C 机械振动(1)
机械振动(1)
ω
=
∆Φ 2π
T
即得x2的曲线
若
∆φ < o 时
说明振动2比振动1落后,将x1曲线右移 ∆φ T 距离为 ∆ t = 即得x2的曲线 2π
19
四 简谐振动表示法-解析法 由给定振动系统, 可求出ω ; 1 取平衡位置为原点;
2
建立坐标,分析任一位置时物体受力;
d2x 3 写出动力学方程: + ω2x = 0 dt 2
*两个振动同频率、同一时刻间的相位差:
∆Φ = (ϕ 20 − ϕ 10 ) 初相位的差!
17
同一时刻两个同频率 的简谐振动相位差
∆Φ = ϕ 20 − ϕ 10
位 移 x
x2 x1
x 1 = A1 cos( ω t + ϕ 10 )
x 2 = A2 cos( ω t + ϕ 20 )
位 移 x
x1 x2
……
26
由初始条件求初相
初态一
o
ϕ
x
v=0
x = A
⇒ ϕ = 0
初态二
X=o
⇒ ϕ =
π
2
O
X
初态三
V=0
x = −A
⇒ ϕ = π
v
初态四
x=0
π 3π ⇒ ϕ = 或 − 2 2
27
水平谐振子 例1: 由初始条件求初相 ϕ ; k 1 由平衡位置右拉0.1m放手; x o 2 由平衡位置左推0.1m放手; 3 在A/2处给一个向右的速度; − 2 A 4 在 处给一个向左的速度。 2 分别求出初相。 ϕ =0 1 X0=0.1, v0=0 A=0.1 0 x x
ω
由给定初始条件 可求出A、ϕ; 已知 A、ϕ 、ω
机械振动原理
机械振动原理机械振动是指物体在受到外力作用下产生的周期性运动。
在工程实践中,我们经常会遇到各种各样的机械振动问题,比如机械结构的振动、机械设备的振动、以及振动控制等。
了解机械振动原理对于解决这些问题至关重要。
首先,让我们来了解一下机械振动的基本原理。
当一个物体受到外力作用时,它会产生振动。
这是因为外力会改变物体的平衡状态,使得物体产生位移。
而物体的位移又会导致弹性力的作用,使得物体产生惯性力,从而产生振动。
这种周期性的运动就是机械振动。
机械振动的特点是周期性和频率。
周期性是指振动是按照一定的周期重复的,而频率则是指单位时间内振动的次数。
振动的频率与物体的固有频率有关,物体的固有频率是指在没有外力作用下,物体自身固有的振动频率。
当外力的频率与物体的固有频率相同时,就会出现共振现象,这会对机械系统造成破坏。
了解机械振动的原理对于工程实践有着重要的意义。
首先,它可以帮助我们分析和预测机械系统的振动特性,从而设计出更加稳定和可靠的机械结构和设备。
其次,它可以帮助我们解决机械系统中出现的振动问题,比如减小振动、消除共振等。
最后,它还可以为我们提供优化设计和改进机械系统的思路。
在工程实践中,我们可以通过仿真和实验的方法来研究机械振动问题。
通过建立数学模型,我们可以分析机械系统的振动特性,比如振幅、频率、相位等。
同时,我们还可以通过实验来验证模型的准确性,并对机械系统进行振动测试,从而找出问题的根源并加以解决。
总之,了解机械振动的原理对于工程实践至关重要。
它可以帮助我们分析和预测机械系统的振动特性,解决振动问题,优化设计和改进机械系统。
通过不断地研究和实践,我们可以不断提高对机械振动的理解,从而为工程实践提供更加可靠和稳定的机械系统。
高中物理机械振动教案
高中物理机械振动教案
课题:机械振动
教学目标:
1. 了解机械振动的概念和特征;
2. 掌握机械振动的基本原理和表达方式;
3. 能够分析和解释机械振动在真实世界中的应用。
教学内容:
1. 机械振动的概念和分类;
2. 机械振动的基本特征;
3. 振动的周期、频率和振幅;
4. 振动的傅里叶级数表示;
5. 机械振动在真实世界中的应用案例。
教学重点:
1. 机械振动的基本概念和特征;
2. 振动的表达方式和分析方法。
教学难点:
1. 振动的傅里叶级数表示;
2. 机械振动在实际应用中的分析和解释。
教学过程:
一、导入
教师引入机械振动的概念,通过视频或图片展示一些常见的机械振动现象,引发学生对这一主题的兴趣。
二、讲解
1. 介绍机械振动的分类和特征;
2. 讲解振动的周期、频率和振幅的概念及计算方法;
3. 介绍振动的傅里叶级数表示方法。
三、例题解析
教师通过实例讲解振动的傅里叶级数表示方法,让学生理解振动信号的频谱分布和特点。
四、讨论
学生分组讨论机械振动在真实世界中的应用案例,分享自己的观点和见解。
五、总结
教师总结本节课的主要内容,强调学生应该掌握的重点和难点,引导学生对机械振动有更深入的理解。
教学反思:
通过这节课的教学,学生应该能够了解机械振动的基本原理和特征,掌握振动信号的傅里叶级数表示方法,并能够分析和解释机械振动在真实世界中的应用。
在教学过程中,要注重引导学生思考和讨论,激发他们的探究兴趣,提高他们的学习能力和综合素质。
大学物理-机械振动
机械振动也会影响交通工具的舒适 度,如火车、汽车等在行驶过程中 产生的振动,会让乘客感到不适。
机械振动在工程中的应用
振动输送
利用振动原理实现物料的输送,如振动筛、振动输送机等。
振动破碎
利用振动产生的冲击力破碎硬物,如破碎机、振动磨等。
振动减震
在建筑、桥梁等工程中,采用减震措施来减小机械振动对结构的影 响,提高结构的稳定性和安全性。
感谢您的观看
THANKS
机械振动理论的发展可以追溯到 古代,如中国的编钟和古代乐器 的制作。
