2020-2021初二数学上期中一模试题带答案(4)

合集下载

2020-2021上海西南位育中学初二数学上期中第一次模拟试题附答案

2020-2021上海西南位育中学初二数学上期中第一次模拟试题附答案

2020-2021上海西南位育中学初二数学上期中第一次模拟试题附答案一、选择题1.“五一”期间,某中学数学兴趣小组的同学们租一辆小型巴士前去某地进行社会实践活动,租车租价为180元.出发时又增加了两位同学,结果每位同学比原来少分摊了3元车费.若小组原有x 人,则所列方程为( )A .18018032x x -=-B .18018032x x -=+C .18018032x x -=+D .18018032x x-=- 2.若一个凸多边形的内角和为720°,则这个多边形的边数为( )A .4B .5C .6D .73.如图,在△ABC 中,BD 平分∠ABC ,BC 的垂直平分线交BD 于点E ,连接CE ,若∠A=60°,∠ACE=24°,则∠ABE 的度数为( )A .24°B .30°C .32°D .48° 4.一个三角形的两边长分别为3和4,且第三边长为整数,这样的三角形的周长最大值是( ) A .11 B .12 C .13 D .145.要使分式13a +有意义,则a 的取值应满足( ) A .3a =-B .3a ≠-C .3a >-D .3a ≠ 6.如图,已知△ABC 中,∠ABC=45°,F 是高AD 和BE 的交点,CD=4,则线段DF 的长度为( )A .2B .4C .32D .427.如图,在矩形ABCD 中,AB =5,AD =3,动点P 满足S △P AB =13S 矩形ABCD ,则点P 到A 、B 两点距离之和P A +PB 的最小值为( )A .29B .34C .52D .418.若23m =,25n =,则322m n -等于 ( )A .2725B .910 C .2 D .2527 9.关于x 的分式方程2x a 1x 1+=+的解为负数,则a 的取值范围是( ) A .a 1> B .a 1< C .a 1<且a 2≠- D .a 1>且a 2≠10.下列图形中,周长不是32 m 的图形是( ) A . B . C .D .11.下列说法中正确的是( )A .三角形的角平分线、中线、高均在三角形内部B .三角形中至少有一个内角不小于60°C .直角三角形仅有一条高D .三角形的外角大于任何一个内角12.如图,有三种规格的卡片共9张,其中边长为a 的正方形卡片4张,边长为b 的正方形卡片1张,长,宽分别为a ,b 的长方形卡片4张.现使用这9张卡片拼成一个大的正方形,则这个大正方形的边长为( )A .2a+bB .4a+bC .a+2bD .a+3b二、填空题13.如图,∠MON=30°,点A 1,A 2,A 3,…在射线ON 上,点B 1,B 2,B 3,…在射线OM 上,△A 1B 1A 2,△A 2B 2A 3,△A 3B 3A 4…均为等边三角形.若OA 1=1,则△A n B n A n+1的边长为______.14.已知m ﹣n=2,mn=﹣1,则(1+2m )(1﹣2n )的值为__.15.关于x 的分式方程22kx 3x 1x 1x 1+=--+会产生增根,则k =_____. 16.如果关于x 的分式方程m 2x 1x 22x -=--有增根,那么m 的值为______. 17.如图,已知△ABC 的周长为27cm ,AC =9cm ,BC 边上中线AD =6cm ,△ABD 周长为19cm ,AB=__________18.若分式15x -有意义,则实数x 的取值范围是_______. 19.某工厂储存350吨煤,按原计划用了3天后,由于改进了炉灶和烧煤技术,每天能节约2吨煤,使储存的煤比原计划多用15天.若设改进技术前每天烧x 吨煤,则可列出方程________.20.因式分解:m 3n ﹣9mn =______.三、解答题21.已知等腰三角形一腰上的中线将三角形的周长分为9cm 和15cm 两部分,求这个等腰三角形的底边长和腰长.22.某校利用暑假进行田径场的改造维修,项目承包单位派遣一号施工队进场施工,计划用50天时间完成整个工程:当一号施工队工作5天后,承包单位接到通知,有一大型活动要在该田径场举行,要求比原计划提前18天完成整个工程,于是承包单位派遣二号与一号施工队共同完成剩余工程,结果按通知要求如期完成整个工程.(1)若二号施工队单独施工,完成整个工程需要多少天?(2)若此项工程一号、二号施工队同时进场施工,完成整个工程需要多少天?23.书店老板去图书批发市场购买某种图书,第一次用1200元购买若干本,很快售完.第二次购买时,每本书的进价比第一次提高了20%,他用1500元所购买的数量比第一次多10本.求第一次购买的图书,每本进价多少元?24.计算:(1)332111x x x x ⎛⎫-⋅ ⎪-⎝⎭.(2)224244x x x x x ---++. 25.如图所示90,A D AB DC ∠=∠=︒=,点,E F 在BC 上且BE CF =.(1)求证:AF DE =;(2)若PO 平分EPF ∠,则PO 与线段BC 有什么关系?为什么?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】设小组原有x 人,根据题意可得,出发时又增加了两位同学,结果每位同学比原来少分摊了3元车费,列方程即可.【详解】设小组原有x 人,可得:180180 3.2x x -=+ 故选B.【点睛】考查由实际问题抽象出分式方程,读懂题目,找出题目中的等量关系是解题的关键. 2.C解析:C【解析】【分析】设这个多边形的边数为n ,根据多边形的内角和定理得到(n ﹣2)×180°=720°,然后解方程即可.【详解】设这个多边形的边数为n ,由多边形的内角和是720°,根据多边形的内角和定理得(n -2)180°=720°.解得n=6.故选C.【点睛】本题主要考查多边形的内角和定理,熟练掌握多边形的内角和定理是解答本题的关键.3.C解析:C【解析】【分析】先根据BC 的垂直平分线交BD 于点E 证明△BFE ≌△CFE (SAS ),根据全等三角形的性质和角平分线的性质得到ABE EBF ECF ∠=∠=∠,再根据三角形内角和定理即可得到答案.【详解】解:如图:∵BC 的垂直平分线交BD 于点E ,∴BF=CF,∠BFE=∠CFE=90°,在△BFE 和△CFE 中,EF EF EFB EFC BF CF =⎧⎪∠=∠⎨⎪=⎩∴△BFE ≌△CFE (SAS ),∴EBF ECF ∠=∠(全等三角形对应角相等),又∵BD 平分∠ABC ,∴ABE EBF ECF ∠=∠=∠,又∵180ABE EBF ECF ACE A ∠+∠+∠+∠+∠=︒(三角形内角和定理), ∴180602496ABE EBF ECF ∠+∠+∠=︒-︒-︒=︒, ∴196323ABE ∠=⨯︒=︒, 故选C .【点睛】本题主要考查了三角形全等的判定与性质、角平分线的性质、三角形内角和定理,证明ABE EBF ECF ∠=∠=∠是解题的关键.4.C解析:C【解析】【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围,再根据第三边是整数,从而求得周长最大时,对应的第三边的长.【详解】解:设第三边为a,根据三角形的三边关系,得:4-3<a<4+3,即1<a<7,∵a为整数,∴a的最大值为6,则三角形的最大周长为3+4+6=13.故选:C.【点睛】本题考查了三角形的三边关系,根据三边关系得出第三边的取值范围是解决此题的关键.5.B解析:B【解析】【分析】直接利用分式有意义,则分母不为零,进而得出答案.【详解】解:要使分式13a有意义,则a+3≠0,解得:a≠-3.故选:B.【点睛】此题主要考查了分式有意义的条件,正确把握分式有意义的条件是解题关键.6.B解析:B【解析】【分析】求出AD=BD,根据∠FBD+∠C=90°,∠CAD+∠C=90°,推出∠FBD=∠CAD,根据ASA证△FBD≌△CAD,推出CD=DF即可.【详解】解:∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEB=∠ADC=90°,∴∠EAF+∠AFE=90°,∠FBD+∠BFD=90°,∵∠AFE=∠BFD,∴∠EAF=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABC,∴AD=BD,在△ADC和△BDF中CAD DBF AD BDFDB ADC∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADC≌△BDF,∴DF=CD=4,故选:B.【点睛】此题主要考查了全等三角形的判定,关键是找出能使三角形全等的条件.7.D解析:D【解析】解:设△ABP中AB边上的高是h.∵S△P AB=13S矩形ABCD,∴12AB•h=13AB•AD,∴h=23AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l 的对称点E,连接AE,连接BE,则BE就是所求的最短距离.在Rt△ABE中,∵AB=5,AE=2+2=4,∴BE=22AB AE+ =2254+=41,即P A+PB 的最小值为41.故选D.8.A解析:A【解析】分析:先把23m﹣2n化为(2m)3÷(2n)2,再求解.详解:∵2m=3,2n=5,∴23m﹣2n=(2m)3÷(2n)2=27÷25=2725.故选A.点睛:本题主要考查了同底数幂的除法及幂的乘方与积的乘方,解题的关键是把23m﹣2n化为(2m)3÷(2n)2.9.D解析:D【解析】【分析】分式方程去分母转化为整式方程,表示出整式方程的解,根据分式方程解为负数列出关于a 的不等式,求出不等式的解集即可确定出a 的范围.【详解】分式方程去分母得:x 12x a +=+,即x 1a =-,因为分式方程解为负数,所以1a 0-<,且1a 1-≠-,解得:a 1>且a 2≠,故选D .【点睛】本题考查了分式方程的解,熟练掌握解分式方程的一般步骤及注意事项是解题的关键.注意在任何时候都要考虑分母不为0.10.B解析:B【解析】【分析】根据所给图形,分别计算出它们的周长,然后判断各选项即可.【详解】A. L=(6+10)×2=32,其周长为32.B. 该平行四边形的一边长为10,另一边长大于6,故其周长大于32.C. L=(6+10)×2=32,其周长为32.D. L=(6+10)×2=32,其周长为32.采用排除法即可选出B故选B.【点睛】此题考查多边形的周长,解题在于掌握计算公式.11.B解析:B【解析】【分析】根据三角形的角平分线、中线、高的定义及性质判断A ;根据三角形的内角和定理判断B ;根据三角形的高的定义及性质判断C ;根据三角形外角的性质判断D .【详解】A 、三角形的角平分线、中线与锐角三角形的三条高均在三角形内部,而直角三角形有两条高与直角边重合,另一条高在三角形内部;钝角三角形有两条高在三角形外部,一条高在三角形内部,故本选项错误;B、如果三角形中每一个内角都小于60°,那么三个角的和小于180°,与三角形的内角和定理相矛盾,故本选项正确;C、直角三角形有三条高,故本选项错误;D、三角形的一个外角大于和它不相邻的任何一个内角,故本选项错误;故选B.【点睛】本题考查了三角形的角平分线、中线、高的定义及性质,三角形的内角和定理,三角形外角的性质,熟记定理与性质是解题的关键.12.A解析:A【解析】【分析】4张边长为a的正方形卡片的面积为4a2,4张边长分别为a、b的矩形卡片的面积为4ab,1张边长为b的正方形卡片面积为b2,9张卡片拼成一个正方形的总面积=4a2+4ab+b2=(2a+b)2,所以该正方形的边长为:2a+b.【详解】设拼成后大正方形的边长为x,∴4a2+4ab+b2=x2,∴(2a+b)2=x2,∴该正方形的边长为:2a+b.故选A.【点睛】本题主要考查了完全平方公式的几何意义,利用完全平方公式分解因式后即可得出大正方形的边长.二、填空题13.2n-1【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3以及A2B2=2B1A2得出A3B3=4B1A2=4A4B4=8B1A2=8A5B5=16B1A2…进而得解析:2n-1【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.【详解】∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:△A n B n A n+1的边长为 2n-1.故答案是:2n-1.【点睛】此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.14.9【解析】∵m−n=2mn=−1∴(1+2m)(1−2n)=1−2n+2m−4mn=1+2(m−n)−4mn=1+4+4=9故答案为9点睛:本题考查了多项式乘多项式法则合并同类项时要注意项中的指数及解析:9【解析】∵m−n=2,mn=−1,∴(1+2m)(1−2n)=1−2n+2m−4mn=1+2(m−n)−4mn=1+4+4=9.故答案为9.点睛:本题考查了多项式乘多项式法则,合并同类项时要注意项中的指数及字母是否相同.15.﹣4或6【解析】【分析】根据增根是分式方程化为整式方程后产生的使分式方程的分母为0的根把增根代入化为整式方程的方程即可求出k 的值【详解】方程两边都乘(x+1)(x ﹣1)得2(x+1)+kx =3(x ﹣解析:﹣4或6【解析】【分析】根据增根是分式方程化为整式方程后产生的使分式方程的分母为0的根,把增根代入化为整式方程的方程即可求出k 的值.【详解】方程两边都乘(x +1)(x ﹣1),得2(x +1)+kx =3(x ﹣1),即(k ﹣1)x =﹣5,∵最简公分母为(x +1)(x ﹣1),∴原方程增根为x =±1, ∴把x =1代入整式方程,得k =﹣4.把x =﹣1代入整式方程,得k =6.综上可知k =﹣4或6.故答案为﹣4或6.【点睛】本题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.16.-4【解析】【分析】增根是化为整式方程后产生的不适合分式方程的根所以应先确定增根的可能值让最简公分母确定可能的增根;然后代入化为整式方程的方程求解即可得到正确的答案【详解】解:去分母方程两边同时乘以 解析:-4【解析】【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x 20-=,确定可能的增根;然后代入化为整式方程的方程求解,即可得到正确的答案.【详解】 解:m 2x 1x 22x-=--, 去分母,方程两边同时乘以x 2-,得:m 2x x 2+=-,由分母可知,分式方程的增根可能是2,当x 2=时,m 422+=-,m 4=-.故答案为4-.【点睛】考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.17.cm【解析】【分析】【详解】∵AD是BC边上的中线∴BD=CD∵△ABC的周长为27cmAC=9cm∴AB+BC=27-9=18cm∴AB+2BD=18cm∵AD=6cm△ABD周长为19cm∴AB解析:cm.【解析】【分析】【详解】∵AD是BC边上的中线,∴BD=CD,∵△ABC的周长为27cm,AC=9cm,∴AB+BC=27-9=18 cm,∴AB+2BD=18 cm,∵AD=6cm,△ABD周长为19cm,∴AB+BD=19-6=13 cm,∴BD=5 cm,∴AB=8 cm,故答案为8 cm.18.【解析】由于分式的分母不能为0x-5在分母上因此x-5≠0解得x解:∵分式有意义∴x-5≠0即x≠5故答案为x≠5本题主要考查分式有意义的条件:分式有意义分母不能为0解析:【解析】由于分式的分母不能为0,x-5在分母上,因此x-5≠0,解得x.解:∵分式15x有意义,∴x-5≠0,即x≠5.故答案为x≠5.本题主要考查分式有意义的条件:分式有意义,分母不能为0.19.【解析】【分析】设改进技术前每天烧吨煤则改进技术后每天烧(x-2)吨根据储存的煤比原计划多用15天即可列方程求解【详解】解:设改进技术前每天烧吨煤则改进技术后每天烧(x-2)吨根据题意得:故答案为:解析:3503350315 2x xx x---=-【解析】【分析】设改进技术前每天烧x吨煤,则改进技术后每天烧(x-2)吨,根据储存的煤比原计划多用15天,即可列方程求解.【详解】解:设改进技术前每天烧x吨煤,则改进技术后每天烧(x-2)吨,根据题意得:35033503152x xx x---=-,故答案为:35033503152x xx x---=-.【点睛】本题考查了分式方程的应用,利用分式方程解应用题时,一般题目中会有两个相等关系,这时要根据题目所要解决的问题,选择其中的一个相等关系作为列方程的依据,而另一个则用来设未知数.20.mn(m+3)(m﹣3)【解析】分析:原式提取mn后利用平方差公式分解即可详解:原式=mn(m2-9)=mn(m+3)(m-3)故答案为mn(m+3)(m-3)点睛:此题考查了提公因式法与公式法的综解析:mn(m+3)(m﹣3)【解析】分析:原式提取mn后,利用平方差公式分解即可.详解:原式=mn(m2-9)=mn(m+3)(m-3).故答案为mn(m+3)(m-3).点睛:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.三、解答题21.底边长为4cm,腰长为10cm.【解析】【分析】根据题意画出图形,设△ABC的腰长为xcm,则AD=DC=12xcm,然后根据AB+AD=9和AB+AD=15两种情况分别求出底边和腰长,最后根据三角形的三边关系进行判定是否能够构成三角形,从而得出答案.【详解】如图,△ABC是等腰三角形,AB=AC,BD是AC边上的中线.设△ABC的腰长为xcm,则AD=DC=12 xcm.分下面两种情况解:①AB+AD=x+12x=9,∴x=6. ∵三角形的周长为9+15=24(cm),∴三边长分别为6cm,6cm,12cm. 6+6=12,不符合三角形的三边关系,舍去;②AB +AD =x +12x =15, ∴x =10. ∵三角形的周长为24cm , ∴三边长分别为10cm ,10cm ,4cm ,符合三边关系.综上所述,这个等腰三角形的底边长为4cm ,腰长为10cm.【点睛】本题主要考查的是等腰三角形的性质以及分类讨论思想的应用,属于中等难度的题型.学会分类讨论是解决这个问题的关键.22.(1)75天;(2)30天 【解析】【分析】(1)设二号施工队单独施工需要x 天,根据一号施工队完成的工作量+二号施工队完成的工作量=总工程(单位1),即可得出关于x 的分式方程,解之经检验后即可得出结论; (2)根据工作时间=工作总量÷工作效率,即可求出结论.【详解】解:(1)设二号施工队单独施工需要x 天,根据题意得501850518150x---+= 解得:x =75经检验,x =75是原方程的解答:由二号施工队单独施工,完成整个工期需要75天.(2)设此项工程一号、二号施工队同时进场施工,完成整个工程需要y 天,根据题意得 111+=y 5075⎛⎫÷ ⎪⎝⎭, 解得y=30(天)经检验y=30是原方程的根,∴此项工程一号、二号施工队同时进场施工,完成整个工程需要30天.【点睛】本题考查了分式方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量关系,列式计算.23.第一次购买的图书,每本进价为5元.【解析】【分析】设第一次购买的图书的单价为x 元/本,则第二次购买图书的单价为1.2x 元/本,根据数量=总价÷单价结合第二次比第一次多购进10本,即可得出关于x 的分式方程,解之经检验后即可得出结论;【详解】设第一次购买的图书的进价为x 元/本,则第二次购买图书的进价为1.2x 元/本, 根据题意得:150********.2x x -= 解得:x =5,经检验,x =5是原分式方程的解,且符合题意.答:第一次购买的图书,每本进价为5元.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程.24.(1)-1;(2)2644x x --. 【解析】【分析】(1)先算括号内的减法,再算乘法即可;(2)分子分母能因式分解的先因式分解,化简后根据异分母分式的减法法则进行计算.【详解】 解:(1)原式33111x x x x -=⋅=--; (2)原式()()()()()()()22222642222222422x x x x x x x x x x x x x x x x +--++---=-=-==-++---. 【点睛】本题考查了分式的混合运算,熟练掌握运算法则是解题的关键.25.(1)证明见解析;(2)PO 垂直平分BC ;理由见解析.【解析】【分析】(1)根据已知条件证明()Rt ABF Rt DCE HL ∆≅∆即可得出结论;(2)根据Rt ABF Rt DCE ∆≅∆可得出E F ∠=∠,即PEF ∆为等腰三角形,又因为PO 平分EPF ∠,根据三线合一可知PO 垂直平分EF ,从而得出PO 垂直平分BC .【详解】解:(1)证明:∵BE CF BC CB ==,∴BF CE =,在Rt ABF ∆与Rt DCE ∆中, ∵BF CE AB DC =⎧⎨=⎩∴()Rt ABF Rt DCE HL ∆≅∆∴AF DE =(2)PO 垂直平分BC ,∵Rt ABF Rt DCE ∆≅∆,∴E F ∠=∠,∴PEF ∆为等腰三角形,又∵PO 平分EPF ∠,∴PO BC ⊥(三线合一),EO FO =(三线合一)又∵EB FC =,∴BO CO =,∴PO 垂直平分BC .【点睛】本题考查的知识点是全等三角形的判定及性质、垂直平分线的判定、等腰三角形的性质,角平分线的性质,难度不大,但综合性较强,考验了学生综合分析问题的能力.。

