分式练习1
一年级数学分式运算练习题
一年级数学分式运算练习题题目一:简化分式1. 将 2/4 简化为最简分式。
2. 将 3/6 简化为最简分式。
3. 将 5/10 简化为最简分式。
4. 将 8/12 简化为最简分式。
5. 将 9/18 简化为最简分式。
题目二:分式的加减运算1. 计算:1/3 + 1/4。
2. 计算:2/5 + 3/10。
3. 计算:3/7 + 2/7。
4. 计算:5/8 - 3/8。
5. 计算:7/9 - 2/9。
题目三:分式的乘除运算1. 计算:1/2 × 3/4。
2. 计算:2/5 × 1/6。
3. 计算:4/7 ÷ 2/7。
4. 计算:5/8 ÷ 1/4。
5. 计算:3/5 × 1/9。
题目四:混合运算1. 计算:1/2 + 3/4 - 1/8。
2. 计算:2/3 × 1/5 + 4/5 ÷ 1/2。
3. 计算:4/5 - 1/6 + 5/6 × 1/3。
4. 计算:3/4 ÷ 2/3 × 5/6 + 1/2。
5. 计算:2/3 × 4/5 ÷ 1/4 - 1/2。
题目五:应用题1. 小明花费了 2/5 的时间做作业,剩下的时间看电视。
如果小明有3 小时的空闲时间,他花了多少时间做作业?2. 小华的花园有 8/10 的面积被草坪覆盖,剩下的面积种着花。
如果花园的面积为 60 平方米,草坪的面积是多少平方米?3. 小明买了一本书,原价是 15 元,打折后只需支付原价的 3/5。
小明实际支付了多少钱?4. 小华买了一包糖果,共有 24 颗。
小华分给朋友的糖果数量是包里数量的 1/6,小华还剩下多少颗糖果?5. 爸爸给小明买了一箱苹果,共有 30 个苹果。
小明将苹果的 2/5 分给了朋友,小明自己还剩下多少个苹果?以上是一年级数学分式运算的练习题,请根据题目进行解答,并核对答案。
如果你有困难或疑问,可以向老师或父母请教,他们会很乐意帮助你理解分式运算的概念和计算方法。
第1章《分式》中考题集(32):14_分式方程
第1章《分式》中考题集(32):1.4 分式方程解答题1. 北京奥运会开幕前,某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68 000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?(利润率=×100%)2. 通惠新城开发某工程准备招标,指挥部现接到甲、乙两个工程队的投标书,从投标书中得知:乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍;该工程若由甲队先做6天,剩下的工程再由甲、乙两队合作16天可以完成.(1)求甲、乙两队单独完成这项工程各需要多少天?(2)已知甲队每天的施工费用为0.67万元,乙队每天的施工费用为0.33万元,该工程预算的施工费用为19万元.为缩短工期,拟安排甲、乙两队同时开工合作完成这项工程,问:该工程预算的施工费用是否够用?若不够用,需要追加预算多少万元?请说明理由.3. 面对全球金融危机的挑战,我国政府毅然启动内需,改善民生.国务院决定从2009年2月1日起,“家电下乡”在全国范围内实施,农民购买人选产品,政府按原价购买总额的13%给予补贴返还.某村委会组织部分农民到商场购买人选的同一型号的冰箱、电视机两种家电,已知购买冰箱的数量是电视机的2倍,且按原价购买冰箱总额为40 000元、电视机总额为15 000元.根据“家电下乡”优惠政策,每台冰箱补贴返还的金额比每台电视机补贴返还的金额多65元,求冰箱、电视机各购买多少台?(1)设购买电视机x台,依题意填充下列表格:(2)列出方程(组)并解答.4. 在达成铁路复线工程中,某路段需要铺轨.先由甲工程队独做2天后,再由乙工程队独做3天刚好完成这项任务.已知乙工程队单独完成这项任务比甲工程队单独完成这项任务多用2天,求甲、乙工程队单独完成这项任务各需要多少天?5. 奥运会期间,为了增进与各国的友谊,华联商厦决定将具有民族风情的中国结打8折销售,汤姆先生用160元钱买到的中国结比打折前花同样多的钱买到的中国结多2个,求每个中国结的原价是多少元?6. 某市为了治理污水,需要铺设一条全长550米的污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时,每天的工效比原计划增加10%,结果提前5天完成这一任务,原计划每天铺设多少米管道?7. 铭润超市用5000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨11 000元资金购进该品种苹果,但这次的进货价比试销时每千克多了0.5元,购进苹果数量是试销时的2倍.(1)试销时该品种苹果的进货价是每千克多少元?(2)如果超市将该品种苹果按每千克7元的定价出售,当大部分苹果售出后,余下的400千克按定价的七折(“七折”即定价的70%)售完,那么超市在这两次苹果销售中共盈利多少元?8. 在我市某一城市美化工程招标时,甲乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下工程由甲乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天,需付工程款2万元,若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?9. 2008年5月12日,四川省汶川县发生了里氏8.0级大地震,兰州某中学师生自愿捐款,已知第一天捐款4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少人?均捐款多少元?10. 甲、乙两车间生产同一种零件,乙车间比甲车间平均每小时多生产30个,甲车间生产600个零件与乙车间生产900个零件所用时间相等,设甲车间平均每小时生产x个零件,请按要求解决下列问题:(1)根据题意,填写下表:(2)甲、乙两车间平均每小时各生产多少个零件?11. 某学生食堂存煤45吨,用了5天后,由于改进设备,平均每天耗煤量降低为原来的一半,结果多烧了10天.(1)求改进设备后平均每天耗煤多少吨?(2)试将该题内容改编为与我们日常生活、学习有关的问题,使所列的方程相同或相似(不必求解).12. 海峡两岸实现“三通”后,某水果销售公司从台湾采购苹果的成本大幅下降.请你根据两位经理的对话,计算出该公司在实现“三通”前到台湾采购苹果的成本价格.13. 某工程队承接了3000米的修路任务,在修好600米后,引进了新设备,工作效率是原来的2倍,一共用30天完成了任务.求引进新设备前平均每天修路多少米?14. “五•一”期间,九年一班同学从学校出发,去距学校6千米的本溪水洞游玩,同学们分为步行和骑自行车两组,在去水洞的全过程中,骑自行车的同学比步行的同学少用40分钟,已知骑自行车的速度是步行速度的3倍.(1)求步行同学每分钟走多少千米?(2)如图是两组同学前往水洞时的路程y(千米)与时间x(分钟)的函数图象.完成下列填空:①表示骑车同学的函数图象是线段________;②已知A点坐标(30, 0),则B点的坐标为(________).15. 在2008年春运期间,我国南方出现大范围冰雪灾害,导致某地电路断电.该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,15分钟后,电工乘吉普车从同一地点出发,结果两车同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求这两种车的速度.16. 5.12汶川大地震发生以后,全国人民众志成城.首长到帐篷厂视察,布置赈灾生产任务,下面是首长与厂长的一段对话:首长:为了支援灾区人民,组织上要求你们完成12000顶帐篷的生产任务.厂长:为了尽快支援灾区人民,我们准备每天的生产量比原来多一半.首长:这样能提前几天完成任务?厂长:请首长放心!保证提前4天完成任务!根据两人对话,问该厂原来每天生产多少顶帐篷?17. 在四川省发生地震后,成都运往汶川灾区的物资须从西线或南线运输,西线的路程约800千米,南线的路程约80千米,走南线的车队在西线车队出发18小时后立刻启程,结果两车队同时到达.已知两车队的行驶速度相同,求车队走西线所用的时间.18. 某一工程,在工程招标时,接到甲,乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲,乙两队的投标书测算,有如下方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用6天;(3)若甲,乙两队合做3天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.19. 从徐州到南京可乘列车A与列车B,已知徐州至南京里程约为350km,A与B车的平均速度之比为10:7,A车的行驶时间比B车的少1ℎ,那么两车的平均速度分别为多少?20. A、B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运20千克,A型机器人搬运1000千克所用时间与B型机器人搬运800千克所用时间相等,两种机器人每小时分别搬运多少化工原料?21. 在“5⋅12大地震”灾民安置工作中,某企业接到一批生产甲种板材24000m2和乙种板材12000m2的任务.(1)已知该企业安排140人生产这两种板材,每人每天能生产甲种板材30m2或乙种板材20m2.问:应分别安排多少人生产甲种板材和乙种板材,才能确保他们用相同的时间完成各自的生产任务?(2)某灾民安置点计划用该企业生产的这批板材搭建A,B两种型号的板房共400间,在搭建过程中,按实际需要调运这两种板材.已知建一间A型板房和一间B型板房所需板材及能安置的人数如下表所示:问:这400间板房最多能安置多少灾民?22. 2008年5月12日14时28分在我国四川省汶川地区发生了里氏8.0级强烈地震,灾情牵动全国人民的心,“一方有难、八方支援”.某厂计划加工1500顶帐篷支援灾区人民,在加工了300顶帐篷后,由于救灾需要工作效率提高到原来的1.5倍,结果提前4天完成了任务.求原来每天加工多少顶帐篷?23. 注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路,填写表格,并完成本题解答的全过程.如果你选用其他的解题方案,此时,不必填写表格,只需按照解答题的一般要求,进行解答即可.天津市奥林匹克中心体育场--“水滴”位于天津市西南部的奥林匹克中心内,某校九年级学生由距“水滴”10千米的学校出发前往参观,一部分同学骑自行车先走,过了20分钟后,其余同学乘汽车出发,结果他们同时到达.已知汽车的速度是骑车同学速度的2倍,求骑车同学的速度.(1)设骑车同学的速度为x千米/时,利用速度、时间、路程之间的关系填写下表.(要求:填上适当的代数式,完成表格)(2)列出方程(组),并求出问题的解.24. 为帮助灾区人民重建家园,某校学生积极捐款.已知第一次捐款总额为9000元,第二次捐款总额为12000元,两次人均捐款额相等,但第二次捐款人数比第一次多50人.求该校第二次捐款的人数.25. 在四川汶川地震灾后重建中,某公司拟为灾区援建一所希望学校.公司经过调查了解:甲、乙两个工程队有能力承包建校工程,甲工程队单独完成建校工程的时间是乙工程队的1.5倍,甲、乙两队合作完成建校工程需要72天.(1)甲、乙两队单独完成建校工程各需多少天?(2)在施工过程中,该公司派一名技术人员在现场对施工质量进行全程监督,每天需要补助100元.若由甲工程队单独施工时平均每天的费用为0.8万元.现公司选择了乙工程队,要求其施工总费用不能超过甲工程队,则乙工程队单独施工时平均每天的费用最多为多少?26. 某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元.(1)求第一批购进书包的单价是多少元?(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?27. 为了支援四川汶川大地震灾区人民重建家园,我市某校号召师生自愿捐款,已知第一次共捐款90000元,第二次共捐款120000元,第二次人均捐款额是第一次人均捐款额的1.2倍,捐款人数比第一次多100人.问第一次和第二次人均捐款各多少元?28. 5月12日14时28分,四川汶川发生了8.0级大地震,震后两小时,武警某师参谋长王毅奉命率部队乘车火速向汶川县城开进.13日凌晨1时15分,车行至古尔沟,巨大的山体塌方将道路完全堵塞,部队无法继续前进,王毅毅然决定带领先遣分队徒步向汶川挺进,到达理县时为救援当地受灾群众而耽误了1小时,随后,先遣分队将步行速度,于13日23时15分赶到汶川县城.提高19(1)设先遣分队从古尔沟到理县的步行平均速度为每小时x千米,请根据题意填写下表:(2)根据题意及表中所得的信息列方程,并求出先遣分队徒步从理县到汶川的平均速度是每小时多少千米?29. 在“5⋅12”汶川大地震的“抗震救灾”中,某部队接受了抢修映秀到汶川的“213”国道的任务.需要整修的路段长为4800m,为了加快抢修进度,获得抢救伤员的时间,该部队实际工作效率比原计划提高了20%,结果提前2小时完成任务,求原计划每小时抢修的路线长度.30. 甲、乙两同学玩“托球赛跑”游戏,商定:用球拍托着乒乓球从起跑线l起跑,绕过P 点跑回到起跑线(如图所示);途中乒乓球掉下时须捡起并回到掉球处继续赛跑,用时少者胜.结果:甲同学由于心急,掉了球,浪费了6秒钟,乙同学则顺利跑完.事后,甲同学说:“我俩所用的全部时间的和为50秒”,乙同学说:“捡球过程不算在内时,甲的速度是我的1.2倍”.根据图文信息,请问哪位同学获胜?参考答案与试题解析第1章《分式》中考题集(32):1.4 分式方程解答题1.【答案】设商场第一次购进x套运动服,由题意得:68000 2x −32000x=10,解这个方程,得x=200,经检验,x=200是所列方程的根,2x+x=2×200+200=600,所以商场两次共购进这种运动服600套;设每套运动服的售价为y元,由题意得:600y−32000−6800032000+68000≥20%,解这个不等式,得y≥200,所以每套运动服的售价至少是200元.【考点】分式方程的应用一元一次不等式的实际应用【解析】(1)求的是数量,总价明显,一定是根据单价来列等量关系,本题的关键描述语是:每套进价多了10元.等量关系为:第二批的每件进价-第一批的每件进价=10;(2)等量关系为:(总售价-总进价)÷总进价≥20%.【解答】设商场第一次购进x套运动服,由题意得:68000 2x −32000x=10,解这个方程,得x=200,经检验,x=200是所列方程的根,2x+x=2×200+200=600,所以商场两次共购进这种运动服600套;设每套运动服的售价为y元,由题意得:600y−32000−6800032000+68000≥20%,解这个不等式,得y≥200,所以每套运动服的售价至少是200元.2.【答案】甲、乙两队单独完成这项工程各需要30天和60天.(2)设甲、乙两队合作完成这项工程需要y天,则有y(130+160)=1,解得y=20需要施工费用:20×(0.67+0.33)=20(万元)∵20>19,∴工程预算的施工费用不够用,需追加预算1万元.【考点】分式方程的应用【解析】(1)求的是工效,时间较明显,一定是根据工作总量来列等量关系,等量关系为:甲6天的工作总量+甲乙合作16天的工作总量=1;(2)应先算出甲乙合作所需天数,再算所需费用,和19万进行比较.【解答】解:(1)设甲队单独完成这项目需要x天,则乙队单独完成这项工程需要2x天,根据题意,得6x +16(1x+12x)=1解得x=30经检验,x=30是原方程的根,则2x=2×30=60答:甲、乙两队单独完成这项工程各需要30天和60天.(2)设甲、乙两队合作完成这项工程需要y天,则有y(130+160)=1,解得y=20需要施工费用:20×(0.67+0.33)=20(万元)∵20>19,∴工程预算的施工费用不够用,需追加预算1万元.3.【答案】冰箱、电视机分别购买20台、10台.【考点】分式方程的应用【解析】(1)每台的补贴返还总额=原价每台的购买金额×13%,补贴返还总额=每台的返还额×购买数量;(2)由(1)分析的等量关系已经关键语“每台冰箱补贴返还的金额比每台电视机补贴返还的金额多65元”就可得出方程.【解答】(2)解:依题意得40000×13%2x −15000×13%x=65,解得x=10,经检验x=10是原分式方程的解,∴购买冰箱量为2x=20台.答:冰箱、电视机分别购买20台、10台.4.【答案】甲、乙工程队单独完成任务分别需要4天、6天.【考点】分式方程的应用【解析】求的是工作时间,工效已知,一定是根据工作总量为1,来列等量关系,本题的关键描述语是:甲工程队独做2天后,再由乙工程队独做3天刚好完成这项任务.等量关系为:甲做2天的工作量+乙做3天的工作量=1.【解答】解:设甲工程队单独完成任务需x天,则乙工程队单独完成任务需(x+2)天,依题意得2x +3x+2=1化为整式方程得x2−3x−4=0(x+1)(x−4)=0解得x=−1或x=4检验:当x=4和x=−1时,x(x+2)≠0,∴x=4和x=−1都是原分式方程的解.但x=−1不符合实际意义,故x=−1舍去;∴乙单独完成任务需要x+2=6(天).5.【答案】每个中国结的原价为20元.【考点】分式方程的应用【解析】求的是原单价,总价明显,一定是根据数量来列等量关系.本题的关键描述语是:“用160元钱买到的中国结比打折前花同样多的钱买到的中国结多2个”;等量关系为:现在160元买的数量-原来160元买的数量=2.【解答】解:设每个中国结的原价为x元.根据题意得:1600.8x −160x=2.解得:x=20.经检验:x=20是原方程的根.6.【答案】原计划每天铺设10米管道.【考点】分式方程的应用【解析】本题是有关工作效率问题,主要围绕工作时间=工作总量工作效率来进行分析寻找等量关系.等量关系为:原计划天数-实际生产天数=5.由此可设原计划每天铺设管道x米,则实际每天铺设管道x(1+10%)米,得出方程:550x −550x(1+10%)=5,求解检验即可.【解答】解:设原计划每天铺设x米管道.则由题意可得:550x =550(1+10%)x+5.解得:x=10.经检验:x=10是原方程的根.7.【答案】试销时该品种苹果的进货价是每千克5元.试销时苹果的进货价是每千克5元,商场在两次苹果销售中共盈利4160元.【考点】分式方程的应用【解析】(1)求单价,总价已知,应根据数量来列等量关系.关键描述语是:“苹果数量是试销时的2倍”;等量关系为:2×试销时的数量=本次数量.(2)根据盈利=总售价-总进价进行计算.【解答】设试销时这种苹果的进货价是每千克x元.依题意,得:11000x+0.5=5000x×2解之得:x=5经检验:x=5是原方程的解.∴x=5.答:试销时该品种苹果的进货价是每千克5元.试销时进苹果的数量为:50005=1000(千克).第二次进苹果的数量为:2×1000=2000(千克).盈利为:(3000−400)×7+400×7×0.7−5000−11000=4160(元).答:试销时苹果的进货价是每千克5元,商场在两次苹果销售中共盈利4160元.8.【答案】解:(1)设乙队单独完成需x天,根据题意,得:160×20+(1x+160)×24=1,解这个方程得:x=90,经检验,x=90是原方程的解,答:乙队单独完成需90天. (2)设甲、乙合作完成需y天,则有(160+190)×y=1,解得,y=36,①甲单独完成需付工程款为60×3.5=210(万元);②乙单独完成超过计划天数不符题意;③甲、乙合作完成需付工程款为36×(3.5+2)=198(万元).答:在不超过计划天数的前提下,由甲、乙合作完成最省钱.【考点】由实际问题抽象为分式方程一元一次不等式的实际应用分式方程的应用一元一次方程的应用——工程进度问题【解析】(1)求的是乙的工效,工作时间明显.一定是根据工作总量来列等量关系.等量关系为:甲20天的工作量+甲乙合作24天的工作总量=1.(2)把在工期内的情况进行比较.【解答】解:(1)设乙队单独完成需x天,根据题意,得:160×20+(1x+160)×24=1,解这个方程得:x=90,经检验,x=90是原方程的解,答:乙队单独完成需90天. (2)设甲、乙合作完成需y天,则有(160+190)×y=1,解得,y=36,①甲单独完成需付工程款为60×3.5=210(万元);②乙单独完成超过计划天数不符题意;③甲、乙合作完成需付工程款为36×(3.5+2)=198(万元).答:在不超过计划天数的前提下,由甲、乙合作完成最省钱.9.【答案】两天共参加捐款的有450人,人均捐款24元.【考点】分式方程的应用【解析】可设第一天的人数为未知数.关键描述语是:两天人均捐款数相等.等量关系为:4800÷第一天的人数=6000÷第二天的人数.【解答】解法1:设第一天捐款x人,则第二天捐款(x+50)人,由题意列方程4800x =6000x+50解得x=200检验:当x=200时,x(x+50)≠0,∴x=200是原方程的解.两天捐款人数x+(x+50)=450,人均捐款4800x=24(元).10.【答案】甲车间每小时生产60个零件,乙车间每小时生产90个零件.【考点】分式方程的应用【解析】(1)乙车间比甲车间平均每小时多生产30个,甲每小时生产x个.∴乙车间平均每小时生产(x+30).所用时间=工作总量÷工作效率=900x+30;(2)关键描述语是:甲车间生产600个零件与乙车间生产900个零件所用时间相等,等量关系为:甲车间生产600个零件=乙车间生产900个零件所用时间.【解答】解:(1)x+30,900x+30;(2)根据题意,得600x =900x+30,解得x=60x+30=90经检验x=60是原方程的解,且都符合题意.答:甲车间每小时生产60个零件,乙车间每小时生产90个零件.11.【答案】改进设备后平均每天耗煤1.5吨.(2)某工厂计划生产45套学生服装,生产了5天后,由于又接了一批新活,平均每天生产的服装件数变为原来的一半,结果多生产了10天.求又接了一批新活后平均每天生产多少套服装?(只要所编应用题的方程与原题的方程相同或相似均可得分).【考点】分式方程的应用【解析】关键描述语是:“多烧了10天”;等量关系为:原计划用的天数+10=改进设备后使用天数.【解答】解:(1)设改进设备后平均每天耗煤x吨,根据题意,得:45 2x +10=45−5×2xx+5.解得x=1.5.经检验,x=1.5符合题意且使分式方程有意义.