近代发展
随着物理学和工程学的发展,人 们对机械振动的认识不断深入, 应用范围也不断扩大。
未来展望
随着科技的不断进步,机械振动 在新能源、新材料、航空航天等 领域的应用前景将更加广阔。
02
机械振动的类型与模型
简谐振动
总结词
简谐振动是最基本的振动类型,其运动规律可以用正弦函数或余弦函数描述。
机械振动在科研中的应用
振动谱分析
01
通过对物质在不同频率下的振动响应进行分析,可以研究物质
的分子结构和性质。
振动控制
02
通过控制机械振动的参数,实现对机械系统性能的优化和控制,
如振动减震、振动隔离等。
振动实验
03
利用振动实验来研究机械系统的动态特性和响应,如振动台实
验、共振实验等。
05
机械振动的实验与测量
根据实验需求设定振动频率、幅度和波形等 参数。
启动实验
启动振动台和数据采集器,开始记录数据。
数据处理
将采集到的数据导入计算机,进行滤波、去 噪和整理,以便后续分析。
绘制图表
将处理后的数据绘制成图表,如时域波形图、 频谱图等,以便观察和分析。
机械振动机械波
机械振动机械波机械振动和机械波是物理学中重要的概念,涉及到了物体的振动和波动特性。
机械振动是指物体或系统在受到外界力的作用下发生的周期性或非周期性的振动运动,而机械波是指机械振动在介质中传播的能量传递过程。
机械振动有两个重要的参数,即振动周期和振幅。
振动周期是指一个完整的振动循环所需要的时间,通常用秒(s)表示。
振幅则是指振动的最大位移或最大速度,通常用米(m)来表示。
机械振动分为简谐振动和非简谐振动两种。
简谐振动是指当物体受到恢复力的作用后,其振动状态可以通过正弦或余弦函数来描述。
而非简谐振动则是指物体受到的恢复力不满足线性关系,振动状态无法通过简单的正弦或余弦函数来描述。
机械振动的运动可以通过振动方程来描述。
对于简谐振动而言,振动方程可以表示为x(t) = A * sin(ωt + φ),其中x(t)是物体的位移,A是振幅,ω是角频率,t是时间,φ是相位差。
振动方程可以描述物体振动的位移、速度和加速度的关系,从而提供了对振动状态的全面了解。
机械波是机械振动在介质中传播的能量传递过程。
波动是由于介质中某一点的振动引起附近点的振动,从而传递能量。
机械波有两种主要类型,即横波和纵波。
横波是指波动的振动方向垂直于能量传播方向的波动,例如水波。
纵波则是指波动的振动方向与能量传播方向一致的波动,例如声波。
机械波的传播速度可以通过介质的性质和条件来确定。
对于弹性介质而言,传播速度可以表示为v = √(E/ρ),其中v是波速,E是介质的杨氏模量,ρ是介质的密度。
不同介质的波速是不同的,比如在空气中,声速大约为343m/s,而在水中,水波的波速则约为1480m/s。
机械波的特性还包括波长和频率。
波长是指相邻两个振动峰或波谷之间的距离,通常用λ表示,单位是米。
频率是指在单位时间内波动中的相邻振动周期的个数,通常用赫兹(Hz)表示。
波长和频率之间有一个简单的关系,即v = λ * f,其中v是波速,λ是波长,f 是频率。
高二物理第九章机械振动第一、二、三节人教版知识精讲
高二物理第九章机械振动第一、二、三节人教版【本讲教育信息】一. 教学内容:第九章 机械振动第一节 简谐振动 第二节振幅、周期和频率 第三节 简谐运动的图象二. 知识要点: 〔一〕简谐振动1. 机械振动的定义:物体在某一中心位置两侧所做的往复运动。
2. 回复力的概念:使物体回到平衡位置的力。
注意:回复力是根据力的效果来命名的,可以是各种性质的力,也可以是几个力的合力或某个力的分力。
3. 简谐运动概念:物体在跟位移大小成正比,并且总是指向平衡位置的力作用下的振动。
特征是:kx F -=;m kx a /-=。
〔特例:弹簧振子〕4. 简谐运动中位移、回复力、速度、加速度的变化规律。
〔参看课本〕〔1〕振动中的位移x 都是以平衡位置为起点的,方向从平衡位置指向末位置、大小为这两位置间的直线距离,在两个“端点〞最大,在平衡位置为零。
〔2〕加速度a 的变化与回F 的变化是一致的,在两个“端点〞最大,在平衡位置为零,方向总是指向平衡位置。
〔3〕速度大小v 与加速度a 的变化恰好相反,在两个“端点〞为零,在平衡位置最大。
除两个“端点〞外任一个位置的速度方向都有两种可能。
〔二〕振幅、周期、频率1. 振幅A 的概念:振动物体离开平衡位置的最大距离称为振幅。
它是描述振动强弱的物理量。
2. 周期和频率的概念:振动的物体完成一次全振动所需的时间称为振动周期,单位是秒;单位时间内完成的全振动的次数称为振动频率,单位是赫兹。
周期和频率都是描述振动快慢的物理量。
注意:全振动是指物体先后两次运动状态........〔位移和速度〕完全一样....所经历的过程。
振动物体在一个全振动过程通过的路程等于4个振幅。
3. 周期和频率的关系:fT 1=4. 固有频率和固有周期:物体的振动频率,是由振动物体本身的性质决定的,与振幅的大小无关,所以叫固有频率。
振动周期也叫固有周期。
〔三〕简谐运动的图象 1. 简谐运动的图象:〔1〕作法:以横轴表示时间,纵轴表示位移,根据实际数据取单位,定标度,描点。
机械振动一章习题解答
T = 2π
所以应当选择答案(C)。
m ( k1 + k 2 ) m = 2π k k1 k 2
习题 12—4
