【数学】2016-2017年河南省南阳市唐河县七年级上学期数学期中试卷和解析答案PDF

合集下载

人教版七年级上册试卷2016—2017学年度第一学期期中考试试题(卷).docx

人教版七年级上册试卷2016—2017学年度第一学期期中考试试题(卷).docx

2016—2017学年度第一学期期中考试试题(卷)初一数学第I 卷(共30分)一、选择题(每小题3分,共30分)1.-3的倒数是( )A .3B .31C .-3D .-31 2.一种巧克力的质量标识为“25.024±”g ,则下列巧克力中不合格的是( )A .23.95B .24.05C .24.25D .24.353.在有理数﹣2.4,3,0,320.&&,﹣100,37,12π中,整数有( )个 A .2 B .3C .4D .5 4.第十七届西洽会上,延安新区签约4个项目,总投资额11 536 000 000元,则11 536 000 000用科学技术法可表示为( )A .115.36×810B .1.1536×910C .1.1536×1010D .11.56×9105.下列说法不正确的是( )A .0既不是正数,也不是负数B .-1是最大的负整数C .-a 一定是负数D .倒数等于它本身的数有1和-16.点A 为数轴上表示-3的点,当点A 沿数轴移动4个单位长度时,它所表示的数是 ( )A .1B .-7C .1或-7D .以上都不对7.下列各式中,去括号正确的是( )A .12)1(2-+=-+y x y xB .22)1(2++=--y x y xC .22)1(2--=--y x y xD .22)1(2+-=--y x y x8.下列说法中正确的个数是( )①a 和0都是单项式 ②多项式-3a 2b +7a 2b 2-2ab +l 的次数是3③单项式xy π2-的系数为-2 ④x 2+2xy -y 2可读作x 2、2xy 、-y 2的和 A .l 个 B .2个 C .3个 D .4个9.今天数学课上,老师讲了多项式的加减,小明做作业时突然发现一道题()+-=⎪⎭⎫ ⎝⎛-+---+-222222124213x y xy x y xy x ________+2y 空格的地方被钢笔水弄污了,那么空格中的一项是 ( )A .xy 7B .xy 7-C .xyD .xy -10.若一个两位数的十位数字是a ,个位数字是b ,这个两位数恰好等于它的各位数字之和的 4倍,则这样的两位数称为“巧数”。

2016--2017学年度上期中七年级数学答案

2016--2017学年度上期中七年级数学答案

2016~2017学年度第一学期期中考试七年级数学答案一.选择题二.填空题11. -3 12. 1.89 13. -5或1 14. 3n+2 15. 5 16. 4n三.解答题17.(1)解:原式=75320-++- (2)解:原式=()()()⎪⎭⎫ ⎝⎛-⨯-+⨯-+⨯-211241123112=827+- =()634+-+-=19- =1- (3)解:原式=()()7584--⨯-+ (4)解:原式=()⎥⎦⎤⎢⎣⎡-⨯+-÷-849924 =7404+- =()2724-÷- =29- =98(第17题每小题3分,共12分)18.(第18题每个数1分,共6分)19.解:⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛--22523451331y x y x x =22523453331y x y x x +-+- ……2分 =24y x +- ……3分当273-=x ,53=y 时,则3-=x ,53=y 时, ……4分 原式=()()259122591253342=+=⎪⎭⎫⎝⎛+-⨯-. ……6分 20.(1)解:4.51.18.12.13.13.12.115.111=++--++-++. ……3分答:这10袋小麦总计超过5.4kg . ……4分 (2)()226355.2100104.590=⨯⨯÷+ ……7分答:估计这100袋小麦总销售额是22635元. ……8分21.解:小纸盒的表面积是:()ca bc ab 222++ ……2分大纸盒的表面积是:()ca bc ab 686++ ……4分做这两个纸盒共用料:()()ca bc ab ca bc ab ca bc ab 8108686222++=+++++. ……6分 做大纸盒比做小纸盒多用料:()()ca bc ab ca bc ab ca bc ab 464222686++=++-++.……8分 22.(1) 115 , 308 , 460 ; ……3分(2)解:当购买200本时,需200×2.2=440(元) ……4分 当购买201本时,需201×2=402(元) ……5分答:买201本最省钱. ……6分 (3)500-82=418418÷2.2=190(本) ……8分 418÷2=209(本) ……10分 答:小明购买了190或209本 23.(1) 3x +3 , 3y +14 ……2分(2)解:设最小数为x ,则76871=++++++x x x x ……3分 15=x答:这四个数中最小数是15. ……5分 (3)解:依题意有2161-=m a ,2132+=m a ……7分①当321=-a a ② 当321-=-a a()()3213216=+--m m ()()3213216-=+--m m15=m ……9分 13=m (不符合题意,舍去)……10分答:最中心的数是15.24.(1)21;1; 43; ……3分 (2)①解:设t 的十位数字为a ,个位数字为b ,则b a t +=10,a b t +='10,()181010=+-+b a a b , ……4分2+=a b ……5分则t 的值有:13,24,35,46,57,68,79. ……7分②对应的()t F 的值为131,32,75,232,193,174,791;则()t F 的最大值为75.……8分(3)设t 的十位数字为x ,则个位数字为2+x ,p 的十位数字为y ,则个位数字为2+y ,四位数()22101001000+++++=x y y x W , ……10分 四位数()()x y y x N +++++=10210021000`……11分W -N =()()()[]21781021002100022101001000-=+++++-+++++x y y x x y y x . ……12分。

2016-2017学年第一学期七年级数学期中试卷(附答案)

2016-2017学年第一学期七年级数学期中试卷(附答案)

2016-2017学年第一学期七年级数学期中试卷(附答案)2016-2017学年度第一学期期中教学质量测试七年级数学试卷题号一二三四总分得分一.选择题(每小题3分,共30分) 1. 下列各数中,为负数的是() A、-1 B、0 C、2 D、3.14 2. 如图所示的图形为四位同学画的数轴,其中正确的是()3. 九台全区7年级学生大约有10200人,10200这个数用科学记数法表示为() A、 B、 C、 D、 4.下列各数与相等的()A. B. C. D. 5.将式子3-5-7写成和的形式,正确的是() A.3+5+7 B.-3+(-5)+(-7) C.3-(+5)-(+7) D.3+(-5)+(-7) 6.如果,且m+n<0,则下列选项正确的是() A、m<0, n< 0 B、m>0, n< 0 C、m,n异号,且负数的绝对值大 D、m,n异号,且正数的绝对值大 7.一个数的偶数次幂是正数,这个数是() A.正数 B.负数 C.正数或负数 D.有理数 8.在CCTV“开心辞典”栏目中,主持人问这样一道题目:“ 是最小的正整数,是最大的负整数,是绝对值最小的有理数.”请问:,,三数之和是() A.-1 B.0 C.1 D.2 9. 下列代数式符合书写要求的是() A、 B、 C、 5 D、10.一个两位数,十位数字是,个位数字是,则这个两位数用式子表示为() A、 B、 C、 D、二、填空题(每小题3分,共18分)11. 某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg、(25±0.2)kg、(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差_________kg。

12. 九台区中小学生大约有8.9万人,近似数8.9万精确到_________位 13. 比较大小(填“>”或“<” )_____ 14. 在数-5,-3,-2,2,6中,任意两个数相乘,所得的积中最小的数是________. 15. 观察下面一列数:-,,-,,…,按照这个规律,第2016个数是_________ 16.小明身上带着元钱去商店里买学习用品,付给售货员(<)元,找回元,则小明身上还有_________元(用含有、、来表示)三、计算题(本大题共6小题,共32分) 17.(5分)�D3+(-4)�D(-5)四、解答题(本大题共6小题,共40分) 23.(7分)请将数轴补全,然后把数-4,1,0,,-(-5)表示在数轴上,并按从小到大的顺序,从左到右串个糖葫芦,把数填在“○”内24.(7分)已知:与互为相反数求的值 25.(8分)某天一个巡警骑摩托车在一条南北大道上巡逻,他从岗亭出发,巡逻了一段时间停留在A处,规定以岗亭为原点,向北方向为正,这段时间行驶纪录如下(单位:千米):+10,-9,+7,-15,+6,-14,+4,-2 (1)A在岗亭哪个方向?距岗亭多远?(2)若摩托车行驶10千米耗油0.5升,且最后返回岗亭,这时摩托车共耗油多少升?26.(8分)人在运动时每分钟心跳的次数通常和人的年龄有关,如果用表示一个人的年龄,用表示正常情况下这个人在运动时所能承受的每分钟心跳的最高次数,那么 (1)正常情况下,在运动时一个20岁的人所能承受的每分钟心跳的最高次数是多少? (2)一个50岁的人运动时10秒心跳的次数为23,请问他有危险吗?为什么?27.(10分)如图,已知数轴上点A表示的数为-7,点B表示的数为5,点C到点A,点B的距离相等,动点P从点A出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动的时间为(>0)秒(1)点C表示的数是_________ (2)求当等于多少秒时,点P到达点B 处(3)点P表示的数是_________(用含有的代数式表示)(4)求当t等于多少秒时,PC之间的距离为2个单位长度七年级数学参考答案及评分标准一、选择题(每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案 A D B B D A C B A C 二、填空题(每小题3分,共18分) 11、 0.6;12、千;13、>;14、-30;15、;16、- + 。

2016--2017学年度上期中七年级数学试卷

2016--2017学年度上期中七年级数学试卷

第1个图案 第2个图案 第3个图案2016~2017学年度第一学期期中考试七年级数学试卷一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答案卡上将正确答案的代号涂黑.1.-4的相反数是 A .-4 B .41 C .41- D .4 2.气温由-1℃上升2℃后是A .-1℃B .1℃C .2℃D .3℃ 3.与a -(a -b +c )相等的式子是( ) A .a -b +c B .a +b -c C .b -c D .c -b 4.据科学家推测,地球的年龄大约是4 600 000 000年,这个数用科学记数法表示为 A .8106.4⨯ B .81046⨯ C .9106.4⨯ D .101046.0⨯ 5.下列计算正确的是A .mn n m 523=+B .134=-mn mnC .2222222n m n m =+D .n m n m n m 222235=- 6.下列说法正确的是A .单项式xy 4-的系数是4,次数是2B .单项式y x 221的系数是21,次数是2C .单项式y x 251-的系数是51-,次数是3 D .单项式32y x -的系数是5,次数是17.飞机的无风航速为a km/h ,风速为20 km/h .飞机顺风飞行4h 的行程比逆风飞行3h 的行程多A . )140(+a kmB .)40(+a kmC .)207(+a kmD .a 7km 8.一列关于x 的有规律的单项式:x ,23x ,35x ,47x ,59x ,611x ,…,按照上述规律,第2016个单项式是A .20162016xB .20154031xC .20164031xD .20164033x9.某校七年级1班有学生a 人,其中女生人数比男生人数的54少3人,则男生的人数为A .9124+aB .9155-aC .9155+aD .9124-a10.已知b a b a -=-且ab ≠0,下列结论正确的是A .b a +<0B .b a ->0C .2a ≥3b D .ba≥1二、填空题(共6小题,每小题3分,共18分) 11.如果水位升高2m 时水位变化记作+2m ,那么水位下降3m 时水位变化记作__________m . 12.按要求用四舍五入法取近似数1.8945≈__________.(精确到0. 01)13.数轴上表示与-2的点距离3个单位长度的点所表示的数是_________.14. 如图,用灰、白两色正方形瓷砖铺设地面,第n 个图案中白色瓷砖块数为_________.15.若2x+5y=3,则10y-(1-4x )的值是_________.16.把四个有理数1,2,3,-5平均分成两组,假设1,3分为一组,2,-5分为另一组,规定:.已知正有理数m ,n (m <n ),以及它们的相反数,则所有A 的和为__________(用含m ,n 的整式表示).三、解答题(共8小题,共72分) 17.(本题12分)计算: (1)()()()()75320+---++- (2)()⎪⎭⎫ ⎝⎛-+⨯-21413112(3)()()4285243÷--⨯-+ (4)()⎥⎥⎦⎤⎢⎢⎣⎡-⨯⎪⎭⎫ ⎝⎛-+-÷-32222332518.(本题6分)如图,请在数轴上表示出3-的相反数,21-的倒数,绝对值等于5的数,平方等于16的数.19.(本题6分)先化简,再求值:⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛--22523451331y x y x x ,其中273-=x ,53=y .20.(本题8分)仓库现有100袋小麦出售,从中随机抽取10袋小麦,以90kg 为标准,超过的质量记为正数,不足的质量记为负数,称得的结果记录如下:+1,+1,+1.5,-1,+1.2,+1.3,-1.3,-1.2,+1.8,+1.1(1)这10袋小麦总计超过或不足多少千克?(2)若每千克的小麦的售价为2.5元,估计这批小麦....总销售额是多少元?)5(231-+++=A21.(1(2)做大纸盒比做小纸盒多用料多少平方厘米? 22.(本题10分)一种笔记本售价是2.3元/本,如果一次买100本以上(不含100本),售价是2.2元/本,如果一次买200本以上(不含200本),售价是2元/本.(1)如果购买50本,需要__________元,购买140本,需要__________元,购买230本,需要__________元.(2)如果需要200本笔记本,怎么购买最省钱? (3)当小明花500元购买笔记本时,销售员找回小明82元,请问小明购买了多少本笔记本? 23.(本题10分)(1)2016年11月的日历如图1所示,用1×3的长方形框出3个数.如果任意圈出一横行左右..相邻的三个数,设最小的数为x ,用含x 的式子表示这三个数的和为__________;如果任意圈出一竖列上下..相邻的三个数,设最小的数为y ,用含y 的式子表示这三个数的和为__________.(2)如图2,是2016年某月的月历,用一个2×2的正方形框出4个数,是否存在被框住的4个数的和为76,如果存在,请求出这四个数中的最小的数字,如果不存在,请说明理由.(3)如图2,用一个3×3的正方形框出9个数,在框出的9个数中,记前两行共6个数的和为a 1,最后一行3个数的和为a 2,若︱a 1-a 2︱=3.请求出正方形框中位于最中心..的数字m 的值.图1 图224.(本题12分)任意一个正整数n 都可以分解为两个正整数的乘积:q p n ⨯=(p ,q 是正整数,且p ≤q ),在n 的所有这种分解中,当p q -最小时,称q p ⨯是n 的最佳分解,并规定:()q pn F =.例如:3的最佳分解是3=1×3,()313=F ;20的最佳分解是20=4×5,()5420=F . (1)直接写出:()2F =__________; )9(F =__________;()12F =__________;(2)如果一个两位正整数t ,交换其个位上的数与十位上的数得到新的两位数记为t ',且18=-'t t .①求出正整数t 的值;②我们称数t 与t '互为一对“吉祥数”,直接写出所有“吉祥数t ”中()t F 的最大值; (3)在(2)条件下,在“吉祥数t ”的中间再插入另一个“吉祥数p ”组成一个四位数W ,再在“吉祥数t '”中间插入“吉祥数p '”(p 与p '互为一对“吉祥数”),又得到一个新的四位数N ,请用字母表示四位数W 、N,并求W -N的值.。

人教版七年级上册试卷2016-2017(上)期中测试七年数学试卷

人教版七年级上册试卷2016-2017(上)期中测试七年数学试卷

初中数学试卷2016-2017(上)期中测试七年数学试卷(满分:120分时间:80分钟)一、选择题(每空3分,共10小题,共计30分)1.如果+20%表示增加20%,那么﹣6%表示()A.增加14% B.增加6% C.减少6% D.减少26%2.有理数a、b在数轴上的位置如图所示,则a、b的大小关系是()A.a<b B.a>b C.a=b D.无法确定3.在0,﹣(﹣1),(﹣3)2,﹣32,﹣|﹣3|,,a2中,正数的个数为()A.1个B.2个C.3个D.4个4.若2x2y1+2m和3x n+1y2是同类项,则m n的值是()A.B.﹣C.D.﹣5.下列各式正确的是()A.(a+1)﹣(﹣b+c)=a+1+b+c B.a2﹣2(a﹣b+c)=a2﹣2a﹣b+cC.a﹣2b+7c=a﹣(2b﹣7c)D.a﹣b+c﹣d=(a﹣d)﹣(b+c)6.一件夹克衫先按成本提高50%标价,再以8折(标价的80%)出售,结果获利20元,若设这件夹克衫的成本是x元,根据题意,可得到的方程是()A.(1+50%)x×80%=x﹣20 B.(1+50%)x×80%=x+20C.(1+50%x)×80%=x﹣20 D.(1+50%x)×80%=x+207.若|m|=3,|n|=7,且m﹣n>0,则m+n的值是()A.10 B.4 C.﹣10或﹣4 D.4或﹣48.已知ab≠0,则+的值不可能的是()A.0 B.1 C.2 D.﹣29.当x=2时,代数式ax3+bx+1的值为6,那么当x=﹣2时,这个代数式的值是()A.1 B.﹣4 C.6 D.﹣510.计算:31+1=4,32+1=10,33+1=28,34+1=82,35+1=244,…,归纳各计算结果中的个位数字的规律,猜测32017+1的个位数字是()A.0 B.2 C.4 D.8二、填空题(每空3分,共8题,共计24分)11.已知x﹣2y+3=0,则代数式﹣2x+4y+2017的值为__.12.若“★”是新规定的某种运算符号,设a★b=ab+a﹣b,则2★n=﹣8,则n= __ .13.在3,﹣4,5,﹣6这四个数中,任取两个数相乘,所得的积最大的是__ .14.某公司员工,月工资由m元增长了10%后达到__ 元.15.若单项式﹣a x b m与a n b y﹣1可合并为a2b4,则xy•mn= __.16.若x2+x-1的值为0,则代数式+2x2+2007的值为__ .17.若关于a,b的多项式(a2+2ab﹣b2)﹣(a2+mab+2b2)中不含ab项,则m= __.18.定义:a是不为1的有理数,我们把称为a的差倒数.如:2的差倒数是,﹣1的差倒数是.已知a1=﹣,a2是a1的差倒数,a3是a2的差倒数,a4是a 3的差倒数,…,依此类推,则a2016= __ .三.计算下列各题(每题4分,共4题,共计16分)19.2+0.25﹣(﹣7)+(﹣2)﹣1.5﹣2.7520.(+1﹣2.75)×(﹣24)+(﹣1)2017.21( + - + )×(-48)(简便运算)22.-+0.5÷×[-3+]四.解答题(每题5分,共2题,共计10分)23.化简:(1)2x2﹣(﹣x2+3xy+2y2)﹣(x2﹣xy+2y2);(2)已知A=3-4xy+2, B=+2xy-5, 若2A-B+C=0,求C五.解下列方程:(每题5分,共4题,共计20分)24.(1)4x﹣3(5﹣x)=6;(2) [x﹣(x﹣1)]=(x+2)(3)(x+1)-=1(4)-=0.5x+2六.应用题(25题8分,26题12分)25.某工厂计划生产一种新型豆浆机,每台豆浆机需3个甲种零件和5个乙种零件正好配套,已知车间每天能生产甲种零件450个或乙种零件300个,现要在21天中使所生产的零件全部配套,那么应该安排多少天生产甲种零件,安排多少天生产乙种零件?26.数轴上A表示-6的点。

2016-2017学年人教版数学七年级上期中试卷含答案

2016-2017学年人教版数学七年级上期中试卷含答案

期中测评(时间:120分钟,满分:120分)一、选择题(每小题3分,共36分)1.下列各题中计算正确的个数是( )(1)=-3 (-24)÷(-8)(2)=-4 (+32)÷(-8)(3)=1 (-45)÷(-45)(4)=-3 (-334)÷(-1.25)A.1 B.2 C.3 D.4 2.太阳的半径约为696 000 km,把696 000这个数用科学记数法表示为( )A .6.96×103B .69.6×105C .6.96×105D .6.96×1063.下列各对单项式是同类项的是( ) A.-x 3y 2与3x 3y 2 12B.-x 与y C.3与3a D.3ab 2与a 2b4.在数轴上有两个点A ,B ,点A 表示-3,点B 与点A 相距5.5个单位长度,则点B 表示的数为( ) A.-2.5或8.5 B.2.5或-8.5 C.2.5 D.-8.5 5.一个数的平方和它的倒数相等,则这个数是( )A.1B.-1C.±1D.±1和06.下列各式计算正确的是( )A.6a+a=6a 2B.-2a+5b=3abC.4m 2n-2mn 2=2mnD.3ab 2-5b 2a=-2ab 27.某市出租车收费标准(燃油费计入起步价中)调整为:起步价7元(不超过3 km 收费7元).3 km 后每千米1.4元(不足1 km 按1 km 算).小明坐车x (x>3)km,应付车费( ) A.6元B.6x 元C.(1.4x+2.8)元D.1.4x 元8.下列各数:0.01,10,-6.67,-,0,-(-3),-|-2|,-(-42),其中属于非负整数的个数为 ( )13A.1 B.2 C.3 D.49.一个多项式加上3x 2y-3xy 2得x 3+3x 2y ,则这个多项式是( )A.x 3+3xy 2B.x 3-3xy 2C.x 3-6x 2y+3xy 2D.x 3-6x 2y-3x 2y10.设a=-2×32,b=(-2×3)2,c=-(2×3)2,则a ,b ,c 的大小关系是( ) A.a<c<b B.a<b<c C.c<a<b D.c<b<a 11.已知x 2+3x+5的值是7,则多项式3x 2+9x-2的值是( )A.6B.4C.2D.012.将正偶数按下表排成5列若干行,第1列 第2列 第3列 第4列 第5列 第1行 2 4 6 8 第2行 16 14 12 10 第3行 18 20 22 24 第4行 32 30 28 26 ………………根据上述规律,2 016应为( ) A.第251行 第1列 B.第251行 第5列 C.第252行 第1列 D.第252行 第4列二、填空题(每小题4分,共20分)13.已知a ,b 互为相反数,则a+2a+3a+…+49a+50a+50b+49b+…+3b+2b+b= . 14.在式子,3,m ,xy 2+1中,单项式有 个.xy 2,3x ,a +3215.多项式x 3y+2xy 2-y 5-12x 3是 次多项式,它的最高次项是 . 16.若有理数a ,b 满足|a+3|+(b-2)2=0,则a b 的值为 .17.规定一种新的运算:a △b=a×b-a+b+1.如,3△4=3×4-3+4+1=12-3+4+1=14,比较大小:(-3)△4 4△(-3).三、解答题(共64分)18.计算(每小题4分,共24分) (1)-4÷×(-30); 23―(-23)(2)-20+(-14)-(-18)-13; (3)-22+|5-8|+24÷(-3)×; 13(4)÷(-5)-2.5÷; (-12557)58×(-14)(5)-5m 2n+4mn 2-2mn+6m 2n+3mn ; (6)2(2a-3b )-3(2b-3a ).19.(8分)先化简,再求值:3x 2y-,其中x=-1,y=2. [2xy -2(xy -32x 2y +2xy )]20.(8分)下表列出国外几个城市与北京的时差(带正号的数表示同一时刻比北京早的时间数)城市东京巴黎纽约芝加哥时差/时+1-7-13-14(1)如果现在时间是北京时间7:00,那么现在的纽约时间是多少?(2)如果现在的北京时间是7:00,小轩现在想给巴黎的姑姑打电话,你认为合适吗?21.(8分)某休闲广场是老百姓休闲娱乐的大型场所,其形状为长方形(如图),现要在广场的四角都设计一块半径相同的四分之一圆形的花坛,若圆的半径为r m,广场长为a m,宽为b m.(1)请列式表示广场空地的面积.(2)若休闲广场的长为800 m,宽为300 m,圆形花坛的半径为30 m,求广场空地的面积.(计算结果保留π)22.(8分)观察下列式子: -a+b=-(a-b ), 2-3x=-(3x-2), 5x+30=5(x+6), -x-6=-(x+6).由以上四个式子中括号的变化情况,说明它和去括号法则有什么不同?根据你的探索规律解决下列问题:已知a 2+b 2=5,1-b=-2,求-1+a 2+b+b 2的值.23.(8分)我们把符号“n !”读作“n 的阶乘”,规定“其中n 为自然数,当n ≠0时,n !=n ·(n-1)·(n-2)·…·2·1,当n=0时,0!=1”.例如:6!=6×5×4×3×2×1=720.又规定“在含有阶乘和加、减、乘、除运算时,应先计算阶乘,再乘除,后加减,有括号就先算括号里面的”.按照以上的定义和运算顺序,计算: (1)4!; (2); 0!2!(3)(3+2)!-4!;(4)用具体数试验一下,看看等式(m+n )!=m !+n !是否恒成立.参考答案一、选择题 1.B2.C 696000=6.96×105.3.A 根据所含字母相同且相同字母的指数也相同的项是同类项进行判断.4.B 当点B 在点A 的左侧时,点B 表示的数为-8.5;当点B 在点A 的右侧时,点B 表示的数为2.5.所以点B 表示的数为2.5或-8.5.5.A 0的平方为0但0没有倒数;-1的平方为1,倒数为-1;1的平方和它的倒数相等,都是1.6.D7.C 小明坐车x (x>3)km,应付车费=起步价7元+超过3km 的收费=7+1.4(x-3)=(1.4x+2.8)元. 8.D 非负整数即正整数和0,所以10,0,-(-3)=3,-(-42)=16属于非负整数. 9.A 这个多项式=(x 3+3x 2y )-(3x 2y-3xy 2)=x 3+3x 2y-3x 2y+3xy 2=x 3+3xy 2. 10.C a=-2×32=-18,b=(-2×3)2=36,c=-(2×3)2=-36,因为-36<-18<36,所以c<a<b. 11.B 因为x 2+3x+5=7,所以x 2+3x=2.所以3x 2+9x-2=3(x 2+3x )-2=6-2=4. 12.C 二、填空题 13.014.3 单项式有,3,m 共3个. xy215.五 -y 516.9 因为|a+3|≥0,(b-2)2≥0,|a+3|+(b-2)2=0,所以a+3=0,b-2=0,即a=-3,b=2,所以a b =(-3)2=9.17.> (-3)△4=(-3)×4-(-3)+4+1=-12+3+4+1=-4,4△(-3)=4×(-3)-4+(-3)+1=-12-4-3+1=-18,-4>-18,所以(-3)△4>4△(-3). 三、解答题18.解:(1)-4÷×(-30)23―(-23)=-4××30=-6-20=-26. 32―23(2)-20+(-14)-(-18)-13 =-20-14+18-13 =(-20-14-13)+18 =-47+18=-29. (3)-22+|5-8|+24÷(-3)× 13=-4+3+24× (-13)×13=-1-=-.83113(4)÷(-5)-2.5÷ (-12557)58×(-14)=125× 15+57×15+52×85×14=25++1=26.1717(5)-5m 2n+4mn 2-2mn+6m 2n+3mn =(-5m 2n+6m 2n )+(-2mn+3mn )+4mn 2 =m 2n+mn+4mn 2. (6)2(2a-3b )-3(2b-3a ) =4a-6b-6b+9a=(4a+9a )+(-6b-6b )=13a-12b.19.解:原式=3x 2y-(2xy-2xy+3x 2y-4xy )=3x 2y-2xy+2xy-3x 2y+4xy=4xy.当x=-1,y=2时, 原式=4×(-1)×2=-8. 20.解:(1)纽约时间是18:00.(2)北京是7:00,北京与巴黎的时差是-7,即巴黎要晚7小时,此时巴黎恰好是0:00,正好是深夜,小轩不宜给姑姑打电话.21.解:(1)(ab-πr 2)m 2.(2)(240000-900π)m 2.22.解:四个式子中括号的变化规律其实就是去括号的逆运算.-1+a 2+b+b 2=a 2+b 2-1+b=(a 2+b 2)-(1-b ). 因为a 2+b 2=5,1-b=-2, 所以原式=5-(-2)=7. 23.解:(1)4!=4×3×2×1=24;(2);0!2!=12×1=12(3)(3+2)!-4!=5×4×3×2×1-4×3×2×1=120-24=96; (4)如当m=3,n=2时, (m+n )!=(3+2)!=120, m !+n !=3!+2!=8,所以(m+n )!≠m !+n !,等式(m+n )!=m !+n !不恒成立.。

