + 2 + 2 = 8,∴
∴ 2 = 1,即 = ±1,
||
2 +1
=
45
14
=
3 70
,
14
2
3.已知椭圆 2

2
+ 2

2
3
= 1( > > 0)的离心率为 ,且其左顶点到右焦点的距离为5.
(1)求椭圆的方程.

解由题设可知ቐ
=
2
,
3
解得 = 3, = 2,则 2 = 2 − 2 = 5,所以椭圆的方程为
+ = 5,
2
9
2
+
5
= 1.
(2)设点,在椭圆上,以线段为直径的圆过原点,试问是否存在定点,使得点
△ 面积的最大值.

圆锥曲线的综合问题 强化训练-2023届高三数学二轮专题复习(含解析)

圆锥曲线的综合问题 强化训练-2023届高三数学二轮专题复习(含解析)

冲刺2023年高考二轮 圆锥曲线的综合问题强化训练(原卷+答案)考点一 证明问题——等价转化,直击目标圆锥曲线中证明问题的两种常见类型圆锥曲线中的证明问题,主要有两类:一是证明点、直线、曲线等几何元素中的位置关系,如:某点在某直线上,某直线经过某个点、某两条直线平行或垂直等;二是证明直线与圆锥曲线中的一些数量关系(相等或不等).例 1已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A (0,-2),B (32,-1)两点.(1)求E 的方程;(2)设过点P (1,-2)的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT⃗⃗⃗⃗⃗⃗ =TH ⃗⃗⃗⃗⃗ .证明:直线HN 过定点.对点训练已知直线y =3与曲线C :x 2+2py =0的两个公共点之间的距离为4√6. (1)求C 的方程;(2)设P 为C 的准线上一点,过P 作C 的两条切线,切点为A ,B ,直线P A ,PB 的斜率分别为k 1,k 2,且直线P A ,PB 与y 轴分别交于M ,N 两点,直线AB 的斜率为k 0.证明:k 1·k 2为定值,且k 1,k 0,k 2成等差数列.考点二 定点问题——目标等式寻定点解析几何中的定点问题一般是指与解析几何有关的直线或圆(其他曲线过定点太复杂,高中阶段一般不涉及)过定点的问题,其实质是:当动直线或动圆变化时,这些直线或圆相交于一点,即这些直线或圆绕着定点在转动,这类问题的求解一般分为以下三步:一选:选择变量,定点问题中的定点,随某一个量的变化而固定,可选择这个量为变量(有时可选择两个变量,如点的坐标、斜率、截距等,然后利用其他辅助条件消去其中之一).二求:求出定点坐标所满足的方程,即把需要证明为定点的问题表示成关于上述变量的方程.三定点:对上述方程进行必要的化简,即可得到定点坐标. 例 2 已知椭圆M :x 2a 2+y 2b 2=1(a >b >0)的离心率为√22,AB 为过椭圆右焦点的一条弦,且AB 长度的最小值为2.(1)求椭圆M 的方程;(2)若直线l 与椭圆M 交于C ,D 两点,点P (2,0),记直线PC 的斜率为k 1,直线PD 的斜率为k 2,当1k 1+1k 2=1时,是否存在直线l 恒过一定点?若存在,请求出这个定点;若不存在,请说明理由.对点训练已知抛物线C :y 2=2px (p >0)的焦点为F ,S (t ,4)为C 上一点,直线l 交C 于M ,N 两点(与点S 不重合).(1)若l 过点F 且倾斜角为60°,|FM |=4(M 在第一象限),求C 的方程;(2)若p =2,直线SM ,SN 分别与y 轴交于A ,B 两点,且OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =8,判断直线l是否恒过定点?若是,求出该定点;若否,请说明理由.考点三 定值问题——巧妙消元寻定值定值问题一般是指在求解解析几何问题的过程中,探究某些几何量(斜率、距离、面积、比值等)与变量(斜率、点的坐标等)无关的问题,其求解步骤一般为:一选:选择变量,一般为点的坐标、直线的斜率等.