一质点作简谐振动,周期为 T,当它由平衡位置向 X 轴正方向运动 ]
时,从二分之一最大位移处到最大位移处这段路程所需要的时间为: [ (A) T/4。 (B) T/12。 (C) T/6。 (D) T/8。
解: 单摆的振动满足角谐振动方程, 这里所给的 θ 是初始角位移,显然是从最大角位移处计时。由 旋转矢量法容易判断该单摆振动的初位相为 “0” , 因此,应当选择答案(C) 。 −θm
题解 12―1 图
习题 12—2
轻弹簧上端固定,下端系一质量为 m1 的物体,稳定后在 m1 下边又
系一质量为 m2 的物体,于是弹簧又伸长了 ∆x ,若将 m2 移去,并令其振动,则 振动周期为: [ (A) T = 2π ]
位相 ϕ = π 2 ,故振动方程为
x = 0.02 cos(1.5t +
π ) 2
(SI)
习题 12─17
两个同方向的简谐振动的振动方程分别为
1 , x 2 = 3 × 10 − 2 cos 2π (t + ) 4
1 x1 = 4 × 10 − 2 cos 2π (t + ) 8
(SI)
求:合振动方程。 解:设合振动方程为
X
习题 12─12
一质点作简谐振动,振动图
线如图所示,根据此图,它的周期
4 O –2
2
t (s)
T=
ϕ=
,用余玄函数描述时的初位相
习题 12―12 图
。 解:根据振动图线可画出旋转矢量图,可得
t=2
∴ ∴
大学物理学 机械振动
大学物理学中的机械振动是指物体在受到外力作用后,产生周期性的来回振动运动的现象。
以下是关于机械振动的一些基本概念和内容:
1. 振动的基本特征
-周期性:振动是一个周期性的过程,即物体在围绕平衡位置来回振动。
-频率:振动的频率指的是单位时间内振动的周期数,通常用赫兹(Hz)表示。
-振幅:振动的振幅是物体从平衡位置最大偏离的距离。
2. 单自由度振动系统
-弹簧振子:是一种经典的单自由度振动系统,由弹簧和质点组成,受到弹簧的恢复力驱使质点振动。
-简谐振动:在没有阻尼和外力干扰的情况下,弹簧振子的振动是简谐的,即振动周期固定,频率与系统的固有频率相关。
3. 振动的参数和描述
-角频率:振动描述中常用的参数之一,表示振动的快慢程度,与频率之间有一定的关系。
-相位:描述振动状态的参数,表示振动的相对位置或状态。
-能量:振动系统具有动能和势能,能量在振动过程中不断转换,影响着振动的特性。
4. 阻尼振动和受迫振动
-阻尼振动:在振动系统中存在阻尼,会导致振动逐渐减弱,最终趋于稳定。
-受迫振动:当振动系统受到外力周期性作用时,会产生受迫振动,其频率与外力频率相同或有关。
5. 振动的应用
-工程领域:振动理论在工程领域有着广泛的应用,如建筑结构的抗震设计、机械系统的振动分析等。
-科学研究:振动理论也在物理学、工程学、生物学等领域中发挥重要作用,帮助解释和研究各种现象和问题。
以上是关于大学物理学中机械振动的一些基本内容和相关概念,希望能帮助您更好地理解这一领域的知识。
第1节 机械振动
第十四章
命题点一 命题点二
第1节
机械振动
必备知识
关键能力
考情概览
命题点三
-13-
关于平衡位置 O 对称的两点,速度的大小、动能、 对称性特征 势能相等,相对平衡位置的位移大小相等;由对称点 到平衡位置 O 用时相等
第十四章
命题点一 命题点二
第1节
机械振动
必备知识
关键能力
考情概览
命题点三
-14-
典例1(多选)(2018· 天津卷)一振子沿x轴做简谐运动,平衡位置在 坐标原点。t=0时振子的位移为-0.1 m,t=1 s时位移为0.1 m,则( ) 关闭
第十四章
机械振动和机械波 (选修3-4)
第十四章
第1节
机械振动
必备知识 关键能力
考情概览
-2-
考点及要求 简谐运动 Ⅰ 简谐运动公式和图 象 Ⅱ 单摆、单摆的周期 公式 Ⅰ 受迫振动和共振 Ⅰ 机械波、横波和纵 波 Ⅰ 横波的图象 Ⅱ 波速、波长和频率 (周期)的关系 Ⅰ
命题视角
对于振动 与波,高 考试题均 立足于对 基础知识 和基本研 究方法的 考查。
第十四章
第1节
机械振动
必备知识 关键能力
考情概览
-3-
考点及要求
命题视角 复习指要 考查点有简谐运动、振动 的周期和频率、共振、波 波的干涉和衍射现 长、单摆的周期公式、机 象 Ⅰ 械波的波长、频率、波速 多普勒效应 Ⅰ 关系、波的叠加、干涉和 实验:探究单摆的运 衍射等,应结合振动图象和 动、用单摆测定重 波的图象理解掌握。最近 力加速度 几年计算题考查倾向振动 的周期性和波的问题的多 解问题。
第十四章
命题点一 命题点二
(完整word版)机械振动一章习题解答
机械振动一章习题解答习题12—1 把单摆摆球从平衡位置向位移正方向拉开,使单摆与竖直方向成一微小角度θ,然后由静止位置放手任其振动,从放手时开始计时,若用余弦函数表示其运动方程,则该单摆振动的初位相为:[ ] (A) θ。
(B) π。
(C) 0。
(D) 2π。
易判断该单摆振动的初位相为“0”(C) 。
习题12—2 轻弹簧上端固定,下端系一质量为m 1的物体,稳定后在m 1下边又系一质量为m 2的物体,于是弹簧又伸长了x ∆,若将m 2移去,并令其振动,则振动周期为:[ ] (A) g m x m T 122∆=π。
(B) g m xm T 212∆=π。
(C) g m m x m T )(2211+∆=π。
(D) gm m xm T )(2212+∆=π。