最新-学年中学七年级(上)期中数学试卷两套汇编二附答案解析.docx

最新-学年中学七年级(上)期中数学试卷两套汇编二附答案解析.docx

2016-2017学年中学七年级(上)期中数学试卷两套汇编二附答案解析2016-2017学年七年级(上)期中数学试卷一、精心选一选(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内1.4的相反数是()A.4 B.﹣4 C.D.2.|﹣|等于()A.﹣7 B.7 C.﹣ D.3.据新华社报道:在我国南海某海域探明可燃冰储量约有194亿立方米,194亿用科学记数法表示为()A.1.94×1010B.0.194×1010C.19.4×109D.1.94×1094.化简﹣5ab+4ab的结果是()A.1 B.a C.b D.﹣ab5.一个多项式减去x2﹣3y2等于x2+2y2,则这个多项式是()A.﹣2x2+y2B.2x2﹣y2C.x2﹣2y2D.﹣2x2﹣y26.若|a+3|+|b﹣2|=0,则a b的值为()A.6 B.﹣6 C.9 D.﹣97.单项式﹣x n+1y3与y b x2是同类项,则a,b的值分别为()A.a=1,b=2 B.a=1,b=3 C.a=2,b=2 D.a=2,b=38.按下列图示的程序计算,若开始输入的值为x=3,则最后输出的结果是()A.6 B.21 C.156 D.231二.用心填一填(每小题3分,共21分)9.在(﹣4)2,﹣42,(﹣3)2,﹣(﹣3)中,负数有个,互为相反数的是.10.用四舍五入的方法将3.495精确到十分位是,精确到0.01是.11.规定二阶行列式=ad﹣bc,依据此法则计算=.12.单项式﹣的系数是,次数是.13.在数轴上与﹣3的距离等于5的点表示的数是.14.若x2+x﹣1=0,则4x2+4x﹣6的值为.15.已知+=0,则的值为.三、解答题16.计算(1)(﹣+﹣)×(﹣12);(2)﹣22+3×(﹣1)2016﹣|﹣4|×5.17.先化简,再求值.(1)3(x2﹣2x﹣1)﹣4(3x﹣2)+2(x﹣1),其中x=﹣3(2)2(2a2b+3ab2)﹣3(a2b﹣1)﹣2ab2﹣2,其中a=﹣1,b=.18.某学校开展了“植树造林,从我做起”活动,共分成了三个植树组,第一组植树x棵,第二组植的树比第一组的2倍还多8棵,第三组植的树比第二组的一半少6棵,请求出三个组共植树多少棵(用字母表示).若x=130,请计算三个组共植树多少棵.19.有这样一道计算题:“计算(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y ﹣y3)的值,其中x=,y=﹣1”,甲同学把x=错看成x=﹣,但计算结果仍正确,你说是怎么一回事?20.(1)已知:a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,则a=;b=;c=.(2)若|x|=3,|y|=4,且ay<0,求a+b+x+y的值.21.某公路养护小组乘车沿东西向公路巡视维护.某天早晨从A地出发,最后收工时到达B地.约定向东为正方向,当天的行驶记录如下(单位:千米):+13,﹣14,+11,﹣10,﹣8,+9,﹣12,+8.(1)问B地在A地的哪个方向?它们相距多少千米?(2)若汽车行驶每千米耗油x升,求该天共耗油多少升?22.有理数a、b、c在数轴上的位置如图,(1)判断正负,用“>”或“<”填空:b﹣c0,a+b0,﹣a+c0(2)化简:|b﹣c|+|﹣a|.23.用火柴棒按下列方式搭建三角形:(1)填表:(2)当有n个三角形时,应用多少根火柴棒?(用含n的代数式表示);(3)当有2015根火柴棒时,照这样可以摆多少个三角形?参考答案与试题解析一、精心选一选(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内1.4的相反数是()A.4 B.﹣4 C.D.【考点】相反数.【分析】根据相反数的性质,互为相反数的两个数和为0,采用逐一检验法求解即可.【解答】解:根据概念,(4的相反数)+(4)=0,则4的相反数是﹣4.故选:B.2.|﹣|等于()A.﹣7 B.7 C.﹣ D.【考点】绝对值.【分析】根据绝对值的意义进行化简.【解答】解:因为|﹣|=故选D.3.据新华社报道:在我国南海某海域探明可燃冰储量约有194亿立方米,194亿用科学记数法表示为()A.1.94×1010B.0.194×1010C.19.4×109D.1.94×109【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将194亿用科学记数法表示为:1.94×1010.故选:A.4.化简﹣5ab+4ab的结果是()A.1 B.a C.b D.﹣ab【考点】合并同类项.【分析】根据合并同类项的法则把系数相加即可.【解答】解:原式=(﹣5+4)ab=﹣ab,故选:D.5.一个多项式减去x2﹣3y2等于x2+2y2,则这个多项式是()A.﹣2x2+y2B.2x2﹣y2C.x2﹣2y2D.﹣2x2﹣y2【考点】整式的加减.【分析】根据题意列出关系式,去括号合并即可得到结果.【解答】解:根据题意得:(x2﹣3y2)+(x2+2y2)=x2﹣3y2+x2+2y2=2x2﹣y2.故选B6.若|a+3|+|b﹣2|=0,则a b的值为()A.6 B.﹣6 C.9 D.﹣9【考点】非负数的性质:绝对值.【分析】根据非负数的性质,几个非负数的和等于0,则每个数等于0,据此即可求得a和b的值,从而求解.【解答】解:根据题意得:a+3=0,b﹣2=0,解得:a=﹣3,b=2.则ab=(﹣3)2=9.故选C.7.单项式﹣x n+1y3与y b x2是同类项,则a,b的值分别为()A.a=1,b=2 B.a=1,b=3 C.a=2,b=2 D.a=2,b=3【考点】同类项.【分析】根据同类项的概念可得方程:a+1=2,b=3,解方程求得a,b的值.【解答】解:∵单项式﹣x n+1y3与y b x2是同类项,∴a+1=2,解得a=1,b=3.故选:B.8.按下列图示的程序计算,若开始输入的值为x=3,则最后输出的结果是()A.6 B.21 C.156 D.231【考点】代数式求值.【分析】观察图示我们可以得出关系式为:,因此将x的值代入就可以计算出结果.如果计算的结果<等于100则需要把结果再次代入关系式求值,直到算出的值>100为止,即可得出y的值.【解答】解:依据题中的计算程序列出算式:由于,∵6<100∴应该按照计算程序继续计算,∵21<100∴应该按照计算程序继续计算,∴输出结果为231.故选D.二.用心填一填(每小题3分,共21分)9.在(﹣4)2,﹣42,(﹣3)2,﹣(﹣3)中,负数有1个,互为相反数的是(﹣4)2与﹣42.【考点】正数和负数.【分析】先化简题目中的数据即可解答本题.【解答】解:∵(﹣4)2=16,﹣42=﹣16,(﹣3)2=9,﹣(﹣3)=3,故答案为:1,(﹣4)2与﹣42.10.用四舍五入的方法将3.495精确到十分位是 3.5,精确到0.01是 3.50.【考点】近似数和有效数字.【分析】根据“求一个小数的近似数,要看精确到哪一位,就从它的下一位运用“四舍五入”取得近似值”进行解答即可.【解答】解:用四舍五入的方法将3.495精确到十分位是3.5,精确到0.01是3.50;故答案为:3.5,3.50.11.规定二阶行列式=ad﹣bc,依据此法则计算=11.【考点】有理数的混合运算.【分析】原式利用已知的新定义化简即可得到结果.【解答】解:根据题意得:2×4﹣1×(﹣3)=8+3=11,故答案为:1112.单项式﹣的系数是﹣,次数是3.【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:﹣的系数是﹣,次数是3.故答案是:﹣;3.13.在数轴上与﹣3的距离等于5的点表示的数是﹣8或2.【考点】数轴.【分析】设该点表示的数为x,根据绝对值的意义可列出方程|x+3|=5,求出x 即可.【解答】解:设该点表示的数为x,∴|x+3|=5,∴x+3=±5,x=﹣8或2;故答案为:﹣8或214.若x2+x﹣1=0,则4x2+4x﹣6的值为﹣2.【考点】代数式求值.【分析】将所求代数式进行适当的变形后,将x2+x﹣1=0整体代入即可求出答案.【解答】解:∵x2+x=1,∴原式=4(x2+x)﹣6=4﹣6=﹣2故答案为:﹣215.已知+=0,则的值为﹣1.【考点】绝对值.【分析】先判断出a、b异号,再根据绝对值的性质解答即可.【解答】解:∵ +=0,∴a、b异号,∴ab<0,∴==﹣1.故答案为:﹣1.三、解答题16.计算(1)(﹣+﹣)×(﹣12);(2)﹣22+3×(﹣1)2016﹣|﹣4|×5.【考点】有理数的混合运算.【分析】(1)根据乘法分配律简便计算;(2)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解答】解:(1)(﹣+﹣)×(﹣12)=×12﹣×12+×12=2﹣9+5=﹣2;(2)﹣22+3×(﹣1)2016﹣|﹣4|×5=﹣4+3×1﹣4×5=﹣4+3﹣20=﹣21.17.先化简,再求值.(1)3(x2﹣2x﹣1)﹣4(3x﹣2)+2(x﹣1),其中x=﹣3(2)2(2a2b+3ab2)﹣3(a2b﹣1)﹣2ab2﹣2,其中a=﹣1,b=.【考点】整式的加减—化简求值.【分析】(1)首先去括号,合并同类项,进行化简后,再代入x的值即可求值;(2)首先去括号,合并同类项,进行化简后,再代入a、b的值即可求值.【解答】解:(1)原式=3x2﹣6x﹣3﹣12x+8+2x﹣2,=3x2﹣16x+3,当x=﹣3时,原式=3×(﹣3)2﹣16×(﹣3)+3=27+48+3=78;(2)原式=4a2b+6ab2﹣3a2b+3﹣2ab2﹣2,=a2b+4ab2+1,当a=﹣1,b=时,原式=1×+4×(﹣1)×+1=.18.某学校开展了“植树造林,从我做起”活动,共分成了三个植树组,第一组植树x棵,第二组植的树比第一组的2倍还多8棵,第三组植的树比第二组的一半少6棵,请求出三个组共植树多少棵(用字母表示).若x=130,请计算三个组共植树多少棵.【考点】代数式求值;列代数式.【分析】先用含x的式子表示出第二组,第三组的植树棵树,然后求得各组的和,最后将x=130代入求解即可.【解答】解:第一组植树x棵,第二组植的树(2x+8)棵,第三组植的树(x﹣2)棵.三个组共植树的棵树=x+2x+8+x﹣2=4x+6.当x=130时,4x+6=4×130+6=526.所以三个小组共植树526棵.19.有这样一道计算题:“计算(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y ﹣y3)的值,其中x=,y=﹣1”,甲同学把x=错看成x=﹣,但计算结果仍正确,你说是怎么一回事?【考点】整式的加减—化简求值.【分析】先对原代数式化简,结果中不含x项,故计算结果与x的取值无关,故甲同学把x=错看成x=﹣,但计算结果仍正确.【解答】解:原式=2x3﹣3x2y﹣2xy2﹣x3+2xy2﹣y3﹣x3+3x2y﹣y3=﹣2y3,∵结果中不含x项,∴与x的取值无关.∴甲同学把x=错看成x=﹣,但计算结果仍正确.20.(1)已知:a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,则a=1;b=﹣1;c=0.(2)若|x|=3,|y|=4,且ay<0,求a+b+x+y的值.【考点】有理数的加法;绝对值.【分析】(1)根据最小的正整数是1,最大的负整数是﹣1,0的绝对值最小确定a、b、c的值;(2)由绝对值的意义,求出x、y,再由ay<0,确定y的值.代入代数式求出a+b+x+y的值.【解答】解:∵a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,∴a=1,b=﹣1,c=0;故答案为1,﹣1,0.(2)因为a=1,由于ay<0,所以y<0.因为|x|=3,|y|=4,所以x=±3,y=﹣4.当a=1,b=﹣1,x=3,y=﹣4时a+b+x+y=1+(﹣1)+3+(﹣4)=﹣1;当a=1,b=﹣1,x=﹣3,y=﹣4时a+b+x+y=1+(﹣1)+(﹣3)+(﹣4)=﹣7.21.某公路养护小组乘车沿东西向公路巡视维护.某天早晨从A地出发,最后收工时到达B地.约定向东为正方向,当天的行驶记录如下(单位:千米):+13,﹣14,+11,﹣10,﹣8,+9,﹣12,+8.(1)问B地在A地的哪个方向?它们相距多少千米?(2)若汽车行驶每千米耗油x升,求该天共耗油多少升?【考点】有理数的加法;正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【解答】解:(1)将行驶记录所有的数据相加,得结果为﹣3,∵约定向东为正方向,∴B地在A地的西边,它们相距3千米.(2)汽车行驶每千米耗油x升,设该天共耗油y升,则y=(13+14+11+10+8+9+12+8)x=85x升.∴该天共耗油85x升.22.有理数a、b、c在数轴上的位置如图,(1)判断正负,用“>”或“<”填空:b﹣c<0,a+b<0,﹣a+c>0(2)化简:|b﹣c|+|﹣a|.【考点】数轴;绝对值.【分析】根据数轴确定出a、b、c的正负情况以及绝对值的大小,然后解答即可.【解答】解:由图可知,a<0,b>0,c>0,且|b|<|a|<|c|,(1)b﹣c<0,a+b<0,﹣a+c>0;(2)|b﹣c|+|﹣a|=c﹣b﹣a.故答案为:<,<,>.23.用火柴棒按下列方式搭建三角形:(1)填表:(2)当有n个三角形时,应用多少根火柴棒?(用含n的代数式表示);(3)当有2015根火柴棒时,照这样可以摆多少个三角形?【考点】规律型:图形的变化类.【分析】(1)观察图形得到第①号图中的火柴棒根数为3根;第②号图中的火柴棒根数为(3+2)根;第③号图中的火柴棒根数为(3+2×2)根;…;(2)由此可推出第n号图中的火柴棒根数=3+2×(n﹣1)=(2n+1)根;(3)由(2)得到2n+1=2011,然后解方程即可.【解答】解:(1)结合图形,发现:后边每多一个三角形,则需要多2根火柴.搭1个这样的三角形要用3+2×0=3根火柴棒;搭2个这样的三角形要用3+213=5根火柴棒;搭3个这样的三角形要用3+2×2=7根火柴棒;则搭4个这样的三角形要用3+2×3=9根火柴棒;(2)根据(1)中的规律,得搭n个这样的三角形要用3+2(n﹣1)=2n+1根火柴棒.(3)2n+1=2015,n=1007,照这样2015根火柴棒可以摆1007个三角形.故答案为5,7,9;2016-2017学年七年级(上)期中数学试卷一、选择题(每小题3分,共36分)1.下列说法正确的是()A.前面带有“+”号的数一定是正数B.前面带“﹣”号的数一定是负数C.上升5米,再下降3米,实际上升2米D.一个数不是正数就是负数2.数轴上点A表示﹣4,点B表示2,则A,B两点之间的距离是()A.﹣2 B.﹣6 C.6 D.83.下列各对数中,互为相反数的是()A.﹣(﹣2)和2 B.+(﹣3)和﹣(+3)C. D.﹣(﹣5)和﹣|﹣5|4.下列各式中,等号不成立的是()A.|﹣4|=4 B.﹣|4|=﹣|﹣4|C.|﹣4|=|4|D.﹣|﹣4|=45.大于﹣小于的所有整数有()A.8个 B.7个 C.6个 D.5个6.下列说法中不正确的是()A.近似数1.8与1.80表示的意义不一样B.5.0万精确到万位C.0.200精确到千分位D.0.345×105用科学记数法表示为3.45×1047.下列计算正确的是()A.﹣12﹣8=﹣4 B.﹣5+4=﹣9 C.﹣1﹣9=﹣10 D.﹣32=98.若(2a﹣1)2+2|b﹣3|=0,则a b=()A.B.C.6 D.9.一个数的平方和它的倒数相等,则这个数是()A.1 B.﹣1 C.±1 D.±1和010.下列式子:x2+2, +4,,,﹣5x,0中,整式的个数是()A.6 B.5 C.4 D.311.下列说法中正确的是()A.﹣x的次数为0 B.﹣πx的系数为﹣1C.﹣5是一次单项式D.﹣5a2b的次数是3次12.一个三位数,若个位数是a,十位数是b,百位数是c,则这个三位数是()A.a+b B.abc C.1000a+10b+c D.100c+10b+a二、填空题(每小题3分,共18分)13.在知识抢答中,如果用+10表示得10分,那么扣20分表示为.14.按所列数的规律填上适当的数:3,5,7,9,,.15.比较大小:﹣(﹣)﹣|﹣3|;﹣0.1﹣0.001.(用“>”或“<”号)16.如果x、y互为相反数,且m、n互为倒数,则(mn﹣3)+(x+y)2008=.17.光的速度大约是300000000米每秒,用科学记数法可记作米每秒.18.单项式﹣的系数是,次数是.三、计算(每小题6分,共12分)19.20.﹣22+|5﹣8|+24÷(﹣3)×.四、(共16分)21.用简便方法运算12.5×3.7﹣2.3×12.5﹣12.5×(﹣6.6)22.已知,x=3,y=﹣2,试求代数式4x2﹣4xy+y2的值.五、解答题(共2小题,满分18分)23.将下列各数在数轴上表示出来,并把这些数按从小到大顺序进行排列,用“<”连接.4,﹣1.5,0,3,﹣2,1.24.某人到泉州市移动通讯营业厅办理手机通话业务,营业员给他提供了两种办理方式,甲方案:月租9元,每分钟通话费0.2元;乙方案:月租0元,每分钟通话费0.3元.(1)若此人每月平均通话x分钟,则两种方式的收费各是多少元?(用含x的代数式表示)(2)此人每月平均通话10小时,选择哪种方式比较合算?试说明理由.六、解答题(共2小题,满分20分)25.为了促进居民节约用电,某市电力公司规定如下的电费计算方法:每月用电不超过100度,按每度0.5元计算;如每月用电超过100度,则超出部分每度加收0.1元.(1)若某用户2008年8月份用电a度(a<100);9月份用电b度(b>100),请用代数式分别表示出该用户这两个月应交的电费.(2)若该用户2008年10月份用电113度,则他应交电费多少元?26.日照高速公路养护小组,乘车沿南北向公路巡视维护,如果约定向北为正,向南为负,当天的行驶记录如下(单位:千米)+17,﹣9,+7,﹣15,﹣3,+11,﹣6,﹣8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车耗油量为0.5升/千米,则这次养护共耗油多少升?参考答案与试题解析一、选择题(每小题3分,共36分)1.下列说法正确的是()A.前面带有“+”号的数一定是正数B.前面带“﹣”号的数一定是负数C.上升5米,再下降3米,实际上升2米D.一个数不是正数就是负数【考点】正数和负数.【分析】根据各个选项中的说法可以判断其是否正确,从而可以解答本题.【解答】解:+(﹣2)=﹣2,故选项A错误;﹣(﹣2)=2,故选项B错误;上升5米,再下降3米,实际上升2米,故选项C正确;一个数不是正数,就是负数或零,故选项D错误;故选C.2.数轴上点A表示﹣4,点B表示2,则A,B两点之间的距离是()A.﹣2 B.﹣6 C.6 D.8【考点】数轴.【分析】直接根据数轴上两点间的距离公式解答即可.【解答】解:∵数轴上点A表示﹣4,点B表示2,∴AB=|﹣4﹣2|=6.故选C.3.下列各对数中,互为相反数的是()A.﹣(﹣2)和2 B.+(﹣3)和﹣(+3)C. D.﹣(﹣5)和﹣|﹣5|【考点】相反数.【分析】根据互为相反数的两数之和为0可得出答案.【解答】解:A、﹣(﹣2)+2=4,故本选项错误;B、+(﹣3)﹣(+3)=﹣6,故本选项错误;C、﹣2=﹣,故本选项错误;D、﹣(﹣5)﹣|﹣5|=0,故本选项正确.故选D.4.下列各式中,等号不成立的是()A.|﹣4|=4 B.﹣|4|=﹣|﹣4|C.|﹣4|=|4|D.﹣|﹣4|=4【考点】绝对值.【分析】利用绝对值的性质解答即可.【解答】解:A.|﹣4|=4,所以此选项等号成立;B.﹣|4|=﹣4,﹣|﹣4|=﹣4,所以此选项等号成立;C.|﹣4|=4,|4|=4,所以此选项等号成立;D.﹣|﹣4|=﹣4≠4,所以此选项等号不成立,故选D.5.大于﹣小于的所有整数有()A.8个 B.7个 C.6个 D.5个【考点】有理数大小比较.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断出大于﹣小于的所有整数有多少个即可.【解答】解:大于﹣小于的所有整数有:﹣3,﹣2,﹣1,0,1,2,3,共7个,故选:B.6.下列说法中不正确的是()A.近似数1.8与1.80表示的意义不一样B.5.0万精确到万位C.0.200精确到千分位D.0.345×105用科学记数法表示为3.45×104【考点】科学记数法与有效数字.【分析】根据科学计数法和有效数字以及精确度进行选择即可.【解答】解:A、近似数1.8与1.80表示的意义不一样,故原来的说法正确;B、5.0万精确到千位,故原来的说法不正确;C、0.200精确到0.001,故原来的说法正确;D、0.345×105用科学记数法表示为3.45×104,故原来的说法正确;故选B.7.下列计算正确的是()A.﹣12﹣8=﹣4 B.﹣5+4=﹣9 C.﹣1﹣9=﹣10 D.﹣32=9【考点】有理数的乘方;有理数的加法;有理数的减法.【分析】分别根据有理数的加法、减法及乘方的运算法则计算出各选项的值.【解答】解:A、﹣12﹣8=﹣20,故本选项错误;B、﹣5+4=﹣1,故本选项错误;C、符合有理数的减法法则,故本选项正确;D、﹣32=﹣9,故本选项错误.故选B.8.若(2a﹣1)2+2|b﹣3|=0,则a b=()A.B.C.6 D.【考点】非负数的性质:偶次方;非负数的性质:绝对值;代数式求值;解二元一次方程组.【分析】由于平方与绝对值都具有非负性,根据两个非负数的和为零,其中每一个加数都必为零,可列出二元一次方程组,解出a、b的值,再将它们代入a b中求解即可.【解答】解:由题意,得,解得.∴a b=()3=.故选D.9.一个数的平方和它的倒数相等,则这个数是()A.1 B.﹣1 C.±1 D.±1和0【考点】有理数的乘方;倒数.【分析】分别计算出四个选项中有理数的平方及其倒数,找出相同的数即可.【解答】解:A、∵12=1,1的倒数是1,故本选项符合题意;B、∵(﹣1)2=1,1的倒数是﹣1,故本选项不符合题意;C、∵(±1)2=1,±1的倒数是±1,故本选项不符合题意;D、∵(±1)2=1,02=0;±1的倒数是±1,0没有倒数,故本选项不符合题意.故选A.10.下列式子:x2+2, +4,,,﹣5x,0中,整式的个数是()A.6 B.5 C.4 D.3【考点】整式.【分析】根据整式的定义分析判断各个式子,从而得到正确选项.【解答】解:式子x2+2,,﹣5x,0,符合整式的定义,都是整式;+4,这两个式子的分母中都含有字母,不是整式.故整式共有4个.故选:C.11.下列说法中正确的是()A.﹣x的次数为0 B.﹣πx的系数为﹣1C.﹣5是一次单项式D.﹣5a2b的次数是3次【考点】单项式.【分析】单项式的系数是指单项式中的数字因数,单项式的次数是指单项式所含字母的指数的和,根据定义即可判断各项.【解答】解:A、﹣x的次数是1,故本选项错误;B、﹣πx的系数是﹣π,故本选项错误;C、﹣5是0次单项式,故本选项错误;D、﹣5a2b的次数是2+1=3,故本选项正确;故选D.12.一个三位数,若个位数是a,十位数是b,百位数是c,则这个三位数是()A.a+b B.abc C.1000a+10b+c D.100c+10b+a【考点】列代数式.【分析】根据一个三位数=百位上的数×100+十位上的数×10+个位上的数求解即可.【解答】解:∵一个三位数,个位数是a,十位数是b,百位数是c,∴这个三位数是100c+10b+a.故选D二、填空题(每小题3分,共18分)13.在知识抢答中,如果用+10表示得10分,那么扣20分表示为﹣20.【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示,“正”和“负”相对.【解答】解:用+10表示得10分,那么扣20分用负数表示,那么扣20分表示为﹣20.故答案为:﹣20.14.按所列数的规律填上适当的数:3,5,7,9,11,13.【考点】有理数.【分析】先观察总结规律,再利用规律代入求解.【解答】解:本题所给的数都从小到大排列的奇数(2n+1),故应填11,13.15.比较大小:﹣(﹣)>﹣|﹣3|;﹣0.1<﹣0.001.(用“>”或“<”号)【考点】有理数大小比较.【分析】先去括号及绝对值符号,再比较大小即可.【解答】解:∵﹣(﹣)=>0,﹣|﹣3|=﹣3<0,∴﹣(﹣)>﹣|﹣3|;∵|﹣0.1|=0.1,|﹣0.001|=0.001,0.1>0.001,∴﹣0.1<﹣0.001.故答案为:>,<.16.如果x、y互为相反数,且m、n互为倒数,则(mn﹣3)+(x+y)2008=﹣2.【考点】代数式求值.【分析】由题意可知:x+y=0,mn=1,然后代入代数式即可求出答案.【解答】解:由题意可知:x+y=0,mn=1,∴原式=(1﹣3)+0=﹣2,故答案为:﹣217.光的速度大约是300000000米每秒,用科学记数法可记作3×108米每秒.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:300000000=3×108.故答案为:3.×108.18.单项式﹣的系数是﹣,次数是3.【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:单项式﹣的系数是﹣,次数是2+1=3.故答案为:﹣;3.三、计算(每小题6分,共12分)19.【考点】有理数的混合运算.【分析】对有理数式将转化为,将去括号,约分化简.【解答】解:,=,=﹣6﹣20,=﹣26.20.﹣22+|5﹣8|+24÷(﹣3)×.【考点】有理数的混合运算.【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:原式=﹣4+3﹣=﹣.四、(共16分)21.用简便方法运算12.5×3.7﹣2.3×12.5﹣12.5×(﹣6.6)【考点】有理数的混合运算.【分析】原式逆用乘法分配律计算即可得到结果.【解答】解:原式=12.5×(3.7﹣2.3+6.6)=12.5×8=100.22.已知,x=3,y=﹣2,试求代数式4x2﹣4xy+y2的值.【考点】代数式求值.【分析】首先将原式分解因式得出原式=(2x﹣y)2,再将已知代入求出即可.【解答】解:原式=(2x﹣y)2,∵x=3,y=﹣2,∴2x﹣y=8.∴原式=(2x﹣y)2=64.五、解答题(共2小题,满分18分)23.将下列各数在数轴上表示出来,并把这些数按从小到大顺序进行排列,用“<”连接.4,﹣1.5,0,3,﹣2,1.【考点】有理数大小比较;数轴.【分析】先在数轴上表示各个数,再比较即可.【解答】解:﹣2<﹣1.5<0<1<3<4.24.某人到泉州市移动通讯营业厅办理手机通话业务,营业员给他提供了两种办理方式,甲方案:月租9元,每分钟通话费0.2元;乙方案:月租0元,每分钟通话费0.3元.(1)若此人每月平均通话x分钟,则两种方式的收费各是多少元?(用含x的代数式表示)(2)此人每月平均通话10小时,选择哪种方式比较合算?试说明理由.【考点】列代数式;代数式求值.【分析】(1)甲方案的收费:月租+0.2×时间;乙方案收费:0.3×通话时间;(2)把10小时=600分钟代入(1)中的代数式计算即可.【解答】解:(1)甲方案:9+0.2x,乙方案:0.3x;(2)10小时=600分钟,甲方案收费:9+0.2×600=129(元),乙方案收费:0.3×600=180(元),∵129<180,∴甲方案合算.六、解答题(共2小题,满分20分)25.为了促进居民节约用电,某市电力公司规定如下的电费计算方法:每月用电不超过100度,按每度0.5元计算;如每月用电超过100度,则超出部分每度加收0.1元.(1)若某用户2008年8月份用电a度(a<100);9月份用电b度(b>100),请用代数式分别表示出该用户这两个月应交的电费.(2)若该用户2008年10月份用电113度,则他应交电费多少元?【考点】列代数式.【分析】(1)根据题意可以列出用电小于100度和大于100度时的代数式;(2)根据第一问中列出的代数式可以求得问题的答案【解答】解:(1)∵某市电力公司规定如下的电费计算方法:每月用电不超过100度,按每度0.5元计算;如每月用电超过100度,则超出部分每度加收0.1元,∴当a<100时,8月份应交的电费为:0.5a元;当b>100时,9月份应交的电费为:100×0.5+(b﹣100)×(0.5+0.1)=50+0.6b﹣60=(0.6b﹣10)元.(2)∵用户2008年10月份用电113度,113>100,∴0.6b﹣10=0.6×113﹣10=67.8﹣10=57.8(元).即该用户2008年10月份用电113度,则他应交电费57.8元.26.日照高速公路养护小组,乘车沿南北向公路巡视维护,如果约定向北为正,向南为负,当天的行驶记录如下(单位:千米)+17,﹣9,+7,﹣15,﹣3,+11,﹣6,﹣8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车耗油量为0.5升/千米,则这次养护共耗油多少升?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据有理数的加法,可得每次行程,根据绝对值的意义,可得答案;(3)根据单位耗油量乘以路程,可得答案.【解答】解:(1)17+(﹣9)+7+(﹣15)+(﹣3)+11+(﹣6)+(﹣8)+5+16=15(千米),答:养护小组最后到达的地方在出发点的北方距出发点15千米;(2)第一次17千米,第二次15+(﹣9)=6,第三次6+7=13,第四次13+(﹣15)=﹣2,第五次﹣2+(﹣3)=﹣5,第六次﹣5+11=6,第七次6+(﹣6)=0,第八次0+(﹣8)=﹣8,第九次﹣8+5=﹣3,第十次﹣3+16=13,答:最远距出发点17千米;(3)(17+|﹣9|+7+|﹣15|+|﹣3|+11+|﹣6|+|﹣8|+5+16)×0.5=97×0.5=48.5(升),答:这次养护共耗油48.5升.。