二化:把要求解的定值表示成含上述变量的式子,并利用其他辅助条件来减少变量的个数,使其只含有一个变量(或者有多个变量,若是能整体约分也可以).三定值:化简式子得到定值.由题目的结论可知要证明为定值的量必与变量的值无关,故求出的式子必能化为一个常数,所以只需对上述式子进行必要的化简即可得到定值.例 3 已知双曲线C :x 2a2−y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,双曲线C 的右顶点A 在圆O :x 2+y 2=3上,且AF 1⃗⃗⃗⃗⃗⃗⃗ ·AF 2⃗⃗⃗⃗⃗⃗⃗ =-1.(1)求双曲线C 的方程;(2)动直线l 与双曲线C 恰有1个公共点,且与双曲线C 的两条渐近线分别交于点M 、N ,设O 为坐标原点.求证:△OMN 的面积为定值.对点训练已知F 1(-√3,0),F 2(√3,0)分别是双曲线C :x 2a 2−y 2b 2=1(a >b >0)的左、右焦点,A 为双曲线在第一象限的点,△AF 1F 2的内切圆与x 轴交于点P (1,0).(1)求双曲线C 的方程;(2)设圆O :x 2+y 2=2上任意一点Q 处的切线l ,若l 与双曲线C 左、右两支分别交于点M 、N ,问:QM ⃗⃗⃗⃗⃗⃗ ·QN ⃗⃗⃗⃗⃗ 是否为定值?若是,求出此定值;若不是,说明理由.考点四 圆锥曲线中的最值、范围问题——巧设变量,引参搭桥圆锥曲线中的最值 (1)椭圆中的最值 F 1,F 2为椭圆x 2a2+y 2b 2=1(a >b >0)的左、右焦点,P 为椭圆上的任意一点,B 为短轴的一个端点,O 为坐标原点,则有:①|OP |∈________;②|PF 1|∈________;③|PF 1|·|PF 2|∈________;④∠F 1PF 2≤∠F 1BF 2.(2)双曲线中的最值F 1,F 2为双曲线x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点,P 为双曲线上的任一点,O为坐标原点,则有:①|OP |≥________;②|PF 1|≥________. (3)抛物线中的最值点P 为抛物线y 2=2px (p >0)上的任一点,F 为焦点,则有:①|PF |≥________;②A (m ,n )为一定点,则|P A |+|PF |有最小值;③点N (a ,0)是抛物线的对称轴上一点,则|PN |min ={|a |(a ≤p ),√2pa −p 2(a >p).例 4如图,已知椭圆x 212+y 2=1.设A ,B 是椭圆上异于P (0,1)的两点,且点Q (0,12)在线段AB 上,直线P A ,PB 分别交直线y =-12x +3于C ,D 两点.(1)求点P 到椭圆上点的距离的最大值; (2)求|CD |的最小值.对点训练已知抛物线C :x 2=2py (p >0)的焦点为F ,且F 与圆M :x 2+(y +4)2=1上点的距离的最小值为4.(1)求p ;(2)若点P 在M 上,P A ,PB 是C 的两条切线,A ,B 是切点,求△P AB 面积的最大值.[典例] 已知圆(x +√3)2+y 2=16的圆心为M ,点P 是圆M 上的动点,点N (√3,0),点G 在线段MP 上,且满足(GN⃗⃗⃗⃗⃗ +GP ⃗⃗⃗⃗⃗ )⊥(GN ⃗⃗⃗⃗⃗ −GP ⃗⃗⃗⃗⃗ ). (1)求点G 的轨迹C 的方程;(2)过点T (4,0)作斜率不为0的直线l 与轨迹C 交于A ,B 两点,点A 关于x 轴的对称点为D ,连接BD 交x 轴于点Q ,求△ABQ 面积的最大值.