气动阀门的工作原理及故障分析

合集下载

气动阀门工作原理图解说明

气动阀门工作原理图解说明

气动阀门工作原理图解说明
气动阀门的工作原理如下:
1. 气源: 气动阀门的工作原理主要依赖于气源。

气源通常是一个气缸,里面储存着压缩空气或其他气体。

2. 控制器: 控制器用来控制气源的供应和关闭。

它可以是手动操作的开关,也可以是自动控制器,如电磁阀。

3. 气缸: 气缸是气动阀门的核心部件。

它通常由一个活塞和一个活塞杆组成。

当气源供气时,气缸内的压缩空气推动活塞移动。

4. 阀门: 阀门连接在气缸的出口处。

它可以是旋转阀,也可以是直线阀。

当气源供气时,阀门打开,允许流体通过。

当气源关闭时,阀门关闭,阻止流体通过。

5. 动力传动: 气缸的活塞杆通过动力传动装置连接到阀门,将气源的动力传递给阀门,以实现开启或关闭阀门。

通过控制器和气源的供应,可以实现对气动阀门的控制。

当控制器将气源供气时,气体流经阀门,并允许流体通过。

当控制器关闭气源时,阀门关闭,阻止流体通过。

这种工作原理使得气动阀门在自动化系统中得以广泛应用,可以用于控制流体介质的流量、压力和方向。

气动调节阀工作原理、安装、检修

气动调节阀工作原理、安装、检修

气动调节阀工作原理、安装、检修一、工作原理气动调节阀就是以压缩空气为动力源,以气缸为执行器,并借助于电气阀门定位器、转换器、电磁阀、保位阀等附件去驱动阀门,实现开关量或比例式调节,接收工业自动化控制系统的控制信号来完成调节管道介质的:流量、压力、温度等各种工艺参数。

气动调节阀的特点就是控制简单,反应快速,且本质安全,不需另外再采取防爆措施。

气动调节阀工作原理(图)气动调节阀通常由气动执行机构和调节阀连接安装调试组成,气动执行机构可分为单作用式和双作用式两种,单作用执行器内有复位弹簧,而双作用执行器内没有复位弹簧。

其中单作用执行器,可在失去起源或突然故障时,自动归位到阀门初始所设置的开启或关闭状态。

气动调节阀根据动作形式分气开型和气关型两种,即所谓的常开型和常闭型,气动调节阀的气开或气关,通常是通过执行机构的正反作用和阀态结构的不同组装方式实现。

气动调节阀作用方式气开型(常闭型)是当膜头上空气压力增加时,阀门向增加开度方向动作,当达到输入气压上限时,阀门处于全开状态。

反过来,当空气压力减小时,阀门向关闭方向动作,在没有输入空气时,阀门全闭。

顾通常我们称气开型调节阀为故障关闭型阀门。

气关型(常开型)动作方向正好与气开型相反。

当空气压力增加时,阀门向关闭方向动作;空气压力减小或没有时,阀门向开启方向或全开为止。

顾通常我们称气关型调节阀为故障开启型阀门。

气开气关的选择是根据工艺生产的安全角度出发来考虑。

当气源切断时,调节阀是处于关闭位置安全还是开启位置安全。

举例来说,一个加热炉的燃烧控制,调节阀安装在燃料气管道上,根据炉膛的温度或被加热物料在加热炉出口的温度来控制燃料的供应。

这时,宜选用气开阀更安全些,因为一旦气源停止供给,阀门处于关闭比阀门处于全开更合适。

如果气源中断,燃料阀全开,会使加热过量发生危险。

又如一个用冷却水冷却的的换热设备,热物料在换热器内与冷却水进行热交换被冷却,调节阀安装在冷却水管上,用换热后的物料温度来控制冷却水量,在气源中断时,调节阀应处于开启位置更安全些,宜选用气关式(即FO)调节阀。

气动阀调试和常见故障分析与处理

气动阀调试和常见故障分析与处理

气动阀调试和常见故障分析与处理摘要:工业生产在人们日常生活中越来越重要,在化工企业和石油企业的生产过程中气动阀门作用极大,同时也属于工业管道系统自动化的重要组成装置。

现如今,气动阀门在工业生产中得到广泛的应用,属于工业中不可或缺的一种装置,但是,气动阀门在工作中由于本身需要靠压缩空气进行控制,在工作运行中会受到各种因素的影响,出现受损以及破坏的情况,对此,为了保证气动阀门工作的正常运行,需要对气动阀门的故障进行分析,并且应当及时处理常见的故障。

本文便首先讲述气动阀门的结构以及工作原理,其次讲述气动阀门调试常见的故障问题,最后讲述解决气动阀门故障的处理方法,以此来供相关人士参考与交流。

关键词:气动阀门;原理;故障问题;处理方法引言:在工业生产中气动开关属于非常重要的环节,气动开关的正常运行可以确保企业系统的正常运转。

通过做好调试工作,对气动阀进行及时调整,可以有效控制气动调节阀对企业工作效率的影响。

面对气动阀门运行中常见的故障问题,需要对存在的故障进行全面的分析,为企业的正常运行提供帮助。

一、气动阀门结构以及工作原理分析气动阀门是受到压缩空气驱动而命名的,但是归根到底是阀门,承担的是一种开关的作用。

在工业生产中需要用阀门控制许多参数。

在工业生产中所使用的气动阀主要由三大部件组成的,分别是气动执行机构、阀体以及附件。

每一部分会发挥不同的作用,执行机构需要借助压缩空气,从而提供足够的动力为阀门的正常运行提供动力。

阀体会起着支撑以及附件的作用。

当压力达到一定程度时刻,推力盘在压力作用下会向下运动,弹簧得到压缩,从而控制阀门的运动。

与其他设置相比,气动阀门的运行相对比较稳定,速度明显提高,可以在比较短的时间内为工业生产提供足够的动力[1]。

二、气动阀门常见的故障以及原因分析气动阀门在运行过程中会遇到客观因素的影响出现故障问题,影响气动阀门作用的正常发挥,下面便详细分析气动阀门常见的故障,并对故障原因进行分析。