最新人教版2016-2017学年七年级数学(上册)期中测试卷及答案

最新人教版2016-2017学年七年级数学(上册)期中测试卷及答案

2016-2017学年七年级(上)期中数学试卷一、单项选择题(每小题3分,共24分)1.﹣2015的相反数是( )A.2015 B.C.﹣D.﹣20152.在﹣4,0,0.1,﹣1这四个数中,最大的数是( )A.﹣4 B.0 C.0.1 D.﹣13.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为( )A.44×108B.4.4×109C.4.4×108D.4.4×10104.已知一个单项式的系数是2,次数是3,则这个单项式可以是( )A.2y3B.2xy3C.﹣2xy2D.3x25.在数轴上表示数﹣1和2014的两点分别为A和B,则A和B两点间的距离为( ) A.2013 B.2014 C.2015 D.20166.下列计算正确的是( )A.﹣5﹣5=0 B.﹣1+1=0 C.﹣3÷=﹣1 D.43=127.下列各式正确的是( )A.2a+3b=5ab B.a+2a=3a2C.2a2﹣a2=2 D.b2﹣2b2=﹣b28.下列说法正确的有( )个①0是绝对值最小的数②两个有理数相加,和大于任何一个加数③平方是它本身的数有0和1④最大的负整数是﹣1,最小的正整数是1⑤有理数中不是正有理数就是负有理数.A.2 B.3 C.4 D.5二、填空题(每小题3分,共24分)9.如果节约20元钱,记作“+20”元,那么浪费12元钱,记作__________元.10.用四舍五入把有理数2.015精确到百分位是__________.11.若﹣x2y m与3yx n是同类项,则m﹣n=__________.12.某种商品原价每件b元,第一次降价是打八折(按原价的80%出售),第二次降价每件又减10元,这时的售价是__________元.13.若|x﹣2|+|y+3|=0,则xy=__________.14.小明写作业时,不慎将墨水滴在数轴上,根据图中数值,请你确定墨迹盖住部分的整数共有__________个.15.如图是一个程序运算,若输入的x为﹣1,则输出y的结果为__________.16.一列数据、﹣、、﹣…按此排列,那么第5个数据是__________.三、解答题(温馨提示:要有解题过程喔!)17.(18分)计算:(1)(﹣﹣+)×48﹣12(2)(﹣1)2015﹣[2﹣(﹣3)2]÷(﹣)(3)﹣14×3﹣9×(﹣)÷﹣8×(﹣)2.18.若a、b互为相反数,c、d互为倒数,m=﹣2,则代数式a+|m|﹣2015cd+b+m 的值.19.一个整式A加上2xy2﹣xy+5等于4xy2﹣xy﹣3,求:(1)整式A的次数为__________.(2)整式A.20.一天,小明和小红用温差测量山峰的高度,小明在山顶测得温度是﹣2.5℃,小红此时在山脚测得温度是5.5℃.已知该地区高度每增加100米,气温大约降低1℃.问这座山峰的高度大约是多少米?21.已知一个数为两位数,个位数字是a,十位数字比个位数字小4.(1)用含a的式子表示这个两位数为__________.(2)当a=5,求这个两位数的倒数.22.有一道题“先化简,再求值:(﹣4x2+2x﹣8y)﹣(x﹣2y)﹣1,其中x=,y=﹣2015,一位同学做题时把“y=﹣2015”错抄成了“y=2015”,但她的计算结果仍然正确,请你解释这是怎么回事?23.下面是用形状和大小都相同的黑色棋子摆成的图形,观察规律完成下列问题:个图形的棋子数为__________.(3)你知道第153个图形需要几颗棋子吗?24.曲昆高速公路养护小组,乘车沿南北向公路巡视维护,如果约定向北为正,向南为负,当天的行驶记录如下(单位:千米)+17,﹣9,+7,﹣15,﹣3,+11,﹣6,﹣8,+5,+16 (1)通过计算确定养护小组最后到达的地方在出发点的哪个方向?(2)养护过程中,养护小组行使了多少千米?(3)若汽车耗油量为每千米0.5升,每升7元,则这次养护共花了多少元钱?2016-2017学年七年级(上)期中数学试卷一、单项选择题(每小题3分,共24分)1.﹣2015的相反数是( )A.2015 B.C.﹣D.﹣2015【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣2015的相反数是2015,故选:A.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.在﹣4,0,0.1,﹣1这四个数中,最大的数是( )A.﹣4 B.0 C.0.1 D.﹣1【考点】有理数大小比较.【分析】先根据有理数的大小比较法则比较所有数的大小,即可得出选项.【解答】解:∵﹣4<﹣1<0<0.1,∴最大的数是0.1,故选C.【点评】本题考查了有理数的大小比较的应用,能熟记有理数的大小比较法则的内容是解此题的关键.3.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为( )A.44×108B.4.4×109C.4.4×108D.4.4×1010【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4 400 000 000=4.4×109,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.已知一个单项式的系数是2,次数是3,则这个单项式可以是( )A.2y3B.2xy3C.﹣2xy2D.3x2【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:此题规定了单项式的系数和次数,但没规定单项式中含几个字母.A、﹣2xy2系数是﹣2,错误;B、3x2系数是3,错误;C、2xy3次数是4,错误;D、2x3符合系数是2,次数是3,正确.故选D.【点评】此题考查单项式问题,解答此题需灵活掌握单项式的系数和次数的定义.5.在数轴上表示数﹣1和2014的两点分别为A和B,则A和B两点间的距离为( ) A.2013 B.2014 C.2015 D.2016【考点】数轴.【分析】数轴上两点间的距离等于表示这两点的数的差的绝对值.【解答】解:|﹣1﹣2014|=2015,故A,B两点间的距离为2015.故选:C.【点评】本题考查了数轴,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.6.下列计算正确的是( )A.﹣5﹣5=0 B.﹣1+1=0 C.﹣3÷=﹣1 D.43=12【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式各项计算得到结果,即可做出判断.【解答】解:A、原式=﹣10,错误;B、原式=0,正确;C、原式=﹣3×3=﹣9,错误;D、原式=64,错误,故选B.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.7.下列各式正确的是( )A.2a+3b=5ab B.a+2a=3a2C.2a2﹣a2=2 D.b2﹣2b2=﹣b2【考点】合并同类项.【分析】本题根据同类项的概念与合并同类项法解答即可.【解答】解:解:A、两个单项式所含字母不同,不能合并,故A错误;B、两个单项式合并,字母不变,系数相加,即a+2a=3a,故B错误;C、2a2﹣a2=a2,故C错误;D、两个单项式合并,字母不变,系数相加,则b2﹣2b2=﹣b2,故D正确.故选:D.【点评】本题考查了同类项的定义:所含字母相同,相同字母的指数相同.合并同类项的方法:字母和字母的指数不变,只把系数相加减.不是同类项的一定不能合并.8.下列说法正确的有( )个①0是绝对值最小的数②两个有理数相加,和大于任何一个加数③平方是它本身的数有0和1④最大的负整数是﹣1,最小的正整数是1⑤有理数中不是正有理数就是负有理数.A.2 B.3 C.4 D.5【考点】有理数.【分析】根据绝对值的定义,有理数的加法法则,有理数平方的意义,负整数、正整数以及有理数定义分别判断即可.【解答】解:①0是绝对值最小的数,故①说法正确;②两个有理数相加,和不一定大于任何一个加数,例如:(﹣1)+(﹣2)=﹣3,故②说法错误;③平方是它本身的数有0和1,故③说法正确;④最大的负整数是﹣1,最小的正整数是1,故④说法正确;⑤有理数包括正有理数、0和负有理数,所以⑤错误.故选B.【点评】本题考查了有理数的定义及分类,绝对值的定义,有理数加法运算法则,是基础知识,需认真掌握正数、负数、整数、分数、正有理数、负有理数的定义与特点.注意0是有理数.二、填空题(每小题3分,共24分)9.如果节约20元钱,记作“+20”元,那么浪费12元钱,记作﹣12元.【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:∵节约20元钱,记作“+20”元,∴浪费12元钱,记作﹣12元.故答案为:﹣12.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.10.用四舍五入把有理数2.015精确到百分位是2.02.【考点】近似数和有效数字.【分析】把千分位上的数字5进行四舍五入即可.【解答】解:2.015≈2.02(精确到百分位).故答案为2.02.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.11.若﹣x2y m与3yx n是同类项,则m﹣n=﹣1.【考点】同类项.【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,分别求出m,n 的值,然后求出m﹣n即可.【解答】解:∵﹣x2y m与3yx n是同类项,∴m=1,n=2,∴m﹣n=﹣1,故答案为:﹣1.【点评】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:一是所含字母相同,二是相同字母的指数也相同.12.某种商品原价每件b元,第一次降价是打八折(按原价的80%出售),第二次降价每件又减10元,这时的售价是0.8b﹣10元.【考点】列代数式.【专题】应用题.【分析】依题意直接列出代数式即可,注意:八折即原来的80%,还要明白是经过两次降价.【解答】解:根据题意得,第一次降价后的售价是0.8b,第二次降价后的售价是(0.8b﹣10)元.【点评】正确理解文字语言并列出代数式.注意:八折即原来的80%.13.若|x﹣2|+|y+3|=0,则xy=﹣6.【考点】非负数的性质:绝对值.【分析】根据非负数的性质,可求出x、y的值,然后代入值计算.【解答】解:根据题意得:,解得:,则xy=﹣6.故答案是:﹣6.【点评】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.14.小明写作业时,不慎将墨水滴在数轴上,根据图中数值,请你确定墨迹盖住部分的整数共有3个.【考点】数轴.【分析】根据数轴上已知整数,求出墨迹盖住部分的整数个数.【解答】解:根据数轴得:墨迹盖住的整数共有0,1,2共3个.故答案为:3.【点评】本题主要考查了数轴,理解整数的概念,能够首先结合数轴得到被覆盖的范围,进一步根据整数这一条件是解题的关键.15.如图是一个程序运算,若输入的x为﹣1,则输出y的结果为﹣30.【考点】有理数的混合运算.【专题】图表型.【分析】根据图表列出算式,然后把x=﹣1代入算式进行计算即可得解.【解答】解:根据题意可得,y=[x+4﹣(﹣3)]×(﹣5),当x=﹣1时,y=[﹣1+4﹣(﹣3)]×(﹣5)=(﹣1+4+3)×(﹣5)=6×(﹣5)=﹣30.故答案为:﹣30.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.16.一列数据、﹣、、﹣…按此排列,那么第5个数据是.【考点】规律型:数字的变化类.【分析】分析题中数据可知第n个数的分子为n,分母为3n.故可求得第n个数是(n为奇数,为正数,n为偶数,为负数).【解答】解:第一个数的分子为1,分母为31=3,值为正;第二个数的分子为2,分母为32=9,值为负;第三个数的分子为3,分母为33=27,值为正;第n个数的分子为n,分母为3n.所以第5个数是,故答案为:.【点评】考查了规律型:数字的变化,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.注意分别得到分子和分母与数序之间的关系.三、解答题(温馨提示:要有解题过程喔!)17.(18分)计算:(1)(﹣﹣+)×48﹣12(2)(﹣1)2015﹣[2﹣(﹣3)2]÷(﹣)(3)﹣14×3﹣9×(﹣)÷﹣8×(﹣)2.【考点】有理数的混合运算.【专题】计算题;实数.【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式第一项利用乘方的意义计算,第二项先计算括号中的运算,再计算除法运算即可得到结果;(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=24﹣12﹣18+10﹣12=﹣8;(2)原式=﹣1﹣(﹣7)×(﹣2)=﹣1﹣14=﹣15;(3)原式=﹣3+6×﹣8×=﹣3+4﹣18=﹣17.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.若a、b互为相反数,c、d互为倒数,m=﹣2,则代数式a+|m|﹣2015cd+b+m 的值.【考点】代数式求值;相反数;倒数.【专题】计算题;实数.【分析】利用相反数,倒数的定义求出a+b,cd的值,代入原式计算即可得到结果.【解答】解:根据题意得:a+b=0,cd=1,m=﹣2,则原式=a+b+|m|+m﹣2015cd=0+2﹣2﹣2015=﹣2015.【点评】此题考查了代数式求值,相反数,以及倒数,熟练掌握运算法则是解本题的关键.19.一个整式A加上2xy2﹣xy+5等于4xy2﹣xy﹣3,求:(1)整式A的次数为3.(2)整式A.【考点】整式的加减.【分析】(1)根据两式相加后的最高次数与原式相同即可得出结论;(2)根据题意列出两式相减的式子,再合并同类项即可.【解答】解:(1)∵A+(2xy2﹣xy+5)=4xy2﹣xy﹣3,∴整式A的次数为3次.故答案为:3;(2)∵A+(2xy2﹣xy+5)=4xy2﹣xy﹣3,∴A=4xy2﹣xy﹣3﹣(2xy2﹣xy+5)=4xy2﹣xy﹣3﹣2xy2+xy﹣5=2xy2﹣8.【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.20.一天,小明和小红用温差测量山峰的高度,小明在山顶测得温度是﹣2.5℃,小红此时在山脚测得温度是5.5℃.已知该地区高度每增加100米,气温大约降低1℃.问这座山峰的高度大约是多少米?【考点】有理数的混合运算.【专题】应用题.【分析】先求出山脚与山顶温度的差,再根据该地区高度每增加100米,气温大约降低1℃列出代数式,求出代数式的值即可.【解答】解:由题意得:[5.5﹣(﹣2.5)]÷1×100=800米.答:这座山峰的高度大约是800米.【点评】本题考查的是有理数的混合运算,解题关键是要读懂题目的意思,根据题目给出的条件,列出代数式.21.已知一个数为两位数,个位数字是a,十位数字比个位数字小4.(1)用含a的式子表示这个两位数为11a﹣40.(2)当a=5,求这个两位数的倒数.【考点】列代数式;代数式求值.【分析】(1)根据十位数字比个位数字小4表示出十位数字,进而表示出这个两位数;(2)利用(1)中所求,再结合倒数的定义得出答案.【解答】解:(1)∵个位数字是a,十位数字比个位数字小4,∴十位数字为:a﹣4,∴这个两位数为:10(a﹣4)+a=11a﹣40;故答案为:11a﹣40;(2)当a=5时,11a﹣40=55﹣40=15,故这个两位数的倒数为:.【点评】此题主要考查了列代数式以及代数式求值,正确表示这个两位数是解题关键.22.有一道题“先化简,再求值:(﹣4x2+2x﹣8y)﹣(x﹣2y)﹣1,其中x=,y=﹣2015,一位同学做题时把“y=﹣2015”错抄成了“y=2015”,但她的计算结果仍然正确,请你解释这是怎么回事?【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,由结果与y的取值无关,故做题时把“y=﹣2015”错抄成了“y=2015”,但她的计算结果仍然正确.【解答】解:原式=﹣x2+x﹣2y﹣x+2y﹣1=﹣x2﹣1,当x=时,原式=﹣1,结果与x取值无关,故做题时把“y=﹣2015”错抄成了“y=2015”,但她的计算结果仍然正确.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.下面是用形状和大小都相同的黑色棋子摆成的图形,观察规律完成下列问题:3n+1.(3)你知道第153个图形需要几颗棋子吗?【考点】规律型:图形的变化类.【分析】解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.【解答】解:第一个图需棋子3+1=4;第二个图需棋子3×2+1=7;第三个图需棋子3×3+1=10;…第n个图需棋子3n+1枚.(3)当n=153时,3×153+1=460;【点评】此题考查了规律型中的图形变化问题,主要培养学生的观察能力和空间想象能力.24.曲昆高速公路养护小组,乘车沿南北向公路巡视维护,如果约定向北为正,向南为负,当天的行驶记录如下(单位:千米)+17,﹣9,+7,﹣15,﹣3,+11,﹣6,﹣8,+5,+16 (1)通过计算确定养护小组最后到达的地方在出发点的哪个方向?(2)养护过程中,养护小组行使了多少千米?(3)若汽车耗油量为每千米0.5升,每升7元,则这次养护共花了多少元钱?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据有理数的加法,可得每次行程,根据绝对值的意义,可得答案;(3)根据单位耗油量乘以路程,钱数=耗油量乘单价计算即可.【解答】解:(1)17+(﹣9)+7+(﹣15)+(﹣3)+11+(﹣6)+(﹣8)+5+16=15(千米),答:养护小组最后到达的地方在出发点的北方距出发点15千米;(2))17+|﹣9|+7+|﹣15|+|﹣3|+11+|﹣6|+|﹣8|+5+16=97(千米)(3)97×0.5×7=339.5(元)答:这次养护共花了339.5元钱.【点评】本题考查了正数和负数,根据题意列出算式是解题的关键.。