2020-2021学年第一学期八年级数学期中考试卷(及答案)共五套

2020-2021学年第一学期八年级数学期中考试卷(及答案)共五套

2020-2021学年第一学期期中考试试卷八年级数学一、选择题(本大题共10小题,每小题2分,共20分)1.下面四个图形分别是低碳、节水、节能和绿色食品标志,在这四个标志中,是轴对称图形的A .B .C .D .2.在平面直角坐标系中,点P (1,﹣2)的位置在A .第一象限B .第二象限C .第三象限D .第四象限3.等腰三角形两边长分别为2和4,则这个等腰三角形的周长为A .6B .8C .10D .8或104.今年10月环太湖中长跑中参赛选手达到21780人,这个数精确到千位表示约为( ) A .2.2×104B .22000C .2.1×104D .225.如图,在数轴上表示实数7+1的点可能是A .PB .QC .RD .S6.如图是跷跷板的示意图,支柱OC 与地面垂直,点O 是AB 的中点,AB 绕着点O 上下转动.当A 端落地时,∠OAC =20°,跷跷板上下可转动的最大角度(即∠A ′OA )是 A .80° B .60° C .40° D .20°7.如图,将一个三角形纸片ABC 沿过点B 的直线折叠,使点C 落在AB 边上的点E 处,折痕为BD ,则下列结论一定正确的是 A .AD =BDB .AE =ACC .ED +EB =DBD .AE +CB =AB8.由下列条件不能判定△ABC 为直角三角形的是A .a =,b =,c =B .∠A +∠B =∠C C .∠A :∠B :∠C =1:3:2D .(b +c )(b ﹣c )=a 29.如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E ,BC =6,DE =3,则△BCE 的面积等于A .6B .8C .9D .1810.如图,在四边形ABCD 中,AB =AC =BD ,AC 与BD 相交于H ,且AC ⊥BD .①ABPQ RS(第5题)ABCA 'B 'O(第6题)(第7题)∥CD ;②△ABD ≌△BAC ;③AB 2+CD 2=AD 2+CB 2;④∠ACB +∠BDA =135°.其中真命题的个数是A .1B .2C .3D .4二、填空题(本大题共8小题,每空2分,共16分) 11.81的算术平方根是 ▲ .12.在平面直角坐标系中,点P (-1,2)关于x 轴的对称点的坐标为 ▲ . 13.如图,在R t △ABC 中,CD 是斜边AB 上的中线,若AB =20,则CD = ▲ . 14.如图,△ABC 是边长为6的等边三角形,D 是BC 上一点,BD =2,DE ⊥BC 交AB 于点E ,则线段AE = ▲ .15.如图,三个正方形中,其中两个正方形的面积分别是100,36,则字母A 所代表的正方形的边长是 ▲ .16.如图,在△ABC 中,AB =AC ,∠B =66°,D ,E 分别为AB ,BC 上一点,AF ∥DE ,若∠BDE =30°,则∠F AC 的度数为 ▲ .17.如图,数轴上点A 、点B 表示的数分别中1和5,若点A 是线段BC 的中点,则点C 所表示的数是 ▲ .18.已知:如图,ΔABC 中,∠A =45°,AB =6,AC =24,点D 、E 、F 分别是三边AB 、BC 、CA 上的点,则ΔDEF 周长的最小值是 ▲ .AB CD E(第14题)AB CD(第13题)(第15题)ABCDH(第10题)(第9题)A BCF DE(第16题)(第17题)(第18题)FEDCBA三、解答题(本大题共9题,共64分) 19.(8分)(1)计算:()234272-+-; (2)已知:4x 2=20,求x 的值.20.(4分)如图,四边形ABCD 中,AB =BC ,AD =CD ,求证:∠A =∠C .CDBA21.(6分)如图,在△ABC 中,AD ⊥BC ,AB =10,BD =8,∠ACD =45°. (1)求线段AD 的长;(2)求△ABC 的周长.22.(6分)已知点A (1,2a -1),点B (-a ,a -3) . ①若点A 在第一、三象限角平分线上,求a 值.②若点B 到x 轴的距离是到y 轴距离的2倍,求点B 所在的象限.23.(8分)如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB ,在图③中已画出点A .按下列要求画图:(1)在图①中,以格点为顶点,AB 为一边画一个等腰三角形ABC ; (2)在图②中,以格点为顶点,AB 为一边画一个正方形;(3)在图③中,以点A 为一个顶点,另外三个顶点也在格点上,画一个面积最大的正方形,这个正方形的面积= .24.(8分)如图,在△ABC 中,AB =AC ,点D 、E 、F 分别在BC 、AB 、AC 边上,且BE =CF ,BD =CE .(1)求证:△DEF 是等腰三角形;(2)当∠A =40°时,求∠DEF 的度数.25.(8分)如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足P A=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值.26.(8分)如图,在Rt△ABC中,∠ACB=90°,AD、BE、CF分别是三边上的中线.(1)若AC=1,BC=.求证:AD2+CF2=BE2;(2)是否存在这样的Rt△ABC,使得它三边上的中线AD、BE、CF的长恰好是一组勾股数?请说明理由.(提示:满足关系a2+b2=c2的3个正整数a、b、c称为勾股数.)27.(8分)定义:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)如图1,在△ABC中,AB=AC,点D在AC边上,且AD=BD=BC,求∠A的大小;(2)在图1中过点C作一条线段CE,使BD,CE是△ABC的三等分线;在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(3)在△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC 边上,且AD=BD,DE=CE,请直接写出∠C所有可能的值.2020~2021学年度第一学期期中考试八年级数学试题一、选择题(共10小题,每小题3分,共30分) 1.下列图形中不是轴对称图形的是( )2.在平面直角坐标系中,点P (-3,2)在( ) A .第一象限B .第二象限C .第三象限D .第四象限 3.三角形中最大的内角不能小于( ) A .30°B .45°C .60°D .90°4.下列关于两个三角形全等的说法: ① 三个角对应相等的两个三角形全等 ② 三条边对应相等的两个三角形全等③ 有两边和它们的夹角对应相等的两个三角形全等 ④ 有两边和其中一边上的高对应相等的两个三角形全等 正确的说法个数是( ) A .1个 B .2个 C .3个 D .4个 5.在平面直角坐标系中,点P (2,-3)关于x 轴的对称点是( )A .(-2,3)B .(2,3)C .(-2,-3)D .(-3,2) 6.如图所示,∠A =28°,∠BFC =92°,∠B =∠C ,则∠BDC 的度数是( )A .85°B .75°C .64°D .60°7.如图,在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别是D 、E ,AD 、CE 交于点H .已知EH =EB =3,AE =5,则CH 的长是( ) A .1B .2C .53D .358.如图所示的正方形网格中,网格线的交点称为格点,已知A 、B 是两格点,如果C 也是图中的格点,且使得△ABC 为等腰三角形,则点C 的个数是( ) A .6个B .7个C .8个D .9个9.如图,AB =2,BC =AE =6,CE =CF =7,BF =8,四边形ABDE 与△CDF 面积的比值是( ) A .21B .32C .43 D .110.如图,在△ABC 中,BC 的垂直平分线DF 交△ABC 的外角平分线AD 于点D ,DE ⊥AB 于点E ,且AB >AC ,则( ) A .BC =AC +AEB .BE =AC +AEC .BC =AC +AD D .BE =AC +AD二、填空题(本大题共6个小题,每小题3分,共18分)11.若一个多边形的内角和是外角和的2倍,则它的边数是___________12.设△ABC 的三边长分别为a 、b 、c ,其中a 、b 满足|a +b -6|+(a -b +4)2=0,则第三边长c 的取值范围是_____________13.点M (-5,3)关于直线x =1的对称点的坐标是___________14.如图所示,在△FED 中,AD =FC ,∠A =∠F .如果用“SAS ”证明△ABC ≌△FED ,只需添加条件_____________即可15.在△ABC 中,高AD 、BE 所在的直线相交于点G ,若BG =AC ,则∠ABC 的度数是_____16.如图,在Rt △ABC 中,∠C =90°,BC =6,AC =8,一条线段PQ =AB =10,P 、Q 两点分别在AC 和过点A 且垂直于AC 的射线AX 上运动,如果以A 、P 、Q 为顶点的三角形与△ABC 全等,则AP =____________三、解答题(共8小题,共72分)17.(本题8分)解方程组:(1) ⎩⎨⎧=-=-32373y x y x(2) ⎩⎨⎧=-=+5342y x y x18.(本题8分)如图所示,在△ABC 中:(1) 画出BC 边上的高AD 和中线AE(2) 若∠B =30°,∠ACB =130°,求∠BAD 和∠CAD 的度数19.(本题8分)如图,点B 、E 、C 、F 在同一直线上,且AB =DE ,AC =DF ,BE =CF ,请将下面说明△ABC ≌△DEF 的过程和理由补充完整解:∵BE =CF (_____________)∴BE +EC =CF +EC即BC =EF在△ABC 和△DEF 中⎪⎩⎪⎨⎧===__________________BC DF AB )()(∴△ABC ≌△DEF (__________)20.(本题8分)如图所示,D是边AB的中点,△BCD的周长比△ACD的周长大3 cm,BC=8 cm,求边AC的长21.(本题8分)已知,如图所示,CE⊥AB与E,BF⊥AC与F,且BD=CD,求证:(1) △BDE≌△CDF(2) 点D在∠BAC的角平分线上22.(本题10分)如图,设△ABC和△CDE都是等边三角形,并且∠EBD=90°,求证:(1) △ACE≌△BCD(2) 求∠AEB的度数23.(本题10分)如图1,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F(1) 直接写出∠AFC的度数(2) 请你判断并写出FE与FD之间的数量关系(3) 如图2,在△ABC中,如果∠ACB不是直角,而(1)中的其它条件不变,试判断线段AE、CD 与AC之间的数量关系并说明理由24.(本题12分)如图1,直线AB分别与x轴、y轴交于A、B两点,OC平分∠AOB交AB于点C,点D为线段AB上一点,过点D作DE∥OC交y轴于点E.已知AO=m,BO=n,且m、n 满足(n-6)2+|n-2m|=0(1) 求A、B两点的坐标(2) 若点D为AB中点,求OE的长(3) 如图2,若点P(x,-2x+6)为直线AB在x轴下方的一点,点E是y轴的正半轴上一动点,以E为直角顶点作等腰直角△PEF,使点F在第一象限,且F点的横、纵坐标始终相等,求点P 的坐标2020-2021学年八年级(上)期中数学模拟试卷一.选择题(共12小题,满分36分,每小题3分)1.下面的图形中,是轴对称图形的是()A.B.C.D.2.下列因式分解结果正确的是()A.x2+3x+2=x(x+3)+2 B.4x2﹣9=(4x+3)(4x﹣3)C.x2﹣5x+6=(x﹣2)(x﹣3)D.a2﹣2a+1=(a+1)23.利用尺规进行作图,根据下列条件作三角形,画出的三角形不唯一的是()A.已知三条边B.已知两边和夹角C.已知两角和夹边D.已知三个角4.用尺规作图法作已知角∠AOB的平分线的步骤如下:①以点O为圆心,任意长为半径作弧,交OB于点D,交OA于点E;②分别以点D,E为圆心,以大于DE的长为半径作弧,两弧在∠AOB的内部相交于点C;③作射线OC.则射线OC为∠AOB的平分线.由上述作法可得△OCD≌△OCE的依据是()A.SAS B.ASA C.AAS D.SSS5.已知一个三角形有两边相等,且周长为25,若量得一边为5,则另两边长分别为()A.10,10 B.5,10 C.12.5,12.5 D.5,156.若关于x的二次三项式x2+kx+b因式分解为(x﹣1)(x﹣3),则k+b的值为()A.﹣1 B.1 C.﹣3 D.37.如图,已知AB∥CF,E为DF的中点,若AB=8cm,CF=5cm,则BD为()A.2cm B.3cm C.4cm D.1cm8.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A.30°B.35°C.45°D.60°9.当x=1时,代数式x3+x+m的值是7,则当x=﹣1时,这个代数式的值是()A.7 B.3 C.1 D.﹣710.如图,△BDC′是将矩形纸片ABCD沿BD折叠得到的,BC′与AD交于点E,则图中共有全等三角形()A.2对B.3对C.4对D.5对11.已知AD∥BC,AB⊥AD,点E,点F分别在射线AD,射线BC上.若点E与点B关于AC 对称,点E与点F关于BD对称,AC与BD相交于点G,则()A.1+AB/AD=B.2BC=5CFC.∠AEB+22°=∠DEF D.4AB/BD =12.如图,Rt△ABC中,AD是∠BAC的平分线,DE⊥AB,垂足为E,若AB=10cm,AC=6cm,则BE的长度为()A.10cm B.6cm C.4cm D.2cm二.填空题(共6小题,满分18分,每小题3分)13.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为.14.如图,在△ABC中,AF平分∠BAC,AC的垂直平分线交BC于点E,∠B=70°,∠FAE=19°,则∠C= 度.15.已知:在△ABC中,AH⊥BC,垂足为点H,若AB+BH=CH,∠ABH=70°,则∠BAC= °.16.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB,若EC=2,则EF= .17.矩形纸片ABCD中,AB=3cm,BC=4cm,现将纸片折叠压平,使A与C重合,设折痕为EF,则重叠部分△AEF的面积等于.18.我们将1×2×3×…×n记作n!(读作n的阶乘),如2!=1×2,3!=1×2×3,4!=1×2×3×4,若设S=1×1!+2×2!+3×3!+…+2016×2016!,则S除以2017的余数是.三.解答题(共7小题)19.因式分解:(1)9a2﹣4(2)ax2+2a2x+a320.如图,△ABC三个顶点的坐标分别为A(4,5)、B(1,0)、C(4,0).(1)画出△ABC关于y轴的对称图形△A1B1C1,并写出A1点的坐标;(2)在y轴上求作一点P,使△PAB的周长最小,并求出点P的坐标及△PAB的周长最小值.21.如图,已知:A、F、C、D在同一条直线上,BC=EF,AB=DE,AF=CD.求证:BC∥EF.22.若m2﹣2m n+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+()=0,即()2+()2=0.根据非负数的性质,∴m=n=阅读上述解答过程,解答下面的问题,设等腰三角形ABC的三边长a、b、c,且满足a2+b2﹣4a﹣6b+13=0,求△ABC的周长.23.如图,BC⊥CD,∠1=∠2=∠3,∠4=60°,∠5=∠6.(1)CO是△BCD的高吗?为什么?(2)求∠5、∠7的度数.24.如图,△ABC中,AB=AC,∠BAC=90°,点D是直线AB上的一动点(不和A、B重合),BE⊥CD于E,交直线AC于F.(1)点D在边AB上时,证明:AB=FA+BD;(2)点D在AB的延长线或反向延长线上时,(1)中的结论是否成立?若不成立,请画出图形并直接写出正确结论.25.如图,某学校(A点)与公路(直线L)的距离AB为300米,又与公路车站(D点)的距离AD为500米,现要在公路上建一个小商店(C点),使CA=CD,求商店与车站之间的距离CD的长.参考答案一.选择题1. D.2. C.3. D.4. D.5. A.6. A.7. B.8. B.9. B.10. C.11. A.12. C.二.填空题13. 4.14. 24.15. 75°或35°16. 4.17..18. 2016.三.解答题19.解:(1)9a2﹣4=(3a+2)(3a﹣2)(2)ax2+2a2x+a3=a(x+a)220.解:(1)如图所示,由图可知 A1(﹣4,5);(2)如图所示,点P即为所求点.设直线AB1的解析式为y=kx+b(k≠0),∵A(4,5),B1(﹣1,0),∴,解得,∴直线AB1的解析式为y=x+1,∴点P坐标(0,1),∴△PAB的周长最小值=AB1+AB=+=5+.21.证明:如图,∵AF=CD,∴AF+CF=CD+CF,即AC=DF.∴在△ABC与△DEF中,,∴△ABC≌△DEF(SSS),∴∠BCA=∠EFD,∴BC∥EF.22.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0,即(m﹣n)2+(n﹣4)2=0.根据非负数的性质,∴m=n=4,故答案为:n2﹣8n+16;m﹣n;n﹣4;4;已知等式变形得:(a﹣2)2+(b﹣3)2=0,所以a=2,b=3,第一种情况2,2,3,周长=7;第二种情况3,3,2,周长=8.23.解:(1)CO是△BCD的高.理由如下:∵BC⊥CD,∴∠DCB=90°,∴∠1=∠2=∠3=45°,∴△DCB是等腰直角三角形,∴CO是∠DCB的角平分线,∴CO⊥BD(等腰三角形三线合一);(2)∵在△ACD中,∠1=∠3=45°,∠4=60°,∴∠5=30°,又∵∠5=∠6,∴∠6=30°,∴在直角△AOB中,∠7=180°﹣90°﹣30°=60°.24.(本题满分8分)(1)证明:如图1,∵BE⊥CD,即∠BEC=90°,∠BAC=90°,∴∠F+∠FBA=90°,∠F+∠FCE=90°.∴∠FBA=∠FCE.……………………………………………………………(1分)∵∠FAB=180°﹣∠DAC=90°,∴∠FAB=∠DAC.∵AB=AC,∴△FAB≌△DAC.………………………………………………(2分)∴FA=DA.………………………………………………∴AB=AD+BD=FA+BD.………………………………………(4分)(2)如图2,当D在AB延长线上时,AF=AB+BD,…………(6分)理由是:同理得:△FAB≌△DAC,∴AF=AD=AB+BD;如图3,当D在AB反向延长线上时,BD=AB+AF,…………………(8分)理由是:同理得:△FAB≌△DAC,∴AF=AD,∴BD=AB+AD=AB+AF.25.解:∵AB⊥l于B,AB=300m,AD=500m.∴BD==400m.设CD=x米,则CB=(400﹣x)米,x2=(400﹣x)2+3002,x2=160000+x2﹣800x+3002,800x=250000,x=312.5m.答:商店与车站之间的距离为312.5米.2020-2021学年八年级(上)期中数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cmC.5cm,5cm,10cm D.6cm,7cm,14cm2.下列四个图案中,不是轴对称图案的是()A.B.C.D.3.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)4.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CADC.BE=DC D.AD=DE5.下列计算正确的是()A.a2+a2=2a4B.2a2×a3=2a6C.3a﹣2a=1 D.(a2)3=a6[来6.只用一种正六边形地砖密铺地板,则能围绕在正六边形的一个顶点处的正六边形地砖有()A.3块B.4块C.5块D.6块7.如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC ≌△DEF的是()A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE8.到三角形三个顶点的距离相等的点是三角形()的交点.A.三个内角平分线B.三边垂直平分线C.三条中线D.三条高9.如图,四边形ABCD中,F是CD上一点,E是BF上一点,连接AE、AC、DE.若AB=AC,AD=AE,∠BAC=∠DAE=70°,AE平分∠BAC,则下列结论中:①△ABE≌△ACD:②BE=EF;③∠BFD=110°;④AC垂直平分DE,正确的个数有()A.1个B.2个C.3个D.4个10.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6 个B.7 个C.8 个D.9个二.填空题(共6小题,满分18分,每小题3分)11.计算(2m2n2)2•3m2n3的结果是.12.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是.13.等腰三角形的一个外角是80°,则其底角是度.14.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是.15.如图,在Rt△ABC中,斜边AB的垂直平分线交边AB于点E,交边BC于点D,如果∠B=28°,那么∠CAD= 度.16.在等边三角形ABC中,AD是BC边上的高,E为AC的中点P为AD上一动点,若AD=12,则PC+PE的最小值为.三.解答题(共9小题,满分72分)17.(6分)计算:(1)(12a3﹣6a2+3a)÷3a;(2)(x﹣y)(x2+xy+y2).18.(6分)如图,∠A=50°,OB、OC为角平分线,求∠BOC.19.(8分)如图,方格图中每个小正方形的边长为1,点A,B,C都是格点.(1)画出△ABC关于直线BM对称的△A1B1C1;(2)写出AA1的长度.20.(8分)计算:(1)﹣(a2b)3+2a2b•(﹣3a2b)2(2)(a+2b﹣c)(a﹣2b+c)(3)已知6x﹣5y=10,求[(﹣2x+y)(﹣2x﹣y)﹣(2x﹣3y)2]÷4y的值.21.(8分)如图,点D,C在BF上,AB∥EF,∠A=∠E,BD=CF.求证:AB=EF.22.(8分)已知一个等腰三角形的三边长分别为2x﹣1、x+1、3x﹣2,求这个等腰三角形的周长.(1)完成部分解题过程,在以下解答过程的空白处填上适当的内容.解:①当2x﹣1=x+1时,解x= ,此时构成三角形(填“能”或“不能”).②当2x﹣1=3x﹣2时,解x= ,此时构成三角形(填“能”或“不能”).(2)请你根据(1)中两种情况的分类讨论,完成第三种情况的分析,若能构成等腰三角形,求出这个三角形的周长.24.(10分)已知,△ABC是等边三角形,过点C作CD∥AB,且CD=AB,连接BD交AC于点O(1)如图1,求证:AC垂直平分BD;(2)点M在BC的延长线上,点N在AC上,且MD=NM,连接BN.①如图2,点N在线段CO上,求∠NMD的度数;②如图3,点N在线段AO上,求证:NA=MC.25.(10分)已知△ABC是等边三角形,点D,E,F分别是边AB,BC,AC的中点,点M是射线EC上的一个动点,作等边△DMN,使△DMN与△ABC在BC边同侧,连接NF.(1)如图1,当点M与点C重合时,直接写出线段FN与线段EM的数量关系;(2)当点M在线段EC上(点M与点E,C不重合)时,在图2中依题意补全图形,并判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)连接DF,直线DM与直线AC相交于点G,若△DNF的面积是△GMC面积的9倍,AB=8,请直接写出线段CM的长.参考答案与试题解析一.选择题1.【解答】解:A、∵5+4=9,9=9,∴该三边不能组成三角形,故此选项错误;B、8+8=16, 16>15,∴该三边能组成三角形,故此选项正确;C、5+5=10,10=10,∴该三边不能组成三角形,故此选项错误;D、6+7=13,13<14,∴该三边不能组成三角形,故此选项错误;故选:B.2.【解答】解:A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.3.【解答】解:点M(1,2)关于y轴对称点的坐标为(﹣1,2).故选:A.4.【解答】解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选:D.5.【解答】解:A、应为a2+a2=2a2,故本选项错误;B、应为2a2×a3=2a5,故本选项错误;C、应为3a﹣2a=a,故本选项错误;D、(a2)3=a6,正确.故选:D.6.【解答】解:因为正六边形的内角为120°,所以360°÷120°=3,即每一个顶点周围的正六边形的个数为3.故选:A.7.【解答】解:A、添加DE=AB与原条件满足SSA,不能证明△ABC≌△DEF,故A选项正确.B、添加DF∥AC,可得∠DFE=∠ACB,根据AAS能证明△ABC≌△DEF,故B选项错误.C、添加∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故C选项错误.D、添加AB∥DE,可得∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故D选项错误.故选:A.8.【解答】解:到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点.故选:B.9.【解答】解:∵AB=AC,∠BAC=∠DAE,AE=AD,∴ABE≌△ACD,故①正确.∵ABE≌△ACD,∴∠AEB=∠ADC.∵∠AEB+∠AEF=180°,∴∠AEF+∠ADC=180°,∴∠BFD=180°﹣∠EAD=180°﹣70°=110°,故③正确.∵AE平分∠BAC,∴∠EAC=35°.又∵∠DAE=70°,∴AC平分∠EAD.又∵AE=AD,∴AC⊥EF,AC平分EF.∴AC是EF的垂直平分线,故④正确.由已知条件无法证明BE=EF,故②错误.故选:C.10.【解答】解:如图,分情况讨论:①AB为等腰△ABC的底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选:C.二.填空题(共6小题,满分18分,每小题3分)11.【解答】解:原式=4m4n4•3m2n3=12m6n7,故答案是:12m6n7.12.【解答】解:设多边形的边数为n,根据题意,得(n﹣2)•180=3×360,解得n=8.则这个多边形的边数是八.13.【解答】解:与80°角相邻的内角度数为100°;当100°角是底角时,100°+100°>180°,不符合三角形内角和定理,此种情况不成立;当100°角是顶角时,底角的度数=80°÷2=40°;故此等腰三角形的底角为40°.故填40.14.【解答】解:过O作OE⊥AB于E,OF⊥AC于F,连接OA,∵OB,OC分别平分∠ABC和∠ACB,OD⊥BC,∴OE=OD,OD=OF,即OE=OF=OD=4,∴△ABC的面积是:S△AOB+S△AOC+S△OBC=×AB×OE+×AC×OF+×BC×OD=×4×(AB+AC+BC)=×4×21=42,故答案为:42.15.【解答】解:在Rt△ABC中,∠B=28°,∴∠CAB=90°﹣28°=62°,∵DE垂直平分AB,∴AD=BD,∴∠DAB=∠B=28°,∴∠CAD=∠CAB﹣∠DAB=62°﹣28°=34°.故答案为:34.16.【解答】解:如图,连接BE,与AD交于点P,此时PE+PC最小,∵△ABC是等边三角形,AD⊥BC,∴PC=PB,∴PE+PC=PB+PE=BE,即BE就是PE+PC的最小值,∵AD=12,点E是边AC的中点,∴AD=BE=12,∴PE+PC的最小值是12.故答案为12,三.解答题(共9小题,满分72分)17.【解答】解:(1)(12a3﹣6a2+3a)÷3a;=12a3÷3a﹣6a2÷3a+3a÷3a=4a2﹣2a+1;(2)(x﹣y)(x2+xy+y2).=x3+x2y+xy2﹣x2y﹣xy2﹣y3=x3﹣y3.18.【解答】解:∵OB、OC为角平分线,∴∠ABC=2∠OBC,∠ACB=2∠OCB,∵∠ABC+∠ACB=180°﹣∠A,∠OBC+∠OCB=180°﹣∠BOC,∴2∠OBC+2∠OCB=180°﹣∠A,∴180°﹣∠A=2(180°﹣∠BOC),∴∠BOC=90°+∠A=90°+×50°=115°.19.【解答】解:(1)如图所示,△A1B1C1即为所求.(2)由图可知,点A与点A1之间10个格子,所以AA1的长度为10.20.【解答】解:(1)原式=﹣a6b3+2a2b•9a4b2=﹣a6b3+18a6b3=17a6b3(2)原式=[a+(2b﹣c)][a﹣(2b﹣c)]=a2﹣(2b﹣c)2=a2﹣(4b2﹣4bc+c2)=a2﹣4b2+4bc﹣c2(3)当6x﹣5y=10时,∴3x﹣2.5y=5原式=[4x2﹣y2﹣(4x2﹣12xy+9y2)]÷4y=(12xy﹣10y2)÷4y=3x﹣2.5y=522.【解答】解:(1)①当2x﹣1=x+1时,解x=2,此时3,3,4,能构成三角形.②当2x﹣1=3x﹣2时,解x=1,此时1,2,1不能构成三角形.故答案为2,能,1,不能;(2)③当x+1=3x﹣2,解得x=,此时2,,能构成三角形.23.【解答】解:接OA,OB后,可证∠OAP=∠OBP=90°,其依据是直径所对圆周角为直角;由此可证明直线PA,PB都是⊙O的切线,其依据是经过半径外端且垂直于这条半径的直线是圆的切线,证明过程如下:由作图可知OP为⊙C的直径,∴∠OAP=∠OBP=90°,即OA⊥PA、OB⊥PB,∵OA、OB是⊙O的半径,∴OP是⊙O的切线.故答案为:直径所对圆周角为直角,经过半径外端且垂直于这条半径的直线是圆的切线.2020-2021学年八年级(上)期中数学模拟试卷一.选择题(共6小题,满分18分,每小题3分)1.如果三角形的三个内角的度数比是2:3:4,则它是()A.锐角三角形B.钝角三角形C.直角三角形D.钝角或直角三角形2.下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cmC.5cm,5cm,10cm D.6cm,7cm,14cm3.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙4.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE 5.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2) C.(1,﹣2)D.(2,﹣1)6.如右图是三条两两相交的笔直公路,某物流公司现要修建一个货物中转站,使它到三条公路的距离相等,这个货物中转站可选的位置有()A.3个B.4个C.5个D.6个二.填空题(共8小题,满分24分,每小题3分)7.如图,点E在△ABC边BC的延长线上,CD平分∠ACE,若∠A=70°,∠DCA=65°,则∠B的度数是.8.(3分)如图,在△ABC中,∠B=40°,∠C=28°,点D在BA的延长线上,则∠CAD的大小为.9.若一个多边形的内角和比外角和大360°,则这个多边形的边数为.10.如图,在△ABC中,AB=AC.以点C为圆心,以CB长为半径作圆弧,交AC的延长线于点D,连结BD.若∠A=32°,则∠CDB的大小为度.11.在△ABC中,∠C=∠A=∠B,则∠A= 度.12.如图,∠1=∠2,要使△ABE≌△ACE,还需添加一个条件是(填上你认为适当的一个条件即可).13.已知点P(3,1)关于y轴的对称点Q的坐标是(a+b,﹣1﹣b),则ab的值为.14.在△ABC中,BC=9,AB的垂直平分线交BC与点M,AC的垂直平分线交BC于点N,则△AMN的周长= .三.解答题(共4小题,满分24分,每小题6分)15.(6分)等腰三角形一腰上的中线,分别将该三角形周长分成30cm 和33cm,试求该等腰三角形的底边长.16.(6分)如图,点F是△ABC的边BC延长线上一点.DF⊥AB,∠A=30°,∠F=40°,求∠ACF的度数.17.(6分)如图,已知AB=AD,AC=AE,∠1=∠2,求证:BC=DE.18.(6分)如图所示,已知在△ABC中,AB=AC,D为线段BC上一点,E为线段AC上一点,且AD=AE.(1)若∠ABC=60°,∠ADE=70°,求∠BAD与∠CDE的度数;(2)设∠BAD=α,∠CDE=β,试写出α、β之间的关系并加以证明.四.解答题(共3小题,满分21分,每小题7分)19.(7分)已知:如图,△ABC中,D是BC延长线上一点,E是CA 延长线上一点,F是AB上一点,连接EF.求证:∠ACD>∠E.20.(7分)一个多边形,它的内角和比外角和的4倍多180°,求这个多边形的边数.21.(7分)如图,在△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.(1)若∠C=40°,求∠BAD的度数;(2)若AC=5,DC=4,求△ABC的周长.五.解答题(共2小题,满分16分,每小题8分)22.(8分)如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE与CD交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE⊥CD;(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有(请写序号,少选、错选均不得分).23.(8分)已知:如图1所示,等腰直角三角形ABC中,∠BAC=90°,AB=AC,直线MN经过点A,BD⊥MN于点D,CE⊥MN于点E.(1)试判断线段DE、BD、CE之间的数量关系,并说明理由;(2)当直线MN运动到如图2所示位置时,其余条件不变,判断线段DE、BD、CE之间的数量关系.六.解答题(共2小题,满分17分)24.(8分)如图1,P为等边△ABC的边AB上一点,Q为BC延长线上一点,且PA=CQ,连接PQ交AC于点D.(1)求证:PD=DQ;(2)如图2,过P作PE⊥AC于E,若AB=2,求DE的长.25.(9分)如图,△ABC中,∠ACB=90°,AC=BC,将△ABC绕点C 逆时针旋转角α.(0°<α<90°)得到△A1B1C1,连接BB1.设CB1交AB于D,A1B1分别交AB、AC于E、F.(1)在图中不再添加其它任何线段的情况下,请你找出一对全等的三角形,并加以说明(△ABC与△A1B1C1全等除外);(2)当△BB1D是等腰三角形时,求α.参考答案一.选择题1. A.2. B.3. B.4. D.5. A.6. B.二.填空题7.60°.8.68°.9. 6.10.37.11. 60.12.【解答】解:∵∠1=∠2,∴∠AEB=∠AEC,又 AE公共,∴当∠B=∠C时,△ABE≌△ACE(AAS);或BE=CE时,△ABE≌△ACE(SAS);或∠BAE=∠CAE时,△ABE≌△ACE(ASA).13. 214. 9三.解答题16.解:在△DFB中,∵DF⊥AB,∴∠FDB=90°,∵∠F=40°,∠FDB+∠F+∠B=180°,∴∠B=50°.在△ABC中,∵∠A=30°,∠B=50°,∴∠ACF=∠A+∠B=30°+50°=80°.18.解:(1)∵AB=AC,∴∠B=∠C=60°,∴∠BAC=60°,∵AD=AE,∴∠ADE=∠AED=70°,∴∠DAE=40°,∴∠BAD=∠BAC﹣∠DAE=20°,∵∠AED=∠CDE+∠C,∴∠CDE=70°﹣60°=10°.(2)结论:α=2β,理由是:设∠BAC=x°,∠DAE=y°,则α=x°﹣y°,∵∠ACB=∠ABC,∴∠ACB=,∵∠ADE=∠AED,∴∠AED=,∴β=∠AED﹣∠ACB=﹣==,∴α=2β;19.证明:∵∠ACD是△ABC的一个外角,∴∠ACD>∠BAC,∵∠BAC是△AEF的一个外角,∴∠BAC>∠E,∴∠ACD>∠E.20.解:根据题意,得(n﹣2)•180=1620,解得:n=11.则这个多边形的边数是11,内角和度数是1620度.21.(1)解:∵EF垂直平分AC,∴AE=CE,∴∠C=∠EAC=40°,∵AD⊥BC,BD=DE,∴AB=AE,∴∠B=∠BEA=2∠C=80°,∴∠BAD=90°﹣80°=10°;(2)由(1)知:AE=EC=AB,∵BD=DE,∴AB+BD=DE+AE=DE+CE=DC,∴C△ABC=AB+BC+AC=2DC+AC=2×4+5=13..25.解:(1)全等的三角形有:△CBD≌△CA1F或△AEF≌△B1ED或△ACD≌△B1CF;证明:∵∠ACB1+∠A1CF=∠ACB1+∠BCD=90°∴∠A1CF=∠BCD∵A1C=BC∴∠A1=∠CBD=45°∴△CBD≌△CA1F;∴CF=CD,∵CA=CB1,∴AF=B1D,∵∠A=∠EB1D,∠AEF=∠B1ED,∴△AEF≌△B1ED,∵AC=B1C,∠ACD=∠B1CF,∠A=∠CB1F,∴△ACD≌△≌△B1CF.(2)在△CBB1中。

天津市和平区2020-2021学年度第一学期初二数学期中试卷(含答案)

天津市和平区2020-2021学年度第一学期初二数学期中试卷(含答案)

和平区2020~2021年度第一学期八年级数学学科期中质量调查试卷本试卷分为第Ⅰ卷(选择题),第Ⅱ卷(非选择题)两部分,试卷满分100分,考试时间100分钟。

第Ⅰ卷一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1、下列图形中,不是轴对称图形的是()2、如图,要使五边形木架(用五根木条钉成)不变形,至少要再钉上木条的根数是()A.1B.2C.3D.43、下列长度的三条线段,能组成三角形的是()A.1,2,3B.4,5,6C.7,8,16D.9,10,194、如图,AC⊥BC,BD⊥AD,AC=BD,则判定ABC与BAD全等的依据是()A.HLB.SASC.ASAD.AAS5、下列条件能判断ABC与A’B’C’全等的是()A.∠A=∠A’,∠B=∠B’B.AB=A’B’,∠B=∠B’,AC=A’C’C.AB=A’B’,AC=A’C’D.AB=A’B’,∠A=∠A’,AC=A’C’6、如图,C为线段AE上一动点(点C不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O。

则下列结论错误的是()A.AD=BEB.AD=AEC.∠DAC=∠EBCD.∠AOB=60°7、如图,在ABC中,按以下步骤作图:分别以点B和C为圆心,以大于 BC的长为半径画弧,两弧相交于点M和N;做直线MN交于AC于点D,连接BD。

若AC=6,AD=2,则BD的长为()A.2B.3C.4D.68、如图,直线l是一条河,P,Q是两个村庄,欲在l上的某处修建一个水泵站,向P,Q两地供水,现有如下四种铺设方案,途中事件表示铺设的管道,则所需管道最短的是()9、如图,正六边形A1A2A3A4A5A6内部有一个正五边形B1B2B3B4B5,且A3A4∥B3B4,直线l经过点B2,B3.则下列结论错误的是()A∠A1A2A3=120°B.∠A2A3A4=120°C.∠B2B3B4=108°D.直线l与A1A2的夹角α=50°10、如图,在ABC中,AB=AC,过点A作AD⊥AB,交BC于点D,设∠ADB=α,∠CAD=β,则下列结论正确的是()A.3α+β=180°B.2α+β=180°C.3α-β=90°D.2α-β=90°11、如图,ABC中,AB>AC,AD平分∠BAC,交BC于点D,则下列结论正确的是()A.AB-AC>BD-DCB.AB-AC=BD-DCC.AB-AC<BD-DCD.AB-BD<AC-DC12、如图,在等边三角形ABC中,D,E分别为AC,BC边上的点,AD=CE,连接AE,BD交于点F,∠CBD,∠AEC的平分线交于AC上的点G,BG与AE交于点H,连接FG。

2020-2021学年江苏省镇江市八年级上学期期中数学试卷 (解析版)

2020-2021学年江苏省镇江市八年级上学期期中数学试卷 (解析版)

2020-2021学年江苏省镇江市八年级第一学期期中数学试卷一、填空题(共12小题).1.(2分)如图,△ABC≌△A'B'C',其中∠A=35°,∠C=25°,则∠B'=.2.(2分)如图,已知OC是∠AOB的平分线,P是OC上一点,PD⊥OA于点D,PD=2,则点P到OB的距离为.3.(2分)直角三角形的两直角边长分别为6和8,则斜边中线的长是.4.(2分)如图,在△ABC和△DEF中,B、E、C、F在一条直线上,AB∥DE,AB=DE,添加一个条件:,使得△ABC≌△DEF.5.(2分)如图,以直角三角形一边向外作正方形,其中两个正方形的面积为100和64,则正方形A的面积为.6.(2分)已知等腰三角形的一个内角是50°,则等腰三角形的顶角等于°.7.(2分)如图,将一张长方形纸片按如图所示折叠,如果∠1=55°,那么∠2=°.8.(2分)如图,在△ABC中,AC的垂直平分线DE分别交AC、AB于点D、E,若AB =7,BC=5,则△BCE的周长等于.9.(2分)如图,在△ABC中,ED∥BC,∠ABC和∠ACB的平分线分别交ED于点G、F,若BE=5,DC=7,DE=16,则FG=.10.(2分)如图,在△ABC中,CP平分∠ACB,AP⊥CP于点P,已知△ABC的面积为2cm2,则阴影部分的面积为cm2.11.(2分)如图,等腰△ABC中,AB=AC,AC的垂直平分线分别交AB、AC于点D、E,BD的垂直平分线交AB于点F,并且恰好经过点C,则∠A=°.12.(2分)如图,在Rt△ABC中,∠BAC=90°,AD是BC边上的高,点B关于AD的对称点为B',点A关于BC的对称点为A',连接A'B'并延长,交AC于点E,若AB=3,AC=4,则线段CE的长为.二、选择题(本大题共有6小题,每小题3分,共计18分.在每小题所给出的四个选项中,恰有一项符合题目要求.)13.(3分)下面四个手机的图标中,是轴对称图形的是()A.B.C.D.14.(3分)小明玩自拍,自拍照中电子钟示数如图所示,拍照的时刻应是()A.21:10B.10:21C.10:51D.12:0115.(3分)下列四组线段中,不能作为直角三角形三边长度的是()A.3,4,5B.8,15,17C.1.5,2,2.5D.16.(3分)到三角形的三边距离相等的点是()A.三角形三条高的交点B.三角形三条内角平分线的交点C.三角形三条中线的交点D.三角形三条边的垂直平分线的交点17.(3分)如图是4×4的正方形网格,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色,与原来3个黑色方格组成的图形成为轴对称图形,则符合要求的白色小正方格有()A.1个B.2个C.3个D.4个18.(3分)如图,在△ABC中,∠ACB=90°,Rt△ABC≌Rt△AB'C',且∠ABC=∠CAB',连接BC',并取BC'的中点D,则下列四种说法:①AC'∥BC;②△ACC'是等腰直角三角形;③AD平分∠CAB';④AD⊥CB'.其中正确的个数为()A.1个B.2个C.3个D.4个三、解答题(本大题共有8小题,共计78分.解答时应写出必要的文字说明、证明过程或演算步骤.)19.(6分)如图,AB、CD相交于点O,△AOC≌△BOD,点E在AC上,EO的延长线交BD于点F.求证:O是EF的中点.20.(10分)如图所示,每个小正方形的边长为1,△ABC的顶点都在小正方形的顶点处.(1)画出△ABC关于直线l对称的△A'B'C';(2)直接写出△A'B'C'的面积等于;(3)在直线l上求作一点P,使PA+PC的长度最小,并写出这个最小值为.21.(9分)如图,点B、F、C、E在同一直线上,AB⊥BE,垂足为B,DE⊥BE,垂足为E,AC、DF相交于点G,且AC=DF,BF=CE.(1)求证:△ABC≌△DEF;(2)若∠A=65°,则∠DGC=°.22.(9分)如图,AB=AC,BD=CD.(1)求证:△ABD≌△ACD;(2)连接BC,求证:AD⊥BC.23.(10分)如图,△ABC中,BC的垂直平分线DE分别交AB、BC于点D、E,且BD2﹣DA2=AC2.(1)求证:∠A=90°;(2)若AB=8,AD:BD=3:5,求AC的长.24.(10分)如图,在△ABC中,∠ACB=90°,AC=BC=AD.(1)作△ACD的高AE,点E为垂足(要求:尺规作图,不写作法,保留作图痕迹);(2)在射线CD上找一点P,使△PCB与(1)中所作的△ACE全等(要求:尺规作图,不写作法,保留作图痕迹).并证明你所作出的△PCB与△ACE全等.25.(12分)如图,点E在等边△ABC的边AB所在直线上,以EC为一边作等边△ECF,顶点E、C、F顺时针排序.(1)点E在线段AB上,连接BF.求证:BF∥AC;(2)已知AB=6,当△BCF是直角三角形时,求BE的长.26.(12分)如图1,∠MCN=90°,点A在射线CM上滑动,点B在射线CN上滑动,且线段AB的长始终保持10cm不变.(1)若AC=6cm,动点P从点A出发,从点A→点B→点C→点A,速度为2cm/s,设运动时间为ts.当t为何值时,△ACP为等腰三角形;(2)如图2,在滑动过程中,以AB为斜边在AB的右侧作Rt△ABE,在滑动的过程中EC的最大值为.(直接写出结果)参考答案一、填空题(本大题共有12小题,每小题2分,共计24分.)1.(2分)如图,△ABC≌△A'B'C',其中∠A=35°,∠C=25°,则∠B'=120°.解:∵△ABC,∠A=35°,∠C=25°,∴∠B=180°﹣∠A﹣∠C=180°﹣25°﹣35°=120°,∵△ABC≌△A'B'C',∴∠B=∠B′=120°,故答案为:120°.2.(2分)如图,已知OC是∠AOB的平分线,P是OC上一点,PD⊥OA于点D,PD=2,则点P到OB的距离为2.解:作PE⊥OB于E,∵OC是∠AOB的平分线,PD⊥OA,PE⊥OB,∴PE=PD=2,故答案为:2.3.(2分)直角三角形的两直角边长分别为6和8,则斜边中线的长是5.解:已知直角三角形的两直角边为6、8,则斜边长为=10,故斜边的中线长为×10=5,故答案为5.4.(2分)如图,在△ABC和△DEF中,B、E、C、F在一条直线上,AB∥DE,AB=DE,添加一个条件:∠A=∠D或∠ACB=∠DFE或BC=EF,使得△ABC≌△DEF.解:∵AB∥DE,∴∠B=∠DEF,∵AB=DE,添加∠A=∠D,利用ASA得出△ABC≌△DEF;添加∠ACB=∠DFE,利用AAS得出△ABC≌△DEF;添加BC=EF,利用SAS得出△ABC≌△DEF;故答案为:∠A=∠D或∠ACB=∠DFE或BC=EF.5.(2分)如图,以直角三角形一边向外作正方形,其中两个正方形的面积为100和64,则正方形A的面积为36.解:由题意知,BD2=100,BC2=64,且∠DCB=90°,∴CD2=100﹣64=36,正方形A的面积为CD2=36.故答案为36.6.(2分)已知等腰三角形的一个内角是50°,则等腰三角形的顶角等于50或80°.解:如图所示,△ABC中,设AB=AC.分两种情况:①顶角∠A=50°;②当底角是50°时,∵AB=AC,∴∠B=∠C=50°,∵∠A+∠B+∠C=180°,∴∠A=180°﹣50°﹣50°=80°,综上所述,这个等腰三角形的顶角为50°或80°.故答案为:50或80.7.(2分)如图,将一张长方形纸片按如图所示折叠,如果∠1=55°,那么∠2=110°.解:由折叠的性质可得,∠1=∠3,∵∠1=55°,∴∠1=∠3=55°,∵长方形纸片的两条长边平行,∴∠2=∠1+∠3,∴∠2=110°,故答案为:110.8.(2分)如图,在△ABC中,AC的垂直平分线DE分别交AC、AB于点D、E,若AB =7,BC=5,则△BCE的周长等于12.解:∵DE是AC的垂直平分线,∴EA=EC,∴△BCE的周长=BC+BE+EC=BC+BE+EA=BC+AB=12,故答案为:12.9.(2分)如图,在△ABC中,ED∥BC,∠ABC和∠ACB的平分线分别交ED于点G、F,若BE=5,DC=7,DE=16,则FG=4.解:∵ED∥BC,∴∠EGB=∠GBC,∠DFC=∠FCB,∵∠GBC=∠GBE,∠FCB=∠FCD,∴∠EGB=∠EBG,∠DCF=∠DFC,∴BE=EG,CD=DF,∵BE=5,DC=7,DE=16,∴FG=DE﹣EG﹣DF=DE﹣BE﹣CD=16﹣5﹣7=4,故答案为:4.10.(2分)如图,在△ABC中,CP平分∠ACB,AP⊥CP于点P,已知△ABC的面积为2cm2,则阴影部分的面积为1cm2.解:延长AP交BC于D,∵CP平分∠ACB,∴∠ACP=∠DCP,∵AP⊥CP,∴∠APC=∠DPC=90°,在△ACP与△DCP中,,∴△ACP≌△DCP(ASA),∴AP=DP,∴S△ABP=S△ABD,S△ACP=S△ACD,∴阴影部分的面积=S△ABC=2=1(cm2),故答案为:1.11.(2分)如图,等腰△ABC中,AB=AC,AC的垂直平分线分别交AB、AC于点D、E,BD的垂直平分线交AB于点F,并且恰好经过点C,则∠A=36°.解:连接CD,∵DE和CF分别是AC和BD的垂直平分线,∴DA=DC=BC,∴∠DCA=∠A,∠CDB=∠B,∵∠CDB=∠DCA+∠A=2∠A,∴∠B=2∠A,∵AB=AC,∴∠ACB=∠B=2∠A,∵∠A+∠B+∠ACB=180°,∴∠A+2∠A+2∠A=180°∴∠A=36°,故答案为:36.12.(2分)如图,在Rt△ABC中,∠BAC=90°,AD是BC边上的高,点B关于AD的对称点为B',点A关于BC的对称点为A',连接A'B'并延长,交AC于点E,若AB=3,AC=4,则线段CE的长为.解:∵点B关于AD的对称点为B',点A关于BC的对称点为A',∴AD=A′D,BD=B′D,∵AD⊥BC,∠ADB=∠A′DB′,∴△ABD≌△A′B′D(SAS),∴∠B=∠A′B′D,∴A′B′∥AB,∴∠BAC=∠A′EC=90°,在△ABC和△EB′C中,∠C=∠C,∠BAC=∠B′EC,∴△ABC∽△EB′C,∴=,在Rt△ABC中,∠BAC=90°,AB=3,AC=4,∴BC=5,∴AD==,BD==,∴B′D=BD=,∴B′C=BC﹣BD﹣B′D=5﹣﹣=,∴=,解得CE=.故线段CE的长为.故答案为:.二、选择题(本大题共有6小题,每小题3分,共计18分.在每小题所给出的四个选项中,恰有一项符合题目要求.)13.(3分)下面四个手机的图标中,是轴对称图形的是()A.B.C.D.解:A、是轴对称图形,故本选项符合题意;B、不是轴对称图形,故本选不项符合题意;C、不是轴对称图形,故本选不项符合题意;D、不是轴对称图形,故本选不项符合题意;故选:A.14.(3分)小明玩自拍,自拍照中电子钟示数如图所示,拍照的时刻应是()A.21:10B.10:21C.10:51D.12:01解:根据镜面对称的性质可得拍照的时刻应是10:51,故选:C.15.(3分)下列四组线段中,不能作为直角三角形三边长度的是()A.3,4,5B.8,15,17C.1.5,2,2.5D.解:A、32+42=52,能作为直角三角形三边长,故此选项不合题意;B、82+152=172,能作为直角三角形三边长,故此选项不合题意;C、1.52+22=2.52,能作为直角三角形三边长,故此选项不合题意;D、()2+()2≠()2,不能作为直角三角形三边长,故此选项符合题意;16.(3分)到三角形的三边距离相等的点是()A.三角形三条高的交点B.三角形三条内角平分线的交点C.三角形三条中线的交点D.三角形三条边的垂直平分线的交点解:到三角形的三边距离相等的点是:三角形三条内角平分线的交点.故选:B.17.(3分)如图是4×4的正方形网格,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色,与原来3个黑色方格组成的图形成为轴对称图形,则符合要求的白色小正方格有()A.1个B.2个C.3个D.4个解:如图所示:,故选:C.18.(3分)如图,在△ABC中,∠ACB=90°,Rt△ABC≌Rt△AB'C',且∠ABC=∠CAB',连接BC',并取BC'的中点D,则下列四种说法:①AC'∥BC;②△ACC'是等腰直角三角形;③AD平分∠CAB';④AD⊥CB'.其中正确的个数为()A.1个B.2个C.3个D.4个解:∵Rt△ABC≌Rt△AB'C',∴AB=AB',AC=AC',∠ABC=∠AB'C',∠ACB=∠AC'B'=90°,∵∠ABC=∠CAB',∴∠CAB'=∠AB'C',∴AC∥B'C',∴∠CAC'+∠AC'B'=90°,∴∠CAC'=90°=∠ACB,∴AC'∥BC,故①正确;∵AC=AC',∠CAC'=90°,∴△CAC'是等腰直角三角形,故②正确;若AB=AC'时,∵点D是BC'中点,∴AD⊥C'B,∠BAD=∠C'AD,∴∠CAD=∠B'AD,即AD平分∠CAB',∵AB≠AC',∴③,④错误;故选:B.三、解答题(本大题共有8小题,共计78分.解答时应写出必要的文字说明、证明过程或演算步骤.)19.(6分)如图,AB、CD相交于点O,△AOC≌△BOD,点E在AC上,EO的延长线交BD于点F.求证:O是EF的中点.【解答】证明:∵△AOC≌△BOD,∴∠A=∠B,OA=OB,在△AEO与△BFO中,,∴△AEO≌△BFO(ASA),∴OE=OF,即O是EF的中点.20.(10分)如图所示,每个小正方形的边长为1,△ABC的顶点都在小正方形的顶点处.(1)画出△ABC关于直线l对称的△A'B'C';(2)直接写出△A'B'C'的面积等于5;(3)在直线l上求作一点P,使PA+PC的长度最小,并写出这个最小值为5.解:(1)如图所示,△A'B'C'即为所求;(2)△A'B'C'的面积=3×4﹣﹣﹣=12﹣2﹣2﹣3=5;故答案为:5;(3)如图所示,点P即为所求,PA+PC的长度最小值等于A'C的长,由勾股定理得,A'C==5,∴PA+PC的长度最小值等于5.故答案为:5.21.(9分)如图,点B、F、C、E在同一直线上,AB⊥BE,垂足为B,DE⊥BE,垂足为E,AC、DF相交于点G,且AC=DF,BF=CE.(1)求证:△ABC≌△DEF;(2)若∠A=65°,则∠DGC=50°.解:(1)证明:∵AB⊥BE,∴∠B=90°,∵DE⊥BE,∴∠E=90°,∵BF=CE,∴BF+CF=CE+CF,即CB=EF,在Rt△ABC和Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL);(2)∵∠A=65°,AB⊥BE,∴∠ACB=90°﹣65°=25°,由(1)知Rt△ABC≌Rt△DEF,∴∠ACB=∠DFE=25°,∴∠DGC=∠ACB+∠DFE=50°.故答案为:50.22.(9分)如图,AB=AC,BD=CD.(1)求证:△ABD≌△ACD;(2)连接BC,求证:AD⊥BC.【解答】证明:(1)在△ABD和△ACD中,,∴△ABD≌△ACD(SSS);(2)∵△ABD≌△ACD,∴∠BAD=∠CAD,∵AB=AC,∴AD⊥BC.23.(10分)如图,△ABC中,BC的垂直平分线DE分别交AB、BC于点D、E,且BD2﹣DA2=AC2.(1)求证:∠A=90°;(2)若AB=8,AD:BD=3:5,求AC的长.【解答】(1)证明:连接CD,∵BC的垂直平分线DE分别交AB、BC于点D、E,∴CD=DB,∵BD2﹣DA2=AC2,∴CD2﹣DA2=AC2,∴CD2=AD2+AC2,∴△ACD是直角三角形,且∠A=90°;(2)解:∵AB=8,AD:BD=3:5,∴AD=3,BD=5,∴DC=5,∴AC===4.24.(10分)如图,在△ABC中,∠ACB=90°,AC=BC=AD.(1)作△ACD的高AE,点E为垂足(要求:尺规作图,不写作法,保留作图痕迹);(2)在射线CD上找一点P,使△PCB与(1)中所作的△ACE全等(要求:尺规作图,不写作法,保留作图痕迹).并证明你所作出的△PCB与△ACE全等.解:(1)如图,线段AE即为所求.(2)如图,点P即为所求.25.(12分)如图,点E在等边△ABC的边AB所在直线上,以EC为一边作等边△ECF,顶点E、C、F顺时针排序.(1)点E在线段AB上,连接BF.求证:BF∥AC;(2)已知AB=6,当△BCF是直角三角形时,求BE的长.【解答】证明:(1)∵△ABC和△ECF为等边三角形,∴BC=AC,CE﹣CF,∠BAC=∠ACB=∠ECF=60°,∴∠AEC=∠BCF,在△ACE和△BCF中,,∴△ACE≌△BCF(SAS),∴∠CAE=∠CBF,∵∠CAE=60°,∴∠FBC=60°,∴∠FBC=∠ACB,∴BF∥AC;(2)解:①当E点在线段AB上时,∠BFC=90°,∵BC=AB=6,∠CBF=60°,∴BF=BC=3;②当E点在线段AB的延长线上时,∠BCF=90°,∵∠ECF=60°,∴∠BCE=30°,∵∠ABC=∠BCE+∠BEC=60°,∴∠BEC=30°=∠BCE,∴BE=BC=6,综上,BE=3或6.26.(12分)如图1,∠MCN=90°,点A在射线CM上滑动,点B在射线CN上滑动,且线段AB的长始终保持10cm不变.(1)若AC=6cm,动点P从点A出发,从点A→点B→点C→点A,速度为2cm/s,设运动时间为ts.当t为何值时,△ACP为等腰三角形;(2)如图2,在滑动过程中,以AB为斜边在AB的右侧作Rt△ABE,在滑动的过程中EC的最大值为10cm.(直接写出结果)解:(1)①AC=AP时,AP=AC=6cm,则t=6÷2=3;②AC=CP时,CP=AC=6cm,在Rt△ACB中,CB===8(cm),∴BP=CB﹣CP=8﹣6=2(cm),∴t=(10+2)÷2=6;③AP=CP时,如图1,过点P作PD⊥AC于D,则D为AC中点,∵∠ADP=∠ACB=90°,∴DP∥CB,∴点P为AB的中点,∴AP=AB=×10=5(cm),则t=5÷2=2.5.故当t=3或t=6或t=2.5时,△ACP为等腰三角形;(2)如图2,连结CE,以AB为直径作⊙O,连结OC,OE,∵∠ACB=∠AEB=90°,∴点C,点E在⊙O上,∴当EC为直径时有最大值,∵AB=10cm,∴EC的最大值为10cm.故答案为:10cm.。