解:谐振子的振动周期只与其本身的弹性与惯性有关,即与其倔强系数k 和质量m 有关。
其倔强系数k 可由题设条件求出g m x k 2=∆ 所以xgm k ∆=2 该振子的质量为m 1,故其振动周期为 gm xm k m T 21122∆==ππ 应当选择答案(B)。
习题12—3 两倔强系数分别为k 1和k 2的轻弹簧串联在一起,下面挂着质量为m 的物体,构成一个竖挂的弹簧谐振子,则该系统的振动周期为:[ ]题解12―1 图(A) 21212)(2k k k k m T +=π。
(B) 212k k mT +=π。
(C) 2121)(2k k k k m T +=π。
(D) 2122k k mT +=π。
解:两弹簧串联的等效倔强系数为2121k k k k k +=,因此,该系统的振动周期为2121)(22k k k k m k mT +==ππ 所以应当选择答案(C)。
习题12—4 一质点作简谐振动,周期为T ,当它由平衡位置向X 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为:[ ](A) T /4。
(B) T /12。
机械振动分析
机械振动分析机械振动是指机械系统或其部件在运转过程中产生的周期性的物理现象。
事实上,振动是机械系统中普遍存在的现象,它可能对机械设备的安全性、性能和可靠性产生重要影响。
因此,对机械振动进行分析和评估是非常重要的。
本文将介绍机械振动的分析方法和应用。
一、机械振动的类型机械振动可以分为自由振动和受迫振动两种类型。
1. 自由振动自由振动是指没有外部激励的振动。
当机械系统受到扰动后,会出现自由振动,振动的频率和振幅由系统的初始条件决定。
自由振动的数学模型可以用二阶线性微分方程描述。
2. 受迫振动受迫振动是指机械系统受到外部激励而发生的振动。
外部激励可以是周期性的力、电磁力或其他形式的力。
受迫振动的频率由外部激励的频率决定,而振幅则由系统的特性和外部激励的幅值决定。
二、机械振动的分析方法机械振动的分析方法主要包括理论分析和实验分析两种。
1. 理论分析理论分析是通过建立数学模型和方程,利用力学和振动学的原理来描述和解释机械系统的振动行为。
常用的理论分析方法有等效刚度法、拉格朗日方程法、哈密尔顿原理等。
理论分析可以提供对机械振动进行详细的建模和预测。
2. 实验分析实验分析是通过实际测试和测量来获取机械系统的振动数据,然后对数据进行分析和处理。
实验分析可以采用各种传感器和测量设备,如振动传感器、加速度计、激光测振仪等。
通过实验分析,可以获取机械系统在不同工况下的振动特性,并对振动源和振动传播路径进行识别和评估。
三、机械振动的应用机械振动分析在工程中具有广泛的应用。
以下是几个常见的应用领域:1. 故障诊断通过对振动信号的分析,可以判断机械系统是否存在故障。
故障往往会导致机械系统振动特性的异常变化,通过分析振动数据可以识别出故障的类型和位置,从而提前预警和采取相应的维修措施。
2. 结构优化在设计机械系统时,通过分析振动特性可以评估结构的强度和稳定性。
通过优化结构参数和材料选择,可以减小机械系统的振动响应,提高系统的性能和可靠性。
机械振动
第一章绪论§1-1 引言机械振动是机械运动的一种特殊形式,是指物体在其平衡位置附近所作的往复运动。
年没课程的一些名着,如Thomson和Meirovitch的着作,在份量和叙述方式上都不尽合适。
针对少学时(约30~36学时)的工科本科生的需要,在1983~1996年期间对本科生和工程师短训班的十五次讲授中,博采国内外一些较好着作的内容,较好的叙述方式,曾三次编写“机械振动”讲义,试图使读者在学习中能做到:学习振动分析的基本理论和方法,掌握现代数学和电子计算机这一强有力工具的初步应用;随机振动入门,着重于基本概念及其数学方法的工程应用实例;噪声的基本概念和测试方法;…为今后进一步学习应用打下基础,但内容又不过多、过深,略去定量的证明和公式繁琐的推导。
“机械振动”讲义注重实用性、实例的重点阐述,计算机例题的上机操作求解等基本技能的训练。
第二章叙述常系数线性微分方程的基本解法。
在给工科专业高年级学生讲授振动课程第七章“随机振动入门”,介绍随机振动的数学应用,阶跃激励、脉冲激励和任意激励的响应—卷积积分(杜哈美积分)。
随机激励下响应的付利叶积分法。
随机振动理论的初步应用。
振动对人体的影响,ISO2631标准。
机车车辆工程和汽车工程的应用实例。
第八章“噪声的测量”,介绍声学及噪声的基础知识,噪声测量仪表,测量方法,并附有噪声测量实验指导书。
本讲义自1983年开始教学实践以来,经1987、1990、1997年三次修订而成。
由陈石华教授(第一至六章)、刘永明博士、副教授(第七章)、施绍祺高级工程师(第八章)编写,全书由刘永明制图、电脑排版。
由于时间仓促、水平有限,书中不妥之处,热诚地欢迎读者指正。
杂的控制系统。
由于振动,机器在使用过程中往往产生巨大的反复变动的载荷,这将导致机器使用寿命的降低,甚至酿成灾难性的破坏事故。
如大桥因共振而毁坏;烟囱因风振而倒坍;飞机因颤振而坠落等等,文献均有记载。
为了防止这些事故的发生,若不针对事故的原因作正确的分析和研究,设计人员往往传统方式地加大结构断面尺寸,导致机器重量增加和材料的浪费。
机械振动学 第一章 陈耀东