人教版2016-2017学年七年级上册期中数学试卷及答案

人教版2016-2017学年七年级上册期中数学试卷及答案

2016-2017学年七年级(上)期中数学试卷一、精心选一选(本大题共10题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项的字母代号填在题后的括号内)1.﹣(﹣9)的相反数是( )A.9 B.﹣9 C.D.﹣2.绝对值小于5的非负数有( )A.9个B.4个C.5个D.2个3.一个数在数轴上的点与﹣2相距3个单位长度,则这个数是( )A.1 B.﹣1 C.﹣5 D.1或﹣54.2的相反数与0.5的绝对值的和是( )A.2.5 B.1.5 C.﹣1.5D.﹣2.55.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有( )A.4个B.3个C.2个D.1个6.百位数字是a,十位数字是b,个位数字是c,这个三位数是( )A.abc B.a+b+c C.100a+10b+c D.100c+10b+a7.小明买了2支钢笔,3支圆珠笔,知每支圆珠笔a元,每支钢笔b元,则小明一共用了多少元?( )A.3a+2b B.2a+3b C.3a+2a D.3b+2b8.将多项式﹣2x﹣x3+2x2+5按降幂排列,正确的是( )A.x3﹣2x+2x2+5 B.5﹣2x+2x2﹣x3C.﹣x3+2x2+2x+5 D.﹣x3+2x2﹣2x+59.若a<0,ab<0,则|b﹣a+3|﹣|a﹣b﹣9|的值为( )A.6 B.﹣6 C.12 D.﹣2a+2b+1210.已知大家以相同的效率做某件工作,a人做b天可以完工,若增加c人,则提前完工的天数为( )A.B.C.D.二、细心填一填(本大题共有6题,每题3分,共18分.请把结果直接填在题中的横线上,相信自己一定会填对的!)11.﹣(+3)的倒数是__________.12.下列整式3x2、﹣y、3x﹣4、、π、、0中,单项式有__________.13.若x为正,y为负,则+=__________.14.7000万用科学记数法表示为__________.15.已知m=﹣3,n=﹣2,则(m﹣n)5=__________.16.规定a⊗b=a+b﹣1,a⊙b=ab﹣a2,则(﹣2)⊙[7⊗(﹣3)]=__________.三、认真答一答(本大题共6题,满分72分.解答需写出必要的文字说明或演算步骤.只要你认真思考,仔细运算,积极探索,一定会解答正确的!Believeinyourself!)17.(30分)(1)﹣(﹣3)2×2(2)+(﹣)++(﹣)+(﹣)(3)﹣82+72÷(﹣36)(4)8+(﹣)﹣2.5﹣(+1)(5)2×÷(﹣2)(6)(﹣5)+(﹣6)﹣(+12)﹣(﹣7)(7)11.8×3﹣(﹣11.8)×1.7﹣11.8×﹣11.8×(﹣0.3)(8)(﹣5)×(﹣3)+(﹣7)×(﹣3)+12×(﹣3)(9)1﹣2﹣3+4+5﹣6﹣7+8+9﹣10﹣11+12+…+2005﹣2006﹣2007+2008.18.(1)已知代数式:4x﹣4xy+y2﹣x2y3①将代数式按照y的次数降幂排列.②当x=2,y=﹣1时,求该代数式的值(2)已知:关于xyz的代数式﹣(m+3)x2y|m+1|z+(2m﹣n)x2y+5为五次二项式,求|m﹣n|的值.19.小虫从某点O出发在一直线上来回爬行,假定向右爬行路程记为正,向左爬行的路程记为负,爬过的路程依次为(单位:厘米):+5,﹣3,+10,﹣8,﹣6,+12,﹣10.问:(1)小虫是否回到原点O?(2)小虫离开出发点O最远是多少厘米?(3)在爬行过程中,如果每爬行1厘米奖励一粒芝麻,则小虫共可得到多少粒芝麻?20.探索规律将连续的偶2,4,6,8,…,排成如表:(1)十字框中的五个数的和与中间的数和16有什么关系?(2)设中间的数为x,用代数式表示十字框中的五个数的和.(3)若将十字框上下左右移动,可框住另外的五位数,其它五位数的和能等于201吗?如能,写出这五位数;如不能,说明理由.21.为了促进居民节约用电,某市电力公司规定如下的电费计算方法:每月用电不超过100度,按每度0.5元计算;如每月用电超过100度,则超出部分每度加收0.1元.(1)若某用户2015年8月份用电a度(a<100);9月份用电b度(b>100),请用代数式分别表示出该用户这两个月应交的电费.(2)若该用户2015年10月份用电113度,则他应交电费多少元?22.阅读与应用计算:+++…+解:因为:=1﹣,=﹣,=﹣,…=﹣所以:+++…+=(1﹣)+(﹣)+(﹣)+…+(﹣)=1﹣+﹣+﹣…+﹣=1﹣=计算:①+++…+②.2016-2017学年七年级(上)期中数学试卷一、精心选一选(本大题共10题,每题3分,共30分.在每题所给出的四个选项中,只有一项是符合题意的,把所选项的字母代号填在题后的括号内)1.﹣(﹣9)的相反数是( )A.9 B.﹣9 C.D.﹣【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣(﹣9)的相反数是﹣9,故选B.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.绝对值小于5的非负数有( )A.9个B.4个C.5个D.2个【考点】绝对值.【分析】利用绝对值的定义判定即可.【解答】解:绝对值小于5的非负数有0,1,2,3,4共5个,故选:C.【点评】本题主要考查了绝对值,解题的关键是熟记绝对值的定义.3.一个数在数轴上的点与﹣2相距3个单位长度,则这个数是( )A.1 B.﹣1 C.﹣5 D.1或﹣5【考点】数轴.【分析】考虑两种情况:可以向左移或向右移动3个单位得出答案即可.【解答】解:以表示﹣2的点为起点,向左移3个单位,即﹣2﹣3=﹣5;向右移3个单位,即﹣2+3=1.故选:D.【点评】此题考查数轴,掌握数的大小变化和平移之间的规律:左减右加解决问题.4.2的相反数与0.5的绝对值的和是( )A.2.5 B.1.5 C.﹣1.5 D.﹣2.5【考点】有理数的加法;相反数;绝对值.【分析】根据相反数的定义、绝对值的性质,利用有理数的加法,即可解答.【解答】解:2的相反数为﹣2,0.5的绝对值为0.5,﹣2+0.5=﹣1.5.故选:C.【点评】本题考查了相反数、绝对值、有理数的加法,解决本题的关键是熟记相反数、绝对值、有理数的加法法则.5.下列各式a2b2,,﹣25,,a2﹣2ab+b2中单项式的个数有( )A.4个B.3个C.2个D.1个【考点】单项式.【分析】根据单项式的定义进行解答即可.【解答】解:a2b2,是数与字母的积,故是单项式;,,a2﹣2ab+b2中是单项式的和,故是多项式;﹣25是单独的一个数,故是单项式.故共有2个.故选C.【点评】本题考查的是单项式,熟知数或字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式是解答此题的关键.6.百位数字是a,十位数字是b,个位数字是c,这个三位数是( )A.abc B.a+b+c C.100a+10b+c D.100c+10b+a【考点】列代数式.【分析】三位数的表示方法为:百位数字×100+十位数字×10+个位数字.【解答】解:依题意得:这个三位数是100a+10b+c.故选C.【点评】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.7.小明买了2支钢笔,3支圆珠笔,知每支圆珠笔a元,每支钢笔b元,则小明一共用了多少元?( )A.3a+2b B.2a+3b C.3a+2a D.3b+2b【考点】列代数式.【分析】知道每支圆珠和每支钢笔的价格,故能计算出买2支钢笔,3支圆珠笔所需的钱,再相加即可解得.【解答】解:依题意得:2b+3a.故选:A.【点评】本题考查了根据数字列代数式,把问题中有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.解题的关键是读懂题意,正确表达.8.将多项式﹣2x﹣x3+2x2+5按降幂排列,正确的是( )A.x3﹣2x+2x2+5 B.5﹣2x+2x2﹣x3C.﹣x3+2x2+2x+5 D.﹣x3+2x2﹣2x+5【考点】多项式.【分析】先分清各项,然后按降幂排列的定义解答.【解答】解:将多项式﹣2x﹣x3+2x2+5按降幂排列为﹣x3+2x2﹣2x+5.故选:D.【点评】考查了多项式幂的排列.我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号.9.若a<0,ab<0,则|b﹣a+3|﹣|a﹣b﹣9|的值为( )A.6 B.﹣6 C.12 D.﹣2a+2b+12【考点】绝对值;整式的加减.【专题】计算题.【分析】根据所给题意,可判断出a,b的正负性,然后再根据绝对值的定义,去掉绝对值,化简求解.【解答】解:∵a<0,ab<0,∴a<0,b>0,∴b﹣a>0,a﹣b<0∴b﹣a+3>0,a﹣b﹣9<0,∴|b﹣a+3|﹣|a﹣b﹣9|=b﹣a+3+(a﹣b﹣9)=﹣6.故本题的答案选B.【点评】主要考查绝对值性质的运用.解此类题的关键是:先利用条件判断出绝对值符号里代数式的正负性,再根据绝对值的性质把绝对值符号去掉,把式子化简,即可求解.10.已知大家以相同的效率做某件工作,a人做b天可以完工,若增加c人,则提前完工的天数为( )A.B.C.D.【考点】列代数式(分式).【专题】工程问题.【分析】设工作总量为1,一人一天的效率是,增加c人后的天数是1÷=,提前的天数可以求出.【解答】解:设工作总量为1,一人一天的效率是,增加c人后的天数是1÷=,故提前天数为b﹣1÷=b﹣.故选C.【点评】解决本题的难点在于得到一人一天的效率,关键是读懂题意,找到所求的量的等量关系.二、细心填一填(本大题共有6题,每题3分,共18分.请把结果直接填在题中的横线上,相信自己一定会填对的!)11.﹣(+3)的倒数是﹣.【考点】倒数.【分析】根据倒数的定义,即可解答.【解答】解:﹣(+3)=﹣3=﹣,﹣的倒数为﹣,故答案为:﹣.【点评】本题考查了倒数,解决本题的关键是熟记倒数的定义.12.下列整式3x2、﹣y、3x﹣4、、π、、0中,单项式有3x2、﹣y、π、0.【考点】单项式.【分析】根据单项式的定义对各式进行判断即可.【解答】解:下列整式3x2、﹣y、3x﹣4、、π、、0中,单项式有:3x2、﹣y、π、0,故答案为:3x2、﹣y、π、0.【点评】本题主要考查了单项式,解题的关键是熟记单项式的定义.13.若x为正,y为负,则+=0.【考点】有理数的除法;绝对值.【分析】根据绝对值的性质进行化简,然后依据除法法则计算即可.【解答】解:∵x为正,y为负,∴|x|=x,|y|=﹣y.∴原式=.故答案为:0.【点评】本题主要考查的是有理数的除法、绝对值,依据绝对值的性质得到|x|=x,|y|=﹣y是解题的关键.14.7000万用科学记数法表示为7×107.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:7000万=7000 0000=7×107,故答案为:7×107.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.已知m=﹣3,n=﹣2,则(m﹣n)5=﹣1.【考点】有理数的乘方.【分析】把m,n的值带入代数式,根据有理数的乘方,即可解答.【解答】解:(m﹣n)5=[﹣3﹣(﹣2)]5=(﹣1)5=﹣1,故答案为:﹣1.【点评】本题考查了有理数的乘方,解决本题的关键是熟记有理数的乘方.16.规定a⊗b=a+b﹣1,a⊙b=ab﹣a2,则(﹣2)⊙[7⊗(﹣3)]=﹣10.【考点】有理数的混合运算.【专题】新定义.【分析】按照运算顺序,根据规定的运算方法化为有理数的混合运算,计算得出结果即可.【解答】解:(﹣2)⊙[7⊗(﹣3)]=(﹣2)⊙[7+(﹣3)﹣1]=(﹣2)⊙3=(﹣2)×3﹣(﹣2)2=﹣6﹣4=﹣10.故答案为:﹣10.【点评】此题考查有理数的混合运算,掌握规定的运算方法是解决问题的关键.三、认真答一答(本大题共6题,满分72分.解答需写出必要的文字说明或演算步骤.只要你认真思考,仔细运算,积极探索,一定会解答正确的!Believeinyourself!)17.(30分)(1)﹣(﹣3)2×2(2)+(﹣)++(﹣)+(﹣)(3)﹣82+72÷(﹣36)(4)8+(﹣)﹣2.5﹣(+1)(5)2×÷(﹣2)(6)(﹣5)+(﹣6)﹣(+12)﹣(﹣7)(7)11.8×3﹣(﹣11.8)×1.7﹣11.8×﹣11.8×(﹣0.3)(8)(﹣5)×(﹣3)+(﹣7)×(﹣3)+12×(﹣3)(9)1﹣2﹣3+4+5﹣6﹣7+8+9﹣10﹣11+12+…+2005﹣2006﹣2007+2008.【考点】有理数的混合运算.【分析】(1)先算乘方,再算乘法;(2)利用加法交换律与结合律,将分母相同的分数结合在一起;(3)先算除法,再算加法;(4)先将减法转化为加法,再计算加法即可;(5)先算括号,再从左往右依次计算;(6)先将减法转化为加法,再计算加法即可;(7)利用乘法分配律计算;(8)利用乘法分配律计算;(9)先把四项一组进行计算,再相加即可求解.【解答】解:(1)﹣(﹣3)2×2=﹣9×2=﹣18;(2)+(﹣)++(﹣)+(﹣)=(﹣)+(﹣﹣)+=0﹣1+=﹣;(3)﹣82+72÷(﹣36)=﹣82﹣2=﹣84;(4)8+(﹣)﹣2.5﹣(+1)=(8﹣2.5)+(﹣﹣1)=5.5﹣2=3.5;(5)2×÷(﹣2)=××(﹣)=﹣;(6)(﹣5)+(﹣6)﹣(+12)﹣(﹣7)=﹣5﹣6﹣12+7=﹣23+7=﹣16;(7)11.8×3﹣(﹣11.8)×1.7﹣11.8×﹣11.8×(﹣0.3)=11.8×(3+1.7﹣+0.3)=11.8×5=59;(8)(﹣5)×(﹣3)+(﹣7)×(﹣3)+12×(﹣3)=(﹣5﹣7+12)×(﹣3)=0×(﹣3)=0;(9)1﹣2﹣3+4+5﹣6﹣7+8+9﹣10﹣11+12+…+2005﹣2006﹣2007+2008 =(1﹣2﹣3+4)+(5﹣6﹣7+8)+(9﹣10﹣11+12)+…+=0.【点评】本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.18.(1)已知代数式:4x﹣4xy+y2﹣x2y3①将代数式按照y的次数降幂排列.②当x=2,y=﹣1时,求该代数式的值(2)已知:关于xyz的代数式﹣(m+3)x2y|m+1|z+(2m﹣n)x2y+5为五次二项式,求|m﹣n|的值.【考点】多项式;代数式求值.【分析】(1)①先分清多项式的各项,然后按多项式降幂排列的定义排列.②将x=2,y=﹣1代入计算即可求解.(2)根据多项式次数及项数的定义,可得m、n的值,再代入即可求解.【解答】解:(1)已知代数式:4x﹣4xy+y2﹣x2y3①将代数式按照y的次数降幂排列为﹣x2y3+y2﹣4xy+4x.②当x=2,y=﹣1时,4x﹣4xy+y2﹣x2y3=8+8+1+4=21;(2)∵关于xyz的代数式﹣(m+3)x2y|m+1|z+(2m﹣n)x2y+5为五次二项式,∴,解得,∴|m﹣n|=|1﹣2|=1.【点评】本题考查了多项式幂的排列.我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号.19.小虫从某点O出发在一直线上来回爬行,假定向右爬行路程记为正,向左爬行的路程记为负,爬过的路程依次为(单位:厘米):+5,﹣3,+10,﹣8,﹣6,+12,﹣10.问:(1)小虫是否回到原点O?(2)小虫离开出发点O最远是多少厘米?(3)在爬行过程中,如果每爬行1厘米奖励一粒芝麻,则小虫共可得到多少粒芝麻?【考点】正数和负数.【分析】(1)把爬行记录相加,然后根据正负数的意义解答;(2)根据正负数的意义分别求出各记录时与出发点的距离,然后判断即可;(3)求出所有爬行记录的绝对值的和即可.【解答】解:(1)(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10)=27+(﹣27)=0,所以,小虫最后能回到出发点O;(2)根据记录,小虫离开出发点O的距离分别为5、3、10、8、6、12、10,所以,小虫离开出发点的O最远为12cm;(3)根据记录,小虫共爬行的距离为:5+3+10+8+6+12+10=54(cm),所以,小虫共可得到54粒芝麻.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.20.探索规律将连续的偶2,4,6,8,…,排成如表:(1)十字框中的五个数的和与中间的数和16有什么关系?(2)设中间的数为x,用代数式表示十字框中的五个数的和.(3)若将十字框上下左右移动,可框住另外的五位数,其它五位数的和能等于201吗?如能,写出这五位数;如不能,说明理由.【考点】一元一次方程的应用.【分析】(1)让方框中的5个数相加,看结果与中间的数的关系即可;(2)根据上下相邻的数相隔10,左右相邻的数相隔2表示出其余数,相加即可;(3)让(2)得到的式子的结果等于201,看有没有整数解,然后看有没有存在的可能即可.【解答】解:(1)十字框中的五个数的和为6+14+16+18+26=80=16×5,即是16的5倍;(2)设中间的数为x,则十字框中的五个数的和为:(x﹣10)+(x+10)+(x﹣2)+(x+2)+x=5x,所以五个数的和为5x;(3)不能,理由如下:假设能够框出满足条件的五个数,设中间的数为x,由(2)得5x=201,所以x=40.2,40.2不是整数,所以不能框住五个数,使它们的和等于201.【点评】本题考查了一元一次方程的应用.解决本题的关键是得到连续偶数中左右相邻及上下相邻的数的关系;注意根据实际情况判断是否存在可以框住的数.21.为了促进居民节约用电,某市电力公司规定如下的电费计算方法:每月用电不超过100度,按每度0.5元计算;如每月用电超过100度,则超出部分每度加收0.1元.(1)若某用户2015年8月份用电a度(a<100);9月份用电b度(b>100),请用代数式分别表示出该用户这两个月应交的电费.(2)若该用户2015年10月份用电113度,则他应交电费多少元?【考点】列代数式;代数式求值.【专题】数与式.【分析】(1)根据题意可以列出用电小于100度和大于100度时的代数式;(2)根据第一问中列出的代数式可以求得问题的答案.【解答】解:(1)∵某市电力公司规定如下的电费计算方法:每月用电不超过100度,按每度0.5元计算;如每月用电超过100度,则超出部分每度加收0.1元,∴当a<100时,8月份应交的电费为:0.5a;当b>100时,9月份应交的电费为:100×0.5+(b﹣100)×(0.5+0.1)=50+0.6b﹣60=0.6b ﹣10.(2)∵用户2015年10月份用电113度,113>100,∴0.6b﹣10=0.6×113﹣10=67.8﹣10=57.8(元).即该用户2015年10月份用电113度,则他应交电费57.8元.【点评】本题考查列代数式和代数式求值的问题,关键是明确题意,列出正确的代数式.22.阅读与应用计算:+++…+解:因为:=1﹣,=﹣,=﹣,…=﹣所以:+++…+=(1﹣)+(﹣)+(﹣)+…+(﹣)=1﹣+﹣+﹣…+﹣=1﹣=计算:①+++…+②.【考点】有理数的混合运算.【专题】阅读型;规律型.【分析】根据题意得出拆项规律,两式利用拆项法则变形,抵消合并即可得到结果.【解答】解:①原式=1﹣+﹣+…+﹣=1﹣=;②原式=(1﹣+﹣+…+﹣)=(1﹣)=.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.。

2016-2017学年河南省南阳市唐河县七年级(上)期中数学试卷含答案

2016-2017学年河南省南阳市唐河县七年级(上)期中数学试卷含答案

14. (3 分)已知单项式 8x2y3m﹣1 的次数是 4,那么 m= 15. (3 分)若 a>b 且 a<0,b<0,则﹣a ﹣b.
16. (3 分)“*”表示一种新运算,它的意义是 a*b=﹣a•b﹣(a+b) ,那么计算 3*5 的结 分)若 1<a<3,则化简|1﹣a|+|3﹣a|的结果为 18. (3 分)在数轴上,距原点 2 个单位长度的点表示的数是 2 的点 3 个单位长度的点表示的数是 19. (3 分) 在 是整数有 .
(2)第 n 个图形需要多少根火柴棒(用含 n 的代数式表示) 28. (9 分)出租车司机张师傅 11 月 1 日这一天上午的营运全在厦门环岛路上进 行.如果规定:顺时针方向为正,逆时针方向为负,那么他这天上午拉了五位乘 客所行车的里程如下: (单位:千米)+8,﹣6,+3,﹣7,+2 (1)将最后一名乘客送到目的地时,张师傅距出车地点的位置如何? (2)若汽车耗油为 a 升/千米,那么这天上午汽车共耗油多少升? (3)如果出租车的收费标准是:起步价 10 元,3 千米后每千米价 2 元,问:张 师傅这天上午的收入一共是多少元?
2016-2017 学年河南省南阳市唐河县七年级(上)期中数 学试卷
参考答案与试题解析
一、选择题: (39 分) 1. (3 分)计算|﹣3|﹣3 的值为( A.0 B.6 C.﹣6 D.3 )
【解答】解:|﹣3|﹣3=3﹣3=0. 故选:A.
2. (3 分)多项式 A. B.
的各项分别是( C.
2016-2017 学年河南省南阳市唐河县七年级(上)期中数学试卷
一、选择题: (39 分) 1. (3 分)计算|﹣3|﹣3 的值为( A.0 B.6 C.﹣6 D.3 的各项分别是( B. C. ) D. ) )

河南省南阳市 七年级(上)期中数学试卷(含答案)

河南省南阳市  七年级(上)期中数学试卷(含答案)

七年级(上)期中数学试卷一、选择题(本大题共8小题,共24.0分)1.下列各数,比-3小的数是()A. B. C. 0 D. 52.检验4个工件,其中超过标准质量的克数记作正数,不足标准质量的克数记作负数.从轻重的角度看,最接近标准的工件是()A. B. C. 3 D. 53.下列运算正确的是()A. B.C. D.4.2015年7月,第四十五届“世界超强计算机500强排行榜”榜单发布,我国国防科技大学研制的“天河二号”以每秒3386×1013次的浮点运算速度第五次蝉联冠军,若将3386×1013用科学记数法表示成a×10n的形式,则n的值是()A. 13B. 14C. 15D. 165.实数x、y在数轴上的对应点的位置如图,把-x、-y、0按照从小到大的顺序排列,正确的是()A. B. C. D.6.观察下列关于m的单项式,探究其规律:m,3m2,5m3,7m4,9m5…按上述规律,第2017个单项式是()A. B. C. D.7.计算:(-2)200+(-2)201所得的结果是()A. B. C. D.8.按照下面的操作步骤,若输入x=-4,则输出的值为()A. 3B.C.D. 5二、填空题(本大题共7小题,共21.0分)9.______、______、______ 统称有理数.10.绝对值等于5的数是______ .11.比较大小:-______ -.12.写出一个运算结果为a6的运算式子:______ ;用四舍五入法,27893精确到千位是______ .13.若a-2b=-4,则9-2a+4b= ______ .14.已知2x4y n-1与-3x m+1y5是同类项,则m+n等于______ .15.若|a+3|与(b+1)2相互相反数,则a2-b3的值为______ .三、计算题(本大题共4小题,共37.0分)16.计算:(1)-13-(1+0.5)×÷(-4);(2){1-[-(-)2]×(-2)4}÷(-1)2.17.先化简,再求值:3y3-[y3+(6y2-7y)]-2(y3-3y2-4y),其中y=-1.18.老师在黑板上写了一个正确的演算过程,随后用手掌捂住了如图所示的一个多项式,形式如下:+(-3xy2)=2x3-5xy2-1+x2(1)求手捂的多项式;(2)该多项式是几次几项式?并将该多项式按字母x的升幂排列.19.试一试(1)根据幂的意义,观察分析,模仿填空.①33×34=(3×3×3)×(3×3×3×3)=37②43×44=(______ )×(______ )=4(______ )③a3×a4= ______ =a()概括:a m•a n=个×个=个=a()可得:a m•a n=a()m、n为正整数就是说:同底数幂相乘,底数______ ,指数______ .(2)应用:计算:①105×104②a•a5•a7.四、解答题(本大题共4小题,共38.0分)20.一辆货车从超市出发,向东走了3千米到达聪聪家,继续向前走了1.5千米到达明明家,然后向西走了9.5千米到达亮亮家,最后回到超市.(1)以超市为原点,以向东的方向为正方向,用1个单位长度表示1千米,请在数轴上表示出聪聪、明明、亮亮家的位置.(2)亮亮家距聪聪家多远?(3)货车一共行驶了多少千米?21.已知:12+22+32+42+…+n2=(2n+1)(n+1)n(1)求12+22+32+42+…+502的值.(2)求262+272+282+292+…+502的值.22.关于x、y的多项式(mx3+nx2y)-(2x3+y3)-(x3-5x2y+y3)化简后与字母x无关.求m2-n2的值.23.方城七峰山悬空玻璃桥于2016年9月初正式对外开放,吸引无数游客前去观光游玩.在今年的十一黄金周期间,聪聪同学一家四人,慧慧同学一家六人,相约前往七峰山游玩,到景区门口发现一张海报.(聪聪和慧慧两家一共有2名儿童).成人:a元/张网上定价:优惠5元儿童:按成人票价5折优惠网上定价:优惠3元团体票:(14人以上含14人)按成人票6折优惠网上定价:优惠4元(1)根据以上信息,帮聪聪、慧慧完成以下表格.(用含a的式子表示)()如果元,通过网上定票,哪种方式更合算?答案和解析1.【答案】A【解析】解:|-4|>|-3|,-4<-3,故选:A.根据两个负数比较大小,绝对值大的数反而小,可得答案.本题考查了有理数大小比较,两个负数比较大小,绝对值大的数反而小.2.【答案】A【解析】【分析】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.根据正负数的意义,绝对值最小的即为最接近标准的.【解答】解:|-2|=2,|-3|=3,|3|=3,|5|=5,∵2<3<5,∴从轻重的角度来看,最接近标准的是记录为-2.故选A.3.【答案】C【解析】解:A、-2-25=-27,故A错误;B、a-(b+c-d)=a-b-c+d,故B错误;C、2πx2-3x2=(2π-3)x2,故C正确;D、(-3)2×2=18,故D错误;故选C.根据去括号的法则与合并同类项得法则进行计算即可.本题考查了整式的加减以及有理数的混合运算,掌握运算法则是解题的关键.4.【答案】D【解析】解:3386×1013=3.386×1016,则n=16.故选:D.直接利用科学记数法的表示方法分析得出n的值.此题主要考查了科学记数法的表示,正确理解n的意义是解题关键.5.【答案】B【解析】解:由数轴知x<0<y,且|x|<|y|,∴-y<x<0<-x<y,故选:B.由数轴知x<0<y,且|x|<|y|可得-y<x<0<-x<y,即可知答案.本题主要考查实数和数轴,熟练掌握实数在数轴上的表示和有理数的大小比较是关键.6.【答案】C【解析】解:第n个单项式是:(2n-1)m n;∴第2017个单项式为:4033m2017,故选(C)根据题意可知,次数是按自然数变化,系数按奇数变化.本题考查数字规律问题,涉及单项式的概念,属于基础题型.7.【答案】C【解析】解:原式=(-2)200×(1-2)=-2200,故选(C)根据提取公因式即可求出答案.本题考查提取公因式法,属于基础题型.8.【答案】C【解析】解:把x=-4代入得:(-4+3)3-4=-1-4=-5,故选C把x=-4代入操作步骤中计算即可确定出输出的值.此题考查了有理数的混合运算,弄清操作步骤中的运算是解本题的关键.9.【答案】正有理数;0;负有理数【解析】解:正有理数、0、负有理数统称有理数.故答案为:正有理数、0、负有理数.根据有理数的分类即可求解.此题主要考查了有理数,同学们要熟练把握好基础知识才能正确的求解.10.【答案】±5【解析】解:因为|5|=5,|-5|=5,所以绝对值等于5的数是±5.根据绝对值的性质得,|5|=5,|-5|=5,故求得绝对值等于5的数.此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际运算当中.本题是绝对值性质的逆向运用,此类题要注意答案一般有2个,除非绝对值为0的数才有一个为0.注意:互为相反数的两个数的绝对值相等.11.【答案】<【解析】解:∵|-|=,|-|=,∴-<-,故答案为:<.先求绝对值,再根据绝对值大的反而小比较即可.本题考查了实数的大小比较的应用,注意:两个负数比较大小,其绝对值大的反而小.12.【答案】a4•a2=a6(答案不唯一);28000【解析】解:a4•a2=a6(答案不唯一);27893精确到千位是:27893≈28000.故答案为:a4•a2=a6(答案不唯一);28000.根据同底数幂相乘,底数不变,指数相加即可求.注意答案不唯一.利用四舍五入将原数精确到千位即可.本题考查了同底数幂的乘方以及近似数,解题的关键是注意掌握同底数幂的运算法则.13.【答案】17【解析】解:原式=9-2(a-2b)=9+8=17,故答案为:17将a-2b整体代入即可求出答案.本题考查代数式求值,涉及整体的思想.14.【答案】9【解析】解:由题意可知:4=m+1,n-1=5,∴m=3,n=6,∴m+n=9,故答案为9根据同类项的概念即可求出m与n的值.本题考查同类项的概念,涉及代入求值.15.【答案】10【解析】解:∵|a+3|与(b+1)2相互相反数,∴|a+3|+(b+1)2=0,∴a+3=0,b+1=0,解得a=-3,b=-1,所以,a2-b3=(-3)2-(-1)3=9-(-1)=9+1=10.故答案为:10.根据互为相反数的两个数的和等于0列方程,再根据非负数的性质列方程求出a、b的值,然后代入代数式进行计算即可得解.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.【答案】解:(1)原式=-1+××=-;(2)原式=(1+8)÷=9×=.【解析】(1)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.17.【答案】解:原式=3y3-y3-6y2+7y-2y3+6y2+8y=15y,当y=-1时,原式=-15.【解析】原式去括号合并得到最简结果,把y的值代入计算即可求出值.此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.18.【答案】解:(1)根据题意得:2x3-5xy2-1+x2+3xy2=2x3-2xy2-1+x2;(2)该多项式为三次四项式,排列为-1-2xy2+x2+2x3.【解析】(1)根据和减去一个加数,得到另一个加数即可;(2)利用多项式次与项的定义判断,排列即可.此题考查了整式的加减,以及多项式,熟练掌握运算法则及多项式定义是解本题的关键.19.【答案】4×4×4;4×4×4×4;(7);a•a•a•a•a•a•a;不变;相加【解析】解:(1)根据幂的意义,观察分析,模仿填空.①33×34=(3×3×3)×(3×3×3×3)=37②43×44=(4×4×4)×(4×4×4×4)=4((7))③a3×a4=a•a•a•a•a•a•a=a(7)概括:a m•a n=×==a(m+n)可得:a m•a n=a(m+n)m、n为正整数就是说:同底数幂相乘,底数不变,指数相加.故答案为:②4×4×4,4×4×4×4,7,③a•a•a•a•a•a•a,7,m+n,m+n,不变,相加.(2)①105×104=10(5+4)=109;②a•a5•a7=a1+5+7=a13.(1)利用乘法和乘方的意义,得到同底数幂的乘法公式;(2)利用同底数幂的乘法公式,进行计算.本题考查了同底数幂的乘法公式的推导和应用同底数幂的乘法公式的计算.掌握公式是关键.注意a的指数是1,做(2)②时容易漏加a的指数得到a12而出错.20.【答案】解:(1)如图所示:;(2)3-(-5)=8(千米).答:亮亮家距聪聪家8千米.(3)3+1.5+9.5=14(千米).答:货车一共行驶了14千米.【解析】(1)根据数轴与点的对应关系,可知超市在原点,聪聪家所在的位置表示的数是+3,明明家所在的位置表示的数是+4.5,亮亮家所在的位置表示的数是-5;(2)根据数轴上两点上的距离的计算方法进行解答;(3)求得各数绝对值的和即为这趟路一共有多少千米.此题主要考查数轴,正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.21.【答案】解:(1)12+22+32+42+…+502=×(2×50+1)×(50+1)×50=42925;(2)262+272+282+292+…+502=(12+22+32+42+...+502)-(12+22+32+42+ (252)=42925-×(2×25+1)×(25+1)×25=42925-5525=37400.【解析】(1)根据12+22+32+42+…+n2=(2n+1)(n+1)n,代入计算即可求解;(2)262+272+282+292+…+502=(12+22+32+42+…+502)-(12+22+32+42+…+252),依此代入公式即可求解;本题主要考查了有理数的混合运算,关键是熟练掌握12+22+32+42+…+n2=(2n+1)(n+1)n的规律.22.【答案】解:(mx3+nx2y)-(2x3+y3)-(x3-5x2y+y3)=(mx3-2x3-x3)+(nx2y+5x2y)+(-y3-y3)=(m-3)x3+(n+5)x2y-2y3,∵关于x、y的多项式(mx3+nx2y)-(2x3+y3)-(x3-5x2y+y3)化简后与字母x无关.∴m-3=0,n+5=0,∴m=3,n=-5,∴m2-n2=9-25=-16.【解析】先化简(mx3+nx2y)-(2x3+y3)-(x3-5x2y+y3),再让x的系数为0即可.本题考查了整式的加减,掌握去括号与合并同类项的法则是解题的关键.23.【答案】a;a-5;a;a-3;a;a-4【解析】解:(2)由题意可知:一共有10人,其中8人是成人,2人是儿童;分开购票的总价钱为:8(a-5)+2(a-3)=10a-46=354元;网上订票的总价钱为:10(a-4)=360元;∵354<360;∴分开购票更加优惠;故答案为:(1)a;a-5;a;a-3;a;a-4(1)根据条件即可求出答案;(2)分别将网上订票以及现场买票的总价钱求出即可比较.本题考查列代数式求值,涉及代入求值问题.。