2020-2021初二数学上期中一模试卷(附答案)

2020-2021初二数学上期中一模试卷(附答案)

2020-2021初二数学上期中一模试卷(附答案)一、选择题1.“五一”期间,某中学数学兴趣小组的同学们租一辆小型巴士前去某地进行社会实践活动,租车租价为180元.出发时又增加了两位同学,结果每位同学比原来少分摊了3元车费.若小组原有x人,则所列方程为()A.18018032x x-=-B.18018032x x-=+C.18018032x x-=+D.18018032x x-=-2.已知一个正多边形的内角是140°,则这个正多边形的边数是()A.9B.8C.7D.63.如图,把△ABC沿EF对折,叠合后的图形如图所示.若∠A=60°,∠1=85°,则∠2的度数()A.24°B.25°C.30°D.35°4.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°5.如图是三个等边三角形随意摆放的图形,则∠1+∠2+∠3等于()A.90°B.120°C.150°D.180°6.具备下列条件的△ABC中,不是直角三角形的是()A.∠A+∠B=∠CB .∠A=12∠B=13∠CC .∠A :∠B :∠C=1:2:3D .∠A=2∠B=3∠C7.如图,直线123l l l 、、表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A .一处B .二处C .三处D .四处 8.等腰三角形的一个外角是100°,则它的顶角的度数为( )A .80°B .80°或50°C .20°D .80°或20°9.如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A′处,点B 落在点B′处,若∠2=40°,则图中∠1的度数为( )A .115°B .120°C .130°D .140°10.如图所示,在平行四边形ABCD 中,分别以AB 、AD 为边作等边△ABE 和等边△ADF,分别连接CE ,CF 和EF ,则下列结论,一定成立的个数是( ) ①△CDF≌△EBC; ②△CE F 是等边三角形; ③∠CDF=∠EAF; ④CE∥DFA .1B .2C .3D .4 11.计算:(a -b)(a +b)(a 2+b 2)(a 4-b 4)的结果是( )A .a 8+2a 4b 4+b 8B .a 8-2a 4b 4+b 8C .a 8+b 8D .a 8-b 812.新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1~5月份每辆车的销售价格是多少万元?设今年1~5月份每辆车的销售价格为x 万元.根据题意,列方程正确的是( ) A . B . C .D .二、填空题13.已知a ,b ,c 是△ABC 的三边长,a ,b 满足|a ﹣7|+(b ﹣1)2=0,c 为奇数,则c=_____.14.已知x 2+mx-6=(x-3)(x+n),则m n =______.15.当m=________时,方程233x m x x =---会产生增根. 16.七边形的内角和为_____度,外角和为_____度.17.如图,AD 是三角形ABC 的对称轴,点E 、F 是AD 上的两点,若BD =2,AD =3,则图中阴影部分的面积是_______.18.如图所示,AB ∥CD ,∠ABE=66°,∠D=54°,则∠E 的度数为_____度.19.若实数,满足,则______.20.观察下列各式的规律:()()22a b a b a b -+=-()()2233a b a ab b a b -++=-()()322344a a b ab a b b b a +++=--…可得到()()2019201820182019aa b ab b a b ++++=-L ______.三、解答题21.解方程:22111x x x -=--.22.阅读下列材料:在因式分解中,把多项式中某些部分看作一个整体,用一个新的字母代替(即换元),不仅可以简化要分解的多项式的结构,而且能使式子的特点更加明显,便于观察如何进行因式分解,我们把这种因式分解的方法称为“换元法”.下面是小涵同学用换元法对多项式(x2﹣4x+1)(x2﹣4x+7)+9进行因式分解的过程.解:设x2﹣4x=y原式=(y+1)(y+7)+9(第一步)=y2+8y+16(第二步)=(y+4)2(第三步)=(x2﹣4x+4)2(第四步)请根据上述材料回答下列问题:(1)小涵同学的解法中,第二步到第三步运用了因式分解的;A.提取公因式法B.平方差公式法C.完全平方公式法(2)老师说,小涵同学因式分解的结果不彻底,请你写出该因式分解的最后结果:;(3)请你用换元法对多项式(x2+2x)(x2+2x+2)+1进行因式分解.23.解方程:.24.如图,作业本上有这样一道填空题,其中有一部分被墨水污染了,若该题化简的结果为1x3 +.(1)求被墨水污染的部分;(2)原分式的值能等于17吗?为什么?25.先化简,再求值:22144(1)11x xx x-+-÷--,从1-,1,2,3中选择一个合适的数代入并求值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】设小组原有x人,根据题意可得,出发时又增加了两位同学,结果每位同学比原来少分摊了3元车费,列方程即可.【详解】设小组原有x人,可得:1801803.2x x-=+故选B.【点睛】考查由实际问题抽象出分式方程,读懂题目,找出题目中的等量关系是解题的关键. 2.A解析:A【解析】分析:根据多边形的内角和公式计算即可.详解:.答:这个正多边形的边数是9.故选A.点睛:本题考查了多边形,熟练掌握多边形的内角和公式是解答本题的关键.3.D解析:D【解析】【分析】首先根据三角形内角和定理可得∠AEF+∠AFE=120°,再根据邻补角的性质可得∠FEB+∠EFC=360°-120°=240°,再根据由折叠可得:∠B′EF+∠EFC′=∠FEB+∠EFC=240°,然后计算出∠1+∠2的度数,进而得到答案.【详解】解:∵∠A=60°,∴∠AEF+∠AFE=180°-60°=120°,∴∠FEB+∠EFC=360°-120°=240°,∵由折叠可得:∠B′EF+∠EFC′=∠FEB+∠EFC=240°,∴∠1+∠2=240°-120°=120°,∵∠1=85°,∴∠2=120°-85°=35°.故选:D.【点睛】此题主要考查了翻折变换,关键是根据题意得到翻折以后,哪些角是对应相等的.4.C解析:C【分析】根据平行四边形性质和折叠性质得∠BAC=∠ACD=∠B′AC=12∠1,再根据三角形内角和定理可得.【详解】∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC,由折叠的性质得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=12∠1=22°∴∠B=180°-∠2-∠BAC=180°-44°-22°=114°;故选C.【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC的度数是解决问题的关键.5.D解析:D【解析】【分析】先根据图中是三个等边三角形可知三角形各内角等于60°,用△ABC各内角的度数表示出∠1,∠2,∠3,再根据三角形内角和定理,即可得出结论.【详解】∵图中是三个等边三角形,∴∠1=180°−60°−∠ABC=120°−∠ABC,∠2=180°−60°−∠ACB=120°−∠ACB,∠3=180°−60°−∠BAC=120°−∠BAC,∵∠ABC+∠ACB+∠BAC=180°,∴∠1+∠2+∠3=360°−180°=180°,故选D.【点睛】本题主要考查等边三角形的性质定理,三角形内角和定理,熟练掌握上述定理,是解题的关键.6.D解析:D【分析】根据三角形内角和为180°,直接进行解答.【详解】解:A中∠A+∠B=∠C,即2∠C=180°,∠C=90°,为直角三角形,同理,B,C均为直角三角形, D选项中∠A=2∠B=3∠C,即3∠C +32∠C +∠C =180°,∠C =36011,三个角没有90°角,故不是直角三角形.“点睛”本题考查三角形内角和定理以及直角的判定条件,熟知三角形内角和是180°是解答此题的关键.7.D解析:D【解析】【分析】由三角形内角平分线的交点到三角形三边的距离相等,可得三角形内角平分线的交点满足条件;然后利用角平分线的性质,可证得三角形两条外角平分线的交点到其三边的距离也相等,这样的点有3个,可得可供选择的地址有4个.【详解】解:∵△ABC内角平分线的交点到三角形三边的距离相等,∴△ABC内角平分线的交点满足条件;如图:点P是△ABC两条外角平分线的交点,过点P作PE⊥AB,PD⊥BC,PF⊥AC,∴PE=PF,PF=PD,∴PE=PF=PD,∴点P到△ABC的三边的距离相等,∴△ABC两条外角平分线的交点到其三边的距离也相等,满足这条件的点有3个;综上,到三条公路的距离相等的点有4处,∴可供选择的地址有4处.故选:D【点睛】考查了角平分线的性质.注意掌握角平分线上的点到角两边的距离相等,注意数形结合思想的应用,小心别漏解.8.D解析:D【解析】【分析】根据邻补角的定义求出与外角相邻的内角,再根据等腰三角形的性质分情况解答.【详解】∵等腰三角形的一个外角是100°,∴与这个外角相邻的内角为180°−100°=80°,当80°为底角时,顶角为180°-160°=20°,∴该等腰三角形的顶角是80°或20°.故答案选:D.【点睛】本题考查了等腰三角形的性质,解题的关键是熟练的掌握等腰三角形的性质.9.A解析:A【解析】解:∵把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,∴∠BFE=∠EFB',∠B'=∠B=90°.∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选A.10.C解析:C【解析】【分析】利用“边角边”证明△CDF 和△EBC 全等,判定①正确;同理求出△CDF 和△EAF 全等,根据全等三角形对应边相等可得CE CF EF ==,判定△ECF 是等边三角形,判定②正确;利用“8字型”判定③正确;若CE DF P ,则C 、F 、A 三点共线,故④错误;即可得出答案. 【详解】在ABCD Y 中,ADC ABC ∠∠=,AD BC =,CD AB =, ∵ABE ADF V V 、都是等边三角形,∴AD DF =,AB EB =,60DFA ADF ABE ∠∠∠︒===, ∴DF BC =,=CD BE , ∴60CDF ADC ∠∠︒=﹣,60EBC ABC ∠∠︒=﹣, ∴CDF EBC ∠∠=,在CDF V 和EBC V 中,DF BC CDF EBC CD EB =⎧⎪∠=∠⎨⎪=⎩,∴CDF EBC SAS V V ≌(),故①正确; 在ABCD Y 中,设AE 交CD 于O ,AE 交DF 于K ,如图:∵AB CD ∥,∴60DOA OAB ∠∠︒==, ∴DOA DFO ∠∠=, ∵OKD AKF ∠∠=, ∴ODF OAF ∠∠=, 故③正确;在CDF V 和EAF △中,CD EACDF EAF DF AF =⎧⎪∠=∠⎨⎪=⎩,∴CDF EAF SAS V V ≌(), ∴EF CF =, ∵CDF EBC ≌△△, ∴CE CF =, ∴EC CF EF ==,∴ECF △是等边三角形,故②正确;则60CFE ∠︒=, 若CE DF P 时, 则60DFE CEF ∠∠︒==, ∵60DFA CFE ∠︒∠==,∴180CFE DFE DFA ∠+∠+∠︒=, 则C 、F 、A 三点共线已知中没有给出C 、F 、A 三点共线,故④错误; 综上所述,正确的结论有①②③. 故选:C . 【点睛】本题主要考查三角形全等的判定与性质,解题的关键是能通过题目所给的条件以及选用合适的判定三角形全等的方法证明.11.D解析:D 【解析】试题分析:根据平方差公式可直接求解,即原式=(22a b -)(22a b +)(44a b +)=(44a b -)(44a b +)=88a b -. 故选D考点:平方差公式12.A解析:A 【解析】 【分析】首先根据所设今年每辆车的价格,可表示出去年的价格,同样根据销售总额的关系可表示出今年的销售总额,然后再根据去年和今年1~5月份销售汽车的数量相同建立方程即可得解. 【详解】∵今年1~5月份每辆车的销售价格为x 万元, ∴去年每辆车的销售价格为(x+1)万元, 则有故选A. 【点睛】此题主要考查分式方程的应用,解题的关键是找出题中去年和今年的关系.二、填空题13.7【解析】【分析】根据非负数的性质列式求出ab 的值再根据三角形的任意两边之和大于第三边两边之差小于第三边求出c 的取值范围再根据c 是奇数求出c 的值【详解】∵ab 满足|a ﹣7|+(b ﹣1)2=0∴a ﹣7解析:7【解析】【分析】根据非负数的性质列式求出a 、b 的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c 的取值范围,再根据c 是奇数求出c 的值.【详解】∵a ,b 满足|a ﹣7|+(b ﹣1)2=0,∴a ﹣7=0,b ﹣1=0,解得a=7,b=1,∵7﹣1=6,7+1=8,∴68c <<,又∵c 为奇数,∴c=7,故答案为7.【点睛】本题考查非负数的性质:偶次方,解题的关键是明确题意,明确三角形三边的关系. 14.1【解析】【分析】将已知等式右边利用多项式乘以多项式法则计算根据多项式相等的条件求出m 与n 的值即可得出mn 的值【详解】∵x2+mx -6=(x-3)(x+n )=x2+nx-3x-3n=x2+(n-3)解析:1【解析】【分析】将已知等式右边利用多项式乘以多项式法则计算,根据多项式相等的条件求出m 与n 的值,即可得出m n 的值.【详解】∵x 2+mx-6=(x-3)(x+n )=x 2+nx-3x-3n=x 2+(n-3)x-3n ,∴m=n-3,-3n=-6,解得:m=-1,n=2,∴m n =1.故答案为:1【点睛】本题考查了多项式乘以多项式以及多项式相等的条件,熟练掌握多项式乘以多项式法则是解题关键.15.3【解析】【分析】根据分式性质分式方程增根的条件进行求解【详解】∵∴2(x -3)-x=m 求得x=-m∵x -3=0即x=3时原方程有增根∴-m=3m=-3故答案为-3【点睛】主要考察的是分式性质分式方解析:3【解析】【分析】根据分式性质、分式方程增根的条件进行求解.【详解】 ∵233x m x x ,=--- ∴233x m x x ,-=--- 2(x-3)-x=m,求得x=-m ,∵ x-3=0 即 x=3 时,原方程有增根∴-m=3m=-3故答案为-3.【点睛】主要考察的是分式性质、分式方程有增根的条件的知识点.16.360【解析】【分析】n 边形的内角和是(n ﹣2)•180°把多边形的边数代入公式就得到多边形的内角和任何多边形的外角和是360度【详解】(7﹣2)•180=900度外角和为360度【点睛】已知多边形解析:360【解析】【分析】n 边形的内角和是(n ﹣2)•180°,把多边形的边数代入公式,就得到多边形的内角和.任何多边形的外角和是360度.【详解】(7﹣2)•180=900度,外角和为360度.【点睛】已知多边形的内角和求边数,可以转化为方程的问题来解决.外角和是一个定植,不随着边数的变化而变化.17.3【解析】∵轴对称的两个图形全等∴阴影部分的面积是整个三角形面积的一半即阴影部分的面积等于ΔABD 的面积而ΔABD 的面积=05×2×3=3故答案为3解析:3【解析】∵轴对称的两个图形全等,∴阴影部分的面积是整个三角形面积的一半,即阴影部分的面积等于ΔABD 的面积,而ΔABD 的面积=0.5×2×3=3, 故答案为3.18.12°【解析】试题分析:利用三角形的外角与内角的关系及平行线的性质可直接解答解:∵AB ∥CD ∴∠BFC=∠ABE=66°在△EFD 中利用三角形外角等于不相邻的两个内角的和得到∠E=∠BFC ﹣∠D=1解析:12°【解析】试题分析:利用三角形的外角与内角的关系及平行线的性质可直接解答.解:∵AB ∥CD ,∴∠BFC=∠ABE=66°,在△EFD 中利用三角形外角等于不相邻的两个内角的和,得到∠E=∠BFC ﹣∠D=12°. 19.5【解析】【分析】根据非负数的性质列式求出mn 的值然后代入代数式进行计算即可得解【详解】解:根据题意得:m-2=0n-2018=0∴m=2n=2018∴m-1+n0=12+1=32;故答案为:32【解析:5【解析】【分析】根据非负数的性质列式求出m ,n 的值,然后代入代数式进行计算即可得解.【详解】解:根据题意得:, ∴∴; 故答案为:.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0,解题的关键是利用非负性正确求值. 20.【解析】【分析】根据已知等式归纳总结得到一般性规律写出所求式子结果即可【详解】归纳总结得:(a−b)(a2019+a2018b+…+ab2019+b2019)=a2020−b2020故答案为:【点睛 解析:20202020a b -【解析】【分析】根据已知等式,归纳总结得到一般性规律,写出所求式子结果即可.【详解】归纳总结得:(a−b)(a 2019+a 2018b+…+ab 2019+b 2019)=a 2020−b 2020.故答案为:20202020a b -.【点睛】此题考查多项式乘多项式,平方差公式,解题关键在于找到运算规律.三、解答题21.原方程无解.【解析】试题分析:观察可得最简公分母是21x -,方程两边乘最简公分母,可以把分式方程转化为整式方程求解.试题解析:方程两边都乘以21x -,得:()2121x x x +-=-, 去括号得2221x x x +-=-,移项合并得1x =.检验:当1x =时,210x -=,所以原方程无解.22.(1)C ;(2)(x ﹣2)4;(3)(x +1)4.【解析】【分析】(1)根据完全平方公式进行分解因式;(2)最后再利用完全平方公式将结果分解到不能分解为止;(3)根据材料,用换元法进行分解因式.【详解】(1)故选C ;(2)(x 2﹣4x +1)(x 2﹣4x +7)+9,设x 2﹣4x =y ,则:原式=(y +1)(y +7)+9=y 2+8y +16=(y +4)2=(x 2﹣4x +4)2=(x ﹣2)4.故答案为:(x ﹣2)4;(3)设x 2+2x =y ,原式=y (y +2)+1=y 2+2y +1=(y +1)2=(x 2+2x +1)2=(x +1)4.【点睛】本题考查了因式分解﹣换元法,公式法,也是阅读材料问题,熟练掌握利用公式法分解因式是解题的关键.23.无解.【解析】试题分析:分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.试题解析:去分母得:15x-12=4x+10-3x+6,移项合并得:14x=28,解得:x=2,经检验x=2是增根,分式方程无解.考点:解分式方程.24.(1)x-4;(2)不能,见解析.【解析】试题分析:(1)设被墨水污染的部分是A ,计算即可得到结论;(2)令1137x =+,解得x =4,而当x =4时,原分式无意义,所以不能. 试题解析:解:(1)设被墨水污染的部分是A ,则2443193(3)(3)3x A x x x x x x A x ---÷=⋅=--+-+,解得:A = x -4; (2)不能,若1137x =+,则x =4,由原题可知,当x =4时,原分式无意义,所以不能. 25.12x x +-,4. 【解析】【分析】根据分式的运算法则和乘法公式将原式化简,根据分式存在有意义的条件选取合适的数代入代数式计算即可.【详解】 原式()()()2211=1111x x x x x x --⎛⎫-÷ ⎪---+⎝⎭ ()()()21121212x x x x x x x -+-⎛⎫=⨯ ⎪-⎝⎭-+=-. ∵x 2﹣1≠0,x ﹣2≠0,∴取x =3,原式=3132+-=4. 【点睛】 本题考查的是分式的运算和分式存在有意义的条件,根据分式有意义的条件挑选出合适的值代入是解题的关键.。

2020-2021初二数学上期中一模试卷(含答案)

2020-2021初二数学上期中一模试卷(含答案)
三、解答题
21.列方程解应用题:
某市今年进行水网升级,1 月 1 日起调整居民用水价格,每立方米水费上涨 1 ,小丽家去 3
年 12 月的水费是 15 元,而今年 5 月的水费则是 30 元.已知小丽家今年 5 月的用水量比去 年 12 月的用水量多 5m3,求该市今年居民用水的价格. 22.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘 数”.如:4=22﹣02,12=42﹣22,20=62﹣42,因此 4,12,20 都是“神秘数” (1)28 和 2012 这两个数是“神秘数”吗?为什么? (2)设两个连续偶数为 2k+2 和 2k(其中 k 取非负整数),由这两个连续偶数构造的神秘数是 4 的倍数吗?为什么? (3)两个连续奇数的平方差(k 取正数)是神秘数吗?为什么? 23.今年汶川车厘子喜获丰收,车厘子一上市,水果店的王老板用 2500 元购进一批车厘 子,很快售完;老板又用 4400 元购进第二批车厘子,所购数量是第一批的 2 倍,由于进货 量增加,进价比第一批每干克少了 3 元.” (l)第一批车厘子每千克进价多少元?.
.
【详解】
,即

∵△ABD 和△ACD 同底等高,
, , 即
△ABC 和△DBC 同底等高, ∴ ∴
故 A,B,C 正确,D 错误. 故选:D. 【点睛】 考查三角形的面积,掌握同底等高的三角形面积相等是解题的关键.
8.D
解析:D 【解析】
解:设△ABP 中 AB 边上的高是 h.∵S△PAB= 1 S 矩形 ABCD,∴ 1 AB•h= 1 AB•AD,∴
2 等腰三角形的顶角为 80 .
因此这个等腰三角形的顶角的度数为 20 或 80 .
故选 D. 【点睛】

福建省厦门市2020-2021学年八年级上学期期中数学试题(word版 含答案)

福建省厦门市2020-2021学年八年级上学期期中数学试题(word版 含答案)