气动阀调试和常见故障分析与处理

气动阀调试和常见故障分析与处理

工艺设计改造及检测检修 China Science & Technology Overview气动阀调试和常见故障分析与处理唐志国(中核检修有限公司海盐分公司,浙江嘉兴314300)摘要:随着我国科技的不断进步,工业改革进程在飞速开展,其中最显著的特点是工业自动化。

随着工业自动化的进程不断加快, 电力、冶金、石油、化工等行业中对于气动阀门的应用也越来越广泛。

气动阀的使用过程直接影响工业自动化系统的进程,因此对其 调试和常见故障分析是有必要并且迫在眉睫的。

本文将对气动阀调试和常见故障分析与处理提出建议,更好地利用气动阀的功能,促进 工业自动化系统建设。

关键词:乞动阀;故障;分析;调试中图分类号:TM623 文献标识码:A 文章编号:1671-2064(2020) 12-0094-02在工业生产进程自动化的快速推进过程中,气动阀门成 为一种在电力企业、化工企业、石油企业等众多工业企业生 产过程中的控制仪表,同时也是工业自动化系统的重要组成装置。

气动阀在工业生产中的应用能够便利工业生产,但其 运行过程中可能出现的故障将会影响其正常化工业生产。

为了尽量提升气动阀的使用率,本文将对气动阀调试和常见故障及处理方法提出相关建议。

1气动阀结构组成气动执行机构、阀体和仪附件共同构成气动阀门。

其中 气动执行机构可分材质功能为薄膜式和活塞式两种;阀体一 般按其行程分为直行程和角行程;仪附件包括电磁阀、位置指示开关、空气过滤减压阀、定位器、电气转换器、手轮操作机构、气源管等。

2气动开关阀的调试气动开关阀的调试必须遵守其构成结构的性能,为确保正常使用阀门,气动开关阀在安装完成后的调试必须按以下顺序和步骤进行。

2.1检查气动阀开关安装的位置及管线连接检查事项:第一阀门安装方向(针对有流向要求的)正确与否,第二确认减压阀和电磁阀的出入口连接是否正确;第三关于连接阀门供气回路的接头牢固程度以及严密情况;最后确认电磁阀与位置开关接线位置的准确与否⑴。

气动阀门修理方案

气动阀门修理方案

气动阀门修理方案引言气动阀门是工业自动化领域中常用的控制元件,广泛应用于各个行业的流体管道系统中。

然而,在长期的使用过程中,由于阀门本身的磨损、腐蚀等原因,可能会导致阀门出现漏气、卡死、无法关闭等问题。

本文将介绍常见的气动阀门修理方案,帮助用户快速解决阀门故障,提高工作效率。

1. 分析阀门故障原因在进行气动阀门修理之前,首先需要对阀门故障进行分析,确定故障原因。

常见的阀门故障原因有:•密封面损坏:由于长期使用,阀门密封面可能会出现磨损、腐蚀等问题,导致漏气。

•活塞卡死:阀门内部的活塞可能会因为灰尘、异物等原因卡死,无法正常移动。

•弹簧失效:如果弹簧老化或损坏,会导致阀门无法关闭或无法打开。

•控制电路问题:阀门的控制电路可能会出现接触不良、线路短路等问题,导致阀门无法正常工作。

2. 维修步骤根据阀门故障的具体原因,我们可以采取以下几个步骤进行维修:2.1 清洁阀门如果阀门出现卡死的情况,首先需要清洁阀门内部的活塞和密封面。

可以使用中性清洁剂和软布擦拭阀门的内部部件,确保活塞能够自由地移动,并且密封面光滑无损。

2.2 更换密封面如果阀门出现漏气的情况,可能是由于密封面磨损、腐蚀导致的。

这时需要将阀门拆卸,更换新的密封面。

在拆卸阀门时,需要注意保存阀门的密封垫片,以便后续的安装。

2.3 检查并更换弹簧如果阀门无法关闭或无法打开,可能是由于弹簧失效导致的。

我们可以使用弹簧张力计来测试弹簧的张力是否符合要求,如果不符合,就需要更换弹簧。

2.4 检查控制电路如果阀门故障的原因可能是控制电路问题,需要仔细检查阀门的控制电路。

可以使用万用表测试电路的导通情况,检查接触器、继电器、接线等是否正常。

如果发现问题,及时修复或更换故障的电路元件。

3. 预防措施为了减少气动阀门的故障发生,我们可以采取一些预防措施:•定期保养阀门:定期对阀门进行保养,清洁阀门内部的活塞和密封面,确保阀门的正常工作。

•定期更换密封件:定期更换阀门的密封面和密封垫片,防止由于磨损、腐蚀等原因导致的漏气问题。

气动调节阀常见故障原因及处理分析

气动调节阀常见故障原因及处理分析

气动调节阀常见故障原因及处理分析文章是根据作者以往工作实践,主要介绍火力发电厂气动调节阀及定位器在使用过程中的维护及常见故障处理,通过对各种具体故障的原因进行分析判断给出相应的处理方法和改进措施。

标签:气动调节阀;智能定位器;故障分析处理气动调节阀是电力行业中广泛使用的仪表之一,它在火电厂各工艺流程中的作用是必不可少的,是组成电厂自动调节系统中的重要环节。

气动调节阀是以压缩空气为动力源,以气缸为执行器,阀门智能定位器接收4-20mA的控制信号,通过定位器把弱电信号转换成气压信号,将压缩空气输入汽缸驱动阀门,实现阀门线性调节,接收控制系统远方控制信号来完成调节管道内介质的流量、压力从而改变温度等工艺参数。

阀门智能定位器是气动调节阀的重要附件和配件之一,起阀门定位作用。

气动调节阀的优点有:(1)动作迅速,能够快速的完成调节命令;(2)配合大气缸可实现较大力矩推动力;(3)能在各种恶劣工况条件下长时间安全稳定运行;(4)本质安全。