新人教版2016-2017学年七年级上册期中数学试卷含答案

新人教版2016-2017学年七年级上册期中数学试卷含答案

2016-2017学年七年级(上)期中数学试卷一、选择题在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母代号填写在下表相应题号的方格内.1.﹣3的相反数是()A.3 B.﹣3 C.D.﹣2.在﹣1,0,﹣2,这四个数中,最小的数是()A.﹣1 B.0 C.﹣2 D.3.有理数a,b在数轴上的位置如图所示,下列关系正确的是()A.b>0>a>﹣2 B.a>b>0>﹣1 C.a>﹣2>b>0 D.b>0>a>﹣14.有理数中绝对值最小的数是()A.﹣1 B.0 C.1 D.不存在5.下列比较大小的式子中,正确的是()A.2<﹣(+5)B.﹣1>﹣0.01 C.|﹣3|<|+3| D.﹣(﹣5)>+(﹣7)6.数轴上A、B两点所对应的数分别是4和﹣6,则A、B两点间的距离为()A.﹣2 B.2 C.﹣10 D.107.4表示()A.(﹣2)×4 B.(﹣2)×(﹣2)×(﹣2)×(﹣2)C.﹣4×4 D.(﹣2)+(﹣2)+(﹣2)+(﹣2)8.数据6500 000用科学记数法表示为()A.65×105B.6.5×105C.6.5×106D.6.5×1079.把(﹣2)﹣(﹣10)+(﹣6)﹣(+5)写成省略加号和的形式为()A.﹣2+10﹣6﹣5 B.﹣2﹣10﹣6+5 C.﹣2+10﹣6+5 D.2+10﹣6﹣510.计算(﹣1)2012+(﹣1)2013等于()A.2 B.0 C.﹣1 D.﹣211.用代数式表示“a、b两数的平方和减去它们乘积的2倍”,正确的是()A.a2+b2﹣2ab B.(a+b)2﹣2ab C.a2b2﹣2ab D.2(a2+b2﹣ab)12.一个长方形的周长是30厘米,若长方形的一边用字母x(厘米)表示,则该长方形的面积是()A.x(30﹣2x)平方厘米B.x(30﹣x)平方厘米C.x(15﹣x)平方厘米D.x(15+x)平方厘米13.当x=﹣1时,代数式x2﹣2x+1的值是()A.0 B.﹣2 C.﹣1 D.414.某品牌的面粉袋上标有质量为(25±0.25)kg的字样,下列4袋面粉中质量合格的是()A.24.70kg B.24.80kg C.25.30kg D.25.51kg二、填空题15.(4分)若|a|=6,则a= .16.×()=1.17.(4分)按四舍五入法则取近似值:2.096≈(精确到百分位).﹣0.03445≈(精确到0.001).18.(4分)用火柴棒按如图所示的方式摆图形,按照这样的规律继续摆下去,第n个图形需要根火柴棒(用含n的代数式表示).三、解答题19.如图,两个圈分别表示负数集和分数集.请你把下列各数填入表示它所在的数集的圈里:﹣50%,2012,0.618,﹣3,,0,5.9,﹣3.14,﹣92.20.直接写出结果(1)﹣8﹣2=(2)2.5﹣(﹣7.5)=(3)﹣1=(4)12÷()=(5)(﹣0.8)×(﹣2)=(6)(﹣2)3=21.计算(1)0﹣16+(﹣29)﹣(﹣7)﹣(+11)(2)(3)()×(﹣30)(4)(5).22.当a=﹣2,b=3时,求下列代数式的值.(1)(a+b)2﹣(a﹣b)2;(2)a2﹣4ab+4b2.23.某公路养护小组乘车沿东西向公路巡视维护.某天早晨从A地出发,最后收工时到达B地.约定向东为正方向,当天的行驶记录如下(单位:千米):+13,﹣14,+11,﹣10,﹣8,+9,﹣12,+8.(1)问B地在A地的哪个方向?它们相距多少千米?(2)若汽车行驶每千米耗油x升,求该天共耗油多少升?24.小明去文具用品商店给同学买某品牌水性笔,已知甲、乙两商店都有该品牌的水性笔且标价都是1.50元/支,但甲、乙两商店的优惠条件却不同.甲商店:若购买不超过10支,则按标价付款;若一次购10支以上,则超过10支的部分按标价的60%付款.乙商店:按标价的80%付款.在水性笔的质量等因素相同的条件下.(1)设小明要购买的该品牌笔数是x(x>10)支,请用含x的式子分别表示在甲、乙两个商店购买该品牌笔买水性笔的费用.(2)若小明要购买该品牌笔30支,你认为在甲、乙两商店中,到哪个商店购买比较省钱?说明理由.2016-2017学年七年级(上)期中数学试卷参考答案与试题解析一、选择题在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母代号填写在下表相应题号的方格内.1.﹣3的相反数是()A.3 B.﹣3 C.D.﹣【考点】相反数.【专题】常规题型.【分析】根据相反数的概念解答即可.【解答】解:﹣3的相反数是3,故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.在﹣1,0,﹣2,这四个数中,最小的数是()A.﹣1 B.0 C.﹣2 D.【考点】有理数大小比较.【专题】计算题.【分析】由于正数大于0,负数小于0,则这样比较﹣1与﹣2的大小即可,然后计算出它们的绝对值,根据负数的绝对值越大,这个数越小进行大小比较.【解答】解:∵|﹣1|=1,|﹣2|=2,∴﹣2<﹣1<0<.故选C.【点评】本题考查了有理数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.3.有理数a,b在数轴上的位置如图所示,下列关系正确的是()A.b>0>a>﹣2 B.a>b>0>﹣1 C.a>﹣2>b>0 D.b>0>a>﹣1【考点】有理数大小比较;数轴.【分析】根据数轴上右边的数总比左边的数大来解答.【解答】解:根据数轴排列的特点可得b>0>a>﹣2.故选A.【点评】解答此题,要熟悉数轴的特点:数轴上右边的数总比左边的数大.4.有理数中绝对值最小的数是()A.﹣1 B.0 C.1 D.不存在【考点】绝对值.【分析】根据绝对值的定义求解.【解答】解:因为数轴上表示数a的点与原点的距离叫做数a的绝对值,0到原点的距离为0,所以有理数中绝对值最小的数是0.故选B.【点评】绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.5.下列比较大小的式子中,正确的是()A.2<﹣(+5)B.﹣1>﹣0.01 C.|﹣3|<|+3| D.﹣(﹣5)>+(﹣7)【考点】有理数大小比较.【专题】计算题.【分析】将各项两式化为最简,比较大小即可.【解答】解:A、﹣(+5)=﹣5,∴2>﹣5,本选项错误;B、∵|﹣1|=1,|﹣0.01|=0.01,∴|﹣1|>|﹣0.01|,∴﹣1<﹣0.01,本选项错误;C、∵|﹣3|=3,|+3|=3,∴|﹣3|=|+3|,本选项错误;D、﹣(﹣5)=5,+(﹣7)=﹣7,∴﹣(﹣5)>+(﹣7),本选项正确,故选D【点评】此题考查了有理数大小比较,注意两负数比较大小的方法.6.数轴上A、B两点所对应的数分别是4和﹣6,则A、B两点间的距离为()A.﹣2 B.2 C.﹣10 D.10【考点】数轴.【分析】求数轴上两点之间的距离:数轴上表示两个点所对应的两个数的差的绝对值,即用较大的数减去较小的数即可.【解答】解:∵数轴上A、B两点所对应的数分别是4和﹣6,∴A、B两点间的距离为4﹣(﹣6)=10.故选D.【点评】本题考查了求数轴上两点间的距离的方法:数轴上表示两个点所对应的两个数的差的绝对值.7.(﹣2)4表示()A.(﹣2)×4 B.(﹣2)×(﹣2)×(﹣2)×(﹣2)C.﹣4×4 D.(﹣2)+(﹣2)+(﹣2)+(﹣2)【考点】有理数的乘方.【专题】计算题.【分析】原式表示4个﹣2的乘积,即可得到正确的选项.【解答】解:(﹣2)4表示(﹣2)×(﹣2)×(﹣2)×(﹣2).故选B【点评】此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.8.数据6500 000用科学记数法表示为()A.65×105B.6.5×105C.6.5×106D.6.5×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:6500 000=6.5×106,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.把(﹣2)﹣(﹣10)+(﹣6)﹣(+5)写成省略加号和的形式为()A.﹣2+10﹣6﹣5 B.﹣2﹣10﹣6+5 C.﹣2+10﹣6+5 D.2+10﹣6﹣5【考点】有理数的加减混合运算.【专题】计算题.【分析】利用去括号法则去括号后即可得到结果.【解答】解:(﹣2)﹣(﹣10)+(﹣6)﹣(+5)=﹣2+10﹣6﹣5.故选A【点评】此题考查了有理数的加减混合运算,熟练掌握去括号法则是解本题的关键.10.计算(﹣1)2012+(﹣1)2013等于()A.2 B.0 C.﹣1 D.﹣2【考点】有理数的乘方.【专题】计算题.【分析】原式利用﹣1的奇次幂为﹣1,偶次幂为1计算即可得到结果.【解答】解:原式=1﹣1=0.故选B【点评】此题考查了有理数的乘方,熟练掌握﹣1的奇偶次幂是解本题的关键.11.用代数式表示“a、b两数的平方和减去它们乘积的2倍”,正确的是()A.a2+b2﹣2ab B.(a+b)2﹣2ab C.a2b2﹣2ab D.2(a2+b2﹣ab)【考点】列代数式.【分析】根据平方和就是先平方再相加,乘积的2倍就是2ab,从而列出代数式即可.【解答】解:a、b两数的平方和是a2+b2,它们乘积的2倍是2ab,则a、b两数的平方和减去它们乘积的2倍是:a2+b2﹣2ab;故选A.【点评】此题考查了列代数式,关键是读懂题意,找到所求的量的等量关系,要理解“和”、“差”、“倍”、“商”等的意义.12.一个长方形的周长是30厘米,若长方形的一边用字母x(厘米)表示,则该长方形的面积是()A.x(30﹣2x)平方厘米B.x(30﹣x)平方厘米C.x(15﹣x)平方厘米D.x(15+x)平方厘米【考点】列代数式.【分析】先根据周长=(长+宽)×2,表示出另一边的长,再根据长方形的面积=长×宽求面积.【解答】解:由题意可知:长方形另一边用(15﹣x)厘米表示,则该长方形面积为x(15﹣x)平方厘米,故选C.【点评】本题考查了列代数式,列代数式要注意:①要注意书写的规范性,用字母表示数以后,在含有字母与数字的乘法中,通常将“×”简写作“•”或者省略不写.②在数和表示数的字母乘积中,一般把数写在字母的前面,这个数若是带分数要把它化成假分数.③含有字母的除法,一般不用“÷”(除号),而是写成分数的形式.13.当x=﹣1时,代数式x2﹣2x+1的值是()A.0 B.﹣2 C.﹣1 D.4【考点】代数式求值.【专题】计算题.【分析】直接把x=﹣1代入计算即可.【解答】解:当x=﹣1,原式=(﹣1)2﹣2×(﹣1)+1=1+2+1=4.故选D.【点评】本题考查了代数式求值:把满足条件的字母的值代入代数式中进行计算得到对应的代数式的值.14.某品牌的面粉袋上标有质量为(25±0.25)kg的字样,下列4袋面粉中质量合格的是()A.24.70kg B.24.80kg C.25.30kg D.25.51kg【考点】正数和负数.【专题】应用题.【分析】正确理解(25±0.25)的含义,25+0.25=25.25,25﹣0.25=24.75,说明面粉在此区间内合格.【解答】解:在24.75~25.25这个区间内的只有24.80.故选B.【点评】此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.二、填空题15.若|a|=6,则a= ±6 .【考点】绝对值.【专题】计算题.【分析】利用绝对值的代数意义计算即可确定出a的值.【解答】解:∵|a|=6,∴a=±6.故答案为:±6.【点评】此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.16.(﹣5 )×()=1.【考点】有理数的乘法.【专题】计算题.【分析】利用有理数的乘法法则计算即可得到结果.【解答】解:(﹣5)×(﹣)=1.故答案为:﹣5【点评】此题考查了有理数的乘法,熟练掌握运算法则是解本题的关键.17.按四舍五入法则取近似值:2.096≈ 2.10 (精确到百分位).﹣0.03445≈﹣0.034 (精确到0.001).【考点】近似数和有效数字.【分析】一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.精确到哪位就是对这位后边的数进行四舍五入.【解答】解:用四舍五入法计算即可.2.096精确到百分位就是小数点后两位,就是2.10;﹣0.034 45精确到0.001就是小数点后三位就是﹣0.034.【点评】本题主要考查了近似数和有效数字的有关知识,做这类题要注意按要求做题.18.用火柴棒按如图所示的方式摆图形,按照这样的规律继续摆下去,第n个图形需要5n+1 根火柴棒(用含n的代数式表示).【考点】规律型:图形的变化类.【分析】仔细观察发现每增加一个正六边形其火柴根数增加5根,将此规律用代数式表示出来即可.【解答】解:由图可知:图形标号(1)的火柴棒根数为6;图形标号(2)的火柴棒根数为11;图形标号(3)的火柴棒根数为16;…由该搭建方式可得出规律:图形标号每增加1,火柴棒的个数增加5,所以可以得出规律:搭第n个图形需要火柴根数为:6+5(n﹣1)=5n+1,故答案为:5n+1.【点评】本题是一道关于图形变化规律型的,关键在于通过题中图形的变化情况,通过归纳与总结找出普遍规律求解即可.三、解答题19.如图,两个圈分别表示负数集和分数集.请你把下列各数填入表示它所在的数集的圈里:﹣50%,2012,0.618,﹣3,,0,5.9,﹣3.14,﹣92.【考点】有理数.【分析】根据负数及分数的定义,结合所给的数据进行解答即可.【解答】解:填写如下:【点评】此题考查有理数的知识,掌握负数及分数的定义是解答本题的关键.20.(12分)(2012秋•定安县期中)直接写出结果(1)﹣8﹣2=(2)2.5﹣(﹣7.5)=(3)﹣1=(4)12÷()=(5)(﹣0.8)×(﹣2)=(6)(﹣2)3=【考点】有理数的混合运算.【分析】(1)利用加法法则计算即可;(2)首先利用减法法则转化成加法,然后运算即可;(3)利用加法法则计算即可;(4)利用有理数的乘法法则即可求解;(5)利用立方的意义即可求解.【解答】解:(1)原式=﹣(8+2)=﹣10;(2)原式=2.5+7.5=10;(3)原式=;(4)原式=﹣12×4=﹣48;(5)原式=0.8×0.2=1.6;(6)原式=﹣8.【点评】本题考查了有理数的运算,理解运算法则是关键.21.(20分)(2012秋•定安县期中)计算(1)0﹣16+(﹣29)﹣(﹣7)﹣(+11)(2)(3)()×(﹣30)(4)(5).【考点】有理数的混合运算.【分析】(1)首先利用符号法则对式子进行化简,然后进行加减运算即可;(2)首先进行同分母的分式的加减,然后对所得结果进行运算即可;(3)首先利用分配律计算乘法,然后进行加减运算即可;(4)首先计算乘方,计算括号内的式子,然后进行加减运算;(5)逆用乘法的分配律,计算整数的加减,然后进行乘法运算.【解答】解:(1)原式=﹣16﹣29+7﹣11=﹣49;(2)原式=3﹣24=﹣21;(3)原式=﹣12+2﹣25=﹣35;(4)原式=﹣1﹣[﹣2+×(﹣3)]=﹣1﹣[﹣2﹣2]=﹣1+4=3;(5)原式=(23﹣57﹣26)×=﹣15.【点评】本题考查的是有理数的运算与整式的加减运算.注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.22.(10分)(2012秋•定安县期中)当a=﹣2,b=3时,求下列代数式的值.(1)(a+b)2﹣(a﹣b)2;(2)a2﹣4ab+4b2.【考点】代数式求值.【专题】计算题.【分析】(1)先计算出a+b=﹣2+3=1,a﹣b=﹣2﹣3=﹣5,然后利用整体思想进行计算;(2)先变形原式得到(a﹣2b)2,然后把a=﹣2,b=3代入计算.【解答】解:(1)∵a=﹣2,b=3,∴a+b=﹣2+3=1,a﹣b=﹣2﹣3=﹣5,∴原式=12﹣(﹣5)2=﹣24;(2)原式=(a﹣2b)2,当a=﹣2,b=3,原式=(﹣2﹣2×3)2=64.【点评】本题考查了代数式求值:先把代数式根据已知条件进行变形,然后利用整体思想进行计算.23.某公路养护小组乘车沿东西向公路巡视维护.某天早晨从A地出发,最后收工时到达B地.约定向东为正方向,当天的行驶记录如下(单位:千米):+13,﹣14,+11,﹣10,﹣8,+9,﹣12,+8.(1)问B地在A地的哪个方向?它们相距多少千米?(2)若汽车行驶每千米耗油x升,求该天共耗油多少升?【考点】有理数的加法;正数和负数.【专题】应用题.【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【解答】解:(1)将行驶记录所有的数据相加,得结果为﹣3,∵约定向东为正方向,∴B地在A地的西边,它们相距3千米.(2)汽车行驶每千米耗油x升,设该天共耗油y升,则y=(13+14+11+10+8+9+12+8)x=85x升.∴该天共耗油85x升.【点评】解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.24.小明去文具用品商店给同学买某品牌水性笔,已知甲、乙两商店都有该品牌的水性笔且标价都是1.50元/支,但甲、乙两商店的优惠条件却不同.甲商店:若购买不超过10支,则按标价付款;若一次购10支以上,则超过10支的部分按标价的60%付款.乙商店:按标价的80%付款.在水性笔的质量等因素相同的条件下.(1)设小明要购买的该品牌笔数是x(x>10)支,请用含x的式子分别表示在甲、乙两个商店购买该品牌笔买水性笔的费用.(2)若小明要购买该品牌笔30支,你认为在甲、乙两商店中,到哪个商店购买比较省钱?说明理由.【考点】列代数式.【分析】(1)先求出甲商店10支水性笔的价钱,然后再求出超过10支的部分的价钱,然后列出代数式;乙商店每支水性笔的价钱是1.5×0.8元,那么x支的价钱是1.5×0.8×x元;(2)把x=30代入以上两式即可得到答案.【解答】解:(1)在甲商店需要:10×1.5+0.6×1.5×(x﹣10)=0.9x+6(元),在乙商店需要:1.5×0.8×x=1.2x(元),(2)当x=30时,0.9x+6=33,1.2x=36,因为33<36,所以小明要买30支笔应到甲商店买比较省钱.【点评】本题考查了列代数式,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.。

人教版七年级上册试卷2016—2017学年度第一学期七年级数学期中考试试卷.docx

人教版七年级上册试卷2016—2017学年度第一学期七年级数学期中考试试卷.docx

2016—2017学年度第一学期七年级数学期中考试试卷一、选择题(每题3分,共30分)1、︱-3︱的相反数是( )A .-3B .3C .-13D .±3 2、已知下列各式:abc ,2πR ,x +3y ,0,x -y 2,其中单项式的个数有( ) A .2个 B .3个 C .4个D .5个 3、下列合并同类项正确的是( )A 、5x 2-2x 2=3B 、3a+2b=5abC 、3ab-3ba=0D 、3x 2+2x 2=5x 44、在-(-4),|-1|,-|0|,(-2)3这四个数中,非负数共有( )A .1个B .2个C .3个D .4个5、第五次全国人口普查显示,某市总人口为463万人,用科学记数法表示为( )人A 、4.63×106B 、4.63×105C 、4.63×102D 、4.63×1036、计算(-18)+(-1)9的值是( )A.0B.2C.-2D.不能确定7、一个多项式与x 2-2x+1的和是3x-2,则这个多项式为( ).A .x 2-5x+3B .-x 2+x-1C .-x 2+5x-3D .x 2-5x-138、下列去括号正确的是( )A 、-(a+b-c)=-a+b-cB 、-2(a+b-3c)=-2a-2b+6cC 、-(-a-b-c)=-a+b+cD 、-(a-b-c)=-a+b-c9、如果代数式2425y y -+的值为7,那么代数式221y y -+的值是( )A .2B .3C .-2D .410、现定义一种新运算“*”,规定a*b=ab+a-b ,如1*3=1×3+1-3,则(-2*5)*6等于( )A.120B.125C.-120D.-125二、填空题(每题3分,共18分)11、一艘潜水艇所在的海拔高度为-50 m ,若一条鲨鱼在潜水艇下方10 m 处,则鲨鱼所在的海拔高度为 。

12、已知单项式32b a m 与-3214-n b a 是同类项,那么m +n = . 13、52.7010⨯精确到 位.14、若︱x-1︱+(x+y+2)2=0, 则x 2+y 2= 。

2016-2017学年七年级数学上册期中试卷及答案

2016-2017学年七年级数学上册期中试卷及答案

2016-2017学年七年级数学上册期中试卷及答案下面是小编整理的关于2016-2017学年七年级数学上册期中试卷及答案,希望帮助到同学们。

一、选择题(本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的代号填入题后的括号内)1.在-212 、+710 、-3、2、0、4、5、-1中,负数有 ( )A、 1个B、2个C、3个D、4个2.如下图所示,在数轴上表示到原点的距离为3个单位的点有( )A.D点B.A点C.A点和D点D.B点和C点3. 2008年5月26 日下午,奥运圣火扬州站的传递在一路“中国加油” 中进行着,全程11800米,用科学计数法,结果为 ( )米A. 11.8 103B.1.2 104C.1.18 104D.1.2 1034.下列各项中,是同类项的是( )A.x与yB.C.-3pq与2pqD.abc与ac5.已知两数在数轴上对应的点如下图所示,下列结论正确的是 ( )A. B. C. D.6.去括号后等于a-b+c的是( )A. a-(b+c)B.a-(b-c)C.a+(b-c)D.a+(b+c)7.一件商品的进价是a 元,提价20%后出售,则这件商品的售价是 ( )A.0.8a元B.a 元C.1.2a元D.2a元8.若,则x-y等于( )A.1B.-1C.3D.-39.下列说法错误的是( )A、是二次三项式B、不是单项式C、的系数是D、的次数是610.如果|a|=-a, 下列各式一定成立的是 ( )A. a>0B. a>0或a=0C. a<0或a=0D. 无法确定二、填空题:(本大题共8小题,每小题3分,共24分.把答案写在题中的横线上)11.水位上升30cm 记作+30cm,那么-16cm表示。

12.用“<” “=”或“>”填空:(1)-(- 1) - | - 1 |;(2)- 0.1 -0.01; (3) _____13.计算: =___________14.若a与b互为相反数,c与 d互为倒数,则 ___________15.单项式的系数是,次数是。