答:改进设备后平均每天耗煤1.5吨.(2)某工厂计划生产45套学生服装,生产了5天后,由于又接了一批新活,平均每天生产的服装件数变为原来的一半,结果多生产了10天.求又接了一批新活后平均每天生产多少套服装?(只要所编应用题的方程与原题的方程相同或相似均可得分).12.【答案】实现“三通”前该公司到台湾采购苹果的成本价格为5元/公斤.【考点】分式方程的应用【解析】本题用到的关系式为:总金额=单价×数量,等量关系为:三通前购买的苹果数量+20000=今年购买的苹果的数量.【解答】解:设该公司今年到台湾采购苹果的成本价格为x元/公斤,则该公司在实现“三通”前到台湾采购苹果的成本价格为2x元/公斤,根据题意列方程得:100000x =1000002x+20000.解得:x=2.5.经检验:x=2.5是原方程的根.当x=2.5时,2x=5.13.【答案】引进新设备前平均每天修路60米.【考点】分式方程的应用【解析】求的是新工效,工作总量为3000,一定是根据工作时间来列等量关系.本题的关键描述语是:“一共用30天完成了任务”;等量关系为:600米所用时间+剩余米数所用时间=30.【解答】解:设引进新设备前平均每天修路x米.根据题意,得:600x +3000−6002x=30.解得:x=60.经检验:x=60是原方程的解,且符合题意.14.【答案】步行同学每分钟走0.1千米.AM,50,0【考点】分式方程的应用一次函数的应用(1)关键描述语:“骑自行车的同学比步行的同学少用40分钟”;等量关系为:步行的同学所用的时间=骑自行车的同学所用的时间+40.(2)函数图象的斜率为骑自行车和步行时的速率,骑自行车的速率快,故斜率大,故AM线段为骑车同学的函数图象;根据题中所的条件,可将线段AM的函数关系式表示出来,从而可将可将B点的坐标求出.【解答】解:(1)设步行同学每分钟走x千米,则骑自行车同学每分钟走3x千米.根据题意得:6x =63x+40.解得:x=0.1.经检验:x=0.1是原方程的解.答:步行同学每分钟走0.1千米.(2)①骑车同学的速度快,即斜率大,故为线段AM.②由(1)知,线段AM的斜率为:3x=310.设一次函数关系式为:y=310x+b将点A的坐标(30, 0)代入可得:b=−9.∴y=310x−9.当y=6时,x=50.故点B的坐标为(50, 0).15.【答案】抢修车的速度为20千米/时,吉普车的速度为30千米/时【考点】分式方程的应用【解析】速度分别是:设抢修车的速度为x千米/时,则吉普车的速度为1.5x千米/时;路程:都是15千米,时间表示为:15x ,151.5x.关键描述语为:“抢修车装载着所需材料先从供电局出发,15分钟后,电工乘吉普车从同一地点出发,结果两车同时到达抢修工地”.等量关系为:抢修车的时间-吉普车的时间=1560.【解答】设抢修车的速度为x千米/时,则吉普车的速度为1.5x千米/时.由题意得:15x −151.5x=1560.解得:x=20.经检验:x=20是原方程的解.∴当x=20时,1.5x=30.16.【答案】该厂原来每天生产1000顶帐篷.【考点】分式方程的应用求的是原计划的工效,工作总量为12000,一定是根据工作时间来列等量关系,本题的关键描述语是:提前4天完成任务.等量关系为:原计划时间-准备用的时间=4.【解答】解:设该厂原来每天生产x顶帐篷,根据题意得:12000x −120003x2=4解方程得:x=1000经检验:x=1000是原方程的根,且符合题意17.【答案】车队走西线所用的时间为20小时.【考点】分式方程的应用【解析】设车队走西线所用的时间为x小时,行驶速度为800x,南线的路程为80千米,时间为(x−18)小时,行驶速度为80x−18,利用两车队行驶速度相同,建立等式.【解答】解:设车队走西线所用的时间为x小时,依题意得:800 x =80x−18.解这个方程,得x=20.经检验,x=20是原方程的解.18.【答案】解:设规定日期为x天.由题意得3 x +3x+6+x−3x+6=1,3 x +xx+6=1.3(x+6)+x2=x(x+6),3x=18,解之得:x=6.经检验:x=6是原方程的根.方案(1):1.2×6=7.2(万元);方案(2)比规定日期多用6天,显然不符合要求;方案(3):1.2×3+0.5×6=6.6(万元).∵7.2>6.6,∴在不耽误工期的前提下,选第三种施工方案最节省工程款.【考点】分式方程的应用【解析】。
沪科版数学七年级下册 第九章 分式应用题专项练习(举一反三) (PDF版)
专项练习1分式应用题专项练习(沪科版)学校:___________姓名:___________班级:___________考号:___________一、解答题1.近年来,雾霾天气给人们的生活带来很大的影响,空气质量问题也受人们关注.某单位计划在室内安装空气净化装置,需购进A、B两种设备,每台B种设备价格比每台A种设备价格多0.2万元,花2万元购买A种设备和花3万元购买B种设备的数量相同.(1)求A种、B种设备每台各多少万元?(2)根据单位实际情况,需购进A、B两种设备共18台,总费用不高于10万元,求A 种设备至少要购买多少台?2.我国的农作物主要以水稻、玉米和小麦为主,种植太单调不利于土壤环境的维护,而且对农业的发展也没有促进作用,为了鼓励大豆的种植,国家对种植大豆的农民给予补贴,调动农民种植大豆的积极性.我市乃大豆之乡,今年很多合作社调整种植结构,把种植玉米改成种植大豆,今年我市某合作社共收获大豆200吨,计划采用批发和零售两种方式销售.经市场调查,批发平均每天售出14吨,由于今年我市小型大豆深加工企业的增多,预计能提前完成销售任务,在平均每天批发量不变的情况下,实际平均每天的零售量比原计划的2倍还多14吨,结果提前5天完成销售任务。
那么原计划零售平均每天售出多少吨?3.科技创新加速中国高铁技术发展,某建筑集团承担一座高架桥的铺设任务,在合同期内高效完成了任务,这是记者与该集团工程师的一段对话:记者:你们是用9天完成4800米长的高架桥铺设任务的?工程师:是的,我们铺设600米后,采用新的铺设技术,这样每天铺设长度是原来的2倍.通过这段对话,请你求出该建筑集团原来每天铺设高架桥的长度.4.小丽妈妈开了一家淘宝店,专门销售女士鞋子.小丽在销售单上记录了这两天的数据如下表:日期A款女鞋销量B款女鞋销量销售总额4月20日12双6双960元4月21日8双10双1000元(1)请问A,B两种鞋的销售价分别是多少?(2)小丽发现一个进货单上的一个信息:B款鞋的进价比A款鞋进价多20%,同样花费420元,进A款鞋的数量比进B款鞋的数量多2双.①请问两种鞋子的进价分别是多少?②小丽妈妈告诉小丽:今天利润达到了390元,其中B款鞋的销售量不少于7双,且不多于17双.那么小丽妈妈今天卖出A、B两种鞋共__________双.5.某商品经销店欲购进两种纪念品,用160元购进的种纪念品与用240元购进的种纪念品的数量相同,每件种纪念品的进价比种纪念品的进价贵10元.(1)求两种纪念品每件的进价分别为多少元?(2)若该商店种纪念品每件售价24元,种纪念品每件售价35元,这两种纪念品共购进1000件,这两种纪念品全部售出后总获利不低于4900元,问种纪念品最多购进多少件?6.某服装厂“双十一”前接到一份加工4500件服装的订单,应客户要求,需提前供货.该服装厂决定提高工作效率,实际每天加工的件数是原计划的1.5倍,结果提前10天完工.求原计划每天加工服装的件数.7.一项工程,乙队单独完成比甲队单独完成需多用16天,甲队单独做3天的工作量乙队单独做需要5天才能完成.(1)甲,乙两队单独完成此项工程各需几天?(2)该项工程先由甲,乙两队合作,再由甲队单独完成,若完成此项工程不超过18天,甲乙两队至少合作几天?8.甲、乙两个筑路队共同承担一段一级路的施工任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用15天.且甲队单独施工60天和乙队单独施工40天的工作量相同.(1)甲、乙两队单独完成此项任务各需多少天?(2)若甲、乙两队共同工作了4天后,乙队因设备检修停止施工,由甲队单独继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?9.列方程解应用题:第19届亚洲运动会将于2022年9月10日至25日在杭州举行,杭州奥体博览城将成为杭州2022年亚运会的主场馆,某工厂承包了主场馆建设中某一零件的生产任务,需要在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数.(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.10.甲、乙两地相距120千米,一辆大巴车从甲地出发,行驶1小时后,一辆小汽车从甲地出发,小汽车和大巴车同时到达到乙地,已知小汽车的速度是大巴车的2倍,求大巴车和小汽车的速度.11.甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.2倍,两人各加工600个这种零件,甲比乙少用4天.求乙每天加工零件的个数.12.某单位在疫情期间用3000元购进A、B两种口罩1100个,购买A种口罩与购买B 种口罩的费用相同,且A种口罩的单价是B种口罩单价的1.2倍;(1)求A,B两种口罩的单价各是多少元?(2)若计划用不超过7000元的资金再次购进A、B两种口罩共2600个,已知A、B两种口罩的进价不变,求A种口罩最多能购进多少个?13.我市为创建省文明卫生城市,计划将城市道路两旁的人行道进行改造,经调查可知,若该工程由甲工程队单独来做恰好在规定时间内完成;若该工程由乙工程队单独完成,则需要的天数是规定时间的2倍,若甲、乙两工程队合作8天后,余下的工程由甲工程队单独来做还需3天完成.(1)问我市要求完成这项工程规定的时间是多少天?(2)已知甲工程队做一天需付给工资5万元,乙工程队做一天需付给工资2万元.两个工程队在完成这项工程后,共获得工程工资款总额65万元,请问该工程甲、乙两工程队各做了多少天?14.为庆祝中华人民共和国七十周年华诞,某校举行书画大赛,准备购买甲、乙两种文具,奖励在活动中表现优秀的师生已知用300元购买甲种文具的个数是用50元购买乙种文具个数的2倍,购买1个甲种文具比购买1个乙种文具多花费10元.(1)求购买一个甲种文具、一个乙种文具各需多少元;(2)若学校计划购买这两种文具共120个,投入资金不多于1000元,且甲种文具至少购买36个,求有多少种购买方案.15.2020年新冠病毒在全球蔓延,口罩成为抗击病毒传播的有效物资,某厂需要生产一批口罩,该厂有甲、乙两种型号的生产机器,若用甲机器单独完成这批订单需要消耗原料费76万元,若用乙机器单独完成需要消耗原料费26万元,已知每生产一个口罩,甲机器消耗原料费比乙机器消耗原料费多用0.5元.(1)求乙机器生产一个口罩需要消耗多少原料费?(2)为了尽快完成这批订单,该厂决定使用甲、乙机器一起完成这批订单,消耗原料费合计不超过39万元,则乙机器至少生产多少口罩?16.一项工程,如果由甲队单独做这项工程刚好如期完成,若乙队单独做这项工程,要比规定日期多5天完成.现由若甲、乙两队合作4天后,余下的工程由乙队单独做,也正好如期完成.已知甲、乙两队施工一天的工程费分别为16万元和14万元.(1)求规定如期完成的天数.(2)现有两种施工方案:方案一:由甲队单独完成;方案二:先由甲、乙合作4天,再由乙队完成其余部分;通过计算说明,哪一种方案比较合算.17.甲、乙两人加工同一种零件,甲每天加工的数量是乙每天加工数量的1.5倍,两人各加工600个这种零件,甲比乙少用5天.(1)甲、乙两人每天各加工多少个这种零件?(2)已知甲、乙两人加工这种零件每天的加工费分别是150元和120,现有1600个这种零件的加工任务,甲单独加工一段时间后另有安排,剩余任务由乙单独完成.如果总加工费不超过4200元,那么甲至少加工了多少天?18.某玩具店用2000元购进一批玩具,面市后,供不应求,于是店主又购进同样的玩具,所购的数量是第一批数量的3倍,但每件进价贵了4元,结果购进第二批玩具共用了6300元.若两批玩具的售价都是每件120元,且两批玩具全部售完.(1)第一次购进了多少件玩具?(2)求该玩具店销售这两批玩具共盈利多少元?19.某店准备购进A,B两种口罩,A种口罩毎盒的进价比B种口罩每盒的进价多10元,用2000元购进A种口罩和用1500元购进B种口罩的数量相同.(1)A种口罩每盒的进价和B种口罩每盒的进价各是多少元?(2)商店计划用不超过1770元的资金购进A,B两种口罩共50盒,其中A种口罩的数量应多于B种口罩数量,该商店有几种进货方案?20.从青岛到济南有南线和北线两条高速公路:南线全长400千米,北线全长320千米.甲、乙两辆客车分别由南线和北线从青岛驶往济南,已知客车甲在南线高速公路上行驶的平均速度比客车乙在北线高速公路上快20千米/小时,两车恰好同时到达济南,求两辆客车从青岛到济南所用的时间是多少小时?21.某商场购进甲、乙两种商品,甲种商品共用了元,乙种商品共用了元.已知乙种商品每件进价比甲种商品每件进价多元,且购进的甲、乙两种商品件数相同.求甲、乙两种商品的每件进价;22.列方程解应用题.2019年9月25日,被誉为“世界新七大奇迹”之首的北京大兴国际机场正式投运.某校组织初二年级同学到距学校30公里的北京大兴国际机场进行参观.同学们乘坐大巴车前往,张老师因学校有事晚出发了5分钟,开私家车沿相同路线行进,结果和同学们同时到达.已知私家车的速度是大巴车速度的1.2倍.求大巴车的速度是多少?23.某服装店用960元购进一批服装,并以每件46元的价格全部售完,由于服装畅销,服装店又用2220元,再次以比第一次进价多5元的价格购进服装,数量是第一次购进服装的2倍,仍以每件46元的价格出售,卖了部分后,为了加快资金周转,服装店将剩余的20件以售价的九折全部出售.问:(1)该服装店第一次购买了此种服装多少件?(2)两次出售服装共盈利多少元?24.某地在城区美化工程招标时,有甲、乙两个工程队投标.经测算,获得以下信息:信息1:乙队单独完成这项工程需要60天;信息2:若先由甲、乙两队合做16天,剩下的工程再由乙队单独做20天可以完成;信息3:甲队施工一天需付工程款3.5万元,乙队施工一天需付工程款2万元.根据以上信息,解答下列问题:(1)甲队单独完成这项工程需要多少天?(2)若该工程计划在50天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲、乙两队全程合作完成该工程省钱?25.八年级为筹备红色研学旅行活动,王老师开车前往距学校180的研学训练营地考察,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来速度的1.5倍匀速行驶,并比原计划提前了40到达研学训练营地.求王老师前一小时行驶速度.参考答案1.(1)A种设备每台万元,则B种设备每台万元;(2)A种设备至少要购买4台【来源】【新东方】2020年1月江西南昌育华初二上学期期末数学试卷2.6吨【来源】黑龙江省黑河市三县区(嫩江县、逊克县、爱辉区)2019-2020学年八年级上学期期末数学试题3.该建筑集团原来每天铺设高架桥300米.【来源】云南省昆明市官渡区2019-2020学年八年级上学期期末数学试题4.(1)A,B两种鞋的销售价分别是50元/双和60元/双;(2)①35元和42元;②23或24.【来源】浙江省温州市瑞安市西部联考2019-2020学年七年级下学期数学试题5.(1)纪念品每件进价20元;纪念品每件进价30元;(2)最多购进纪念品100件.【来源】黑龙江省哈尔滨市虹桥中学2019-2020学年九年级下学期阶段检测数学试题6.原计划每天加工服装150件.【来源】河南省洛阳市洛宁县2019-2020学年八年级下学期期中数学试题7.(1)甲队单独完成此项工程需24天,乙队单独完成此项工程需40天;(2)甲,乙两队至少合作10天.【来源】黑龙江省哈尔滨市道里区2019-2020学年八年级上学期期末数学试题8.(1)甲队单独完成此项任务需45天,乙队单独完成此项任务需30天;(2)4天【来源】广西壮族自治区北海市2019-2020学年八年级上学期期末数学试题9.(1)原计划每天生产的零件2400个,规定的天数是10天;(2)原计划安排的工人人数480人.【来源】山东省禹城市2019-2020学年八年级上学期期末数学试题10.大巴车的速度为60千米/小时,则小汽车的速度为120千米/小时【来源】海南省保亭县2019-2020学年八年级上学期期末数学试题11.25个【来源】吉林省长春市东北师大附中新城校区2019-2020学年八年级下学期期中数学试题12.(1)种口罩单价为3元,种口罩单价为2.5元;(2)种口罩最多能购进1000个.【来源】黑龙江省哈尔滨市第十七中学2019-2020学年九年级下学期3月检测数学试题13.(1)15天;(2)甲工程队做了5天,乙工程队做了20天本卷由系统自动生成,请仔细校对后使用,答案仅供参考。
(完整版)分式的乘除运算专题练习
分式的乘除乘方专题练习例1、下列分式abc 1215,a b b a --2)(3,)(222b a b a ++,b a b a +-22中最简分式的个数是( ). A.1 B.2 C.3 D.4例23234)1(x y y x • aa a a 2122)2(2+⋅-+ x y xy 2263)3(÷ 41441)4(222--÷+--a a a a a1.约分把一个分式的分子与分母的公因式约去,叫做约分.约分的依据是分式的基本性质. 若分式的分子、分母是多项式,必须先把分子、分母分解因式,然后才能约去公因式. 分子与分母没有公因式的分式,叫做最简分式,又叫做既约分式.分式的运算结果一定要化为最简分式.2.分式的乘法3.分式的除法 例3、 若432z y x ==,求222z y x zx yz xy ++++的值.例4、计算(1)3322)(cb a - (2)43222)()()(x y x y y x -÷-⋅-(3)2332)3()2(c b a bc a -÷- (4)232222)()()(x y xy xy x y y x -⋅+÷-分式的乘方求n 个相同分式的积的运算就是分式的乘方,用式子表示就是(ba )n .分式的乘方,是把分子、分母各自乘方.)56(3)1(122ab cd c b a -÷-、计算: (2)432643xy y x ÷-(3)(xy -x 2)÷x y xy -(4)2223ba a ab -+÷b a b a -+3 (5)3224)3()12(y x y x -÷-(6)322223322322)2()2()34(cb ab ac b a b a ab c +-÷-⋅2、如果32=b a ,且a ≠2,求51-++-b a b a 的值、 计算(1))22(2222a b ab b a a b ab ab a -÷-÷+-- (2)(2334b a )2·(223a b -)3·(a b 3-)2(3)(22932x x x --+)3·(-xx --13)22、先化简,再求值:(b a ab 22+)3÷2223)b a ab (-·[)(21b a -]2,其中a=-21,b=323、(1)先化简后求值:2(5)(1)5a a a a-+-÷(a 2+a ),其中a=-13.(2)先化简,再求值:21x x x -+÷1x x +,其中x=1.4.已知m+1m=2,计算4221m m m ++的值.7.(宁夏)计算:(9a 2b -6ab 2)÷(3ab )=_______.8.(北京)已知x -3y=0,求2222x y x x y +-+·(x -y )的值. 9.(杭州)给定下面一列分式:3x y ,-52x y ,73x y ,-94x y,…(其中x ≠0). (1)把任意一个分式除以前面一个分式,你发现了什么规律?(2)根据你发现的规律,试写出给定的那列分式中的第7个分式..11.(结论开放题)请你先化简,再选取一个使原式有意义而你又喜爱的数代入求值:322m m m m --÷211m m -+.12.(阅读理解题)请阅读下列解题过程并回答问题:计算:22644x x x--+÷(x+3)·263x x x +-+. 解:22644x x x --+÷(x+3)·263x x x +-+ =22644x x x--+·(x 2+x -6)① =22(3)(2)x x --·(x+3)(x -2)② =22182x x -- ③ 上述解题过程是否正确?如果解题过程有误,请给出正确解答.13.已知a 2+10a+25=-│b -3│,求代数式42()b a b -·32232a ab a b b +-÷222b a ab b -+的值.(一)、填空题1.把一个分式的分子与分母的 约去,叫做分式的约分.2.在分式xyxy y x 222+中,分子与分母的公因式是 . 3.将下列分式约分: (1)258x x = (2)22357mn n m -= (3)22)()(a b b a --= 4.计算2223362c ab b c b a ÷= . 5.计算42222ab a a ab ab a b a --÷+-= . 6.计算(-y x )2·(-32yx )3÷(-y x )4= . (二)、解答题7.计算下列各题316412446222+⋅-+-÷+--x x x x x x x y x y xy x -+-24422 ÷(4x 2-y 2)(3) 4344516652222+-÷-++⋅-+-a a a a a a a a (4)22222xa bx x ax a ax -÷+-8、某厂每天能生产甲种零件a 个或乙种零件b 个,且a ∶b=2∶3.甲、乙两种零件各一个配成一套产品,30天内能生产的产品的最多套数为多少?1、已知x 2+4y 2-4x+4y+5=0,求22442y xy x y x -+-·22y xy y x --÷(y y x 22+)2的值.2、已知a b c =1,求a a ba b b cb c a c c ++++++++111的值。
分式单元练习1