1 调节阀的检修与维护调节阀是直接安装在工艺管道上,常使用在高温高压的环境下,它的好坏直接影响到调节的品质。

实践证明调节系统中每个环节的好坏都对系统有直接的影响,所以必须对调节阀进行经常维护和定期检修,尤其对使用条件恶劣的场合更应重视定期检修工作。

1.1 调节阀在机组停机检修时,其重点检查维护部位主要包括以下几个方面:(1)阀门解体后,检查阀芯是否磨损,如有磨损需更换阀芯。

(2)检查阀杆否变形、锈蚀,丝扣是否完好,应保证阀杆平直,无锈蚀,丝扣完好,弯曲度<0.05mm。

(3)阀芯、阀座密封面检查,门芯密封面吹损深度超过0.2mm,则上车床,按原角度车削掉损坏层;专用工具研磨门座密封面,消除缺陷,将门芯与门座密封面间涂研磨膏对磨;涂红丹檢查密封面严密性。

(4)填料检查,视情况更换填料。

(5)各螺栓螺母检查,如有磨损更换。

1.2 调节阀的日常维护是阀门发生故障前的预防性检查维护,它包括以下几个方面:(1)保持调节阀的卫生以及各部件完整好用,对调节阀的固定连接件定期检查和防腐润滑检查。

气动调压阀工作原理

气动调压阀工作原理

气动调压阀工作原理
气动调压阀是一种使用气动力进行调节的调压装置,它可以通过调整进入阀内的气流压力来控制出口的气压。

其工作原理如下:
1. 阀体结构:气动调压阀通常由阀体、阀芯和驱动膜片等组成。

阀体中有进气口和出气口,并且之间有一定距离的隔离区域。

2. 弹簧调力:阀芯与阀体之间存在一个弹簧,该弹簧用于提供初始调力,使阀芯保持在关闭状态。

3. 驱动膜片:驱动膜片连接到阀芯上,它能够感受到进入阀内的气流压力变化,并将其传递到阀芯上。

4. 调节压力:当进入阀内的气流压力升高时,驱动膜片也会随之上升,使阀芯从初始关闭状态逐渐打开。

相反,当进入阀内的气流压力降低时,驱动膜片会下降,使阀芯逐渐关闭。

5. 平衡稳定:当进入阀内的气流压力达到与弹簧调力平衡时,阀芯会保持在一个稳定的开启程度,使出口的气压保持在设定的值。

总之,气动调压阀的工作原理是通过感受进入阀内的气流压力变化,利用弹簧调力和驱动膜片的协同作用,控制阀芯的开闭程度,从而调节出口的气压。

气动单座调节阀工作原理

气动单座调节阀工作原理

气动单座调节阀工作原理
气动单座调节阀是一种常用的控制阀门,其工作原理主要通过气动执行机构控制阀芯的运动来调节介质的流量。

1. 当气动执行机构接收到控制信号时,传感器将信号转化为气源的压力信号,并通过导向阀将压力传导到阀芯的上部和下部。

2. 当阀芯下部受到压力信号时,阀芯向上运动,与阀座分离,形成一个开放的通道,介质可以通过阀门流过,实现流量的调节。

3. 当阀芯上部受到压力信号时,阀芯向下运动,与阀座接触,阀门关闭,介质停止流动。

4. 通过不断调节阀芯的位置,可以控制流经阀门的介质量,实现流量的调节。

在气动单座调节阀中,气源的压力信号通过导向阀控制阀芯的运动方向,从而实现阀门的开启和关闭。

通过改变导向阀的工作方式,可以实现不同的控制方式,如常闭、常开、双作用等。

总结起来,气动单座调节阀工作原理是通过气源的压力信号驱动阀芯的运动,从而实现阀门的开关和介质流量的调节。

气动调节阀的结构和工作原理

气动调节阀的结构和工作原理

气动调节阀常见于钢铁行业,尤其广泛应用于加热炉、卷取炉等燃烧控制系统。

本文根据气动调节阀的结构和工作原理对在气动调节阀在日常使用的常规维护和常见故障进行了分析研究,为设备维护和故障维修提供了参考。

本文以美国博雷(BARY)厂家生产的S92/93系列的气动执行机构为例,结合现场实际使用情况,进行了分析和总结。

阀门公称直径DN250,介质为混合煤气,气源为仪表压空,压力为3-5Bar,电磁阀为24V。

1、气动调节阀的结构和工作原理1.1、气动调节阀的结构气动调节阀由执行机构和阀体两部分组成。

1.2、气动调节阀的工作原理气动调节阀的工作原理:气动调节阀由执行机构和调节机构组成。

执行机构是调节阀的推力部件,当调节器或定位器得到4-20mA信号时,控制电磁阀24V信号到,打开,使得仪表压空进入执行机构汽缸,转动阀杆使阀体动作,当到达需要指定开度时,位置反馈使得定位器停止信号输出,维持当前位置。

当需要关闭阀门时,定位器得到关闭信号,使电磁阀停止供气,汽缸靠内部弹簧反作用力,使阀门关闭。

当需要从满度减少开度时,定位器输出气源压力会减弱,弹簧自身反作用力致使阀门向关闭方向动作,直至信号压力与弹簧压力平衡,到达指定开度,以此来控制该介质流量。

2、气动调节阀的日常维护在对气动调节阀日常点巡检中,要注意以下几点:一是检查仪表气源是否正常,检查过滤器、减压阀是否正常,观察压力是否在3-5Bar;二是观察汽缸有无漏气现象,尤其是阀杆连接处和两端盖处;三是检查电磁阀是否工作正常,有无漏气现象;四是检查定位器工作是否正常,有无漏气现象;五是检查所有连接部件固定螺丝是否紧牢;六是尽量避免过多浮灰覆盖到执行机构上,要市场保持工作环境清洁。