(1)因为(GN ⃗⃗⃗⃗⃗⃗ +GP ⃗⃗⃗⃗⃗ )⊥(GN ⃗⃗⃗⃗⃗⃗ −GP ⃗⃗⃗⃗⃗ ), 所以(GN ⃗⃗⃗⃗⃗⃗ +GP ⃗⃗⃗⃗⃗ )·(GN ⃗⃗⃗⃗⃗⃗ −GP ⃗⃗⃗⃗⃗ )=0,即GN ⃗⃗⃗⃗⃗⃗ 2-GP ⃗⃗⃗⃗⃗ 2=0, 所以|GP |=|GN |,所以|GM |+|GN |=|GM |+|GP |=|MP |=4>2√3=|MN |, 所以点G 在以M ,N 为焦点,长轴长为4的椭圆上,设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),则2a =4,2c =2√3,即a =2,c =√3,所以b 2=a 2-c 2=1, 所以点G 的轨迹C 的方程为x 24+y 2=1. (2)依题意可设直线l :x =my +4. 由{x =my +4,x 24+y 2=1消去x ,得(m 2+4)y 2+8my +12=0.设A (x 1,y 1),B (x 2,y 2),由Δ=64m 2-4×12×(m 2+4)=16(m 2-12)>0,得m 2>12. ①且y 1+y 2=-8mm 2+4,y 1y 2=12m 2+4.②因为点A 关于x 轴的对称点为D , 所以D (x 1,-y 1), 可设Q (x 0,0),所以k BD =y 2+y 1x 2−x 1=y 2+y 1m (y 2−y 1), 所以BD 所在直线的方程为y -y 2=y 2+y 1m (y2−y 1)(x -my 2-4). 令y =0,得x 0=2my 1y 2+4(y 1+y 2)y 1+y 2. ③将②代入③, 得x 0=24m−32m−8m=1, 所以点Q 的坐标为(1,0).因为S △ABQ =|S △TBQ -S △TAQ |=12|QT ||y 2-y 1|=32√(y 1+y 2)2−4y 1y 2=6√m 2−12m 2+4,令t =m 2+4,结合①得t >16, 所以S △ABQ =6√t−16t= 6√−16t 2+1t =6√−16(1t −132)2+164.当且仅当t =32,即m =±2√7时,(S △ABQ )max =34. 所以△ABQ 面积的最大值为34.参考答案考点一[例1] 解析:(1)设椭圆E 的方程为mx 2+ny 2=1(m >0,n >0,m ≠n ). 将点A (0,-2),B (32,-1)的坐标代入,得{4n =1,94m +n =1,解得{m =13,n =14. 所以椭圆E的方程为x 23+y 24=1. (2)证明:方法一 设M (x 1,y 1),N (x 2,y 2).由题意,知直线MN 与y 轴不垂直,设其方程为x -1=t (y +2).联立得方程组{x −1=t (y +2),x 23+y 24=1. 消去x 并整理,得(4t 2+3)y 2+(16t 2+8t )y +16t 2+16t -8=0,所以y 1+y 2=-16t 2+8t 4t 2+3,y 1y 2=16t 2+16t−84t 2+3.设T (x 0,y 1).由A ,B ,T 三点共线,得y 1+2x 0=y 1+1x 0−32,得x 0=32y 1+3.设H (x ′,y ′). 由MT ⃗⃗⃗⃗⃗⃗ =TH ⃗⃗⃗⃗⃗ ,得(32y 1+3-x 1,0)=(x ′-32y 1-3,y ′-y 1),所以x ′=3y 1+6-x 1,y ′=y 1, 所以直线HN 的斜率k =y 2−y ′x 2−x ′=y 2−y 1x 2+x 1−(3y 1+6)=y 2−y 1t (y 1+y 2)−3y 1+4t−4,所以直线HN 的方程为y -y 2=y 2−y 1t (y 1+y 2)−3y 1+4t−4·(x -x 2).令x =0,得y =y 2−y 1t (y 1+y 2)−3y 1+4t−4·(-x 2)+y 2=(y 1−y 2)(ty 2+2t+1)t (y 1+y 2)−3y 1+4t−4+y 2=(2t−3)y 1y 2+(2t−5)(y 1+y 2)+6y 1t (y 1+y 2)−3y 1+4t−4=(2t−3)·16t 2+16t−84t 2+3+(5−2t )·16t 2+8t4t 2+3+6y 1−t(16t 2+8t)4t 2+3−3y 1+4t−4=-2.