单元练习科学记数法用科学记数法把一个绝对值大于10的数表示成 a ×10n 的形式, n 是正整数,1≤∣a ∣<10.如 864000可以写成8.64×105.类似地,绝对值较小的数,可表示成a ×10-n 的形式,其中n 是正整数,1≤∣a ∣<10.例如0.000021可以表示成2.1×10-5.1、(1)0.000 03=3×10( ) (2)-0.000 0064=(3)0.000 0314= (4)2013 000=2、1纳米=9101米=10-9米,一个纳米粒子的直径是35纳米,它等于米?(请用科学记数法表示.)3、科学记数法填空:(1)1秒是1微秒的1000000倍,则1微秒=_________秒;(2)1毫克=______千克; (3)1平方厘米=______平方米;练习A1、计算:(1) 54x 3÷(-9x 2) (2) -21x 3y 4÷7xy 5(3) (21-a 4x 4) ÷(17-a 3x 5) (4) (16x 3-8x 2+4x ) ÷(-2x )(5) 2×1012 ÷(5×103)2、化简、计算 (1) 23()a ab b a b ++ (2)y xy x 242+-.(3)y x xy xy y x 234322+⋅-(5)x a b -÷xy ay c -; (6)222246⎪⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛x y x y(7)ab b b a a -+-= (8)231x +x 43(9)221y x -+xy x +213、计算下列各式,并且把结果化为只含有正整数指数幂的形式:(1)(x -3yz -2)2; (2)(a 3b -1)-2(a -2b 2)2;(3)(2103124a π--⎛⎫⎛⎫-⋅-÷ ⎪ ⎪⎝⎭⎝⎭4、解分式方程(1)3713x x =+- (2)11322x x x-+=---(3)2124111x x x +=+--. (4)512552x x x=---B 组(1)a a a +--22214 (2)22324416xy x y ---(3)422x x -++ (4)211x x x -+-.(5)2211xy x y x y x y⎛⎫+÷ ⎪-+-⎝⎭(6)⎪⎭⎫ ⎝⎛--+⋅+-y x x y x y x x 2121(7)37113x x =-+- (8)23x x+=-(9)2231683x x x x -+=-(10) 轮船在顺水中航行120千米所需的时间和逆水航行90千米所需的时间相同.已知水流的速度是3千米/时,求轮船在静水中的速度.(11)加工210个零件,甲的速度是乙的2倍,结果甲比乙少用40分钟小时完成.问这两个技术员每分钟各能加工多少个零件?(12)要装配50台机器,在装配好12台后,采用了新的技术,每天的工作效率提高了一倍,结果共用了6天完成任务。
分式(一)
专题二:分式分式的基本概念,基本性质,运算法则;部分分式:把一个分式写成几个简单分式的代数和,称为将分式化为部分分式,它是分式运算的常用技巧。
分式运算的技巧还有:换元法、整体法、逐项求和、拆项求和等。
解数学题是运用已知条件去探求未知结论的一个过程。
如何运用已知条件是解题顺畅的重要前提,对已知条件的运用有下列途径: (1) 直接运用条件; (2) 变形运用条件; (3) 综合运用条件; (4) 挖掘隐含条件.在解某些含多个字母的代数式问题时,如果已知与未知之间的联系不明显,为了沟通已知与未知之间的联系,则可考虑引入一个参数,参数的引入,可起到沟通变元、消元的功能.一、基本概念与计算: 例1、要使分式xx -11有意义,则x 的取值范围是 . 例2、 112525,_______2x xy y x y x xy y -++==++已知则例3、,,00,111111a b c a b c b c c a a b≠++=已知,且则a(+)+b(+)+c(+)的值是_____例4、111111221112()()113a baba b a b a b-⨯-⨯-++已知a,b 为整数,且满足=,求a+b 的值.例5、方程11422x x +=-的一个根是4,则它的另一个根是_________例6、已知,,a b c 均为实数,且257(1)(2)112x a b cx x x x x -=++---+-, 求abc 的值。
例7、 方程2(21)5160x x x -+--+=的所有根的和是( ) 例8 方程111+6x y= 有( )组正整数解. 例9、13217219211211215217292x x x xx x x x----+=+----练习一:1.x 取______________值时, 112122x +++有意义.2. 当3221,(1)(1)(1)0a a x a x a <-+++-+=时,方程的根的情况是( ) A 两负根 B 一正一负,且负根的绝对值大 C 一正一负,且正根的绝对值大 D 没有实数根3、若分式322(4)(4)2218812512a a a a m m a a -----+--- 的值与 a 的取值无关,求m 的值。
最新初中数学方程与不等式之分式方程基础测试题及解析(1)
最新初中数学方程与不等式之分式方程基础测试题及解析(1)一、选择题1.如果关于x 的分式方程2ax 423x x 3++=--有正整数解,且关于y 的不等式组()3y 34yy a ⎧-⎨≥⎩>无解,那么符合条件的所有整数a 的和是( ) A .﹣16 B .﹣15C .﹣6D .﹣4【答案】D 【解析】 【分析】先根据分式方程有正整数解确定出a 的值,再由不等式组无解确定出满足题意的a 的值,求出之和即可. 【详解】解:分式方程去分母得:2+ax ﹣2x+6=﹣4, 整理得:(a ﹣2)x =﹣12(a ﹣2≠0), 解得:x 12a 2=--, 由分式方程有正整数解,得到a =1,0,﹣1,﹣2,﹣4,﹣10, 当a =﹣2时,x =3,原分式方程无解, 所以a =1,0,﹣1,﹣4,﹣10, 不等式组整理得:y<9y a -⎧⎨≥⎩, 由不等式组无解,即a≥﹣9,∴符合条件的所有整数a 有1,0,﹣1,﹣4, ∴a =1,0,﹣1,﹣4,之和为﹣4, 故选:D . 【点睛】此题考查了分式方程的解,解一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.2.某工厂现在平均每天比原计划多生产25个零件,现在生产600个零件所需时间与原计划生产450个零件所需时间相同.设原计划平均每天生产x 个零件,根据题意可列方程为( )A .60045025x x =- B .60045025x x =- C .60045025x x=+ D .60045025x x =+ 【答案】C 【解析】 【分析】原计划平均每天生产x个零件,现在每天生产(x+25)个,根据现在生产600个零件所需时间与原计划生产450个零件所需时间相同即可列出方程.【详解】由题意得:现在每天生产(x+25)个,∴60045025x x=+,故选:C.【点睛】此题考查分式方程的实际应用,正确理解题意是列方程的关键.3.某服装店用10000元购进一批某品牌夏季衬衫若干件,很快售完;该店又用14700元钱购进第二批这种衬衫,所进件数比第一批多40%,每件衬衫的进价比第一批每件衬衫的进价多10元,求第一批购进多少件衬衫?设第一批购进x件衬衫,则所列方程为()A.10000x﹣10=14700(140)0x+B.10000x+10=14700(140)0x+C.10000(140)0x-﹣10=14700xD.10000(140)0x-+10=14700x【答案】B【解析】【分析】根据题意表示出衬衫的价格,利用进价的变化得出等式即可.【详解】解:设第一批购进x件衬衫,则所列方程为:10000x +10=()147001400x+.故选B.【点睛】此题主要考查了由实际问题抽象出分式方程,正确找出等量关系是解题关键.4.如果关于x的不等式(a+1)x>2的解集为x<-1,则a的值是().A.a=3 B.a≤-3 C.a=-3 D.a>3【答案】C【解析】【分析】根据不等式的解集得出关于a的方程,解方程即可.【详解】解:因为关于x的不等式(a+1)x>2的解集为x<-1,所以a+1<0,即a <-1,且21a +=-1,解得:a=-3. 经检验a=-3是原方程的根 故选:C . 【点睛】此题主要考查了不等式的解集,当题中有两个未知字母时,应把关于某个字母的不等式中的字母当成未知数,求得解集,再根据解集进行判断,求得另一个字母的值.5.已知关于x 的分式方程211x k x x-=--的解为正数,则k 的取值范围为( ) A .20k -<< B .2k >-且1k ≠- C .2k >-D .2k <且1k ≠【答案】B 【解析】 【分析】先用k 表示x ,然后根据x 为正数列出不等式,即可求出答案. 【详解】 解:211x kx x-=--Q, 21x kx +∴=-, 2x k ∴=+,Q 该分式方程有解,21k ∴+≠, 1k ∴≠-, 0x Q >, 20k ∴+>, 2k ∴>-,2k ∴>-且1k ≠-, 故选:B . 【点睛】本题考查的是分式方程,熟练掌握分式方程是解题的关键.6.甲、乙二人做某种机械零件,甲每小时比乙多做6个,甲做90个所用的时间与做60个所用的时间相等.设甲每小时做x 个零件,下面所列方程正确的是( )A .90606x x =- B .90606x x =+ C .90606x x=- D .90606x x=+ 【答案】A 【解析】解:设甲每小时做x个零件,则乙每小时做(x﹣6)个零件,由题意得:90606x x=-.故选A.7.若关于x的分式方程233x mx x-=--有增根,则m的值是()A.1-B.1 C.2 D.3【答案】B【解析】【分析】根据分式方程的增根的定义得出x-3=0,再进行判断即可.【详解】去分母得:x-2=m,∴x=2+m∵分式方程233x mx x-=--有增根,∴x-3=0,∴x= 3,∴2+m=3,所以m=1,故选:B.【点睛】本题考查了对分式方程的增根的定义的理解和运用,能根据题意得出方程x-3=0是解此题的关键,题目比较典型,难度不大.8.某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本,求第一次买了多少本资料?若设第一次买了x本资料,列方程正确的是()A.240120420x x-=-B.240120420x x-=+C.120240420x x-=-D.120240420x x-=+【答案】D【解析】【分析】设第一次买了x本资料,则第二次买了(x+20)本资料,由等量关系第二次比第一次优惠了4列出方程即可解答.【详解】解:设第一次买了x本资料,则第二次买了(x+20)本资料,根据题意可得:120240420x x -=+ 故选:D 【点睛】本题考查由实际问题抽象出分式方程,找到关键描述语,设出未知数,找到等量关系是解题的关键.9.若数a 使关于x 的不等式组()3x a 2x 11x2x 2⎧-≥--⎪⎨--≥⎪⎩有解且所有解都是2x+6>0的解,且使关于y 的分式方程y 51y --+3=ay 1-有整数解,则满足条件的所有整数a 的个数是( ) A .5 B .4C .3D .2【答案】D 【解析】 【分析】由不等式组有解且满足已知不等式,以及分式方程有整数解,确定出满足题意整数a 的值即可. 【详解】不等式组整理得:13x a x ≥-⎧⎨≤⎩,由不等式组有解且都是2x+6>0,即x >-3的解,得到-3<a-1≤3, 即-2<a≤4,即a=-1,0,1,2,3,4,分式方程去分母得:5-y+3y-3=a ,即y=22a -, 由分式方程有整数解,得到a=0,2,共2个, 故选:D . 【点睛】本题考查了分式方程的解,解一元一次不等式,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.10.八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x 千米/小时,则所列方程正确的是( ) A .10x -102x=20 B .102x -10x=20 C .10x -102x =13D .102x -10x =13【答案】C【分析】根据八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,可以列出相应的方程,从而可以得到哪个选项是正确的.【详解】由题意可得,10 x -102x=13,故选:C.【点睛】此题考查由实际问题抽象出分式方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.11.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是()A.1201508x x=-B.1201508x x=+C.1201508x x=-D.1201508x x=+【答案】D【解析】【分析】首先用x表示甲和乙每小时做的零件个数,再根据甲做120个所用的时间与乙做150个所用的时间相等即可列出一元一次方程.【详解】解:∵甲每小时做x个零件,∴乙每小时做(x+8)个零件,∵甲做120个所用的时间与乙做150个所用的时间相等,∴1201508x x=+,故选D.【点睛】本题考查了分式方程的实际应用,熟练掌握是解题的关键.12.已知关于x的分式方程21mx-+=1的解是负数,则m的取值范围是()A.m≤3B.m≤3且m≠2C.m<3 D.m<3且m≠2【答案】D【解析】【分析】解方程得到方程的解,再根据解为负数得到关于m的不等式结合分式的分母不为零,即可求得m的取值范围.21m x -+=1, 解得:x=m ﹣3, ∵关于x 的分式方程21m x -+=1的解是负数, ∴m ﹣3<0, 解得:m <3,当x=m ﹣3=﹣1时,方程无解, 则m≠2,故m 的取值范围是:m <3且m≠2, 故选D . 【点睛】本题考查了分式方程的解,熟练掌握分式方程的解法以及分式方程的分母不为零是解题关键.13.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x 万千克,根据题意,列方程为( ) A .3036101.5x x-= B .3030101.5x x-= C .3630101.5x x -= D .3036101.5x x+= 【答案】A 【解析】 【分析】根据题意可得等量关系:原计划种植的亩数-改良后种植的亩数10=亩,根据等量关系列出方程即可. 【详解】设原计划每亩平均产量x 万千克,则改良后平均每亩产量为1.5x 万千克, 根据题意列方程为:3036101.5x x-=. 故选:A . 【点睛】本题考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.14.《九章算术》中记录的一道题目译为白话文是:把一份文件用慢马送到900里外的城市,需要的时间比规定时间多1天,如果用快马送,所需的时间比规定时间少3天.已知快马的速度是慢马的2倍,求规定时间.设规定时间为x 天,则可列方程为( ) A .900900213x x ⨯=+- B .900900213x x =⨯+- C .900900213x x ⨯=-+ D .900900213x x =⨯-+ 【答案】A 【解析】 【分析】设规定时间为x 天,可得到慢马和快马需要的时间,根据快马的速度是慢马的2倍的速度关系即可列出方程. 【详解】解:设规定时间为x 天,则慢马需要的时间为(x +1)天,快马的时间为(x -3)天, ∵快马的速度是慢马的2倍∴900900213x x ⨯=+- 故选A . 【点睛】本题考查分式方程的实际应用,正确理解题意找到题中的等量关系即可列方程.15.某工厂现在平均每天比原计划多生产40台机器,现在生产600台机器所需的时间与原计划生产480台机器所用的时间相同,设原计划每天生产x 台机器,根据题意,下面列出的方程正确的是( ) A .60048040x x=- B .60048040x x=+ C .60048040x x =+ D .60048040x x =- 【答案】B 【解析】 【分析】由题意分别表达出原来生产480台机器所需时间和现在生产600台机器所需时间,然后根据两者相等即可列出方程,再进行判断即可. 【详解】解:设原计划每天生产x 台机器,根据题意得:48060040x x =+. 故选B . 【点睛】读懂题意,用含x 的代数式表达出原来生产480台机器所需时间为480x天和现在生产600台机器所需时间为60040x +天是解答本题的关键.16.某农场开挖一条480米的渠道,开工后,实际每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x 米,那么所列方程正确的是( )A .480x +480+20x =4 B .480x -480+4x =20 C .480x -480+20x =4 D .4804x --480x =20 【答案】C 【解析】 【分析】根据题意列出方程即可. 【详解】 由题意得480x -480+20x =4 故答案为:C . 【点睛】本题考查了分式方程的实际应用,掌握解分式方程的方法是解题的关键.17.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( ) A .606030(125%)x x-=+ B .606030(125%)x x-=+C .60(125%)6030x x⨯+-=D .6060(125%)30x x⨯+-= 【答案】C 【解析】分析:设实际工作时每天绿化的面积为x 万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x 的分式方程.详解:设实际工作时每天绿化的面积为x 万平方米,则原来每天绿化的面积为125%x+万平方米,依题意得:606030125%x x-=+,即()60125%6030x x⨯+-=. 故选C .点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.18.八年级(1)班全体师生义务植树300棵.原计划每小时植树x棵,但由于参加植树的全体师生植树的积极性高涨,实际工作效率提高为原计划的1.2倍,结果提前20分钟完成任务.则下面所列方程中,正确的是()A.300300201.2x x-=B.300300201.260x x=-C.300300201.260x x x-=+D.3002030060 1.2x x-=【答案】D【解析】【分析】原计划每小时植树x棵,实际工作效率提高为原计划的1.2倍,故每小时植1.2x棵,原计划植300棵树可用时300x小时,实际用了3001.2x小时,根据关键语句“结果提前20分钟完成任务”可得方程.【详解】设原计划每小时植树x棵,实际工作效率提高为原计划的1.2倍,故每小时植1.2x棵,由题意得:3002030060 1.2x x-=,故选:D.【点睛】此题主要考查了由实际问题抽象出分式方程,关键是弄清题意,表示出原计划植300棵树所用时间与实际所用时间.19.两个工程队共同参与一项筑路工程,甲队单独施工3个月,这时增加了乙队,两队又共同工作了2个月,总工程全部完成,已知甲队单独完成全部工程比乙队单独完成全部工程多用2个月,设甲队单独完成全部工程需x个月,则根据题意可列方程中错误的是()A.3212x x+=-B.32212x x x++=-C.3+2212x x+=-D.3112()12x x x++=-【答案】A【解析】【分析】设甲队单独完成全部工程需x个月,则乙队单独完成全部工程需要(x-2)个月,根据甲队施工5个月的工程量+乙队施工2个月的工程量=总工程量1列出方程,然后依次对各方程的左边进行变形即可判断.【详解】解:设甲队单独完成全部工程需x个月,则乙队单独完成全部工程需要(x-2)个月,根据题意,得:5212x x+=-;A、3212x x+=-,与上述方程不符,所以本选项符合题意;B、32212x x x++=-可变形为5212x x+=-,所以本选项不符合题意;C、3+2212x x+=-可变形为5212x x+=-,所以本选项不符合题意;D、3112()12x x x++=-的左边化简得5212x x+=-,所以本选项不符合题意.故选:A.【点睛】本题考查了分式方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.20.《九章算术》中记录的一道题译为白话文是:把一份文件用慢马送到900里外的城市,需要的时间比规定时间多一天,如果用快马送,所需的吋间比规定时间少3天,已知快马的速度是慢马的2倍,求规定时间. 设规定时间为x天,则可列方程为().A.900900213x x⨯=+-B.900900213x x=⨯+-C.900900213x x⨯=-+D.900900213x x=⨯++【答案】A【解析】【分析】设规定时间为x天,得到慢马和快马所需要的时间,根据速度关系即可列出方程.【详解】设规定时间为x天,则慢马的时间为(x+1)天,快马的时间是(x-3)天,∵快马的速度是慢马的2倍,∴900900213 x x⨯=+-,故选:A.【点睛】此题考查分式方程的实际应用,正确理解题意找到题中的等量关系即可列方程.。
新初中数学分式易错题汇编含答案(1)