3、气动调节阀常见故障原因分析3.1、气动调节阀无反馈信号气动调节阀的信号线由一对控制信号线和一对反馈信号线组成。

当PLC给阀门一个信号时,信号在调节阀的定位器中进行信号转换,通过气源压力来控制阀杆动作。

气动阀开关原理

气动阀开关原理

气动阀开关原理
气动阀开关原理是利用空气或气体的压力作用于阀芯,将阀芯从关闭位置移动到开启位置或从开启位置移动到关闭位置,从而实现对流体的控制。

具体原理如下:
1. 工作原理:气动阀由电磁阀、压缩空气源和控制部件组成。

控制部件可以是手动按钮、电磁线圈或压力传感器等。

当控制部件发出信号时,电磁阀会受到激励,打开或关闭压缩空气源的通道,通过气压控制阀芯的运动。

2. 开启过程:当控制部件信号到达时,电磁阀打开压缩空气源的通道,压缩空气进入阀体,并通过通道作用于阀芯上的气动力。

气动力的大小取决于压力差和阀芯面积,当气动力大于关闭阀的弹簧力时,阀芯被推动向开启位置移动,从而打开阀门。

3. 关闭过程:当控制部件信号消失时,电磁阀关闭压缩空气源的通道,阀芯上的气动力消失,此时关闭阀的弹簧力将阀芯推回到关闭位置,阀门关闭。

4. 控制方式:除了手动按钮外,气动阀还可以通过电磁线圈或压力传感器进行控制。

当电磁线圈受到电流激励时,电磁阀打开或关闭通道,实现对阀芯的控制。

压力传感器可以检测系统中的压力变化,并通过控制电磁阀的开闭来调节阀芯的运动。

通过以上的工作原理,气动阀可以实现远距离控制和自动化控制,广泛应用于工业领域的流体控制系统中。

气动阀调试和常见故障分析与处理

气动阀调试和常见故障分析与处理

气动阀调试和常见故障分析与处理摘要:在核电厂系统中,设备的类型和对设备系统的控制有着千丝万缕的联系,而功能能否实现也受这些因素的影响。

每个控制回路的各个步骤的健康标准,确保了系统的控制功能是否可以准确实施。

控制回路有许多组成部分,其中最重要的就是执行机构。

它是系统能否快速运行的决定因素。

在核电厂系统中,使用最频繁的就是气动阀,执行机构和调节机构组成了气动阀,根据其功能作用把它分为两类:气动控制阀和气动开关阀。

它们的作用有效推动核电站系统的发展,在控制回路中是重要的部分。

关键词:气动阀调试;故障分析;仪控通过对上述两种气动阀的了解,并结合福清核电调试经验,本论文对气动开关阀和气动调节阀这两种应用广泛的执行机构进行研究,做出了一定有利的调试,并对可能出现的故障进行分析与处理。

我们从仪表控制设备的角度,来介绍对这两种阀的调试方法,对阀门常见故障及时查看,这样对后续设备的调试与故障的排除就能省力。

气动开关阀的成功安装之后,核电厂系统对阀的质量应该有保证,定期严查,在检测过程中,应当采取必要的措施。

调试的步骤如下所示:1 对气动开关阀的调试1.1 对气动开关阀安装位置和管道连接检查气体开关阀的安装位置与管道的连接是最根本的工作,奠定了核电厂的运行基础。

应当对以下装置进行主要确认:对阀门流向给予保证;减压阀与电磁阀的进出口连接方式是否正确;阀门供气回路的连接有无泄漏现象。

这都是我们应该再三确认的问题,我们应该对以上装置严格查看,保证毫无错漏,气动开关阀才能发挥出它的作用。

1.2 对阀门附件的检验⑴对空气滤过减压阀的检验。

检验空气滤过减压阀时,应在出口处应安装标准压力表用来测出输出压力的大小,以此限制阀门动作。

然后用空气填充空气过滤减压阀,填充之前还应查看空气过滤泄压阀是否存在泄漏现象。

处理方法是将空气过滤泄压阀的疏水阀开启整理。

之后,调节空气过滤减压阀的出口压力到一定值,空气滤过减压阀就能正常工作。

⑵对空气安全阀的查看。

气动调节阀门常见故障原因分析及处理分析

气动调节阀门常见故障原因分析及处理分析

气动调节阀门常见故障原因分析及处理分析摘要:气动控制阀主要应用于各种工业和自动化的全过程控制。

以调节过程参数,例如大流量,压力,温度和液位。

本文简要介绍了气动控制阀的结构原理和特点,详细分析了自动控制过程中气动控制阀的故障,并分析了使用该气动控制阀供油装置的原因,具有一定的参考意义。

关键词:气动控制阀;故障原因;分析一、引言随着工业自动化水平的不断提高,气动控制阀越来越多地被用作自动控制系统中的最终执行器。

自动控制系统使用气动控制阀进行控制。

准确、可靠地进行操作对于保证自动化控制系统能够正常运转和安全生产是非常必要的。

气动控制阀本身具有一种结构简单,运行可靠的优势,其对运行灵敏性的影响直接决定到整个自动控制系统的控制和工作质量。

二、常见缺陷和原因分析(一)供气系统错误由于球阀在仪器分支风管的末端具有节流作用,因此风管中的灰尘很容易在此处积聚并关闭。

结果,仪器风压过低,无法完全打开和关闭调节阀,或者调节阀不起作用。

空气滤清器减压阀太脏,减压阀泄漏,且减压阀的压力设定过低,因此机器的输出压力低于规定的压力。

结果,调节阀移动缓慢并且不能完全打开或关闭或不移动。

铜管老化和泄漏,接头连接松动或被灰尘堵塞。

铜管降低了仪器信号风压,因此调节阀不起作用,无法完全打开和关闭。

手动状态阀位置不稳定,并且会发生调节振动。

[1]空压机异常,风箱异常,排水不畅导致风冻结,仪器风泄漏或被灰尘堵塞,设备的仪器风压过低甚至没有风。

(二)电源系统错误现场振动,接线薄弱,接线松动或者是灰尘过大,接触不好,有时从控制室来看到现场的任何一个信号都可能不会引起调节阀的混乱和调整振荡。

接线误,设备中如果含有水或者湿气,电源与接线之间会连接短路,因此电源控制阀收到的电压信号要低于电压调节器发出的电压信号。

(三)电气转换器故障由于不正确的设备安装和调试,现场振动,温度的变化等各种原因,转换器在输出时信号的零点和范围不正确。

由于转换器的线圈和元组件的寿命老化或者磁场的振动以及环境对温度变化的影响,转换器的输出并非是具有线性的,并且在调零期间无法达到所需的值,范围调节阀的运动不是线性的。