所以直线NH 过定点(0,-2).方法二 由A (0,-2),B (32,-1)可得直线AB 的方程为y =23x -2. a .若过点P (1,-2)的直线的斜率不存在,则其直线方程为x =1.将直线方程x =1代入x 23+y 24=1,可得N (1,2√63),M (1,-2√63). 将y =-2√63代入y =23x -2,可得T (3-√6,-2√63).由MT⃗⃗⃗⃗⃗⃗ =TH ⃗⃗⃗⃗⃗ ,得H (5-2√6,-2√63). 此时直线HN 的方程为y =(2+2√63)(x -1)+2√63,则直线HN 过定点(0,-2). b .若过点P (1,-2)的直线的斜率存在,设此直线方程为kx -y -(k +2)=0,M (x 1,y 1),N (x 2,y 2).联立得方程组{kx −y −(k +2)=0,x 23+y 24=1. 消去y 并整理,得(3k 2+4)x 2-6k (2+k )x +3k (k +4)=0. 所以{x 1+x 2=6k (2+k )3k 2+4,x 1x 2=3k (4+k )3k 2+4,则{y 1+y 2=−8(2+k )3k 2+4,y 1y 2=4(4+4k−2k 2)3k 2+4, 且x 1y 2+x 2y 1=−24k3k 2+4.①联立得方程组{y =y 1,y =23x −2,可得T (3y 12+3,y 1). 由MT⃗⃗⃗⃗⃗⃗ =TH ⃗⃗⃗⃗⃗ ,得H (3y 1+6-x 1,y 1). 则直线HN 的方程为y -y 2=y 1−y 23y 1+6−x 1−x2(x -x 2). 将点(0,-2)的坐标代入并整理,得2(x 1+x 2)-6(y 1+y 2)+x 1y 2+x 2y 1-3y 1y 2-12=0.②将①代入②,得24k +12k 2+96+48k -24k -48-48k +24k 2-36k 2-48=0,显然成立.综上可得,直线HN 过定点(0,-2).对点训练解析:(1)将y =3代入x 2+2py =0,得x 2=-6p . 当p ≥0时,不合题意;当p <0时,x =±√−6p ,则2√−6p =4√6, 解得p =-4,故C 的方程为x 2=8y .(2)证明:由(1)可知C 的准线方程为y =-2, 不妨设P (m ,-2),A (x 1,y 1),B (x 2,y 2),设过点P 且与C 相切的直线l 的斜率为k ,则l :y =k (x -m )-2,且k ≠0,联立{y =k (x −m )−2,x 2=8y ,得x 2-8kx +8(km +2)=0,则Δ=64k 2-32(km +2)=0,即k 2-12mk -1=0,由题意知,直线P A ,PB 的斜率k 1,k 2为方程k 2-12mk -1=0的两根, 则k 1+k 2=m2,k 1k 2=-1,故k 1·k 2为定值. 又x 2-8kx +8(km +2)=(x -4k )2=0, 则x 1=4k 1,同理可得x 2=4k 2,则k 0=y 1−y 2x 1−x 2=18x −1218x 22x 1−x 2=x 1+x 28,因此k 0=4(k 1+k 2)8=k 1+k 22,故k 1,k 0,k 2成等差数列.考点二[例2]解析:(1)因为x 2a 2+y 2b 2=1(a >b >0)的离心率为√22,过椭圆右焦点的弦长的最小值为2b 2a=2,所以a =2,c =√2,b =√2,所以椭圆M 的方程为x 24+y 22=1. (2)设直线l 的方程为m (x -2)+ny =1,C (x 1,y 1),D (x 2,y 2),由椭圆的方程x 2+2y 2=4,得(x -2)2+2y 2=-4(x -2).