福建省厦门市2020-2021学年八年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是()A.B.C.D.2.下列计算结果正确的是()A.2a3+a3=3a6B.(﹣a)2•a3=﹣a6C.(﹣12)﹣2=4 D.(﹣2)0=﹣13.已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为()A.11 B.16 C.17 D.16或17 4.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO=12AC;③△ABD≌△CBD,其中正确的结论有()A.0个B.1个C.2个D.3个5.如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠EAB=120°,则∠DCB=()A.150°B.160°C.130°D.60°6.已知正五边形的对称轴是过任意一个顶点与该顶点对边中点的直线.如图所示的正五边形中相邻两条对称轴所夹锐角α的度数为()A.75°B.72°C.70°D.60°7.如图,下面是利用尺规作∠AOB的角平分线OC的作法,在用尺规作角平分线过程中,用到的三角形全等的判定方法是()作法:①以O为圆心,适当长为半径画弧,分别交OA,OB于点D,E;②分别以D,E为圆心,大于12DE的长为半径画弧,两弧在∠AOB内交于一点C;③画射线OC,射线OC就是∠AOB的角平分线.A.ASA B.SAS C.SSS D.AAS8.如图,点E在正方形ABCD的对角线AC上,且2EC AE=,Rt FEG∆的两直角边EF,EG分别交BC,DC于点M,N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A .223aB .214aC .25a 9 D .249a 9.如图,AD 是△ABC 的角平分线,则AB :AC 等于( )A .BD :CDB .AD :CDC .BC :AD D .BC :AC二、填空题 10.如图,已知△ABC ≌△ADE ,D 是∠BAC 的平分线上一点,且∠BAC =60°,则∠CAE =____.11.如图,△ABC ≌△ADE ,①若△ABC 周长为24,AD =6,AE =9,则BC =______;②若∠BAD =42°,则∠EFC =______.12.如图,已知AD 是△ABC 的角平分线,在不添加任何辅助线的前提下,要使△AED ≌△AFD ,需添加一个条件是_____.13.如图△ABC 中,AD 平分∠BAC ,AB=4,AC=2,且△ABD 的面积为3,则△ACD 的面积为____.14.如图,在△ABC 中,∠C =90°,AC =BC ,AD 平分∠BAC 交BC 于点D,DE ⊥AB 于点E ,若AB =5 cm ,则△BDE 的周长为________.15.如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线MN交AC于点D,则∠DBC=_____度.16.若a2n=5,b2n=16,则(ab)n=______.17.如图是4×4正方形网络,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色的图形成为轴对称图形,这样的白色小方格有_____个.三、解答题18.如图,已知△ABC和直线m,画出与△ABC关于直线m对称的图形(不要求写出画法,但应保留作图痕迹)19.已知:∠1=∠2,∠3=∠4.求证:AC=AD20.如图,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2CD.21.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB =10,S△ABD=15,求CD的长.22.如图,在边长为1个单位长度的小正方形网格中,给出了△ABC(顶点是网格线的交点).(1)请画出△ABC关于直线l对称的△A1B1C1;(2)将线段AC向左平移3个单位,再向下平移5个单位,画出平移得到的线段A2C2,并以它为一边作一个格点△A2B2C2,使A2B2=C2B2.23.若x m+n=12,x n=3,(x≠0),求x2m+n的值.24.已知:如图,AB=AD,∠ABC=∠ADC.试说明:CB=CD.25.如图,点C是线段AB上除A、B外的任意一点,分别以AC、BC为边在线段AB 的同旁作等边三角形ACD和等边三角形BEC,连结AE交DC于M,连结BD交CE 于N,AE与BD交于F(1)求证:AE=BD;(2)连结MN,仔细观察△MNC的形状,猜想△MNC是什么三角形?说出你的猜想,并加以证明.26.如图,在Rt△ABC中,∠C=90°,∠A=60°,AB=12cm,若点P从B点出发以2cm/秒的速度向A点运动,点Q从A点出发以1cm/秒的速度向C点运动,设P、Q分别从B、A同时出发,运动时间为t秒.解答下列问题:(1)用含t的代数式表示线段AP,AQ的长;(2)当t为何值时△APQ是以PQ为底的等腰三角形?PQ BC?(3)当t为何值时//参考答案1.B【分析】根据轴对称图形的概念对各选项分析判断即可得出答案.【详解】A .不是轴对称图形,故本选项错误;B .是轴对称图形,故本选项正确;C .不是轴对称图形,故本选项错误;D .不是轴对称图形,故本选项错误.故选B .2.C【详解】A.3336233a a a a +=≠ ,错误;B.2356()a a a a -⋅=≠- ,错误;C.21()42--= ,正确;D.0(2)11-=≠- ,错误.故选C.3.D【详解】试题分析:由等腰三角形的两边长分别是5和6,可以分情况讨论其边长为5,5,6或者5,6,6,均满足三角形两边之和大于第三边,两边之差小于第三边的条件,所以此等腰三角形的周长为5+5+6=16或5+6+6=17.故选项D 正确.考点:三角形三边关系;分情况讨论的数学思想4.D【详解】试题解析:在△ABD 与△CBD 中, {AD CDAB BC DB DB===,∴△ABD ≌△CBD (SSS ),故③正确;∴∠ADB=∠CDB ,在△AOD 与△COD 中,{AD CDADB CDB OD OD=∠=∠=,∴△AOD ≌△COD (SAS ),∴∠AOD=∠COD=90°,AO=OC ,∴AC ⊥DB ,故①②③正确;故选D .考点:全等三角形的判定与性质.5.A【详解】试题分析:∵AB ∥ED ,∴∠E=180°﹣∠EAB=180°﹣120°=60°,∵AD=AE ,∴△ADE 是等边三角形,∴∠EAD=60°,∴∠BAD=∠EAB ﹣∠DAE=120°﹣60°=60°,∵AB=AC=AD ,∴∠B=∠ACB ,∠ACD=∠ADC ,在四边形ABCD 中,∠BCD=12(360°﹣∠BAD )=12(360°﹣60°)=150°.故选A .考点:1.等腰三角形的性质;2.平行线的性质;3.多边形内角与外角.6.B【详解】试题分析:根据正五边形的对称性及周角的度数即可求得结果.由图可得360572α=︒÷=︒,故选B.考点:正五边形的对称性点评:本题属于基础应用题,只需学生熟练掌握正五边形的对称性,即可完成.7.C【详解】试题分析:如图,连接EC 、DC .根据作图的过程知,在△EOC 与△DOC 中,,△EOC ≌△DOC (SSS ).故选C .考点:1.全等三角形的判定;2.作图—基本作图.8.D【分析】过E 作EP ⊥BC 于点P ,EQ ⊥CD 于点Q ,△EPM ≌△EQN ,利用四边形EMCN 的面积等于正方形PCQE 的面积求解.【详解】解:如图,过点E 作EP BC ⊥于点P ,EQ CD ⊥于点Q ,∵四边形ABCD 是正方形,∴90BCD ︒∠=,又∵90EPM EQN ︒∠=∠=,∴90PEQ ︒∠=,∴90PEM MEQ ︒∠+∠=,∴四边形PCQE 为矩形.在Rt FEG ∆中,90NEF QEN MEQ ︒∠=∠+∠=,∴PEM QEN ∠=∠.∵CA 平分BCD ∠,90EPC EQC ︒∠=∠=,∴EP EQ =,∴四边形PCQE 是正方形.在EPM ∆和EQN ∆中,PEM QEN EP EQ EPM EQN ∠=∠⎧⎪=⎨⎪∠=∠⎩,,, ∴EPM EQN ∆∆≌,∴EQN EPM S S ∆∆=,∴四边形EMCN 的面积等于正方形PCQE 的面积.∵正方形ABCD 的边长为a ,∴AC =,又∵2EC AE =,∴EC =, ∴23EP PC a ==, ∴正方形PCQE 的面积为2224339a a a ⨯=, ∴四边形EMCN 的面积为249a . 故选D .【点睛】本题主要考查了正方形的性质及全等三角形的判定及性质,解题的关键是作出辅助线,证出△EPM ≌△EQN .9.A【详解】试题分析:如图,过点B 作BE ∥AC 交AD 延长线于点E ,∵BE ∥AC ,∴∠DBE=∠C ,∠E=∠CAD,∴△BDE∽△CDA,∴BD BECD AC=,又∵AD是角平分线,∴∠E=∠DAC=∠BAD,∴BE=AB,∴AB BDAC CD=,∴AB:AC=BD:CD.故选A.考点:角平分线的性质.10.30°【分析】由△ABC≌△ADE可得∠BAC=∠DAE=60°,由D是∠BAC的平分线上一点可得∠BAD=∠DAC=12∠BAC=30°,即可得∠CAE的度数.【详解】∵△ABC≌△ADE,∴∠BAC=∠DAE=60°,∵D是∠BAC的平分线上一点,∴∠BAD=∠DAC=12∠BAC=30°,∴∠CAE=∠DAE-∠DAC=60°-30°=30°.故答案为30°.【点睛】本题考查了全等三角形的性质及角平分线的性质,熟练掌握三角形全等的性质是解题的关键.11.9 42°【分析】①根据全等三角形对应边相等可得AB=AD,AC=AE,再根据三角形的周长的定义列式计算即可得解;②根据全等三角形对应角相等可得∠BAC=∠DAE,∠C=∠E,再求出∠CAE=∠BAD,然后根据三角形的内角和定理可得∠EFC=∠CAE.【详解】解:①∵△ABC≌△ADE,∴AB=AD=6,AC=AE=9,∵△ABC周长为24,∴BC=24-6-9=9;②∵△ABC≌△ADE,∴∠BAC=∠DAE,∠C=∠E,∴∠BAC-∠CAD=∠DAE-∠CAD,即∠CAE=∠BAD=42°,∴∠EFC=∠CAE=42°.故答案为:9;42°.【点睛】本题考查了全等三角形的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键.12.AE=AF或∠EDA=∠FDA或∠AED=∠AFD【分析】【详解】①添加条件:AE=AF,证明:在△AED与△AFD中,∵AE=AF,∠EAD=∠FAD,AD=AD,∴△AED≌△AFD(SAS),②添加条件:∠EDA=∠FDA,证明:在△AED与△AFD中,∵∠EAD=∠FAD,AD=AD,∠EDA=∠FDA,∴△AED≌△AFD (ASA).故答案为AE=AF或∠EDA=∠FDA.13..【详解】试题分析:过点D作DE⊥AB,DF⊥AC,由角平分线的性质可得出DE=DF,再由AB=4,△ABD的面积为3求出DE的长,由AC=2即可得出△ACD的面积.解:过点D作DE⊥AB,DF⊥AC,∵AD平分∠BAC,∴DE=DF,∵AB=4,△ABD的面积为3,∴S△ABD=AB•DE=×4×DE=3,解得DE=;∴DF=,∵AC=2,∴S△ACD=AC•DF=×2×=.故答案为.考点:角平分线的性质.14.5 cm【详解】∵AD平分∠BAC,∠C=90∘,DE⊥AB,∴CD=DE,在△ACD和△AED中, AD=AD,CD=DE,∴△ACD≌△AED(HL),∴AC=AE,∴△BDE的周长=BD+DE+BE=BD+CD+BE=BC+BE=AC+BE=AE+BE=AB,∵AB=5cm,∴△BDE的周长=5cm.故答案为5cm.15.30o【详解】试题分析:根据AB=AC,∠A=40°可得:∠ABC=∠C=70°,根据中垂线的性质可得:∠ABD=∠A=40°,则∠DBC=∠ABC -∠ABD=70°-40°=30°. 考点:(1)、等腰三角形;(2)、线段中垂线16.45【分析】由222()n n n a b ab ⎡⎤=⎣⎦,即可求出()n ab 的大小. 【详解】∵2222()()51680n n n n a b ab ab ⎡⎤===⨯=⎣⎦,∴()n ab ==±, 故答案为:45.【点睛】本题主要考查积的乘方的逆用和幂的乘方的逆用,利用平方根的含义解方程,二次根式的化简,熟练掌握上述公式,是解题的关键.17.4【分析】根据轴对称图形的概念分别找出各个能成轴对称图形的小方格即可.【详解】如图所示,有4个位置使之成为轴对称图形.故答案为4.【点睛】此题考查轴对称图案,解题关键在于利用对称轴找出对称图案即可.18.见解析.【分析】找出点A 、B 、C 关于直线m 的对称点的位置,然后顺次连接即可.【详解】解:如图所示,△A ′B ′C ′即为△ABC 关于直线m 对称的图形.【点睛】本题考查了利用轴对称变换作图,准确找出点A、B、C的对称点的位置是解题的关键.19.见解析【分析】由∠3=∠4可得∠ABD=∠ABC,然后即可根据ASA证明△ABC≌△ABD,再根据全等三角形的性质即得结论.【详解】证明:∵∠3=∠4,∴∠ABD=∠ABC,在△ABC和△ABD中,∵∠2=∠1,AB=AB,∠ABC=∠ABD,∴△ABC≌△ABD(ASA),∴AC=AD.【点睛】本题考查了全等三角形的判定和性质,属于基础题型,证明△ABC≌△ABD是解本题的关键.20.(1)证明见解析;(2)证明见解析.【分析】(1)由AD⊥BC,CE⊥AB,易得∠AFE=∠B,利用全等三角形的判定得△AEF≌△CEB;(2)由全等三角形的性质得AF=BC,由等腰三角形的性质“三线合一”得BC=2CD,等量代换得出结论.【详解】(1)证明:由于AB=AC,故△ABC为等腰三角形,∠ABC=∠ACB;∵AD⊥BC,CE⊥AB,∴∠AEC=∠BEC=90°,∠ADB=90°;∴∠BAD+∠ABC=90°,∠ECB+∠ABC=90°,∴∠BAD=∠ECB,在Rt△AEF和Rt△CEB中∠AEF=∠CEB,AE=CE,∠EAF=∠ECB,所以△AEF≌△CEB(ASA)(2)∵△ABC为等腰三角形,AD⊥BC,故BD=CD,即CB=2CD,又∵△AEF≌△CEB,∴AF=CB=2CD.21.3【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后利用△ABD的面积列式计算即可得解.【详解】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD,∴S△ABD=12AB•DE=12×10•DE=15,解得DE=3.∴CD=3.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质是解题的关键.22.见解析【详解】试题分析:(1)根据轴对称作图作出即可;(2)根据平移的性质作出A 2C 2,在作出△A 2B 2C 2,使A 2C 2=C 2B 2(答案不唯一).试题解析:(1)△A 1B 1C 1如图所示;(2)线段A 2C 2和△A 2B 2C 2如图所示(符合条件的△A 2B 2C 2不唯一).考点:轴对称作图;平移的性质.23.48【分析】首先利用同底数幂的除法法则求出m x 的值,然后再利用同底数幂的乘法以及幂的乘方的运算法则计算即可.【详解】∵x m +n =12,x n =3,4m m n n m n n x x x x +-+∴==÷=,()22224348m n m n m n x x x x x +∴=⋅=⋅=⨯=.【点睛】本题主要考查同底数幂的乘除法以及幂的乘方,掌握同底数幂的乘除法及幂的乘方的运算法则计算即可.24.见解析.【分析】连接BD,由AB=AD,根据等边对等角,可得∠ADB=∠ABD,由∠ABC=∠ADC,根据等式的基本性质,可得∠CBD=∠CDB,根据等角对等边,所以CD=CB.【详解】证明:如图,连接BD,∵AB=AD,∴∠ADB=∠ABD,∵∠ABC=∠ADC,∴∠ABC-∠ABD=∠ADC-∠ADB,即∠CBD=∠CDB,∴CD=CB.【点睛】本题考查了等腰三角形的判定与性质,用角相等来求边相等是本题的解题思路.25.(1)详见解析;(2)△MNC是等边三角形,理由详见解析.【分析】(1)先由△ACD和△BCE是等边三角形,可知AC=DC,CE=CB,∠DCA=60°,∠ECB=60°,故可得出∠DCA+∠DCE=∠ECB+∠DCE,∠ACE=∠DCB,根据SAS定理可知△ACE≌△DCB,由全等三角形的性质即可得出结论;(2)由(1)中△ACE≌△DCB,可知∠CAM=∠CDN,再根据∠ACD=∠ECB=60°,A、C、B三点共线可得出∠DCN=60°,由全等三角形的判定定理可知,△ACM≌△DCN,故MC=NC,再根据∠MCN=60°可知△MCN为等边三角形.【详解】(1)证明:∵△ACD和△BCE是等边三角形,∴AC=DC,CE=CB,∠DCA=60°,∠ECB=60°,∵∠DCA=∠ECB=60°,∴∠DCA+∠DCE=∠ECB+∠DCE ,∠ACE=∠DCB ,在△ACE 与△DCB 中,∵AC DC ACE DCB CE CB =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△DCB ,∴AE=BD ;(2)解:△MNC 是等边三角形.理由如下:∵由(1)得,△ACE ≌△DCB ,∴∠CAM=∠CDN ,∵∠ACD=∠ECB=60°,而A 、C 、B 三点共线,∴∠DCN=60°,在△ACM 与△DCN 中,∵CAM NDC AC DC ACM DCN ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ACM ≌△DCN ,∴MC=NC ,∵∠MCN=60°,∴△MCN 为等边三角形.【点睛】本题考查了等边三角形的判定与性质及全等三角形的判定与性质,掌握全等三角形的判定定理是解题的关键.26.(1)AP =12-2t ,AQ =t ;(2)当t =4s 时△APQ 是以PQ 为底的等腰三角形;(3)当t =3s 时,//PQ BC .【分析】(1)由题意,可知BP =2t ,AP =AB -BP ,AQ =t .(2)若△APQ 是以PQ 为底的等腰三角形,则有AP =AQ ,即12-2t =t ,求出t 即可.(3)若//PQ BC ,则有AQ :AC =AP :AB .再由题意可得∠B =30°,AC =6cm .从而问题可求.【详解】解:(1)∵AB =12,∴由题意得:BP =2t ,AP =AB -BP =12-2t ,AQ =t .(2)∵△APQ 是以PQ 为底的等腰三角形,∴AP =AQ ,即12-2t =t ,解得t =4,即当t =4秒时△APQ 是等腰三角形.(3)∵Rt △ABC 中,∠C =90°,∠A =60°,∴∠B =30°.∵当30QPA B ∠=∠=︒时,有//PQ BC ,2,AP AQ ∴=1222,t t ∴-=∴解得t =3.即当t =3秒时,//PQ BC .【点睛】本题考查等腰三角形的判定和直角三角形的性质等知识点的综合应用能力.。

2020-2021学年山东省临沂市沂南县八年级上学期期中数学试卷 解析版

2020-2021学年山东省临沂市沂南县八年级上学期期中数学试卷 解析版

2020-2021学年山东省某校八年级(上)期中数学试卷一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给的四个选项中,只有一项是符合题目要求的.1.下列三条线段,能组成三角形的是()A.3,5,2 B.4,8,4 C.3,3,3 D.4,3,8 2.下列垃圾分类指引标志图形中,其中是轴对称图形的是()A.B.C.D.3.下列图形中有稳定性的是()A.正方形B.长方形C.直角三角形D.平行四边形4.如图,在△ABC中,BC边上的高为()A.AD B.BE C.BF D.CG5.一个多边形的每个内角均为140°,则这个多边形是()A.七边形B.八边形C.九边形D.十边形6.已知图中的两个三角形全等,则∠α度数是()A.50°B.58°C.60°D.72°7.如图所示,在△ABC中,∠C=90°,AD平分∠BAC,DE ⊥AB于E,DE=4,BC=9,则BD的长为()A.6 B.5 C.4 D.38.如图,已知A,D,B,E在同一条直线上,且AD=BE,AC =DF,补充下列其中一个条件后,不一定能得到△ABC≌△DEF的是()A.BC=EF B.AC∥DF C.∠C=∠F D.∠BAC=∠EDF9.如图,在△ABC中,∠B=55°,∠C=30°,分别以点A 和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为()A.65°B.60°C.55°D.45°10.如图,欲测量内部无法到达的古塔相对两点A,B间的距离,可延长AO至C,使CO=AO,延长BO至D,使DO =BO,则△COD≌△AOB,从而通过测量CD就可测得A,B 间的距离,其全等的根据是()A.SAS B.ASA C.AAS D.SSS 11.如图,△ABC的面积为12,AB=AC,BC=4,AC的垂直平分线EF分别交AB,AC边于点E,F,若点D为BC边的中点,点P为线段EF上一动点,则△PCD周长的最小值为()A.6 B.8 C.10 D.1212.如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF交AD于点G,交BE于点H,下面说法正确的是()①△ABE的面积=△BCE的面积;②∠AFG=∠AGF;③∠FAG =2∠ACF;④BH=CH.A.①②③④ B.①②③C.②④D.①③二、填空题(每小题3分,共18分)13.在平面直角坐标系中,点A(﹣3,﹣2)关于y轴的对称点为.14.如图,已知B处在A处的南偏西44°方向,C处在A处的正南方向,B处在C处的南偏西80°方向,则∠ABC的度数为.15.等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边为.16.如图,六边形ABCDEF内部有一点G,连结BG,DG.若∠1+∠2+∠3+∠4+∠5=440°,则∠BGD的大小为.17.如图,在等边△ABC中,AB=8,E是BA延长线上一点,且EA=4,D是BC上一点,且DE=EC,则BD的长为.18.在学习完“探索三角形全等的条件”一节后,小丽总结出很多全等三角形的模型,她设计了以下问题给同桌解决:做一个“U”字形框架PABQ,其中AB=20cm,AP,BQ足够长,PA⊥AB于点A,QB⊥AB于点B,点M从B出发向A 运动,点N从B出发向Q运动,速度之比为2:3,运动到某一瞬间两点同时停止,在AP上取点C,使△ACM与△BMN全等,则AC的长度为cm.三、解答题(本大题共7小题,共66分)19.(6分)如图,在△ABC中,BE是AC边上的高,DE∥BC,∠ADE=48°,∠C=62°,求∠ABE的度数.20.(8分)如图,在△ABC中,AB=AC,BM、CN是△ABC两腰上的中线,BM与CN相交于点O.求证:BM=CN.21.(9分)如图,在平面直角坐标系中,A(2,4),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于x轴的对称图形△A1B1C1,并写出点A1,B1,C1的坐标;(2)求△ABC的面积.22.(10分)如图,利用尺规,在△ABC的边AC上方作∠CAE =∠ACB,在射线AE上截取AD=BC,连接CD,并证明:CD∥AB(尺规作图要求保留作图痕迹,不写作法).23.(10分)如图,在等腰三角形ABC中,AC=BC,AC边上的垂直平分线分别交AC,BC于点D和点E,若∠BAE=45°.(1)求∠C的度数;(2)若DE=2,求AE的长度.24.(11分)如图,在△ABC中,∠ABC=∠ACB,BE=CF,E 为BC边上一点,以E为顶点作∠AEF,∠AEF的一边交AC 于点F,使∠AEF=∠B,请猜想AC与EC之间有怎样的数量关系,并说明理由.25.(12分)如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α,以OC为一边作等边三角形OCD,连接AD.(1)求证:∠OBC=∠DAC;(2)求∠OAD的度数;(3)当α为多少度时,△AOD是等腰三角形?2020-2021学年山东省临沂市沂南县八年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给的四个选项中,只有一项是符合题目要求的.1.下列三条线段,能组成三角形的是()A.3,5,2 B.4,8,4 C.3,3,3 D.4,3,8 【分析】根据三角形的三边关系定理:三角形两边之和大于第三边,针对每一个选项进行计算,可选出答案.【解答】解:A、∵2+3=5,∴不能组成三角形,故本选项不符合题意;B、∵4+4=8,∴不能组成三角形,故本选项不符合题意;C、∵3+3>3,∴能组成三角形,故本选项符合题意;D、∵4+3<8,∴不能组成三角形,不符合题意;故选:C.2.下列垃圾分类指引标志图形中,其中是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念判断.【解答】解:A、不是轴对称图形,故本选项不合题意;B、不是轴对称图形,故本选项不合题意;C、不是轴对称图形,故本选项不合题意;D、是轴对称图形,故本选项符合题意;故选:D.3.下列图形中有稳定性的是()A.正方形B.长方形C.直角三角形D.平行四边形【分析】稳定性是三角形的特性.【解答】解:根据三角形具有稳定性,可得四个选项中只有直角三角形具有稳定性.故选:C.4.如图,在△ABC中,BC边上的高为()A.AD B.BE C.BF D.CG【分析】从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高.根据三角形的高线的定义解答.【解答】解:由图可知,△ABC中,BC边上的高为AD,故选:A.5.一个多边形的每个内角均为140°,则这个多边形是()A.七边形B.八边形C.九边形D.十边形【分析】根据多边形的内角和公式,可得一元一次方程,根据解一元一次方程,可得答案.【解答】解:设这个多边形为n边形,根据题意得(n﹣2)×180°=140°n,解得n=9,故选:C.6.已知图中的两个三角形全等,则∠α度数是()A.50°B.58°C.60°D.72°【分析】根据全等三角形对应角相等解答即可.【解答】解:∵两个三角形全等,∴α=50°.故选:A.7.如图所示,在△ABC中,∠C=90°,AD平分∠BAC,DE ⊥AB于E,DE=4,BC=9,则BD的长为()A.6 B.5 C.4 D.3【分析】先根据角平分线的性质得到DC=DE=4,然后计算BC﹣CD即可.【解答】解:∵AD平分∠BAC,DE⊥AB,DC⊥AC,∴DC=DE=4,∴BD=BC﹣CD=9﹣4=5.故选:B.8.如图,已知A,D,B,E在同一条直线上,且AD=BE,AC =DF,补充下列其中一个条件后,不一定能得到△ABC≌△DEF的是()A.BC=EF B.AC∥DF C.∠C=∠F D.∠BAC=∠EDF【分析】根据题目中的条件和各个选项中的条件,利用全等三角形的判定方法,可以判断出哪个选项中的条件不一定能得到△ABC≌△DEF,从而可以解答本题.【解答】解:∵AD=BE,∴AD+DB=BE+DB,∴AB=DE,又∵AC=DF,若BC=EF,则△ABC≌△DEF(SSS),故选项A不符题意;若AC∥DF,∠BAC=∠EDF,则△ABC≌△DEF(SAS),故选项B不符题意;若∠C=∠F,则无法判定△ABC≌△DEF,故选项C符合题意;若∠BAC=∠EDF,则△ABC≌△DEF(SAS),故选项D不符合题意;故选:C.9.如图,在△ABC中,∠B=55°,∠C=30°,分别以点A 和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为()A.65°B.60°C.55°D.45°【分析】根据线段垂直平分线的性质得到AD=DC,根据等腰三角形的性质得到∠C=∠DAC,求得∠DAC=30°,根据三角形的内角和得到∠BAC=95°,即可得到结论.【解答】解:由题意可得:MN是AC的垂直平分线,则AD=DC,故∠C=∠DAC,∵∠C=30°,∴∠DAC=30°,∵∠B=55°,∴∠BAC=95°,∴∠BAD=∠BAC﹣∠CAD=65°,故选:A.10.如图,欲测量内部无法到达的古塔相对两点A,B间的距离,可延长AO至C,使CO=AO,延长BO至D,使DO =BO,则△COD≌△AOB,从而通过测量CD就可测得A,B 间的距离,其全等的根据是()A.SAS B.ASA C.AAS D.SSS【分析】根据已知:CO=AO,DO=BO,对顶角∠AOB=∠COD,利用SAS可判断△COD≌△AOB.【解答】解:在△COD和△AOB中,∵,∴△COD≌△AOB(SAS).故选:A.11.如图,△ABC的面积为12,AB=AC,BC=4,AC的垂直平分线EF分别交AB,AC边于点E,F,若点D为BC边的中点,点P为线段EF上一动点,则△PCD周长的最小值为()A.6 B.8 C.10 D.12【分析】连接AD,由于△ABC是等腰三角形,点D是BC 边的中点,故AD⊥BC,再根据三角形的面积公式求出AD 的长,再再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CP+PD的最小值,由此即可得出结论.【解答】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=12,解得AD=6,∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CP+PD的最小值,∴△CDP的周长最短=(CP+PD)+CD=AD+BC=6+×4=6+2=8.故选:B.12.如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF交AD于点G,交BE于点H,下面说法正确的是()①△ABE的面积=△BCE的面积;②∠AFG=∠AGF;③∠FAG =2∠ACF;④BH=CH.A.①②③④ B.①②③C.②④D.①③【分析】根据等底等高的三角形的面积相等即可判断①;根据三角形内角和定理求出∠ABC=∠CAD,根据三角形的外角性质即可推出②;根据三角形内角和定理求出∠FAG =∠ACD,根据角平分线定义即可判断③;根据等腰三角形的判定判断④即可.【解答】解:∵BE是中线,∴AE=CE,∴△ABE的面积=△BCE的面积(等底等高的三角形的面积相等),故①正确;∵CF是角平分线,∴∠ACF=∠BCF,∵AD为高,∴∠ADC=90°,∵∠BAC=90°,∴∠ABC+∠ACB=90°,∠ACB+∠CAD=90°,∴∠ABC=∠CAD,∵∠AFG=∠ABC+∠BCF,∠AGF=∠CAD+∠ACF,∴∠AFG=∠AGF,故②正确;∵AD为高,∴∠ADB=90°,∵∠BAC=90°,∴∠ABC+∠ACB=90°,∠ABC+∠BAD=90°,∴∠ACB=∠BAD,∵CF是∠ACB的平分线,∴∠ACB=2∠ACF,∴∠BAD=2∠ACF,即∠FAG=2∠ACF,故③正确;根据已知条件不能推出∠HBC=∠HCB,即不能推出BH=CH,故④错误;故选:B.二、填空题(每小题3分,共18分)13.在平面直角坐标系中,点A(﹣3,﹣2)关于y轴的对称点为(3,﹣2).【分析】利用关于y轴对称点的坐标特点可得答案.【解答】解:点A(﹣3,﹣2)关于y轴的对称点为(3,﹣2),故答案为:(3,﹣2).14.如图,已知B处在A处的南偏西44°方向,C处在A处的正南方向,B处在C处的南偏西80°方向,则∠ABC的度数为36°.【分析】根据方向角的定义和平行线的性质可得结果.【解答】解:∵B处在A处的南偏西44°方向,C处在A 处的正南方向,B处在C处的南偏西80°方向,∴∠ABC的度数为80°﹣44°=36°,故答案为:36°.15.等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边为3cm.【分析】分3cm长的边是腰和底边两种情况进行讨论即可求解.【解答】解:当长是3cm的边是底边时,三边为3cm,5cm,5cm,等腰三角形成立;当长是3cm的边是腰时,底边长是:13﹣3﹣3=7cm,而3+3<7,不满足三角形的三边关系.故底边长是:3cm.故答案是:3cm16.如图,六边形ABCDEF内部有一点G,连结BG,DG.若∠1+∠2+∠3+∠4+∠5=440°,则∠BGD的大小为80°.【分析】利用多边形的内角和定理计算出六边形内角和,计算出∠6+∠7+∠C的度数,然后可得∠BGD的大小.【解答】解:∵多边形ABCDEF是六边形,∴∠1+∠5+∠4+∠3+∠2+∠6+∠7+∠C=180°×(6﹣2)=720°,∵∠1+∠2+∠3+∠4+∠5=440°,∴∠6+∠7+∠C=720°﹣440°=280°,∵多边形BCDG是四边形,∴∠C+∠6+∠7+∠BGD=360°,∴∠BGD=360°﹣(∠6+∠7+∠C)=360°﹣280°=80°,故答案为:80°.17.如图,在等边△ABC中,AB=8,E是BA延长线上一点,且EA=4,D是BC上一点,且DE=EC,则BD的长为 4 .【分析】过点E作EF⊥BC于F,先根据含30°的直角三角形的性质求出BF,再根据等腰三角形的三线合一性质求出DF,即可得出BD.【解答】解:过点E作EF⊥BC于F;如图所示:则∠BFE=90°,∵△ABC是等边三角形,∴∠B=60°,BC=AB=8,∴∠FEB=90°﹣60°=30°,∵BE=AB+AE=8+4=12,∴BF=BE=6,∴CF=BC﹣BF=2,∵ED=EC,EF⊥BC,∴DF=CF=2,∴BD=BF﹣DF=4;故答案为:4.18.在学习完“探索三角形全等的条件”一节后,小丽总结出很多全等三角形的模型,她设计了以下问题给同桌解决:做一个“U”字形框架PABQ,其中AB=20cm,AP,BQ足够长,PA⊥AB于点A,QB⊥AB于点B,点M从B出发向A 运动,点N从B出发向Q运动,速度之比为2:3,运动到某一瞬间两点同时停止,在AP上取点C,使△ACM与△BMN全等,则AC的长度为8或15 cm.【分析】设BM=2t,则BN=3t,使△ACM与△BMN全等,由∠A=∠B=90°可知,分两种情况:情况一:当BM=AC,BN=AM时,列方程解得t,可得AC;情况二:当BM=AM,BN=AC时,列方程解得t,可得AC.【解答】解:设BM=2t,则BN=3t,因为∠A=∠B=90°,使△ACM与△BMN全等,可分两种情况:情况一:当BM=AC,BN=AM时,∵BN=AM,AB=20,∴3t=20﹣2t,解得:t=4,∴AC=BM=2t=2×4=8;情况二:当BM=AM,BN=AC时,∵BM=AM,AB=20,∴2t=20﹣2t,解得:t=5,∴AC=BN=3t=3×5=15,综上所述,AC=8或AC=15.故答案为:8或15.三、解答题(本大题共7小题,共66分)19.(6分)如图,在△ABC中,BE是AC边上的高,DE∥BC,∠ADE=48°,∠C=62°,求∠ABE的度数.【分析】利用平行线的性质定理可得∠ABC=∠ADE=48°,由三角形的内角和定理可得∠EBC的度数,可得∠ABE.【解答】解:∵DE∥BC,∠ADE=48°,∴∠ABC=∠ADE=48°,∵BE是AC边上的高,∴∠BEC=90°,∵∠C=62°,∴∠EBC=90﹣∠C=28°,∴∠ABE=∠ABC﹣∠EBC=48°﹣28°=20°.20.(8分)如图,在△ABC中,AB=AC,BM、CN是△ABC两腰上的中线,BM与CN相交于点O.求证:BM=CN.【分析】证△ABM≌△ACN(SAS),即可得出结论.【解答】证明:∵AB=AC,BM、CN是△ABC两腰上的中线,∴AM=AN,在△ABM和△ACN中,,∴△ABM≌△ACN(SAS),∴BM=CN.21.(9分)如图,在平面直角坐标系中,A(2,4),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于x轴的对称图形△A1B1C1,并写出点A1,B1,C1的坐标;(2)求△ABC的面积.【分析】(1)利用关于x轴对称点的性质得出对应点位置,进而得出答案;(2)直接利用△ABC所在矩形面积减去周围三角形面积,进而得出答案.【解答】解:(1)如图所示:△A1B1C1即为所求,A1(2,﹣4),B1(3,﹣1),C1(﹣2,1).(2)S△ABC=5×5﹣×4×5﹣×1×3﹣×2×5=.22.(10分)如图,利用尺规,在△ABC的边AC上方作∠CAE =∠ACB,在射线AE上截取AD=BC,连接CD,并证明:CD∥AB(尺规作图要求保留作图痕迹,不写作法).【分析】利用基本作图(作一个角等于已知角)作∠CAE =∠ACB,再截取AD=BC,然后证明四边形ABCD为平行四边形,从而得到CD∥AB.【解答】解:如图,CD为所作;证明:∵∠EAC=∠ACB,∴AD∥CB,∵AD=BC,∴四边形ABCD是平行四边形,∴AB∥CD.23.(10分)如图,在等腰三角形ABC中,AC=BC,AC边上的垂直平分线分别交AC,BC于点D和点E,若∠BAE=45°.(1)求∠C的度数;(2)若DE=2,求AE的长度.【分析】(1)设∠C=x.利用三角形内角和定理构建方程求出x即可;(2)根据含30°的直角三角形的性质求出EC即可解决问题.【解答】解:(1)设∠C=x.∵DE垂直平分线段AC,∴EA=EC,∴∠EAC=∠C=x,∴∠AEB=∠EAC+∠C=2x,∵CA=CB,∴∠B=∠CAB=45°+x,在△ABE中,∵∠BAE+∠B+∠AEB=180°,∴45°+45°+x+2x=180°,解得x=30°.故∠C的度数为30°;(2)∵∠EDC=90°,∠C=30°,DE=2,∴AE=EC=2DE=4.24.(11分)如图,在△ABC中,∠ABC=∠ACB,BE=CF,E 为BC边上一点,以E为顶点作∠AEF,∠AEF的一边交AC 于点F,使∠AEF=∠B,请猜想AC与EC之间有怎样的数量关系,并说明理由.【分析】先证AB=AC,再证△ABE≌△ECF(AAS),得AB =EC,即可得出结论.【解答】解:AC=EC,理由如下:∵∠ABC=∠ACB,∴AB=AC,∵∠B+∠BAE=∠AEC=∠AEF+∠CEF,∠AEF=∠B,∴∠BAE=∠CEF,在△ABE和△ECF中,,∴△ABE≌△ECF(AAS),∴AB=EC,又∵AB=AC,∴AC=EC.25.(12分)如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α,以OC为一边作等边三角形OCD,连接AD.(1)求证:∠OBC=∠DAC;(2)求∠OAD的度数;(3)当α为多少度时,△AOD是等腰三角形?【分析】(1)利用等边三角形的性质,根据SAS证明△BOC ≌△ADC(SAS),即可证明;(2)先根据△BOC≌△ADC得∠ADC=∠BOC=α,再根据等边三角形的定义和周角的定义可得∠ADO和∠AOD的度数,最后根据三角形的内角和定理可得结论;(3)分三种情况讨论,利用已知条件及等腰三角形的性质即可求解.【解答】(1)证明:如图1,∵△ABC和△ODC都是等边三角形,∴CB=CA,CO=CD,∠BCA=∠OCD=60°,∴∠BCO=∠ACD,在△BOC和△ADC中,,∴△BOC≌△ADC(SAS),∴∠OBC=∠DAC;(2)解:∵△BOC≌△ADC,∴∠ADC=∠BOC=α,∵△COD是等边三角形,∴∠CDO=∠COD=60°,∴∠ADO=α﹣60°,∵∠AOB=110°,∴∠AOD=360°﹣110°﹣α﹣60°=190°﹣α,△AOD中,∠OAD=180°﹣∠ADO﹣∠AOD=180°﹣(α﹣60°)﹣(190°﹣α)=50°;(3)解:由(2)知:∠ADO=α﹣60°,∠AOD=190°﹣α,∠OAD=50°,①当AO=AD时,△AOD是等腰三角形,∴∠ADO=∠AOD,即α﹣60=190﹣α,解得:α=125°;②当AO=OD时,△AOD是等腰三角形,∴∠ADO=∠DAO,即α﹣60=50,解得:α=110°;①当OD=AD时,△AOD是等腰三角形,∴∠DAO=∠AOD,即190﹣α=50,解得:α=140°;综上,当α为125°或110°或140°时,△AOD是等腰三角形.。

2020-2021八年级数学上期中一模试卷(及答案)

2020-2021八年级数学上期中一模试卷(及答案)

