人教版八年级上册 13.4 最短路径问题 教案设计
人教版八年级数学上册13.4《最短路径问题》教案
第十三章轴对称13.4课题学习《最短路径问题》一、教学目标让学生能够利用轴对称、平移变换解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用,感悟转化思想.二、教学重点及难点重点:利用轴对称、平移等变换将最短路径问题转化为“两点之间,线段最短”问题.难点:如何利用轴对称、平移将最短路径问题转化为线段(或线段的和)最短问题.三、教学用具电脑、多媒体、课件、刻度尺、直尺四、相关资源微课,动画,图片.五、教学过程(一)引言导入前面我们研究过一些关于“两点的所有连线中,线段最短”“连接直线外一点与直线上各点的所有线段中,垂线段最短”等的问题,我们称它们为最短路径问题.现实生活中经常涉及选择最短路径的问题,本节课我们将利用数学知识探究“将军饮马”和“造桥选址”两个极值问题.设计意图:直接通过引言导入新课,让学生明确本节课所要探究的内容和方向.(二)探究新知问题1如图,牧马人从A地出发,到一条笔直的河边l饮马,然后到B地.牧马人到河边的什么地方饮马,可使所走的路径最短?1.将实际问题抽象为数学问题学生尝试回答,并相互补充,最后达成共识.(1)把A,B两地抽象为两个点;(2)把河边l近似地看成一条直线,C为直线l上的一个动点,那么,上面的问题可以转化为:当点C在l的什么位置时,AC与CB的和最小.2.解决数学问题(1)由这个问题,我们可以联想到下面的问题:如图,点A,B分别是直线l异侧的两个点,如何在l上找到一个点,使得这个点到点A、点B的距离的和最短?利用已经学过的知识,可以很容易地解决上面的问题,即:连接AB,与直线l相交于一点C,根据“两点之间,线段最短”,可知这个交点C即为所求.(2)现在要解决的问题是:点A,B分别是直线l同侧的两个点,如何在l上找到一个点,使得这个点到点A、点B的距离和最短?(3)如何能把点B移到l的另一侧B′处,同时对直线l上的任一点C,都保持CB与CB′的长度相等,就可以把问题转化为“上图”的情况,从而使问题得到解决.(4)你能利用轴对称的有关知识,找到符合条件的点B′吗?学生独立思考后,尝试画图,完成问题.小组交流,师生共同补充得出:作法:①作点B关于直线l的对称点B′;②连接AB′,与直线l相交于点C.则点C即为所求.3.证明“最短”师生共同分析,证明“AC+BC”最短.证明:如图,在直线l上任取一点C′(与点C不重合),连接AC′,BC′,B′C′,由轴对称的性质知:BC=B′C,BC′=B′C′,∴AC+BC=AC+B′C=AB′,AC′+BC′=AC′+B′C′.在△AB′C′中,AB′<AC′+B′C′,∴AC+BC<AC′+BC′.即AC+BC最短.思考:证明AC+BC最短时,为什么要在直线l上任取一点C′(与点C不重合),证明AC+BC<AC′+BC′?这里“C′”的作用是什么?学生相互交流,教师适时点拨,最后达成共识.若直线l上任意一点(与点C不重合)与A,B两点的距离都大于AC+BC,就说明AC +BC最小.问题2(造桥选址问题)如图,A和B两地在一条河的两岸,现要在河上造一座桥MN.桥造在何处可使从A到B的路径AMNB最短?(假定河的两岸是平行的直线,桥要与河垂直.)1.将实际问题抽象为数学问题把河的两岸看成两条平行线a和b(下图),N为直线b上的一个动点,MN垂直于直线b,交直线a于点M,这样,上面的问题可以转化为下面的问题:当点N在直线b的什么位置时,AM+MN+NB最小?2.解决数学问题(1)由于河岸宽度是固定的,因此当AM+NB最小时,AM+MN+NB最小.这样,问题就进一步转化为:当点N在直线b的什么位置时,AM+NB最小?(2)如图,将AM沿与河岸垂直的方向平移,点M移动到点N,点A移动到点A′,则AA′=MN,AM+NB=A′N+NB.这样,问题就转化为:当点N在直线b的什么位置时,A′N +NB最小?(3)如图,在连接A′,B两点的线中,线段A′B最短.因此,线段A′B与直线b的交点N的位置即为所求.3.证明“最小”为了证明点N的位置即为所求,我们不妨在直线b上另外任意取一点N′,过点N′作N′M′⊥a,垂足为M′,连接AM′,A′N′,N′B,证明AM+MN+NB<AM′+M′N′+N′B.你能完成这个证明吗?证明:如图,在△A′N′B中,∵A′B<A′N′+BN′,∴A′N+BN+MN<AM′+BN′+M′N′.∴AM+MN+BN<AM′+M′N′+BN′.即AM+MN+BN最小.设计意图:通过“将军饮马问题”和“造桥选址问题”的解决,增强学生探究问题的信心,让学生通过轴对称、平移变换把复杂问题进行转化,有效突破难点,感悟转化思想的重要价值.六、课堂小结1.运用轴对称解决距离最短问题运用轴对称及两点之间线段最短的性质,将所求线段之和转化为一条线段的长,是解决距离之和最小问题的基本思路,不论题目如何变化,运用时要抓住直线同旁有两点,这两点到直线上某点的距离和最小这个核心,所有作法都相同.2.利用平移确定最短路径选址解决连接河两岸的两个点的最短路径问题时,可以通过平移河岸的方法使河的宽度变为零,转化为求直线异侧的两点到直线上一点所连线段的和最小的问题.设计意图:通过小结,使学生梳理本节所学内容,体会轴对称、平移在解决最短路径问题中的作用,感悟转化思想的重要价值.七、板书设计13.4 最短路径问题运用轴对称解决距离最短问题利用平移确定最短路径选址。
人教版八年级数学上册13.4课题学习最短路径问题优秀教学案例
4.鼓励学生在课后进行深入研究,不断提高自己的数学素养。
五、案例亮点
1.生活实例引入:通过引入实际生活中的最短路径问题,如旅行路线规划、物流配送等,使学生能够直观地理解最短路径问题的意义和应用,提高学生的学习兴趣。
3.教师引导学生运用坐标系、函数、图论等知识,分析问题、解决问题。
(三)小组合作
1.学生分组进行讨论,培养学生的团队合作意识。
2.教师组织小组间的交流与分享,促进学生间的互帮互助。
3.教师巡回指导,针对不同小组的特点进行针对性指导。
(四)反思与评价
1.教师引导学生对自己的学习过程进行反思,总结最短路径问题的解决方法。
人教版八年级数学上册13.4课题学习最短路径问题优秀教学案例
一、案例背景
本节内容为“人教版八年级数学上册13.4课题学习最短路径问题”,是在学生已经掌握了平面直角坐标系、一次函数和二次函数等基础知识的基础上进行学习的。通过对最短路径问题的探究,旨在培养学生的逻辑思维能力、空间想象能力和解决问题的能力。
3.组织学生探讨、交流最短路径问题的解决方法,培养学生合作学习的能力。
4.引导学生运用图论中的最短路径算法解决实际问题,提高学生运用所学知识解决实际问题的能力。
5.对学生进行评价,了解学生对最短路径问题的理解和运用程度,及时进行教学调整。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生学习数学的积极性。