新初中数学分式易错题汇编含答案(1)一、选择题1.化简(a ﹣1)÷(1a ﹣1)•a 的结果是( ) A .﹣a 2B .1C .a 2D .﹣1 【答案】A【解析】分析:根据分式的混合运算顺序和运算法则计算可得.详解:原式=(a ﹣1)÷1a a-•a =(a ﹣1)•()1a a --•a =﹣a 2,故选:A .点睛:本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.2.下列各式计算正确的是( )A .(﹣x ﹣2y )(x+2y )=224x y -B .13x -=13xC .236(2)6y y -=-D .32()(1)m m m m x x x -÷=- 【答案】D【解析】【分析】根据整式的相关运算法则计算可得.【详解】A .(﹣x ﹣2y )(x+2y )=﹣(x+2y )2=﹣x 2﹣4xy ﹣4y 2,此选项计算错误;B .3x ﹣1=3x,此选项计算错误; C .(﹣2y 2)3=﹣8y 6,此选项计算错误;D .(﹣x )3m ÷x m =(﹣1)m x 2m ,此选项计算正确;故选:D .【点睛】本题主要考查整式的运算,解题的关键是掌握整式的运算法则和负整数指数幂的规定.3.已知24111P Q x x x =+-+-是恒等式,则( ) A . 2, 2P Q ==- B .2, 2P Q =-= C .2P Q == D .2P Q ==-【答案】B【解析】【分析】 首先利用分式的加减运算法则,求得()()2111Q x x x P Q x Q P P ++-=-++-,可得方程组04P Q Q P +=⎧⎨-=⎩,解此方程组即可求得答案. 【详解】 解:∵()()()()()()22111411111P x Q x P Q x Q P P Q x x x x x x -++++-=+==+-+---, ∴()()4P Q x Q P ++-=,∴04P Q Q P +=⎧⎨-=⎩,解之得:22P Q =-⎧⎨=⎩, 故选:B .【点睛】此题考查了分式的加减运算、二元一次方程的解法以及整式相等的性质,解题的关键是掌握分式的加减运算法则.4.若2250(0)a ab b ab ++=≠,则b a a b +=( ) A .5B .-5C .5±D .2± 【答案】B【解析】【分析】根据题意,先得到225a b ab +=-,代入计算即可.【详解】解:∵2250(0)a ab b ab ++=≠,∴225a b ab +=-, ∴2255b a a b ab a b ab ab+-+===-; 故选:B.【点睛】本题考查了分式的化简求值,解题的关键是正确得到225a b ab +=-.5.若x 满足2220x x --=,则分式231211x x x ⎛⎫--÷ ⎪--⎝⎭的值是( )A .1B .12C .1-D .32- 【答案】A【解析】【分析】 首先将式子231211x x x ⎛⎫--÷ ⎪--⎝⎭按照分式的运算法则进一步化简,然后通过2220x x --=得出222x x -=,最后将其代入之前化简所得的式子中进一步计算即可.【详解】 由题意得:2223132212211111x x x x x x x x x ⎛⎫---+--÷=⋅=-- ⎪---⎝⎭,又∵2220x x --=,∴222x x -=,∴原式211=-=,故选:A .【点睛】本题主要考查了分式的化简求值,熟练掌握相关运算法则是解题关键.6.在下列四个实数中,最大的数是( )A .B .0C .12-D .13【答案】C【解析】【分析】根据实数的大小比较法则即可得.【详解】1122-=则四个实数的大小关系为11023-<<<因此,最大的数是12-故选:C .【点睛】本题考查了实数的大小比较法则,掌握大小比较法则是解题关键.7.关于分式25x x -,下列说法不正确的是( )A .当x=0时,分式没有意义B .当x >5时,分式的值为正数C .当x <5时,分式的值为负数D .当x=5时,分式的值为0【答案】C【解析】【分析】此题可化转化为分别求当分式等于0、大于0、小于0、无意义时的x 的取值范围,分别计算即可求得解.【详解】A .当x=0时,分母为0,分式没有意义;正确,但不符合题意.B .当x>5时,分式的值为正数;正确,但不符合题意C .当0<x <5时,分式的值为负数;当x=0是分式没有意义,当x <0时,分式的值为负数,原说法错误,符合题意.D .当x=5时,分式的值为0;正确,但不符合题意.故选:C .【点睛】本题主要考查分式的性质的运用,注意分式中分母不为0的隐性条件.8.某微生物的直径为0.000 005 035m ,用科学记数法表示该数为( )A .5.035×10﹣6B .50.35×10﹣5C .5.035×106D .5.035×10﹣5【答案】A【解析】试题分析:0.000 005 035m ,用科学记数法表示该数为5.035×10﹣6,故选A . 考点:科学记数法—表示较小的数.9.当式子2||323x x x ---的值为零时,x 等于( ) A .4B .﹣3C .﹣1或3D .3或﹣3【答案】B【解析】【分析】根据分式为零,分子等于0,分母不等于0列式进行计算即可得解.【详解】 解:根据题意得,30x -=,解得3x =或3-.又2230x x --≠解得121,3x x ≠-≠,所以,3x =-.【点睛】本题考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.10.生物学家发现某种花粉的直径约为0.0000036毫米,数据0.0000036用科学记数法可表示为( )A .63.610-⨯B .50.3610-⨯C .73610-⨯D .60.3610-⨯【答案】A【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】11.下面是一名学生所做的4道练习题:①224-=;②336a a a +=;③44144mm -=;④()3236xy x y =。
八年级数学上册《第一章 分式》练习题-含答案(湘教版)
八年级数学上册《第一章 分式》练习题-含答案(湘教版)一、选择题1.下列式子是分式的是( ) A.a -b 2 B.5+y π C.x +3xD.1+x 2.下列各式:其中分式共有( )A.2个B.3个C.4个D.5个3.如果分式11 x 在实数范围内有意义,则x 的取值范围是( ) A.x ≠﹣1 B.x >﹣1 C.全体实数 D.x=﹣14.若分式x -2x +1无意义,则( ) A.x =2 B.x =-1 C.x =1 D.x ≠-1 5.若分式2x +63x -9 的值为零,则x 等于( ) A.2 B.3 C.-3 D.3或-36.已知5a=2b ,则值为( )A.25B.35C.23 D.1.47.已知a ﹣b ≠0,且2a ﹣3b =0,则代数式2a -b a -b的值是( ) A.﹣12 B.0 C.4 D.4或﹣128.已知1x -1y =3,则代数式2x +3xy -2y x -xy -y的值是( ) A.-72 B.-112 C.92 D.34二、填空题9.某工厂计划a 天生产60件产品,则平均每天生产该产品 件.10.有游客m 人,若每n 个人住一个房间,结果还有一个人无房住,则客房的间数为.11.若分式2x+1的值不存在,则x的值为 .12.把分式a+13b34a-b的分子、分母中各项系数化为整数的结果为________.13.如果x=-1,那么分式x-2x2-4的值为________.14.若4x+1表示一个整数,则所有满足条件的整数x的值为___________.三、解答题15.下列各分式中,当x取何值时有意义?(1)1x-8;(2)3+x22x-3;(3)xx-3.16.当m为何值时,分式的值为0?(1)mm-1; (2)|m|-2m+2; (3)m2-1m+1.17.求下列各分式的值.(1)5x3x2-2,其中x=12;(2)x-12x2+1,其中x=-1;(3)x-yx+y2,其中x=2,y=-1.18.某公司有一种产品共300箱,将其分配给批发部和零售部销售,批发部经理对零售部经理说:“如果把你们分到的产品让我们卖,可卖得3 500元.”零售部经理对批发部经理说:“如果把你们分到的产品让我们卖,可卖得7 500元.”若假设零售部分到的产品是a箱,则:(1)该产品的零售价和批发价分别是每箱多少元?(2)若a=100,则这批产品一共能卖多少元?19.已知x,y满足xy=5,求分式x2-2xy+3y24x2+5xy-6y2的值.20.对于任意非零实数a,b,定义新运算“*”如下:a*b=a-bab,求2*1+3*2+…+10*9的值.参考答案1.C2.A3.A4.B5.C6.D7.C8.D.9.答案为:60a. 10.答案为:m -1n. 11.答案为:-1.12.答案为:12a +4b 9a -12b13.答案为:114.答案为:-2,-3,-5,0,1,3.15.解:(1)x ≠8 (2)x ≠32(3)x ≠3. 16.解:(1)∵⎩⎨⎧m =0,m -1≠0,∴m =0. (2)∵⎩⎨⎧|m|-2=0,m +2≠0,∴m =2. (3)∵⎩⎨⎧m 2-1=0,m +1≠0,∴m =1. 17.解:(1)把x =12 代入5x 3x 2-2,得原式=-2. (2)当x =-1时,x -12x 2+1 =-1-12×(-1)2+1 =-23. (3)当x =2,y =-1时,x -y x +y 2 =2-(-1)2+(-1)2 =33=1.18.解:(1)该产品的零售价是每箱7 500300-a 元,批发价是每箱3 500a元. (2)这批产品一共能卖10 750元.19.解:∵x y =5,∴x =5y ∴x 2-2xy +3y 24x 2+5xy -6y 2=(5y )2-2×5y ·y +3y 24×(5y )2+5×5y ·y -6y 2=18y 2119y 2=18119. 20.解:2*1+3*2+…+10*9=2-12×1+3-23×2+…+10-910×9=1﹣110=910.。
初二分式所有练习题
初二分式所有练习题在初二数学学习中,分式是一个重要的知识点,也是学生们比较容易犯错的地方。
为了帮助同学们巩固分式的知识,下面我将提供一些初二分式的练习题,供大家练习。
题目1:简化分式将分式$\frac{12x^3y^2}{4x^2y^3}$进行简化。
解答:首先,我们可以进行分子和分母的因式分解。
分子可以写成$2^2 \times 3 \times x^3 \times y^2$,分母可以写成$2^2 \times x^2 \times y^3$。
然后,我们可以将相同的因式约掉,得到简化后的结果:$\frac{3x}{y}$。
题目2:分式加法计算$\frac{3}{4} + \frac{2}{5}$。
解答:首先,我们需要找到两个分式的公共分母。
对于$\frac{3}{4}$和$\frac{2}{5}$,其最小公倍数为20。
然后,我们将两个分式的分子乘以相应的公倍数得到同分母的分式,即$\frac{15}{20} + \frac{8}{20}$。
最后,我们将分子相加,保持分母不变,得到$\frac{23}{20}$。
如果需要,我们可以将其化简为$\frac{23}{20}$。
题目3:分式乘法计算$\frac{2}{3} \times \frac{4}{5}$。
解答:将$\frac{2}{3}$和$\frac{4}{5}$的分子相乘,分母相乘,得到$\frac{8}{15}$。
题目4:分式除法计算$\frac{5}{8} \div \frac{2}{3}$。
解答:将$\frac{5}{8}$乘以$\frac{3}{2}$的倒数,即$\frac{5}{8} \times \frac{3}{2}$。
然后,进行分子相乘,分母相乘,得到$\frac{15}{16}$。
题目5:分式的整体倍数计算$2 \times \left(\frac{1}{3} + \frac{2}{5}\right)$。
解答:首先,我们需要将两个分式相加,得到$\frac{5}{15} +\frac{6}{15}$。
《分式的化简求值》强化训练题(一)40题含答案1
《分式的化简求值》强化训练题(一) 组卷人:班级:_________________ 姓名:_________________ 座号:________________1.计算:21()(1)x x x x++÷.2.计算:222242a a a a a a +⋅−−−.3.计算:2224214424x x x x x x x−+÷−−+−.4.化简:231(1)22a a a a a +−−+÷++.5.化简:212(1)11a a a a ++÷−−.6.先化简,再求值:()a b a b ab b a +÷−,其中3a =,2b =.7.先化简,再求值:2344(1)11x x x x x −+−−÷−−,其中3x =.8.先化简,再求值:22691(1)22a a a a a −+÷−−−,其中4a =.9.先化简,再求值.221(1)11a a a −÷+−,其中3a =−.10.先化简,再求值:2269(1)11a a a a +++÷++,从3−,1−,2中选择合适的a 的值 代入求值.11.先化简,再求值:2292(1)693m m m m −÷−−+−,其中2m =.12.先化简,再求值:211()122x x x x −+÷+−−,其中1x =−.13.先化简,再求值:224(1)244x x x x x −−÷−−+,其中4x =−.14.先化简,再求值:21(21)11a a a a a +÷−−−−,其中3a =.15.先化简,再求值:2212()ab b a b a b a b ÷+−+−,其中1a =,1b =−.16.先化简2121(1)1221a a a a a −−−÷+−−+,再从1,2,3中选一个适当的数代入求值.17.化简求值:222244(1)x x x x x x −−+−÷−,其中4x =.18.先化简:2242(2)244x x x x x x −++÷−−+,再从0、1、2、3中选择一个适合的数代入求值.19.先化简,再求值:22221124()11x x x x x x x−+−−÷−++,其中6x =.20.先化简,再求值:22111x x x x−−÷−,其中x =21.先化简,再求值:211a a a −+−,其中5a =.22.先化简,再求值:211(1)a a a−+÷,其中1a =.23.先化简,再求值:2121()x x x x x−+÷−其中1x =.24.先化简222244()4424x x x x x x x −−−÷−+−−,再从1−、2、4中选一个你喜欢的数作为x 的值 代入求值.25.先化简:2212(1)244a a a a a a +−−÷−−+,然后从0,2,2023中选择一个合适的数代入求值.26.求代数式222232x y x x y y x++−−的值,其中2x y =+.27.先化简,再求值:22211391x x x x x x x +÷−⋅−−+,其中2x =.28.先化简,再从1−,0,1x 值代入求值.211()111x x x x +÷+−−.29.先化简,再求值:229311()21112a a a a a a a −−÷−⋅−+−−+,其中2a =.30.先化简,再求值:35(2)242a a a a −÷+−−−,其中32a =−.31.先化简,再求值:2269(1)11a a a a −+−÷−−,从3−,1−,1,3中选择一个合适的a 的 值代入求值.32.先化简,再求值:324(2)244x x x x x ++÷−−+,其中x 是满足条件2x 的合适的 非负整数.33.先化简,再求值:2296()693x x x x x x −÷+−+−,其中x =34.先化简,再求值:22211()2111x x x x x x −+÷−+−−,其中x 是满足条件11x −的整数.35.先化简,再求值22344(1)1a a a a a a −++−÷−−,其中113a =−.36.先化简,再求值:2228224442a a a a a a a −÷−++−+,其中1a =.37.先化简,再求值:22424412x x x x x x x −+÷−−++−,其中2x =.38.先化简,再求值:21(1)11x x x ÷−−+,其中1x =.39.先化简,再求值:2121(1)m m m m −+−÷,其中1m =+.40.已知:22x M +=,42x N x =+. (1)当0x >时,判断M N −与0的关系,并说明理由;(2)设2216x y N M=+时,若x 是正整数,求y 的正整数值.《分式的化简求值》练习题(一)参考答案1.解:原式21x x x x x +=⨯+1(1)x x x x x +=⨯+1x =.2.解:原式(2)2(2)(2)2a a a a a a a +=⋅−+−−222a a a =−−−1=.3. 解:2224214424x x x x x x x −+÷−−+−2(2)(2)2(2)1(2)(2)x x x x x x x +−−=⋅−−+21x x =−1x =.4. 解:231(1)22a a a a a +−−+÷++(1)(2)32[]22(1)(1)a a a a a a a a −+++=+⋅+++− 22122(1)(1)a a a a a a +++=⋅++−11a a +=−.5. 解:212(1)11a a a a ++÷−−211112a a a a a ++−−=⋅−2(1)(1)12a a a a a +−=⋅−1a =+.6. 解:()a b a b ab b a+÷−22a b a b ab ab +−=÷()()a b ab ab a b a b +=⋅+−1a b =−,当3a =,2b =时,原式1132==−. 7. 解:原式223(1)11(2)x x x x −−−=⋅−−2(2)(2)11(2)x x x x x +−−=−⋅−−22x x +=−−, 当3x =时,原式3232+=−−5=−.8. 解:原式2(3)21()(2)22a a a a a a −−=÷−−−−2(3)3(2)2a a a a a −−=÷−−2(3)2(2)3a a a a a −−=⋅−−3a a −=, 当4a =时,原式43144−==. 9. 解:原式2111(1)(1)a a a a a +−=÷++−2(1)(1)1a a a a a +−=⨯+1a a−=, 当3a =−时,原式31433−−==−.10. 解:原式23(3)11a a a a ++=÷++2311(3)a a a a ++=⋅++13a =+, 由分式有意义的条件可知:a 不能取1−,3−,故2a =,原式123=+15=. 11. 解:2292(1)693m m m m −÷−−+−2(3)(3)32(3)3m m m m m +−−−=÷−−3335m m m m +−=⋅−−35m m +=−, 当2m =时,原式235253+==−−.12. 解:原式2411[](1)(2)(1)(2)2x x x x x x x x −+−=+÷+−+−− 331(1)(2)2x x x x x −−=÷+−−3(1)2(1)(2)1x x x x x −−=⨯+−−31x =+,当1x =时,原式==.13. 解:原式2(2)(2)2(2)(2)x x x x x x −−−=⋅−+−2222x x x −=⋅−+22x =+, 当4x =−时,原式242=−+1=−.14. 解:原式(1)(1)(21)11a a a a a a +−=⨯−−−+21a a =−+1a =−+, 当3a =时,原式312=−+=−.15. 解:2212()ab b a b a b a b ÷+−+−2()()ab a b b a b a b a b −+=÷−+−()()ab a b a b a b a b+−=⋅−+ab =,当1a =,1b =−时,原式1)=51=−4=.16. 解:原式222112(1)a a a a a −−=⋅+−−−221121a a a a −=⨯+−−−2111a a =+−−31a =−; 因为1a =,2时分式无意义,所以3a =, 当3a =时,原式32=.17. 解:222244(1)x x x x x x −−+−÷−222(2)(1)x x x x x x −−−=÷−22(1)(2)x x x x x −−=⋅−12x x −=−, 当4x =时,原式4142−=−32=.18. 解:原式2244(2)()22(2)x x x x x x −−=+⋅−−−222x x x x−=⋅−x =, (2)0x x −≠,0x ∴≠,2x ≠,当1x =时,原式1=,当3x =时,原式3=.19. 解:22221124()11x x x x x x x−+−−÷−++112(2)()11(1)x x x x x x −−=−÷+++2(1)12(2)x x x x x −+=⋅+−2x =, 当6x =时,原式62=3=.20. 解:22111x x x x −−÷−2(1)(1)11x x x x x +−=⋅−−11x x +=−1x x x +−=1x =,当x ===. 21. 解:原式2(1)11a a a a −+−=−2211a a a a −+−=−2211a a a −−=−(21)(1)1a a a +−=−21a =+, 当5a =时,原式10111=+=.22. 解:原式1(1)(1)a a a a a++−=÷1(1)(1)a a a a a +=⋅+−11a =−,当1a =时,原式2==.23. 解:原式2121x x x x −+−=÷(1)(1)1x x x x x +−=⋅+1x =−,当1x =时,原式11=+−=24. 解:222244()4424x x x x x x x −−−÷−+−−2(2)4(2)(2)[](2)24x x x x x x x −+−=−⋅−−− 4(2)(2)()224x x x x x x +−=−⋅−−−4(2)(2)24x x x x x −+−=⋅−−2x =+, 2x =−,2或4时,原分式无意义,1x ∴=−,当1x =−时,原式121=−+=.25. 解:2212(1)244a a a a a a +−−÷−−+212(2)()22(2)a a a a a a a +−−=−÷−−−21(2)(2)2(2)a a a a a a +−−−=⨯−−212(2)2(2)a a a a a a +−+−=⨯−−23(2)2(2)a a a a −=⨯−−3a =, 当0a =,2a =时,原式没有意义,∴当2023a =时,332023a =.26. 解:原式32()()()()x y x x y x y x y x y +=−+−+−2()()()x y x y x y +=+−2x y =−, 当2x y =+时,原式212y y ==+−.27. 解:原式21(1)(3)(3)31x x x x x x x x +=⋅+−−⋅−+31x =+−2x =+, 当2x =时,原式224=+=.28. 解:原式111(1)(1)x x x x x −+−=⋅+−11x =+, 又1x ≠−,0,1,x ∴可以取==29. 解:原式2(3)(3)111[](1)312a a a a a a a −+−=⋅−⋅−−−+311()112a a a a +=−⋅−−+ 2112a a a +=⋅−+11a =−, 当2a =时,原式1121==−.30. 解:35(2)242a a a a −÷+−−−3(2)(2)52(2)2a a a a a −+−−=÷−− 2392(2)2a a a a −−=÷−−322(2)(3)(3)a a a a a −−=⋅−+−12(3)a =+126a =+, 当32a =−时,原式11332()62==⨯−+.31. 解:原式23(3)11a a a a −−=÷−−2311(3)a a a a −−=⋅−−13a =−, 由分式有意义的条件可知:a 不能取1,3,故1a =−,原式11134==−−−.32. 解:原式23244()22(2)x x x x x −=+÷−−−223(2)2x x x x −=⋅−2x x−=, 0x ≠且20x −≠,0x ∴≠且2x ≠,1x ∴=,则原式1211−==−.33. 解:原式22(3)(3)36(3)3x x x x x x x −+−+=÷−−333(3)x x x x x +−=⋅−+1x=,当x ==. 34. 解:22211()2111x x x x x x −+÷−+−−22(1)(1)11[](1)1x x x x x x +−−=−⨯−− 2111()11x x x x x+−=−⨯−−211x x x x −=⨯−1x =; x 是满足条件11x −的整数,且0x ≠且1x ≠,1x ∴=−,∴原式1=−.35. 解:22344(1)1a a a a a a−++−÷−−2213(2)()11(1)a a a a a a −−=−÷−−− 2(2)(2)(1)1(2)a a a a a a +−−=⨯−−(2)2a a a +=−222a a a +=−, 当113a =−时,原式得2221144(1)2(1)()2()2433331421512233a a a −+⨯−−+⨯−+====−−−−−.36. 解:原式28(2)2(2)(2)(2)2a a a a a a a −=÷−++−+28(2)(2)2(2)(2)2a a a a a a a +−=⋅−+−+ 8222a a =−++62a =+.当1a =,原式6====.37. 解:22424412x x x x x x x −+÷−−++−2(2)(2)1(2)22x x x x x x x +−+=⨯−−+− 122x x x x +=−−−12x =−,当2x =+==38. 解:21(1)11x x x ÷−−+21111x x =÷−+1(1)(1)(1)x x x =⨯++−11x =−;当1x =时,原式==39. 解:原式21(1)m m m m −−=÷21(1)m m m m −=⋅−11m =−,1m时,原式3===.40. 解:(1)0M N −,理由如下:22x M +=,42x N x =+, M N ∴−2422x x x +=−+24482(2)x x x x ++−=+2(2)2(2)x x −=+, 0x >,20x ∴+>,2(2)0x −, ∴2(2)02(2)x x −+, 即0M N −;(2)2216x y N M =+ 22164()22()2x x x x =+++ 2226416(2)(2)x x x x =+++ 2216(4)(2)x x x +=+ 2216(2)64(2)x x +−=+ 26416(2)x =−+, x 是正整数,y ∴的正整数值为:当2x =时,12y =,当6x =时,15y =.综上所述,y 的正整数值为12或15.。