联立直线l 的方程与椭圆方程,得(x -2)2+2y 2=-4(x -2)[m (x -2)+ny ], 即(1+4m )(x -2)2+4n (x -2)y +2y 2=0,(1+4m )(x−2y )2+4n x−2y+2=0, 所以1k 1+1k 2=x 1−2y 1+x 2−2y 2=-4n 1+4m=1,化简得m +n =-14,代入直线l 的方程得m (x -2)+(−14−m)y =1,即m (x -y -2)-14y =1,解得x =-2,y =-4,即直线l恒过定点(-2,-4).对点训练解析:(1)抛物线C :y 2=2px (p >0)的焦点为F (p2,0),因为l 过点F 且倾斜角为60°,所以l :y =√3(x -p2), 联立y 2=2px (p >0),可得12x 2-20px +3p 2=0,解得x =32p 或x =p6,又M 在第一象限,所以x M =32p ,因为|FM |=4,所以32p +p2=4,解得p =2,所以抛物线C 的方程为y 2=4x ;(2)由已知可得抛物线C 的方程为y 2=4x ,点S (4,4), 设直线l 的方程为x =my +n ,点M (y 12 4,y1),N (y 22 4,y2),将直线l 的方程与抛物线C :y 2=4x 联立得y 2-4my -4n =0, 所以Δ=16m 2+16n >0,y 1+y 2=4m ,y 1y 2=-4n (*),直线SM 的方程为y -4=y 1−4y 12 4-4(x -4),令x =0求得点A 的纵坐标为4y 1y 1+4,同理求得点B 的纵坐标为4y 2y2+4, 由OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =16y 1y 2y 1y 2+4(y 1+y 2)+16=8,化简得y 1y 2=4(y 1+y 2)+16,将上面(*)式代入得-4n =16m +16,即n =-4m -4, 所以直线l 的方程为x =my -4m -4,即x +4=m (y -4), 所以直线l 过定点(-4,4).考点三[例3] 解析:(1)不妨设F 1(-c ,0),F 2(c ,0), 因为A (a ,0), 从而AF 1⃗⃗⃗⃗⃗⃗⃗ =(−c −a ,0),AF 2⃗⃗⃗⃗⃗⃗⃗ =(c -a ,0) ,故有 AF 1⃗⃗⃗⃗⃗⃗⃗ ·AF 2⃗⃗⃗⃗⃗⃗⃗ =a 2-c 2=-1, 又因为a 2+b 2=c 2, 所以 b =1,又因为A (a ,0) 在圆 O :x 2+y 2=3 上, 所以 a =√3,所以双曲线C的标准方程为x 23-y 2=1.(2)证明:设直线l 与x 轴交于D 点,双曲线的渐近线方程为y =±√33x ,由于动直线l 与双曲线C 恰有1个公共点, 且与双曲线C 的两条渐近线分别交于点M 、N ,当动直线l 的斜率不存在时, l :x =±√3,|OD |=√3,|MN |=2,S △OMN =12×√3×2=√3,当动直线l 的斜率存在时, 且斜率k ≠±√33, 不妨设直线 l :y =kx +m,故由{y =kx +m x 23−y 2=1⇒(1-3k 2)x 2-6mkx -3m 2-3=0, 依题意,1-3k 2≠0且m ≠0,Δ=(-6mk )2-4(1-3k 2)(-3m 2-3)=0, 化简得 3k 2=m 2+1,故由{y =kx +my =√33x ⇒x M =√33−k , 同理可求,x N =-√33+k, 所以|MN |=√1+k 2|xM−x N |=2√3|m|√k 2+1|1−3k 2|,又因为原点O 到直线l :kx -y +m =0的距离d =√k 2+1,所以S △OMN =12|MN |d =√3m 2|1−3k 2|,又由3k 2=m 2+1,所以S △OMN =√3|m|√k 2+1|1−3k 2|=√3,故△OMN 的面积为定值,定值为√3.