2.设计具有挑战性和吸引力的数学问题,激发学生的求知欲。
3.创设轻松、愉快的学习氛围,使学生在课堂上敢于发表自己的观点,培养学生的创新精神。
(二)问题导向
1.引导学生提出问题,如“如何找到两点之间的最短路径?”、“最短路径问题在实际生活中有哪些应用?”等。
人教版数学八年级上册13.4最短路径问题优秀教学案例
2.组织学生进行课堂展示,让他们分享自己的学习心得和解决问题的方法,培养他们的表达能力和沟通能力。
3.教师对学生的学习过程和结果进行评价,关注他们的进步和成长,激发他们的学习动力。
(五)作业小结
1.布置具有实践性和拓展性的作业,让学生运用所学知识解决实际问题,提高他们的应用能力。
2.要求学生在作业中总结最短路径问题的解决方法,培养他们的归纳总结能力。
3.教师对学生的学习过程和结果进行评价,关注他们的进步和成长,激发他们的学习动力。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示实际,激发他们的学习兴趣。
2.设计具有挑战性和趣味性的实例,让学生在解决问题的过程中,自然引入最短路径问题的概念和方法。
3.创设合作交流的氛围,让学生在小组内共同探讨问题,激发他们的思考和创造力。
(二)讲授新知
1.引导学生关注最短路径问题的本质,即寻找两点间的最优路径,让学生在解决问题的过程中,自然而然地掌握相关知识。
2.通过提问、设疑等方式,引导学生思考最短路径问题的解决方法,激发他们的求知欲和好奇心。
3.讲解最短路径问题的解决方法,如坐标系法、动态规划法、图论等,让学生了解多种解决思路。
3.教师及时批改作业,给予学生反馈,帮助他们发现不足,提高学习效果。
本节课的教学内容与过程注重知识的传授、方法的训练和情感的培养,充分体现了教育的人文关怀和学生的全面发展。通过本节课的学习,学生将更好地掌握最短路径问题的解决方法,提高他们的数学素养和实际应用能力,为未来的学习和生活打下坚实基础。
人教版八年级数学上册13
-针对难点内容,采用分步教学,由浅入深,逐步引导学生理解并掌握。
-鼓励学生提问,及时解答学生的疑惑,关注学生的个体差异,因材施教。
3.教学评价:
-采用过程性评价与终结性评价相结合的方式,全面评估学生的学习效果。
-设计具有层次性和挑战性的练习题,让学生在课后巩固所学知识,提高问题解决能力。
3.解决最短路径问题时,如何将实际问题抽象为数学模型。
(三)教学设想
1.教学方法:
-采用启发式教学法,引导学生从实际问题中发现最短路径问题,激发学生的学习兴趣。
-结合具体案例,采用任务驱动法,让学生在实践中掌握求解最短路径的方法。
-利用小组合作学习,培养学生的团队合作精神和交流沟通能力。
2.教学策略:
三、教学重难点和教学设想
(一)教学重点
1.理解最短路径问题的基本概念,掌握求解最短路径的基本方法。
2.能够运用数学知识解决实际生活中的最短路径问题,提高问题解决能力。
3.培养学生的空间想象能力和逻辑思维能力。
(二)教学难点
1.理解并区分欧几里得距离和曼哈顿距离在实际问题中的应用。
2.掌握Dijkstra算法和Floyd算法的原理及求解步骤,能够灵活运用。
4.应用意识:让学生意识到数学知识在实际生活中的广泛应用,提高数学学习的实用价值。
二、学情分析
八年级学生在前两年的数学学习过程中,已经积累了基本的几何知识、代数运算能力和问题分析能力。在此基础上,他们对最短路径问题的学习具备了一定的基础。然而,最短路径问题涉及到一定的抽象思维和算法理解,对学生来说仍具有一定的挑战性。因此,在教学过程中,需要关注以下几点:
5.小组合作题:以小组为单位,讨论以下问题,并在课堂上进行分享:
人教版初中数学八年级上册13.4课程学习 最短路径问题教案
《课程学习最短路径问题》教案【教学目标】1.知识与技能能利用轴对称解决简单的最短路径问题2.过程与方法通过观察、操作、交流等活动增强动手解决问题能力。
3.情感态度和价值观体会图形的变化在解决最值问题中的作用,感悟转化思想。
【教学重点】利用轴对称将最短路径问题转化为“两点之间、线段最短”问题。
【教学难点】探索发现“最短路径”的方案,确定最短路径的作图及说理。
【教学方法】自学与小组合作学习相结合的方法。
【课前准备】教学课件【课时安排】1课时【教学过程】一、情境导入展示一张公园常见的图片。
【过渡】图片中的现象,想必大家都很常见吧,为什么大家会放弃本来存在的路,而去选择践踏草坪呢?(学生回答)【过渡】刚刚大家都回答了自己的答案,那么大家再来看一下这个问题。
课件展示问题。
【过渡】根据我们之前的知识,我们知道,两点之间,线段最短。
因此,就很容易得出答案。
今天我们就来学习一下实际问题中的最短路径问题。
二、新课教学1.最短路径问题【问题一】牧马人从A 地出发,到一条笔直的河边饮马,然后到B 地。
那么牧马人到河边什么地方饮马可使他所走的路线全程最短?【过渡】这是一个实际问题,那么我们如何将其转化为数学问题呢?将A,B 两地抽象为两个点,将河l抽象为一条直线。
【过渡】现在,我们现在的问题是怎样找出使两条线段长度之和为最短的直线l上的点.设C 为直线上的一个动点,上面的问题就转化为:当点C 在l的什么位置时,AC 与CB 的和最小。
在解决这个问题的时候,我们先考虑一个问题,如果两个点位于一条线的两侧,如何在这条线上找到一点,使这个点到A、B两点之间的距离最短呢?(学生讨论回答)两点之间,线段最短。
【过渡】所以我们直接将两点连接,与线的交点即为我们所求的点。
那么结合前边所学的轴对称的问题,你能解答问题一吗?(学生讨论,并回答)。
【总结】作其中一个点关于直线l的对称点,连接对称点和另一点与直线的交点就是满足最短距离的点的位置,最短距离就是AB'。
人教版八年级数学上册13.4最短路径问题优秀教学案例
4.多媒体教学手段:利用多媒体教学手段,如图片、视频等,展示实际问题情境,让学生更直观地感受到问题的背景和意义,提高学习效果。
在现实生活中,最短路径问题具有广泛的应用,如道路规划、网络路由等。因此,本节课的教学案例将以实际问题为背景,引导学生运用数学知识解决实际问题,培养学生的数学应用意识。
为了提高教学效果,本节课将采用小组合作、讨论交流的教学方法,让学生在探讨最短路径问题的过程中,提高自主学习能力和合作意识。同时,教师将以引导者、组织者的角色参与教学,为学生提供必要的帮助和指导,确保教学活动的顺利进行。
(三)小组合作
1.教师将学生分成小组,鼓励学生进行合作交流,共同探讨最短路径问题的解决方法。
2.教师引导学生进行小组讨论,鼓励学生分享自己的思路和观点,培养学生的合作意识和团队精神。
3.教师巡回指导,参与小组讨论,为学生提供必要的帮助和指导,确保每个学生都能参与到教学活动中来。
(四)反思与评价