不等式分式练习
不等式与分式例1 2008年8月,北京奥运会帆船比赛将在青岛国际帆船中心举行.观看帆船比赛的船票分为两种:A种船票600元/张,B种船票120元/张.某旅行社要为一个旅行团代购部分船票,在购票费不超过5000元的情况下,购买A,B两种船票共15张,要求A种船票的数量不少于B 种船票数量的一半.若设购买A种船票x张,请你解答下列问题.(1)共有几种符合题意的购票方案?写出解答过程.(2)根据计算判断哪种购票方案更省钱.例2已知关于x的不等式组0,245x bx-≤⎧⎨-≥⎩的整数解共有3个,则b的取值范围是______.例3已知13xx+=,求2421xx x-+的值.1.下列各式与xy相等的是( )A.22xyB.22yx++C.2xyxD.2a ba+3.分式(1)(2)(2)(1)x xx x+---有意义的条件是()A.x≠2 B.x≠1 C.x≠1或x≠2 D.x≠1且x≠25.如果把分式x yx y+-中的x和y都扩大到原来的3倍,那么分式的值()A.11a+B.1 C.11a-D.-17.化简222a ba ab-+的结果为()A.ba-B.a ba-C.a ba+D.-b二、填空题9.若a2-6a+9与│b-1│互为相反数,则式子a bb a-÷(a+b)的值为_______________.11.某同学步行前往学校时的行进速度是6千米/时,从学校返回时行进速度为4千米/时,那么该同学往返学校的平均速度是____________千米/时.13.化简4xyx yx y⎛⎫+-⎪+⎝⎭·4xyx yx y⎛⎫-+⎪-⎝⎭=___________.15.当x =___________时,11x -有意义. 17.已知方程23233x x =---有增根,则增根一定是__________. 19.化简2x xy x +÷22xy y xy+的结果是__________. 三、解答题20.化简3x y x y -+÷2222269x y y x xy y x y--+++.22.解下列方程. (1) 222(1)130x x x x+++-=;(3)1233x x x =+--;23.若25452310A B x x x x x -+=-+--,求A ,B 的值.25.桂林市城区百条小巷改造工程启动后,甲、乙两个工程队通过公开招标获得某小巷改造工程.已知甲队完成这项工程的时间是乙队单独完成这项工程时间的54倍,由于乙队还有其他任务,先由甲队独做55天后,再由甲、乙两队合做20天,完成了该项改造工程任务.(2)请根据题意及上表中的信息列出方程,并求甲、乙两队单独完成这条小巷改造工程任务各需多少天;(3)这项改造工程共投资200万元,如果按完成的工程量付款,那么甲、乙两队可获工程款各多少万元?一、选择题2.已知关于x 的不等式(1-a )x >2的解集为21x a<-,则a 的取值范围是( ) A .a >0B .a >1C .a <0D .a <14.若三个连续的自然数的和不大于12,则符合条件的自然数有( )A .1组B .2组C .3组D .4组6.函数y =x 的取值范围是( )A .x >-2B .x ≥-2C .x ≠-2D .x ≤-28.如果a<b <0,那么下列不等式中错误的是( )A .ab >0B .a+b <0C .a b<0 D .a -b<010.若不等式组0,122x a x x +≥⎧⎨->-⎩有解,则a 的取值范围是( ) A .x >-1B .a ≥-1C .a ≤1D .a <1二、填空题12.当a<5时,不等式51ax x a ≥++的解集是________.14.如果一元一次不等式组3,x x a>⎧⎨>⎩的解集为x >3,那么a 的取值范围是______.16.若代数式212x--的值不小于133x+的值,则x的取值范围是________.18.若关于x的不等式组41,32x xx a+⎧>+⎪⎨⎪+<⎩的解集为x<2,则a的取值范围是_________.三、解答题20.解下列不等式(组).(1)382(10)127x xx---+≥;((3)111,232(3)3(2)0;x xx x⎧->-⎪⎨⎪---<⎩21.已知方程组7,13x y ax y a+=--⎧⎨-=+⎩的解x为非正数,y为负数,求a的取值范围.23.若干名学生合影留念,照相费为2.85元(含两张照片).若想另外加洗一张照片,则又需收费0.48元,预定每人平均交钱不超过1元,并都能分到一张照片,则参加照相的至少有几名学生?买方式?25.据统计,2008年底义乌市共有耕地267000亩,户籍人口724000人,2004年底至2008年底户籍人口平均每两年约增加2%,假设今后几年继续保持这样的增长速度.(本题计算结果精确到个位)(1)预计2012年底义乌市户籍人口约是多少人;(2)为确保2012年底义乌市人均耕地面积不低于现有水平,预计2008年底至2012年底平均每年耕地总面积至少应该增加多少亩.。
中考数学专题训练第6讲分式1(解析版)
分式题型一 分式的概念1.(2021·浙江平阳·九年级期中)已知要使分式32x x +-有意义.则x 的取值应满足( )A .2x ≠B .3x ≠-C .3x =-D .2x =【答案】A 【分析】要使分式32x x +-有意义.则20x -≠.所以2x ≠.故选:A . 2.(2021·内蒙古·包头市第四十八中学九年级月考)下面是某同学在一次数学测验中解答的填空题.其中答对的是( ) A .若x 2=4.则x =2 B .若分式2232x x x --+的值为零.则x =2C .x 2+x ﹣k =0的一个根是1.则k =2D .若3x 2=6x .则x =2 【答案】C【分析】解:A 、x 2=4.则2x =±.选项错误.不符合题意;B 、分式2232x x x --+的值为零.则220320x x x -=⎧⎨-+≠⎩.21,2x x x =⎧⎨≠≠⎩.无解.选项错误.不符合题意;C 、x 2+x ﹣k =0的一个根是1.则110k +-=.解得2k =.选项正确.符合题意;D 、3x 2=6x .解得0x =或2x =.选项错误.不符合题意;故选C3.(2021·陕西·西安高新一中实验中学九年级开学考试)如果分式||11x x -+的值为0.那么x 的值为( ) A .0 B .1 C .1- D .±1【答案】B 【分析】分式||11x x -+的值为0.10x ∴-=.1x =.解得1x =±.又10x +≠.1x ∴≠-.1x ∴=.故选:B . 4.若代数式(2)(1)||1x x x ---的值为零.则x 的取值是( )A .2x =或1x =B .2x =且1x =C .2x =D .1x =-【答案】C【分析】(2)(1)0x x --=且||1x ≠.解得x =2或x =1.且x ≠±1∴2x =.故选C .5.(2021·广西百色·中考真题)当x =﹣2时.分式2232796x x x -++的值是( )A .﹣15B .﹣3C .3D .15【答案】A【分析】解:2232796x x x -++()()22393x x -=+()()()23333x x x +-+=()333x x -=+ 把2x =-代入上式中.原式()3231523--==--+.故选A.6.(2021·四川省隆昌市第一中学九年级月考)3311a a a a --=++ )A .1a ≠-B .3a ≥-且1a ≠C .1a >-D .3a ≥【答案】D【分析】解:根据题意得.30-≥a .10a +> ∴3a ≥.1a >- ∴3a ≥.故选D . 7.(2021·云南昭通·二模)1x-.则实数x 的取值范围是( ) A .1x ≤ B .1x ≤且0x ≠ C .1x <且0x ≠ D .1x <【答案】D【分析】由题意可得:10x -≥10x -≠.解得:1x <.故选:D 8.(2021·浙江瓯海·三模)若a b=12.则a bb+的值是( ) A .3 B .23C .32D .2【答案】C【分析】解:∵ab=12.∴2b a =.将2b a =代入a bb +中.得2322a a a +=.故选:C . 9.(2021·浙江浙江·九年级期末)下列分式一定有意义的是( )A .11x -B .1xC .211x - D .211x + 【答案】D【分析】∵当x =1时.|1-x |=0,∴A 不符合题意;∵当x =0时.分母为0.∴B 不符合题意;∵当x =1或-1时.21x -=0,∴C 不符合题意;∵220+110x x ≥,≥≠.∴D 符合题意;故选D 10.(2021·广东·执信中学模拟预测)不论x 取何值.下列代数式的值不可能为0的是( )A .1x +B .21x -C .11x + D .()21x +【答案】C【分析】解:A 、当x =-1时.x +1=0.故不合题意;B 、当x =±1时.x 2-1=0.故不合题意;C 、分子是1.而1≠0.则11x +≠0.故符合题意;D 、当x =-1时.()210x +=.故不合题意;故选C .题型二 分式的性质、约分、通分11.(2021·贵州·贵阳市第十九中学九年级月考)若把x .y 的值同时缩小x 为原来的13倍.则下列分式的值保持不变的是( )A .xy x y+B .22y x ++C .()22x y x + D .222xy x - 【答案】C【分析】A.1111333==11333x y xyxy x y x y x y ⨯⨯+++.选项说法错误.不符合题意;B. 61263=3616233y y x x y x +++=+++.选项说法错误.不符合题意;C. 22222222111()()()33311()()33x y x y x y x x x ⎛⎫++ ⎪+⎝⎭==.选项说法正确.符合题意;D. 22222213112261())(33()3xx x y x y x y x ⨯==---⨯.选项说法错误.不符合题意.故选C12.(2021·重庆一中九年级开学考试)把代数式3xyx y+中的x 、y 同时扩大五倍后.代数式的值( ) A .扩大为原来的3倍 B .不变 C .缩小为原来的15D .扩大为原来的5倍【答案】D 【分析】解:3xyx y+中的x 、y 都扩大为原来的5倍.得3557515555()x y xy xy x y x y x y ⨯⋅==+++.故选:D . 13.分式11x--可变形为( ). A .11x -- B .11x+ C .11x -+ D .11x -【答案】D 【分析】解:1111=1(1)11x x x x -==----+-.故选项A 、B 、C 均不符合题意.选项D 符合题意.故选:D .14.(2021·河北张家口·一模)下列各式从左到右的变形中.不正确的是( ) A .2233a a-=- B .66b ba a-=- C .3344a ab b=- D .8833a ab b--=-- 【答案】C 【分析】解:A 、2233a a-=-.符号改变了两处.改变了分子与分式的符号.分式的值不变.正确.故选项A 不符合题意;B 、66b ba a-=-.符号改变了两处.改变了分子与分母的符号.分式的值不变.正确.故选项B 不符合题意;C 、3344a ab b=-.符号改变了一处.改变了分母的符号.分式的值发生改变.不正确.故选项C 符合题意; D 、8833--=a ab b. 符号改变了两处.改变了分子与分式的符号.分式的值不变.正确.故选项D 不符合题意;故选:C . 15.下列各式中.正确的有( )①263333()22=b b a a ;②222224()=++x x x y x y ;③a b a b a b a b -++=---;④1x y x y -+=--;⑤0x y x y +=+;⑥2222()()()()---+=+-x y x y x y x y .A .1个B .2个C .3个D .4个【答案】B【分析】①2633327()28b b a a =.故不符合题意;②222224()2x x x y x xy y =+++.故不符合题意;③a b a ba b a b-+-=--+.故不符合题意;④1x y x y -+=--.故符合题意;⑤1x y x y +=+.故不符合题意;⑥2222()()()()---+=+-x y x y x y x y .故符合题意;所以正确的有2个.故选:B .16.下列分式中属于最简分式的是( ) A .42xB .11xx -- C .211x x -- D .221xx + 【答案】D 【分析】解:A 、42=2x x.不是最简分式.故此选项不符合题意;B 、111x x -=--.不是最简分式.故此选项不符合题意;C 、211x x --=11(1)(1)1x x x x -=+-+.不是最简分式.故此选项不符合题意;D 、221xx +是最简分式.故此选项符合题意.故选:D . 17.(2021·河北唐山·一模)若221()3m n m n m n -=≠-.则m n +=( ) A .3 B .-3 C .13D .13-【答案】C【分析】∵()()22,m n m n m n m n m n m n +--=≠--.∴2213m n m n m n -=+=-.故选:C . 18.(2021·江苏·苏州市南环实验中学校二模)分式222()a b a b --化简为最简分式的结果为( ) A .a b + B .-a b C .a ba b+- D .a ba b-+ 【答案】C【分析】解:222()a b a b --=2()()()a b a b a b +--=a ba b+-.故选C .19.(2021·广东·广州市第十六中学二模)分式3x y xy +.232yx .26xy xy 的最简分母是( ) A .3x B .xC .26xD .226x y【答案】D 【分析】解:3x y xy +.232y x .26xy xy的分母分别是3xy 、22x 、26xy .故最简公分母为226x y .故选:D .20.(2021·河北唐山·一模)要把分式232a b 与2a bab c-通分.分式的最简公分母是( ) A .222a b c B .332a b C .332a b c D .336a b c【答案】A【分析】解:根据最简公分母是各分母的最小公倍数.∵系数2与1的公倍数是2.2a 与a 的最高次幂是2a .b 与2b 的最高次幂是2b .对于只在一个单项式中出现的字母c 直接作公分母中的因式.∴公分母为:222a b c .故选择:A .21.能使分式2321020224x x x x ---+-的值为正整数的所有x 的值的和为( ) A .10 B .0 C .8- D .10-【答案】D【分析】∵20x ≥.∴220x +>.()()()22322102102010224222x x x x x x x x -+---==-+---+.若分式的值为正整数.则210x -=-.1-.2-.5-.所以8x =-.1.0.3-.所以()810310-+++-=-.故选D. 22.关于分式的约分或通分.下列哪个说法正确( ) A .211x x +-约分的结果是1x B .分式211x -与11x -的最简公分母是x ﹣1 C .22xx约分的结果是1D .化简221x x -﹣211x -的结果是1【答案】D 【分析】解:A 、211x x +-=11x - .故本选项错误;B 、分式211x -与11x -的最简公分母是x 2﹣1.故本选项错误;C 、22x x =2x .故本选项错误;D 、221x x -﹣211x -=1.故本选项正确;故选D .题型三 分式的运算23.(2021·四川蓬安·九年级月考)卵细胞是人体中最大的细胞.直径约为0.0002米.直径用科学记数法表示为( )米. A .0.2×10﹣3 B .0.2×10﹣4 C .2×10﹣4 D .2×10﹣3【答案】C【分析】解:直径约为0.0002米.用科学记数法表示为2×10﹣4米.故选:C . 24.(2021·河南·郑州外国语中学九年级开学考试)化简22111a a a+--的结果正确的是( ) A .2311a a +- B .2311a a -- C .11a + D .11a - 【答案】C 【分析】221212(1)111(1)(1)1(1)(1)1a a a a a a a a a a a a -++=-==--+--+-+;故选:C . 25.(2021·北京市陈经纶中学分校九年级月考)如果a ﹣b =3那么代数式(222a b a+﹣b )•aa b-的值为( ) A 3B .3C .3 D .3【答案】A【分析】解:原式222()22a b ab aa a ab +=-⋅-2()2a b a a a b-=⋅-2a b -=. 当23a b -=.原式233==故选:A . 26.(2021·湖北·老河口市教学研究室九年级月考)化简2b a ba a a ⎛⎫+-÷ ⎪⎝⎭的结果是( )A .-a bB .a b +C .1a b- D .1a b+ 【答案】A【分析】解:2b a b a a a ⎛⎫+-÷ ⎪⎝⎭=22a b aa ab -⨯+ =()()a b a b a a a b +-⨯+ =-a b .故选:A .27.(2021·山东乳山·模拟预测)如果2320a a +-=.那么代数式2231933a a a a ⎛⎫+÷ ⎪-+-⎝⎭的值为( ) A .1 B .12C .13D .14【答案】B【分析】解:2231933a a a a ⎛⎫+÷⎪-+-⎝⎭=2333(3)(3)(3)(3)a a a a a a a ⎡⎤--+⋅⎢⎥+-+-⎣⎦.23(3)(3)a a a a a -=⋅+-213a a =+ 由a 2+3a ﹣2=0.得到a 2+3a =2.则原式=12.故选B . 28.已知实数a .b 满足1a b ⋅=.那么221111a b +++的值为( ) A .14B .12C .1D .2【答案】C【分析】解:∵•1a b =.∴()2221a b ab ==.∴22222222112111a b a b a b b a +++=+++++2222211a b b a ++=+++1=.故选:C . 29.(2021·重庆市天星桥中学九年级开学考试)化简2111a a a +--的结果为( )A .211a a +-B .211a a+-C .1a +D .1a -【答案】C【分析】解:原式=2111a a a ---=211a a --=()()111a a a +--=1a +.故选C . 30.(2021·河北桥东·二模)当2ab =-时.计算2b a ba a a ⎛⎫--÷ ⎪⎝⎭的值为( )A .2B .2-C .12D .12-【答案】A【分析】2b a b a a a ⎛⎫--÷⎪⎝⎭22a b a b a a --=÷()()a b a b aa ab -+=⋅-a b =+.把2a b =-代入得22a b b b +=-+=故选A .31.(2021·河南·二模)下列各式计算正确的是( ) A 42±B .11011a a+=+- C .2333122x y x x y ⎛⎫÷= ⎪⎝⎭D .22()()a b b a b a +-=-【答案】D【分析】42=.故该选项计算错误.不符合题意.B.21111211(1)(1)1a a a a a a a -+++==+-+--.故该选项计算错误.不符合题意.C.233122x y x xy ⎛⎫÷= ⎪⎝⎭.故该选项计算错误.不符合题意.D.22()()a b b a b a +-=-.故该选项计算正确.符合题意.故选:D . 32.(2021·山东诸城·二模)下列计算正确的是( ) A .1a ba b-+=-- B .5333= C .23193x x x -=-- D .1122a a-=【答案】A 【分析】A.()1a b a b a b a b-+--==---.符合题意;B. 532333不符合题意;C. 23193x x x -=-+.