对点训练解析:(1)如图,设AF 1,AF 2与△AF 1F 2的内切圆分别交于G ,H 两点, 则2a =|AF 1|−|AF 2|=|F 1P |−|PF 2| =(1+√3)-(√3-1)=2,所以a =1,则b 2=c 2-a 2=2, 则双曲线C 的方程为x 2-y 22=1.(2)由题意得,切线l 的斜率存在.设切线l 的方程为y =kx +m ,M (x 1,y 1),N (x 2,y 2). 因为l 与圆O :x 2+y 2=2相切,所以√1+k 2=√2,即m 2=2k 2+2.联立{y =kx +m ,x 2−y 22=1,消去y 并整理得(2-k 2)x 2-2kmx -m 2-2=0, 所以x 1+x 2=2km2−k 2,x 1x 2=−m 2−22−k 2.又QM ⃗⃗⃗⃗⃗⃗ ·QN ⃗⃗⃗⃗⃗ =(QO ⃗⃗⃗⃗⃗ +OM ⃗⃗⃗⃗⃗⃗ )·(QO ⃗⃗⃗⃗⃗ +ON ⃗⃗⃗⃗⃗ ) =|QO ⃗⃗⃗⃗⃗ |2-OQ ⃗⃗⃗⃗⃗ ·ON ⃗⃗⃗⃗⃗ −OQ ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ +ON ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ =|QO ⃗⃗⃗⃗⃗ |2-|OQ ⃗⃗⃗⃗⃗ |·|ON ⃗⃗⃗⃗⃗ |cos ∠QON -|OQ ⃗⃗⃗⃗⃗ |·|OM ⃗⃗⃗⃗⃗⃗ |cos ∠QOM +ON ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ =|QO ⃗⃗⃗⃗⃗ |2-|OQ ⃗⃗⃗⃗⃗ |·|OQ ⃗⃗⃗⃗⃗ |−|OQ ⃗⃗⃗⃗⃗ |·|OQ ⃗⃗⃗⃗⃗ |+ON ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ =|QO ⃗⃗⃗⃗⃗ |2-|QO ⃗⃗⃗⃗⃗ |2-|QO ⃗⃗⃗⃗⃗ |2+ON ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ =ON ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ −|OQ ⃗⃗⃗⃗⃗ |2. 又OM ⃗⃗⃗⃗⃗⃗ ·ON ⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2 =x 1x 2+(kx 1+m )(kx 2+m )=(k 2+1)x 1x 2+km (x 1+x 2)+m 2 =(k 2+1)(−m 2−2)2−k 2+2k 2m 22−k2+m 2=m 2−2k 2−22−k 2,将m 2=2k 2+2代入上式得OM ⃗⃗⃗⃗⃗⃗ ·ON ⃗⃗⃗⃗⃗ =0.所以QM ⃗⃗⃗⃗⃗⃗ ·QN ⃗⃗⃗⃗⃗ =0-|OQ ⃗⃗⃗⃗⃗ |2=-2. 综上所述,QM ⃗⃗⃗⃗⃗⃗ ·QN ⃗⃗⃗⃗⃗ 为定值,且QM ⃗⃗⃗⃗⃗⃗ ·QN ⃗⃗⃗⃗⃗ =-2.考点四(1)[b ,a ] [a -c ,a +c ] [b 2,a 2] (2)a c -a (3)p2[例4] 解析:(1)设M (2√3cos θ,sin θ)是椭圆上一点,P (0,1),则|PM |2=12cos 2θ+(1-sin θ)2=13-11sin 2θ-2sin θ=14411-11(sin θ+111)2≤14411.故|PM |的最大值为12√1111.(2)由题意,知直线AB 的斜率存在,故设直线AB 的方程为y =kx +12.将直线方程与椭圆方程联立,得{y =kx +12,x 212+y 2=1.消去y 并整理,得(k 2+112)x 2+kx -34=0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-kk 2+112,x 1x 2=-34(k 2+112).