气动调节阀常见故障及分析

气动调节阀常见故障及分析

气动调节阀常见故障及分析气动调节阀是一种常用的工业自动控制设备,广泛应用于各种工业过程中。

然而,由于使用环境的特殊性和使用频率的高,气动调节阀在使用过程中也常常会出现各种故障。

下面就列举几种常见的气动调节阀故障,并进行分析。

1.漏气故障:气动调节阀在使用过程中,常常会出现漏气的情况。

漏气一般分为内漏和外漏两种情况。

内漏是指阀芯和阀座之间的密封不良,导致气体从阀芯和阀座之间泄漏出来;外漏则是指阀体和外部连接处的密封不良,导致气体从阀体外泄漏出来。

漏气会导致系统的控制精度下降,甚至无法正常控制。

解决漏气问题的关键是找到漏气点并进行修复或更换密封件。

2.阀芯卡阻故障:阀芯卡阻是指在开关过程中,阀芯出现卡住或卡阻的情况。

阀芯卡阻可能是由于长时间不使用导致阀芯与阀座之间的摩擦增大,也可能是由于阀芯和阀座之间有异物或污物积聚导致。

阀芯卡阻会导致阀的开关不灵活,甚至无法正常开关。

解决阀芯卡阻的办法是清洗阀芯和阀座,或者更换阀芯。

3.漏气启闭不灵故障:漏气启闭不灵是指阀门无法正常开关,或者开关时有漏气的情况。

这种故障可能是由于气源进口处的压力不足,导致阀门无法打开或关闭;也可能是由于阀门的活塞密封不良,导致漏气。

解决这种故障的方法是检查气源压力是否正常,如果不正常则调整压力;同时检查阀门的密封件是否磨损,如果磨损则更换密封件。

4.气动调节阀无法响应故障:在控制系统中,有时气动调节阀无法响应控制信号,即使控制信号发生变化,阀门的开度也没有相应的变化。

这种故障可能是由于控制信号线路接触不良、阀门主轴悬浮磨损等原因引起的。

解决这种故障的方法是检查控制信号线路是否良好连接,如果连接不良则重新插拔连接;同时检查阀门主轴的悬浮是否磨损,如果磨损则更换主轴。

5.排气不畅故障:气动调节阀的排气口是调节阀正常运行的关键部位之一,如果排气口堵塞或不畅,会导致阀门无法正常工作。

这种故障可能是由于排气口中有异物、沉积物或污物导致的。

解决这种故障的方法是清洗或疏通排气口,确保排气口通畅。

气动调节阀工作原理

气动调节阀工作原理

气动调节阀工作原理
气动调节阀是一种常用于工业自动化系统中的控制元件,它能够根据输入的电气信号控制流体介质的流量、压力或液位。

气动调节阀的工作原理如下:
1. 气动执行机构:气动调节阀的核心部分是气动执行机构,它包括活塞、气动膜片和弹簧等部件。

当输入的电气信号改变时,气动执行机构会相应地调整阀门的开度。

2. 气源:气动调节阀需要通过气源提供压缩空气来驱动气动执行机构。

通常,气源会通过管道连接到气动调节阀的入口。

3. 压缩空气的作用:当气源通过入口进入气动执行机构时,压缩空气会使气动膜片受到压力从而产生力量,这个力量会使活塞运动。

同时,弹簧也起到了平衡力的作用,使活塞保持在一定位置。

4. 出口压力调节:根据输入的电气信号,调节阀会调整阀门的开度,从而改变流体介质通过阀门的流量。

当阀门开度增大时,流量也会增大;反之,阀门开度减小时,流量也会减小。

通过这种方式,调节阀能够根据需要控制流体介质的压力。

综上所述,气动调节阀的工作原理是通过气源提供压缩空气驱动气动执行机构,根据输入的电气信号调整阀门的开度来控制流体介质的流量、压力或液位。

气动调节阀的故障分析与解决方案

气动调节阀的故障分析与解决方案

气动调节阀的故障分析与解决方案气动调节阀是一种常见的工业自动调节装置,它广泛应用于各种流体管道系统中,用于实现对流体介质流量、压力、液位和温度等参数的精密控制。

然而,由于工作环境复杂、使用频繁等原因,气动调节阀有时会出现故障。

本文将就气动调节阀的常见故障进行分析,并提出相应的解决方案。

1.漏气:气动调节阀的漏气问题可能由于密封面磨损、密封圈老化等原因引起。

漏气现象会导致控制效果差,甚至失去控制能力。

解决方案:a.检查密封面是否有磨损,如有磨损应及时更换密封面。

b.检查密封圈是否老化,如发现老化应及时更换密封圈。

c.检查气源管线是否有泄漏,如有泄漏应及时修复。

d.对于特殊情况下无法解决漏气问题,可以将漏气部位用胶带包裹,以减少漏气量。

2.运动不灵活:气动调节阀在使用过程中可能会出现运动不灵活的问题,这可能是由于零部件堵塞、润滑不良等原因引起的。

解决方案:a.检查阀门内部是否有杂质积聚,如有应及时清理。

b.检查阀门润滑情况,如需添加润滑剂或更换润滑剂。

c.对于长时间不使用的阀门,可以进行清洗和润滑,以保证阀门的灵活性。

3.衰减不准确:调节阀的衰减不准确可能是由于阀门内部的调节装置失效、传感器故障等原因引起的。

解决方案:a.检查阀门内部的调节装置,如偏心销、锥形阀芯等,是否存在问题,如有应及时修复或更换。

b.检查传感器的连接状态和工作情况,如需要更换应及时更换。

4.噪音大:气动调节阀工作时可能会出现噪音大的问题,这可能是由于介质流速过大、管道设计不合理等原因引起的。

解决方案:a.减小介质流速,通过增加节流部件、增加阀门直径等方式降低流速。

b.检查管道设计,对于存在设计不合理的地方进行改进,如增加缓冲装置等。

5.外部泄漏:气动调节阀可能会出现外部泄漏的问题,这可能是由于阀门安装不牢固、紧固件松动等原因引起的。

解决方案:a.检查阀门的安装情况,如有松动应及时紧固。

b.检查紧固件的状态,如需要更换应及时更换。

气动调节阀的应用及常见故障处理

气动调节阀的应用及常见故障处理

气动调节阀的应用及常见故障处理摘要:调节阀又称为控制阀,主要用于调节工业自动化过程控制领域中的介质流量、压力、温度、液位等工艺参数。

本文结合内蒙汇能煤化工浓盐水浓缩项目简单介绍气动调节阀的结构原理及应用,并分析自控过程中气动调节阀容易出现的故障问题及原因,希望对以后气动调节阀安装、维护有一定借鉴作用。

关键词:气动调节阀故障原因分析1 概述气动调节阀控制简单,反应快速,且本质安全,不需另外再采取防爆措施,随着工业自动化程度的不断提高,气动调节阀作为自动调节系统的最终执行机构,得到越来越广泛的应用。

2 气动薄膜调节阀工作原理气动调节阀就是以压缩气体为动力源,以气缸为执行器,并借助于阀门定位器、转换器、电磁阀、保位阀、储气罐、气体过滤器等附件去驱动阀门,实现开关量或比例式调节,接收工业自动化控制系统的控制信号来完成调节管道介质的流量、压力、温度、液位等各种工艺过程参数。

内蒙汇能煤化工浓盐水浓缩项目以压缩空气为气动阀动力源,阳床、多介质过滤器进水、出水、反洗等均采用气动开关阀,在核心装置高效反渗透中产水管线采用气动调节阀,主要调节产水管线的产水流量。