不符合题意;D.1122a a -=.不符合题意.故选A . 33.(2021·广东高要·二模)下列运算错误的是( ) A .224a a a += B .34a a a ÷= C .1a bb a-=-- D .123ccc+=【答案】A【分析】A 、2222a a a +=.原式计算错误.符合题意;B 、34a a a ÷=.正确.不合题意;C 、1a b b a -=--.正确.不合题意;D 、123c c c+=.正确.不合题意;故选:A .34.(2021·黑龙江大庆·中考真题)已知0b a >>.则分式a b 与11a b ++的大小关系是( )A .11a ab b +<+B .11a ab b +=+ C .11a ab b +>+ D .不能确定【答案】A 【分析】解:()()()()111111a b b a a a a bb b b b b b +-++--==+++.∵0b a >>.∴()1011a a a b b b b b +--=<++.∴11a ab b +<+.故选:A .题型四 分式方程的概念与解法35.下列关于x 的方程.其中不是分式方程的是( ) A .1a ba xa++=B .11b a a x b x-=+ C .1x a x a b+-= D .1x n x mx m x n-++=+- 【答案】C【分析】分式方程是分母含有未知数的等式.A 、1a ba xa++=分母含未知数.是分式方程.不符合题意;B 、11b a ax b x -=+分母含未知数.是分式方程.不符合题意;C 、1x a x a b+-=分母不含未知数.不是分式方程.符合题意;D 、1x n x mx m x n-++=+-分母含未知数.是分式方程.不符合题意;故选:C . 36.下列结论正确的是( ) A .153y y+=是分式方程 B .方程221624x x x --+-=1无解 C .方程223x xx x x x=++的根为x =0 D .解分式方程时.一定会出现增根【答案】B【分析】解:A .原方程中分母不含未知数.不是分式方程.所以A 选项不符合题意;B .解方程.得x =﹣2.经检验x =﹣2是原方程的增根.所以原方程无解.所以B 选项符合题意;C .解方程.得x =0.经检验x =0是原方程的增根.所以原方程无解.所以C 选项不符合题意;D .解分式方程时.不一定会出现增根.只有使分式方程分母的值为0的根是增根.所以D 选项不符合题意.故选:B .37.(2021·黑龙江·哈尔滨市萧红中学九年级期中)方程5113x x =-+的解是( ) A .2x =- B .2x =C .4x =-D .4x =【答案】C【分析】解:去分母得:5(x +3)=x -1. 去括号得:5x +15=x -1. 解得:x =-4.检验:把x =-4代入得:(x -1)(x +3)≠0. ∴分式方程的解为x =-4.故选:C .38.(2021·重庆八中九年级月考)若关于x 的一元一次不等式组()31212x x x a ⎧-<+⎨≤+⎩的解集为4x <.且关于y 的分式方程2422y a ay y++=--的解是非负整数解.则所有满足条件的整数a 的值之和是( )A .5B .7C .13D .15【答案】C【分析】解不等式()3121x x -<+得.4x <.2x a ≤+不等式组的解集为:4x < 24a ∴+≥2a ∴≥解分式方程2422y a ay y++=--得 2422y a ay y +-=-- 24(2)y a a y ∴+-=-整理得8=3ay -. 20,y -≠ 则82,3a-≠ 2,a ∴≠分式方程的解是非负整数解.803a-∴≥ 8a ∴≤.且8a -是3的倍数. 28a ∴<≤.且8a -是3的倍数.∴整数a 的值为58,5813∴+=.故选:C .39.(2021·重庆实验外国语学校九年级月考)关于x的分式方程114211a xx x---=++有整数解.且关于y的不等式组116232(1)5y yy a-⎧->-⎪⎨⎪-≤-⎩有解.则所有满足条件的正整数a的和是()A.6 B.12 C.14 D.20 【答案】A【分析】解:∵11 623 2(1)5y yy a-⎧->-⎪⎨⎪-≤-⎩∴y<52.y≥32a-∵关于y的不等式组116232(1)5y yy a-⎧->-⎪⎨⎪-≤-⎩有解∴不等式组的解集为32a-≤y<52.∴32a-<52.即a-3<5.可得a<8由114211a xx x---=++有整数解,可得:x=22a-,即a为偶数∵x≠-1∴x≠6∵正整数a∴a=2或a=4∴4+2=6.故选A.40.(2021·重庆一中九年级期中)若关于x的不等式组4213222()x xx x a+-⎧-≥⎪⎨⎪+≤-⎩有解.且关于y的分式方程1211y a yy y--+--=﹣3的解为非负数.则所有满足条件的整数a的值之积是()A.﹣6 B.0 C.4 D.12 【答案】D【分析】解:不等式组整理得:822xx a≤⎧⎨≥+⎩.∵关于x的不等式组4213222()x xx x a+-⎧-≥⎪⎨⎪+≤-⎩有解.∴2a+2≤8.即a≤3.解分式方程1211y a yy y--+--=﹣3得y=22a+.∵关于y 的分式方程1211y a yy y--+--=﹣3的解为非负数. ∴22a +≥0.且22a +≠1. 解得.a ≥﹣2.且a ≠0. ∴﹣2≤a ≤3.且a ≠0. ∵a 为整数.∴a =﹣2或﹣1或1或2或3.∴满足条件的所有整数a 的值之积:(﹣2)×(﹣1)×1×2×3=12.故选:D . 41.(2021·重庆实验外国语学校九年级月考)若关于x 的一元一次不等式组3214x x x a+⎧>-⎪⎨⎪≤⎩的解集为x a ≤.且关于y 的分式方程52122y a yy y--+=--有正整数解.则所有满足条件的整数a 的个数为( ) A .2 B .3 C .4 D .5【答案】B【分析】解:3214x x x a +⎧>-⎪⎨⎪≤⎩①②. 解不等式①.得:x <6. 解不等式②.得:x ≤a . ∵该不等式解集为x ≤a . ∴a <6; 由52122y a yy y--+=-- 分式方程去分母.得:y -a -(5-2y )=y -2. 解得:y =32a +. ∵分式方程有正整数解.且y ≠2.∴满足条件的整数a 可以取5;3;-1;共3个;故选:B . 42.(2021·重庆·西南大学附中九年级月考)已知关于x 的分式方程()()232626mx x x x x +=--+-无解.且关于y 不等式组()4434m y y y ->⎧⎨-≤+⎩有且只有三个偶数解.则符合条件的整数m 有( )个A .0B .1C .2D .3【答案】B【分析】解:分式方程无解的情况有两种.分式方程去分母得:(2)2(2)(6)3(2)(2)mx x x x x x ++--=+-.整理得:2(1)2(8)360m x m x -+-+=.情况一:整式方程无解时.即()()24843610m m ∆=--⨯-<且10m -≠时.方程无解. ∴2521000m m -+<. 解得250m <<.即当250m <<时方程无解;情况二:当整式方程有解.是分式方程的增根.即2x =.或6x =.或2x =-. ①当2x =时.4(1)4(8)360m m -+-+=.解得0m =. ②当6x =时.36(1)12(8)360m m -+-+=.解得2m =. ③当2x =-时.4(1)4(8)360m m ---+=.此方程无解. 综合两种情况得.当0m =或250m <≤时.分式方程无解.解不等式得48y m y <-⎧⎨≥-⎩. 根据题意得不等式的解集为84y m -<-. ∵不等式组有且只有三个偶数解为8-.6-.4-. ∴442m -<--≤. ∴02m <≤.综上所述当2m =时符合题目中所有要求.故选:B .43.(2021·四川省成都市七中育才学校九年级月考)若关于x 的分式方程211x kx x-=--有增根.则k 的值为( ) A .1 B .0 C .﹣2 D .﹣1【答案】D【分析】解:去分母得: ()21--=-x x k .∴22x x k -+=-.∴2x k =+∵分式方程有增根.10x -=.解得x =1.即210k +-=解得:k =﹣1.故选D .44.(2021·重庆酉阳·九年级期末)在321012-,-,-,,,这六个数中.随机取出一个数记为a .那么使得关于x 的一元二次方程2420x x a --=有解.且使得关于x 的方程1311x a x x+-=--有整数解的所有a 的值之和为( ) A .2B .1C .0D .1-【答案】A【分析】解:要使得关于x 的一元二次方程2420x x a --=有解.则Δ≥16-4×(-2a )≥0.解得a ≥-2,∴a 的可能值为-2.-1、0、1、2.解1311x a x x+-=--可得.22a x=+.1,x ≠ 21,2a∴+≠2,a ∴≠- 使得方程有整数解满足条件的a 的值为0、2.综上所述满足条件的a 的值为0、2.0+2=2.故选:A .45.(2021·广东·深圳市罗湖区翠园初级中学九年级开学考试)关于x 的分式方程311x mx x -=--有增根.则m 的值是( ) A .﹣2 B .3 C .﹣3 D .2【答案】A【分析】解:去分母.得:x -3=m .由分式方程有增根.得到x -1=0.即x =1.把x =1代入整式方程.可得:m =-2.故选:A .46.(2021·黑龙江佳木斯·三模)已知关于x 的分式方程3102112kx x x-+=--有解.则k 的取值范围为( ) A .2k ≠- B .6k ≠- C .2k ≠-且6k ≠- D .2k <-且6k ≠-【答案】C 【分析】解:3102112kx x x-+=--. 去分母得.3210kx x ++-=. 解得.22x k -=+. ∵关于x 的分式方程3102112kx x x-+=--有解. ∴2122k -≠+且20k +≠. 解得.2k ≠-且6k ≠-.故选:C .题型五 分式方程的应用47.(2021·湖南·长沙市开福区青竹湖湘一外国语学校九年级期中)高铁为居民出行提供了便利.从铁路沿线相距360km 的甲地到乙地.乘坐高铁列车比乘坐普通列车少用3h .已知高铁列车的平均速度是普通列车平均速度的3倍.设普通列车的平均速度为x km/h.依题意.下面所列方程正确的是( )A.36036033x x-=B.36036033x x-=C.360360313x x-=D.360360313xx-=【答案】A【分析】根据题意可得:列车的平均速度为x km/h.则高铁列车的平均速度为3x km/h.高铁列车所用的时间为:3603x.普通列车的时间为:360x.所列方程为:36036033x x-=.故选:A.48.(2021·陕西·交大附中分校模拟预测)某修路队计划x天内铺设铁路120km.由于采用新技术.每天多铺设铁路3km.因此提前2天完成计划.根据题意.可列方程为()A.12012032x x=+-B.12012032x x=+-C.12012032x x=++D.12012032x x=++【答案】B【分析】解:原计划每天修建道路120xm.则实际用了(x﹣2)天.每天修建道路为1202x-m.根据采用新技术.每天多铺设铁路3km得.12012032x x=+-.故选:B.49.(2021·辽宁·沈阳市第四十三中学九年级月考)随着快递业务的增加.某快递公司为快递员更换了快捷的交通工具.公司投递快件的能力由每周6000件提高到8400件.平均每人每周比原来多投递80件.若快递公司的快递人数不变.求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x件.根据题意可列方程为()A.6000x=840080x+B.6000x+80=8400xC.8400x=6000x﹣80 D.6000x=840080x-【答案】A【分析】解:设原来平均每人每周投递快件x件.则更换交通工具后平均每人每周投递快件(x+80)件.依题意得:6000x=840080x+.故选:A.50.(2021·福建省厦门第六中学三模)某次列车平均提速v km/h.用相同的时间.列车提速前行驶s km.提速后比提速前多行驶50km.则方程50s svx x++=所表达的等量关系是()A.提速前列车行驶s km与提速后行驶(s+50)km的时间相等B .提速后列车每小时比提速前列车每小时多开v kmC .提速后列车行驶(s +50)km 的时间比提速前列车行驶s km 多v hD .提速后列车用相同的时间可以比提速前多开50km 【答案】B【分析】解:∵用相同的时间.列车提速前行驶s km.提速后比提速前多行驶50km .∴s +50表示列车提速后同样的时间内行驶的路程.∵某次列车平均提速v km/h.路程=速度×时间.∴方程50s s v xx++=表达的含义提速后列车每小时比提速前列车每小时多开v km.故选B.51.(2021·山东淄博·中考真题)甲、乙两人沿着总长度为10km 的“健身步道”健步走.甲的速度是乙的1.2倍.甲比乙提前12分钟走完全程.设乙的速度为km/h x .则下列方程中正确的是( ) A .1010121.2x x-= B .10100.21.2x x-= C .1010121.2x x-= D .10100.21.2x x-= 【答案】D【分析】解:由题意得:10100.21.2x x-=;故选D . 52.(2021·重庆市育才中学九年级月考)每年中秋节.某商家生产的甲、乙、丙三种月饼礼盒一直深受消费者喜爱.今年中秋节.该商家继续售卖甲、乙、丙三种月饼礼盒.已知去年该商家售卖甲、乙、丙三种月饼礼盒的营业额之比为4:9:7.今年.由于商家加大了促销宣传力度.预计三种月饼礼盒的营业额都会增加.其中甲种礼盒增加的营业额占总增加的营业额的815.此时.甲种月饼礼盒的营业额与今年三种月饼礼盒总营业额之比为4:15.为使今年乙、丙两种月饼礼盒的营业额之比为6:5.则今年乙种月饼礼盒增加的营业额与今年总营业额之比为______. 【答案】1:25【分析】解:∵甲种月饼礼盒的营业额与今年三种月饼礼盒总营业额之比为4:15.且乙、丙两种月饼礼盒的营业额之比为6:5.∴今年甲、乙、丙三种月饼礼盒的营业额之比为4∶6∶5.设今年甲、乙、丙三种月饼礼盒的营业额分别为4a .6a .5a .则今年总营业额为15a .∵去年该商家售卖甲、乙、丙三种月饼礼盒的营业额之比为4:9:7.∴设去年甲、乙、丙三种月饼礼盒的营业额分别为4b .9b .7b .则去年总营业额为20b .∴今年甲、乙、丙三种月饼礼盒的营业额分别增加了44a b -.69a b -.57a b -.总营业额增加了1520a b -.∵甲种礼盒增加的营业额占总增加的营业额的815.∴448152015a b a b -=-.解得:0.6b a =.经检验:b=0.6a 符合题意.∴今年乙种月饼礼盒增加的营业额与今年总营业额之比为69690.66 5.4115151525a b a a a a a a a --⨯-===.故答案为:1∶25. 53.(2021·重庆实验外国语学校九年级开学考试)重庆某笔记本电脑公司每年都会组织员工出国学习旅行.今年有A 、B 、C 、D 四个国家可供员工们选择(每名员工只能选择一个国家旅行).但要求选择A 、C 两个国家的人数相同.选择B 、D 两个国家的人数也相同.选择A 、B 两国的人数总和为100人.A 、D 两国的费用单价相等.B 、C 两个国的费用单价也相等.A 、B 两国的费用单价之和不超过8万元.且选择A 、B 两个国家的员工总费用比选择C 、D 两个国家员工总费用多20万元.则选择A 、B 两个国家员工总费用的最大值为__万元. 【答案】410【分析】解:设有x 人选择A .A 单价为1y 万元.B 单价为2y 万元.依题意可知.B 有(100)x -人.即100x <.128y y +①.1221(100)[(100)]20xy x y xy x y +--+-=.即121050y y x -=-.100x .5050x ∴-.101505x -. 即1215y y -②.①+②得24125y .解得24110y .代入①中.13910y .代入②中.13910y .13910y ∴=.24110y ∴=.A ∴、B 两个国家员工总费用为12(100)xy x y +-.B 单价A >单价.0x ∴=时总费用最大.最大值为410(1000)41010+-⨯=(万元).故选择A 、B 两个国家员工总费用的最大值为410万元.故答案为:410.54.(2021·四川省宜宾市第二中学校三模)某服装厂准备加工400套运动装.在加工完160套后.采用了新技术.使得工作效率比原计划提高了20%.结果共用了18天完成任务.问计划每天加工服装多少套?在这个问题中.设计划每天加工x 套.则根据题意可得方程为__________________.【答案】160x +()400160120%x -+=18【分析】根据题意.采用新技术前所用时间为:160x天.采用新技术后所用时间为:()400160120%x -+天.∴所列方程为:160x +()400160120%x -+=18.故答案为:160x +()400160120%x -+=18.55.(2021·辽宁鞍山·中考真题)习近平总书记指出.中华优秀传统文化是中华民族的“根”和“魂”.为了大力弘扬中华优秀传统文化.某校决定开展名著阅读活动.用3600元购买“四大名著”若干套后.发现这批图书满足不了学生的阅读需求.图书管理员在购买第二批时正赶上图书城八折销售该套书.于是用2400元购买的套数只比第一批少4套.设第一批购买的“四大名著”每套的价格为x 元.则符合题意的方程是___________________. 【答案】3600240040.8x x-= 【分析】解:设第一批购买的“四大名著”每套的价格为x 元.则设第二批购买的“四大名著”每套的价格为0.8x 元.依题意得:3600240040.8x x -=.故答案为:3600240040.8x x-=. 56.(2021·吉林省第二实验学校九年级月考)2021年4月8日世界园艺博览会在扬州拉开了帷幕.世园会以“绿色城市.健康生活”为主题.吸引了大批游客游览.世园会成人一日票分为平日票和指定日票.其中平日票比指定日票便宜30元/张.某一售票点在5月份售出平日票4万元.指定日票2.6万元.且售出的平日票数量是指定日票的2倍.这一售票点在5月份售出的平日票和指定日票各多少张?【答案】这一售票点在5月份售出的平日票和指定日票各400张.200张.【分析】解:设这一售票点在5月份售出的指定日票为x 张.则平日票为2x 张.由题意得:2600040000302x x-=. 解得:200x =.经检验200x =是原方程的解.∴2400x =.答:这一售票点在5月份售出的平日票和指定日票各400张.200张.57.某公司生产开发了960件新产品.需要经过加工后才能投放市场.现在有A .B 两个工厂都想参加加工这批产品.已知A 工厂单独加工这批产品比B 工厂单独加工这批产品要多用20天.而B 工厂每天比A 工厂多加工8件产品.公司需要支付给A 工厂每天80元的加工费.B 工厂每天120元的加工费.(1)A .B 两个工厂每天各能加工多少件新产品?(2)公司制定产品方案如下:可以由每个厂家单独完成;也可以由两个厂家同时合作完成.在加工过程中.公司需要派一名工程师每天到厂进行技术指导.并负担每天5元的午餐补助费.请帮助公司选择哪家工厂加工比较省钱.并说明理由.【答案】(1)A 每天加工16件.B 每天加工24件;(2)两个工厂合作完成.理由见解析 【分析】解:(1)设A 每天加工x 件产品.则B 每天加工x +8件产品.由题意得960960208x x -=+.解得x =16件.答:A 每天加工16件产品.则B 每天加工24件产品; (2)A 单独加工完成需要960÷16=60天.费用为:60×(80+5)=5100元.B 单独加工完成需要960÷24=40天.费用为:40×(120+5)=5000元;A 、B 合作完成需要960÷(16+24)=24天.费用为:24×(120+80+5)=4920元.所以既省时又省钱的加工方案是A 、B 合作.58.(2021·黑龙江·哈尔滨市虹桥初级中学校九年级月考)某单位在疫情期间用6000元购进A 、B 两种口罩1100包.购买A 种口罩与购买B 种口罩的费用相同.且一包A 种口罩的单价是一包B 种口罩单价的1.2倍. (1)求A .B 两种口罩一包的单价各是多少元?(2)若计划用不超过11000元的资金再次购进A 、B 两种口罩共2000包.已知A 、B 两种口罩的进价不变.求A 种口罩最多能购进多少包?【答案】(1)A 种口罩一包的单价为6元.B 种口罩一包的单价为5元(2)A 种口罩最多能购进1000包【分析】(1) 设B 种口罩一包的单价为x 元.则A 种口罩一包的单价为1.2x 元.根据题意.得:3000300011001.2x x+=.解得:x = 5.经检验.x = 5是原方程的解.且符合题意.则1.2 x = 6.答:A 种口罩一包的单价为6元.B 种口罩一包的单价为5元;(2)设购进A 种口罩m 包.则购进B 种口罩(2000-m )包. 依题意.得:6m +5 (2000 - m )≤ 11000.解得:m ≤ 1000.答:A 种口罩最多能购进1000包.59.(2021·黑龙江·哈尔滨市第六十九中学校九年级月考)杭州国际动漫节开幕前.某动漫公司预测某种动漫玩具能够畅销.就用32000元购进了一批这种玩具.上市后很快脱销.动漫公司又用68000元购进第二批这种玩具.所购数量是第一批购进数量的2倍.但每套进价多了10元.(1)该动漫公司两次共购进这种玩具多少套?(2)如果这两批玩具每套的售价相同.且全部售完后总利润率不低于20%.那么每套售价至少是多少元?【答案】(1)600套;(2)200元【分析】解:(1)设动漫公司第一次购x 套玩具.由题意得:6800032000102x x-=.解这个方程.200x =.经检验.200x =是原方程的根.∴22200200600x x +=⨯+=.答:动漫公司两次共购进这种玩具600套.(2)设每套玩具的售价y 元.由题意得:600y 320006800020%3200068000--≥+.解这个不等式.200y ≥.答:每套玩具的售价至少是200元.60.(2021·山东青岛·中考真题)某超市经销甲、乙两种品牌的洗衣液.进货时发现.甲品牌洗衣液每瓶的进价比乙品牌高6元.用1800元购进甲品牌洗衣液的数量是用100元购进乙品牌洗衣液数量的45.