第一章机械振动学基础第一节引言机械系统振动问题的研究包括以下几方面的内容:1.建立物理模型要进行机械系统振动的研究,就应当确定与所研究问题有关的系统元件和外界因素。
比如汽车由于颠簸将产生垂直方向的振动。
组成汽车的大量元件都或多或少地影响到它的性能。
然而,汽车的车身及其他元件的变形壁汽车相对于道路的运动要小得多,弹簧和轮胎的柔性比车身的柔性要大得多。
因而,根据工程分析的要求,我们可以用一个简化的物理模型来描述它。
或者说,为了确定汽车由于颠簸而产生的振动,可以建立一个理想的物理系统,它对外界作用的响应,从工程分析的要求来衡量,将和实际系统接近。
应当指出,一个物理模型对于某种分析是合适的,并不表示对于其他的分析也适合。
如果要提高分析的精度,就可能需要更高近似程度的物理模型。
图1.1-1和图1.1-2是分析汽车由于颠簸产生振动的两个物理模型。
在低颠和低振级的情况下,若把人体看做一个机械系统,就可以用图1.1-3所示形式的线性集总参量系统来粗略近似。
不幸的是,怎样才能得到一个确切描述实际系统的物理模型还没有一般的规则。
这通常取决于研究者的经验和才智。
2.建立数学模型有了所研究系统的物理模型,就可以应用某些物理定律对物理模型进行分析,以导出一个或几个描述系统他特征的方程。
通常,振动问题的数学模型表现为微分方程的形式。
3.方程的求解要了解系统所发生运动的特点和规律,就要对数学模型进行求解,以得到描述系统运动的数学表达式,通常,这种数学表达式是位移表达式,表示为时间的函数。
表达式表明了系统运动与系统性质和外界作用的关系。
4.结果的阐述根据方程解提供的规律和系统的工作要求及结构特点,我们就可以作出设计或改进的决断,以获得问题的最佳解决方案。
本教程的重点是论述机械振动系统的数学模型的建立和方程的求解这两个问题。
第二节机械振动的运动学概念机械振动是一种特殊形式的运动。
在这种运动过程中,机械运动系统将围绕其平衡位置作往复运动。
第十三章 机械振动作业答案(1)
一. 选择题:[ C ] 1. (基础训练4) 一质点作简谐振动,周期为T .当它由平衡位置向x 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为(A) T /12. (B)T /8. (C) T /6. (D) T /4.【提示】如图,在旋转矢量图上,从二分之一最大位移处到最大位移处矢量转过的角位移为3π,即 3t πω=,所以对应的时间为()332/6Tt T ππωπ=== .[ B ] 2. (基础训练8) 图中所画的是两个简谐振动的振动曲线.若这两个简谐振动可叠加,则合成的余弦振动的初相为(A) π23. (B) π.(C) π21. (D) 0.【提示】如图,用旋转矢量进行合成,可得合振动的振幅为2A,初相位为π.[ B ]3、(自测提高2)两个质点各自作简谐振动,它们的振幅相同、周期相同.第一个质点的振动方程为x 1 = A cos(ωt + α).当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处.则第二个质点的振动方程为 (A) )π21cos(2++=αωt A x . (B) )π21cos(2-+=αωt A x . (C) )π23cos(2-+=αωt A x .(D) )cos(2π++=αωt A x .【提示】由旋转矢量图可见,x 2的相位比x 1落后π/2。
[ B ] 4、(自测提高3)轻弹簧上端固定,下系一质量为m 1的物体,稳定后在m 1下边又系一质量为m 2的物体,于是弹簧又伸长了∆x .若将m 2移去,并令其振动,则振动周期为A/ -·O1A 2A A 合(A) gm xm T 122∆π= . (B) g m x m T 212∆π=.(C) g m x m T 2121∆π=. (D) gm m xm T )(2212+π=∆.【提示】对轻弹簧和m 1构成的弹簧振子,其周期表达式:2T π= 因为加载另一质量为m 2的物体后弹簧再伸长∆x ,显然2m g k x =∆,由此得2m gk x=∆; 代入周期公式,即可求出周期T.[ C ] 5、(自测提高6)如图13-24所示,在一竖直悬挂的弹簧下系一质量为m 的物体,再用此弹簧改系一质量为4m 的物体,最后将此弹簧截断为两个等长的弹簧并联后悬挂质量为m 的物体,则这三个系统的周期值之比为(A) 1∶2∶2/1. (B) 1∶21∶2 . (C) 1∶2∶21. (D) 1∶2∶1/4 . 【提示】从左到右三个弹簧振子分别记为1,2和3; 第一个:1112 T πωω==; 第二个:2121, 22T T ωω==∴= 第三个:将一根弹簧一分为二,每节的弹性系数变成2k ,然后并联,总的弹性系数为4k ,所以31312, 2T T ωω==∴=; 得:1231::1:2:2T T T =.[ D ]6、(自测提高7)一物体作简谐振动,振动方程为)21cos(π+=t A x ω.则该物体在t = 0时刻的动能与t = T /8(T 为振动周期)时刻的动能之比为:(A) 1:4. (B) 1:2. (C) 1:1. (D) 2:1. (E) 4:1. 【提示】在t=0时,cos02πx A ==,势能0p E =,动能212K E E kA ==; t=T/8,cos()422πx A A π=+=-,势能221124p E kx kA ==,所以动能为214K p E E E kA =-=.