直线P A :y =y 1−1x 1x +1与直线y =-12x +3交于点C ,则x C =4x 1x1+2y 1−2=4x 1(2k+1)x 1−1. 同理可得,x D =4x 2x 2+2y 2−2=4x 2(2k+1)x 2−1,则|CD |= √1+14|x C -x D | =√52|4x1(2k+1)x1−1−4x2(2k+1)x2−1|=2√5|x 1−x 2[(2k+1)x1−1][(2k+1)x 2−1]|=2√5|x 1−x 2(2k+1)2x 1x 2−(2k+1)(x 1+x 2)+1|=3√52·√16k 2+1|3k+1|=6√55·√16k 2+1· √916+1|3k+1| ≥6√55,当且仅当k =316时等号成立.故|CD |的最小值为6√55.对点训练解析:(1)由题意知M (0,-4),F (0,p2),圆M 的半径r =1,所以|MF |-r =4,即p2+4-1=4,解得p =2.(2)由(1)知,抛物线方程为x 2=4y , 由题意可知直线AB 的斜率存在,设A (x 1,x 12 4),B (x2,x 22 4),直线AB 的方程为y =kx +b ,联立得{y =kx +bx 2=4y,消去y 得x 2-4kx -4b =0, 则Δ=16k 2+16b >0(※),x 1+x 2=4k ,x 1x 2=-4b ,所以|AB |=√1+k 2|x 1-x 2|=√1+k 2·√(x 1+x 2)2−4x 1x 2=4√1+k 2·√k 2+b . 因为x 2=4y ,即y =x 24,所以y ′=x 2,则抛物线在点A 处的切线斜率为x12,在点A 处的切线方程为y −x 12 4=x 12(x -x 1),即y =x 12x −x 12 4,同理得抛物线在点B 处的切线方程为y =x 22x −x 22 4,联立得{y =x 12x −x 124y =x22x -x 22 4,则{x =x 1+x 22=2ky =x 1x 24=−b , 即P (2k ,-b ).因为点P 在圆M 上,所以4k 2+(4-b )2=1 ①,且-1≤2k ≤1,-5≤-b ≤-3,即-12≤k ≤12,3≤b ≤5,满足(※). 设点P 到直线AB 的距离为d ,则d =2√1+k 2,所以S △P AB =12|AB |·d =4√(k 2+b )3.由①得,k 2=1−(4−b )24=−b 2+8b−154, 令t =k 2+b ,则t =−b 2+12b−154,且3≤b ≤5. 因为t =−b 2+12b−154在[3,5]上单调递增,所以当b =5时,t 取得最大值,t max =5,此时k =0,所以△P AB 面积的最大值为20√5.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精品题库试题
理数
1. (2014河北衡水中学高三上学期第五次调研考试, 16) 在棱长为1的正方体中,、分别是、的中点.点在正方体的表面上运动,则总能使的点所构成的轨迹的周长等于________.与垂直[答案] 1.
[解析] 1.作的中点分别为,易证, 过做一个平面∥平面
. 交正方体为一个与四边形全等的矩形,此矩形就是P的轨迹,其周长为
2. (2014广东,20,14分)已知椭圆C:+=1(a&gt;b&gt;0)的一个焦点为(,0),
离心率为
.
(1)求椭圆C的标准方程;
(2)若动点P(x0,y0)为椭圆C外一点,且点P到椭圆C的两条切线相互垂直,求点P的轨迹方程.
[答案] 2.查看解析
[解析] 2.(1)由题意知c=∴a=3,b2=a2-c2=4, ,e==,
故椭圆C的标准方程为(2)设两切线为l1,l2, +=1.
①当l1⊥x轴或l1∥x轴时,l2∥x轴或l2⊥x轴,可知P(±3,±2).。

相关文档
最新文档