2016年河南省七年级上学期数学期中试卷和解析答案

2016年河南省七年级上学期数学期中试卷和解析答案

2015-2016学年河南省七年级(上)期中数学试卷一、选择题(每小题3分,共24分你)1.(3分)的倒数是()A.﹣3 B.C.3 D.2.(3分)甲乙丙三地海拔高度分别为20米,﹣15米,﹣10米,那么最高的地方比最低的地方高()A.10米B.25米C.35米D.5米3.(3分)现规定一种新的运算符号“※”:a※b=a b,如3※2=32,则※3=()A.B.8 C.D.4.(3分)下列各组数中,数值相等的是()A.32和23B.﹣|23|和﹣|﹣2|3C.﹣32和(﹣3)2D.﹣(3×2)2和﹣3×225.(3分)下列说法中正确的是()A.7x2、﹣mn、0、a四个式子中有三个是单项式B.单项式2πx3y的系数是2C.式子x2y是三次二项式D.﹣和9y3x2是同类项6.(3分)计算(﹣2)10+(﹣2)11所得的结果是()A.210B.﹣1 C.﹣2 D.﹣2107.(3分)若7x3y2和﹣11x3m y2的和是单项式,则式子12m﹣24的值是()A.﹣3 B.﹣4 C.﹣5 D.﹣128.(3分)下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为()A.50 B.64 C.68 D.72二、填空题(本大题共7小题,每小题3分,共21分)9.(3分)餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心.据统计,中国每年浪费的食物总量折合粮食约500亿千克,500亿用科学记数法表示为.10.(3分)比较下列两对数的大小:﹣﹣.﹣(﹣)﹣|﹣|11.(3分)一批零件共m个,乙先加工n个零件后(m>n),余下的任务由甲再做3天完成,则甲平均每天加工的零件数用代数式表示为.12.(3分)代数式x2+2x+7的值是6,则代数式的值是.13.(3分)a2﹣ab+b2=a2﹣(),2x﹣3(y﹣z)=.14.(3分)已知|x|=4,|y|=,且xy<0,则的值等于.15.(3分)用四舍五入法,将6.5047精确到0.01,6.5047≈.三、解答题(本大题共9小题,满分75分)16.(20分)计算:(1)(﹣3.8)﹣(﹣2.2)﹣1.8+(﹣2.7)(2)(3)﹣12﹣[2﹣(﹣3)2]+(﹣1)0(4)﹣22÷(﹣)2.17.(10分)先去括号,再合并同类项(1)2(2b﹣3a)+3(2a﹣3b)(2)4a2+2(3ab﹣2a2)﹣(7ab﹣1)18.(6分)先化简再求值:(mn+3m2)﹣2n2﹣5mn﹣2(m2﹣2mn),其中m=1,n=﹣2.19.(6分)已知A=x2y﹣7xy2+2,B=﹣2x2y+4xy2﹣1,求2A+B.20.(6分)有理数a、b、c的位置如图所示,化简式子:|b|+|a﹣c|+|b﹣c|﹣|a﹣b|.21.(6分)有20筐苹果,以每筐30千克为标准,超过或不足的分别用正、负来表示,记录如下:(1)20筐苹果中,最重的一筐比最轻的一筐要重多少千克?(2)与标准质量比较,20筐白菜总计超过或不足多少千克?(3)若苹果每千克售价5元,则出售这20筐白菜可卖多少元?22.(7分)如图,已知数轴上点A表示的数为6,B是你数轴上一点,且AB=10,动点P从点O出发,以每秒6个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B所表示的数;当t=3时,OP=.(2)动点R从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,若点P,R同时出发,问点R运动多少秒时追上点P?23.(7分)某游泳馆普通票价20元/张,暑期为了促销,新推出了两种优惠卡:A卡:售价300元/张,每次凭卡另收5元;B卡:售价150元/张,每次凭卡另收10元.(1)若暑假游泳x次,请你分别写出普通票正常出售、办A卡、办B卡三种方式所需总费用;(2)小明假期打算游泳健身,估计游泳次数为40次,你认为采用哪种方式较为合算?24.(7分)观察如图有※组成的图案和下面的算式,解答问题:1=1=121+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52(1)请猜想1+3+5+7+9+…+29=;(2)请猜想1+3+5+7+9+…+(2n﹣1)=;(3)请用上述规律计算:41+43+45+…+97+99.2015-2016学年河南省七年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共24分你)1.(3分)的倒数是()A.﹣3 B.C.3 D.【解答】解:根据题意得:﹣×(﹣3)=1,可得﹣的倒数为﹣3.故选:A.2.(3分)甲乙丙三地海拔高度分别为20米,﹣15米,﹣10米,那么最高的地方比最低的地方高()A.10米B.25米C.35米D.5米【解答】解:最高的是甲地,最低的是乙地.20﹣(﹣15)=35米.故选:C.3.(3分)现规定一种新的运算符号“※”:a※b=a b,如3※2=32,则※3=()A.B.8 C.D.【解答】解:※3==,故选:A.4.(3分)下列各组数中,数值相等的是()A.32和23B.﹣|23|和﹣|﹣2|3C.﹣32和(﹣3)2D.﹣(3×2)2和﹣3×22【解答】解:A、32=9,23=8,不相等,故错误;B、﹣|23|=﹣8,﹣|﹣2|3=﹣8,相等,正确;C、﹣32=﹣9,(﹣3)2=9,不相等,故错误;D、﹣(3×2)2=﹣36,﹣3×22=﹣12,不相等,故错误;故选:B.5.(3分)下列说法中正确的是()A.7x2、﹣mn、0、a四个式子中有三个是单项式B.单项式2πx3y的系数是2C.式子x2y是三次二项式D.﹣和9y3x2是同类项【解答】解:A、7x2、﹣mn、0、a四个式子中有四个是单项式,故此选项错误;B、单项式2πx3y的系数是:2π,故此选项错误;C、式子x2y不是多项式,故此选项错误;D、﹣和9y3x2是同类项,正确.故选:D.6.(3分)计算(﹣2)10+(﹣2)11所得的结果是()A.210B.﹣1 C.﹣2 D.﹣210【解答】解:(﹣2)10+(﹣2)11=(﹣2)10×(1﹣2)=210×(﹣1)=﹣210故选:D.7.(3分)若7x3y2和﹣11x3m y2的和是单项式,则式子12m﹣24的值是()A.﹣3 B.﹣4 C.﹣5 D.﹣12【解答】解:由题意得,7x3y2和﹣11x3m y2是同类项,则3m=3,解得:m=1,则12m﹣24=12﹣24=﹣12.故选:D.8.(3分)下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为()A.50 B.64 C.68 D.72【解答】解:第①个图形一共有2个五角星,第②个图形一共有:2+(3×2)=8个五角星,第③个图形一共有8+(5×2)=18个五角星,…第n个图形一共有:1×2+3×2+5×2+7×2+…+2(2n﹣1)=2[1+3+5+…+(2n﹣1)],=[1+(2n﹣1)]×n=2n2,则第(6)个图形一共有:2×62=72个五角星;故选:D.二、填空题(本大题共7小题,每小题3分,共21分)9.(3分)餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心.据统计,中国每年浪费的食物总量折合粮食约500亿千克,500亿用科学记数法表示为5×1010.【解答】解:500亿=5×1010.故答案为:5×1010.10.(3分)比较下列两对数的大小:﹣>﹣.﹣(﹣)>﹣|﹣|【解答】解:,,所以可得:﹣>﹣;﹣(﹣)=>﹣|﹣|=﹣,故答案为:>;>11.(3分)一批零件共m个,乙先加工n个零件后(m>n),余下的任务由甲再做3天完成,则甲平均每天加工的零件数用代数式表示为.【解答】解:(m﹣n)÷3=个答:甲平均每天加工零件个.故答案为:.12.(3分)代数式x2+2x+7的值是6,则代数式的值是﹣5.【解答】解:∵x2+2x+7=6,即x2+2x=﹣1,∴原式=(x2+2x)﹣5=﹣5.故答案为:﹣513.(3分)a2﹣ab+b2=a2﹣(ab﹣b2),2x﹣3(y﹣z)=2x﹣3y+3z.【解答】解:a2﹣ab+b2=a2﹣(ab﹣b2),2x﹣3(y﹣z)=2x﹣3y+3z.故答案为:ab﹣b2,2x﹣3y+3z.14.(3分)已知|x|=4,|y|=,且xy<0,则的值等于﹣8.【解答】解:∵|x|=4,|y|=,∴x=±4,y=±;又∵xy<0,∴x=4,y=﹣或x=﹣4,y=,则=﹣8.故答案为:﹣8.15.(3分)用四舍五入法,将6.5047精确到0.01,6.5047≈ 6.50.【解答】解:6.5047≈6.50(精确到0.01).故答案为6.50.三、解答题(本大题共9小题,满分75分)16.(20分)计算:(1)(﹣3.8)﹣(﹣2.2)﹣1.8+(﹣2.7)(2)(3)﹣12﹣[2﹣(﹣3)2]+(﹣1)0(4)﹣22÷(﹣)2.【解答】解:(1)(﹣3.8)﹣(﹣2.2)﹣1.8+(﹣2.7)=﹣3.8+2.2﹣1.8﹣2.7=﹣8.3+2.2=﹣6.1;(2)=×16﹣×﹣×=14﹣1﹣=12;(3)﹣12﹣[2﹣(﹣3)2]+(﹣1)0=﹣1﹣[2﹣9]+1=﹣1﹣(﹣7)+1=﹣1++1=;(4)﹣22÷(﹣)2.=﹣4÷=﹣4.17.(10分)先去括号,再合并同类项(1)2(2b﹣3a)+3(2a﹣3b)(2)4a2+2(3ab﹣2a2)﹣(7ab﹣1)【解答】解:(1)2(2b﹣3a)+3(2a﹣3b)=4b﹣6a+6a﹣9b=﹣5b;(2)4a2+2(3ab﹣2a2)﹣(7ab﹣1)=4a2+6ab﹣4a2﹣7ab+1=﹣ab+1.18.(6分)先化简再求值:(mn+3m2)﹣2n2﹣5mn﹣2(m2﹣2mn),其中m=1,n=﹣2.【解答】解:原式=mn+3m2﹣2n2﹣5mn﹣2m2+4mn=m2﹣2n2,当m=1,n=﹣2时,原式=1﹣8=﹣7.19.(6分)已知A=x2y﹣7xy2+2,B=﹣2x2y+4xy2﹣1,求2A+B.【解答】解:2A+B=2(x2y﹣7xy2+2)+(﹣2x2y+4xy2﹣1)=2x2y﹣14xy2+4﹣2x2y+4xy2﹣1=﹣10xy2+3.20.(6分)有理数a、b、c的位置如图所示,化简式子:|b|+|a﹣c|+|b﹣c|﹣|a﹣b|.【解答】解:由数轴可得a<0<c<b,所以|b|+|a﹣c|+|b﹣c|﹣|a﹣b|=b+c﹣a+b﹣c﹣(b﹣a)=2b﹣a﹣b+a=b.21.(6分)有20筐苹果,以每筐30千克为标准,超过或不足的分别用正、负来表示,记录如下:(1)20筐苹果中,最重的一筐比最轻的一筐要重多少千克?(2)与标准质量比较,20筐白菜总计超过或不足多少千克?(3)若苹果每千克售价5元,则出售这20筐白菜可卖多少元?【解答】解:(1)2.5﹣(﹣3)=5.5(千克).答:20筐白菜中,最重的一筐比最轻的一筐要重5.5千克;(2)﹣3+(﹣2)×4+(﹣1.5)×4+0×4+1×3+2.5×4=﹣4(千克).答:与标准质量比较,20筐白菜总计不足4千克;(3)(30×20﹣4)×5=2980(元).答:若白菜每千克售价5元,则出售这20筐白菜可卖2980元.22.(7分)如图,已知数轴上点A表示的数为6,B是你数轴上一点,且AB=10,动点P从点O出发,以每秒6个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B所表示的数﹣4;当t=3时,OP=18.(2)动点R从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,若点P,R同时出发,问点R运动多少秒时追上点P?【解答】解:(1)数轴上点B所表示的数6﹣10=﹣4;当t=3时,OP=3t=18;(2)由题意得:8t﹣6t=4解得:t=2答:若点P,R同时出发,点R运动2秒时追上点P.23.(7分)某游泳馆普通票价20元/张,暑期为了促销,新推出了两种优惠卡:A卡:售价300元/张,每次凭卡另收5元;B卡:售价150元/张,每次凭卡另收10元.(1)若暑假游泳x次,请你分别写出普通票正常出售、办A卡、办B卡三种方式所需总费用;(2)小明假期打算游泳健身,估计游泳次数为40次,你认为采用哪种方式较为合算?【解答】解:(1)普通票需总费用:20x元;办A卡所需总费用:300+5x元;办B卡所需总费用:150+10x元;(2)当x=40时,普通票需总费用:20×40=800元;办A卡所需总费用:300+5×40=500元;办B卡所需总费用:150+10×40=550元;500<550<800,所以办A卡较为合算.24.(7分)观察如图有※组成的图案和下面的算式,解答问题:1=1=121+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52(1)请猜想1+3+5+7+9+…+29=152;(2)请猜想1+3+5+7+9+…+(2n﹣1)=n2;(3)请用上述规律计算:41+43+45+…+97+99.【解答】解:(1)∵1+3=4=221+3+5=9=321+3+5+7=16=421+3+5+7+9=25=52∴1+3+5+7+9+…+29=152=100;(2)1+3+5+7+9+…+(2n﹣1)=n2;(3)41+43+45+…+97+99=(1+3+5+…+97+99)﹣(1+3+5+…+37+39)=502﹣202=2500﹣400=2100.故答案为:152;n2.赠送初中数学几何模型【模型一】“一线三等角”模型: 图形特征:60°60°60°45°45°45°运用举例:1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;xyB CAO2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt△ABC中,∠BAC=90°,AB=AC=2,点D在BC上运动(不与点B,C重合),过D作∠ADE=45°,DE交AC于E.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式,并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.EB4.如图,已知直线112y x=+与y轴交于点A,与x轴交于点D,抛物线212y x bx c=++与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0)。

新人教版2016-2017学年七年级(上)期中数学试卷(三)及答案

新人教版2016-2017学年七年级(上)期中数学试卷(三)及答案

新人教版2016-2017学年七年级(上)期中数学试卷(三)2017.1.26一、选择题(本大题共10个小题,每小题只有一个正确选项,每小题4分,满分40分)1.下列计算正确的是()A.﹣5+4=﹣9 B.﹣8﹣8=0 C.23=6 D.﹣42=﹣162.下列计算正确的是()A.2x+3y=5xy B.2a2+2a3=2a5C.4a2﹣3a2=1 D.﹣2ba2+a2b=﹣a2b3.下列说法正确的是()A.近似数1.50和1.5是相同的B.3520精确到百位等于3500C.6.610精确到千分位D.2.70×104精确到百分位4.某种速冻水饺的储藏温度是﹣18±2℃,四个冷藏室的温度如下,则不适合储藏此种水饺的是()A.﹣17℃B.﹣22℃C.﹣18℃D.﹣19℃5.下列说法错误的是()A.﹣xy的系数是﹣1B.﹣c是五次单项式C.2x2﹣3xy﹣1是二次三项式D.把多项式﹣2x2+3x3﹣1+x按x的降幂排列是3x3﹣2x2+x﹣16.已知a﹣b=﹣2,则代数式3(a﹣b)2﹣a+b的值为()A.10 B.12 C.﹣10 D.147.已知单项式2x a y2与﹣3xy b的和是一个单项式,则(a﹣b)3=()A.﹣8 B.8 C.﹣1 D.18.图中表示阴影部分面积的代数式是()A.ad+bc B.c(b﹣d)+d(a﹣c)C.ad+c(b﹣d)D.ab﹣cd9.小王利用计算机设计了一个程序,输入和输出的数据如下表:那么,当输入数据8时,输出的数据是()A.B.C.D.10.如果有4个不同的正整数m、n、p、q满足=4,那么m+n+p+q等于()A.8038 B.8049 C.8052 D.8056二、填空题(本大题共5个小题,每小题4分,满分20分)11.比较大小:﹣0.0260;|﹣5| ﹣(﹣5).12.“珍惜水资源,节约用水”是公民应具备的优秀品质.据测试,拧不紧的水龙头每秒钟会滴下2滴水,每滴水约0.05毫升.如果某个同学在洗手后,没有把水龙头拧紧,当他离开5小时后水龙头滴了毫升水.(必须用科学记数法表示,否则0分)13.观察规定一种新运算:a⊕b=a b,如2⊕3=23=8,计算:(﹣)⊕2=.14.在数﹣5,1,﹣3,5,﹣2中任取三个数相乘,其中最大的积是,最小的积是.15.已知|x|=a,|y|=b,给出下列结论:①若x﹣y=0,则a﹣b=0;②若a﹣b=0,则x﹣y=0;③若a+b=0,则x+y=0;④若x2﹣y2=0,则a﹣b=0.其中正确的结论有(将所有正确结论的序号填写在横线上).三、解答题(本大题共有8个小题,满分90分)16.计算:(1)4﹣2×(﹣3)2+6÷(﹣)(2)(﹣﹣+)×36+|﹣24|17.化简与计算(1)已知:多项式A=2x2﹣xy,B=x2+xy﹣6,(2)3x2y﹣|2xy2﹣(2xy﹣3x2y|﹣2xy,求:①4A﹣B;其中x=3,y=﹣.②当x=1,y=﹣2时,4A﹣B的值.18.为了有效控制酒后驾车,某天无为县交警大队的一辆警车在东西方向的通江大道上巡视,警车从某地A处出发,规定向东方向为正,当天行驶纪录如下(单位:千米)+10,﹣9,+7,﹣15,+6,﹣5,+4,﹣2(1)此时,这辆巡逻的汽车司机如何向队长描述他的位置?(2)如果警车行驶1千米耗油0.2升,油箱有油10升,现在警车要回到出发点A处,那么油箱的油够不够?若不够,途中至少需补充多少升油?19..观察下列算式:①(1+)(1﹣)=×=1;②(1+)(1﹣)=×=1;③(1+)(1﹣)=×=1;根据以上算式的规律,解决下列问题:(1)第⑩个等式为:;(2)计算:(1+)×(1+)×(1+)×…×(1+)×(1﹣)×(1﹣)×(1﹣)×…×(1﹣).20.某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入,下表是某周的生产情况(超产为正,减产为负,单位:辆):(1)根据记录可知前三天共生产辆.(2)产量最多的一天比产量最少的一天多生产辆.(3)该厂实行计件工资制,每生产一辆自行车50元,超额完成任务每辆车奖20元,少生产一辆扣10元,那么该厂工人这一周的工资总额是多少?21.已知一个三角形的第一条边长为2a+5b,第二条边比第一条边长3a﹣2b,第三条边比第二条边短3a(1)用含a,b的式子表示这个三角形的周长,并化简;(2)若a,b满足|a﹣5|+(b﹣3)2=0,求出这个三角形的周长.22.某大型超市上周日购进新鲜的黄瓜1000公斤,每公斤1.5元,受暴发的“毒黄瓜”的影响,销售价格出现较大的波动,表中为一周内黄瓜销售价格的涨跌情况(涨为正,跌为负,其中星期一的销售价格是与进价比较,单位:元):(1)到星期二时,每公斤的黄瓜售价是多少元?(2)本周最低售价是每公斤多少元?(3)已知截止到星期五,已卖出黄瓜700公斤,销售总额为935元.如果超市星期六能将剩下的黄瓜全部卖出.不考虑损耗等其他因素,请算算该超市本周销售黄瓜是盈还是亏?盈亏是多少?23.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示1和4的两点之间的距离是;表示﹣3和2的两点之间的距离是;表示数a和﹣2的两点之间的距离是3,那么a=;一般地,数轴上表示数m和数n的两点之间的距离等于.(2)若数轴上表示数a的点位于﹣4与2之间,求|a+4|+|a﹣2|的值;(3)存在不存在数a,使代数式|a+3|+|a﹣2|+|a﹣4|的值最小?如果存在,请写出数a=,此时代数式|a+3|+|a﹣2|+|a﹣4|最小值是.(注:本小题是填空题,可不写解答过程.).2016-2017学年安徽省巢湖市和县七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题只有一个正确选项,每小题4分,满分40分)1.下列计算正确的是()A.﹣5+4=﹣9 B.﹣8﹣8=0 C.23=6 D.﹣42=﹣16【考点】有理数的乘方;有理数的加法;有理数的减法.【分析】原式各项计算得到结果,即可做出判断.【解答】解:A、原式=﹣1,错误;B、原式=﹣16,错误;C、原式=8,错误;D、原式=﹣16,正确,故选D2.下列计算正确的是()A.2x+3y=5xy B.2a2+2a3=2a5C.4a2﹣3a2=1 D.﹣2ba2+a2b=﹣a2b【考点】合并同类项.【分析】根据合并同类项的法则,系数相加字母部分不变,可得答案.【解答】解:A、不是同类项不能合并,故A错误;B、不是同类项不能合并,故B错误;C、系数相加字母部分不变,故C错误;D、系数相加字母部分不变,故D正确;故选:D.3.下列说法正确的是()A.近似数1.50和1.5是相同的B.3520精确到百位等于3500C.6.610精确到千分位D.2.70×104精确到百分位【考点】近似数和有效数字.【分析】根据近似数的精确度对各选项进行判断.【解答】解:A、近似数1.50精确到百分位,1.5精确到十分位,所以A选项错误;B、3520精确到百位等于3.5千,所以B选项错误;C、6.610精确到千分位,所以C选项错误;D、2.70×104精确到百位,所以D选项错误.故选C.4.某种速冻水饺的储藏温度是﹣18±2℃,四个冷藏室的温度如下,则不适合储藏此种水饺的是()A.﹣17℃B.﹣22℃C.﹣18℃D.﹣19℃【考点】正数和负数.【分析】根据有理数的加减运算,可得温度范围,根据温度范围,可得答案.【解答】解:﹣18﹣2=﹣20℃,﹣18+2=﹣16℃,温度范围:﹣20℃至﹣16℃,A、﹣20℃<﹣17℃<﹣16℃,故A不符合题意;B、﹣22℃<﹣20℃,故B不符合题意;C、﹣20℃<﹣18℃<﹣16℃,故C不符合题意;D、﹣20℃<﹣19℃<﹣16℃,故D不符合题意;故选:B.5.下列说法错误的是()A.﹣xy的系数是﹣1B.﹣c是五次单项式C.2x2﹣3xy﹣1是二次三项式D.把多项式﹣2x2+3x3﹣1+x按x的降幂排列是3x3﹣2x2+x﹣1【考点】多项式;单项式.【分析】根据单项式、多项式的概念及单项式的次数、系数的定义解答.【解答】解:A、﹣xy的系数是﹣1,正确,不合题意;B、﹣c是六次单项式,故选项错误,符合题意;C、2x2﹣3xy﹣1是二次三项式,正确,不合题意;D、把多项式﹣2x2+3x3﹣1+x按x的降幂排列是3x3﹣2x2+x﹣1,正确,不合题意;故选:B.6.已知a﹣b=﹣2,则代数式3(a﹣b)2﹣a+b的值为()A.10 B.12 C.﹣10 D.14【考点】代数式求值.【分析】将代数式中的﹣a+b变为﹣(a﹣b),将a﹣b=﹣2,整体代入即得代数式的值为14.【解答】解:3(a﹣b)2﹣a+b=3(a﹣b)2﹣(a﹣b),将a﹣b=﹣2代入,得原式=14.故选D.7.已知单项式2x a y2与﹣3xy b的和是一个单项式,则(a﹣b)3=()A.﹣8 B.8 C.﹣1 D.1【考点】合并同类项.【分析】由题意可知:这两个单项式是同类项,由此可求出a与b的值.【解答】解:由题意可知:a=1,2=b,∴a﹣b=﹣1,∴原式=(﹣1)3=﹣1,故选(C)8.图中表示阴影部分面积的代数式是()A.ad+bc B.c(b﹣d)+d(a﹣c)C.ad+c(b﹣d)D.ab﹣cd【考点】整式的加减.【分析】把图形补成一个大矩形,则很容易表达出阴影部分面积.【解答】解:把图形补成一个大矩形,则阴影部分面积=ab﹣(a﹣c)(b﹣d)=ab ﹣[ab﹣ad﹣c(b﹣d)]=ab﹣ab+ad+c(b﹣d)=ad+c(b﹣d).故选C.9.小王利用计算机设计了一个程序,输入和输出的数据如下表:那么,当输入数据8时,输出的数据是()A.B.C.D.【考点】规律型:数字的变化类.【分析】根据图表找出输出数字的规律:输出的数字中,分子就是输入的数,分母是输入的数字的平方加1,直接将输入数据代入即可求解.【解答】解:输出数据的规律为,当输入数据为8时,输出的数据为=.故选:C.10.如果有4个不同的正整数m、n、p、q满足=4,那么m+n+p+q等于()A.8038 B.8049 C.8052 D.8056【考点】有理数的乘法;有理数的加法.【分析】因为m,n,p,q都是四个不同正整数,所以、、、都是不同的整数,四个不同的整数的积等于4,这四个整数为(﹣1)、(﹣2)、1、2,由此求得m,n,p,q的值,问题得解.【解答】解:根据4个不同的正整数m、n、p、q满足=4,得到每一个因数都是整数且都不相同,只可能是﹣1,1,﹣2,2,可得2014﹣m=﹣1,2014﹣n=1,2014﹣p=﹣2,2014﹣q=2,解得:m=2015,n=2013,p=2016,q=2012,则m+n+p+q=8056,故选D二、填空题(本大题共5个小题,每小题4分,满分20分)11.比较大小:﹣0.026<0;|﹣5| =﹣(﹣5).【考点】有理数大小比较.【分析】根据负数的性质及有理数比较大小的法则进行解答即可.【解答】解:∵﹣0.026是负数,∴﹣0.026<0;∵|﹣5|=5,﹣(﹣5)=5,∴|﹣5|=﹣(﹣5).故答案为:<,=.12.“珍惜水资源,节约用水”是公民应具备的优秀品质.据测试,拧不紧的水龙头每秒钟会滴下2滴水,每滴水约0.05毫升.如果某个同学在洗手后,没有把水龙头拧紧,当他离开5小时后水龙头滴了 1.8×103毫升水.(必须用科学记数法表示,否则0分)【考点】科学记数法—表示较大的数.【分析】求出5小时的秒数,再乘以2乘以0.05,然后根据科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数解答.【解答】解:5×60×60×2×0.05=1800=1.8×103毫升.故答案为:1.8×103.13.观察规定一种新运算:a⊕b=a b,如2⊕3=23=8,计算:(﹣)⊕2=.【考点】有理数的乘方.【分析】利用题中的新定义计算即可.【解答】解:根据题中新定义得:(﹣)⊕2=(﹣)2=,故答案为:14.在数﹣5,1,﹣3,5,﹣2中任取三个数相乘,其中最大的积是75,最小的积是﹣30.【考点】有理数的乘法.【分析】根据题意知,任取的三个数是﹣5,﹣3,5,它们最大的积是(﹣5)×(﹣3)×5=75.任取的三个数是﹣5,﹣3,﹣2,它们最小的积是(﹣5)×(﹣3)×(﹣2)=﹣30.【解答】解:在数﹣5,1,﹣3,5,﹣2中任取三个数相乘,其中最大的积必须为正数,即(﹣5)×(﹣3)×5=75,最小的积为负数,即(﹣5)×(﹣3)×(﹣2)=﹣30.故答案为:75;﹣30.15.已知|x|=a,|y|=b,给出下列结论:①若x﹣y=0,则a﹣b=0;②若a﹣b=0,则x﹣y=0;③若a+b=0,则x+y=0;④若x2﹣y2=0,则a﹣b=0.其中正确的结论有①③④(将所有正确结论的序号填写在横线上).【考点】有理数的混合运算.【分析】根据绝对值的性质对各小题进行逐一分析即可.【解答】解:①∵x﹣y=0,∴x与y相等或互为相反数,∴a=b,∴a﹣b=0,故本小题正确;②∵a﹣b=0,∴x与y相等或互为相反数,当x、y互为相反数时x﹣y≠0,故本小题错误;③∵a+b=0,∴x=y=0,∴x+y=0,故本小题正确;④∵x2﹣y2=0,∴x2=y2,∴a=b,∴a﹣b=0,故本小题正确.故答案为:①③④.三、解答题(本大题共有8个小题,满分90分)16.计算:(1)4﹣2×(﹣3)2+6÷(﹣)(2)(﹣﹣+)×36+|﹣24|【考点】有理数的混合运算.【分析】根据有理数的运算法则即可求出答案.【解答】解:(1)原式=4﹣2×9+(﹣12)=﹣26;(2)原式=﹣27﹣20+21+24=﹣47+45=﹣217.化简与计算(1)已知:多项式A=2x2﹣xy,B=x2+xy﹣6,(2)3x2y﹣|2xy2﹣(2xy﹣3x2y|﹣2xy,求:①4A﹣B;其中x=3,y=﹣.②当x=1,y=﹣2时,4A﹣B的值.【考点】整式的加减—化简求值;绝对值.【分析】①把A与B代入4A﹣B中,去括号合并得到最简结果,将x与y的值代入计算即可求出值;②把x=1,y=﹣2代入计算即可求出值.【解答】解:①∵A=2x2﹣xy,B=x2+xy﹣6,∴4A﹣B=8x2﹣4xy﹣x2﹣xy+6=7x2﹣5xy+6,当x=3,y=﹣时,原式=63+5+6=74;②当x=1,y=﹣2时,4A﹣B=7x2﹣5xy+6=7+10+6=23.18.为了有效控制酒后驾车,某天无为县交警大队的一辆警车在东西方向的通江大道上巡视,警车从某地A处出发,规定向东方向为正,当天行驶纪录如下(单位:千米)+10,﹣9,+7,﹣15,+6,﹣5,+4,﹣2(1)此时,这辆巡逻的汽车司机如何向队长描述他的位置?(2)如果警车行驶1千米耗油0.2升,油箱有油10升,现在警车要回到出发点A 处,那么油箱的油够不够?若不够,途中至少需补充多少升油? 【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据单位耗油量乘以路程,可得总耗油量,根据有理数的减法,可得答案. 【解答】解:(1)10+(﹣9)+7+(﹣15)+6+(﹣5)+4+(﹣2)=﹣4(千米).答:他在出发点的西方,距出发点4千米;(2)总耗油量(10+|﹣9|+7+|﹣15|+6+|﹣5|+4+|﹣2|)×0.2=58×0.2=11.6(升),11.6﹣10=1.6(升).答:不够,途中至少需补充1.6升油.19..观察下列算式:①(1+)(1﹣)=×=1;②(1+)(1﹣)=×=1;③(1+)(1﹣)=×=1;根据以上算式的规律,解决下列问题:(1)第⑩个等式为: (1+)(1﹣)=×=1 ;(2)计算:(1+)×(1+)×(1+)×…×(1+)×(1﹣)×(1﹣)×(1﹣)×…×(1﹣).【考点】规律型:数字的变化类.【分析】(1)根据式子的序号与分母之间的关系即可求解; (2)利用交换律,转化为已知中的式子进行求解即可.【解答】解:(1)第⑩个等式是(1+)(1﹣)=×=1.故答案是:(1+)(1﹣)=×=1;(2)原式=(1+)(1﹣)×(1+)(1﹣)×…×(1+)(1﹣)=1.20.某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入,下表是某周的生产情况(超产为正,减产为负,单位:辆):(1)根据记录可知前三天共生产599辆.(2)产量最多的一天比产量最少的一天多生产26辆.(3)该厂实行计件工资制,每生产一辆自行车50元,超额完成任务每辆车奖20元,少生产一辆扣10元,那么该厂工人这一周的工资总额是多少?【考点】正数和负数;有理数的加法.【分析】(1)分别表示出前三天的自行车生产数量,再求其和即可;(2)根据出入情况:用产量最高的一天﹣产量最低的一天;(3)首先计算出生产的自行车的总量,再根据工资标准计算工资即可.【解答】解:(1)200+5++=599(辆),故答案为:599;(2)﹣=26(辆),故答案为:26;(3)5﹣2﹣4+13﹣10+16﹣9=9(辆)200×7×50+9×(50+20)=70630(元).21.已知一个三角形的第一条边长为2a+5b,第二条边比第一条边长3a﹣2b,第三条边比第二条边短3a(1)用含a,b的式子表示这个三角形的周长,并化简;(2)若a,b满足|a﹣5|+(b﹣3)2=0,求出这个三角形的周长.【考点】整式的加减;绝对值;非负数的性质:偶次方;代数式求值.【分析】(1)先用a,b表示出三角形其余两边的长,再求出其周长即可;(2)根据非负数的性质求出ab的值,代入(1)中三角形的周长式子即可.【解答】解:(1)∵三角形的第一条边长为2a+5b,第二条边比第一条边长3a ﹣2b,第三条边比第二条边短3a,∴第二条边长=2a+5b+3a﹣2b=5a+3b,第三条边长=5a+3b﹣3a=2a+3b,∴这个三角形的周长=2a+5b+5a+3b+2a+3b=9a+11b;(2)∵a,b满足|a﹣5|+(b﹣3)2=0,∴a﹣5=0,b﹣3=0,∴a=5,b=3,∴这个三角形的周长=9×5+11×3=45+33=78.答:这个三角形的周长是78.22.某大型超市上周日购进新鲜的黄瓜1000公斤,每公斤1.5元,受暴发的“毒黄瓜”的影响,销售价格出现较大的波动,表中为一周内黄瓜销售价格的涨跌情况(涨为正,跌为负,其中星期一的销售价格是与进价比较,单位:元):(1)到星期二时,每公斤的黄瓜售价是多少元?(2)本周最低售价是每公斤多少元?(3)已知截止到星期五,已卖出黄瓜700公斤,销售总额为935元.如果超市星期六能将剩下的黄瓜全部卖出.不考虑损耗等其他因素,请算算该超市本周销售黄瓜是盈还是亏?盈亏是多少?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据有理数的加法,可得答案;(3)根据单价乘以数量量,可得销售额,根据销售额减去成本,可得答案.【解答】解:(1)1.5+0.3+0.4=2.2元,到星期二时,每公斤的黄瓜售价是2.2元;(2)1.5+0.3+0.4﹣0.5﹣0.6﹣0.7=0.4元,本周最低售价是每公斤0.4元;(3)周六的价格是0.4+0.1=0.5元,300×0.5+935﹣1000×1.5=﹣415元.故该超市本周销售黄瓜亏了415元.23.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示1和4的两点之间的距离是3;表示﹣3和2的两点之间的距离是5;表示数a和﹣2的两点之间的距离是3,那么a=﹣5或1;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n| .(2)若数轴上表示数a的点位于﹣4与2之间,求|a+4|+|a﹣2|的值;(3)存在不存在数a,使代数式|a+3|+|a﹣2|+|a﹣4|的值最小?如果存在,请写出数a=2或3,此时代数式|a+3|+|a﹣2|+|a﹣4|最小值是4.(注:本小题是填空题,可不写解答过程.).【考点】数轴;绝对值.【分析】(1)根据题意,结合数轴即可得到结果;(2)由a的范围,利用绝对值的代数意义化简即可;(3)分类讨论a的范围,利用绝对值的代数意义化简,确定出最小值,以及此时a的值即可.【解答】解:(1)数轴上表示1和4的两点之间的距离是3;表示﹣3和2的两点之间的距离是5;表示数a和﹣2的两点之间的距离是3,那么a=﹣5或1;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|;(2)根据题意得:﹣4<a<2,即a+4>0,a﹣2<0,则原式=a+4+2﹣a=6;(3)①a≤1时,原式=1﹣a+2﹣a+3﹣a+4﹣a=10﹣4a,则a=1时有最小值6;②1≤a≤2时,原式=a﹣1+2﹣a+3﹣a+4﹣a=8﹣2a,则a=2时有最小值4;③2≤a≤3时,原式=a﹣1+a﹣2+3﹣a+4﹣a=4;④3≤a≤4时,原式=a﹣1+a﹣2+a﹣3+4﹣a=2a﹣2;则a=3时有最小值4;⑤a≥4时,原式=a﹣1+a﹣2+a﹣3+a﹣4=4a﹣10;则a=4时有最小值6;综上所述,当a=2或3时,原式有最小值4.故答案为:(1)3;5;﹣5或1;|m﹣n|;(3)2或3;42017年1月22日。