1.教师引导学生进行自我反思,总结自己在解决最短路径问题过程中的思路和方法,找出自己的不足之处。
3.教师介绍迪杰斯特拉算法和贝尔曼-福特算法,讲解这两种算法的原理和步骤,并通过示例进行演示。
4.教师引入动态规划思想,讲解如何运用动态规划解决最短路径问题,并给出动态规划解决最短路径问题的步骤。
(三)学生小组讨论
1.教师将学生分成小组,并提出讨论问题,如“比较迪杰斯特拉算法和贝尔曼-福特算法的优缺点”、“如何运用动态规划解决最短路径问题?”等。
2.利用多媒体教学手段,展示实际问题情境,让学生直观地感受到最短路径问题的重要性和实用性。
人教版八年级数学上册教学设计:13.4 课题学习 最短路径问题
人教版八年级数学上册教学设计:13.4 课题学习最短路径问题一. 教材分析人教版八年级数学上册第十三章第四节“课题学习最短路径问题”主要是让学生了解最短路径问题的背景和意义,掌握利用图的性质和算法求解最短路径问题的方法。
通过本节课的学习,学生能够将所学的图的知识应用到实际问题中,提高解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了图的基本概念和相关性质,如顶点、边、连通性等。
同时,学生也学习了一定的算法知识,如排序、查找等。
因此,学生在学习本节课时,能够将已有的知识和经验与最短路径问题相结合,通过自主探究和合作交流,理解并掌握最短路径问题的求解方法。
三. 教学目标1.了解最短路径问题的背景和意义,能运用图的性质和算法求解最短路径问题。
2.提高学生将实际问题转化为数学问题的能力,培养学生的逻辑思维和解决问题的能力。
3.增强学生合作交流的意识,提高学生的团队协作能力。
四. 教学重难点1.教学重点:最短路径问题的求解方法及其应用。
2.教学难点:理解并掌握最短路径问题的求解算法,能够灵活运用到实际问题中。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动探究。
2.算法教学法:以算法为主线,引导学生了解和掌握最短路径问题的求解方法。
3.合作学习法:学生进行小组讨论和合作交流,共同解决问题,提高团队协作能力。
六. 教学准备1.准备相关实际问题的案例,如城市间的道路网络、网络通信等。
2.准备算法教学的PPT,以便在课堂上进行讲解和演示。
3.准备练习题和拓展题,以便进行课堂练习和课后巩固。
七. 教学过程1.导入(5分钟)通过展示实际问题案例,如城市间的道路网络,引导学生了解最短路径问题的背景和意义。
提问:如何找到两点之间的最短路径?引发学生的思考和兴趣。
2.呈现(10分钟)讲解最短路径问题的求解方法,如迪杰斯特拉算法、贝尔曼-福特算法等。
通过PPT演示算法的具体步骤和过程,让学生清晰地了解算法的原理和应用。
人教版-数学-八年级上册-册13.4 课题学习 最短路径问题 教案
13.4课题学习最短路径问题(1)学习目标:能利用轴对称解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用,感悟转化思想.学习重点:利用轴对称将最短路径问题转化为“两点之间,线段最短”问题.教学过程一、引入新知引言:前面我们研究过一些关于“两点的所有连线中,线段最短”、“连接直线外一点与直线上各点的所有线段中,垂线段最短”等的问题,我们称它们为最短路径问题.现实生活中经常涉及到选择最短路径的问题,本节将利用数学知识探究数学史中著名的“将军饮马问题”.二、探索新知问题1 相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:从图中的A 地出发,到一条笔直的河边l 饮马,然后到B 地.到河边什么地方饮马可使他所走的路线全程最短?追问1 这是一个实际问题,你打算首先做什么?将A ,B 两地抽象为两个点,将河l 抽象为一条直 线.追问2 你能用自己的语言说明这个问题的意思,并把它抽象为数学问题吗?(1)从A 地出发,到河边l 饮马,然后到B 地;(2)在河边饮马的地点有无穷多处,把这些地点与A , B 连接起来的两条线段的长度之和,就是从A 地到饮马地点,再回到B 地的路程之和;(3)现在的问题是怎样找出使两条线段长度之和为最短的直线l 上的点.设C 为直线上的一个动点,上面的问题就转化为:当点C 在l 的什么位置时, AC 与CB 的和最小(如图).问题2 如图,点A ,B 在直线l 的同侧,点C 是直线上的一个动点,当 A B ll l A B C点C 在l 的什么位置时,AC 与CB 的和最小?追问2 你能利用轴对称的有关知识,找到上问中符合条件的点B ′吗? 作法:(1)作点B 关于直线l 的对称点B ′;(2)连接AB ′,与直线l 相交于点C .则点C 即为所求.问题3 你能用所学的知识证明AC +BC 最短吗?证明:如图,在直线l 上任取一点C ′(与点C 不重合),连接AC ′,BC ′,B ′C ′.由轴对称的性质知,BC =B ′C ,BC ′=B ′C ′. ∴ AC +BC = AC +B ′C = AB ′,AC ′+BC ′= AC ′+B ′C ′.在△AB ′C ′中,AB ′<AC ′+B ′C ′,∴ AC +BC <AC ′+BC ′.即 AC +BC 最短.三、运用新知练习 如图,一个旅游船从大桥AB 的P 处前往山脚下的Q 处接游客,然后将游客送往河岸BC 上,再返回P 处,请画出旅游船的最短路径.基本思路:由于两点之间线段最短,所以首先可连接PQ ,线段PQ 为旅游船最短路径中的必经线路.将河岸抽象为一条直线BC ,这样问题就转化为“点P ,Q 在直线BC 的同侧,如何在BC 上找到一点R ,使PR 与QR 的和最小”.四、归纳小结(1)本节课研究问题的基本过程是什么?(2)轴对称在所研究问题中起什么作用?五、布置作业练习册l A B A BC P Q 山 河岸 大桥。
人教版八年级上册数学13.4 课题学习《最短路径问题》教案设计
第十三章第四节的《课题学习——最短路径问题》。