图13-24二 填空题1、(基础训练12)一系统作简谐振动, 周期为T ,以余弦函数表达振动时,初相为零.在0≤t ≤T 41范围内,系统在t =T/8时刻动能和势能相等. 【提示】初相为零,所以()cos x t A t ω=,在0≤t ≤T 41范围内,0A x ≤≤;依题意,动能和势能相等,为总能量的一半,即22111222kx kA ⎛⎫= ⎪⎝⎭,2x A =,所以4t πω=,48Tt πω==.2、(基础训练15)一物块悬挂在弹簧下方作简谐振动,当这物块的位移等于振幅的一半时,其动能是总能量的3/4(设平衡位置处势能为零).当这物块在平衡位置时,弹簧的长度比原长长∆l ,这一振动系统的周期为gl∆π2. 【提示】当物体偏离平衡位置为振幅的一半时,2Ax =±,2211284P E E kx kA ===,34k P E E E E E -==; 当物体在平衡位置时,合力为零:mg k l =∆ ,mg k l =∆,222T πω∴===3、(基础训练16)两个同方向同频率的简谐振动,其振动表达式分别为:)215cos(10621π+⨯=-t x (SI) , )5c o s(10222t x -π⨯=- (SI)它们的合振动的振辐为210()m -,初相为101108.4323tg π-+= 【提示】用旋转矢量图求解。
《机械振动》张义民—第1章ppt
●引起噪声污染; ●影响精密仪器设备的功能,降低机械加工 的精度和光洁度;
●加剧构件的疲劳和磨损,缩短机器和结构 物的使用寿命; ●消耗机械系统的能量,降低机器效率;
●使结构系统发生大变形而破坏,甚至造成 灾难性的事故,有些桥梁等建筑物就是由 于振动而塌毁;
●机翼的颤振、机轮的摆振和航空发动机的 异常振动,曾多次造成飞行事故;
●恶化飞机和车船的乘载条件,等等。
地震,群灾之首。 强烈的破坏性地震 瞬间将房屋、桥梁、 水坝等建筑物摧毁, 直接给人类造成巨 大的灾难,还会诱 发水灾、火灾、海 啸、有毒物质及放 射性物质泄漏等次 生灾害。
地震的破坏
唐山大地震
台湾大地震
土耳其大地震
印度洋强震引发海啸席卷南亚东南亚
振动引起的转子系统破坏
利用振动监测机器设备的运行
故障诊断或健康检测原理示意图
在实际工程和日常生活中,振动问题随处可见
工程系统如机械、车辆、船舶、飞机、航天器、建筑、 桥梁等都经常处在各种激励的作用下,因而会不可避免 地产生各种各样的振动,可见振动力学在工程实际中有 着广泛的应用。例如在机械、电机工程中,振动部件和 整机的强度和刚度、大型机械的故障诊断、精密仪器设 备的防噪和减振等问题;在交通运输、航空航天工程中, 车辆舒适性、操纵性和稳定性等问题,海浪作用下船舶 的模态分析和强度分析,飞行器的结构振动和声疲劳分 析等问题;在电子电信、轻工工程中,通信器材的频率 特性、音响器件的振动分析等问题;在土建、地质工程 中,建筑、桥梁等结构物的模态分析,地震引起结构物 的动态响应,矿床探查、爆破技术的研究等问题;在医 学、生物工程中,脑电波、心电波、脉搏波动等信号的 分析处理等问题。
自然界中的振动现象
●人们可以根据逐年的气象情况统计出气候周期性的 振动规律,根据这一规律可预估气候趋势,对生产与 生活、抗洪和抗旱、防灾及减灾等有着重要的意义。
1 机械振动的基本概念
(与分析其他动力学问题不同的是:一般情形下,都 与分析其他动力学问题不同的是:一般情形下, 选择平衡位置作为广义坐标的原点) 选择平衡位置作为广义坐标的原点)
自由度:系统独立广义坐标的数目。
单摆有一个自由度; 弹簧摆有两个自由度; 若弹簧摆悬挂的是一个刚性杆,则有 三个自由度; 跳(Free Vibration):If a system, after an initial disturbance, is left to vibrate on its own, the ensuing vibration is known as ~. No external force acts on the system. 受迫振动(Forced Vibration):If a system is subject to an external force, the resulting vibration is known as ~ 自激振动; 参数振动
振动分析的一般方法
理论分析方法:包括各种近似分析方法。 理论分析方法 数值分析方法:利用编程或商业软件。 数值分析方法 实验分析方法:借助实验设备和分析仪器完成。 实验分析方法
机翼颤振的两自由度模型
机翼颤振的离散化模型
输电线舞动的两自由度模型
The space needle(structure)
电铃的工作原理示意图
干摩擦引起的自激振动
参数激励的情况(See Reference 12:§8.2.1)
按振动系统的响应(信号) 按振动系统的响应(信号)
简谐振动 周期振动 确定性振动 复合周期振动 非周期振动拟周期振动 瞬态振动 非确定性振动 − 随机振动
研究振动问题的一般步骤
工程力学中的机械振动和结构振动问题
工程力学中的机械振动和结构振动问题工程力学是研究物体受力、运动和相互作用的学科,在实际工程应用中起着至关重要的作用。