销售时.甲品牌洗衣液的售价为36元/瓶.乙品牌洗衣液的售价为28元/瓶.(1)求两种品牌洗衣液的进价;(2)若超市需要购进甲、乙两种品牌的洗衣液共120瓶.且购进两种洗衣液的总成本不超过3120元.超市应购进甲、乙两种品牌洗衣液各多少瓶.才能在两种洗衣液完全售出后所获利润最大?最大利润是多少元?【答案】(1)甲品牌洗衣液进价为30元/瓶.乙品牌洗衣液进价为24元/瓶;(2)购进甲品牌洗衣液40瓶.乙品牌洗衣液80瓶时所获利润最大.最大利润是560元【分析】解:(1)设甲品牌洗衣液进价为x 元/瓶.则乙品牌洗衣液进价为()6x -元/瓶. 由题意可得.18004180056x x =⋅-. 解得30x =.经检验30x =是原方程的解.答:甲品牌洗衣液进价为30元/瓶.乙品牌洗衣液进价为24元/瓶. (2)设利润为y 元.购进甲品牌洗衣液m 瓶. 则购进乙品牌洗衣液()120m -瓶. 由题意可得.()30241203120m m +-≤. 解得40m ≤.由题意可得.()()()363028*********y m m m =-+--=+. ∵20k =>.∴y 随m 的增大而增大.∴当40m =时.y 取最大值.240480560y =⨯+=最大值.答:购进甲品牌洗衣液40瓶.乙品牌洗衣液80瓶时所获利润最大.最大利润是560元. 61.(2021·重庆八中九年级月考)巫溪某村民承包土地发展李子种植.2020年开始大量投产增收.其中早熟李种植面积亩数是晚熟李种植面积亩数的3倍.早熟李、晚熟李分别收益60000元和40000元.而早熟李平均每亩收益比晚熟李少1000元. (1)2020年早熟李、晚熟李种植面积分别有多少亩?(2)在扶贫专家小组的精准帮助下.优化管理.淘汰了部分低产李子林改种其他经济作物增加收益.2021年.早熟李、晚熟李的种植面积比2020年分别降低了1%3a 和%a .然而平均每亩早熟李和晚熟李的收益在2020年基础上分别增加了%a 和1%2a .2021年两种李子的总收益与2020年两种李子总收益相等.求a 的值.【答案】(1)早熟李种60亩.晚熟李种20亩;(2)50.【分析】解:(1)设2020年晚熟李种植面积有x 亩.则早熟李种植面积为3x 亩. 根据题意.得40006000010003x x-= . 解方程.得20x. 经检验.20x是分式方程式得解.360x ∴= . 即2020年早熟李、晚熟李种植面积分别有60亩、20亩.(2)由(1)可得: 2020年早熟李、晚熟李种植面积分别有60亩、20亩.2020年早熟李平均每亩收益为60000100060=元.晚熟李平均每亩收益为40000200020=元. 由题意可得:2021 年早熟李、晚熟李种植面积分别有1601%3a ⎛⎫- ⎪⎝⎭亩、()201%a -亩. 2021 年早熟李平均每亩收益为()10001%a + 元.晚熟李平均每亩收益为120001%2a ⎛⎫+ ⎪⎝⎭元. 由2021 年两种李子的总收益与2020 年两种李子总收益相等.得.()()11601%10001%201%20001%600004000032a a a a ⎛⎫⎛⎫-⨯++-⨯+=+ ⎪ ⎪⎝⎭⎝⎭令%t a =.则()()11600001140000111000032t t t t ⎛⎫⎛⎫-++-+= ⎪ ⎪⎝⎭⎝⎭. ()()()()31125t t t t -++-+= .223225t t t t +-+--=.220t t -=.()210t t -=.0t =或0.5=t .0a =(舍).50a =.答:50a =.62.(2021·湖南·长沙市开福区青竹湖湘一外国语学校九年级期中)某学校计划从商店购买测温枪和洗手液.已知购买一个测温枪比购买一瓶洗手液多用20元.若用400元购买测温枪和用160元购买洗手液.则购买测温枪的数量是购买洗手液数量的一半. (1)求购买一个测温枪、一瓶洗手液各需多少元;(2)经商谈.商店给予该学校购买一个测温枪赠送一瓶洗手液的优惠.如果该学校需要洗手液的数量是测温枪数量的2倍还多8个.且该学校购买测温枪和洗手液的总费用不超过1540元.那么该学校最多可购买多少个测温枪?【答案】(1)购买一个测温枪需要25元.购买一瓶洗手液需要5元;(2)该学校最多可购买50个测温枪.【分析】(1)设购买一瓶洗手液需要x 元.则购买一个测温枪需要(20)x +元.依题意.得:4001160202x x=⨯+. 解得:5x =.经检验.5x =是原方程的解.且符合题意.2025x ∴+=.答:购买一个测温枪需要25元.购买一瓶洗手液需要5元.(2)设该学校购买m 个测温枪.则购买(28)m +瓶洗手液.依题意.得:255(28)1540m m m ++-.解得:50m .答:该学校最多可购买50个测温枪.63.(2021·山东·青岛大学附属中学二模)扶贫工作小组对果农进行精准扶贫.帮助果农将一种有机生态水果拓宽了市场.与去年相比.今年这种水果的产量增加了1000千克.每千克的平均批发价比去年降低了125.批发销售总额比去年增加了20%. (1)已知去年这种水果批发销售总额为10万元.求这种水果今年每千克的平均批发价是多少元?(2)今年某水果店从果农处直接批发.专营这种水果.调查发现.若每千克的平均销售价为41元.则每天可售出300千克;若每千克的平均销售价每降低3元.每天可多卖出180千克.工商部门规定.该水果利润率不得超过40%.设水果店一天的利润为W 元.当每千克的平均销售价为多少元时.该水果店一天的利润最大.最大利润是多少?(利润计算时.其他费用忽略不计.并且售价为整数)【答案】(1)24元;(2)每千克平均售价为33元.最大利润为7020元.【分析】解: (1)由题意.设这种水果去年每千克的平均批发价是x 元.则今年的批发价为1125x ⎛⎫- ⎪⎝⎭元 .今年的批发销售总额为10(1+20%)=12万元 ∴ 1000001200001000,1125x x +=⎛⎫- ⎪⎝⎭解得x =25经检验x =25是分式方程的解.。
八年级数学上册第1章分式单元综合测试1含解析湘教版
《第1章分式》一、选择题1.下面各式中,x+y,,,﹣4xy,,分式的个数有()A.1个B.2个C.3个D.4个2.已知x≠y,下列各式与相等的是()A.B.C.D.3.要使分式有意义,则x的取值范围是()A.x=B.x>C.x<D.x≠4.下列说法:①若a≠0,m,n是任意整数,则a m.a n=a m+n;②若a是有理数,m,n是整数,且mn>0,则(a m)n=a mn;③若a≠b且ab≠0,则(a+b)0=1;④若a是自然数,则a﹣3.a2=a ﹣1.其中,正确的是()A.①B.①②C.②③④D.①②③④5.若分式的值为零,则x等于()A.2 B.﹣2 C.±2 D.06.若把分式中的x和y都扩大3倍,且x+y≠0,那么分式的值()A.扩大3倍B.不变C.缩小3倍D.缩小6倍7.如果分式的值为正整数,则整数x的值的个数是()A.2个B.3个C.4个D.5个8.有游客m人,如果每n个人住一个房间,结果还有一个人无房住,这客房的间数为()A.B.C.D.9.若x满足=1,则x应为()A.正数B.非正数C.负数D.非负数10.已知=3,则的值为()A.B.C.D.﹣11.工地调来72人参加挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调动劳动力才能使挖出的土能及时运走,解决此问题,可设派x人挖土,其它的人运土,列方程:①②72﹣x=③x+3x=72 ④上述所列方程,正确的有()个.A.1 B.2 C.3 D.412.如果()2÷()2=3,那么a8b4等于()A.6 B.9 C.12 D.8113.x克盐溶解在a克水中,取这种盐水m克,其中含盐()克.A.B.C.D.二、填空题:14.分式、、的最简公分母是.15.已知,用x的代数式表示y=.16.若5x﹣3y﹣2=0,则105x÷103y=.17.若ab=2,a+b=﹣1,则的值为.18.计算6x﹣2(2x﹣2y﹣1)﹣3=.19.瑞士中学教师巴尔末成功地从光谱数据,,,中得到巴尔末公式,从而打开了光谱奥妙的大门.请你按这种规律写出第七个数据是.20.使分式方程产生增根,m的值为.21.已知:=+,则A=,B=.22.当x=时,代数式和的值相等.23.用科学记数法表示:0.000000052=.24.计算=.三、解答题25.计算题(1)+(2)﹣(3)(﹣1)2+()﹣4﹣5÷(2005﹣π)0(4)1﹣÷(5)﹣a﹣b.26.解分式方程:(1)(2).27.有一道题:“先化简,再求值:()÷其中,x=﹣3”.小玲做题时把“x=﹣3”错抄成了“x=3",但她的计算结果也是正确的,请你解释这是怎么回事?28.点A、B在数轴上,它们所对应数分别是,且点A、B关于原点对称,求x的值.29.某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元.(1)求第一批购进书包的单价是多少元?(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?30.若,,求的值.湘教新版八年级数学上册《第1章分式》单元测试卷(1)参考答案与试题解析一、选择题1.下面各式中,x+y,,,﹣4xy,,分式的个数有()A.1个B.2个C.3个D.4个【考点】分式的定义.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:在,的分母中含有字母,属于分式.在x+y,﹣4xy,的分母中不含有字母,属于整式.故选:B.【点评】此题主要考查了分式定义,关键是掌握分式的分母必须含有字母,而分子可以含字母,也可以不含字母.2.已知x≠y,下列各式与相等的是()A.B.C.D.【考点】分式的基本性质.【分析】根据分式的基本性质可以得到答案.【解答】解:∵x≠y,∴x﹣y≠0,∴在分式中,分子和分母同时乘以x﹣y得到:,∴分式和分式是相等的,∴C选项是正确的,故选:C.【点评】本题主要考查了分式的基本性质,解题的关键是熟练掌握分式的基本性质,此题基础题,比较简单.3.要使分式有意义,则x的取值范围是()A.x=B.x>C.x<D.x≠【考点】分式有意义的条件.【分析】本题主要考查分式有意义的条件:分母不能为0,即3x﹣7≠0,解得x.【解答】解:∵3x﹣7≠0,∴x≠.故选D.【点评】本题考查的是分式有意义的条件:当分母不为0时,分式有意义.4.下列说法:①若a≠0,m,n是任意整数,则a m.a n=a m+n;②若a是有理数,m,n是整数,且mn>0,则(a m)n=a mn;③若a≠b且ab≠0,则(a+b)0=1;④若a是自然数,则a﹣3.a2=a ﹣1.其中,正确的是()A.①B.①②C.②③④D.①②③④【考点】负整数指数幂;零指数幂.【分析】①、④根据同底数幂作答;②由幂的乘方计算法则解答;③由零指数幂的定义作答.【解答】解:①a m.a n=a m+n,同底数幂的乘法:底数不变,指数相加;正确;②若a是有理数,m,n是整数,且mn>0,则(a m)n=a mn,根据幂的乘方计算法则,正确;③若a≠b且ab≠0,当a=﹣b即a+b=0时,(a+b)0=1不成立,任何非零有理数的零次幂都等于1,错误;④∵a是自然数,∴当a=0时,a﹣3.a2=a﹣1不成立,错误.故选B.【点评】本题主要考查的是同底数幂的乘法、幂的乘方、零指数幂等知识.5.若分式的值为零,则x等于()A.2 B.﹣2 C.±2 D.0【考点】分式的值为零的条件.【分析】分式的值是0的条件是:分子为0,分母不为0.【解答】解:∵x2﹣4=0,∴x=±2,当x=2时,2x﹣4=0,∴x=2不满足条件.当x=﹣2时,2x﹣4≠0,∴当x=﹣2时分式的值是0.故选:B.【点评】分式是0的条件中特别需要注意的是分母不能是0,这是经常考查的知识点.6.若把分式中的x和y都扩大3倍,且x+y≠0,那么分式的值()A.扩大3倍B.不变C.缩小3倍D.缩小6倍【考点】分式的基本性质.【分析】把原式中的x、y分别换成3x、3y进行计算,再与原分式比较即可.【解答】解:把原式中的x、y分别换成3x、3y,那么=×,故选C.【点评】本题考查了分式的基本性质,解题关键是用到了整体代入的思想.7.如果分式的值为正整数,则整数x的值的个数是()A.2个B.3个C.4个D.5个【考点】分式的值.【分析】由于x是整数,所以1+x也是整数,要使为正整数,那么1+x只能取6的正整数约数1,2,3,6,这样就可以求得相应x的值.【解答】解:由题意可知1+x为6的正整数约数,故1+x=1,2,3,6由1+x=1,得x=0;由1+x=2,得x=1;由1+x=3,得x=2;由1+x=6,得x=5.∴x为0,1,2,5,共4个,故选C.【点评】认真审题,抓住关键的字眼,是正确解题的出路.如本题“整数x”中的“整数”,“的值为正整数”中的“正整数”.8.有游客m人,如果每n个人住一个房间,结果还有一个人无房住,这客房的间数为()A.B.C.D.【考点】列代数式(分式).【分析】房间数=住进房间人数÷每个房间能住的人数;一人无房住,那么住进房间的人数为:m﹣1.【解答】解:住进房间的人数为:m﹣1,依题意得,客房的间数为,故选A.【点评】解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.9.若x满足=1,则x应为()A.正数B.非正数C.负数D.非负数【考点】分式的值;绝对值.【分析】根据=1可以得到x=|x|,根据绝对值的定义就可以求解.【解答】解:若x满足=1,则x=|x|,x>0,故选A.【点评】此题是分式方程,在解答时要注意分母不为0.10.已知=3,则的值为()A.B.C.D.﹣【考点】分式的基本性质.【分析】先把分式的分子、分母都除以xy,就可以得到已知条件的形式,再把=3,代入就可以进行计算.【解答】解:根据分式的基本性质,分子分母都除以xy得,==.故选B.【点评】解答本题关键在于利用分式基本性质从所求算式中整理出已知条件的形式,再进行代入计算,此方法中考题中常用,是热点.11.工地调来72人参加挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调动劳动力才能使挖出的土能及时运走,解决此问题,可设派x人挖土,其它的人运土,列方程:①②72﹣x=③x+3x=72 ④上述所列方程,正确的有()个.A.1 B.2 C.3 D.4【考点】由实际问题抽象出分式方程.【分析】关键描述语是:“3人挖出的土1人恰好能全部运走”.等量关系为:挖土的工作量=运土的工作量,找到一个关系式,看变形有几个即可.【解答】解:设挖土的人的工作量为1.∵3人挖出的土1人恰好能全部运走,∴运土的人工作量为3,∴可列方程为:,即,72﹣x=,故①②④正确,故正确的有3个,故选C.【点评】解决本题的关键是根据工作量得到相应的等量关系,难点是得到挖土的人的工作量和运土的人的工作量之间的关系.12.如果()2÷()2=3,那么a8b4等于()A.6 B.9 C.12 D.81【考点】分式的混合运算.【分析】由于()2÷()2=3,首先利用积的乘方运算法则化简,然后结合所求代数式即可求解.【解答】解:∵()2÷()2=3,∴×=3,∴a4b2=3,∴a8b4=(a4b2)2=9.故选B.【点评】此题主要考查了分式的混合运算,解题时首先把等式利用积的乘方法则化简,然后结合所求代数式的形式即可求解.13.x克盐溶解在a克水中,取这种盐水m克,其中含盐()克.A.B.C.D.【考点】列代数式(分式).【分析】盐=盐水×浓度,而浓度=盐÷(盐+水),根据式子列代数式即可.【解答】解:该盐水的浓度为,故这种盐水m千克,则其中含盐为m×=千克.故选:D.【点评】本题考查了列代数式,解决问题的关键是找到所求的量的等量关系.本题需注意浓度=溶质÷溶液.二、填空题:14.分式、、的最简公分母是6abc.【考点】最简公分母.【分析】根据确定最简公分母的方法:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式确定;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:因为三分式中的常数项系数的最小公倍数是6,a 的最高次幂是1,b的最高次幂是1,c的最高次幂是1,所以三分式的最简公分母是6abc.故答案为:6abc.【点评】本题主要考查了最简公分母的定义:取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.15.已知,用x的代数式表示y=.【考点】等式的性质.【分析】根据等式的基本性质可知:先在等式两边同乘(y﹣1),整理后再把x的系数化为1,即可得答案.【解答】解:根据等式性质2,等式两边同乘(y﹣1),得y+1=x (y﹣1)∴y+1=xy﹣x,∴y(x﹣1)=1+x∴y=.【点评】本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.16.若5x﹣3y﹣2=0,则105x÷103y=100.【考点】同底数幂的除法.【分析】根据同底数幂的除法法则,可将所求代数式化为:105x ﹣3y,而5x﹣3y的值可由已知的方程求出,然后代数求值即可.【解答】解:∵5x﹣3y﹣2=0,∴5x﹣3y=2,∴105x÷103y=105x﹣3y=102=100.【点评】本题主要考查同底数幂的除法运算,整体代入求解是运算更加简便.17.若ab=2,a+b=﹣1,则的值为.【考点】分式的加减法.【分析】先将分式通分,再将ab=2,a+b=﹣1代入其中即可得出结论.【解答】解:原式===﹣.故答案为﹣.【点评】本题考查了分式的加减运算.解决本题首先应通分,然后整体代值.18.计算6x﹣2(2x﹣2y﹣1)﹣3=x4y3.【考点】单项式乘单项式;幂的乘方与积的乘方;负整数指数幂.【分析】结合单项式乘单项式的运算性质:单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.进行求解即可.【解答】解:原式=6x﹣2x6y3=x4y3.故答案为:x4y3.【点评】本题考查了单项式乘单项式的知识,解答本题的关键在于熟练掌握该知识点的概念和运算性质.19.瑞士中学教师巴尔末成功地从光谱数据,,,中得到巴尔末公式,从而打开了光谱奥妙的大门.请你按这种规律写出第七个数据是.【考点】规律型:数字的变化类.【分析】分子的规律依次是,32,42,52,62,72,82,92…,分母的规律是:1×5,2×6,3×7,4×8,5×9,6×10,7×11…,所以第七个数据是.【解答】解:由数据,,,可得规律:分子是,32,42,52,62,72,82,92分母是:1×5,2×6,3×7,4×8,5×9,6×10,7×11…,∴第七个数据是.故答案为:.【点评】主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.20.使分式方程产生增根,m的值为±.【考点】分式方程的增根.【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母x﹣3=0,所以增根是x=3,把增根代入化为整式方程的方程即可求出m的值.【解答】解:方程两边都乘(x﹣3),得x﹣2(x﹣3)=m2∵原方程有增根,∴最简公分母x﹣3=0,即增根是x=3,把x=3代入整式方程,得m=±.故答案为:±.【点评】增根问题可按如下步骤进行:①根据最简公分母确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.21.已知:=+,则A=1,B=2.【考点】分式的加减法.【分析】已知等式右边两项通分并利用同分母分式的加法法则计算,利用多项式相等的条件即可求出A与B的值.【解答】解:∵==,∴A+B=3,﹣2A﹣B=﹣4,解得:A=1,B=2,故答案为:1;2【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.22.当x=9时,代数式和的值相等.【考点】解分式方程.【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:=,去分母得:2x+3=3x﹣6,解得:x=9,经检验x=9是分式方程的解,故答案为:9【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.23.用科学记数法表示:0.000000052=5。
初中数学方程与不等式之分式方程技巧及练习题附答案解析(1)