一、内容和内容解析最短路径问题在现实生活中经常遇到,初中阶段主要以“两点之间,线段最短”、“连接直线外一点与直线上各点的所有线段中,垂线段最短”为基础知识,有时还要借助轴对称、平移、旋转等变换进行研究.本节课利用“河边饮马地点的选择”问题,开展对“最短路径问题”的课题研究,让学生经历将实际问题抽象为数学的线段和最小问题,再利用轴对称将线段和最小问题转化为“两点之间,线段最短”问题.二、目标和目标解析1.教学目标基于以上分析,本节课我确定的教学目标是:能利用轴对称解决简单的最短路径问题,体会图形的变换在解决最值问题中的作用,感悟转化思想,进一步获得数学活动的经验,增强应用意识.本节课我确定的的教学重点是:利用轴对称将最短路径问题转化为“两点之间,线段最短”问题,培养学生解决实际问题的能力.2. 教学目标解析要求学生能将实际问题中的“地点”、“河流”抽象为数学中的“点”、“线”,把实际问题抽象为数学问题;能利用轴对称将线段和最小问题转化为“两点之间,线段最短”问题;能通过逻辑推理证明所求距离最短;在探索最短路径的过程中,体会轴对称的“桥梁”作用,感悟转化思想.三、教学问题诊断分析最短路径问题从本质上说是极值问题,作为八年级的学生,在此之前很少接触,解决这方面问题的经验尚显不足,特别是面对具有实际背景的极值问题,更会感到陌生,无从下手.对于直线异侧的两点,如何在直线上找到一点,使这一点到这两点的距离之和最小,学生很容易想到连接这两点,所连线段与直线的交点就是所求的点.但对于直线同侧的两点,如何在直线上找到一点,使这一点到这两点的距离之和最小,一些学生会感到茫然,找不到解决问题的思路.在证明“最短”时,需要在直线上任取一点(与所求作的点不重合),证明所连线段和大于所求作的线段和,学生可能想不到,不会用.所以,本节课我确定的教学难点是:如何利用轴对称将最短路径问题转化为线段和最小问题.教学时,教师可从“直线异侧的两点”过渡到“直线同侧的两点”,为学生搭建“脚手架”.在证明“最短”时,教师可以告诉学生,证明“最大”、“最小”这类问题,常常要另选一个量,通过与求证的那个“最大”、“最小”的量进行比较来证明.由于另取的点具有任意性,所以结论对于直线上的每一点(所求作的点除外)都成立.四、教学过程设计1.创设问题情境引入:(课件展示行人践踏茵茵绿草穿越草坪)师:(1)同学们,生活中你见到过这样的现象吗?(2)他为什么选择走红色路线?(3)理由是什么?生:集体回答。
人教版数学八年级上册《13.4 课题学习 最短路径问题》教学设计2
人教版数学八年级上册《13.4 课题学习最短路径问题》教学设计2一. 教材分析《人教版数学八年级上册》第13.4课题学习“最短路径问题”是本册内容的一个重要组成部分。
本节课主要让学生了解最短路径问题的背景和应用,掌握利用图的性质和简单的图算法解决最短路径问题的方法。
通过本节课的学习,学生能够进一步提高分析问题和解决问题的能力,培养逻辑思维能力。
二. 学情分析学生在学习本节课之前,已经掌握了图的相关知识,如图的定义、图的表示方法、图的性质等。
同时,学生也了解了一些简单的算法,如深度优先搜索、广度优先搜索等。
但部分学生对这些知识的掌握程度不够扎实,对算法的理解也相对模糊。
因此,在教学过程中,需要关注这部分学生的学习情况,引导他们更好地理解和掌握本节课的内容。
三. 教学目标1.了解最短路径问题的背景和应用,理解最短路径的概念。
2.掌握利用图的性质和简单的图算法解决最短路径问题的方法。
3.培养学生的逻辑思维能力和问题解决能力。
四. 教学重难点1.教学重点:最短路径问题的解决方法,如迪杰斯特拉算法、贝尔曼-福特算法等。
2.教学难点:算法的原理和实现,以及如何将实际问题转化为最短路径问题。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动探究。
2.案例教学法:分析具体的最短路径问题案例,让学生直观地了解问题的解决过程。
3.算法分析法:引导学生分析算法的原理和实现,提高学生的逻辑思维能力。
4.小组合作学习:鼓励学生分组讨论和合作解决问题,培养学生的团队协作能力。
六. 教学准备1.教学课件:制作课件,展示最短路径问题的背景、应用和解决方法。
2.案例材料:准备一些具体的最短路径问题案例,供学生分析和讨论。
3.编程环境:为学生提供编程环境,以便他们在课堂上实践算法。
七. 教学过程1.导入(5分钟)利用课件展示最短路径问题的背景和应用,如地图导航、网络通信等。
引导学生关注最短路径问题,激发学生的学习兴趣。
人教版八年级上册数学13.4 课题学习《最短路径问题》教案设计
13.4课题学习《最短路径问题》教学设计教学目标:知识与技能:通过对最短路径问题的探索,进一步理解和掌握两点之间线段最短和垂线段最短。
过程与方法:让学生经历运用所学知识解决问题的过程,培养学生解决问题的能力,掌握探索最短路径问题的思想好方法。
情感态度与价值观:在数学学习活动中活动成功的体验,树立自信心,激发学习的兴趣,感受到数学与现实生活的密切联系。
教学重点:运用所学知识解决最短路径问题。
教学难点:选择合理的方法解决问题。
教学过程:最短路径问题(1)出示如图所示:从A地到B地有三条路可供选择,你会选择哪条路距离最短?你的理由是什么?两点之间,线段最短(2)求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求.例1:如图,要在燃气管道L上修建一个泵站,分别向A、B两镇供气,泵站修在管道的什么地方,可使所用的输气管线最短?:解:如图所示,点A,B分别是直线l异侧的两个点,在l上找一个点C,使CA+CB最短,这时点C是直线l与AB的交点.归纳:求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求.例2:如图,如果A,B在燃气管道L的同旁,泵站应修在管道的什么地方,可使所用的输气管线最短?分析:点A,B分别是直线l同侧的两个点,在l上找一个点C,使CA+CB最短,这时先作点B关于直线l的对称点B′,则点C是直线l与AB′的交点.为了证明点C的位置即为所求,我们不妨在直线上另外任取一点C′,连接AC′,BC′,B′C′,证明AC+CB<AC′+C′B.如下:证明:由作图可知,点B和B′关于直线l对称,所以直线l是线段BB′的垂直平分线.因为点C与C′在直线l上,所以BC=B′C,BC′=B′C′.在△AB′C′中,AB′<AC′+B′C′,所以AC+B′C<AC′+B′C′,所以AC+BC<AC′+C′B.归纳:求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求.练习:1 在图中直线l上找到一点M,使它到A,B两点的距离和最小.分析:先确定其中一个点关于直线l的对称点,然后连接对称点和另一个点,与直线l的交点M即为所求的点.解:如图所示:(1)作点B关于直线l的对称点B′;(2)连接AB′交直线l于点M.(3)则点M即为所求的点.点拨:运用轴对称变换及性质将不在一条直线上的两条线段转化到一条直线上,然后用“两点之间线段最短”解决问题.2.运用轴对称解决距离最短问题运用轴对称及两点之间线段最短的性质,将所求线段之和转化为一条线段的长,是解决距离之和最小问题的基本思路,不论题目如何变化,运用时要抓住直线同旁有两点,这两点到直线上某点的距离和最小这个核心,所有作法都相同.警误区利用轴对称解决最值问题应注意题目要求根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.解决这类最值问题时,要认真审题,不要只注意图形而忽略题意要求,审题不清导致答非所问.3.生活中的距离最短问题由两点之间线段最短(或三角形两边之和大于第三边)可知,求距离之和最小问题,就是运用等量代换的方式,把几条线段的和想办法转化在一条线段上,从而解决这个问题,运用轴对称性质,能将两条线段通过类似于镜面反射的方式转化成一条线段,如图,AO+BO=AC的长.所以作已知点关于某直线的对称点是解决这类问题的基本方法.(实际应用题)某中学八(2)班举行文艺晚会,桌子摆成如图a所示两直排(图中的AO,BO),AO桌面上摆满了橘子,OB桌面上摆满了糖果,站在C处的学生小明先拿橘子再拿糖果,然后到D处座位上,请你帮助他设计一条行走路线,使其所走的总路程最短?图a 图b解:如图b.(1)作C点关于OA的对称点C1,作D点关于OB的对称点D1,(2)连接C1D1,分别交OA,OB于P,Q,那么小明沿C→P→Q→D的路线行走,所走的总路程最短。