其中,机械振动和结构振动问题是工程力学中的一个重要分支,涵盖了许多实际工程中常见的振动现象和振动控制方法。
一、机械振动问题机械振动问题涉及到机械系统中的物体在受到外力或被激励时产生的振动现象。
机械振动问题的研究对于机械系统的设计和性能优化具有重要意义。
1. 自由振动自由振动是指机械系统在无外力作用下的振动现象。
在自由振动中,物体会以一定的振动频率和振幅进行振动。
自由振动的频率与系统的属性相关,可通过工程设计来控制。
2. 强迫振动强迫振动是指机械系统在受到外界激励力作用下的振动现象。
外界激励力的频率可以与系统的固有频率相同,也可以不同。
强迫振动问题的研究主要涉及到激励力的传递和系统的响应。
3. 阻尼振动阻尼振动是指机械系统受到外力作用后逐渐减弱直至停止振动的过程。
阻尼振动的研究需要考虑阻尼对振动特性的影响,并进行合适的振动控制。
二、结构振动问题结构振动问题指的是工程结构受到外力作用后发生的振动现象。
结构振动问题是建筑和桥梁等工程结构设计中需要重点关注的问题。
1. 自由振动结构的自由振动指的是结构在受到外力作用后,没有任何限制条件下的振动现象。
自由振动的分析可以预测结构的振动频率和振型,为结构设计和抗震设计提供依据。
2. 强迫振动结构的强迫振动是指结构在受到外界激励力作用下产生的振动现象。
强迫振动会导致结构受力变化,需要进行结构控制和减振设计。
3. 阻尼振动结构的阻尼振动是指结构振动过程中能量逐渐损失,振动幅度减小的现象。
阻尼振动问题的研究可以帮助减小振动对结构的影响,提高结构的稳定性和安全性。
综上所述,工程力学中的机械振动和结构振动问题是研究机械系统和工程结构中振动现象的重要内容。
通过对机械振动和结构振动的研究,可以优化系统设计,提高工程结构的性能和安全性。
同时,也为振动控制和减振设计提供了理论基础和实用方法。
机械振动和机械波知识点的归纳
机械振动和机械波知识点的归纳一、简谐运动1、定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动,又称简谐振动。
2、简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置。
简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大。
3. 描述简谐运动的物理量(1)位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅。
(2)振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱。
(3)周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即T=1/f。
4. 简谐运动的图像(1)意义:表示振动物体位移随时间变化的规律,注意振动图像不是质点的运动轨迹。
(2)特点:简谐运动的图像是正弦(或余弦)曲线(3)应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况二、弹簧振子定义:周期和频率只取决于弹簧的劲度系数和振子的质量,与其放置的环境和放置的方式无任何关系。
如某一弹簧振子做简谐运动时的周期为T,不管把它放在地球上、月球上还是卫星中;是水平放置、倾斜放置还是竖直放置;振幅是大还是小,它的周期就都是T。
三、单摆1. 定义:摆线的质量不计且不可伸长,摆球的直径比摆线的长度小得多,摆球可视为质点。
单摆是一种理想化模型。
2. 单摆的振动可看作简谐运动的条件是:最大摆角α<5°。
3. 单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力。
4. 作简谐运动的单摆的周期公式为:T=2π(1)在振幅很小的条件下,单摆的振动周期跟振幅无关。
(2)单摆的振动周期跟摆球的质量无关,只与摆长L和当地的重力加速度g 有关.(3)摆长L是指悬点到摆球重心间的距离,在某些变形单摆中,摆长L应理解为等效摆长,重力加速度应理解为等效重力加速度(一般情况下,等效重力加速度g'等于摆球静止在平衡位置时摆线的张力与摆球质量的比值)。
机械振动试题(含答案)(1)
18.铺设铁轨时,每两根钢轨接缝处都必须留有一定的间隙,匀速运行列车经过轨端接缝处时,车轮就会受到一次冲击.由于每一根钢轨长度相等,所以这个冲击力是周期性的,列车受到周期性的冲击做受迫振动.普通钢轨长为12.6m,列车固有振动周期为0.315s.下列说法正确的是( )
(3)他以摆长(L)为横坐标、周期的二次方(T2)为纵坐标作出了T2-L图线,由图象测得的图线的斜率为k,则测得的重力加速度g=_________.(用题目中给定的字母表示)
(4)小俊根据实验数据作出的图象如图所示,造成图象不过坐标原点的原因可能是_________.
24.将一单摆装置竖直悬挂于某一深度为h(未知)且开口向下的小筒中(单摆的下部分露于筒外),如图(甲)所示,将悬线拉离平衡位置一个小角度后由静止释放,设单摆振动过程中悬线不会碰到筒壁,如果本实验的长度测量工具只能测量出筒的下端口到摆球球心间的距离 ,,并通过改变 而测出对应的摆动周期T,再以T2为纵轴、 为横轴做出函数关系图象,就可以通过此图象得出小筒的深度h和当地重力加速度g.