2020-2021八年级数学上期中一模试卷(及答案)一、选择题1.下列分式中,最简分式是( )A .B .C .D .2.若关于x 的方程333x m m x x ++--=3的解为正数,则m 的取值范围是( ) A .m <92B .m <92且m≠32 C .m >﹣94 D .m >﹣94且m≠﹣34 3.如图2,AB=AC ,BE ⊥AC 于E ,CF ⊥AB 于F ,BE ,CF 交于D ,则以下结论:①△ABE ≌△ACF ;②△BDF ≌△CDE ;③点D 在∠BAC 的平分线上.正确的是( )A .①B .②C .①②D .①②③4.将多项式241x +加上一个单项式后,使它能成为另一个整式的完全平方,下列添加单项式错误的是( )A .4xB .4x -4C .4x 4D .4x -5.为改善城区居住环境,某市对4000米长的玉带河进行了绿化改造.为了尽快完成工期,施工队每天比原计划多绿化10米,结果提前2天完成.若原计划每天绿化x 米,则所列方程正确的是( )A .40004000210x x -=+ B .40004000210x x -=+ C .40004000210x x -=-D .40004000210x x -=- 6.如图,已知a ∥b ,∠1=50°,∠3=10°,则∠2等于( )A .30°B .40°C .50°D .60°7.已知A =﹣4x 2,B 是多项式,在计算B+A 时,小马虎同学把B+A 看成了B•A ,结果得32x 5﹣16x 4,则B+A 为( )A .﹣8x 3+4x 2B .﹣8x 3+8x 2C .﹣8x 3D .8x 38.从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成( )个三角形.A .6B .5C .8D .79.已知x+y=5,xy=6,则x 2+y 2的值是( )A .1B .13C .17D .2510.2012201253()(2)135-⨯-=( ) A .1- B .1 C .0 D .199711.新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1~5月份每辆车的销售价格是多少万元?设今年1~5月份每辆车的销售价格为x 万元.根据题意,列方程正确的是( )A .B .C .D . 12.若实数x,y,z 满足()()()240x z x y y z ----=,则下列式子一定成立的是( )A .x+y+z=0B .x+y-2z=0C .y+z-2x=0D .z+x-2y=0二、填空题13.关于x 的方程25211a x x-+=---的解为正数,则a 的取值范围为________. 14.如图,在ABC ∆中,B Ð与C ∠的平分线交于点P .若130BPC ∠=︒,则A ∠=______.15.若x 2+2mx +9是一个完全平方式,则m 的值是_______16.某工厂储存350吨煤,按原计划用了3天后,由于改进了炉灶和烧煤技术,每天能节约2吨煤,使储存的煤比原计划多用15天.若设改进技术前每天烧x 吨煤,则可列出方程________.17.若关于x 的方程x 1m x 5102x-=--无解,则m= . 18.若4422222+6a b a a b b +=-+,则22a b +=______.19.因式分解:2()4()a a b a b ---=___.20.已知3221-可以被10到20之间某两个整数整除,则这两个数是___________.三、解答题21.列方程解应用题:某市今年进行水网升级,1月1日起调整居民用水价格,每立方米水费上涨13,小丽家去年12月的水费是15元,而今年5月的水费则是30元.已知小丽家今年5月的用水量比去年12月的用水量多5m 3,求该市今年居民用水的价格.22.已知a b c ,,是ABC △的三边的长,且满足()222220a b c b a c ++-+=,试判断此三角形的形状.23.如图,已知△ABC ,∠C=90°,AC<BC ,D 为BC 上一点,且到A ,B 两点的距离相等.(1)用直尺和圆规,作出点D 的位置(不写作法,保留作图痕迹);(2)连结AD ,若∠B=37°,求∠CAD 的度数.24.如图,BO 平分∠CBA ,CO 平分∠ACB ,且MN ∥BC ,若AB=12,△AMN 的周长为29,求AC 的长.25.用A 、B 两种机器人搬运大米,A 型机器人比B 型机器人每小时多搬运20袋大米,A 型机器人搬运700袋大米与B 型机器人搬运500袋大米所用时间相等.求A 、B 型机器人每小时分别搬运多少袋大米.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】根据最简分式的定义:分子和分母中不含公分母的分式,叫做最简分式,对四个选项中的分式一一判断即可得出答案.【详解】解:A.,分式的分子与分母不含公因式,是最简分式;B.,分式的分子与分母含公因式2,不是最简分式;C. ,分式的分子与分母含公因式x-2,不是最简分式;D. ,分式的分子与分母含公因式a,不是最简分式,故选A.【点睛】本题考查了最简分式的概念.对每个分式的分子和分母分别进行因式分解是解题的关键. 2.B解析:B【解析】【分析】【详解】解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=292m-+,已知关于x的方程333x m mx x++--=3的解为正数,所以﹣2m+9>0,解得m<92,当x=3时,x=292m-+=3,解得:m=32,所以m的取值范围是:m<92且m≠32.故答案选B.3.D解析:D【解析】【分析】从已知条件进行分析,首先可得△ABE≌△ACF得到角相等,边相等,运用这些结论,进而得到更多的结论,最好运用排除法对各个选项进行验证从而确定最终答案.【详解】∵BE⊥AC于E,CF⊥AB于F∴∠AEB=∠AFC=90°,∵AB=AC,∠A=∠A,∴△ABE≌△ACF(①正确)∴AE=AF ,∴BF=CE ,∵BE ⊥AC 于E ,CF ⊥AB 于F ,∠BDF=∠CDE ,∴△BDF ≌△CDE (②正确)∴DF=DE ,连接AD∵AE=AF ,DE=DF ,AD=AD ,∴△AED ≌△AFD ,∴∠FAD=∠EAD ,即点D 在∠BAC 的平分线上(③正确).故答案选D .考点:角平分线的性质;全等三角形的判定及性质.4.B解析:B【解析】【分析】完全平方公式:()222=2a b a ab b +++,此题为开放性题目.【详解】设这个单项式为Q ,如果这里首末两项是2x 和1这两个数的平方,那么中间一项为加上或减去2x 和1积的2倍,故Q=±4x ; 如果这里首末两项是Q 和1,则乘积项是22422x x =⋅,所以Q=44x ;如果该式只有24x 项,它也是完全平方式,所以Q=−1;如果加上单项式44x -,它不是完全平方式故选B.【点睛】此题考查完全平方式,解题关键在于掌握完全平方式的基本形式. 5.A解析:A【解析】【分析】原计划每天绿化x 米,则实际每天绿化(x+10)米,根据结果提前2天完成即可列出方程.原计划每天绿化x 米,则实际每天绿化(x+10)米,由题意得, 40004000210x x -=+, 故选A.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.6.B解析:B【解析】【分析】由平行线的性质,得到∠4=∠1=50°,由三角形的外角性质,即可求出∠2的度数.【详解】解:如图:∵a ∥b ,∴∠4=∠1=50°,∵∠4=∠2+∠3,∠3=10°,∴∠2=50°-10°=40°;故选:B .【点睛】本题考查了平行线的性质,三角形的外角性质,解题的关键是熟练掌握平行线的性质,正确得到∠4=∠1=50°.7.C解析:C【解析】【分析】根据整式的运算法则即可求出答案.【详解】由题意可知:-4x 2•B=32x 5-16x 4,∴B=-8x 3+4x 2∴A+B=-8x 3+4x 2+(-4x 2)=-8x 3故选C .【点睛】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.8.B【解析】从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成7-2=5个三角形.故选B .【点睛】本题考查的知识点为:从n 边形的一个顶点出发,可把n 边形分成(n-2)个三角形.9.B解析:B【解析】【分析】将x+y=5两边平方,利用完全平方公式化简,把xy 的值代入计算,即可求出所求式子的值.【详解】解:将x+y=5两边平方得:(x+y )2=x 2+2xy+y 2=25,将xy=6代入得:x 2+12+y 2=25,则x 2+y 2=13.故选:B .【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.10.B解析:B【解析】【分析】根据积的乘方公式进行简便运算.【详解】 解:20122012532135⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭ =20122012513()()135⨯ =2012513()135⨯ =1.故选B【点睛】此题主要考查了积的乘方,解题时,先对分数变形,然后根据特点,找到规律,再根据积的乘方的逆用,直接计算即可.11.A解析:A【分析】首先根据所设今年每辆车的价格,可表示出去年的价格,同样根据销售总额的关系可表示出今年的销售总额,然后再根据去年和今年1~5月份销售汽车的数量相同建立方程即可得解.【详解】∵今年1~5月份每辆车的销售价格为x 万元,∴去年每辆车的销售价格为(x+1)万元, 则有故选A.【点睛】此题主要考查分式方程的应用,解题的关键是找出题中去年和今年的关系. 12.D解析:D【解析】∵(x ﹣z )2﹣4(x ﹣y )(y ﹣z )=0,∴x 2+z 2﹣2xz ﹣4xy+4xz+4y 2﹣4yz=0,∴x 2+z 2+2xz ﹣4xy+4y 2﹣4yz=0,∴(x+z )2﹣4y (x+z )+4y 2=0,∴(x+z ﹣2y )2=0, ∴z+x ﹣2y=0.故选D .二、填空题13.且【解析】【分析】方程两边乘最简公分母可以把分式方程转化为整式方程求解它的解为含有a 的式子解为正数且最简公分母不为零得到关于a 的一元一次不等式解之即可【详解】方程两边同乘(x−1)得:2−(5-a)解析:5a <且3a ≠【解析】【分析】方程两边乘最简公分母,可以把分式方程转化为整式方程求解,它的解为含有a 的式子,解为正数且最简公分母不为零,得到关于a 的一元一次不等式,解之即可.【详解】方程两边同乘(x−1)得:2−(5-a)=-2(x−1)解得:x=52a - ∵x>0且x−1≠0, ∴5025102a a -⎧>⎪⎪⎨-⎪-≠⎪⎩ 解得:a<5且a≠3故答案为:a<5且a≠3【点睛】本题考查了分式方程解的定义,求出使分式方程中令等号左右两边相等且分母不等于零的未知数的值,这个值叫分式方程的解,考查了一元一次不等式组的解法,求解每个不等式,再求两个不等式解集的公共部分即可.14.80°【解析】【分析】根据三角形内角和可以求得∠PBC+∠PCB 的度数再根据角平分线的定义求出∠ABC+∠ACB 最后利用三角形内角和定理解答即可【详解】解:在△PBC 中∠BPC=130°∴∠PBC+解析:80°【解析】【分析】根据三角形内角和可以求得∠PBC+∠PCB 的度数,再根据角平分线的定义,求出∠ABC+∠ACB ,最后利用三角形内角和定理解答即可.【详解】解:在△PBC 中,∠BPC=130°,∴∠PBC+∠PCB=180°-130°=50°.∵PB 、PC 分别是∠ABC 和∠ACB 的角平分线,∴∠ABC+∠ACB=2(∠PBC+∠PCB )=2×50°=100°,在△ABC 中,∠A=180°-(∠ABC+∠ACB )=180°-100°=80°.故答案为80°.【点睛】本题主要考查了三角形的内角和定理和角平分线的定义,掌握三角形的内角和定理和角平分线的定义是解题的关键.15.±3【解析】【分析】完全平方公式的灵活应用这里首末两项是x 和3的平方那么中间项为加上或减去x 和3的乘积的2倍【详解】∵是完全平方式∴解得故答案是:【点睛】本题主要考查完全平方公式属于基础题关键是根据解析:±3【解析】【分析】完全平方公式的灵活应用,这里首末两项是x 和3的平方,那么中间项为加上或减去x 和3的乘积的2倍.【详解】∵229x mx ++是完全平方式,∴223?mx x =±⨯,解得3m =±.故答案是:3±【点睛】本题主要考查完全平方公式,属于基础题,关键是根据两平方项确定出这两个数,再根据乘积二倍项求解.16.【解析】【分析】设改进技术前每天烧吨煤则改进技术后每天烧(x-2)吨根据储存的煤比原计划多用15天即可列方程求解【详解】解:设改进技术前每天烧吨煤则改进技术后每天烧(x-2)吨根据题意得:故答案为:解析:3503350315 2x xx x---=-【解析】【分析】设改进技术前每天烧x吨煤,则改进技术后每天烧(x-2)吨,根据储存的煤比原计划多用15天,即可列方程求解.【详解】解:设改进技术前每天烧x吨煤,则改进技术后每天烧(x-2)吨,根据题意得:35033503152x xx x---=-,故答案为:35033503152x xx x---=-.【点睛】本题考查了分式方程的应用,利用分式方程解应用题时,一般题目中会有两个相等关系,这时要根据题目所要解决的问题,选择其中的一个相等关系作为列方程的依据,而另一个则用来设未知数.17.﹣8【解析】【分析】试题分析:∵关于x的方程无解∴x=5将分式方程去分母得:将x=5代入得:m=﹣8【详解】请在此输入详解!解析:﹣8【解析】【分析】试题分析:∵关于x的方程x1mx5102x-=--无解,∴x=5将分式方程x1mx5102x-=--去分母得:()2x1m-=-,将x=5代入得:m=﹣8【详解】请在此输入详解!18.3【解析】【分析】先对原式进行变形得(a2+b2)2-(a2+b2)-6=0经过观察后又可变为(a2+b2-3)(a2+b2+2)=0又a2+b2≥0即可得出本题的结果【详解】由变形后(a2+b2)解析:3【解析】【分析】先对原式进行变形得(a 2+b 2) 2-(a 2+b 2)-6=0,经过观察后又可变为(a 2+b 2-3)(a 2+b 2+2)=0,又a 2+b 2≥0,即可得出本题的结果.【详解】由4422222+6a b a a b b +=-+变形后(a 2+b 2) 2-(a 2+b 2)-6=0,(a 2+b 2-3)(a 2+b 2+2)=0,又a 2+b 2≥0,即a 2+b 2=3,故答案为3.【点睛】此题考查因式分解的应用,解题关键在于掌握运算法则.19.【解析】分析:先提公因式再利用平方差公式因式分解即可详解:a2(a-b )-4(a-b )=(a-b )(a2-4)=(a-b )(a-2)(a+2)故答案为:(a-b )(a-2)(a+2)点睛:本题考查的解析:()()()22a b a a -+-【解析】分析:先提公因式,再利用平方差公式因式分解即可.详解:a 2(a-b )-4(a-b )=(a-b )(a 2-4)=(a-b )(a-2)(a+2),故答案为:(a-b )(a-2)(a+2).点睛:本题考查的是因式分解,掌握提公因式法、平方差公式进行因式分解是解题的关键.20.15和17;【解析】【分析】将利用平方差公式分解因式根据可以被10到20之间的某两个整数整除即可得到两因式分别为15和17【详解】因式分解可得:=(216+1)(216-1)=(216+1)(28+解析:15和17;【解析】【分析】将3221-利用平方差公式分解因式,根据3221-可以被10到20之间的某两个整数整除,即可得到两因式分别为15和17.【详解】因式分解可得:3221-=(216+1)(216-1)=(216+1)(28+1)(28-1)=(216+1)(28+1)(24+1)(24-1),∵24+1=17,24-1=15,∴232-1可以被10和20之间的15,17两个数整除.【点睛】本题考查因式分解的应用,解题的关键是利用平方差公式分解因式.三、解答题21.4元/米3【解析】【分析】利用总水费÷单价=用水量,结合小丽家今年5月的用水量比去年12月的用水量多5m 3,进而得出等式即可.【详解】解:设去年用水的价格每立方米x 元,则今年用水价格为每立方米1.2x 元 由题意列方程得:301551.2x x-= 解得x 2=经检验,x 2=是原方程的解 1.2x 2.4=(元/立方米)答:今年居民用水的价格为每立方米2.4元.【点睛】此题主要考查了分式方程的应用,正确表示出用水量是解题关键.22.△ABC 为等边三角形【解析】试题分析:将原式展开后可得2222220a b ab b c bc +-++-= ,再结合完全平方式的特点分组得到2222(2)(2)0.a b ab c b bc +-++-=接下来根据完全平方公式可得22()()0,a b c b -+-=结合非负数的性质即可使问题得解试题解析:将22222()0a b c b a c ++-+= 变形,可得 2222(2)(2)0.a b ab c b bc +-++-=由完全平方公式可得22()()0,a b c b -+-=由非负数的性质,得0,0,a b c b -=-=即,a b c b ==所以.a b c ==23.(1)点D 的位置如图所示(D 为AB 中垂线与BC 的交点).(2)16°.【解析】【分析】(1)根据到线段两个端点的距离相等的点在这条线段的垂直平分线上,作出AB 的中垂线.(2)要求∠CAD 的度数,只需求出∠CAD ,而由(1)可知:∠CAD=2∠B【详解】解:(1)点D 的位置如图所示(D 为AB 中垂线与BC 的交点).(2)∵在Rt△ABC中,∠B=37°,∴∠CAB=53°.又∵AD=BD,∴∠BAD=∠B=37°.∴∠CAD=53°—37°=16°.考点:尺规作图,直角三角形两锐角互余、垂直平分线的性质.24.【解析】【分析】首先根据角平分线以及平行线的性质得出BM=OM,CN=ON,然后根据三角形的周长得出AB+AC=29,最后根据AB的长度求出AC的长度.【详解】解:∵BO平分∠CBA,CO平分∠ACB,MN∥BC,∴BM=MO,CN=NO,∴AM+MB+AN+NC=AM+MO+AN+NO=29.∴AB+AC=29,∵AB=12,∴AC=17.25.A型机器人每小时搬大米70袋,则B型机器人每小时搬运50袋.【解析】【分析】工作效率:设A型机器人每小时搬大米x袋,则B型机器人每小时搬运(x﹣20)袋;工作量:A型机器人搬运700袋大米,B型机器人搬运500袋大米;工作时间就可以表示为:A型机器人所用时间=700x,B型机器人所用时间=500x-20,由所用时间相等,建立等量关系.【详解】设A型机器人每小时搬大米x袋,则B型机器人每小时搬运(x﹣20)袋,依题意得:700x=500x-20,解这个方程得:x=70经检验x=70是方程的解,所以x﹣20=50.答:A型机器人每小时搬大米70袋,则B型机器人每小时搬运50袋.考点:分式方程的应用.。

2020-2021八年级数学上期中一模试题(附答案)(4)

2020-2021八年级数学上期中一模试题(附答案)(4)

2020-2021八年级数学上期中一模试题(附答案)(4)一、选择题1.李老师开车去20km远的县城开会,若按原计划速度行驶,则会迟到10分钟,在保证安全驾驶的前提下,如果将速度每小时加快10km,则正好到达,如果设原来的行驶速度为xkm/h,那么可列分式方程为A.20201010x x-=+B.20201010x x-=+C.20201106x x-=+D.20201106x x-=+2.下列分式中,最简分式是()A.B.C.D.3.从甲地到乙地有两条路:一条是全长750km的普通公路,另一条是全长600km高速公路.某客车从甲地出发去乙地,若走高速公路,则平均速度是走普通公路的平均速度的2倍,所需时间比走普通公路所需时间少5小时.设客车在普通公路上行驶的平均速度是x km/h,则下列等式正确的是()A.600x+5=7502xB.600x-5=7502xC.6002x+5=750xD.6002x-5=750x4.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°5.如图是三个等边三角形随意摆放的图形,则∠1+∠2+∠3等于()A.90°B.120°C.150°D.180°6.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A .132°B .134°C .136°D .138° 7.一个多边形的内角和是其外角和的3倍,则这个多边形的边数是( )A .7B .8C .6D .58.如图,ABC △是一块直角三角板,90,30C A ∠=︒∠=︒,现将三角板叠放在一把直尺上,AC 与直尺的两边分别交于点D ,E ,AB 与直尺的两边分别交于点F ,G ,若∠1=40°,则∠2的度数为( )A .40ºB .50ºC .60ºD .70º9.如图,△ABC 中,∠BAC =60°,∠C =80°,∠BAC 的平分线AD 交BC 于点D ,点E 是AC 上一点,且∠ADE =∠B ,则∠CDE 的度数是( )A .20°B .30°C .40°D .70°10.如图,在等腰∆ABC 中,AB=AC ,∠BAC=50°,∠BAC 的平分线与AB 的垂直平分线交于点O 、点C 沿EF 折叠后与点O 重合,则∠CEF 的度数是( )A .60°B .55°C .50°D .45°11.下列各式中,从左到右的变形是因式分解的是( ) A .()()2224a a a +-=- B .()ab ac d a b c d ++=++ C .()2293x x -=-D .22()a b ab ab a b -=-12.新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1~5月份每辆车的销售价格是多少万元?设今年1~5月份每辆车的销售价格为x 万元.根据题意,列方程正确的是( ) A . B . C .D .二、填空题13.如图,∠MON=30°,点A 1,A 2,A 3,…在射线ON 上,点B 1,B 2,B 3,…在射线OM 上,△A 1B 1A 2,△A 2B 2A 3,△A 3B 3A 4…均为等边三角形.若OA 1=1,则△A n B n A n+1的边长为______.14.当x =_____时,分式293x x -+的值为零.15.使12x +有意义的x 取值范围是_____;若分式3 3x x --的值为零,则x =_____;分式2211 x x x x-+,的最简公分母是_____. 16.已知11 5x y +=,则232 2x xy y x xy y-+=++_____. 17.若a+b=17,ab=60,则a-b 的值是__________.18.如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有______种.19.若22(5)0a b -+-=,则点P (a ,b )关于x 轴对称的点的坐标为____. 20.若11x y+=2,则22353x xy y x xy y -+++=_____三、解答题21.计算:(1)211x x x +-+; 解方程:(2)32833x x x -=- 22.书店老板去图书批发市场购买某种图书,第一次用1200元购买若干本,很快售完.第二次购买时,每本书的进价比第一次提高了20%,他用1500元所购买的数量比第一次多10本.求第一次购买的图书,每本进价多少元?23.如图,在△ABC和△ABD中,AC与BD相交于点E,AD=BC,∠DAB=∠CBA,求证:AC=BD.24.如图,作业本上有这样一道填空题,其中有一部分被墨水污染了,若该题化简的结果为1x3 +.(1)求被墨水污染的部分;(2)原分式的值能等于17吗?为什么?25.如图,在四边形ABCD中,AB=BC,BF平分∠ABC,AF∥DC,连接AC,CF. 求证:(1)AF=CF;(2)CA平分∠DCF.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】设原来的行驶速度为xkm/h,根据“原计划所用的时间-实际所用的时间=16小时”,即可得方程20201106x x-=+,故选C.点睛:本题考查了分式方程的应用,根据题意正确找出等量关系是解题的关键.2.A解析:A【解析】【分析】根据最简分式的定义:分子和分母中不含公分母的分式,叫做最简分式,对四个选项中的分式一一判断即可得出答案.【详解】解:A.,分式的分子与分母不含公因式,是最简分式;B.,分式的分子与分母含公因式2,不是最简分式;C. ,分式的分子与分母含公因式x-2,不是最简分式;D. ,分式的分子与分母含公因式a,不是最简分式,故选A.【点睛】本题考查了最简分式的概念.对每个分式的分子和分母分别进行因式分解是解题的关键. 3.C解析:C【解析】【分析】分别表示出客车在普通公路和高速公路上行驶的时间,即可得到方程.【详解】根据题意:客车在普通公路上行驶的时间是750x小时,在高速公路上行驶的时间是6002x小时,由所需时间比走普通公路所需时间少5小时可列方程:6002x+5=750x,故选:C.【点睛】此题考查分式方程的实际应用,正确理解题意找到等量关系是解题的关键. 4.C解析:C【解析】【分析】根据平行四边形性质和折叠性质得∠BAC=∠ACD=∠B′AC=12∠1,再根据三角形内角和定理可得.【详解】∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC,由折叠的性质得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=12∠1=22°∴∠B=180°-∠2-∠BAC=180°-44°-22°=114°;故选C.【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC的度数是解决问题的关键.5.D解析:D【解析】【分析】先根据图中是三个等边三角形可知三角形各内角等于60°,用△ABC各内角的度数表示出∠1,∠2,∠3,再根据三角形内角和定理,即可得出结论.【详解】∵图中是三个等边三角形,∴∠1=180°−60°−∠ABC=120°−∠ABC,∠2=180°−60°−∠ACB=120°−∠ACB,∠3=180°−60°−∠BAC=120°−∠BAC,∵∠ABC+∠ACB+∠BAC=180°,∴∠1+∠2+∠3=360°−180°=180°,故选D.【点睛】本题主要考查等边三角形的性质定理,三角形内角和定理,熟练掌握上述定理,是解题的关键.6.B解析:B【解析】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.7.B解析:B【解析】【分析】根据多边形的内角和公式及外角的特征计算.【详解】解:多边形的外角和是360°,根据题意得:180°•(n-2)=3×360°解得n=8.故选:B.【点睛】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.8.D解析:D【解析】【分析】依据平行线的性质,即可得到∠1=∠DFG=40°,再根据三角形外角性质,即可得到∠2的度数.【详解】∵DF∥EG,∴∠1=∠DFG=40°,又∵∠A=30°,∴∠2=∠A+∠DFG=30°+40°=70°,故选D.【点睛】本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,内错角相等.9.B解析:B【解析】【分析】由三角形的内角和定理,得到∠ADE=∠B=40°,由角平分线的性质,得∠DAE=30°,则∠ADC=70°,即可求出∠CDE的度数.【详解】解:∵△ABC中,∠BAC=60°,∠C=80°,∴∠ADE=∠B=40°,∵AD平分∠BAC,∴∠DAE=30°,∴∠ADC=70°,∴∠CDE=70°-40°=30°;故选:B.【点睛】本题考查了三角形的内角和定理,角平分线的性质,解题的关键是熟练掌握内角和定理和角平分线的性质进行解题.10.C解析:C【解析】【分析】连接OB,OC,先求出∠BAO=25°,进而求出∠OBC=40°,求出∠COE=∠OCB=40°,最后根据等腰三角形的性质,问题即可解决.【详解】如图,连接OB,∵∠BAC=50°,AO为∠BAC的平分线,∴∠BAO=12∠BAC=12×50°=25°.又∵AB=AC,∴∠ABC=∠ACB=65°.∵DO是AB的垂直平分线,∴OA=OB,∴∠ABO=∠BAO=25°,∴∠OBC=∠ABC−∠ABO=65°−25°=40°.∵AO为∠BAC的平分线,AB=AC,∴直线AO 垂直平分BC,∴OB=OC,∴∠OCB=∠OBC=40°,∵将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,∴OE=CE.∴∠COE=∠OCB=40°;在△OCE中,∠OEC=180°−∠COE−∠OCB=180°−40°−40°=100°∴∠CEF=12∠CEO=50°.故选:C.【点睛】本题考查了等腰三角形的性质的运用、垂直平分线性质的运用、折叠的性质,解答时运用等腰三角形的性质和垂直平分线的性质是解答的关键.11.D解析:D【解析】【分析】根据因式分解的意义对四个选项进行逐一分析即可.【详解】解:A、等式右边不是几个因式积的形式,故不是分解因式,故本选项错误;B、等式右边不是几个因式积的形式,故不是分解因式,故本选项错误;C、等式右边应该是(x+3)(x-3),故不符合题意,故本选项错误.D、等式右边是几个因式积的形式,故是分解因式,故本选项正确;故选D.【点睛】本题考查了因式分解的意义,解题的关键是掌握把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.12.A解析:A【解析】【分析】首先根据所设今年每辆车的价格,可表示出去年的价格,同样根据销售总额的关系可表示出今年的销售总额,然后再根据去年和今年1~5月份销售汽车的数量相同建立方程即可得解.【详解】∵今年1~5月份每辆车的销售价格为x万元,∴去年每辆车的销售价格为(x+1)万元,则有故选A.【点睛】此题主要考查分式方程的应用,解题的关键是找出题中去年和今年的关系.二、填空题13.2n-1【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3以及A2B2=2B1A2得出A3B3=4B1A2=4A4B4=8B1A2=8A5B5=16B1A2…进而得解析:2n-1【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.【详解】∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:△A n B n A n+1的边长为 2n-1.故答案是:2n-1.【点睛】此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.14.3【解析】【分析】分式的值为零的条件:分子为0分母不为0据此即可求出x 的值【详解】∵分式的值为零∴x2-9=0且x+3≠0解得:x=3故答案为:3【点睛】本题考查了分式的值为零的条件若分式的值为零需解析:3【解析】【分析】分式的值为零的条件:分子为0,分母不为0,据此即可求出x 的值.【详解】 ∵分式293x x -+的值为零, ∴x 2-9=0,且x+3≠0,解得:x=3,故答案为:3【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.15.【解析】【分析】(1)令分母不为0即可;(2)令分子为0且分母不为0可得;(3)先对两个分式分母进行因式分解然后观察得出最简公分母【详解】(1)要使有意义则x+2≠0解得:x=2(2)分式的值为零则解析:x -2≠ x -3= 3x -x【解析】【分析】(1)令分母不为0即可;(2)令分子为0,且分母不为0可得;(3)先对两个分式分母进行因式分解,然后观察得出最简公分母.【详解】(1)要使12x +有意义 则x+2≠0解得:x=2(2)分式33x x --的值为零 则3=0x -,且x -3≠0解得:x=-3(3)∵221111 =(1)(1)x x x x x x x x =--++, ∴两个分式的最简公分母为:x(x-1)(x+1)=3x -x故答案分别为:x=2;x=-3;3x -x【点睛】本题考查分式有意义的条件、分式为0的条件以及最简公分母的求解,注意分式有意义的条件和为0的情况是有所区别的.16.1【解析】【分析】先根据可得出x+y 与xy 的关系式然后在式子中将xy 用x+y 来表示化简后可得结果【详解】∵∴则xy=故答案为:1【点睛】本题考查分式的化简求值解题关键是将xy 转化为x+y 的形式解析:1【解析】【分析】 先根据11 5x y +=可得出x+y 与xy 的关系式,然后在式子232 2x xy y x xy y-+++中,将xy 用x+y 来表示,化简后可得结果.【详解】 ∵11 5x y += ∴ 5x y xy +=,则xy=()15x y + 372()2()23255 1272()()55x x y y x y x xy y x xy y x x y y x y -+++-+===++++++ 故答案为:1【点睛】本题考查分式的化简求值,解题关键是将xy 转化为x+y 的形式.17.±7【解析】∵∴∴故答案为:±7点睛:本题解题的关键是清楚:与的关系是:解析:±7【解析】∵1760a b ab +==,,∴222()()41724049a b a b ab -=+-=-=,∴7a b -=±.故答案为:±7.点睛:本题解题的关键是清楚:2()a b -与2()a b +的关系是:22()()4a b a b ab -=+-. 18.3【解析】在123处分别涂黑都可得一个轴对称图形故涂法有3种故答案为3 解析:3【解析】在1,2,3处分别涂黑都可得一个轴对称图形,故涂法有3种,故答案为3.19.(2-5)【解析】由题意得a-2=0b-5=0解得a=2b=5所以点P的坐标为(25)所以点P (ab)关于x轴对称的点的坐标为(2-5)故答案是:(2-5)解析:(2,-5)【解析】由题意得,a-2=0,b-5=0,解得a=2,b=5,所以,点P的坐标为(2,5),所以,点P (a,b)关于x轴对称的点的坐标为(2,-5).故答案是:(2,-5).20.【解析】【分析】由=2得x+y=2xy整体代入所求的式子化简即可【详解】=2得x+y=2xy则==故答案为【点睛】本题考查了分式的基本性质解题关键是用到了整体代入的思想解析:3 11【解析】【分析】由11x y+=2,得x+y=2xy,整体代入所求的式子化简即可.【详解】11x y+=2,得x+y=2xy则22353x xy yx xy y-+++=22325xy xyxy xy⋅-⋅+=331111xyxy=,故答案为3 11.【点睛】本题考查了分式的基本性质,解题关键是用到了整体代入的思想.三、解答题21.(1)1x1+;(2)x= 1【解析】【分析】(1)先通分,然后再化简;(2)先去分母,再解方程,最后验根.【详解】(1)原式=2211111 x xx x x-+=+++;(2)32833 xx x-=-3(x-3)=2-8x11x=11x=1当x=1时,分式的分母不为0,故x=1是分式方程的解.【点睛】本题考查分式的化简和解分式方程,注意解分式方程时,最后一定要验根.22.第一次购买的图书,每本进价为5元.【解析】【分析】设第一次购买的图书的单价为x元/本,则第二次购买图书的单价为1.2x元/本,根据数量=总价÷单价结合第二次比第一次多购进10本,即可得出关于x的分式方程,解之经检验后即可得出结论;【详解】设第一次购买的图书的进价为x元/本,则第二次购买图书的进价为1.2x元/本,根据题意得:1500120010 1.2x x-=解得:x=5,经检验,x=5是原分式方程的解,且符合题意.答:第一次购买的图书,每本进价为5元.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程.23.见解析.【解析】【分析】要证明AC=BD,只需要证明△ADB≌△BAC即可.【详解】在△ADB和△BCA中,AD=BC,∠DAB=∠CBA,AB=BA∴△ADB≌△BAC(SAS)∴AC=BD.【点睛】全等三角形的判定与性质.24.(1)x-4;(2)不能,见解析.【解析】试题分析:(1)设被墨水污染的部分是A,计算即可得到结论;(2)令1137x=+,解得x=4,而当x=4时,原分式无意义,所以不能.试题解析:解:(1)设被墨水污染的部分是A,则2443193(3)(3)3x A x xx x x x A x---÷=⋅=--+-+,解得:A= x-4;(2)不能,若1137x=+,则x=4,由原题可知,当x=4时,原分式无意义,所以不能.25.(1)见解析;(2)见解析.【解析】【分析】(1)根据BF平分∠ABC⇒∠ABF=∠CBF,再加上AB=BC,BF=BF就可以推出△ABF≌△CBF,依据全等三角形对应边相等的性质可以推出AF=CF;(2)根据(1)中所得出的结论可以推出∠FCA=∠FAC;依据平行线的性质可以得出内错角∠FAC、∠DCA相等,等量代换后,就可推出CA平分∠DCF.【详解】证明:如图.(1)∵BF平分ABC∠,∴ABF CBF∠=∠.在△ABF与△CBF中,,{,,AB CBABF CBFBF BF=∠=∠=∴△ABF≌△CBF.∴AF CF=.(2)∵AF CF=,∴FCA FAC∠=∠.∵AF∥DC,∴FAC DCA ∠=∠.∴FCA DCA ∠=∠,即CA 平分DCF ∠.【点睛】出AF=CF ,继而推出∠FCA=∠FAC ,结合两直线平行内错角相等的性质,很容易就可以得出(2)中的结论.。

2020-2021八年级数学上期中一模试卷(附答案)

2020-2021八年级数学上期中一模试卷(附答案)