气动调节阀动作分气开型和气关型两种。

气开型是当膜头上空气压力增加时,阀门向增加开度方向动作,当达到输入气压上限时,阀门处于全开状态。

反过来,当空气压力减小时,阀门向关闭方向动作,在没有输入空气时,阀门全闭。

故有时气开型阀门又称故障关闭型(FC)。

气关型动作方向正好与气开型相反。

当空气压力增加时,阀门向关闭方向动作;空气压力减小或没有时,阀门向开启方向或全开为止。

故有时又称为故障开启型(FO)。

气动调节阀的气开或气关,通常是通过执行机构的正反作用和阀态结构的不同组装方式实现。

浓盐水浓缩项目采用气源故障关闭型(FC)调节阀。

外形图:气动调节阀的特点就是控制简单,反应快速,且本质安全,不需另外再采取防爆措施。

当气室输入信号压力之后, 薄膜产生推力, 使推力盘向下移动,压缩弹簧, 带动推杆、阀杆、阀芯向下移动,阀芯离开了阀座, 从而使压缩空气流通。

气动阀门气缸工作原理

气动阀门气缸工作原理

气动阀门气缸工作原理
气动阀门气缸是一种利用气源驱动的装置,用于控制气动阀门的开启和关闭。

它的工作原理如下:
1. 气源供应:气动阀门气缸通常通过空气压缩机提供的压缩空气作为动力源。

空气经过过滤、调压装置后,进入气缸供给动力。

2. 活塞运动:气缸内部有一个活塞,当压缩空气进入气缸时,活塞就会随之向前或向后运动。

3. 气缸控制:气缸的运动是由控制阀控制的。

通过控制阀的开启和关闭,可以控制气缸的进气和排气,从而控制活塞的运动方向和位置。

4. 弹簧复位:为了保证气缸的回位,通常在气缸内部设置了一个弹簧。

当空气压力减小或消失时,弹簧会使活塞返回原位,实现气缸的复位。

5. 力和速度调节:通过调整气源的压力、控制阀的开启时间和关闭时间,可以调节气缸的作用力和速度,以满足不同工作需求。

总结:气动阀门气缸通过控制阀和压缩空气的进出,实现对活塞的控制,从而实现气动阀门的开启和关闭功能。

通过调整气源压力和控制阀的工作方式,可以调节气缸的作用力和速度,以适应不同的工作要求。

气动阀门气缸工作原理

气动阀门气缸工作原理

气动阀门气缸工作原理
气动阀门气缸是一种通过气压驱动的装置,用于控制阀门的开启和关闭。

它通常由气缸本体、活塞、气源连接口和控制装置组成。

工作原理如下:
1. 气源供应:气动阀门气缸需要通过气源供应压缩空气或气体。

气源通过连接口进入气缸并施加压力,推动活塞运动。

2. 活塞运动:气源压力进入气缸后,将推动活塞的一侧,并将另一侧的气体排出,导致活塞产生移动。

活塞可以是单作用的或双作用的,具体根据气缸的设计而定。

3. 阀门控制:气动阀门气缸通过控制装置来确定阀门的开关状态。

控制装置可以是手动的,也可以是自动的,例如使用电磁阀控制气源进出气缸。

当气源进入气缸时,活塞被推动,阀门打开;当气源离开气缸时,活塞退回,阀门关闭。

4. 阀门位置反馈:为了确保阀门的准确控制,气动阀门气缸通常会配备位置反馈装置。

位置反馈装置可以是传感器或开关,用于监测和反馈阀门的开关状态,并将信号发送给控制装置。

通过以上工作原理,气动阀门气缸可以实现对阀门的远程控制和自动化控制。

它被广泛应用于工业和制造领域,用于控制各种流体介质的流动。

气动蝶阀的工作原理

气动蝶阀的工作原理

气动蝶阀的工作原理
气动蝶阀的工作原理如下:
1. 控制气源:气动蝶阀通过气源提供的气压来控制阀门的开启和关闭。

气源通常由压缩空气系统提供。

2. 操作机构:气动蝶阀的操作机构通常由气动驱动装置和阀盘组成。

气动驱动装置包括气动执行器和气缸,它们负责根据气源信号控制阀盘的位置。

3. 阀盘控制:气动蝶阀的阀盘位于阀体内,通过旋转开启或关闭流体通道。

阀盘通常由金属制成,具有强度和耐腐蚀性能。

4. 连接和密封:气动蝶阀具有法兰连接或螺纹连接,在连接时需要确保密封性能。

阀体和阀盘之间的接触面通常使用密封圈或密封条进行密封,以防止泄漏。

5. 控制信号:气动蝶阀接收来自控制系统的信号,通过气动驱动装置将阀盘移动到相应的位置,从而控制流体的流量或截断流体的流动。

综上所述,气动蝶阀通过控制气源和操作机构来实现阀盘的开关动作,从而调节和控制流体介质的流量和流向。