机械振动试题(含答案)(1)
一、机械振动选择题
1.如图所示,物块M与m叠放在一起,以O为平衡位置,在 之间做简谐振动,两者始终保持相对静止,取向右为正方向,其振动的位移x随时间t的变化图像如图,则下列说法正确的是( )
A.在 时间内,物块m的速度和所受摩擦力都沿负方向,且都在增大
B.从 时刻开始计时,接下来 内,两物块通过的路程为A
A.t0时刻弹簧弹性势能最大B.2t0站时刻弹簧弹性势能最大
C. 时刻弹簧弹力的功率为0D. 时刻物体处于超重状态
13.如图所示为某物体系统做受迫振动的振幅A随驱动力频率f的变化关系图,则下列说法正确的是
机械振动公式范文
机械振动公式范文机械振动是指物体在一定时间内围绕平衡位置作周期性的往复运动,通常由弹簧系统和质量块构成。
机械振动公式是描述机械振动运动规律的数学表达式。
下面将介绍几个常见的机械振动公式。
1.简谐振动公式:简谐振动是指物体在外力作用下,其振幅、频率和周期都保持不变的振动。
在简谐振动中,振动物体的位置随时间的变化符合正弦函数的规律。
假设物体的简谐振动方程为:x = A * sin(ωt + φ)其中,x为物体的位移,A为振幅,ω为角频率,t为时间,φ为相位差。
2.频率和周期的关系:频率是指在单位时间内振动的次数,周期是指完成一次完整振动所需要的时间。
频率和周期之间满足以下关系:f=1/T其中,f为频率,T为周期。
3.动力学公式:物体在振动过程中会受到外力的作用,根据牛顿第二定律可以得到物体振动的动力学方程。
F=m*a其中,F为受力,m为物体的质量,a为加速度,根据振动的定义,加速度可以表示为速度对时间的导数,速度可以表示为位移对时间的导数:a = d²x/dt²将以上两个公式代入动力学方程中,可以得到:m * d²x/dt² = -k * x其中,k为弹簧的劲度系数,x为物体的位移。
4.振动的频率:根据动力学方程可以推导出振动的频率公式。
以弹簧振子为例,假设弹簧的劲度系数为k,质量为m,则振动的频率可以表示为:ω=√(k/m)其中,ω为角频率。
5.振动的周期:振动的周期可以用频率的倒数表示:T=1/f结合振动的频率公式可以得到:T=2π√(m/k)其中,T为周期。
上述是机械振动中的几个常见公式,这些公式为研究振动现象和解决振动问题提供了重要的数学工具。
在实际应用中,可以根据不同的振动系统和条件,选择适用的公式来描述和计算机械振动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 C 机械振动(1)
1、弹簧振子做简谐振动时,振子在平衡位置时的位移为__________(以下均选填“最大”或“零”),所受回复力为__________,加速度为__________,振子的振动速度为__________。
2、新知识点解读:“振幅”:离开平衡位置的最大距离。
符号:A 。
如图C-1所示为C →O 的距离或B →O 的距离,是 标 量。
单位是 m 。
如图C-1所示为弹簧振子做简谐振动的示意图,若O 为振子的平衡位置,振幅为A ,规定向右为正方向,则振子在O 点的位
移为____________,在B 点的位移为____________,在C 点位移为____________,在B 点所受回复力方向为__________(以下均选填“正”或“负”),在C 点所受回复力方向为_________。
3、产生机械振动的条件是物体离开平衡位置后,受到始终指向________________回复力的作用,振动物体所受回复力是按力的________________命名的。
4、回复力符合F =-kx 的振动叫做 简谐振动 ,式中的“-”表示______________________,k 为 常数 ,表达式说明回复力F 与位移x 成________比。
5、做简谐振动的弹簧振子,当其位移逐渐减小时,速度一定逐渐____________(以下均选填“增大”、“不变”或“减小”),加速度一定逐渐____________。
6、根据第2题图C-1可知,关于一次全振动,下列说法中正确的是( )
A .从平衡位置出发再次回到平衡位置的过程
B .从B 经O 运动到
C 的过程
C .从任意一点出发再次同方向经过该点的过程
D .从任意一点出发再回到该点的过程
7、下列各组物理量中其方向始终相反的是( )
A .回复力与速度
B .位移与速度
C .加速度与位移
D .速度与加速度
8、某振动物体在从最大位移处向平衡位置运动的过程中,下列说法中正确的是( )
A .加速度逐渐减小、速度也逐渐减小
B .是匀加速运动
C .加速度与速度的方向都与位移的方向相反
D .回复力总是跟速度反向
9、新知识点解读:(概念在课本P15~16)
①周期:____________________________________________________________________ 符号:__________;单位:__________。
②频率:_____________________________________________________________________ 符号:__________;单位:__________(读作________)。
振动物体在1.2s 时间内完成了30次全振动,则它的周期为________s ,频率为________Hz 。
10、一做简谐振动的物体由平衡位置出发.......
开始向正方向振动,离开平衡位置的最大距离10cm ,每完成一次全振动所需时间为4s ,求:
(1)它的振幅A 、周期T 和频率f 。
(2)它在1s 末、2s 末、3s 末的位移。
(3)在一个周期内,它速度最大的时刻和加速度最大的时刻。
图
C-1。