2020-2021八年级数学上期中一模试卷(附答案)一、选择题1.若关于x 的方程333x m m x x++--=3的解为正数,则m 的取值范围是( ) A .m <92B .m <92且m≠32C .m >﹣94D .m >﹣94且m≠﹣34 2.如图,在△ABC 和△CDE 中,若∠ACB=∠CED=90°,AB =CD ,BC =DE ,则下列结论中不正确的是( )A .△ABC≌△CDEB .CE =AC C .AB⊥CD D .E 为BC 的中点3.将多项式241x +加上一个单项式后,使它能成为另一个整式的完全平方,下列添加单项式错误的是( )A .4xB .4x -4C .4x 4D .4x - 4.如图,AD ,CE 分别是△ABC 的中线和角平分线.若AB=AC ,∠CAD=20°,则∠ACE的度数是( )A .20°B .35°C .40°D .70°5.如图,把三角形纸片ABC 沿DE 折叠,当点A 落在四边形BCDE 外部时,则∠A 与∠1、∠2之间的数量关系是( )A .212A ∠=∠-∠B .32(12)A ∠=∠-∠C .3212A ∠=∠-∠D .12A ∠=∠-∠6.如图,△ABC 中,∠BAC =60°,∠C =80°,∠BAC 的平分线AD 交BC 于点D ,点E 是AC 上一点,且∠ADE =∠B ,则∠CDE 的度数是( )A .20°B .30°C .40°D .70°7.如图,在ABC ∆中,64A ∠=︒,ABC ∠与ACD ∠的平分线交于点1A ,得1A ∠;1A BC ∠与1A CD ∠的平分线相交于点2A ,得2A ∠;……;1n A BC -∠与1n A CD -∠的平分线交于点n A ,要使n A ∠的度数为整数,则n 的最大值为( )A .4B .5C .6D .78.如图所示,已知∠1=∠2,AD=BD=4,CE ⊥AD ,2CE=AC ,那么CD 的长是( )A .2B .3C .1D .1.5 9.如图,把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A′处,点B 落在点B′处,若∠2=40°,则图中∠1的度数为( )A .115°B .120°C .130°D .140°10.从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成( )个三角形.A .6B .5C .8D .711.某农场开挖一条480米的渠道,开工后,实际每天比原计划多挖20米,结果提前4天完成任务,若设原计划每天挖x 米,那么所列方程正确的是( )A .480x +480+20x =4B .480x -480+4x =20C .480x -480+20x =4D .4804x --480x=20 12.新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1~5月份每辆车的销售价格是多少万元?设今年1~5月份每辆车的销售价格为x 万元.根据题意,列方程正确的是( )A .B .C .D .二、填空题13.某商人经营甲、乙两种商品,每件甲种商品的利润率为40%,每件乙种商品的利润率为60%,当售出的乙种商品比售出的甲种商品的件数多50%时,这个商人得到的总利润率为50%;那么当售出的甲、乙两种商品的件数相等时,这个商人的总利润率是____.(利润率=利润÷成本)14.分式2311,26x y xy 的最简公分母是____________________. 15.若关于x 的分式方程1101ax x +-=-的解为正数,则a 的取值范围_______. 16.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是 . 17.如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有______种.18.如图,已知△ABC 的周长为27cm ,AC =9cm ,BC 边上中线AD =6cm ,△ABD 周长为19cm ,AB=__________19.关于x 的分式方程211x a x +=+的解为负数,则a 的取值范围是_________. 20.计算:0113()22-⨯+-=______. 三、解答题21.解分式方程:23211x x x +=+- 22.已知:如图,∠ABC,射线BC 上一点D ,求作:等腰△PBD,使线段BD 为等腰△PBD 的底边,点P 在∠ABC 内部,且点P 到∠ABC 两边的距离相等.(不写作法,保留作图痕迹)23.“已知a m =4,a m+n =20,求a n 的值.”这个问题,我们可以这样思考:逆向运用同底数幂的乘法公式,可得: a m+n =a m a n ,所以20=4a n , 所以a n =5.请利用这样的思考方法解决下列问题:已知a m =3,a n =5,求下列代数的值:(1)a 2m+n ; (2)a m-3n .24.计算:(1)332111x x x x ⎛⎫-⋅ ⎪-⎝⎭. (2)224244x x x x x ---++. 25.将下列多项式分解因式:(1)22()2()a b a b c c ++++.(2)24()a a b b -+.(3)22344xy x y y --.(4)()2224116a a +-.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】【详解】解:去分母得:x+m ﹣3m=3x ﹣9,整理得:2x=﹣2m+9,解得:x=292m -+,已知关于x 的方程333x m m x x++--=3的解为正数, 所以﹣2m+9>0,解得m <92, 当x=3时,x=292m -+=3,解得:m=32, 所以m 的取值范围是:m <92且m≠32. 故答案选B . 2.D解析:D【解析】【分析】首先证明△ABC ≌△CDE ,推出CE=AC ,∠D=∠B ,由∠D+∠DCE=90°,推出∠B+∠DCE=90°,推出CD ⊥AB ,即可一一判断.【详解】在Rt △ABC 和Rt △CDE 中,AB CD BC DE =⎧⎨=⎩,∴△ABC ≌△CDE ,∴CE =AC ,∠D =∠B ,90D DCE ∠+∠=o Q ,90B DCE ∴∠+∠=o ,∴CD ⊥AB ,D :E 为BC 的中点无法证明故A 、B 、C.正确,故选. D【点睛】本题考查全等三角形的判定和性质、解题的关键是熟练掌握全等三角形的判定和性质,属于基础题.3.B解析:B【解析】【分析】完全平方公式:()222=2a b a ab b +++,此题为开放性题目.【详解】设这个单项式为Q ,如果这里首末两项是2x 和1这两个数的平方,那么中间一项为加上或减去2x 和1积的2倍,故Q=±4x ; 如果这里首末两项是Q 和1,则乘积项是22422x x =⋅,所以Q=44x ;如果该式只有24x 项,它也是完全平方式,所以Q=−1;如果加上单项式44x -,它不是完全平方式故选B.【点睛】此题考查完全平方式,解题关键在于掌握完全平方式的基本形式.4.B解析:B【解析】【分析】先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=12(180°-∠CAB )=70°.再利用角平分线定义即可得出∠ACE=12∠ACB=35°. 【详解】∵AD 是△ABC 的中线,AB=AC ,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=12(180°-∠CAB )=70°. ∵CE 是△ABC 的角平分线,∴∠ACE=12∠ACB=35°. 故选B .【点睛】本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键. 5.A解析:A【解析】【分析】根据折叠的性质可得∠A′=∠A ,根据平角等于180°用∠1表示出∠ADA′,根据三角形的一个外角等于与它不相邻的两个内角的和,用∠2与∠A′表示出∠3,然后利用三角形的内角和等于180°列式整理即可得解.【详解】如图所示:∵△A′DE是△ADE沿DE折叠得到,∴∠A′=∠A,又∵∠ADA′=180°-∠1,∠3=∠A′+∠2,∵∠A+∠ADA′+∠3=180°,即∠A+180°-∠1+∠A′+∠2=180°,整理得,2∠A=∠1-∠2.故选A.【点睛】考查了三角形的内角和定理以及折叠的性质,根据折叠的性质,平角的定义以及三角形的一个外角等于与它不相邻的两个内角的和的性质,把∠1、∠2、∠A转化到同一个三角形中是解题的关键.6.B解析:B【解析】【分析】由三角形的内角和定理,得到∠ADE=∠B=40°,由角平分线的性质,得∠DAE=30°,则∠ADC=70°,即可求出∠CDE的度数.【详解】解:∵△ABC中,∠BAC=60°,∠C=80°,∴∠ADE=∠B=40°,∵AD平分∠BAC,∴∠DAE=30°,∴∠ADC=70°,∴∠CDE=70°-40°=30°;故选:B.【点睛】本题考查了三角形的内角和定理,角平分线的性质,解题的关键是熟练掌握内角和定理和角平分线的性质进行解题.7.C解析:C【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,根据角平分线的定义可得∠A1BC=12∠ABC,∠A1CD=12∠ACD,然后整理得到∠A1=12∠A,由∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,而A1B、A1C分别平分∠ABC和∠ACD,得到∠ACD=2∠A1CD,∠ABC=2∠A1BC,于是有∠A=2∠A1,同理可得∠A1=2∠A2,即∠A=22∠A2,因此找出规律.【详解】由三角形的外角性质得,∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,∵∠ABC的平分线与∠ACD的平分线交于点A1,∴∠A1BC=12∠ABC,∠A1CD=12∠ACD,∴∠A1+∠A1BC=12(∠A+∠ABC)=12∠A+∠A1BC,∴∠A1=12∠A=12×64°=32°;∵A1B、A1C分别平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,∴∠A=2∠A1,∴∠A1=12∠A,同理可得∠A1=2∠A2,∴∠A2=14∠A,∴∠A=2n∠A n,∴∠A n=(12)n∠A=642n,∵∠A n的度数为整数,∵n=6.故选C.【点睛】本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记性质并准确识图然后求出后一个角是前一个角的12是解题的关键.8.A解析:A 【解析】在Rt△AEC中,由于CEAC=12,可以得到∠1=∠2=30°,又AD=BD=4,得到∠B=∠2=30°,从而求出∠ACD=90°,然后由直角三角形的性质求出CD.【详解】解:在Rt△AEC中,∵CEAC=12,∴∠1=∠2=30°,∵AD=BD=4,∴∠B=∠2=30°,∴∠ACD=180°﹣30°×3=90°,∴CD=12AD=2.故选A.【点睛】本题考查了直角三角形的性质、三角形内角和定理、等边对等角的性质.解题的关键是得出∠1=30°.9.A解析:A【解析】解:∵把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,∴∠BFE=∠EFB',∠B'=∠B=90°.∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选A.10.B解析:B【解析】从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成7-2=5个三角形.故选B.【点睛】本题考查的知识点为:从n边形的一个顶点出发,可把n边形分成(n-2)个三角形.11.C解析:C【解析】【分析】根据题意列出方程即可.【详解】由题意得480 x -480+20x=4故答案为:C.【点睛】本题考查了分式方程的实际应用,掌握解分式方程的方法是解题的关键.解析:A【解析】【分析】首先根据所设今年每辆车的价格,可表示出去年的价格,同样根据销售总额的关系可表示出今年的销售总额,然后再根据去年和今年1~5月份销售汽车的数量相同建立方程即可得解.【详解】∵今年1~5月份每辆车的销售价格为x 万元,∴去年每辆车的销售价格为(x+1)万元, 则有故选A.【点睛】此题主要考查分式方程的应用,解题的关键是找出题中去年和今年的关系. 二、填空题13.48%【解析】【分析】根据题意可设甲乙的进价甲售出的件数为未知数根据售出的乙种商品比售出的甲种商品的件数多50时这个商人得到的总利润率为50得到甲乙进价之间的关系进而求得售出的甲乙两种商品的件数相等 解析:48%【解析】【分析】根据题意可设甲,乙的进价,甲售出的件数为未知数,根据售出的乙种商品比售出的甲种商品的件数多50%时,这个商人得到的总利润率为50%得到甲乙进价之间的关系,进而求得售出的甲,乙两种商品的件数相等时,这个商人的总利润率即可.【详解】解:设甲进价为a 元,则售出价为1.4a 元;乙的进价为b 元,则售出价为1.6b 元; 若售出甲x 件,则售出乙1.5x 件, 即有0.40.6 1.50.51.5ax b x ax bx+⨯=+, 解得a=1.5b , ∴售出的甲,乙两种商品的件数相等,均为y 时,这个商人的总利润率为:0.40.60.40.6 1.248%2.5ay by a b b ay by a b b++===++. 故答案为:48%.【点睛】本题考查分式方程的应用;根据利润率得到相应的等量关系是解决本题的关键;设出所需的多个未知数并在解答过程中消去是解决本题的难点.14.【解析】【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的得到的因式的积就是最简公分母【详解】解: 解析:236x y【解析】【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【详解】 解:分式2311,26x y xy的最简公分母为236x y , 故答案是:236x y .【点睛】本题考查了最简公分母,确定最简公分母的方法一定要掌握.15.a <1且a≠−1【解析】【分析】先解分式方程根据分式方程的解为正数得出关于a 的不等式求出a 的取值范围然后再根据有增根的情况进一步求解即可【详解】解:分式方程去分母得:解得:∵关于x 的方程的解为正数∴ 解析:a <1且a ≠−1.【解析】【分析】先解分式方程,根据分式方程的解为正数得出关于a 的不等式,求出a 的取值范围,然后再根据有增根的情况进一步求解即可.【详解】解:分式方程去分母得:110ax x +-+=, 解得:21x a=-, ∵关于x 的方程1101ax x +-=-的解为正数, ∴x >0,即201a>-, 解得:a <1,当x−1=0时,x =1是增根, ∴211a≠-,即a≠−1, ∴a <1且a≠−1,故答案为:a <1且a≠−1.【点睛】本题主要考查了解分式方程及解不等式,注意不要忘记有增根的情况.16.12【解析】试题解析:根据题意得(n-2)•180-360=1260解得:n=11那么这个多边形是十一边形考点:多边形内角与外角解析:12【解析】试题解析:根据题意,得(n-2)•180-360=1260,解得:n=11.那么这个多边形是十一边形.考点:多边形内角与外角.17.3【解析】在123处分别涂黑都可得一个轴对称图形故涂法有3种故答案为3解析:3【解析】在1,2,3处分别涂黑都可得一个轴对称图形,故涂法有3种,故答案为3.18.cm【解析】【分析】【详解】∵AD是BC边上的中线∴BD=CD∵△ABC的周长为27cmAC=9cm∴AB+BC=27-9=18cm∴AB+2BD=18cm∵AD=6cm△ABD周长为19cm∴AB解析:cm.【解析】【分析】【详解】∵AD是BC边上的中线,∴BD=CD,∵△ABC的周长为27cm,AC=9cm,∴AB+BC=27-9=18 cm,∴AB+2BD=18 cm,∵AD=6cm,△ABD周长为19cm,∴AB+BD=19-6=13 cm,∴BD=5 cm,∴AB=8 cm,故答案为8 cm.19.【解析】【分析】分式方程去分母转化为整式方程由分式方程的解为负数求出a的范围即可【详解】分式方程去分母得:2x+a=x+1解得:x=1-a由分式方程解为负数得到1-a<0且1-a≠-1解得:a>1且解析:12且>≠a a【解析】【分析】分式方程去分母转化为整式方程,由分式方程的解为负数,求出a的范围即可【详解】分式方程去分母得:2x+a=x+1解得:x=1-a,由分式方程解为负数,得到1-a<0,且1-a≠-1解得:a>1且a≠2,故答案为: a>1且a≠2【点睛】此题考查分式方程的解,解题关键在于求出x的值再进行分析20.4【解析】【分析】原式第一项利用零指数幂法则化简第二项利用负整数指数幂法则计算最后一项利用绝对值的代数意义化简计算即可得到结果【详解】原式=1×2+2=2+2=4故答案为:4【点睛】本题考查了零指数解析:4【解析】【分析】原式第一项利用零指数幂法则化简,第二项利用负整数指数幂法则计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.【详解】原式=1×2+2=2+2=4.故答案为:4.【点睛】本题考查了零指数幂和负整数指数幂运算,熟练掌握运算法则是解答本题的关键.三、解答题21.x=-5【解析】【分析】本题考查了分式方程的解法,把方程的两边都乘以最简公分母(x+1)( x-1),化为整式方程求解,求出x的值后不要忘记检验.【详解】解:方程两边同时乘以(x+1)( x-1)得: 2x (x -1)+3(x +1)=2(x +1)( x -1)整理化简,得 x =-5经检验,x =-5是原方程的根∴原方程的解为:x =-5.22.见解析.【解析】【分析】根据角平分线的性质、线段的垂直平分线的性质即可解决问题.【详解】∵点P 在∠ABC 的平分线上,∴点P 到∠ABC 两边的距离相等(角平分线上的点到角的两边距离相等),∵点P 在线段BD 的垂直平分线上,∴PB=PD (线段的垂直平分线上的点到线段的两个端点的距离相等),如图所示:【点睛】本题考查作图﹣复杂作图、角平分线的性质、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题.23.(1)45;(2)3125. 【解析】试题分析:(1)逆用“同底数幂的乘法”和“幂的乘方”的运算法把2m n a +化成2()m n a a ⋅结合已知条件即可求值了;(2)逆用“同底数幂的除法”和“幂的乘方”的运算法则把3m n a -化成3m n a a ÷结合已知条件即可求值了.试题解析:(1)∵35m n a a ==,,∴222()3545m n m n a a a +=⋅=⨯=;(2)∵35m n a a ==,,∴333()3125125m n m n a a a -=÷=÷=. 24.(1)-1;(2)2644x x --. 【解析】【分析】(1)先算括号内的减法,再算乘法即可;(2)分子分母能因式分解的先因式分解,化简后根据异分母分式的减法法则进行计算.【详解】解:(1)原式33111x x x x -=⋅=--; (2)原式()()()()()()()22222642222222422x x x x x x x x x x x x x x x x +--++---=-=-==-++---. 【点睛】本题考查了分式的混合运算,熟练掌握运算法则是解题的关键.25.(1)2()a b c ++;(2)()22a b -;(3)()22y x y --;(4)()()222121a a +-.【解析】【分析】 (1)利用完全平方公式进行因式分解;(2)先展开,再利用完全平方公式进行因式分解;(3)先提取公因式-y ,再利用完全平方公式进行因式分解;(4)先利用平方差公式进行分解,再利用完全平方公式继续分解.【详解】解:(1)原式2()a b c =++;(2)原式()222424a ab b a b =-+=-;(3)原式()()222442y x xy yy x y =--+=--; (4)原式()()()()22224144142121a aa a a a =+++-=+-. 【点睛】此题主要考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.。

2020-2021初二数学上期中一模试卷(含答案)(4)

2020-2021初二数学上期中一模试卷(含答案)(4)

2020-2021初二数学上期中一模试卷(含答案)(4)一、选择题1.“五一”期间,某中学数学兴趣小组的同学们租一辆小型巴士前去某地进行社会实践活动,租车租价为180元.出发时又增加了两位同学,结果每位同学比原来少分摊了3元车费.若小组原有x人,则所列方程为()A.18018032x x-=-B.18018032x x-=+C.18018032x x-=+D.18018032x x-=-2.已知一个正多边形的内角是140°,则这个正多边形的边数是()A.9B.8C.7D.63.如图2,AB=AC,BE⊥AC于E,CF⊥AB于F,BE,CF交于D,则以下结论:①△ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上.正确的是()A.①B.②C.①②D.①②③4.下列条件中能判定△ABC≌△DEF的是 ( )A.AB=DE,BC=EF,∠A=∠D B.∠A=∠D,∠B=∠E,∠C=∠F C.AC=DF,∠B=∠F,AB=DE D.∠B=∠E,∠C=∠F,AC=DF5.为改善城区居住环境,某市对4000米长的玉带河进行了绿化改造.为了尽快完成工期,施工队每天比原计划多绿化10米,结果提前2天完成.若原计划每天绿化x米,则所列方程正确的是()A.40004000210x x-=+B.40004000210x x-=+C.40004000210x x-=-D.40004000210x x-=-6.如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为()A.115°B.120°C.130°D.140°7.已知x+y=5,xy=6,则x 2+y 2的值是( )A .1B .13C .17D .258.如图所示,在平行四边形ABCD 中,分别以AB 、AD 为边作等边△ABE 和等边△ADF,分别连接CE ,CF 和EF ,则下列结论,一定成立的个数是( )①△CDF≌△EBC;②△CEF 是等边三角形;③∠CDF=∠EA F ;④CE∥DFA .1B .2C .3D .4 9.若x ﹣m 与x+3的乘积中不含x 的一次项,则m 的值为( ) A .3B .1C .0D .﹣3 10.把代数式2x 2﹣18分解因式,结果正确的是( ) A .2(x 2﹣9)B .2(x ﹣3)2C .2(x +3)(x ﹣3)D .2(x +9)(x ﹣9)11.若实数x,y,z 满足()()()240x z x y y z ----=,则下列式子一定成立的是( )A .x+y+z=0B .x+y-2z=0C .y+z-2x=0D .z+x-2y=0 12.如图,E 是等边△ABC 中AC 边上的点,∠1=∠2,BE =CD ,则△ADE 的形状是( )A .等腰三角形B .等边三角形C .不等边三角形D .不能确定形状二、填空题13.分式212xy 和214x y的最简公分母是_______. 14.如图,点D 为等边△ABC 内部一点,且∠ABD=∠BCD ,则∠BDC 的度数为_______.15.若x 2+2mx +9是一个完全平方式,则m 的值是_______16.若直角三角形的一个锐角为50°,则另一个锐角的度数是_____度.17.若分式62m -的值是正整数,则m 可取的整数有_____. 18.因式分解:2()4()a a b a b ---=___.19.如图,AD 是ABC ∆的角平分线,DF AB ⊥,垂足为F ,DE DG =,ADG ∆和EFD ∆的面积分别为50和4.5,则AED ∆的面积为_________.20.计算:101(3)2π-⎛⎫-+ ⎪⎝⎭=_____. 三、解答题21.仔细阅读下面例题,解答问题:例题:已知二次三项式2x 4x m -+有一个因式是()x 3+,求另一个因式以及m 的值. 解:设另一个因式为()x n +,得()()2x 4x m x 3x n -+=++则()22x 4x m x n 3x 3n -+=+++ {n 34m 3n +=-∴=.解得:n 7=-,m 21=- ∴另一个因式为()x 7-,m 的值为21-问题:仿照以上方法解答下面问题:已知二次三项式22x 3x k +-有一个因式是()2x 5-,求另一个因式以及k 的值.22.先化简,再求值:222284()24a a a a a a+-+÷--,其中a 满足方程2410a a ++=.23.如图,已知AB∥CD,分别探讨下面的四个图形中∠APC与∠PAB,∠PCD的关系,请你从所得关系中任意选取一个加以说明.24.先化简,再求值:1-222442a ab b a ba ab a b+++÷--,其中a、b满足()22b+1=0 a-+.25.解方程:(1)2332 x x=-(2)31144xx x ++=--.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】设小组原有x人,根据题意可得,出发时又增加了两位同学,结果每位同学比原来少分摊了3元车费,列方程即可.【详解】设小组原有x人,可得:1801803.2x x-=+故选B.【点睛】考查由实际问题抽象出分式方程,读懂题目,找出题目中的等量关系是解题的关键. 2.A解析:A【解析】分析:根据多边形的内角和公式计算即可.详解:.答:这个正多边形的边数是9.故选A.点睛:本题考查了多边形,熟练掌握多边形的内角和公式是解答本题的关键.3.D解析:D【解析】【分析】从已知条件进行分析,首先可得△ABE≌△ACF得到角相等,边相等,运用这些结论,进而得到更多的结论,最好运用排除法对各个选项进行验证从而确定最终答案.【详解】∵BE⊥AC于E,CF⊥AB于F∴∠AEB=∠AFC=90°,∵AB=AC,∠A=∠A,∴△ABE≌△ACF(①正确)∴AE=AF,∴BF=CE,∵BE⊥AC于E,CF⊥AB于F,∠BDF=∠CDE,∴△BDF≌△CDE(②正确)∴DF=DE,连接AD∵AE=AF,DE=DF,AD=AD,∴△AED≌△AFD,∴∠FAD=∠EAD,即点D在∠BAC的平分线上(③正确).故答案选D.考点:角平分线的性质;全等三角形的判定及性质.4.D解析:D【解析】分析:根据全等三角形的判定定理AAS,可知应选D.详解:解:如图:A 选项中根据AB =DE ,BC =EF ,∠A =∠D 不能判定两个三角形全等,故A 错; B 选项三个角相等,不能判定两个三角形全等,故B 错;C 选项看似可用“边角边”定理判定两三角形全等,而对照图形可发现它们并不符合此判定条件,故C 错;D 选项中根据“AAS ”可判定两个三角形全等,故选D ;点睛:本题考查了全等三角形的条件,本题没有给出图形,增加此题的难度.若能顺利画出图形,对照图形和选项即可得到正确选项.5.A解析:A【解析】【分析】原计划每天绿化x 米,则实际每天绿化(x+10)米,根据结果提前2天完成即可列出方程.【详解】原计划每天绿化x 米,则实际每天绿化(x+10)米,由题意得,40004000210x x -=+, 故选A.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.6.A解析:A【解析】解:∵把一张矩形纸片ABCD 沿EF 折叠后,点A 落在CD 边上的点A ′处,点B 落在点B ′处,∴∠BFE =∠EFB ',∠B '=∠B =90°.∵∠2=40°,∴∠CFB '=50°,∴∠1+∠EFB '﹣∠CFB '=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选A .7.B解析:B【解析】【分析】将x+y=5两边平方,利用完全平方公式化简,把xy 的值代入计算,即可求出所求式子的值.【详解】解:将x+y=5两边平方得:(x+y )2=x 2+2xy+y 2=25,将xy=6代入得:x 2+12+y 2=25,则x 2+y 2=13.故选:B .【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.8.C解析:C【解析】【分析】利用“边角边”证明△CDF 和△EBC 全等,判定①正确;同理求出△CDF 和△EAF 全等,根据全等三角形对应边相等可得CE CF EF ==,判定△ECF 是等边三角形,判定②正确;利用“8字型”判定③正确;若CE DF P ,则C 、F 、A 三点共线,故④错误;即可得出答案.【详解】在ABCD Y 中,ADC ABC ∠∠=,AD BC =,CD AB =,∵ABE ADF V V 、都是等边三角形,∴AD DF =,AB EB =,60DFAADF ABE ∠∠∠︒===, ∴DF BC =,=CD BE ,∴60CDF ADC ∠∠︒=﹣,60EBC ABC ∠∠︒=﹣,∴CDF EBC ∠∠=,在CDF V 和EBC V 中,DF BC CDF EBC CD EB =⎧⎪∠=∠⎨⎪=⎩,∴CDF EBC SAS V V ≌(),故①正确; 在ABCD Y 中,设AE 交CD 于O ,AE 交DF 于K ,如图:∵AB CD ∥,∴60DOA OAB ∠∠︒==,∴DOA DFO ∠∠=,∵OKD AKF ∠∠=,∴ODF OAF ∠∠=,故③正确;在CDF V 和EAF △中,CD EA CDF EAF DF AF =⎧⎪∠=∠⎨⎪=⎩,∴CDF EAF SAS V V ≌(), ∴EF CF =,∵CDF EBC ≌△△,∴CE CF =,∴EC CF EF ==,∴ECF △是等边三角形,故②正确;则60CFE ∠︒=,若CE DF P 时,则60DFE CEF ∠∠︒==,∵60DFA CFE ∠︒∠==,∴180CFE DFE DFA ∠+∠+∠︒=,则C 、F 、A 三点共线已知中没有给出C 、F 、A 三点共线,故④错误;综上所述,正确的结论有①②③.故选:C .【点睛】本题主要考查三角形全等的判定与性质,解题的关键是能通过题目所给的条件以及选用合适的判定三角形全等的方法证明.9.A解析:A【解析】【分析】直接利用多项式乘以多项式运算法则计算,再根据条件可得3﹣m =0,再解得出答案.【详解】解:(x ﹣m )(x+3)=x 2+3x ﹣mx ﹣3m =x 2+(3﹣m )x ﹣3m ,∵乘积中不含x 的一次项,∴3﹣m =0,解得:m =3,故选:A .【点睛】此题考查了多项式乘以多项式,正确掌握相关运算法则是解题关键.10.C解析:C【解析】试题分析:首先提取公因式2,进而利用平方差公式分解因式得出即可.解:2x 2﹣18=2(x 2﹣9)=2(x+3)(x ﹣3).故选C .考点:提公因式法与公式法的综合运用.11.D解析:D【解析】∵(x ﹣z )2﹣4(x ﹣y )(y ﹣z )=0,∴x 2+z 2﹣2xz ﹣4xy+4xz+4y 2﹣4yz=0,∴x 2+z 2+2xz ﹣4xy+4y 2﹣4yz=0,∴(x+z )2﹣4y (x+z )+4y 2=0,∴(x+z ﹣2y )2=0, ∴z+x ﹣2y=0.故选D .12.B解析:B【解析】【分析】先证得△ABE ≌△ACD ,可得AE =AD ,∠BAE =∠CAD =60°,即可证明△ADE 是等边三角形.【详解】∵△ABC 为等边三角形,∴AB =AC ,∵∠1=∠2,BE =CD ,∴△ABE ≌△ACD ,∴AE =AD ,∠BAE =∠CAD =60°,∴△ADE 是等边三角形,故选B .【点睛】本题考查了全等三角形的判定与性质,等边三角形的性质与判定,熟练掌握相关知识是解题的关键.二、填空题13.4x2y2【解析】【分析】取分式和中分母系数的最小公倍数作为最简公分母的系数;取分式和中各字母因式最高次幂的字母和次幂作为最简公分母的字母和次幂两者相乘即可得到最简公分母【详解】∵分式和中分母的系数 解析:4x 2y 2【解析】【分析】 取分式212xy 和214x y 中分母系数的最小公倍数,作为最简公分母的系数;取分式212xy 和214x y中各字母因式最高次幂的字母和次幂,作为最简公分母的字母和次幂,两者相乘,即可得到最简公分母.【详解】 ∵分式212xy 和214x y中,分母的系数分别为2和4, 又∵2和4得最小公倍数为4,∴最简公分母的系数为4, ∵分式212xy 和214x y中,x 的最高次幂项为2x ,y 的最高次幂项为2y , ∴最简公分母的字母及指数为22x y , ∴212xy 和214x y的最简公分母是224x y , 故答案为:224x y .【点睛】本题考查求解最简公分母.解题方法是取各分式分母中系数的最小公倍数作为最简公分母的系数,取各分式分母中各字母因式最高次幂的字母和次幂作为最简公分母的字母和次幂,两者相乘,即得到最简公分母. 14.120°【解析】【分析】先根据△ABC 是等边三角形得到∠ABC=∠ABD+∠CBD=60°再根据∠ABD=∠BCD 得到∠BCD+∠CBD=60°再利用三角形的内角和定理即可求出答案【详解】解:∵△A解析:120°【解析】【分析】先根据△ABC 是等边三角形得到∠ABC=∠ABD+∠CBD=60°,再根据∠ABD=∠BCD 得到∠BCD+∠CBD=60°,再利用三角形的内角和定理即可求出答案.【详解】解:∵△ABC 是等边三角形,∴∠ABC=∠ABD+∠CBD=60°(等边三角形的内角都是60°),又∵∠ABD=∠BCD ,∴∠ABD+∠CBD =∠BCD+∠CBD=60°(等量替换),∴∠BDC=180°-∠BCD-∠CBD=180°-60°=120°,故答案为:120°.【点睛】本题主要考查了等边三角形的性质、三角形内角和定理、等量替换原则,熟练掌握各个知识点是解题的关键.15.±3【解析】【分析】完全平方公式的灵活应用这里首末两项是x 和3的平方那么中间项为加上或减去x 和3的乘积的2倍【详解】∵是完全平方式∴解得故答案是:【点睛】本题主要考查完全平方公式属于基础题关键是根据 解析:±3【解析】【分析】完全平方公式的灵活应用,这里首末两项是x 和3的平方,那么中间项为加上或减去x 和3的乘积的2倍.【详解】∵229x mx ++是完全平方式,∴223?mx x =±⨯,解得3m =±.故答案是:3±【点睛】本题主要考查完全平方公式,属于基础题,关键是根据两平方项确定出这两个数,再根据乘积二倍项求解.16.40°【解析】【分析】根据直角三角形两锐角互余解答【详解】∵一个锐角为50°∴另一个锐角的度数=90°-50°=40°故答案为:40°解析:40°.【解析】【分析】根据直角三角形两锐角互余解答.【详解】∵一个锐角为50°,∴另一个锐角的度数=90°-50°=40°.故答案为:40°.17.3458【解析】【分析】根据此分式的值是正整数可知m-2是6的约数而6的约数是1236然后分别列出四个方程解之即可得出答案【详解】解:∵分式的值是正整数∴m -2=1或2或3或6∴m=3或4或5或8故解析:3,4,5,8【解析】【分析】根据此分式的值是正整数可知m -2是6的约数,而6的约数是1,2,3,6,然后分别列出四个方程,解之即可得出答案.【详解】 解:∵分式62m -的值是正整数, ∴m -2=1或2或3或6,∴m =3或4或5或8.故答案为3,4,5,8.【点睛】本题考查了分式的有关知识.理解m -2是6的约数是解题的关键.18.【解析】分析:先提公因式再利用平方差公式因式分解即可详解:a2(a-b )-4(a-b )=(a-b )(a2-4)=(a-b )(a-2)(a+2)故答案为:(a-b )(a-2)(a+2)点睛:本题考查的解析:()()()22a b a a -+-【解析】分析:先提公因式,再利用平方差公式因式分解即可.详解:a 2(a-b )-4(a-b )=(a-b )(a 2-4)=(a-b )(a-2)(a+2),故答案为:(a-b )(a-2)(a+2).点睛:本题考查的是因式分解,掌握提公因式法、平方差公式进行因式分解是解题的关键.19.41【解析】【分析】作垂足为M 可得出由此推出从而得出【详解】解:作垂足为M∵是的角平分线∴∴∴故答案为:41【点睛】本题考查的知识点是与角平分线有关的计算根据角平分线的性质得出是解此题的关键解析:41【解析】【分析】作DM AC ⊥,垂足为M ,可得出,ADF ADM DFE DMG ≅≅V V V V ,由此推出50 4.545.5ADM ADF ADG EFD S S S S ==-=-=V V V V ,从而得出45.5 4.541AED ADF EFD S S S=-=-=V V V . 【详解】解:作DM AC ⊥,垂足为M ,∵AD 是ABC ∆的角平分线,DF AB ⊥,∴,ADF ADM DFE DMG ≅≅V V V V ,∴50 4.545.5ADM ADF ADG EFD S S S S ==-=-=V V V V ,∴45.5 4.541AED ADF EFD S S S=-=-=V V V .故答案为:41.本题考查的知识点是与角平分线有关的计算,根据角平分线的性质得出,ADF ADM DFE DMG ≅≅V V V V 是解此题的关键.20.【解析】【分析】根据0指数幂和负指数幂定义求解【详解】=1+2=3故答案为3【点睛】考核知识点:0指数幂和负指数幂解析:【解析】【分析】根据0指数幂和负指数幂定义求解.【详解】101(3)2π-⎛⎫-+ ⎪⎝⎭=1+2=3 故答案为3【点睛】考核知识点:0指数幂和负指数幂.三、解答题21.()4,x +【解析】【分析】根据例题中的已知的两个式子的关系,二次三项式2x 4x m -+的二次项系数是1,因式是()x 3+的一次项系数也是1,利用待定系数法求出另一个因式.所求的式子22x 3x k +-的二次项系数是2,因式是()2x 5-的一次项系数是2,则另一个因式的一次项系数一定是1,利用待定系数法,就可以求出另一个因式.【详解】解:设另一个因式为()x a +,得()()22x 3x k 2x 5x a +-=-+则()222x 3x k 2x 2a 5x 5a +-=+-- {2a 535a k -=∴-=-解得:a 4=,k 20=故另一个因式为()x 4+,k 的值为20【点睛】正确读懂例题,理解如何利用待定系数法求解是解本题的关键.22.211443a a =++.试题分析:把原式括号里的第二项提取﹣1,然后把原式的各项分子分母都分解因式,找出括号里两项分母的最简公分母,利用分式的基本性质对括号里两项进行通分,然后利用同分母分式的减法运算法则:分母不变,只把分子相减,计算出结果,然后利用分式的除法法则:除以一个数等于乘以这个数的倒数,变形为乘法运算,约分后即可把原式化为最简分式,把a 满足的方程变形后,代入原式化简后的式子中即可求出值.试题解析:原式=28[](2)(2)(2)(2)(2)a a a a a a a a +-⨯--++- =2(2)8(2)(2)(2)(2)a a a a a a a a +-⨯-++- =2(2)(2)(2)(2)(2)a a a a a a a -⨯-++- =2211(2)44a a a =+++ ∵2410a a ++=,∴241a a +=-, ∴原式=11143=-+. 考点:分式的化简求值.23.图()1结论360APC PAB PCD ∠+∠+∠=o ;图()2结论APC PAB PCD ∠=∠+∠;图()3结论PAB APC PCD ∠=∠+∠;图()4结论PCD PAB APC ∠=∠+∠.证明见解析.【解析】【分析】关键是过转折点作平行线,根据两直线平行,内错角相等,同位角相等,同旁内角互补或结合三角形的外角性质求证即可.【详解】解:图()1结论360.APC PAB PCD ∠+∠+∠=o图()2结论.APC PAB PCD ∠=∠+∠图()3结论.PAB APC PCD ∠=∠+∠图()4结论.PCD PAB APC ∠=∠+∠如图1:过点P 做.PF AB P,AB CD Q ∥.PF CD ∴P180.APF A ∴∠+∠=o 180.CPM C ∠+∠=o 两式相加得360.A C APM CPM ∠+∠+∠+∠=o即360.APC PAB PCD ∠+∠+∠=o 如图2:过点P 做.PE AB P因为,PE AB CD P P所以,.BAP APE EPC PCD ∠=∠∠=∠,APE EPC BAP PCD ∠+∠=∠+∠即.APC PAB PCD ∠=∠+∠如图3: PAB APC PCD ∠=∠+∠.延长BA 与PC 交于点F .AB CD Q P ,.PFA PCD ∴∠=∠(两直线平行,同位角相等),又,PAB APC PFA ∠=∠+∠Q (三角形的一个外角等于与它不相邻的两个内角的和).PAB APC PCD ∴∠=∠+∠.如图4:,AB CD Q ∥.PFB PCD ∴∠=∠(两直线平行,同位角相等),又PFB APC PAB ∠=∠+∠Q (三角形的一个外角等于与它不相邻的两个内角的和).PCD APC PAB ∴∠=∠+∠.【点睛】本题考查平行线的性质.熟练掌握平行线的性质并能灵活运用是解决此题的关键.24.2b a-2.【解析】 试题分析:首先化简分式,然后根据a 、b 满足的关系式,求出a 、b 的值,再把求出的a 、b 的值代入化简后的算式,求出算式的值是多少即可.试题解析:解:原式=2(2)1()2a b a b a a b a b +--⋅-+=21a b a +-=2a a b a --=2b a- ∵a 、b 满足2(2)10a b ++=,∴a 2=0,b +1=0,∴a 2,b =﹣1,当a 2,b =﹣1时,原式=22. 点睛:此题主要考查了分式的化简求值问题,要熟练掌握,注意先把分式化简后,再把分式中未知数对应的值代入求出分式的值.25.(1)9x =- (2)0x =【解析】【分析】(1)先去分母,再移项和合并同类项,最后检验即可.(2)先去分母,再移项和合并同类项,最后检验即可.【详解】(1)2332x x=-439x x =-9x =-经检验,9x =-是方程的根. (2)31144x x x ++=-- 341x x ++-=- 20x =0x =经检验,0x =是方程的根.【点睛】本题考查了解分式方程的问题,掌握解分式方程的方法是解题的关键.。

2020-2021初二数学上期中一模试卷(带答案)(4)

2020-2021初二数学上期中一模试卷(带答案)(4)

2020-2021初二数学上期中一模试卷(带答案)(4)一、选择题1.若关于x 的方程333x m m x x++--=3的解为正数,则m 的取值范围是( ) A .m <92B .m <92且m≠32 C .m >﹣94 D .m >﹣94且m≠﹣34 2.已知:如图,BD 为△ABC 的角平分线,且BD=BC ,E 为BD 延长线上的一点,BE=BA ,过E 作EF ⊥AB ,F 为垂足.下列结论:①△ABD ≌△EBC ;②∠BCE+∠BCD=180°;③AD=AE=EC ;④BA+BC=2BF ;其中正确的是( )A .①②③B .①③④C .①②④D .①②③④3.将多项式241x +加上一个单项式后,使它能成为另一个整式的完全平方,下列添加单项式错误的是( )A .4xB .4x -4C .4x 4D .4x -4.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°5.如图,在ABC ∆中,90A ∠=o ,30C ∠=o ,AD BC ⊥于D ,BE 是ABC ∠的平分线,且交AD 于P ,如果2AP =,则AC 的长为( )A .2B .4C .6D .86.一个多边形的每个内角均为108º,则这个多边形是( )A .七边形B .六边形C .五边形D .四边形7.如图,把三角形纸片ABC 沿DE 折叠,当点A 落在四边形BCDE 外部时,则∠A 与∠1、∠2之间的数量关系是( )A .212A ∠=∠-∠B .32(12)A ∠=∠-∠C .3212A ∠=∠-∠D .12A ∠=∠-∠8.如图,在矩形ABCD 中,AB =5,AD =3,动点P 满足S △P AB =13S 矩形ABCD ,则点P 到A 、B 两点距离之和P A +PB 的最小值为( )A .29B .34C .52D .419.如图,在等腰∆ABC 中,AB=AC ,∠BAC=50°,∠BAC 的平分线与AB 的垂直平分线交于点O 、点C 沿EF 折叠后与点O 重合,则∠CEF 的度数是( )A .60°B .55°C .50°D .45°10.若2n +2n +2n +2n =2,则n=( )A .﹣1B .﹣2C .0D .1411.已知x m =6,x n =3,则x 2m ―n 的值为( ) A .9B .34C .12D .43 12.2012201253()(2)135-⨯-=( ) A .1- B .1 C .0 D .1997二、填空题13.已知:x 2-8x-3=0,则(x-1)(x-3)(x-5)(x-7)的值是_______。