人教版八年级上册数学13.4 课题学习《最短路径问题》教案
教学设计13.4最短路径问题永顺县溪州中学彭善玉一、教学设计思路:本节课是人民教育出版社出版九年制义务教育数学课本八年级数学《最短路径问题》,教材为我们提供了最短路径的概念和探索方法以及相应练习题。
这节课与实际生活息息相关,在内容上,它将两点之间线段最短,轴对称的性质紧密结合起来。
通过这节课的学习,可以培养学生探索与归纳能力,体会数学建模的思想,学会从复杂题目中找到原始的基本的数学模型。
本节课借鉴了美国教育家杜威的“在做中学”的理论和叶圣陶先生所倡导的“解放学生的手,解放学生的大脑,解放学生的时间”的思想,采用了我校“六步四维一体”的教学模式,启发式、探究式教学方法,整个探究学习的过程充满了师生之间,生生之间的交流和互动,体现了教师是教学活动的组织者、引导者、合作者,学生是学习的主体。
利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想证明,使学生在自主探索和合作交流中理解和掌握本节课的内容。
利用课件、微课、几何画板辅助教学,适时呈现问题情景,以丰富学生的感性与理性认识,增强直观效果,提高课堂效率。
二、教学目标1、知识与技能:(1)理解并掌握平面内位于直线同侧两个点,如何在直线上找到一个点,使得两点到直线上这点距离之和最小问题。
(2)能利用轴对称解决实际问题中的最短路径问题。
(3)通过独立思考,合作探究,培养学生运用数学知识解决实际问题的基本能力,感受学习成功的快乐。
2、过程与方法:(1)通过自主画图,小组讨论,共同比较等教学活动,探索与轴对称有关的最短路径问题,感受数学思考过程的条理性,发展推理能力和语言表达能力。
(2)通过几何画板把抽象问题具体化,直观地观察、分析把折线问题转化直线问题,体会转化思想在几何中的运用,让学生尝试从不同的角度寻求解决问题的方法,同时让学生体会从特殊到一般的认识问题的方法。
在解决问题的过程中渗透“化归”的思想,(3)能够倾听其他同学的发言,并能把自己的想法与其他同学交流,体会合作学习的过程与方法,感受合作的愉快。
13.4将军饮马-最短路径问题(教案)
13.4 最短路径问题
教学目标:
1、能利用轴对称解决简单的最短路径问题
2、在谈最短路径的过程中,体会“轴对称”的桥梁作用,感悟转化的数学思想。
教学重点难点:
重点:利用轴对称将最短路径问题转化为“两点之间、线段最短”问题。
难点:如何利用轴对称将最短路径问题转化为线段和最小问题。
教学过程:
例1.如图:古希腊一位将军骑马从城堡A到城堡
B,途中马要到小溪边饮水一次。
问将军怎样走路
程最短?
例2.如图:一位将军骑马从城堡A到城堡B,途
中马要到河边饮水一次,问:这位将军怎样走路
程最短?
练习1:已知:P、Q是△ABC的边AB,AC上的点,
你能在BC上确定一点R,使△PQR的周长最短
吗?
例3.如图:一位将军骑马从驻地A出发,先牵马去草
地OM吃草,再牵马去河边ON喝水,最后回到驻地
A,问:这位将军怎样走路程最短?
练习2:已知P是△ABC的边BC上的点,你能在AB、AC上分别确定一点Q和R,使△PQR的周长最短吗?
例4:如图,A为马厩,B为帐篷,将军某一天要
从马厩牵出马,先到草地边某一处牧马,再到河边
饮马,然后回到帐篷,请你帮助确定这一天的最短
路线。
练习3:如图,OMCN是矩形的台球桌面,有黑、
白两球分别位于B、A两点的位置上,试问怎样撞击
白球,使白球A依次碰撞球台边OM、ON后,反
弹击中黑球?
例5.如图:古希腊一位将军骑马从城堡A到
城堡B,A和B两地在一条河的两岸,现要在河
上造一座桥MN.桥建在何处才能使将军从A到B
的路径AMNB最短?(假定河的两岸是平行的
直线,桥要与河垂直)。
人教版八年级数学上册13.4《最短路径问题》优秀教学案例
1.教师将学生分成若干小组,每组选择一个最短路径问题进行研究和探究;
2.引导学生相互讨论、交流,共同解决问题,培养学生的团队协作能力和沟通能力;
3.教师巡回指导,针对不同小组的问题,提供适当的帮助和指导,促进学生的思考和发展。
(四)总结归纳
1.教师引导学生对自己的学习过程进行反思,总结自己在解决问题过程中的优点和不足;
人教版八年级数学上册13.4《最短路径问题》优秀教学案例
一、案例背景
本节课为人教版八年级数学上册13.4《最短路径问题》,是在学生已经掌握了平面直角坐标系、一次函数和二次函数等知识的基础上进行学习的。八年级的学生思维活跃,好奇心强,具备一定的探究能力,但同时在学习过程中容易忽视数学与实际生活的联系,对最短路径问题的理解停留在理论层面。因此,本节课的教学案例旨在通过生活实例,引导学生感受最短路径问题在实际生活中的应用,培养学生解决实际问题的能力,提高学生的数学素养。
2.组织学生进行评价,让学生互相评价,提高学生的自我认知和评价能力;
3.教师对学生的学习过程和结果进行评价,关注学生的全面发展,给予极的反馈和鼓励。
(五)作业小结
1.教师布置与本节课相关的基础性作业和拓展性作业,巩固学生对最短路径问题的理解和掌握;
2.鼓励学生运用所学知识解决实际生活中的最短路径问题,提高学生的数学应用意识;
三、教学策略
(一)情景创设
1.利用多媒体展示实际生活中的最短路径问题,如快递员送快递、旅行家规划旅行路线等,让学生感受到最短路径问题在现实生活中的重要性;
2.设计具有挑战性的问题,如学校到图书馆的最短路径是什么?引导学生思考并尝试解决;
3.创设情境,让学生扮演不同角色,如导演、导游等,规划最短路径,提高学生的参与度和积极性。
人教版八年级上13.4课题学习--最短路径问题教案设计