描述气动电磁阀的工作原理

描述气动电磁阀的工作原理

描述气动电磁阀的工作原理
气动电磁阀是一种将气动信号转化为相应的电磁信号控制气体流动的装置。

其工作原理如下:
1. 结构组成:气动电磁阀主要由气缸、电磁铁和阀芯组成。

阀芯位于气缸内,通过电磁铁的控制来使阀芯开启或关闭。

2. 阀芯控制:当电磁铁得到控制信号时,它会激励起来,产生磁力,使阀芯被吸引,从而打开气阀。

当控制信号消失时,电磁铁停止激励,磁力消失,阀芯恢复原状,关闭气阀。

这样,可以通过控制电磁铁的通断来控制气阀的开关。

3. 气体流动:当气阀开启时,气压会推动阀芯,使其与阀座分离,气体可以通过阀体的通道流动。

当气阀关闭时,气压不再推动阀芯,阀芯与阀座紧密贴合,阻止气体流动。

4. 控制信号:气动电磁阀的控制信号一般为电信号,如开关量信号或模拟量信号。

通过控制信号的输入,可以控制电磁铁的通断,进而控制气阀的开关状态。

5. 应用场景:气动电磁阀广泛应用于自动化系统中,用于控制气体的通断、调节气体的流量或压力。

常见的应用场景包括工业生产、制造业、流体控制系统等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

气动阀门的工作原理及故障分析
作者:施志昌施嘉文
来源:《中国科技纵横》2018年第03期
摘要:在化工、电力、石油以及冶金等工业企业中,气动阀门的运用是非常广泛的,并且属于工业自动化系统中的核心分支。

在气动阀门使用的过程中,当出现故障时会影响到整合系统的运行,因此有必要对气动阀门的工作原理及故障处理措施研究与分析。

关键词:气动阀门;故障;工作原理
中图分类号:TH134 文献标识码:A 文章编号:1671-2064(2018)03-0074-02
1 气动阀门的工作原理
所谓气动阀门,具体是指将气缸作为执行器,以压缩空气为动力源来实现对阀门的驱动,以实现对开关进行调节。

当调节管道接收到自动化控制系统所发出的控制信号时,便会对温度、压力、流量等相关的参数进行调节。

总的来说,气动阀门所拥有的特征有安全可靠、反应快速以及控制简单等。

在具体操作的过程中,将调节气室输入0.02-0.10MPa信号压力后,薄膜便会出现推力,在推力盘向下移动的过程中会对弹簧进行压缩,实现阀杆、推杆以及阀芯向下移动,来达到对阀门调节的目的。

2 气动阀门常见的故障及处理方法
通过对气动阀门的故障状态进行研究与分析后,了解到可能出现的故障有阀门卡堵、阀门不动作、阀门泄漏以及震荡等,因此有必要根据实际故障来制定出应对措施,以实现系统平稳、安全的运行,创造更高的效益。

2.1 气动阀门卡堵
假如阀杆的动作出现迟钝,那么意味着阀体内可能存在黏性较大的物质,并且气动阀门卡堵的情况主要出现在系统投运初期。

遇到此情况时,应该迅速的开关阀门或副线,以冲跑堵塞阀门的介质。

同时,还可以采用管钳将阀杆夹紧,并施加信号压力的方式来对阀杆进行反用力旋转。

假如仍然无法解决以上问题,那么可以通过驱动功率增加的方式,来进行反复的上下移动。

需注意的是,由于以上操作具有较强的专业性,因此在解决与处理此故障时需要在专业人员的帮助下来完成。

2.2 阀门不动作
针对于此故障来说,第一步是需要对气源压力是否正常进行判定,在此基础上来对气源故障进行查找。

当阀门内气源压力正常的情况下,则需要对电/气转换器的放大器是否有输出进
行判断。

在没有输出时则可能存在两种情况:其一,空气中水分压缩后放在放大器球阀处;其二,放大器恒节流孔堵塞。

对此,则需要执行清洁气源、清除杂物以及疏通恒节流孔等多种方式。

假如通过以上处理后阀门仍然无动作,则需要将阀门卸开并执行全面检查。

2.3 阀门噪音大
在流体流通过阀门的时候,一旦出现前后压差较为明显的情况,那么将引发气蚀现象,气蚀主要就是基于阀芯和阀座产生的,进而使得流体出现噪声。

流通能力值如果选择的过大,那么就需要对调节阀进行重新设定,选择与流通能力值相适应和吻合的调节阀,这样可以有效的较小噪音,下面对消除噪音方法进行具体的介绍和分析:(1)消除共振噪音法。