2020-2021初二数学上期中一模试题(含答案)(4)

2020-2021初二数学上期中一模试题(含答案)(4)

2020-2021初二数学上期中一模试题(含答案)(4)一、选择题1.下列关于x的方程中,是分式方程的是( ).A.132x=B.12x=C.2354x x++=D.3x-2y=12.如图是三个等边三角形随意摆放的图形,则∠1+∠2+∠3等于()A.90°B.120°C.150°D.180°3.一个三角形的两边长分别为3和4,且第三边长为整数,这样的三角形的周长最大值是( )A.11 B.12 C.13 D.144.若分式11xx-+的值为零,则x的值是( )A.1B.1-C.1±D.25.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°6.如图,AB∥CD,DE⊥BE,BF、DF分别为∠ABE、∠CDE的角平分线,则∠BFD=()A.110°B.120°C.125°D.135°7.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是( )A .20°B .35°C .40°D .70°8.如图,直线123l l l 、、表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A .一处B .二处C .三处D .四处9.如图所示,已知∠1=∠2,AD=BD=4,CE ⊥AD ,2CE=AC ,那么CD 的长是( )A .2B .3C .1D .1.5 10.如图所示,在平行四边形ABCD 中,分别以AB 、AD 为边作等边△ABE 和等边△ADF,分别连接CE ,CF 和EF ,则下列结论,一定成立的个数是( )①△CDF≌△EBC;②△CEF 是等边三角形;③∠CDF=∠EAF;④CE∥DFA .1B .2C .3D .411.若2n +2n +2n +2n =2,则n=( )A .﹣1B .﹣2C .0D .1412.已知a b 3132==,,则a b 3+的值为( )A .1B .2C .3D .27二、填空题13.已知等腰三角形的两边长分别为3和5,则它的周长是____________14.已知11 5x y +=,则232 2x xy y x xy y-+=++_____. 15.多项式241a +加上一个单项式后,使它能成为一个整式的完全平方,那么加上的单项式可以是________.(填上一个你认为正确的即可)16.如图,在等边ABC V 中,9AC =,点O 在AC 上,且3AO =,点P 是AB 上一动点,连结OP ,将线段OP 绕点O 逆时针旋转60o 得到线段OD .要使点D 恰好落在BC 上,则AP 的长是 .17.若226m n -=-,且3m n -=-,则m n + =____.18.若a+b=17,ab=60,则a-b 的值是__________.19.如图,在△ABC 中,∠A=50°,∠ABC=70°,BD 平分∠ABC ,则∠BDC 的度数是_____.20.因式分解:m 3n ﹣9mn =______.三、解答题21.一个多边形的外角和等于内角和的27,求这个多边形的边数. 22.先化简,再求值:1-222442a ab b a b a ab a b+++÷-- ,其中a 、b 满足(22b+1=0a - .23.已知:如图,∠ABC,射线BC 上一点D ,求作:等腰△PBD,使线段BD 为等腰△PBD 的底边,点P 在∠ABC 内部,且点P 到∠ABC 两边的距离相等.(不写作法,保留作图痕迹)24.“已知a m=4,a m+n=20,求a n的值.”这个问题,我们可以这样思考:逆向运用同底数幂的乘法公式,可得: a m+n=a m a n,所以20=4a n,所以a n=5.请利用这样的思考方法解决下列问题:已知a m=3,a n=5,求下列代数的值:(1)a2m+n;(2)a m-3n.25.先化简,再求值:22144(1)11x xx x-+-÷--,从1-,1,2,3中选择一个合适的数代入并求值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据分式方程的定义:分母里含有字母的方程叫做分式方程判断.【详解】A. C. D项中的方程分母中不含未知数,故不是分式方程;B. 方程分母中含未知数x,故是分式方程,故选B.【点睛】本题考查的是分式方程,熟练掌握分式方程是解题的关键.2.D解析:D【解析】【分析】先根据图中是三个等边三角形可知三角形各内角等于60°,用△ABC各内角的度数表示出∠1,∠2,∠3,再根据三角形内角和定理,即可得出结论.【详解】∵图中是三个等边三角形,∴∠1=180°−60°−∠ABC=120°−∠ABC,∠2=180°−60°−∠ACB=120°−∠ACB,∠3=180°−60°−∠BAC=120°−∠BAC,∵∠ABC+∠ACB+∠BAC=180°,∴∠1+∠2+∠3=360°−180°=180°,故选D.【点睛】本题主要考查等边三角形的性质定理,三角形内角和定理,熟练掌握上述定理,是解题的关键.3.C解析:C【解析】【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围,再根据第三边是整数,从而求得周长最大时,对应的第三边的长.【详解】解:设第三边为a,根据三角形的三边关系,得:4-3<a<4+3,即1<a<7,∵a为整数,∴a的最大值为6,则三角形的最大周长为3+4+6=13.故选:C.【点睛】本题考查了三角形的三边关系,根据三边关系得出第三边的取值范围是解决此题的关键.4.A解析:A【解析】试题解析:∵分式11xx-+的值为零,∴|x|﹣1=0,x+1≠0,解得:x=1.故选A.5.B解析:B【解析】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.6.D解析:D【解析】【分析】【详解】如图所示,过E作EG∥AB.∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°.又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,∴∠FBE+∠FDE=12(∠ABE+∠CDE)=12(360°﹣90°)=135°,∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故选D.【点睛】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.7.B解析:B【解析】【分析】先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=12(180°-∠CAB)=70°.再利用角平分线定义即可得出∠ACE=12∠ACB=35°.【详解】∵AD是△ABC的中线,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=12(180°-∠CAB)=70°.∵CE是△ABC的角平分线,∴∠ACE=12∠ACB=35°.故选B.【点睛】本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.8.D解析:D【解析】【分析】由三角形内角平分线的交点到三角形三边的距离相等,可得三角形内角平分线的交点满足条件;然后利用角平分线的性质,可证得三角形两条外角平分线的交点到其三边的距离也相等,这样的点有3个,可得可供选择的地址有4个.【详解】解:∵△ABC内角平分线的交点到三角形三边的距离相等,∴△ABC内角平分线的交点满足条件;如图:点P是△ABC两条外角平分线的交点,过点P作PE⊥AB,PD⊥BC,PF⊥AC,∴PE=PF,PF=PD,∴PE=PF=PD,∴点P到△ABC的三边的距离相等,∴△ABC两条外角平分线的交点到其三边的距离也相等,满足这条件的点有3个;综上,到三条公路的距离相等的点有4处,∴可供选择的地址有4处.故选:D【点睛】考查了角平分线的性质.注意掌握角平分线上的点到角两边的距离相等,注意数形结合思想的应用,小心别漏解.9.A解析:A【解析】【分析】在Rt△AEC中,由于CEAC=12,可以得到∠1=∠2=30°,又AD=BD=4,得到∠B=∠2=30°,从而求出∠ACD=90°,然后由直角三角形的性质求出CD.【详解】解:在Rt△AEC中,∵CEAC=12,∴∠1=∠2=30°,∵AD=BD=4,∴∠B=∠2=30°,∴∠ACD=180°﹣30°×3=90°,∴CD=12AD=2.故选A.【点睛】本题考查了直角三角形的性质、三角形内角和定理、等边对等角的性质.解题的关键是得出∠1=30°.10.C解析:C【解析】【分析】利用“边角边”证明△CDF和△EBC全等,判定①正确;同理求出△CDF和△EAF全等,根据全等三角形对应边相等可得CE CF EF==,判定△ECF是等边三角形,判定②正确;利用“8字型”判定③正确;若CE DFP,则C、F、A三点共线,故④错误;即可得出答案.【详解】在ABCD Y 中,ADC ABC ∠∠=,AD BC =,CD AB =,∵ABE ADF V V 、都是等边三角形,∴AD DF =,AB EB =,60DFAADF ABE ∠∠∠︒===, ∴DF BC =,=CD BE ,∴60CDF ADC ∠∠︒=﹣,60EBC ABC ∠∠︒=﹣,∴CDF EBC ∠∠=,在CDF V 和EBC V 中,DF BC CDF EBC CD EB =⎧⎪∠=∠⎨⎪=⎩,∴CDF EBC SAS V V ≌(),故①正确; 在ABCD Y 中,设AE 交CD 于O ,AE 交DF 于K ,如图:∵AB CD ∥,∴60DOA OAB ∠∠︒==,∴DOA DFO ∠∠=,∵OKD AKF ∠∠=,∴ODF OAF ∠∠=,故③正确;在CDF V 和EAF △中,CD EA CDF EAF DF AF =⎧⎪∠=∠⎨⎪=⎩,∴CDF EAF SAS V V ≌(), ∴EF CF =,∵CDF EBC ≌△△,∴CE CF =,∴EC CF EF ==,∴ECF △是等边三角形,故②正确;则60CFE ∠︒=,若CE DF P 时,则60DFE CEF ∠∠︒==,∵60DFA CFE ∠︒∠==,∴180CFE DFE DFA ∠+∠+∠︒=,则C 、F 、A 三点共线已知中没有给出C 、F 、A 三点共线,故④错误;综上所述,正确的结论有①②③.故选:C .【点睛】本题主要考查三角形全等的判定与性质,解题的关键是能通过题目所给的条件以及选用合适的判定三角形全等的方法证明.11.A解析:A【解析】【分析】利用乘法的意义得到4•2n =2,则2•2n =1,根据同底数幂的乘法得到21+n =1,然后根据零指数幂的意义得到1+n=0,从而解关于n 的方程即可.【详解】∵2n +2n +2n +2n =2,∴4×2n =2, ∴2×2n =1, ∴21+n =1,∴1+n=0,∴n=﹣1,故选A .【点睛】本题考查了乘法的意义以及同底数幂的乘法,熟知相关的定义以及运算法则是解题的关键.同底数幂相乘,底数不变,指数相加,即a m •a n =a m+n (m ,n 是正整数).12.B解析:B【解析】分析:由于3a ×3b =3a+b ,所以3a+b =3a ×3b ,代入可得结论. 详解:∵3a ×3b =3a+b∴3a+b=3a ×3b=1×2=2故选:B .点睛:本题考查了同底数幂的乘法法则的逆用.同底数幂的乘法法则:同底数的幂相乘,底数不变,指数相加.二、填空题13.11或13【解析】【分析】题目给出等腰三角形有两条边长为3和5而没有明确腰底分别是多少所以要进行讨论还要应用三角形的三边关系验证能否组成三角形【详解】解:有两种情况:①腰长为3底边长为5三边为:33 解析:11或13【解析】【分析】题目给出等腰三角形有两条边长为3和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:有两种情况:①腰长为3,底边长为5,三边为:3,3,5可构成三角形,周长=3+3+5=11;②腰长为5,底边长为3,三边为:5,5,3可构成三角形,周长=5+5+3=13. 故答案为:11或13.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.14.1【解析】【分析】先根据可得出x+y 与xy 的关系式然后在式子中将xy 用x+y 来表示化简后可得结果【详解】∵∴则xy=故答案为:1【点睛】本题考查分式的化简求值解题关键是将xy 转化为x+y 的形式解析:1【解析】【分析】 先根据11 5x y +=可得出x+y 与xy 的关系式,然后在式子232 2x xy y x xy y-+++中,将xy 用x+y 来表示,化简后可得结果.【详解】 ∵11 5x y += ∴ 5x y xy +=,则xy=()15x y + 372()2()23255 1272()()55x x y y x y x xy y x xy y x x y y x y -+++-+===++++++ 故答案为:1【点睛】本题考查分式的化简求值,解题关键是将xy 转化为x+y 的形式.15.或或【解析】分①4a2是平方项②4a2是乘积二倍项然后根据完全平方公式的结构解答解:①4a2是平方项时4a2±4a+1=(2a±1)2可加上的单项式可以是4a 或-4a②当4a2是乘积二倍项时4a4+解析:4a 或4a -或44a【解析】分①4a 2是平方项,②4a 2是乘积二倍项,然后根据完全平方公式的结构解答. 解:①4a 2是平方项时,4a 2±4a+1=(2a±1)2,可加上的单项式可以是4a 或-4a ,②当4a 2是乘积二倍项时,4a 4+4a 2+1=(2a 2+1)2,可加上的单项式可以是4a 4,综上所述,可以加上的单项式可以是4a 或-4a 或4a 4.本题主要考查了完全平方式,注意分4a 2,是平方项与乘积二倍项两种情况讨论求解,熟记完全平方公式对解题非常重要.16.6【解析】【分析】【详解】解:∵∠A+∠APO=∠POD+∠COD ∠A=∠POD=60°∴∠APO=∠COD 在△APO 和△COD 中∠A=∠CAPO=∠CODP=OD ∴△APO ≌△COD (AAS )∴A解析:6【解析】【分析】【详解】解:∵∠A+∠APO=∠POD+∠COD ,∠A=∠POD=60°,∴∠APO=∠COD .在△APO 和△COD 中,∠A=∠C ,APO=∠COD ,P=OD ,∴△APO ≌△COD (AAS ),∴AP=CO ,∵CO=AC-AO=6,∴AP=6.故答案为:6.17.2【解析】【分析】将利用平方差公式变形将m-n=3代入计算即可求出m+n 的值【详解】解:∵m2-n2=(m+n )(m-n )=6且m-n=3∴m+n=2【点睛】此题考查了利用平方差公式因式分解熟练掌握 解析:2【解析】【分析】将22m n -利用平方差公式变形,将m-n=3代入计算即可求出m+n 的值。

2020-2021八年级数学上期中一模试题(含答案)

2020-2021八年级数学上期中一模试题(含答案)

2020-2021八年级数学上期中一模试题(含答案)一、选择题1.下列四个图形中,既是轴对称图形又是中心对称图形的有( )A .4个B .3个C .2个D .1个2.“五一”期间,某中学数学兴趣小组的同学们租一辆小型巴士前去某地进行社会实践活动,租车租价为180元.出发时又增加了两位同学,结果每位同学比原来少分摊了3元车费.若小组原有x 人,则所列方程为( )A .18018032x x -=-B .18018032x x -=+C .18018032x x-=+ D .18018032x x -=- 3.已知一个等腰三角形一内角的度数为80o ,则这个等腰三角形顶角的度数为( ) A .100o B .80o C .50o 或80oD .20o 或80o 4.下列关于x 的方程中,是分式方程的是( ).A .132x =B .12x =C .2354x x ++=D .3x -2y =15.下列分式中,最简分式是( )A .B .C .D . 6.若分式11x x -+的值为零,则x 的值是( ) A .1 B .1- C .1± D .27.如图,直线123l l l 、、表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A .一处B .二处C .三处D .四处8.如果(x +1)(2x +m )的乘积中不含x 的一次项,则m 的值为( )A .2B .-2C .0.5D .-0.59.下列运算正确的是( )A .(-x 3)2=x 6B .a 2•a 3=a 6C .2a •3b =5abD .a 6÷a 2=a 310.如图,有三种规格的卡片共9张,其中边长为a 的正方形卡片4张,边长为b 的正方形卡片1张,长,宽分别为a ,b 的长方形卡片4张.现使用这9张卡片拼成一个大的正方形,则这个大正方形的边长为( )A .2a+bB .4a+bC .a+2bD .a+3b11.已知x m =6,x n =3,则x 2m ―n 的值为( )A .9B .34C .12D .4312.如图,E 是等边△ABC 中AC 边上的点,∠1=∠2,BE =CD ,则△ADE 的形状是( )A .等腰三角形B .等边三角形C .不等边三角形D .不能确定形状二、填空题13.若分式方程1133a x x x -+=--有增根,则 a 的值是__________________. 14.关于x 的分式方程22kx 3x 1x 1x 1+=--+会产生增根,则k =_____. 15.若直角三角形的一个锐角为50°,则另一个锐角的度数是_____度. 16.清明节期间,初二某班同学租一辆面包车前去故宫游览,面包车的租金为600元,出发时又增加了5名同学,且租金不变,这样每个同学比原来少分摊了10元车费,若设实际参加游览的同学,一共有x 人则可列分式方程________.17.若a+b=17,ab=60,则a-b 的值是__________.18.若关于x 的分式方程111x x m +--=2有增根,则m =_____. 19.若分式67x--的值为正数,则x 的取值范围_____. 20.如图,AD 是ABC ∆的角平分线,DF AB ⊥,垂足为F ,DE DG =,ADG ∆和EFD ∆的面积分别为50和4.5,则AED ∆的面积为_________.三、解答题21.计算:(1)211xxx+-+;解方程:(2)32833xx x-=-22.某建设工程准备招标,指挥部现接到甲、乙两个工程队的投标书,从投标书中得知:乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍;该工程若由甲队先做6天,剩下的工程再由甲、乙两队合作16天可以完成.(1)求甲、乙两队单独完成这项工程各需要多少天?(2)已知甲队每天的施工费用为0.67万元,乙队每天的施工费用为0.33万元,该工程预算的施工费用为19万元.为缩短工期,拟安排甲、乙两队同时开工合作完成这项工程,问:该工程预算的施工费用是否够用?若不够用,需要追加预算多少万元?请说明理由. 23.已知a、b、c是三角形三边长,试化简:|b+c﹣a|+|b﹣c﹣a|+|c﹣a﹣b|﹣|a﹣b+c|.24.先化简,再求值:[(2x+y)(2x-y)-3(2x2-xy)+y2]÷(-x),其中x=2,y=-1.25.我们把两组邻边相等的四边形叫做“筝形”.如图,四边形ABCD是一个筝形,其中AB=CB,AD=CD,对角线AC,BD相交于点O,OE⊥AB,OF⊥CB,垂足分别是E,F,求证OE=OF;【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】试题分析:A选项既是轴对称图形,也是中心对称图形;B选项中该图形是轴对称图形不是中心对称图形;C选项中既是中心对称图形又是轴对称图形;D选项中是中心对称图形又是轴对称图形.故选B.考点: 1.轴对称图形;2.中心对称图形.2.B解析:B【解析】【分析】设小组原有x人,根据题意可得,出发时又增加了两位同学,结果每位同学比原来少分摊了3元车费,列方程即可.【详解】设小组原有x人,可得:1801803.2x x-=+故选B.【点睛】考查由实际问题抽象出分式方程,读懂题目,找出题目中的等量关系是解题的关键. 3.D解析:D【解析】【分析】已知给出了等腰三角形的一个内角的度数,但没有明确这个内角是顶角还是底角,因此要分类讨论.【详解】()1若等腰三角形一个底角为80o,顶角为180808020o o o o--=;()2等腰三角形的顶角为80o.因此这个等腰三角形的顶角的度数为20o或80o.故选D.【点睛】本题考查等腰三角形的性质及三角形的内角和定理.解答此类题目的关键是要注意分类讨论,不要漏解.4.B解析:B【解析】【分析】根据分式方程的定义:分母里含有字母的方程叫做分式方程判断.【详解】A. C. D项中的方程分母中不含未知数,故不是分式方程;B. 方程分母中含未知数x,故是分式方程,故选B.【点睛】本题考查的是分式方程,熟练掌握分式方程是解题的关键.5.A解析:A【解析】【分析】根据最简分式的定义:分子和分母中不含公分母的分式,叫做最简分式,对四个选项中的分式一一判断即可得出答案.【详解】解:A.,分式的分子与分母不含公因式,是最简分式;B.,分式的分子与分母含公因式2,不是最简分式;C. ,分式的分子与分母含公因式x-2,不是最简分式;D. ,分式的分子与分母含公因式a,不是最简分式,故选A.【点睛】本题考查了最简分式的概念.对每个分式的分子和分母分别进行因式分解是解题的关键. 6.A解析:A【解析】试题解析:∵分式11xx-+的值为零,∴|x|﹣1=0,x+1≠0,解得:x=1.故选A.7.D解析:D【解析】【分析】由三角形内角平分线的交点到三角形三边的距离相等,可得三角形内角平分线的交点满足条件;然后利用角平分线的性质,可证得三角形两条外角平分线的交点到其三边的距离也相等,这样的点有3个,可得可供选择的地址有4个.【详解】解:∵△ABC内角平分线的交点到三角形三边的距离相等,∴△ABC内角平分线的交点满足条件;如图:点P是△ABC两条外角平分线的交点,过点P作PE⊥AB,PD⊥BC,PF⊥AC,∴PE=PF,PF=PD,∴PE=PF=PD,∴点P到△ABC的三边的距离相等,∴△ABC两条外角平分线的交点到其三边的距离也相等,满足这条件的点有3个;综上,到三条公路的距离相等的点有4处,∴可供选择的地址有4处.故选:D【点睛】考查了角平分线的性质.注意掌握角平分线上的点到角两边的距离相等,注意数形结合思想的应用,小心别漏解.8.B解析:B【解析】【分析】原式利用多项式乘以多项式法则计算,根据乘积中不含x的一次项,求出m的值即可.【详解】(x+1)(2x+m)=2x2+(m+2)x+m,由乘积中不含x的一次项,得到m+2=0,解得:m=-2,故选:B.【点睛】此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.9.A解析:A【解析】A .利用积的乘方与幂的乘方运算法则计算得到结果,即可做出判断;B .利用同底数幂的乘法法则计算得到结果,即可做出判断;C .利用单项式乘单项式法则计算得到结果,即可做出判断;D .利用同底数幂的除法法则计算得到结果,即可做出判断.【详解】A .(﹣x 3)2=x 6,本选项正确;B .a 2•a 3=a 5,本选项错误;C .2a •3b =6ab ,本选项错误;D .a 6÷a 2=a 4,本选项错误.故选A .【点睛】本题考查了同底数幂的除法,同底数幂的乘法,单项式乘单项式以及积的乘方与幂的乘方,熟练掌握运算法则是解答本题的关键.10.A解析:A【解析】【分析】4张边长为a 的正方形卡片的面积为4a 2,4张边长分别为a 、b 的矩形卡片的面积为4ab ,1张边长为b 的正方形卡片面积为b 2,9张卡片拼成一个正方形的总面积=4a 2+4ab+b 2=(2a+b)2,所以该正方形的边长为:2a+b .【详解】设拼成后大正方形的边长为x ,∴4a 2+4ab+b 2=x 2,∴(2a+b)2=x 2,∴该正方形的边长为:2a+b.故选A.【点睛】本题主要考查了完全平方公式的几何意义,利用完全平方公式分解因式后即可得出大正方形的边长.11.C解析:C【解析】试题解析:试题解析:∵x m =6,x n =3,∴x 2m -n =2()m n x x =36÷3=12. 故选C.12.B解析:B【解析】先证得△ABE≌△ACD,可得AE=AD,∠BAE=∠CAD=60°,即可证明△ADE是等边三角形.【详解】∵△ABC为等边三角形,∴AB=AC,∵∠1=∠2,BE=CD,∴△ABE≌△ACD,∴AE=AD,∠BAE=∠CAD=60°,∴△ADE是等边三角形,故选B.【点睛】本题考查了全等三角形的判定与性质,等边三角形的性质与判定,熟练掌握相关知识是解题的关键.二、填空题13.4【解析】【分析】增根是化为整式方程后产生的不适合分式方程的根所以应先确定增根的可能值让最简公分母x﹣3=0得到x=3然后代入整式方程算出a的值即可【详解】方程两边同时乘以x﹣3得:1+x﹣3=a﹣解析:4【解析】【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣3=0,得到x=3,然后代入整式方程算出a的值即可.【详解】方程两边同时乘以x﹣3得:1+x﹣3=a﹣x.∵方程有增根,∴x﹣3=0,解得:x=3,∴1+3﹣3=a﹣3,解得:a=4.故答案为:4.【点睛】本题考查了分式方程的增根,先根据增根的定义得出x的值是解答此题的关键.14.﹣4或6【解析】【分析】根据增根是分式方程化为整式方程后产生的使分式方程的分母为0的根把增根代入化为整式方程的方程即可求出k的值【详解】方程两边都乘(x+1)(x﹣1)得2(x+1)+kx=3(x﹣解析:﹣4或6【解析】【分析】根据增根是分式方程化为整式方程后产生的使分式方程的分母为0的根,把增根代入化为整式方程的方程即可求出k的值.方程两边都乘(x+1)(x﹣1),得2(x+1)+kx=3(x﹣1),即(k﹣1)x=﹣5,∵最简公分母为(x+1)(x﹣1),∴原方程增根为x=±1,∴把x=1代入整式方程,得k=﹣4.把x=﹣1代入整式方程,得k=6.综上可知k=﹣4或6.故答案为﹣4或6.【点睛】本题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.15.40°【解析】【分析】根据直角三角形两锐角互余解答【详解】∵一个锐角为50°∴另一个锐角的度数=90°-50°=40°故答案为:40°解析:40°.【解析】【分析】根据直角三角形两锐角互余解答.【详解】∵一个锐角为50°,∴另一个锐角的度数=90°-50°=40°.故答案为:40°.16.【解析】【分析】关键描述语是:每个同学比原来少分摊了10元车费;等量关系为:原有的同学每人分担的车费-实际每人分担的车费=20;据此列出分式方程即可【详解】解:设实际参加游览的同学一共有人由题意得:解析:60060010 5x x-= -【解析】【分析】关键描述语是:“每个同学比原来少分摊了10元车费”;等量关系为:原有的同学每人分担的车费-实际每人分担的车费=20;据此列出分式方程即可.【详解】解:设实际参加游览的同学一共有x人,由题意得:600600105x x-=-,故答案为:600600105x x-=-.【点睛】本题考查了由实际问题抽象出分式方程,找到关键描述语,找到相应的等量关系是解决问17.±7【解析】∵∴∴故答案为:±7点睛:本题解题的关键是清楚:与的关系是:解析:±7【解析】∵1760a b ab +==,,∴222()()41724049a b a b ab -=+-=-=,∴7a b -=±.故答案为:±7.点睛:本题解题的关键是清楚:2()a b -与2()a b +的关系是:22()()4a b a b ab -=+-. 18.1【解析】【分析】有增根是化为整式方程后产生的使原分式方程分母为0的根在本题中可确定增根是1然后代入化成整式方程的方程中求得m 的值【详解】解:去分母得:m ﹣1=2x ﹣2由分式方程有增根得到x ﹣1=0解析:1【解析】【分析】有增根是化为整式方程后,产生的使原分式方程分母为0的根.在本题中,可确定增根是1,然后代入化成整式方程的方程中,求得m 的值.【详解】解:去分母得:m ﹣1=2x ﹣2,由分式方程有增根,得到x ﹣1=0,即x =1,把x =1代入得:m ﹣1=0,解得:m =1,故答案为:1【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行求解:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.19.x>7【解析】试题解析:由题意得:>0∵-6<0∴7-x <0∴x>7 解析:x>7【解析】试题解析:由题意得:67x-->0, ∵-6<0,∴7-x <0,∴x >7.20.41【解析】【分析】作垂足为M 可得出由此推出从而得出【详解】解:作垂足为M ∵是的角平分线∴∴∴故答案为:41【点睛】本题考查的知识点是与角平分线有关的计算根据角平分线的性质得出是解此题的关键解析:41【解析】【分析】作DM AC ⊥,垂足为M ,可得出,ADF ADM DFE DMG ≅≅V V V V ,由此推出50 4.545.5ADM ADF ADG EFD S S S S ==-=-=V V V V ,从而得出45.5 4.541AED ADF EFD S S S=-=-=V V V . 【详解】解:作DM AC ⊥,垂足为M ,∵AD 是ABC ∆的角平分线,DF AB ⊥,∴,ADF ADM DFE DMG ≅≅V V V V ,∴50 4.545.5ADM ADF ADG EFD S S S S ==-=-=V V V V ,∴45.5 4.541AED ADF EFD S S S=-=-=V V V .故答案为:41.【点睛】本题考查的知识点是与角平分线有关的计算,根据角平分线的性质得出,ADF ADM DFE DMG ≅≅V V V V 是解此题的关键.三、解答题21.(1)1x 1+;(2)x= 1 【解析】【分析】(1)先通分,然后再化简;(2)先去分母,再解方程,最后验根.【详解】(1)原式=2211111 x xx x x-+=+++;(2)32833 xx x-=-3(x-3)=2-8x11x=11x=1当x=1时,分式的分母不为0,故x=1是分式方程的解.【点睛】本题考查分式的化简和解分式方程,注意解分式方程时,最后一定要验根.22.(1)甲、乙两队单独完成这项工程各需要30天和60天(2)工程预算的施工费用不够用,需追加预算1万元【解析】【分析】(1)求的是工效,时间较明显,一定是根据工作总量来列等量关系,等量关系为:甲6天的工作总量+甲乙合作16天的工作总量=1;(2)应先算出甲乙合作所需天数,再算所需费用,和19万进行比较.【详解】解:(1)设甲队单独完成这项目需要x天,则乙队单独完成这项工程需要2x天,根据题意,得611161 x x2x⎛⎫++=⎪⎝⎭,解得x=30经检验,x=30是原方程的根,则2x=2×30=60答:甲、乙两队单独完成这项工程各需要30天和60天.(2)设甲、乙两队合作完成这项工程需要y天,则有11y13060⎛⎫+=⎪⎝⎭,解得y=20需要施工费用:20×(0.67+0.33)=20(万元)∵20>19,∴工程预算的施工费用不够用,需追加预算1万元.【点睛】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.此题涉及的公式:工作总量=工作效率×工作时间.23.2b【解析】【分析】首先根据三角形三边之间的关系得出绝对值里面的数的正负性,然后再进行去绝对值计算,得出答案.【详解】∵b+c-a>0, b-c-a<0. c-a-b<0, a-b+c>0,∴|b+c-a|+|b-c-a|+|c-a-b|-|a-b+c|=(b+c-a)-(b-c-a)-(c-a-b)-(a-b+c)=(b+c-a-b+c+a-c+a+b-a+b-c=2b24.2x-3y,7【解析】【分析】先计算括号内多项式运算,再合并同类项,算除法,最后代数值计算即可.【详解】解:原式=-[4x2-y2-6x2+3xy+y2]×1 x=(2x2-3xy)×1 x=2x-3y将x=2,y=-1带入得,原式=4+3=7.故答案为:7.【点睛】本题是整式的乘除法运算,考查了平方差公式以及合并同类项.25.证明见解析.【解析】试题分析:欲证明OE=OF,只需推知BD平分∠ABC,所以通过全等三角形△ABD≌△CBD(SSS)的对应角相等得到∠ABD=∠CBD,问题就迎刃而解了.试题解析:证明:∵在△ABD和△CBD中,AB=CB,AD=CD,BD=BD,∴△ABD≌△CBD(SSS),∴∠ABD=∠CBD,∴BD平分∠ABC.又∵OE⊥AB,OF⊥CB,∴OE=OF.。

2020-2021学年山西省晋中市榆次区八年级上学期期中数学试卷 (解析版)

2020-2021学年山西省晋中市榆次区八年级上学期期中数学试卷 (解析版)