13.4 将军饮马——最短路径问题教学设计湖北省宜昌市金东方初中王婷婷一、[教学目标]能利用轴对称、平移解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用,感悟领会转化的数学思想,培养学生探究问题的兴趣和合作交流的意识,感受数学的实用性,体验自己探究出问题的成就感.[教学重点]利用轴对称、平移等变换将最短路径问题转化为“两点之间,线段最短”问题.[教学难点]如何利用轴对称将最短路径问题转化为线段和最小问题.二、学生学情诊断八年级的学生直接经验少,理解能力差,抽象思维水平较低,处于直觉经验型思维向逻辑思维的过渡阶段,辩证思维还只是处在萌芽和初始的状态上.最短路径问题从本质上说是最值问题,作为初中生,在此前很少涉及最值问题,解决这方面问题的数学经验尚显不足,特别是面对具有实际背景的最值问题,更会感到陌生,无从下手.解答:“当点A、B在直线的同侧时,如何在上找点C,使AC与CB的和最小”,需要将其转化为“直线异侧的两点,与上的点的线段和最小”的问题,为什么需要这样转化,怎样通过轴对称实现转化,一些学生会存在理解和操作方面的困难.在证明“最短”时,需要在直线上任取一点,证明所连线段和大于或等于所求作的线段和.这种思路和方法,一些学生还想不到.在解答“使处在直线两侧的两线段和最小”的问题,需要把它们平移拼接在一起,一些学生想不到.教学时,教师可以让学生首先思考“直线的异侧的两点,与上的点的线段和最小”,给予学生启发,在证明“最短”时,点拨学生要另选一个量,通过与求证的那个量进行比较来证明,同时让学生体会“任意”的作用,因此确定本节课的教学难点为:三、教学策略分析根据本节课的教学目标、教材内容以及学生的认知特点和实际水平,教学上采用“引导——探究——发现——证明——归纳总结”的教学模式,鼓励引导学生、开动脑筋、大胆尝试,在探究活动中培养学生创新思维与想象能力.教师的教法:突出解题方法的引导与启发,注重思维习惯的培养,为学生搭建参与和交流的平台.通过对“将军饮马问题”而改编与设计,增强数学课堂趣味性,相同背景,不同问题,由浅入深、层层递进,有利于学生分析与解决问题,同时利用现代的信息技术,直观地展示图形的变化过程,提高学生学习兴趣与激情.学生的学法:突出探究与发现,思考与归纳提升,在动手探究、自主思考、互动交流中,获取知识与能力.四、教学基本流程探索新知——运用新知——拓展新知——提炼新知——课外思考五、教学过程设计(一)探索新知1、建立模型问题1 唐朝诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河”.诗中隐含着一个有趣的数学问题.如图1所示,诗中将军在观望烽火之后从山脚下的指挥部A地出发,到一条笔直的河边饮马,然后到军营B地,到河边什么地方饮马可使他所走的路线全程最短?追问1,这是一个实际问题,你打算首先做什么呢?师生活动:将A、B两地抽象为两个点,将河抽象为一条直线追问2,你能用自己的语言说明这个问题的意思,并把它抽象为数学的问题吗?师生活动:学生交流讨论,回答并相互补充,最后达成共识:(1)行走的路线:从A地出发,到河边饮马,然后到B地;(2)路线全程最短转化为两条线段和最短;(3)现在的问题是怎样找出使两条线段长度之和为最短的直线上的点.设C为直线l 上的一个动点,上面的问题转化为:当点C在的什么位置时,AC与CB的和最小[设计意图]从数学史上久负盛名的“将军饮马问题”引入,增加学生们的数学底蕴,提高其人文思想.同时引导学生分析题意,画出图形.将实际问题转化为数学问题更有利于分析问题、解决问题.2、解决问题问题2如图点A、B在直线的同侧,点C位直线上的一个动点,当点C在的什么位置时,AC与CB的和最小?师生活动:让学生独立思考、画图分析,并展示如果学生有困难,教师作如下提示:(1)如图,如果军营B地在河对岸,点C在的什么位置时,AC与CB的和最小?由此受到什么启发呢?(2)如图,如何将点B“移”到的另一侧B´处,且满足直线上的任意一点C,都保持CB与CB´的长度相等?学生在老师的启发引导下,完成作图.[设计意图]先通过学生对本题的思考尝试,并展示,师生共同纠错,提高认识与辩证思想,再通过老师的引导启发明白解决这个问题应该运用轴对称的性质,将两点在直线同侧的问题,转化为两点在直线异测的问题,提高学生的空间想象能力与逻辑思维能力,让学生在思考和解决问题的过程中,提高甄别是非的能力,感悟转化的数学思想.3、证明“最短”问题3,为什么这种作法是正确的呢?你能用所学的知识证明AC+CB最短吗?师生活动:分组讨论,教师引导点拨,结合多媒体的演示,师生共同完成证明过程.证明:如图,在直线上任取一点Cˊ.连接AC´、BC´、B´C´.由轴对称的性质可知:BC=B´C BC´.=B´C´∴AC+BC=AC+B´C=AB´AC´+BC´=AC´+B´C´当C´与C不重合时A B´<AC´+C´B´∴AC+BC<AC´+C´B当C´与C重合时AC+BC=AC´+C´B总之,AC+B C≤AC´+C´B即AC+BC最短[设计意图]利用现代信息技术,通过移动点C´的位置,可发现:当C´与C不重合时,AC+BC<AC´+C´B,当C´与C重合时,AC+BC=AC´+C´B.让学生很容易知道AC+BC最短,消除了学生的疑虑,发挥了多媒体的作用,让学生进一步体会作法的正确性,提高了逻辑思维能力.4、小结新知回顾前面的探究过程,我们是通过怎样的过程,借助什么解决问题的?体现了什么数学思想?师生活动:学生回答,并相互补充.[设计意图]让学生在反思的过程中,体会轴对称的“桥梁”作用,感悟转化思想,明确解题的方法与策略,为后面进一步的学习探究做准备.(二)运用新知如图,如果将军从指挥部A地出发,先到河边a某一处饮马,再到草地边b某一处牧马,然后来到军营B地,请画出最短路径.师生活动:分组讨论,教师点拨,点学生上台操作演示,画出最短路径.[设计意图]对前面所学的解题方法与思路得以巩固,让学生形成技能,进一步体会感悟数学中的转化思想,点学生上台操作演示,提高他们的学生兴趣与实践能力,体会成功的喜悦,激发他们进一步探究问题的欲望.(三)拓展新知有一天,将军突发奇想:如果从指挥部A地出发,到一条笔直的河边a某处饮马,然后沿着河边行走一定的路程,再来到军营B地,到河边什么地方饮马可使所走的路线全程最短?师生活动:1、老师首先解释行走一定的路程的含义,引导学生将实际问题抽象为数学问题,再提出如下问题:(1)要使所走的路线全程最短,实际上是使几条线段之和最短?(2)怎样将问题转化为“两点之间,线段最短”的问题.2、分组讨论,师生共同分析.3、完成作图,体会作图的步骤与分析问题的思路的联系与区别.[设计意图]本题在“将军饮马问题”的背景下进行改编,有造桥选址问题的影子,既增强了课堂教学的趣味性,又完成了教学任务,可谓一举两得..教学由问题引领,老师引导,学生小组合作讨论交流的方式,充分发挥现代信息技术的作用完成分析与解答的过程,让学生学得轻松与愉悦,培养了学生的应用意识、创新意识、综合与分析能力,在解决问题的过程中,体会作图题的解题方法与策略.让学生的能力得到进一步锻炼与提高.(四)提炼新知师生一起回顾本节课所学的主要内容,并请学生回答以下问题:1、本节课研究问题的过程是什么?2、解决上述问题运用了什么知识?3、在解决问题的过程运用了什么方法?4、运用上述方法的目的是什么?