初中数学方程与不等式之分式方程技巧及练习题附答案解析(1)一、选择题1.方程1235x x =+的解为( ). A .1x =- B .0x =C .3x =-D .1x =【答案】D 【解析】 【分析】方程两边同乘以3x (x+5),化分式方程为整式方程,解整式方程求得x 的值,检验即可求得分式方程的解. 【详解】方程两边同乘以3x (x+5)得, x+5=6x , 解得x=1,经检验,x=1是原分式方程的解. 故选D. 【点睛】本题考查了分式方程的解法,方程两边同乘以最简公分母化分式方程为整式方程是解决问题的关键.注意,解分式方程一定要验根.2.某市从今年1月1日起调整居民用水价格,每立方米水费上涨13,小丽家去年12月份的水费是15元,而今年5月的水费则是30元,已知小丽家今年5月的用水量比去年12月的用水量多35m .求该市今年居民用水的价格.设去年居民用水价格为x 元/3m ,根据题意列方程,正确的是( )A .30155113x x -=⎛⎫+ ⎪⎝⎭ B .30155113x x -=⎛⎫- ⎪⎝⎭C .15305113x x -=⎛⎫+ ⎪⎝⎭D .15305113x x -=⎛⎫- ⎪⎝⎭【答案】A 【解析】 【分析】利用总水费÷单价=用水量,结合小丽家今年5月的用水量比去年12月的用水量多5m 3得出方程即可. 【详解】解:设去年居民用水价格为x 元/3m ,根据题意得:30155113xx-=⎛⎫+⎪⎝⎭,故选:A.【点睛】此题主要考查了由实际问题抽象出分式方程,正确表示出用水量是解题关键.3.甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg,甲搬运5000kg所用的时间与乙搬运8000kg所用的时间相等,求甲、乙两人每小时分别搬运多少千克货物.设甲每小时搬运xkg货物,则可列方程为A.B.C.D.【答案】B【解析】甲种机器人每小时搬运x千克,则乙种机器人每小时搬运(x+600)千克,由题意得:,故选B.【点睛】本题考查了列分时方程解实际问题的运用,解答时根据甲搬运5000kg所用时间与乙搬运8000kg所用时间相等建立方程是关键.4.若 x=3 是分式方程212ax x--=-的根,则 a 的值是A.5 B.-5 C.3 D.-3【答案】A【解析】把x=3代入原分式方程得,21332a--=-,解得,a=5,经检验a=5适合原方程.故选A.5.方程22111x xx x-=-+的解是()A.x=12B.x=15C.x=14D.x=14【答案】B【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】解:去分母得:2x 2+2x =2x 2﹣3x+1, 解得:x =15, 经检验x =15是分式方程的解, 故选B . 【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.6.甲做480个零件与乙做360个零件所用的时间相同,已知两人每天共做140个零件,若设甲每天做x 个零件,则可以列出方程为( ) A .480360140x x=- B .480480140x x=-C .480360140x x += D .360480140x x-= 【答案】A 【解析】 【分析】设甲每天做x 个零件,根据甲做480个零件与乙做360个零件所用的时间相同,列出方程即可. 【详解】解:设甲每天做x 个零件,根据题意得:480360140x x=-, 故选:A . 【点睛】此题考查了由实际问题抽象出分式方程,找到关键描述语,找到等量关系是解决问题的关键.本题用到的等量关系为:工作时间=工作总量÷工作效率.7.若关于x 的方程244x ax x =+--有增根,则a 的值为( ) A .-4 B .2C .0D .4【答案】D 【解析】 【分析】增根是化为整式方程后产生的不适合分式方程的根.让最简公分母x-4=0,得到x=4.再将x=4代入去分母后的方程即可求出a=4. 【详解】解:由分式方程的最简公分母是x-4, ∵关于x 的方程244x a x x =+--有增根, ∴x-4=0,∴分式方程的增根是x=4.关于x 的方程244x a x x =+--去分母得x=2(x-4)+a, 代入x=4得a=4 故选D . 【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行: ①让最简公分母为0确定增根; ②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.8.关于x 的分式方程2x a1x 1+=+的解为负数,则a 的取值范围是( ) A .a 1> B .a 1<C .a 1<且a 2≠-D .a 1>且a 2≠【答案】D 【解析】 【分析】分式方程去分母转化为整式方程,表示出整式方程的解,根据分式方程解为负数列出关于a 的不等式,求出不等式的解集即可确定出a 的范围. 【详解】分式方程去分母得:x 12x a +=+,即x 1a =-, 因为分式方程解为负数,所以1a 0-<,且1a 1-≠-, 解得:a 1>且a 2≠, 故选D . 【点睛】本题考查了分式方程的解,熟练掌握解分式方程的一般步骤及注意事项是解题的关键.注意在任何时候都要考虑分母不为0.9.关于x 的方程m 3+=1x 11x--解为正数,则m 的范围为( ) A .m 2m 3≥≠且 B . 2 B 3m m >≠C .m<2m 3≠且D .m>2【答案】B 【解析】 【分析】首先解分式方程,然后令其大于0即可,注意还有1x ≠. 【详解】方程两边同乘以()1x -,得2x m =-∴210x m x =-⎧⎨-≠⎩解得2m >且3m ≠ 故选:B. 【点睛】此题主要考查根据分式方程的解求参数的取值范围,熟练掌握,即可解题.10.已知关于x 的分式方程13222mx x x-+=--有解,则m 应满足的条件是( ) A . 1 2m m ≠≠且 B .2m ≠C .1m =或2m =D .1m ≠或2m ≠【答案】A 【解析】 【分析】分式方程去分母转化为整式方程(m-2)x=-2,由分式方程有解可知m-2≠0,最简公分母x-2≠0,求出x 的值,进一步求出m 的取值即可. 【详解】13222mx x x-+=--, 去分母得,1-(3-mx )=2(x-2) 整理得,(m-2)x=-2∵分式方程13222mx x x-+=--有解, ∴m-2≠0,即m≠2,∴22x m -=- ∵分式方程13222mx x x-+=--有解, ∴x-2≠0,即x≠2,∴222m -≠-,解得,m≠1, 所以,m 的取值为: 1 m ≠且2m ≠ 故选:A. 【点睛】此题主要考查了分式方程的求解,关键是会解出方程的解,注意隐含条件.11.两个工程队共同参与一项筑路工程,甲队单独施工3个月,这时增加了乙队,两队又共同工作了2个月,总工程全部完成,已知甲队单独完成全部工程比乙队单独完成全部工程多用2个月,设甲队单独完成全部工程需x 个月,则根据题意可列方程中错误的是( )A.3212x x+=-B.32212x x x++=-C.3+2212x x+=-D.3112()12x x x++=-【答案】A【解析】【分析】设甲队单独完成全部工程需x个月,则乙队单独完成全部工程需要(x-2)个月,根据甲队施工5个月的工程量+乙队施工2个月的工程量=总工程量1列出方程,然后依次对各方程的左边进行变形即可判断.【详解】解:设甲队单独完成全部工程需x个月,则乙队单独完成全部工程需要(x-2)个月,根据题意,得:5212x x+=-;A、3212x x+=-,与上述方程不符,所以本选项符合题意;B、32212x x x++=-可变形为5212x x+=-,所以本选项不符合题意;C、3+2212x x+=-可变形为5212x x+=-,所以本选项不符合题意;D、3112()12x x x++=-的左边化简得5212x x+=-,所以本选项不符合题意.故选:A.【点睛】本题考查了分式方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键.12.方程31144xx x--=--的解是()A.-3 B.3 C.4 D.-4【答案】B【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】去分母得:3-x-x+4=1,解得:x=3,经检验x=3是分式方程的解.故选:B . 【点睛】此题考查解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.13.已知关于x 的分式方程213x mx -=-的解是非正数,则m 的取值范围是( ) A .3m ≤ B .3m <C .3m >-D .3m ≥-【答案】A 【解析】 【分析】分式方程去分母转化为整式方程,由分式方程解为正数确定出m 的范围即可 【详解】213x mx -=-, 方程两边同乘以3x -,得23x m x -=-,移项及合并同类项,得3x m =-,Q 分式方程213x mx -=-的解是非正数,30x -≠,30(3)30m m -≤⎧∴⎨--≠⎩, 解得,3m ≤, 故选:A . 【点睛】此题考查分式方程的解,解题关键在于掌握运算法则求出m 的值14.如果关于x 的分式方程有负数解,且关于y 的不等式组无解,则符合条件的所有整数a 的和为( )A .﹣2B .0C .1D .3【答案】B 【解析】 【分析】解关于y 的不等式组,结合解集无解,确定a 的范围,再由分式方程有负数解,且a为整数,即可确定符合条件的所有整数a的值,最后求所有符合条件的值之和即可.【详解】由关于y的不等式组,可整理得∵该不等式组解集无解,∴2a+4≥﹣2即a≥﹣3又∵得x=而关于x的分式方程有负数解∴a﹣4<0∴a<4于是﹣3≤a<4,且a为整数∴a=﹣3、﹣2、﹣1、0、1、2、3则符合条件的所有整数a的和为0.故选B.【点睛】本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,再在解集中求特殊解,了解求特殊解的方法是解决本题的关键.15.某单位向一所希望小学赠送1080本课外书,现用A、B两种不同的包装箱进行包装,单独使用B型包装箱比单独使用A型包装箱可少用6个;已知每个B型包装箱比每个A型包装箱可多装15本课外书.若设每个A型包装箱可以装书x本,则根据题意列得方程为()A.B.C.D.【答案】C【解析】设每个A型包装箱可以装书x本,则每个B型包装箱可以装书(x+15)本,根据单独使用B型包装箱比单独使用A型包装箱可少用6个,列方程得:,故选C.16.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x万千克,根据题意,列方程为()A.3036101.5x x-=B.3030101.5x x-=C.3630101.5x x-=D.3036101.5x x+=【答案】A【解析】【分析】根据题意可得等量关系:原计划种植的亩数-改良后种植的亩数10=亩,根据等量关系列出方程即可.【详解】设原计划每亩平均产量x万千克,则改良后平均每亩产量为1.5x万千克,根据题意列方程为:3036101.5x x-=.故选:A.【点睛】本题考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.17.关于x的方程2111axx x-=++的解为非正数,且关于x的不等式组22533a xx+⎧⎪+⎨⎪⎩……无解,那么满足条件的所有整数a的和是()A.﹣19 B.﹣15 C.﹣13 D.﹣9【答案】C【解析】解:分式方程去分母得:ax﹣x﹣1=2,整理得:(a﹣1)x=3,由分式方程的解为非正数,得到31a-≤0,且31a-≠﹣1,解得:a<1且a≠﹣2.不等式组整理得:224axx-⎧≤⎪⎨⎪≥⎩,由不等式组无解,得到22a-<4,解得:a>﹣6,∴满足题意a的范围为﹣6<a<1,且a≠﹣2,即整数a的值为﹣5,﹣4,﹣3,﹣1,0,则满足条件的所有整数a的和是﹣13,故选C.点睛:此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.18.小明上月在某文具店正好用 20 元钱买了几本笔记本,本月再去买时,恰遇此文具店搞优惠酬宾活动,同样的笔记本,每本比上月便宜 1 元,结果小明只比上次多用了 4 元钱,却比上次多买了 2 本.若设他上月买了 x 本笔记本,则根据题意可列方程()A .24x 2+ -20x=1 B .20x -24 x 2+ =1 C .24x - 20x 2+ =1 D .20x 2+ -24x=1 【答案】B 【解析】试题解析:设他上月买了x 本笔记本,则这次买了(x+2)本, 根据题意得:2020412x x +-=+, 即:202412x x -=+. 故选B .考点:分式方程的应用.19.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( ) A .606030(125%)x x-=+ B .606030(125%)x x-=+C .60(125%)6030x x⨯+-=D .6060(125%)30x x⨯+-= 【答案】C 【解析】分析:设实际工作时每天绿化的面积为x 万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x 的分式方程.详解:设实际工作时每天绿化的面积为x 万平方米,则原来每天绿化的面积为125%x+万平方米,依题意得:606030125%x x-=+,即()60125%6030x x⨯+-=. 故选C .点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.20.关于x 的分式方程230+=-x x a解为4x =,则常数a 的值为( ) A .1a = B .2a =C .4a =D .10a =【答案】D【解析】【分析】根据分式方程的解的定义把x=4代入原分式方程得到关于a 的一次方程,解得a 的值即可.【详解】解:把x=4代入方程230+=-x x a,得 23044a+=-, 解得a=10.经检验,a=10是原方程的解故选D .点睛:此题考查了分式方程的解,分式方程注意分母不能为0.。
湘教版八年级数学上册作业课件 第1章 分式 专题练习二 分式方程的解与解法及实际问题
用 400 元,两超市购买 100 个篮球,所需的最少费用为 3 850 元
8.某开发公司生产的960件新产品需要精加工后才能投放市场.现有 甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工完这批产品比 乙工厂单独加工完这批产品多用20天,而甲工厂每天加工的数量是乙工 厂每天加工数量的,公司需付甲工厂加工费用每天80元,需付乙工厂加 工费用每天120元.
类型二 解特殊形式的分式方程(选做) 2.解下列方程: (1)x(x1+1) +(x+1)1(x+2) +…+(x+19)1(x+20) =21x ;
解:原方程可化为
(1x -x+1 1 )+(x+1 1 -x+1 2 )+…+(x+119 -x+120 )=21x ,整理得
1 x
-x+120
=
1 2x
类型三 利用分式方程解的情况求字母的值
3.是否存在整数 k,使关于 x 的分式方程xk2--11 -xk2-+2x =x-1x2 的解 为 x=-2?若存在,请求出整数 k 的值;若不存在,请说理由.
解:方程两边都乘 x(x+1)(x-1)得, x(k-1)-(x-1)(k-2)=-(x+1), 整理得,2x=-k+1,代入 x=-2 得 k=5
类型五 结合分式方程解决实际问题中的方案问题 7.在“双十二”期间,A,B两个超市开展促销活动,活动方式如下: A超市:购物金额打9折后,若超过2 000元,则再优惠300元; B超市:购物金额打8折. 某学校计划购买某品牌的篮球做奖品,该品牌的篮球在A,B两个超市 的标价相同,根据商场的活动方式: (1)若一次性付款4 200元购买这种篮球,则在B商场购买的数量比在A商 场购买的数量多5个,请求出这种篮球的标价; (2)学校计划购买100个篮球,请你设计一个购买方案,使所需的费用最 少.(直接写出方案)
一年级数学分式的练习题
一年级数学分式的练习题分式是数学中的一个重要概念,在数学学习中,一年级的学生也会接触到分式的概念和运算。
本文将为一年级学生提供一些关于分式的练习题,帮助他们巩固分式的知识和运算技巧。
练习题一:简单分式的计算1. 计算:2/3 + 1/4 = ?2. 计算:3/5 - 1/10 = ?3. 计算:1/2 × 2/5 = ?4. 计算:3/4 ÷ 1/2 = ?练习题二:混合数与假分数的相互转化1. 将3整4/5转化为假分数。
2. 将13/4转化为混合数。
3. 将7整2/3转化为假分数。
4. 将19/5转化为混合数。
练习题三:分数与整数的运算1. 计算:2 + 3/4 = ?2. 计算:5 - 2/3 = ?3. 计算:4 × 2/5 = ?4. 计算:10 ÷ 2/3 = ?练习题四:分式的简化1. 简化分式:6/9 = ?2. 简化分式:8/12 = ?3. 简化分式:15/30 = ?4. 简化分式:20/25 = ?练习题五:分式的比较1. 比较大小:2/3 ? 7/10 (填写 ">"、"<"或"=")2. 比较大小:4/5 ? 8/10 (填写 ">"、"<"或"=")3. 比较大小:1/2 ? 5/6 (填写 ">"、"<"或"=")4. 比较大小:3/4 ? 9/12 (填写 ">"、"<"或"=")练习题六:分式的应用1. 小明一共有9块巧克力,他想要和小红平分这些巧克力。
小明能分得几块巧克力?2. 爸爸给小明买了一箱苹果,共有36个苹果。
小明想将这些苹果平均分成8份,每份有几个苹果?3. 某商店7折出售一张唱片,原价为40元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
作业1:学习“分式”一整章,做好学习笔记,报名时交。
作业2: 分式练习
班别:_______________姓名:_____________学号:____________成绩:_________
一、填空题:
1、下列各式中,是分式的是(只填序) . ①
a 1;② 5a ;③ πx ;④ 1+x x ;⑤ 31(x +y );⑥ 21-x 2y 2;⑦ y
x y x -+;⑧ x 11+. 2、当x 时,分式51-x 有意义. 当x 时,分式3
9x 2--x 的值为零.
3、用科学计数法表示并保留两位有效数字:0.000000237= .
4、如果方程
4)
1(2=-a
x 的解是x =5,则a = . 5、计算:=÷2223432y x y x ____________;=∙---22222222)()(c a c b b a 。
6、若使分式631
2++x x 的值为负数,则x 的取值范围为____________。
二、选择题:
7、下列约分正确的是 ( )
A 、326x x x =
B 、0=++y x y x
C 、x xy x y x 12=++
D 、
214222
=y x xy 8、如果把分式y x x
+中的x 和y 都扩大2倍,即分式的值 ( )
A 、扩大4倍
B 、扩大2倍
C 、不变
D 缩小2倍
9、一份工作,甲单独做需a 天完成,乙单独做需b 天完成,即甲乙两人合作一天的工作量是 ( )
A 、a+b
B 、b a +1
C 、2b a +
D 、b a 1
1+
10、分式方程
21
21+-=-+x x x x 的解是 ( ) A 、0 B 、-2 C 、1 D 、2
11、分式2232b a c ,c b a 443-,c a b 2
25的最简公分母是 ( )
A 、12a2b4c2
B 、24a2b4c2
C 、24a4b6c
D 、12a2b4c
12、若分式方程1x m
1x 3x 2-=
-有增根,则m 的值为 ( ) A 、1 B 、-1 C 、3 D 、-3
三、计算:
1、3
10
)2()32()12(---+++; 2、42322)ab ()a
b ()b a (-∙-÷-;
3、2
2233)()4()2(-⨯÷xy x y x y 4、1y 1
y y 2
---;
5、3
41
21311222+-++∙---+x x x x x x x 6、
)252(423--+÷--a a a a ;
7、xy
x 2y
x y 2xy x 4y x 2
2222++÷++- 8、22)11(y x xy y x y x -÷++-
四、解方程:
1、2
223--=-x x x ; 2、
1416
222=--+-x x x
3、01722=-++x x x x
4、1
x 6
)1x (x 410x 22-=--
五、解答题
1、先化简,后求值:022
2
2)22(16
1684-⨯-÷+--x x x x x x ,其中x =4. 2、已知44a a 2
+-与|1b |-互为相反数,求)b a ()a
b
b a (+÷-的值。
3、(1)已知:,41=+
a a 求221
a a +的值; (2)已知:1122=+a
a 1,求a a 1
-的值
二 列方程解应用题
1 某机械厂生产车床,原计划若干天完成产量360台,但实际比原计划每天多生产12台,
结果比原计划提前了8天完成任务,问实际每天生产车床多少台?
2 某厂计划在一定日期内制造60台,实际工作5天后,因改进设备停工2天,以后每天
比原计划多制造2台,结果按期完成任务,问原计划每天制造多少台?用了多少天?
3列车要在一定时间内行驶840km,但行驶到中点时被阻30分钟,为了按时到达,必须将原每小时的行驶速度增加2km,问全程共用多少小时?
4某文化用品商场出售一批规格相同的钢笔,如果每支钢笔的价格增加1元,那么120元钱可以买到的钢笔数量将减少6支,求现在每支钢笔的价格是多少元?
5某建筑队要修筑30千米长的公路,在修筑好6千米以后,改进了施工方法,每天多修筑2千米,共用4天完成了任务,若不改进施工方法需用多少天才能修筑完这段公路?
6甲乙两城间的铁路路程为1600km,经过技术改进,列车实施了提速,提速后比提速前速度增加了20km/h,列车从甲城到乙城的行驶时间减少了4h,已知列车和铁路在现有条件下,安全速度不能超过140km/h
请你用所学习的数学知识分析说明在现有的条件下列车能否再次提速
分式练习题(2)
1、式子①x
2 ②
5y x + ③a -21 ④1
-πx
中,是分式的有( )
A .①② B. ③④ C. ①③ D.①②③④ 2.分式
1
3-+x a
x 中,当a x -=时,下列结论正确的是( ) A .分式的值为零 B.分式无意义 C. 若3
1-≠a 时,分式的值为零 D. 若3
1≠a 时,分式的值为零 3. 若分式
1
-x x
无意义,则x 的值是( ) A. 0 B. 1 C. -1 D.1±
4.化简22
2m n m mn
-+的结果是( )
A .
2m n
m
-
B .
m n
m
- C .
m n
m
+ D .
m n
m n
-+ 5.使分式
x
++
1111有意义的条件是( )
A.0≠x
B.21-≠-≠x x 且
C.1-≠x
D. 1-≠x 且0≠x
6. 当_____时, 分式
4
31
2-+x x 无意义. 7. 当______时, 分式68-x x
有意义.
8. 当_______时, 分式53
4-+x x 的值为1.
9. 当______时, 分式51
+-x 的值为正.
10.当______时,分式1
4
2+-x 的值为负.
11.要使分式2
21
y
x x -+的值为零,x 和y 的取值范围是什么?
12.x 取什么值时,分式)
3)(2(5
+--x x x (1)无意义?(2)有意义? (3)
值为零?
13.2005-2007年某地的森林面积(单位:公顷)分别是321,,S S S ,2005年与2007年相比,森林面积增长率提高了多少?(用式子表示)
14.学校用一笔钱买奖品,若以1支钢笔和2本日记本为一份奖品,则可买60份奖品;若以1支钢笔和3本日记本为一份奖品,则可买50份奖品,那么这笔钱全部用来买钢笔可以买多少支?
15.用水清洗蔬菜上残留的农药.设用x(1≥x)单位量的水清洗一次后,蔬菜上残留的农药量与本次清洗前残留的农药量之比为1.现有a(2≥a)单位量的水,可以一次清洗,也可以把水平1
x
+
均分成两份后清洗两次.试问用哪种方案清洗后蔬菜上残留的农药量比较少?说明理由.。