2020-2021学年山西省晋中市榆次区八年级(上)期中数学试卷一、选择题(共10小题).1.有理数9的平方根是()A.±3B.﹣3C.3D.±2.下列实数,0,2π,3.1010010001…(相邻两个1之间0的个数逐次加1)中有理数的个数为()A.2B.3C.4D.53.我们学习了一次函数的图象和性质,回顾学习过程,是按照列表、描点、连线得到其图象,然后根据图象研究其性质.这种研究方法主要体现的数学思想是()A.分类讨论B.数形结合C.转化D.抽象4.下列各组数,不可以作为直角三角形的三边长的是()A.6,8,10B.4,6,8C.0.3,0.4,0.5D.7,24,255.和数轴上的点成一一对应关系的数是()A.自然数B.有理数C.无理数D.实数6.若式子在实数范围内有意义,则x的取值范围是()A.x≥1B.x>1C.x<1D.x≤17.一个长方形的三个顶点在平面直角坐标系中的坐标分别为(﹣1,﹣1),(﹣1,2),(3,﹣1),那么第四个顶点的坐标为()A.(3,2)B.(2,3)C.(3,3)D.(2,2)8.一个正数的两个平方根分别为a+3和4﹣2a,则这个正数为()A.7B.10C.﹣10D.1009.一次函数y1=k1x+b1的图象l1如图所示,将直线l1向下平移若干个单位后得直线l2,l2的函数表达式为y2=k2x+b2.下列说法中错误的是()A.k1=k2B.b1>b2C.k1>k2D.当x=5时,y1>y210.已知一次函数y1=ax+b和y2=bx+a(ab≠0且a≠b),这两个函数的图象可能是()A.B.C.D.二、填空题(共5个小题,每小题3分,共15分)11.实数64的立方根是.12.已知A(m,n)在第二象限,则点B(n,m)在第象限.13.已知点(﹣2,y1),(2,y2)都在直线y=2x﹣3上,则y1y2.(填“<”或“>”或“=”)14.化简:=.15.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位长度,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0)…,则P2020的坐标是.三、解答题(含8个小题,共55分.解答题应写出文字说明、证明过程或演算步骤)16.在计算时,小明的解题过程如下:解:原式=2…①=2…②=(2﹣1)…③=…④(1)老师认为小明的解法有错,请你指出小明从第步开始出错的;(2)请你给出正确的解题过程.17.计算.(1);(2).18.如图,在平面直角坐标系xOy中,△ABC的三个顶点的坐标分别是A(0,2),B(2,﹣2),C(4,﹣1).(1)在图中作出△ABC关于y轴对称的图形△A1B1C1;点C1的坐标为;(2)判断△ABC的形状并说明理由;(3)在图中找一点D,使AD=,CD=.19.我国古代的数学名著《九章算术》中记载“今有竹高一丈,末折抵地,去本三尺.问:折者高几何?”译文:一根竹子,原高一丈,虫伤有病,一阵风将竹子折断,其竹梢恰好着地,着地处离原竹子根部3尺远.问:原处还有多高的竹子?(1丈=10尺)20.书籍是人类进步的台阶.为了鼓励全民阅读,某图书馆开展了两种方式的租书业务:一种是使用租书卡,另一种是使用会员卡,图中l1,l2分别表示使用租书卡和会员卡时每本书的租金y(元)与租书时间x(天)之间的关系.(1)直接写出用租书卡和会员卡时每本书的租金y(元)与租书时间x(天)之间的函数关系式;(2)小红准备租某本名著50天,选择哪种租书方式比较合算?小明准备花费90元租书,选择哪种租书方式比较合算?21.请仔细阅读材料并完成相应的任务.据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:一个数是59319,希望求它的立方根(提示:59319是一个整数的立方).华罗庚脱口而出答案,邻座的乘客十分惊奇,忙问计算的奥妙.你知道华罗庚是怎样迅速准确地计算出来的吗?(1)由103=1000,1003=1000000,1000<59319<100000,确定是位数;(2)由59319的个位数字是9,确定的个位上的数是;(3)如果划去59319后面的319得到数59,而33=27,43=64,确定的十位上的数是.22.已知正比例函数y=﹣x和一次函数y=kx+b的图象交于点A(a,2),一次函数的图象与y轴交于点B(0,4),与x轴交于点C.(1)求a的值和一次函数表达式;(2)求△AOC的面积.23.勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(如图1),后人称之为“赵爽弦图”,流传至今.(1)①请叙述勾股定理;②勾股定理的证明,人们已经找到了400多种方法,请从下列几种常见的证明方法中任选一种证明该定理;(以下图形均满足证明勾股定理所需的条件)(2)如图4,以直角三角形的三边为直径,分别向外部作半圆,则S1,S2,S3满足的关系是;(3)如图5,直角三角形的两直角边长分别为3,5,分别以直角三角形的三边为直径作半圆,则图中两个月形图案(阴影部分)的面积为.参考答案一、选择题(共10个小题,每小题3分,共30分在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.有理数9的平方根是()A.±3B.﹣3C.3D.±解:∵±3的平方是9,∴9的平方根是±3.故选:A.2.下列实数,0,2π,3.1010010001…(相邻两个1之间0的个数逐次加1)中有理数的个数为()A.2B.3C.4D.5解:有理数有:,,0,共有3个.故选:B.3.我们学习了一次函数的图象和性质,回顾学习过程,是按照列表、描点、连线得到其图象,然后根据图象研究其性质.这种研究方法主要体现的数学思想是()A.分类讨论B.数形结合C.转化D.抽象解:由题意可得,研究方法主要体现的数学思想是数形结合的思想,故选:B.4.下列各组数,不可以作为直角三角形的三边长的是()A.6,8,10B.4,6,8C.0.3,0.4,0.5D.7,24,25解:A、62+82=102,可以构成直角三角形,故此选项不合题意;B、62+42≠82,不能构成直角三角形,故此选项符合题意;C、0.32+0.42=0.52,可以构成直角三角形,故此选项不合题意;D、72+242=252,可以构成直角三角形,故此选项不合题意;故选:B.5.和数轴上的点成一一对应关系的数是()A.自然数B.有理数C.无理数D.实数解:∵任何实数都可以用数轴上的点来表示,数轴上的任何一点都表示一个实数,∴和数轴上的点成一一对应关系的数是实数.故选:D.6.若式子在实数范围内有意义,则x的取值范围是()A.x≥1B.x>1C.x<1D.x≤1解:根据二次根式有意义的条件得:x﹣1≥0,∴x≥1,故选:A.7.一个长方形的三个顶点在平面直角坐标系中的坐标分别为(﹣1,﹣1),(﹣1,2),(3,﹣1),那么第四个顶点的坐标为()A.(3,2)B.(2,3)C.(3,3)D.(2,2)解:如图所示:过(﹣1,2)、(3,﹣1)两点分别作x轴、y轴的平行线,交点为(﹣1,﹣1)和(3,2),则第四个顶点坐标为(3,2),故选:A.8.一个正数的两个平方根分别为a+3和4﹣2a,则这个正数为()A.7B.10C.﹣10D.100解:∵一个正数的两个平方根分别为a+3和4﹣2a,∴a+3+4﹣2a=0,解得:a=7,则a+3=10,4﹣2a=﹣10,故这个正数是100.故选:D.9.一次函数y1=k1x+b1的图象l1如图所示,将直线l1向下平移若干个单位后得直线l2,l2的函数表达式为y2=k2x+b2.下列说法中错误的是()A.k1=k2B.b1>b2C.k1>k2D.当x=5时,y1>y2解:∵将直线l1向下平移若干个单位后得直线l2,∴直线l1∥直线l2,∴k1=k2,∵直线l1向下平移若干个单位后得直线l2,∴b1>b2,∴当x=5时,y1>y2,故选:C.10.已知一次函数y1=ax+b和y2=bx+a(ab≠0且a≠b),这两个函数的图象可能是()A.B.C.D.解:当a>0,b>0时,一次函数y1=ax+b的图象经过第一、二、三象限,y2=bx+a的图象经过第一、二、三象限,故选项A错误,选项B错误,选项D正确;当a<0,b>0时,一次函数y1=ax+b的图象经过第一、二、四象限,y2=bx+a的图象经过第一、三、四象限,故选项C错误;故选:D.二、填空题(共5个小题,每小题3分,共15分)11.实数64的立方根是4.解:∵43=64,∴64的立方根是4,故答案为:412.已知A(m,n)在第二象限,则点B(n,m)在第四象限.解:∵A(m,n)在第二象限,∴m<0,n>0,则点B(n,m)在第四象限.故答案为:四.13.已知点(﹣2,y1),(2,y2)都在直线y=2x﹣3上,则y1<y2.(填“<”或“>”或“=”)解:∵k=2>0,∴y随x的增大而增大,又∵﹣2<2,∴y1<y2.故答案为:<.14.化简:=π﹣3.解:==π﹣3.故答案是:π﹣3.15.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位长度,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0)…,则P2020的坐标是(673,﹣1)..解:由图可得,P6(2,0),P12(4,0),…,P6n(2n,0),P6n+4(2n+1,﹣1),∵2016÷6=336,∴P6×336(2×336,0),即P2016(672,0),∴P2020(673,﹣1).故答案为:(673,﹣1).三、解答题(含8个小题,共55分.解答题应写出文字说明、证明过程或演算步骤)16.在计算时,小明的解题过程如下:解:原式=2…①=2…②=(2﹣1)…③=…④(1)老师认为小明的解法有错,请你指出小明从第③步开始出错的;(2)请你给出正确的解题过程.解:(1)小明从第③步开始出错的;故答案为③;(2)原式=2﹣=2﹣=6﹣2=4.17.计算.(1);(2).解:(1)原式=﹣2=3﹣2=1;(2)原式=18﹣6+1=19﹣6.18.如图,在平面直角坐标系xOy中,△ABC的三个顶点的坐标分别是A(0,2),B(2,﹣2),C(4,﹣1).(1)在图中作出△ABC关于y轴对称的图形△A1B1C1;点C1的坐标为(﹣4,﹣1);(2)判断△ABC的形状并说明理由;(3)在图中找一点D,使AD=,CD=.解:(1)如图所示,△A1B1C1即为所求,其中点C1的坐标为(﹣4,﹣1),故答案为:(﹣4,﹣1);(2)∵AB2=42+22=20,BC2=22+12=5,AC2=32+42=25,∴AB2+BC2=AC2,∴△ABC是直角三角形,∠ABC=90°;(3)如图所示,点D即为所求.19.我国古代的数学名著《九章算术》中记载“今有竹高一丈,末折抵地,去本三尺.问:折者高几何?”译文:一根竹子,原高一丈,虫伤有病,一阵风将竹子折断,其竹梢恰好着地,着地处离原竹子根部3尺远.问:原处还有多高的竹子?(1丈=10尺)解:设竹子折断处离地面x尺,则斜边为(10﹣x)尺,根据勾股定理得:x2+32=(10﹣x)2,解得:x=.答:原处还有尺高的竹子.20.书籍是人类进步的台阶.为了鼓励全民阅读,某图书馆开展了两种方式的租书业务:一种是使用租书卡,另一种是使用会员卡,图中l1,l2分别表示使用租书卡和会员卡时每本书的租金y(元)与租书时间x(天)之间的关系.(1)直接写出用租书卡和会员卡时每本书的租金y(元)与租书时间x(天)之间的函数关系式;(2)小红准备租某本名著50天,选择哪种租书方式比较合算?小明准备花费90元租书,选择哪种租书方式比较合算?解:(1)设直线l1对应的函数解析式为y=kx,200k=60,解得k=0.3,即直线l1对应的函数解析式为y=0.3x,设直线l2对应的函数解析式为y=ax+b,,解得,即直线l2对应的函数解析式为y=0.2x+20,由上可得,用租书卡时每本书的租金y(元)与租书时间x(天)之间的函数关系式是y =0.3x,用会员卡时每本书的租金y(元)与租书时间x(天)之间的函数关系式是y=0.2x+20;(2)当x=50时,租书卡的租金为0.3×50=15(元),会员卡的租金为0.2×50+20=30(元),∵15<30,∴小红准备租某本名著50天,选择租书卡租书方式比较合算;当y=90时,租书卡可以租用90÷0.3=300(天),会员卡可以租用(90﹣20)÷0.2=350(天),∵300<350,∴小明准备花费90元租书,选择会员卡租书方式比较合算.21.请仔细阅读材料并完成相应的任务.据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:一个数是59319,希望求它的立方根(提示:59319是一个整数的立方).华罗庚脱口而出答案,邻座的乘客十分惊奇,忙问计算的奥妙.你知道华罗庚是怎样迅速准确地计算出来的吗?(1)由103=1000,1003=1000000,1000<59319<100000,确定是两位数;(2)由59319的个位数字是9,确定的个位上的数是9;(3)如果划去59319后面的319得到数59,而33=27,43=64,确定的十位上的数是3.解:(1)∵1000<59319<1000000,∴,∴是两位数;(2)只有个位数是9的立方数的个位数依然是9,∴的个位数是9;(3)∵27<59<64,∴,∴的十位数是3.故答案为:(1)两;(2)9;(3)3.22.已知正比例函数y=﹣x和一次函数y=kx+b的图象交于点A(a,2),一次函数的图象与y轴交于点B(0,4),与x轴交于点C.(1)求a的值和一次函数表达式;(2)求△AOC的面积.解:(1)将A(a,2)代入y=﹣x,得:2=﹣a,则a=﹣2,∴A(﹣2,2),将A(﹣2,2)和B(0,4)代入y=kx+b中,得:,解得:,则一次函数表达式为y=x+4;(2)把y=0代入y=x+4,得x=﹣4,∴C(﹣4,0),∴S△AOC==4.23.勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(如图1),后人称之为“赵爽弦图”,流传至今.(1)①请叙述勾股定理;②勾股定理的证明,人们已经找到了400多种方法,请从下列几种常见的证明方法中任选一种证明该定理;(以下图形均满足证明勾股定理所需的条件)(2)如图4,以直角三角形的三边为直径,分别向外部作半圆,则S1,S2,S3满足的关系是S1+S2=S3;(3)如图5,直角三角形的两直角边长分别为3,5,分别以直角三角形的三边为直径作半圆,则图中两个月形图案(阴影部分)的面积为7.5.解:(1)①如果直角三角形的两条直角边分别为a,b,斜边为c,那么a2+b2=c2(或者:在直角三角形中,两条直角边的平方和等于斜边的平方.).②证明:在图1中,大正方形的面积等于四个全等的直角三角形的面积与中间小正方形面积的和.即c2=ab×4+(b﹣a)2,化简得:a2+b2=c2.在图2中,大正方形的面积等于四个全等的直角三角形的面积与中间小正方形面积的和.即(a+b)2=c2+ab×4,化简得:a2+b2=c2.在图3中,梯形的面积等于三个直角三角形的面积的和.即(a+b)(a+b)=ab×2+c2,化简得:a2+b2=c2.(2)S1,S2,S3满足的关系是S1+S2=S3,∵S1+S2=π()2+π()2,S3=π()2,∵a2+b2=c2.∴S1+S2=S3.(3)图中两个月形图案(阴影部分)的面积:S1+S2=π()2+π()2+S3﹣π()2=S△ABC=,故答案为:(2)S1+S2=S3;(3)7.5.。

2020-2021初二数学上期中一模试题(附答案)

2020-2021初二数学上期中一模试题(附答案)
3.李老师开车去20km远的县城开会,若 按原计划速度行驶,则会迟到10分钟,在保证安全驾驶的前提下,如果将速度每小时加快10km,则正好到达,如果设原来的行驶速度为xkm/h,那么可列分式方程为
A. B.
C. D.
4.从甲地到乙地有两条路:一条是全长750km的普通公路,另一条是全长600km高速公路.某客车从甲地出发去乙地,若走高速公路,则平均速度是走普通公路的平均速度的2倍,所需时间比走普通公路所需时间少5小时.设客车在普通公路上行驶的平均速度是x km/h,则下列等式正确的是()
解析:41
【解析】
【分析】
作 ,垂足为M,可得出 ,由此推出 ,从而得出 .
【详解】
解:作 ,垂足为M,
∵ 是 的角平分线, ,
∴ ,
∴ ,
∴ .
故答案为:41.
【点睛】
本题考查的知识点是与角平分线有关的计算,根据角平分线的性质得出 是解此题的关键.
【详解】
解:如图:
∵a∥b,
∴∠4=∠1=50°,
∵∠4=∠2+∠3,∠3=10°,
∴∠2=50° 10°=40°;
故选:B.
【点睛】
本题考查了平行线的性质,三角形的外角性质,解题的关键是熟练掌握平行线的性质,正确得到∠4=∠1=50°.
7.A
解析:A
【解析】
分析:先把23m﹣2n化为(2m)3÷(2n)2,再求解.
【详解】
由题意得: = ,
∵ ,∴ ,
∴原式= =1+2=3.
故选:A.
【点睛】
本题主要考查了整式的化简求值,整体代入是解题关键.
9.B解析:BFra bibliotek【解析】从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把一个七边形分割成7-2=5个三角形.

山西省运城市盐湖区2020-2021学年八年级(上)期中数学试卷(含解析)

山西省运城市盐湖区2020-2021学年八年级(上)期中数学试卷(含解析)

2020-2021学年山西省运城市盐湖区八年级(上)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项符合题目要求)1.在数,π,﹣17,0.333…中,其中无理数有()A.1个B.2个C.3个D.4个2.估计的大小应在()A.5~6之间B.6~7之间C.8~9之间D.7~8之间3.平面直角坐标系中,点P坐标是(﹣1,2),则点P关于y轴对称点的坐标是()A.(1,﹣2)B.(1,2)C.(﹣1,﹣2)D.(﹣1,2)4.已知|a﹣1|+=0,则a+b等于()A.﹣8B.﹣6C.6D.85.下列各组数中,以a、b、c为边的三角形不是直角三角形的是()A.a=1.5,b=2,c=3B.a=7,b=24,c=25C.a=6,b=8,c=10D.a=0.3,b=0.4,c=0.56.如图,以数轴的单位长度线段为边作一个正方形,以表示数0的点为圆心,正方形对角线长为半径画弧,交数轴于点A,则点A表示的数是()A.﹣B.﹣1+C.D.1﹣7.一次函数y=ax﹣a(a≠0)的大致图象是()A.B.C.D.8.对于函数y=﹣3x+1,下列结论正确的是()A.它的图象必经过点(﹣1,3)B.它的图象经过第一、二、三象限C.当x>时,y<0D.y的值随x值的增大而增大9.如图所示,在等腰Rt△ABC中,∠ABC=90°,BA=BC=10,直线l过点B,分别过点A、C作直线l的垂线,垂足分别为E、F,若AE=8,则CF的长为()A.5B.6C.7D.810.如图,在由25个边长为1的小正方形拼成的网格中以AB为边画Rt△ABC,使点C 在格点上,满足这样条件的点C共()个.A.5B.6C.7D.8二、填空题(本大题共5小题,每小题3分,共15分)11.的平方根为.12.“折竹抵地”问题源自《九章算术》中,即:今有竹高一丈,末折抵地,去本四尺,问折者高几何?意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远,则折断后的竹子高度为尺.13.用“&”定义新运算:对于任意实数a、b,都有a&b=2a2+b,如3&4=2×32+4=22,那么&3=.14.在平面直角坐标系中,已知一次函数y=﹣x+1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1y2(填“>”,“<”或“=”).15.同学们玩过五子棋吗?它的比赛规则是只要同色5子先成一条直线就算胜如图是两人玩的一盘棋,若白的位置是(1,﹣5),黑的位置是(2,﹣4),现轮到黑棋走,你认为黑棋放在位置就获得胜利了.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(10分)计算:(1);(2).17.(6分)如图是一底面周长为24m,高为6m的圆柱形油罐,一只老鼠欲从距地面1m 的A处沿侧面爬行到对角B处吃食物,请算出老鼠爬行的最短路程为多少?18.(8分)如图,在平面直角坐标系中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于x轴对称的△A1B1C1;(2)写出点A1,B1,C1的坐标(直接写出答案);(3)若网格中每个小正方形的边长为1,则△A1B1C1的面积是多少?19.(8分)如图,在平面直角坐标系xOy中,直线y=kx+4(k≠0)与y轴交于点A.直线y=﹣2x+1与直线y=kx+4(k≠0)交于点B,与y轴交于点C,点B的横坐标为﹣1.(1)求点B的坐标及k的值;(2)求直线y=﹣2x+1、直线y=kx+4与y轴所围成的△ABC的面积.20.(9分)如图,某小区有两个喷泉A,B,两个喷泉的距离长为250m.现要为喷泉铺设供水管道AM,BM,供水点M在小路AC上,供水点M到AB的距离MN的长为120m,BM的长为150m.(1)求供水点M到喷泉A,B需要铺设的管道总长;(2)求喷泉B到小路AC的最短距离.21.(10分)在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成矩形的周长的数值与面积的数值相等,则这个点叫做和谐点.例如,图中过点P分别作x轴,y轴的垂线,与坐标轴围成矩形OAPB周长的数值与面积的数值相等,则点P是和谐点.(1)判断点M(1,2),N(4,4)是否为和谐点,并说明理由;(2)若和谐点P(a,3)(a>0)在直线y=﹣x+b(b为常数)上,求a,b的值.22.(11分)在进行二次根式化简时,我们有时会碰上如,,一样的式子,这样的式子我们可以将其进一步化简==,==,==﹣1以上这种化简的方法叫做分母有理化,请利用分母有理化解答下列问题:(1)化简:;(2)若a是的小数部分,求的值;(3)矩形的面积为3+1,一边长为﹣2,求它的周长.23.(13分)长方形OABC是一张放在平面直角坐标系中的长方形纸片,O为原点,点A 在x轴上,点C在y轴上,OA=10,OC=6.(1)如图,在AB上取一点M,使得△CBM沿CM翻折后,点B落在x轴上,记作B′点,求B′点的坐标.(2)求折痕CM所在直线的解析式.(3)在x轴上是否能找到一点P,使△B′CP的面积为13?若存在,直接写出点P 的坐标?若不存在,请说明理由.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021初二数学上期中一模试题带答案(4)一、选择题1.李老师开车去20km远的县城开会,若按原计划速度行驶,则会迟到10分钟,在保证安全驾驶的前提下,如果将速度每小时加快10km,则正好到达,如果设原来的行驶速度为xkm/h,那么可列分式方程为A.20201010x x-=+B.20201010x x-=+C.20201106x x-=+D.20201106x x-=+2.如图2,AB=AC,BE⊥AC于E,CF⊥AB于F,BE,CF交于D,则以下结论:①△ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上.正确的是()A.①B.②C.①②D.①②③3.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④BA+BC=2BF;其中正确的是()A.①②③B.①③④C.①②④D.①②③④4.一个三角形的两边长分别为3和4,且第三边长为整数,这样的三角形的周长最大值是( )A.11 B.12 C.13 D.145.如图,在△ABC中,过点A作射线AD∥BC,点D不与点A重合,且AD≠BC,连结BD交AC于点O,连结CD,设△ABO、△ADO、△CDO和△BCO的面积分别为和,则下列说法不正确的是()A.B.C.D.6.如果(x +1)(2x +m )的乘积中不含x 的一次项,则m 的值为( )A .2B .-2C .0.5D .-0.57.若23m =,25n =,则322m n -等于 ( )A .2725B .910C .2D .25278.如图,在ABC ∆中,4AB =,3AC =,30BAC ∠=︒,将ABC ∆绕点A 按逆时针旋转60︒得到11AB C ∆,连接1BC ,则1BC 的长为( )A .3B .4C .5D .69.如图,有三种规格的卡片共9张,其中边长为a 的正方形卡片4张,边长为b 的正方形卡片1张,长,宽分别为a ,b 的长方形卡片4张.现使用这9张卡片拼成一个大的正方形,则这个大正方形的边长为( )A .2a+bB .4a+bC .a+2bD .a+3b10.式子:222123,,234x y x xy 的最简公分母是( ) A .24x 2y 2xy B .24 x 2y 2 C .12 x 2y 2 D .6 x 2y 211.已知x m =6,x n =3,则x 2m ―n 的值为( )A .9B .34C .12D .4312.新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1~5月份每辆车的销售价格是多少万元?设今年1~5月份每辆车的销售价格为x 万元.根据题意,列方程正确的是( )A .B .C .D .二、填空题13.如图,把一根直尺与一块三角尺如图放置,若∠1=55°,则∠2的度数为________.14.若x-y≠0,x-2y=0,则分式1011x y x y --的值________. 15.已知210x x +-=,则2421x x x ++的值是______. 16.如图△ABC 中,AB =AC ,∠A =36°,BD 平分∠ABC 交AC 于D ,则图中的等腰三角形有_____个17.如图,△ABC 中,AB=BC ,∠ABC=90°,F 为AB 延长线上一点,点E 在BC 上,且AE=CF ,若∠BAE=25°,则∠ACF=__________度.18.如图,AD 是三角形ABC 的对称轴,点E 、F 是AD 上的两点,若BD =2,AD =3,则图中阴影部分的面积是_______.19.若分式67x--的值为正数,则x 的取值范围_____. 20.如图,△ABC 中.点D 在BC 边上,BD=AD=AC ,E 为CD 的中点.若∠CAE=16°,则∠B 为_____度.三、解答题21.列方程解应用题某服装厂准备加工400套运动装,在加工完160套后,采用新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,那么原计划每天加工服装多少套?22.先化简.再求值已知20a a -=,求222141•2211a a a a a a --÷+-+-的值. 23.先化简,再求值:2422x x x +--,其中x =3﹣2. 24.先化简,再求值:(1﹣11a -)÷2244a a a a-+-,其中a=2+2. 25.如图,在△ABC 中,AB=AC,D,E 分别是AB,AC 的中点,且CD=BE,△ADC 与△AEB 全等吗?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】设原来的行驶速度为xkm/h ,根据“原计划所用的时间-实际所用的时间=16小时”,即可得方程20201106x x -=+,故选C. 点睛:本题考查了分式方程的应用,根据题意正确找出等量关系是解题的关键.2.D解析:D【解析】【分析】从已知条件进行分析,首先可得△ABE ≌△ACF 得到角相等,边相等,运用这些结论,进而得到更多的结论,最好运用排除法对各个选项进行验证从而确定最终答案.【详解】∵BE⊥AC于E,CF⊥AB于F∴∠AEB=∠AFC=90°,∵AB=AC,∠A=∠A,∴△ABE≌△ACF(①正确)∴AE=AF,∴BF=CE,∵BE⊥AC于E,CF⊥AB于F,∠BDF=∠CDE,∴△BDF≌△CDE(②正确)∴DF=DE,连接AD∵AE=AF,DE=DF,AD=AD,∴△AED≌△AFD,∴∠FAD=∠EAD,即点D在∠BAC的平分线上(③正确).故答案选D.考点:角平分线的性质;全等三角形的判定及性质.3.D解析:D【解析】【分析】根据SAS证△ABD≌△EBC,可得∠BCE=∠BDA,结合∠BCD=∠BDC可得①②正确;根据角的和差以及三角形外角的性质可得∠DCE=∠DAE,即AE=EC,由AD=EC,即可得③正确;过E作EG⊥BC于G点,证明Rt△BEG≌Rt△BEF和Rt△CEG≌Rt△AEF,得到BG=BF和AF=CG,利用线段和差即可得到④正确.【详解】解:①∵BD为△ABC的角平分线,∴∠ABD=∠CBD,∴在△ABD和△EBC中,BD BCABD CBD BE BA⎧⎪∠∠⎨⎪⎩===,∴△ABD≌△EBC(SAS),①正确;②∵BD为△ABC的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵△ABD≌△EBC,∴∠BCE=∠BDA,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,②正确;③∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,∴∠DCE=∠DAE,∴△ACE为等腰三角形,∴AE=EC,∵△ABD≌△EBC,∴AD=EC,∴AD=AE=EC.③正确;④过E作EG⊥BC于G点,∵E是∠ABC的角平分线BD上的点,且EF⊥AB,∴EF=EG(角平分线上的点到角的两边的距离相等),∵在Rt△BEG和Rt△BEF中,BE BE EF EG=⎧⎨=⎩,∴Rt△BEG≌Rt△BEF(HL),∴BG=BF,∵在Rt△CEG和Rt△AFE中,AE CE EF EG=⎧⎨=⎩,∴Rt△CEG≌Rt△AEF(HL),∴AF=CG,∴BA+BC=BF+FA+BG−CG=BF+BG=2BF,④正确.故选D.【点睛】本题考查了全等三角形的判定和全等三角形的对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应角、对应边相等的性质是解题的关键.4.C解析:C【解析】【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围,再根据第三边是整数,从而求得周长最大时,对应的第三边的长.【详解】解:设第三边为a,根据三角形的三边关系,得:4-3<a<4+3,即1<a<7,∵a为整数,∴a的最大值为6,则三角形的最大周长为3+4+6=13.故选:C.【点睛】本题考查了三角形的三边关系,根据三边关系得出第三边的取值范围是解决此题的关键.5.D解析:D【解析】【分析】根据同底等高判断△ABD和△ACD的面积相等,即可得到,即,同理可得△ABC和△BCD的面积相等,即.【详解】∵△ABD和△ACD同底等高,,,即△ABC和△DBC同底等高,∴∴故A,B,C正确,D错误.故选:D.【点睛】考查三角形的面积,掌握同底等高的三角形面积相等是解题的关键.6.B解析:B【解析】【分析】原式利用多项式乘以多项式法则计算,根据乘积中不含x的一次项,求出m的值即可.【详解】(x+1)(2x+m)=2x2+(m+2)x+m,由乘积中不含x的一次项,得到m+2=0,解得:m=-2,故选:B .【点睛】此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.7.A解析:A【解析】分析:先把23m ﹣2n 化为(2m )3÷(2n )2,再求解.详解:∵2m =3,2n =5,∴23m ﹣2n =(2m )3÷(2n )2=27÷25=2725. 故选A .点睛:本题主要考查了同底数幂的除法及幂的乘方与积的乘方,解题的关键是把23m ﹣2n 化为(2m )3÷(2n )2. 8.C解析:C【解析】【分析】由旋转性质得∠CAC 1=600,AC=AC 1=3,在Rt ⊿ABC 1中,BC 15==.【详解】因为ABC ∆绕点A 按逆时针旋转60︒得到11AB C ∆,所以∠CAC 1=600,AC=AC 1=3所以∠BAC 1=∠BAC+∠CAC 1=300+600=900,所以,在Rt ⊿ABC 1中,BC 15==故选:C【点睛】考核知识点:旋转性质,勾股定理.运用旋转性质是关键.9.A解析:A【解析】【分析】4张边长为a 的正方形卡片的面积为4a 2,4张边长分别为a 、b 的矩形卡片的面积为4ab ,1张边长为b 的正方形卡片面积为b 2,9张卡片拼成一个正方形的总面积=4a 2+4ab+b 2=(2a+b)2,所以该正方形的边长为:2a+b .【详解】设拼成后大正方形的边长为x ,∴4a 2+4ab+b 2=x 2,∴(2a+b)2=x 2,∴该正方形的边长为:2a+b.故选A.【点睛】本题主要考查了完全平方公式的几何意义,利用完全平方公式分解因式后即可得出大正方形的边长.10.C解析:C【解析】【分析】分母都是单项式,根据最简公分母的求法:系数取最大系数,不同字母取最高次幂,将它们相乘即可求得.【详解】 式子:222123,,234x y x xy的最简公分母是:12 x 2y 2. 故选:C .【点睛】本题考查最简公分母的定义与求法.11.C解析:C【解析】试题解析:试题解析:∵x m =6,x n =3,∴x 2m -n =2()m n x x =36÷3=12. 故选C.12.A解析:A【解析】【分析】首先根据所设今年每辆车的价格,可表示出去年的价格,同样根据销售总额的关系可表示出今年的销售总额,然后再根据去年和今年1~5月份销售汽车的数量相同建立方程即可得解.【详解】∵今年1~5月份每辆车的销售价格为x 万元,∴去年每辆车的销售价格为(x+1)万元,则有故选A.【点睛】此题主要考查分式方程的应用,解题的关键是找出题中去年和今年的关系.二、填空题13.145°【解析】【分析】根据直角三角形两锐角互余求出∠3再根据邻补角定义求出∠4然后根据两直线平行同位角相等解答即可【详解】∵∠1=55°∴∠3=90°-∠1=90°-55°=35°∴∠4=180°解析:145°.【解析】【分析】根据直角三角形两锐角互余求出∠3,再根据邻补角定义求出∠4,然后根据两直线平行,同位角相等解答即可.【详解】∵∠1=55°,∴∠3=90°-∠1=90°-55°=35°,∴∠4=180°-35°=145°,∵直尺的两边互相平行,∴∠2=∠4=145°.故答案为145.14.9【解析】【分析】【详解】解:∵x-2y=0x-y≠0∴x=2yx≠y∴==9故答案为:9解析:9【解析】【分析】【详解】解:∵x-2y=0,x-y≠0,∴x=2y,x≠y,∴1011x yx y--=201192y y yy y y-=-=9,故答案为:915.【解析】【分析】由可知x≠0根据分式的基本性质可得进而可得根据分式的基本性质可得把代入即可得答案【详解】∵∴x≠0∴两边同时平方得:∴故答案为:【点睛】本题考查分式的基本性质分式的分子分母同时乘以或解析:1 2【解析】由210x x +-=可知x≠0,根据分式的基本性质可得11x x-=-,进而可得2211x x +=,根据分式的基本性质可得242221111x x x x x=++++,把2211x x +=代入即可得答案. 【详解】∵210x x +-=,∴x≠0, ∴11x x-=-, 两边同时平方得:2211x x+=, ∴24222111121x x x x x==++++. 故答案为:12【点睛】本题考查分式的基本性质,分式的分子、分母同时乘以或除以一个不为0的整式,分式的值不变;灵活运用分式的基本性质把已知和所求分式变形是解题关键. 16.3【解析】根据条件求出各个角的度数由此确定哪个三角形是等腰三角形解答:∵在△ABC 中AB=BC∠A=36°∴∠ABC=∠ACB=72°∵BD 平分∠ABC∴∠ABD=∠CBD=36°∴∠ABD=∠A=解析:3【解析】根据条件求出各个角的度数,由此确定哪个三角形是等腰三角形解答:∵在△ABC 中,AB =BC ,∠A =36°,∴∠ABC =∠ACB =72°,∵BD 平分∠ABC ,∴∠ABD =∠CBD =36°,∴∠ABD =∠A =36°,∠BDC =72°=∠C , ∴△ABD 和△BDC 都是等腰三角形.故有三个等腰三角形 故有三个.点睛:本题主要考查了等腰三角形的判定.利用已知条件求出等角是判断等腰三角形的关键. 17.70【解析】【分析】先利用HL 证明△ABE ≌△CBF 可证∠BCF=∠BAE=25°即可求出∠ACF=45°+25°=70°【详解】∵∠ABC=90°AB=AC ∴∠CBF=180°-∠ABC=90°∠解析:70【分析】先利用HL 证明△ABE ≌△CBF ,可证∠BCF=∠BAE=25°,即可求出∠ACF=45°+25°=70°.【详解】∵∠ABC=90°,AB=AC ,∴∠CBF=180°-∠ABC=90°,∠ACB=45°,在Rt △ABE 和Rt △CBF 中,AB CB AE CF =⎧⎨=⎩, ∴Rt △ABE ≌Rt △CBF(HL),∴∠BCF=∠BAE=25°,∴∠ACF=∠ACB+∠BCF=45°+25°=70°,故答案为70.【点睛】本题考查了等腰直角三角形的性质,全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解题的关键.18.3【解析】∵轴对称的两个图形全等∴阴影部分的面积是整个三角形面积的一半即阴影部分的面积等于ΔABD 的面积而ΔABD 的面积=05×2×3=3故答案为3 解析:3【解析】∵轴对称的两个图形全等,∴阴影部分的面积是整个三角形面积的一半,即阴影部分的面积等于ΔABD 的面积,而ΔABD 的面积=0.5×2×3=3, 故答案为3.19.x>7【解析】试题解析:由题意得:>0∵-6<0∴7-x <0∴x >7解析:x>7【解析】试题解析:由题意得:67x-->0, ∵-6<0,∴7-x <0,∴x >7.20.37【解析】【分析】先判断出∠AEC=90°进而求出∠ADC=∠C=74°最后用等腰三角形的外角等于底角的2倍即可得出结论【详解】解:∵AD=AC 点E 是CD 中点∴AE ⊥CD ∴∠AEC=90°∴∵AD解析:37【分析】先判断出∠AEC=90°,进而求出∠ADC=∠C=74°,最后用等腰三角形的外角等于底角的2倍即可得出结论.【详解】解:∵AD=AC ,点E 是CD 中点,∴AE ⊥CD ,∴∠AEC=90°,∴9074C CAE ∠=︒-∠=︒,∵AD=AC ,∴∠ADC=∠C=74°,∵AD=BD ,∴2∠B=∠ADC=74°,∴∠B=37°,故答案为:37°.【点睛】此题主要考查了等腰三角形的性质,直角三角形的性质,三角形外角的性质,求出∠ADC=74°是解本题的关键.三、解答题21.原计划每天加工20套.【解析】【分析】设原计划每天加工x 套,根据准备订购400套运动装,某服装厂接到订单后,在加工160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用18天完成任务,可列方程.【详解】解:设原计划每天加工x 套,由题意得:16040016018(120%)x x-+=+ 解得:x=20,经检验:x=20是原方程的解.答:原计划每天加工20套.考点:分式方程的应用22.-2【解析】【分析】根据分式乘法法则化简在代入a 的值计算.【详解】原式=()()2222141••a 1a 1?•a 1a 1221211a a a a a a a a a a a +----+-=+-+-++--()()=(a-2)(a+1), ∵20a a -=,∴a(a-1)=0,∵a -1≠0,∴a≠1,由此得a=0,代入算式:(a-2)(a+1)=(0-2)(0+1)=-2.故答案为-2.【点睛】本题主要考察的是分式乘法法则等知识,熟练掌握是本题的解题关键.23.【解析】【分析】先把分式化简,再把数代入求值.【详解】 原式=2422x x x--- =242x x-- =(2)(2)2x x x+-- =﹣(x+2),当x 2时,原式=22)-+=【点睛】此题考查分式的加法,关键是寻找最简公分母,也要注意符号的处理.24.原式=2a a -+1. 【解析】分析:先根据分式混合运算顺序和运算法则化简原式,再将a 的值代入计算可得. 详解:原式=211(2)(11(1)a a a a a a ---÷---) =22(1)•1(2)a a a a a ---- =2a a -当原式1=.点睛:本题主要考查分式的混合运算,解题的关键是熟练掌握分式混合运算顺序和运算法则.25.答案见解析【解析】试题分析:由中点定义及AB=AC,可得到AD=AE,再通过SAS证明△ADC≌△AEB即可.试题解析:解:△ADC≌△AEB.理由如下:∵AB=AC,D,E分别是AB,AC的中点,∴AD=AE.在△ADC和△AEB中,∵AC=AB,∠A=∠A(公共角),AD=AE,∴△ADC≌△AEB(SAS).。

相关文档
最新文档