南阳市七年级(上)期中数学试卷(含答案)

南阳市七年级(上)期中数学试卷(含答案)

七年级(上)期中数学试卷 题号一二三四总分得分一、选择题(本大题共8小题,共24.0分)1.-的相反数是( )13A. B. 3 C. D. 13−13−32.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的是( )A. B. C. D.3.石墨烯(Graphene )是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体.石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯.300万用科学记数法表示为( )A. B. C. D. 3000000300×1043×1053×1064.下列各式结果为负数的是( )A. B. C. D. −(−1)−|−1|(−1)4|1−2|5.下列算式:①(-5)+(+3)=-8 ②-(-2)3=6 ③(+)+(-)= ④-3÷(-)=956162313其中正确的有( )A. 1个B. 2个C. 3个D. 4个6.下列比较两个数的大小错误的是( )A. B. C. D. 3>−1−2>−312>13−23<−347.用代数式表示“m 的3倍与n 的差的平方”,正确的是( )A. B. C. D. (3m−n )23(m−n )23m−n 2(m−3n )28.如图所示的运算程序中,如果开始输入的x 值为-48,我们发现第1次输出的结果为-24,第2次输出的结果为-12,…,第2016次输出的结果为( )A. B. C. D. −6−3−24−12二、填空题(本大题共7小题,共21.0分)9.写出一个比-4大的负整数:______.1210.计算:-0.3+(-)-=______.1231011.在数轴上有A 、B 两点,点A 表示的数是2,点B 与点A 间的距离是4,那么点B表示的数是______.12.若a <0,b >0,则b ,b +a ,b -a 中最大的一个数是______.13.形如的式子叫做二阶行列式,它的运算法则用公式表示为=ad -bc ,依∣a c b d ∣∣a c b d ∣此法则计算的结果为______.∣54−32∣14.若a ,b 都是不为零的有理数,那么+的值是______.|a|a |b|b 15.小华把任意有理数对(x ,y )放进装有计算装置的魔术盒,会得到一个新的有理数x +y 2+1,例如:把(-1,2)放入其中,就会得到-1+22+1=4,若将正整数对放入其中,得到的值是6,则满足条件的所有的正整数对(x ,y )为______.三、计算题(本大题共3小题,共27.0分)16.计算:(-24)-(-36)+(+20)17.计算:(-3)2+[12-(-2)×3]÷9.18.如图①所示是一个长为2m ,宽为2n 的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.(1)你认为图②中的阴影部分的正方形的边长等于______;(2)请用两种不同的方法列代数式表示图②中阴影部分的面积.方法①______.方法②______;(3)观察图②,你能写出(m +n )2,(m -n )2,mn 这三个代数式之间的等量关系吗?(4)根据(3)题中的等量关系,解决如下问题:若a +b =6,ab =4,则求(a -b )2的值.四、解答题(本大题共5小题,共48.0分)19.[2-5×(-)2]÷(-).121420.计算:[2-(+-)×24]÷5×(-1)2015.1238163421.某校一间阶梯教室中,第1排的座位数为a ,从第2排开始,每一排都比前一排增加两个座位.(1)请你在下表的空格里填写一个适当的式子:第1排的座位数第2排的座位数第3排的座位数第4排的座位数…a a +2a +4…(2)写出第n 排座位数的表达式;(3)求当a =20时,第10排的座位数是多少?若这间阶梯教室共有15排,那么最多可容纳多少学员?22.已知多项式x 4-y +3xy -2xy 2-5x 3y 3-1,按要求解答下列问题:(1)指出该多项式的项;(2)该多项式的次数是______,三次项的系数是______.(3)按y 的降幂排列为:______.(4)若|x +1|+|y -2|=0,试求该多项式的值.23.数学老师布置了一道思考题“计算:(-)”,小明仔细思考了一番,用112÷(13−56)了一种不同的方法解决了这个问题.小明的解法:原式的倒数为()=()×(-12)=-4+10=6,13−56÷(−112)13−56所以(-)=.112÷(13−56)16(1)请你判断小明的解答是否正确,并说明理由.(2)请你运用小明的解法解答下面的问题.计算:(-).124÷(13−16+38)答案和解析1.【答案】A【解析】解:-的相反数是,故选:A.根据只有符号不同的两个数互为相反数,可得答案.本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.【答案】C【解析】解:∵|-0.6|<|+0.8|<|-2.5|<|+3.6|,∴-0.6最接近标准.故选:C.求出每个数的绝对值,根据绝对值的大小找出绝对值最小的数即可.本题考查了绝对值和正数和负数的应用,掌握正数和负数的概念和绝对值的性质是解题的关键,主要考查学生的理解能力,题目具有一定的代表性,难度也不大.3.【答案】C【解析】解:300万用科学记数法表示为3×106.故选C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】B【解析】【分析】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.先对各个选项中的式子化简,即可解答本题.【解答】解:∵-(-1)=1,-|-1|=-1,(-1)4=1,|1-2|=1,∴选项B中的式子的结果为负数,故选B.5.【答案】B【解析】解:∵(-5)+(+3)=-2,故①错误,∵-(-2)3=8,故②错误,∵(+)+(-)=,故③正确,∵-3÷(-)=-3×(-3)=9,故④正确,故选B.根据题意目中的式子可以计算出正确的结果,从可以判断哪个是正确的.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.6.【答案】D【解析】解:A、3>-1,符合正数大于一切负数,故本选项错误;B、-2>-3,符合两个负数,绝对值大的其值反而小,故本选项错误;C、=>=,故本选项错误;D、-=->-=-,原式比较错误,故本选项正确.故选:D.根据有理数的大小比较法则求解.本题考查了有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.7.【答案】A【解析】解:∵m的3倍与n的差为3m-n,∴m的3倍与n的差的平方为(3m-n)2.故选:A.认真读题,表示出m的3倍为3m,与n的差,再减去n为3m-n,最后是平方,于是答案可得.本题考查了列代数式的知识;认真读题,充分理解题意是列代数式的关键,本题应注意的是理解差的平方与平方差的区别,做题时注意体会.8.【答案】B【解析】解:开始输入的x值为-48,我们发现第1次输出的结果为-24,第2次输出的结果为-12,第3次输出的结果为-6,第4次输出的结果为-3,第5次输出的结果为-6,以此类推,∵(2016-2)÷2=2014÷2=1002,∴第2016次输出的结果为-3,故选:B.把x=-48代入运算程序中计算,判断结果奇偶性,以此类推即可确定出2016次输出的结果.此题考查了代数式求值,以及规律型:数字的变化类,弄清题中的规律是解本题的关键.9.【答案】-4,-3,-2,-1【解析】解:∵-5<-4<-4.∴比-4大的负整数有-4,-3,-2,-1.故答案为:-4,-3,-2,-1.由-5<-4<-4,根据负整数的定义即可求得答案.本题考查了有理数大小比较的方法.注意两个负数中绝对值大的反而小.10.【答案】-1110【解析】解:原式=-0.3+(-)+(-)=-,故答案为:-原式利用减法法则变形,计算即可得到结果.此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.11.【答案】-2或6【解析】解:分为两种情况:①当点在表示2的点的左边时,数为2-4=-2;②当点在表示2的点的右边时,数为2+4=6.故答案为:-2或6.根据题意得出两种情况:当点在表示2的点的左边时,当点在表示2的点的右边时,列出算式求出即可.本题考查的是数轴的特点,即数轴上两点之间的距离等于两点坐标之差的绝对值.12.【答案】b-a【解析】解:∵a<0,b>0,∴b+a<b<b-a.故答案为:b-a.减去一个数等于加上这个数的相反数,由于a<0,故b+a<b,b-a>b,进而得出结果.此题考查了有理数大小比较,任意一个数加上一个负数一定小于它本身,加上一个正数一定大于它本身.13.【答案】22【解析】解:∵=ad-bc,∴=5×2-4×(-3)=10+12=22,故答案为:22.根据=ad-bc,可以求得题目中的二阶行列式的值.本题考查有理数的混合运算,解答本题的关键是明确二阶行列式的计算方法.14.【答案】2,0或-2【解析】解:①a>0,b>0;则+=1+1=2,②a>0,b<0或a<0,b>0,则+=1-1=0或+=-1+1=0③a<0,b<0,则+=-1-1=-2.所以+的值是2,0或-2.故答案为:2,0或-2.分情况讨论①a>0,b>0;②a>0,b<0或a<0,b>0,③a<0,b<0,然后根据范围去掉绝对值可得出+可能的值.本题考查有理数的除法及绝对值的知识,难度不大,关键是分类讨论a和b的范围.15.【答案】(1,2)或(4,1)【解析】解:设正整数对为(x,y),则x+y2+1=6,解得,或,故答案为:(1,2)或(4,1).根据题意,可以列出相应的方程,根据题目中的定义,可以求得正整数对(x,y).本题考查新定义、有理数的混合运算,解答本题的关键是明确题意,利用题目中的新定义解答问题.16.【答案】解:原式=-24+36+20=-24+56=32.【解析】原式利用减法法则变形,计算即可得到结果.此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.17.【答案】解:原式=9+(12+6)÷9=9+2=11.【解析】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.18.【答案】m-n;(m+n)2-4mn;(m-n)2【解析】解:(1)m-n;(2)(m+n )2-4mn 或(m-n )2;(3)(m+n )2-4mn=(m-n )2;(4)(a-b )2=(a+b )2-4ab ,∵a+b=6,ab=4,∴(a-b )2=36-16=20.平均分成后,每个小长方形的长为m ,宽为n .(1)正方形的边长=小长方形的长-宽;(2)第一种方法为:大正方形面积-4个小长方形面积,第二种表示方法为:阴影部分为小正方形的面积;(3)利用(m+n )2-4mn=(m-n )2可求解;(4)利用(a-b )2=(a+b )2-4ab 可求解.解决问题的关键是读懂题意,找到所求的量的等量关系.本题更需注意要根据所找到的规律做题.19.【答案】解:原式=[2-5×]÷(-)1414=[2-]÷(-)5414=×(-4)34=-3.【解析】先算乘方,再算乘法,再算减法,最后算除法.此题考查有理数的混合运算,注意运算顺序与计算结果的符号.20.【答案】解:原式=(-24×-24×+24×)××(-1)5238163415=(-9-4+18)×(-)5215=-.32【解析】先利用乘法分配律计算括号内的、将除法转化为乘法及乘方,再计算括号内的,最后计算乘法即可得.本题主要考查有理数的混合运算,熟练掌握有理数的混合运算顺序和法则是解题的关键.21.【答案】1、a+62、a+2(n-1)3、当a=20时,第10排的座位数是20+2×(10-1)=38;15排最多可容纳20+22+24+26+…+48=510名学员.【解析】解:(1)填表如下:第1排的座位数第2排的座位数第3排的座位数第4排的座位数…a a+2a+4a+6…(2)写出第n排座位数为a+2(n-1);(3)当a=20时,第10排的座位数是20+2×(10-1)=38;15排最多可容纳20+22+24+26+…+48=510名学员.(1)第四排的座位数是第三排的座位数加上2,即可求解;(2)第n排的座位数比第一排多n-1个2,据此即可求解;(3)把a=20代入(2)中代数式得出第10排得座位数;求得每排的座位数相加得出答案即可.本题考查了列代数式以及代数式求值,正确表示出第n个座位的个数是解题的关键.22.【答案】6;-2;-5x3y3-2xy2-y+3xy+x4-1【解析】解:(1)该多项式的项为:x4,y,3xy,-2xy2,-5x3y3,-1;(2)该多项式的次数是6,三次项的系数是-2;故答案为:6,-2;(3)按y的降幂排列为:-5x3y3-2xy2-y+3xy+x4-1;故答案为:-5x3y3-2xy2-y+3xy+x4-1;(4)∵|x+1|+|y-2|=0,∴x=-1,y=2,∴x4-y+3xy-2xy2-5x3y3-1=(-1)4-2+3×(-1)×2-2(-1)×22-5(-1)3×23-1=1-2-6+8+40-1=40.(1)根据多项式的项的定义求解,(2)据多项式的项的次数单项式的系数的定义求解;(3)先分清多项式的各项,然后按y 的降幂排列;(4)根据非负数的性质得到x ,y 的值,代入代数式即刻得到结果.此题考查的是与多项式有关的定义,比较简单.几个单项式的和叫做多项式,其中每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.23.【答案】解:(1)正确,理由为:一个数的倒数的倒数等于原数;(2)原式的倒数为(-+)÷(-)=(-+)×(-24)=-8+4-9=-13,131638124131638则(-)÷(-+)=-.124131638113【解析】此题考查了有理数的除法有关知识.(1)正确,利用倒数的定义判断即可;(2)求出原式的倒数,即可确定出原式的值.。

河南省南阳市唐河县2016-2017学年七年级(上)期中数学试卷(p卷)(解析版)

河南省南阳市唐河县2016-2017学年七年级(上)期中数学试卷(p卷)(解析版)