体现了什么样的数学思想?[设计意图]引导学生把握研究问题的策略、思路、方法的同时,并从运用的知识、方法、思想方面进行归纳总结,让学生对本节课有一个更清晰、更系统的认识,体会轴对称、平移在解决最短路径问题中的作用,感悟转化思想的重要价值.(五)课外思考将军又提出一个问题:如图,如果将军从指挥部A地出发,到一条笔直的河边a某处饮马,然后沿着河边行走一定的路程,再来到草地边b某一处牧马,最后来到军营B地,到河边什么地方饮马、草地边何处牧马可使所走的路线全程最短呢?[设计意图]通过一系列的“将军饮马问题”的变式设计,由浅入深,环环相扣,不但学习将军这种喜欢动脑,敢于提问,勇于探索的求学精神,同时培养学生的问题意识,通过最后这一问题的设计,让学有余力的学生解答,它不仅能巩固知识,形成技能,同时激发了学生的求知欲望与勇于探究的精神.同时,也是由课内向课外的一种延伸,预示着问题并没有终结,培养学生具有终身学习的意识与创新精神!人教版八年级上13.4课题学习--最短路径问题教案设计13.4.最短路径问题仙桃市第九中学王月娥一、内容和内容解析1.内容利用轴对称、平移研究某些最短路径问题2.内容解析最短路径问题在现实生活中经常遇到,初中阶段主要以“两点之间,线段最短”“连接直线外一点与直线上各点的所有线段中,垂线段最短”为基础知识,有时还要借助轴对称、平移、旋转等变换进行研究.本节课以数学史中的两个经典问题——“将军饮马问题”“造桥选址”为载体开展对“最短路径问题”的课题研究,让学生经历将实际问题抽象为数学的线段和最小问题,再利用轴对称﹑平移等变化将线段和最小问题转化为“两点之间,线段最短”(或“三角形两边之和大于第三边”)问题.基于以上分析,确定本节课的教学重点是:利用轴对称﹑平移将最短路径问题转化为“两点之间,线段最短”问题.二、目标和目标解析1.目标:(1)能利用轴对称﹑平移变化解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用,(2)在探索最短路径的过程中,感悟﹑应用转化思想.2. 目标解析达成目标(1)的标志是:学生能将实际问题中的“地点”“河”抽象为数学中的“点”“线”,把实际问题抽象为数学问题;能利用轴对称、平移变化,将不共线的点﹑线转化到一条直线上,从而将线段和最小问题转化为“两点之间,线段最短”问题;并能通过逻辑推理证明所求距离最短.达成目标(2)的标志是:在探索最短路径的过程中,能借助轴对称、平移变化,将不共线的点﹑线转化到一条直线上,体会轴对称、平移的“桥梁”作用,感悟转化思想.三、教学问题诊断分析最短路径问题从本质上说是极值问题,作为八年级的学生,在此之前很少接触,解决这方面问题的经验尚显不足,特别是面对具有实际背景的极值问题,更会感到陌生,无从下手对于直线同侧的两点,如何在直线上找到一点,使这一点到这两点的距离之和最小,一些学生会感到茫然,找不到解决问题的思路.教学时.教师可从“直线异侧的两点”过渡到“直线同侧的两点”,为学生搭建“脚手架”.在证明“最短”时,需要在直线上任取一点(与所求作的点不重合),证明所连线段和大于所求作的线段和,学生想不到,不会用.教师可作适时的点拨,让学生体会“任意”的作用.基于以上分析,确定本节课的教学难点是:如何利用轴对称、平移变化将最短路径问题转化为线段和最小问题.四、教学支持条件分析根据本节内容的特点,为了更直观、形象地突出重点,突破难点,借助信息技术工具,化静为动,以《几何画板》为平台,通过动态的演示,对线段长度的度量,更有助于学生的探究发现.活动设计学生活动设计意图感受情景,抛出问题.一位将军要从A 地出发,到一条笔直的河边l 饮马,然后到B 地.到河边什么地方饮马可使他所走的路径最短?1、 感受情景,激发学习热情.2、问题思考利用问题情景, 从学生熟悉的生活 情景中抛出数学问题,既增强学生的探究欲望,调动学生学习热情.同时也体现了数学与生活的联系. 活动一、抽象问题提问:1.你能从这个实际问题中抽象出数学模型吗?2.请你用自己的语言将这个实际问题抽象为数学问题.明确:(1)将A ,B 两地抽象为两个点,将河l抽象为一条直线(2)点A ,B 在直线l 的同侧,点C 是直线上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小?学生尝试回答,并相互补充,最后达成共识.学生通过观察分析,体会实际问题数学化的过程,同时也培养学生的模型思想._l _ A_ B活动六:类比探究如图所示,A和B两地在一条河的两岸,现要在河上造一座桥MN,桥造在何处可使从A到B的路径AMNB最短?(假定河的两岸是平行的直线,桥要与河垂直.)1、抽象出数学图形及数学问题.如图,a//b,点A 和点B是两条平行线a与b外的两点,当点N在直线b的什么位置时,AM+MN+NB最小?2、教师结合几何画板演示让学生观察:随着点N在直线b上的位置的改变,观察AM、MN、NB的长度,你有什么发现?3、小组讨论,交流,全班展示解决问题方法方法呈现(之一)将AM沿与河岸垂直的方向平移,点M移到点N,点A移到点A′连接A′B ,线段A′B与直线b的交点N的位置即为所求,1、学生思考,画出图形,抽象出数学问题2、教师结合几何画板引导学生观察当点N在直线b上的位置的改变时,A M、MN、NB的长度变化情况,明确线段MN的长度不变,但AM+NB会发生变化的体会选址的意义.3、学生分小组讨论,寻找答案,进行全班展示,并说明自己的想法这个问题有着很好的实际背景,情景贴近生活实际,平移是问题实现转化的一个重要策略,问题串的设计,可以让学生更好地想到将问题转化为“两点之间,线段最短”,而去进一步探索实现这种转化的方法,激活学生思维,增强学生的探究欲望,让接下来的小组活动真正落到实处。
八年级数学人教版上册13.4最短路径问题优秀教学案例
一、案例背景
八年级数学人教版上册13.4节主要讲述最短路径问题,这是学生对图论初步了解后的进一步深化。在学习了图的定义、表示和遍历等基础知识后,最短路径问题既是对前面知识的综合运用,又是向更为复杂图论问题的过渡。
本节课内容对于学生来说具有一定的难度,需要他们能够理解并掌握最短路径的算法,并能够运用到具体的问题中。同时,这也是对学生逻辑思维能力和问题解决能力的考查。
四、教学内容与过程
(一)导入新课
1.利用PPT展示生活中的最短路径问题,如旅行中最短路线的选择、网络数据传输的最短路径等,引导学生关注最短路径问题在现实生活中的应用。
2.向学生提出问题:“如何找到两点之间的最短路径?”让学生思考并发表自己的观点,为导入新课做好铺垫。
3.教师总结:今天我们将学习图论中的一个重要问题——最短路径问题,希望通过本节课的学习,大家能够掌握最短路径的求解方法,并能够运用到实际问题中。
4.在解决问题的过程中,引导学生总结规律,提高学生的归纳总结能力。
(三)小组合作
1.组织学生进行小组讨论,培养学生的团队协作能力和沟通能力。