唯有在阀门共振的状态下,才能够使得能量得以重叠,进而产生一百分贝的噪音。

其中表现存在着很大的差异,有些振动强,有些振动弱,振动强的噪音不大,振动弱的,噪音较大;有些则是振动和噪音都非常大。

此噪音往往会产生一种单音调声音,消除共振之后,噪音也会有所减弱;(2)消除汽蚀噪音法。

气蚀作为流体动力噪音的重要组成部分,对于噪音的强弱有着更突出的影响。

空化时,气泡破裂将会无形中产生高速的冲击力,进而局部会滋生出强烈的湍流,气蚀噪音因此而产生。

此噪音会产生格格声,与砂石声音非常的类似。

消除气蚀可以有效的减小噪音;(3)采用吸音材料法。

吸引材料作为一种非常常见的声音处理方法,所起到的处理效果非常不错。

借助于吸引材料进行环绕噪音源头,可以有效的减小噪音。

因噪音会传播,进而吸引材料包围在哪个部位,就会消除这个部位的噪音。

此方式更为使用到噪音不大的情况,其主要原因就是此方法所消耗的资金非常多;(4)串联消音器法。

串联消音器法更多的就是适用到空气动力噪音的消音方面,这种方法可以非常好的消除噪音。

对于质量流量较高的阀门进行前后对比,可以明确该方法的考量非常的周全,不但效果较好,同时也非常的便宜。

借助于该方法可以有效的降低噪音的分贝,但从经济角度来看,通常限制噪声减少到25分贝。

2.4 阀门泄漏
针对于气动阀门泄漏的情况进行研究与分析后,了解到所存在的情况有以下几种:(1)填料泄漏。

由于填料的塑性变形,在受到压力后便会与阀杆完全接触。

需注意的是,由于两者间的接触并不是十分均匀的,一些部位接触较紧,一些部位接触较松。

在此背景下,受到高压、高温以及渗透性强的流体介质影响下,便会出现泄漏的情况。

对此,建议将柔性石墨作为填料,其根本原因是这种材料具有摩擦力小、气密性好的特征,并且维修也是较为方便的,实现了阀门寿命的延长;(2)阀内漏。

由于阀杆的长短与阀体内间不匹配,因此很容易出现阀座与阀芯间存在空隙的情况,导致出现阀内漏的情况。

同时,当气关阀阀杆较短时,也会出现此情况。

为了能很好的对此情况进行解决,则需要将阀杆调整到合适的长度;(3)阀座、阀芯变形泄漏。

此情况的核心因素是在生产时的锻造阶段存在问题而出现腐蚀的情况,同时流体介质在不断对阀门冲刷时也会出现泄漏的情况。

针对于此情况处理阶段,当阀座、阀芯变形较轻的情况下,则可以通过砂纸研磨的方式来实现密封光洁度的提升,来实现阀门密封性能提升的目标。

而阀座、阀芯损坏较为严重的情况下,则需要对配件进行更换。

2.5 振荡
导致阀门振荡的原因是很多的,例如:选型不当的情况下,阀门处于工作状态时流速、压力以及流阻的变化是非常剧烈的,那么当超过阀门所能够承受刚度的限度后,则会出现振荡。

同时,当系统频率与阀门频率相同的情况下,也会出现振荡的情况。

总的来说,由于导致阀门振荡的因素是非常多的,因此需要根据实际问题来制定具有针对性的应对措施。

针对于阀门振动较为轻微的情况下,可以采用提升阀门刚度的方式,例如运用活塞执行结构、选用刚度更大的阀门;当系统频率与阀门频率相同的情况下,可以对阀门进行更换;当阀门基座、管道的振动较为剧烈的情况下,最有效的方式便是实现支撑消除振动的增加。

2.6 阀门定位器
针对于阀门定位器所出现的故障类型,主要包含以下四种:其一,运用喷嘴挡板技术时,喷嘴孔很小是导致出现故障的核心因素,很容易出现气源被堵住的情况,导致阀门定位器无法正常的工作;其二,由于阀门定位器运用的是机械式力平衡原理工作,因此很容易受到振动、温度方面的影响,导致阀门定位器出现故障;其三,弹簧的弹性系数在受到外界因素的影响下,会出现阀门非线性的情况;其四,智能定位器与普通定位器存在着较大的差异,因此在将阀门定位器运用在紧急停止的情况下很容易出现电气转换器失控的情况,所造成的后果是非常危险的。

对此,为了能够尽可能的来对阀门定位器故障及时解决,应该根据具体情况来制定出具有针对性的措施,以发挥出智能定位器的可利用性与可靠性。

3 结语
总的来说,气动阀门的作用是自动化过程控制领域中的介质流量、压力、温度、液位等工艺参数。

由于当前气动阀门的故障类型是较多的,并且在故障处理的过程中具有较强的专业性。

对此,除了需要掌握相应的理论专业知识外,同时还需要不断的对故障处理的经验进行总结与归纳,以实现气动阀门维护水平的提升。

在合理的对故障解决的背景下,不但能够实现系统故障率的降低,同时在阀门利用率方面也具有显著的提升,有助于系统平稳、安全的运行,以创造更高的效益。

参考文献
[1]任文刚,朱强.基于LabVIEW的气动调节阀性能测试评估系统[J].仪表技术,2016,(09):15-19.
[2]宋海成.气动调节阀的常见故障及处理方法[J].自动化技术与应用,2015,(07):89-92.
[3]朱进.气动调节阀的故障分析及维修方法[J].南京工业职业技术学院学报,2016,(02):10-12.
[4]郭松,张志勇,高立华.气动调节阀日常维护与常见故障原因分析[J].中小企业管理与科技(下旬刊),2012,(02):284-285.
[5]郑英.气动调节阀常见故障及原因分析[J].科技信息,2013,(16):370.。

相关文档
最新文档