2016-2017学年河南省南阳市唐河县七年级(上)期中数学试卷(p卷)一、选择题(每小题3分,共24分)1.在|﹣2|,﹣2,(﹣2)5,﹣|﹣2|这五个数中,负数共有()A.2个 B.3个 C.4个 D.5个2.去年我县12月份某天的最低气温为﹣6℃,最高气温为﹣2℃,那么这一天的最高气温比最低气温高()A.4℃B.﹣4℃C.8℃D.﹣8℃3.实数a,b在数轴上的位置如图所示,以下说法正确的是()A.a+b=0 B.b<a C.ab>0 D.|b|<|a|4.若(2a﹣1)2+2|b﹣3|=0,则a b=()A.B.C.D.65.下列说法正确的是()A.的系数是﹣2 B.32ab3的次数是6次C.是多项式D.x2+x﹣1的常数项为16.某企业今年3月份产值为a万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是()A.(a﹣10%)(a+15%)万元B.a(1﹣10%)(1+15%)万元C.(a﹣10%+15%)万元D.a(1﹣10%+15%)万元7.计算(﹣2)100+(﹣2)101所得的结果是()A.2100B.﹣1 C.﹣2 D.﹣21008.若﹣1<x<0,则x,x2,x3的大小关系是()A.x<x3<x2B.x<x2<x3C.x3<x<x2D.x2<x3<x二、填空题(每小题3分,共21分)9.“太阳能”是一种既无污染又节省地下能源的能量,据科学家统计,平均每平方千米的地面一年从太阳中获得的能量,相当于燃烧130 000 000千克的煤所产生的能量,用科学记数法表示这个数量是千克.10.若点A表示数﹣3,将点A向左移动1个单位长度,再向右移动5个单位长度,那么终点表示的数是.11.把多项式3x2﹣5﹣2x+x3按x的降幂排列是.12.巧克力糖每千克a元,奶油糖每千克b元,用6千克巧克力糖和4千克奶油糖混合成10千克混合糖,则这样得到的混合糖每千克的平均价格为元.13.已知y=,x为自然数,当y是正整数时,x的值的所有可能为.14.定义一种新运算:a⊗b=b2﹣ab,如1⊗2=22﹣1×2,则(﹣)⊗(﹣4)=.15.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…通过观察,用所发现的规律确定22016的个位数字是.三、解答题16.计算(1)(﹣3)+(﹣4)﹣(+11)﹣(﹣9);(2)(﹣5)×(﹣3)+(﹣7)×(﹣3)+19×(﹣3);(3)用简便方法计算:﹣36×(﹣+1).17.已知有理数a、b、c在数轴上的对应点如图所示,化简:|a﹣b|﹣|a+b|+|a|+|a ﹣c|.18.(1)若a+b>0,ab<0,且|a|=4,|b|=3,求代数式a﹣b的值.(2)若x=2时,代数式a2x3+x2+bx+1的值为3,当x=﹣2时,求代数式a2x3+x2+bx+1的值.19.已知a、b互为相反数,且ab≠0,c、d互为倒数,|m|=2,求代数式(a+b)2016+()3﹣3cd+2m的值.20.一种长方形餐桌的四周可以坐6人用餐(带阴影的小长方形表示1个人的位置),现把n张这样的餐桌按如图方式拼接起来.(1)问四周可以坐多少人用餐?(用含n的代数式表示)(2)按如图的拼接方式,16张这样的餐桌可同时供多少人用餐?21.观察下面解题过程:计算:1+3+5+…+91+93+95.解:设S=1+3+5+…+91+93+95.…①则S=95+93+91+…+5+3+1.…②①+②得2S=(1+3+5+…+91+93+95)+(95+93+91+…+5+3+1)=(1+95)+(3+93)+(5+91)+…+(91+5)+(93+3)+(95+1)==2304.(1)仿照上述方法计算:2+4+6+…+100+102+104(2)已知n是正整数,且n>10,计算:1+2+3+…+n=.(只填结果)22.某电器商销售一种微波炉和电磁炉,微波炉每台定价800元,电磁炉每台定价200元.“双十一”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一台微波炉送一台电磁炉;方案二:微波炉和电磁炉都按定价的90%付款.现某客户要到该卖场购买微波炉2台,电磁炉x台(x>2).(1)若该客户按方案一购买,需付款元.(用含x的代数式表示)若该客户按方案二购买,需付款元.(用含x的代数式表示)(2)若x=5时,通过计算说明此时按哪种方案购买较为合算?(3)当x=5时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法.23.出租车司机小李某天上午的运营是在东西走向的大街上运营的.如果规定方向向东为正,向西为负,他这天上午的行车里程(单位:千米)如下:+15,﹣2,+10,﹣5,+10,﹣3,﹣4,+12,+3,﹣6(1)将最后一名乘客送到目的地时,小李距上午的出发点多远?(2)若汽车耗油量为0.3升/千米,这天上午小李共耗油多少升?(3)若出租车起步价为5元,起步里程为2千米(包括2千米),超过部分每千米1元,问这天上午小李共得多少车费?2016-2017学年河南省南阳市唐河县七年级(上)期中数学试卷(p卷)参考答案与试题解析一、选择题(每小题3分,共24分)1.在|﹣2|,﹣2,(﹣2)5,﹣|﹣2|这五个数中,负数共有()A.2个 B.3个 C.4个 D.5个【考点】正数和负数;绝对值.【分析】根据小于零的数是负数,可得答案.【解答】解:|﹣2|=2,(﹣2)5=﹣32,﹣|﹣2|=﹣2,﹣2,(﹣2)5,﹣|﹣2|是负数,负数共有3个.故选:B.2.去年我县12月份某天的最低气温为﹣6℃,最高气温为﹣2℃,那么这一天的最高气温比最低气温高()A.4℃B.﹣4℃C.8℃D.﹣8℃【考点】有理数的减法.【分析】用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:﹣2﹣(﹣6),=﹣2+6,=4℃.故选A.3.实数a,b在数轴上的位置如图所示,以下说法正确的是()A.a+b=0 B.b<a C.ab>0 D.|b|<|a|【考点】实数与数轴.【分析】根据图形可知,a是一个负数,并且它的绝对是大于1小于2,b是一个正数,并且它的绝对值是大于0小于1,即可得出|b|<|a|.【解答】解:根据图形可知:﹣2<a<﹣1,0<b<1,则|b|<|a|;故选:D.4.若(2a﹣1)2+2|b﹣3|=0,则a b=()A.B.C.D.6【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质:几个非负数的和等于0,则每个数等于0,即可列出关于a和b的方程,求得a和b的值,进而求得代数式的值.【解答】解:根据题意得,解得,则原式=.故选C.5.下列说法正确的是()A.的系数是﹣2 B.32ab3的次数是6次C.是多项式D.x2+x﹣1的常数项为1【考点】单项式.【分析】根据单项式次数、系数的定义,以及多项式的有关概念解答即可;单项式的系数是单项式中的数字因数,单项式的次数是单项式中所有字母的指数和.【解答】解:A、的系数是﹣;故A错误.B、32ab3的次数是1+3=4;故B错误.C、根据多项式的定义知,是多项式;故C正确.D、x2+x﹣1的常数项为﹣1,而不是1;故D错误.故选C.6.某企业今年3月份产值为a万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是()A.(a﹣10%)(a+15%)万元B.a(1﹣10%)(1+15%)万元C.(a﹣10%+15%)万元D.a(1﹣10%+15%)万元【考点】列代数式.【分析】根据3月份的产值是a万元,用a把4月份的产值表示出来(1﹣10%)a,进而得出5月份产值列出式子(1﹣10%)a×(1+15%)万元,即可得出选项.【解答】解:3月份的产值是a万元,则:4月份的产值是(1﹣10%)a万元,5月份的产值是(1+15%)(1﹣10%)a万元,故选:B.7.计算(﹣2)100+(﹣2)101所得的结果是()A.2100B.﹣1 C.﹣2 D.﹣2100【考点】有理数的乘方.【分析】根据乘方运算的法则先确定符号后,在提取公因式即可得出答案.【解答】解:(﹣2)100+(﹣2)101=2100﹣2×2100=2100×(1﹣2)=﹣2100,故选:D.8.若﹣1<x<0,则x,x2,x3的大小关系是()A.x<x3<x2B.x<x2<x3C.x3<x<x2D.x2<x3<x【考点】有理数大小比较.【分析】根据﹣1<x<0,可得x<0,x2>0,x3<0,据此判断出x,x2,x3的大小关系即可.【解答】解:∵﹣1<x<0,∴x<0,x2>0,x3<0,∴x<x3<x2.故选:A.二、填空题(每小题3分,共21分)9.“太阳能”是一种既无污染又节省地下能源的能量,据科学家统计,平均每平方千米的地面一年从太阳中获得的能量,相当于燃烧130 000 000千克的煤所产生的能量,用科学记数法表示这个数量是 1.3×108千克.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:130 000 000=1.3×108千克.10.若点A表示数﹣3,将点A向左移动1个单位长度,再向右移动5个单位长度,那么终点表示的数是1.【考点】数轴.【分析】根据左减右加的法则进行计算即可.【解答】解:﹣3﹣1+5=﹣4+5=1.故终点表示的数是1.故答案为:1.11.把多项式3x2﹣5﹣2x+x3按x的降幂排列是x3+3x2﹣2x﹣5.【考点】多项式.【分析】先分清各项,然后按降幂排列的定义解答.【解答】解:多项式3x2﹣5﹣2x+x3按x的降幂排列是x3+3x2﹣2x﹣5.故答案为:x3+3x2﹣2x﹣5.12.巧克力糖每千克a元,奶油糖每千克b元,用6千克巧克力糖和4千克奶油糖混合成10千克混合糖,则这样得到的混合糖每千克的平均价格为元.【考点】列代数式.【分析】根据题意列出代数式解答即可.【解答】解:混合糖每千克的平均价格为元;故答案为:.13.已知y=,x为自然数,当y是正整数时,x的值的所有可能为7或2或3或4.【考点】代数式求值.【分析】根据已知和x、y为整数得出x﹣1=6或1或2或3,求出后选出即可.【解答】解:∵y=,x为自然数,y是正整数,∴x﹣1=6或1或2或3,解得:x=7或2或3或4,故答案为:7或2或3或4.14.定义一种新运算:a⊗b=b2﹣ab,如1⊗2=22﹣1×2,则(﹣)⊗(﹣4)=14.【考点】有理数的混合运算.【分析】原式利用题中的新定义计算即可得到结果.【解答】解:根据题中的新定义得:原式=(﹣4)2﹣(﹣)×(﹣4)=16﹣2=14,故答案为:1415.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…通过观察,用所发现的规律确定22016的个位数字是6.【考点】尾数特征.【分析】观察发现,每四个一组,个位数字循环,然后用2016除以4,正好能够整除,所以与第四个数的个位数字相同.【解答】解:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,所以,每四个一组,个位数字循环,∵2016÷4=504,∴22016的个位数字与24的个位数字相同是:6.故答案为:6.三、解答题16.计算(1)(﹣3)+(﹣4)﹣(+11)﹣(﹣9);(2)(﹣5)×(﹣3)+(﹣7)×(﹣3)+19×(﹣3);(3)用简便方法计算:﹣36×(﹣+1).【考点】有理数的混合运算.【分析】(1)变成省略加号和的形式,用加法进行计算;(2)利用乘法分配律的逆用进行运算;(3)利用乘法分配律运算.【解答】解:(1)(﹣3)+(﹣4)﹣(+11)﹣(﹣9),=﹣3﹣4﹣11+9,=﹣18+9,=﹣9;(2)(﹣5)×(﹣3)+(﹣7)×(﹣3)+19×(﹣3),=﹣×(﹣5﹣7+19),=﹣×7,=﹣27;(3)用简便方法计算:﹣36×(﹣+1),=﹣36×+36×﹣36×,=﹣16+30﹣48,=﹣34.17.已知有理数a、b、c在数轴上的对应点如图所示,化简:|a﹣b|﹣|a+b|+|a|+|a ﹣c|.【考点】整式的加减;数轴;绝对值.【分析】根据数轴上点的位置判断出绝对值里边式子的正负,原式利用绝对值的代数意义化简,计算即可得到结果.【解答】解:根据数轴上点的位置得:b<a<0<c,∴a﹣b>0,a+b<0,a﹣c<0,则原式=a﹣b+a+b﹣a﹣a+c=c.18.(1)若a+b>0,ab<0,且|a|=4,|b|=3,求代数式a﹣b的值.(2)若x=2时,代数式a2x3+x2+bx+1的值为3,当x=﹣2时,求代数式a2x3+x2+bx+1的值.【考点】代数式求值.【分析】(1)根据题意确定出a与b的值,原式去括号合并得到最简结果,把a 与b的值代入计算即可求出值;(2)根据代数式求值,可得8a3+2b=﹣2,再根据代数式求值,整体代入可得答案.【解答】解:(1)∵a+b>0,ab<0,且|a|=4,|b|=3,∴a=4,b=﹣3,a﹣b=4﹣(﹣3)=7;(2)∵x=2∴8a3+4+2b+1=3∴8a3+2b=﹣2∴x=﹣2a2x3+x2+bx+1=﹣8a3+4﹣2b+1=﹣2+4+1=3.19.已知a、b互为相反数,且ab≠0,c、d互为倒数,|m|=2,求代数式(a+b)2016+()3﹣3cd+2m的值.【考点】代数式求值.【分析】根据相反数、倒数、绝对值得出a+b=0,=﹣1,cd=1,m=±2,代入求出即可.【解答】解:∵a、b互为相反数,且ab≠0,c、d互为倒数,|m|=2,∴a+b=0,=﹣1,cd=1,m=±2,当m=2时,(a+b)2016+()3﹣3cd+2m=02016+(﹣1)3﹣3×1+2×2=0,当m=2时,(a+b)2016+()3﹣3cd+2m=02016+(﹣1)3﹣3×1+2×(﹣2)=﹣8.20.一种长方形餐桌的四周可以坐6人用餐(带阴影的小长方形表示1个人的位置),现把n张这样的餐桌按如图方式拼接起来.(1)问四周可以坐多少人用餐?(用含n的代数式表示)(2)按如图的拼接方式,16张这样的餐桌可同时供多少人用餐?【考点】规律型:图形的变化类.【分析】(1)根据图形可知,每张桌子有4个座位,然后再加两端的各一个.于是n张桌子就有(4n+2)个座位;(2)令n=16求解即可.【解答】解:(1)结合图形,发现:每个图中,两端都是坐2人,剩下的两边则是每一张桌子是4人.则三张餐桌按题中的拼接方式,四周可坐3×4+2=14(人);n张餐桌按上面的方式拼接,四周可坐(4n+2)人;(2)当n=16时,4×16+2=66,答:16张这样的餐桌可同时供66人用餐.21.观察下面解题过程:计算:1+3+5+…+91+93+95.解:设S=1+3+5+…+91+93+95.…①则S=95+93+91+…+5+3+1.…②①+②得2S=(1+3+5+…+91+93+95)+(95+93+91+…+5+3+1)=(1+95)+(3+93)+(5+91)+…+(91+5)+(93+3)+(95+1)==2304.(1)仿照上述方法计算:2+4+6+…+100+102+104(2)已知n是正整数,且n>10,计算:1+2+3+…+n=.(只填结果)【考点】规律型:数字的变化类;有理数的混合运算.【分析】(1)仿照所给计算过程设S=2+4+6+…+100+102+104.…①则S=104+102+100…+6+4+2.…②,再计算即可;(2)仿照所给计算过程计算即可.【解答】解:(1)设S=2+4+6+…+100+102+104.…①则S=104+102+100…+6+4+2.…②,①+②得2S=(2+4+6+…+100+102+104)+=(2+104)+(4+102)+(6+100)+…+++==2756;(2)设S=1+2+3+…+n.…①则S=n+(n﹣1)+(n﹣2)+…1.…②,①+②得2S=(1+2+3+...+n)+[n+(n﹣1)+(n﹣2)+ (1)=(1+n)+(2+n﹣1)+(3+n﹣2)+…+(n+1)=故答案为:.22.某电器商销售一种微波炉和电磁炉,微波炉每台定价800元,电磁炉每台定价200元.“双十一”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一台微波炉送一台电磁炉;方案二:微波炉和电磁炉都按定价的90%付款.现某客户要到该卖场购买微波炉2台,电磁炉x台(x>2).(1)若该客户按方案一购买,需付款200x+1200元.(用含x的代数式表示)若该客户按方案二购买,需付款180x+1440元.(用含x的代数式表示)(2)若x=5时,通过计算说明此时按哪种方案购买较为合算?(3)当x=5时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法.【考点】一元一次方程的应用;列代数式;代数式求值.【分析】(1)根据题目提供的两种不同的付款方式列出代数式即可;(2)将x=5代入求得的代数式中即可得到费用,然后比较即可得到选择哪种方案更合算;(3)根据题意考可以得到先按方案一购买2台微波炉再送2台电磁炉,再按方案二购买3台电磁炉更合算.【解答】解:(1)若该客户按方案一购买,需付款:800×2+200(x﹣2)=200x+1200(元),若该客户按方案二购买,需付款:×90%=180x+1440(元);故答案为:200x+1200,180x+1440;(2)当x=5时,方案一:200×5+1200=2200(元),方案二:180×5+1440=2340(元),所以,按方案一购买较合算.(3)先按方案一购买2台微波炉送2台电磁炉,再按方案二购买3台电磁炉,共2×800+200×3×90%=2140(元).23.出租车司机小李某天上午的运营是在东西走向的大街上运营的.如果规定方向向东为正,向西为负,他这天上午的行车里程(单位:千米)如下:+15,﹣2,+10,﹣5,+10,﹣3,﹣4,+12,+3,﹣6(1)将最后一名乘客送到目的地时,小李距上午的出发点多远?(2)若汽车耗油量为0.3升/千米,这天上午小李共耗油多少升?(3)若出租车起步价为5元,起步里程为2千米(包括2千米),超过部分每千米1元,问这天上午小李共得多少车费?【考点】正数和负数.【分析】(1)计算出10次行车里程的和,看其结果的正负即可判断其位置;(2)求出所记录的10次行车里程的绝对值,再计算耗油即可;(3)不超过2km的按5元计算,超过2km的在5元的基础上,再加上超过部分乘以1元即可.【解答】解:(1)+15﹣2+10﹣5+10﹣3﹣4+12+3﹣6=30.故将最后一名乘客送到目的地时,小李距上午的出发点30千米远.(2)15+2+10+5+10+3+4+12+3+6=70(千米),0.3×70=21(升).答:这天上午小李共耗油21升.(3)5×10+[(15﹣20)+(10﹣2)+(5﹣2)+(10﹣2)+(3﹣1)+(4﹣2)+(10﹣2)+(3﹣2)+(6﹣2)]×1=50+50×1=50+50=100(元).答:这天上午小李共得100元车费.2017年4月14日。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年河南省南阳市唐河县七年级(上)期中数学试卷一、选择题:(39分)1.(3分)计算|﹣3|﹣3的值为()A.0 B.6 C.﹣6 D.32.(3分)多项式的各项分别是()A.B. C. D.3.(3分)如果两个数的和是正数,这两个数的积是负数,那么这两个数()A.都是正数B.都是负数C.异号的两个数,并且正数的绝对值较大D.异号的两个数,并且负数的绝对值较大4.(3分)已知:,则的值为()A.B.C.D.5.(3分)如图,数轴上的两个点A,B所表示的数分别是a,b,在a+b,a﹣b,ab,|a|﹣|b|中,是正数的有()A.1个 B.2个 C.3个 D.4个6.(3分)绝对值大于2且小于5的所有的整数的和是()A.7 B.﹣7 C.0 D.57.(3分)黄山的气温由中午的零上2℃下降了7℃后的气温是()A.7℃B.5℃C.﹣5℃D.﹣9℃8.(3分)在(﹣1)2003,(﹣1)2004,﹣22,(﹣3)2四数中,最大的数与最小的数的和等于()A.6 B.8 C.﹣5 D.59.(3分)下列说法正确的是()A.x+y是一次单项式B.x的系数和次数都是1C.多项式2πa3+5a2﹣8的次数是4D.单项式5×103x2的系数是510.(3分)近似数2.60所表示的精确值x的取值范围是()A.2.595≤x<2.605 B.2.50≤x<2.70C.2.595<x≤2.605 D.2.600<x≤2.60511.(3分)若ab≠0,则+的值不可能是()A.2 B.0 C.﹣2 D.112.(3分)如图是一个简单的数值运算程序,当输入的x的值为﹣1时,则输出的值为()A.1 B.﹣5 C.﹣1 D.5二、填空题:(24分)13.(3分)国务院总理温家宝作2009年政府工作报告时表示,今后三年各级政府拟投入医疗卫生领域资金达八千五百亿元人民币.用科学记数法表示“8500亿”的结果是:.14.(3分)已知单项式8x2y3m﹣1的次数是4,那么m=.15.(3分)若a>b且a<0,b<0,则﹣a﹣b.16.(3分)“*”表示一种新运算,它的意义是a*b=﹣a•b﹣(a+b),那么计算3*5的结果是.17.(3分)若1<a<3,则化简|1﹣a|+|3﹣a|的结果为.18.(3分)在数轴上,距原点2个单位长度的点表示的数是;距表示﹣2的点3个单位长度的点表示的数是.19.(3分)在,0,﹣(﹣1.5),﹣|﹣5|,2,,﹣24中,是负数有,是整数有.20.(3分)有一根弹簧原长10厘米,挂重后,它会伸长,请根据下面表格中的一些数据填空:.21.(3分)观察下列算式:1+3=4,1+3+5=9,1+3+5+7=16,1+3+5+7+9=25…根据你发现的规律,写出下面计算结果:1+3+5+7+9+11+13+15=,1+3+5+7+…+2n﹣1=.三、解答题:.22.(20分)计算下列各题.(1)18×(﹣+)(2)(﹣1)4+(1﹣)÷3×(2﹣23)(3)(﹣+)×(﹣36)(4)16÷(﹣2)﹣(﹣)×(﹣4)2.23.(5分)若a、b满足等式|a﹣|+(b+)2=0,求(a﹣b)2+4ab的值.24.(5分)若有理数m,n在数轴上的位置如图所示,请化简|m+n|+|m﹣n|﹣|n|.25.(6分)若a,b互为相反数,c,d互为倒数,m的绝对值是2,求+m﹣cd的值.26.(6分)如图所示是计算机某计算程序,若开始输入x=3,求最后输出的结果,写出计算过程.27.(6分)用火柴棒按照如图示的方式摆图形.(1)请根据图填写下表:(2)第n个图形需要多少根火柴棒(用含n的代数式表示)28.(9分)出租车司机张师傅11月1日这一天上午的营运全在厦门环岛路上进行.如果规定:顺时针方向为正,逆时针方向为负,那么他这天上午拉了五位乘客所行车的里程如下:(单位:千米)+8,﹣6,+3,﹣7,+2(1)将最后一名乘客送到目的地时,张师傅距出车地点的位置如何?(2)若汽车耗油为a升/千米,那么这天上午汽车共耗油多少升?(3)如果出租车的收费标准是:起步价10元,3千米后每千米价2元,问:张师傅这天上午的收入一共是多少元?2016-2017学年河南省南阳市唐河县七年级(上)期中数学试卷参考答案与试题解析一、选择题:(39分)1.(3分)计算|﹣3|﹣3的值为()A.0 B.6 C.﹣6 D.3【解答】解:|﹣3|﹣3=3﹣3=0.故选:A.2.(3分)多项式的各项分别是()A.B. C. D.【解答】解:﹣x2﹣x﹣1的各项分别是:﹣x2,﹣x,﹣1,故选B.3.(3分)如果两个数的和是正数,这两个数的积是负数,那么这两个数()A.都是正数B.都是负数C.异号的两个数,并且正数的绝对值较大D.异号的两个数,并且负数的绝对值较大【解答】解:∵两个数的积是负数,∴两个数异号,而两个数的和是正数,∴正数的绝对值大于负数的绝对值.故选:C.4.(3分)已知:,则的值为()A.B.C.D.【解答】解:∵;∴c=b;∴原式===.故选:A.5.(3分)如图,数轴上的两个点A,B所表示的数分别是a,b,在a+b,a﹣b,ab,|a|﹣|b|中,是正数的有()A.1个 B.2个 C.3个 D.4个【解答】解:首先根据数轴,得到a>0,b<0,且|a|<|b|.再根据有理数的四则运算法则,可知a+b<0,a﹣b>0,ab<0,|a|﹣|b|<0,故为正数的有1个.故选:A.6.(3分)绝对值大于2且小于5的所有的整数的和是()A.7 B.﹣7 C.0 D.5【解答】解:因为绝对值大于2而小于5的整数为±3,±4,故其和为﹣3+3+(﹣4)+4=0.故选:C.7.(3分)黄山的气温由中午的零上2℃下降了7℃后的气温是()A.7℃B.5℃C.﹣5℃D.﹣9℃【解答】解:2﹣7=2+(﹣7)=﹣(7﹣2)=﹣5(℃).故选:C.8.(3分)在(﹣1)2003,(﹣1)2004,﹣22,(﹣3)2四数中,最大的数与最小的数的和等于()A.6 B.8 C.﹣5 D.5【解答】解:∵(﹣1)2003=﹣1,(﹣1)2004=1,﹣22=﹣4,(﹣3)2=9,∴最大的数与最小的数的和:﹣22+(﹣3)2=﹣4+9=5.故选:D.9.(3分)下列说法正确的是()A.x+y是一次单项式B.x的系数和次数都是1C.多项式2πa3+5a2﹣8的次数是4D.单项式5×103x2的系数是5【解答】解:A、x+y是多项式,错误;B、正确;C、多项式2πa3+5a2﹣8的次数是3,错误;D、单项式5×103x2的系数是5×103,错误.故选:B.10.(3分)近似数2.60所表示的精确值x的取值范围是()A.2.595≤x<2.605 B.2.50≤x<2.70C.2.595<x≤2.605 D.2.600<x≤2.605【解答】解:∵2.595≤x<2.605时,可以精确到2.60,∴近似数2.60所表示的精确值x的取值范围是:2.595≤x<2.605,故选:A.11.(3分)若ab≠0,则+的值不可能是()A.2 B.0 C.﹣2 D.1【解答】解:①当a、b同号时,原式=1+1=2;或原式=﹣1﹣1=﹣2;②当a、b异号时,原式=﹣1+1=0.则+的值不可能的是1.故选:D.12.(3分)如图是一个简单的数值运算程序,当输入的x的值为﹣1时,则输出的值为()A.1 B.﹣5 C.﹣1 D.5【解答】解:把x=﹣1代入x×(﹣3)﹣2得:x×(﹣3)﹣2=(﹣1)×(﹣3)﹣2=1,故选:A.二、填空题:(24分)13.(3分)国务院总理温家宝作2009年政府工作报告时表示,今后三年各级政府拟投入医疗卫生领域资金达八千五百亿元人民币.用科学记数法表示“8500亿”的结果是:8.5×1011.【解答】解:用科学记数法表示8 500亿=8 500×108=8.5×1011.14.(3分)已知单项式8x2y3m﹣1的次数是4,那么m=1.【解答】解:∵单项式8x2y3m﹣1的次数是4,∴2+3m﹣1=4,∴m=1.15.(3分)若a>b且a<0,b<0,则﹣a<﹣b.【解答】解:在不等式a>b的两边都乘以﹣1,得﹣a<﹣b.16.(3分)“*”表示一种新运算,它的意义是a*b=﹣a•b﹣(a+b),那么计算3*5的结果是﹣23.【解答】解:根据信息:3*5=﹣3×5﹣(3+5)=﹣15﹣8=﹣23.17.(3分)若1<a<3,则化简|1﹣a|+|3﹣a|的结果为2.【解答】解:∵1<a<3,∴1﹣a<0,3﹣a>0,∴|1﹣a|+|3﹣a|=a﹣1+3﹣a=2.故答案为:2.18.(3分)在数轴上,距原点2个单位长度的点表示的数是2或﹣2;距表示﹣2的点3个单位长度的点表示的数是1或﹣5.【解答】解:①左边距离原点2个单位长度的点是﹣2,右边距离原点2个单位长度的点是2,故距离原点2个单位长度的点所表示的数是2或﹣2;②当此点在﹣2的左侧时,距﹣2有3个单位长度的点所表示的数是﹣2﹣3=﹣5;当此点在﹣2的右侧时,距﹣2有3个单位长度的点所表示的数是﹣2+3=1.故距表示﹣2的点3个单位长度的点表示的数是1或﹣5.故答案为:2或﹣2;1或﹣5.19.(3分)在,0,﹣(﹣1.5),﹣|﹣5|,2,,﹣24中,是负数有﹣5,﹣|﹣5|,﹣24,是整数有0,﹣|﹣5|,2,﹣24.【解答】解:∵﹣(﹣1.5)=1.5,﹣=﹣5,﹣24=﹣16.故答案为:负数有﹣5,﹣|﹣5|,﹣24,整数有0,﹣|﹣5|,2,﹣24.20.(3分)有一根弹簧原长10厘米,挂重后,它会伸长,请根据下面表格中的一些数据填空:10+0.5n.【解答】解:10+0.5n.21.(3分)观察下列算式:1+3=4,1+3+5=9,1+3+5+7=16,1+3+5+7+9=25...根据你发现的规律,写出下面计算结果:1+3+5+7+9+11+13+15=64,1+3+5+7+ (2)﹣1=n2.【解答】解:1+3+5+7+9+11+13+15=82=64;1+3+5+7+…+2n﹣1=n2.故答案为64;n2.三、解答题:.22.(20分)计算下列各题.(1)18×(﹣+)(2)(﹣1)4+(1﹣)÷3×(2﹣23)(3)(﹣+)×(﹣36)(4)16÷(﹣2)﹣(﹣)×(﹣4)2.【解答】解:(1)18×(﹣+)=18×﹣18×+18×=9﹣15+12=6(2)(﹣1)4+(1﹣)÷3×(2﹣23)=1+÷3×(﹣6)=1﹣9=﹣8(3)(﹣+)×(﹣36)=×(﹣36)﹣×(﹣36)+×(﹣36)=﹣28+30﹣27=﹣25(4)16÷(﹣2)﹣(﹣)×(﹣4)2=(﹣8)+×16=﹣8+2=﹣623.(5分)若a、b满足等式|a﹣|+(b+)2=0,求(a﹣b)2+4ab的值.【解答】解:∵a、b满足等式,∴a﹣=0,b+=0,解得:a=,b=﹣,∴(a﹣b)2+4ab=a2﹣2ab+b2+4ab=a2+2ab+b2=(a+b)2=.24.(5分)若有理数m,n在数轴上的位置如图所示,请化简|m+n|+|m﹣n|﹣|n|.【解答】解:如图所示:m<﹣1<0<n<1,则m+n<0,m﹣n<0,n>0根据绝对值的性质可得:|m+n|+|m﹣n|﹣|n|=﹣(m+n)﹣(m﹣n)﹣n=﹣m﹣n﹣m+n﹣n=﹣2m﹣n.25.(6分)若a,b互为相反数,c,d互为倒数,m的绝对值是2,求+m﹣cd的值.【解答】解:∵a,b互为相反数,c,d互为倒数,m的绝对值是2,∴a+b=0,cd=1,m=±2,∴+m﹣cd=±2﹣1,∴所求代数式的值为1或﹣3.26.(6分)如图所示是计算机某计算程序,若开始输入x=3,求最后输出的结果,写出计算过程.【解答】解:把x=3代入计算程序中得:3×3﹣2=9﹣2=7<10,把x=7代入计算程序中得:7×3﹣2=21﹣2=19>10,则最后输出结果为19.27.(6分)用火柴棒按照如图示的方式摆图形.(1)请根据图填写下表:(2)第n个图形需要多少根火柴棒(用含n的代数式表示)【解答】解:(1)7+5=12,12+5=17,17+5=22,22+5=27;(2)7+5(n﹣1)=5n+2.28.(9分)出租车司机张师傅11月1日这一天上午的营运全在厦门环岛路上进行.如果规定:顺时针方向为正,逆时针方向为负,那么他这天上午拉了五位乘客所行车的里程如下:(单位:千米)+8,﹣6,+3,﹣7,+2(1)将最后一名乘客送到目的地时,张师傅距出车地点的位置如何?(2)若汽车耗油为a升/千米,那么这天上午汽车共耗油多少升?(3)如果出租车的收费标准是:起步价10元,3千米后每千米价2元,问:张师傅这天上午的收入一共是多少元?【解答】解:(1)(+8)+(﹣6)+(+3)+(﹣7)+(+2)=8﹣6+3﹣7+2=0千米.答:将最后一名乘客送到目的地,张师傅正好回到出车地点.(2)(8+6+3+7+2)×a=26a升.答:这天午共耗油26a升.(3)[10+(8﹣3)×2]+[10+(6﹣3)×2]+10+[10+(7﹣3)×2]+10=74元.答:张师傅这天上午的收入一共是74元.赠送初中数学几何模型【模型一】“一线三等角”模型: 图形特征:60°60°60°45°45°45°运用举例:1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E . (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.EB4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。

相关文档
最新文档