2.分配具有挑战性的任务,让学生在合作中共同解决问题,提高解决问题的效率。
3.鼓励学生互相评价、互相学习,培养学生的自主学习和反思能力。
4.教师在小组合作过程中进行巡视指导,关注学生的学习情况,及时给予帮助和引导。
在教学过程中,我通过设计丰富多样的教学活动,引导学生主动探究、合作交流,从而提高他们对最短路径问题的理解和运用能力。同时,注重培养学生的数学素养,让他们在学习过程中感受到数学的趣味性和实用性。
二、教学目标
(一)知识与技能
1.理解最短路径问题的概念,掌握基本的最短路径算法。
人教版八年级上册数学13.4课题学习最短路径问题优秀教学案例
(三)情感态度与价值观
1.让学生在解决实际问题的过程中,体验数学的乐趣,提高学生学习数学的兴趣。
2.培养学生面对困难时积极思考、勇于挑战的精神,增强学生的自信心。
3.使学生认识到数学在生活中的重要性,培养学生的数学应用意识和社会责任感。
三、教学重难点
2.跨学科教学:结合其他学科的知识,如地理、信息技术等,拓宽学生的知识视野,培养学生的综合能力。
六、教学资源
1.教材:人教版八年级上册数学教材。
2.辅助材料:相关的最短路径问题的案例、练习题和拓展问题。
3.现代教育技术:多媒体课件、网络资源等。
七、教学评价
1.学生评价:通过学生的课堂表现、作业完成情况和练习成绩等方面进行评价。
(二)讲授新知
在导入新课后,我会开始讲解最短路径问题的相关知识。首先,我会向学生们介绍最短路径问题的定义,让学生们明白什么是最短路径。接着,我会讲解解决最短路径问题的基本方法,如坐标系法、函数法等。在讲解的过程中,我会结合具体的例子,让学生们更直观地理解这些方法。
(三)学生小组讨论
在讲授完新知识后,我会让学生们进行小组讨论。我会给每个小组提供一个实际问题,让他们运用所学知识,合作解决这个最短路径问题。这样的讨论,可以培养学生的团队合作精神,也可以让学生们在实践中加深对知识的理解和应用。
3.互动评价:小组之间进行互动评价,相互学习和提高。
(四)反思与评价
1.自我反思:引导学生对自己的学习过程进行反思,发现自身的优点和不足,制定改进措施。
2.同伴评价:学生之间相互评价,给予意见和建议,促进共同进步。
3.教师评价:教师对学生的学习情况进行评价,关注学生的个体差异,给予鼓励和指导。
人教版数学八年级上册13.4最短路径问题教案
其次,在新课讲授环节,我发现学生们对轴对称性质的理解较为扎实,但在将其应用于最短路径问题的求解过程中,部分学生还是显得有些吃力。针对这一点,我在讲解过程中尽量放慢速度,通过详细的步骤解析和直观的图形演示,帮助他们理解。在之后的课堂中,我还需要加强对学生的个别辅导,确保他们能够真正掌握这一知识点。
(2)确定最短路径问题中的对称轴:在实际问题中,确定对称轴可能较为困难,尤其是当问题涉及多个线段或点时。
难点解析:通过具体例子,展示如何寻找和确定线段、点到线段的最短路径问题中的对称轴。
(3)计算最短路径长度的方法:在确定对称轴和对称点后,如何进行有效计算,避免复杂和繁琐的步骤。
难点解析:教授学生运用几何图形的直观和代数计算相结合的方法,简化计算过程,如利用勾股定理等。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了轴对称的基本概念、最短路径问题的求解方法及其在实际中的应用。同时,我们也通过实践活动和小组讨论加深了对这些知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的课堂上,我们探讨了人教版数学八年级上册13.4节“最短路径问题”。这节课让我感受到了学生们对几何问题的热情,也让我意识到了一些教学中的亮点和需要改进的地方。
4.培养学生的团队合作意识,通过小组讨论和合作完成最短路径问题的求解,提高学生的沟通与协作能力。
三、教学难点与重点
1.教学重点
(1)轴对称图形的性质及其应用:轴对称图形的对称轴、对称点等基本概念,以及如何利用这些性质解决最短路径问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13.4最短路径问题
上饶县第七中学李天福
学习目标
1.能利用轴对称解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用,感悟化归思想;
2. 能将实际问题中的“地点”、“河”抽象为数学中的“点”、“线”,把实际问题抽象为数学问题,并能利用轴对称将线段和最小问题转化为“两点之间,线段最短”问题;能通过逻辑推理证明所求距离最短;在探索最短路径的过程中,体会轴对称的“桥梁”作用,感悟“转化”作用。
学情分析
由于八年级学生首次遇到某条线段或线段和最小,所以无从下手,另外证明两条线段和最小时要选取另外一点,学生想不到、不会用,所以利用轴对称将最短路径问题转化为线段和最小问题,逻辑推理证明所求距离最短是本节课的难点。
重点:
将实际问题抽象为数学问题;将同侧两点转化为异侧两点.
难点:
利用轴对称将最短路径问题转化为线段和最小问题,逻辑推理证明所求距离最短.
教学过程
一、“将军钦马”问题
1. 实际问题
相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:从图中的A 地出发,到一条笔直的河边l 饮马,然后到B 地.到河边什么地方饮马可使他所走的路线全程最短?
2.
数学问题
在图中直线l 上找到一点M ,使它到A ,B 两点的距离和最小.
3.学生尝试完成
4.几何画板验证
l
AC' + BC' = 9.92厘米
AC + BC = 7.79厘米C
B'
A C'拖
5.教师方法小结 二、“牧童放马”问题 1.实际问题
如图,已知牧马营地在P 处,牧童每天要赶着马群先到河边饮水,再到草地吃草,然后回到营地,试设计出最短的放牧路线。
2.数学问题
如图,同时在图中的OA 上找一点M , 0B 上找一点N , 使ΔPMN 的周长最小.
O
3.学生尝试完成
4.几何画板验证
M'P + PN' + M'N' = 10.79厘米
MP + PN +
O
5.教师方法小结 三、巩固提升
如图,已知M 、N 分别是锐角△ABC 的边AB 、BC 上的点,试在AC 边上找一点P ,使△MNP 周长最小
.
B
如图,M 是锐角△ABC 的边AB 上的一点,试在BC 、AC
边上各找一点N 、P ,使△
MNP 周长最小.
B
PA = 5.85厘米
PA = 1.74厘米厘米如图,A 、B 在直线l 的同侧,在直线l 上求一点P ,使PB-PA 的值最大。
四、课堂小结
1.今天所探究的最短路径问题是借助于什么知识解决的?
2.本节课体现了什么数学思想方法?
五、布置作业
1.必做题
课本P93,第15题。
2.思考题
你的梦想是什么?你认为实现你的梦想的最短路径是什么?。