一元二次方程重点题型(全)

合集下载

九年级数学解一元二次方程专项练习题(带答案)【40道】

九年级数学解一元二次方程专项练习题(带答案)【40道】

解一元二次方程专项练习题(带答案)1、用配方法解下列方程:(1) 025122=++x x (2) 1042=+x x(3) 1162=-x x (4)0422=--x x2、用配方法解下列方程:(1) 01762=+-x x (2) x x 91852=-(3) 52342=-x x (4)x x 2452-=3、用公式法解下列方程:(1) 08922=+-x x (2) 01692=++x x(3) 38162=+x x (4)01422=--x x4、运用公式法解下列方程:(1) 01252=-+x x (2) 7962=++x x(3) 2325x x =+ (4) 1)53)(2(=--x x5、用分解因式法解下列方程:(1)01692=++x x (2) x x x 22)1(3-=-(3))32(4)32(2+=+x x (4)9)3(222-=-x x6、用适当方法解下列方程:(1) 22(3)5x x -+= (2) 230x ++=(3) 2)2)(113(=--x x ; (4) 4)2)(1(13)1(+-=-+x x x x7、 解下列关于x 的方程:(1) x 2+2x -2=0 (2) 3x 2+4x -7=(3) (x +3)(x -1)=5 (4) (x -2)2+42x =08、解下列方程(12分)(1)用开平方法解方程:4)1(2=-x (2)用配方法解方程:x 2 —4x +1=0(3)用公式法解方程:3x 2+5(2x+1)=0 (4)用因式分解法解方程:3(x -5)2=2(5-x )9、用适当方法解下列方程:(1)0)14(=-x x (2)027122=++x x(3)562+=x x (4)45)45(+=+x x x(5)x x 314542=- (6)0242232=-+-x x(7)12)1)(8(=-++x x (8)14)3)(23(+=++x x x解一元二次方程专项练习题 答案1、【答案】(1)116±-; (2) 142±-; (3) 523±; (4) 51± 2、【答案】(1)11=x ,612=x (2)31=x ,562=-x(3)41=x ,4132=-x (4)5211±-=x3、【答案】 (1) 4179±=x (2) 3121=-=x x (3) 411=x ,432=-x (4)262±=x4、【答案】 (1) x 1=561,5612--=+-x (2). x 1=-3+7,x 2=-3-7(3)21=x ,312=-x (4)61311±=x 5、【答案】(1)3121=-=x x (2)11=x ,322=-x(3)231=-x ,212=x (4)31=x ,92=x6、【答案】(1)11=x ,22=x (2)321=-=x x (3)4,3521==x x ; (4)3,221-==x x7、【答案】(1)x =-1±3; (2)x 1=1,x 2=-37(3)x 1=2,x 2=-4; (4)25.x 1=x 2=-2 8、【答案】解:(1) 1,321-==x x (2)32,3221-=+=x x(3)3105,310521--=+-=x x (4)313,521==x x 。

一元二次方程的解法【十大题型】(解析版)--九年级数学

一元二次方程的解法【十大题型】(解析版)--九年级数学

一元二次方程的解法【十大题型】【题型1直接开平方法解一元二次方程】【题型2配方法解一元二次方程】【题型3公式法解一元二次方程】【题型4因式分解法解一元二次方程】【题型5十字相乘法解一元二次方程】【题型6用适当方法解一元二次方程】【题型7用指定方法解一元二次方程】【题型8用换元法解一元二次方程】【题型9解含绝对值的一元二次方程】【题型10配方法的应用】知识点1:直接开平方法解一元二次方程根据平方根的意义直接开平方来解一元二次方程的方法,叫做直接开平方法.直接降次解一元二次方程的步骤:①将方程化为x2=p(p≥0)或(mx+n)2=p(p≥0,m≠0)的形式;②直接开平方化为两个一元一次方程;③解两个一元一次方程得到原方程的解.【题型1直接开平方法解一元二次方程】1(23-24九年级上·广东深圳·期中)将方程(2x-1)2=9的两边同时开平方,得2x-1=,即2x-1=或2x-1=,所以x1=,x2=.【答案】±33-32-1【分析】依照直接开平方法解一元二次方程的方法及步骤,一步步解出方程即可【详解】∵(2x-1)2=9∴2x-1=±3∴2x-1=3,2x-1=-3∴x1=2,x2=-1【点睛】此题考查解一元二次方程直接开平方法,掌握运算法则是解题关键2(23-24九年级上·贵州遵义·阶段练习)用直接开平方解下列一元二次方程,其中无解的方程为()A.x2+9=0B.-2x2=0C.x2-3=0D.(x-2)2=0【答案】A【分析】根据负数没有平方根即可求出答案.【详解】解:(A )移项可得x 2=-9,故选项A 无解;(B )-2x 2=0,即x 2=0,故选项B 有解;(C )移项可得x 2=3,故选项C 有解;(D )x -2 2=0,故选项D 有解;故选A .【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法.3(23-24九年级上·陕西渭南·阶段练习)如果关于x 的一元二次方程x -5 2=m -7可以用直接开平方求解,则m 的取值范围是.【答案】m ≥7【分析】根据平方的非负性得出不等式,求出不等式的解集即可.【详解】解:∵方程x -5 2=m -7可以用直接开平方求解,∴m -7≥0,解得:m ≥7,故答案为:m ≥7.【点睛】本题考查了解一元二次方程和解一元一次不等式,能得出关于m 的不程是解此题的关键.4(23-24九年级上·河南南阳·阶段练习)小明在解一元二次方程时,发现有这样一种解法:如:解方程x x +4 =6.解:原方程可变形,得:x +2 -2 x +2 +2 =6.x +2 2-22=6,x +2 2=10.直接开平方并整理,得.x 1=-2+10,x 2=-2-10.我们称小明这种解法为“平均数法”(1)下面是小明用“平均数法”解方程x +5 x +9 =5时写的解题过程.解:原方程可变形,得:x +a -b x +a +b =5.x +a 2-b 2=5,∴x +a 2=5+b 2.直接开平方并整理,得.x 1=c ,x 2=d .上述过程中的a 、b 、c 、d 表示的数分别为______,______,______,______.(2)请用“平均数法”解方程:x -5 x +7 =12.【答案】(1)7,2,-4,-10.(2)x 1=-1+43,x 2=-1-43.【分析】(1)仿照平均数法可把原方程化为x +7 -2 x +7 +2 =5,可得x +7 2=9,再解方程即可;(2)仿照平均数法可把原方程化为x +1 -6 x +1 +6 =12,可得x +1 2=48,再解方程即可;【详解】(1)解:∵x +5 x +9 =5,∴x +7 -2 x +7 +2 =5,∴x +7 2-4=5,∴x +7 2=9,∴x +7=3或x +7=-3,解得:x 1=-4,x 2=-10.∴上述过程中的a 、b 、c 、d 表示的数分别为7,2,-4,-10.(2)∵x -5 x +7 =12,∴x +1 -6 x +1 +6 =12,∴x +1 2-36=12,∴x +1 2=48,∴x +1=43,x +1=-43,解得:x 1=-1+43,x 2=-1-43.【点睛】本题考查的是一元二次方程的解法,新定义运算的含义,理解平均数法结合直接开平方法解一元二次方程是解本题的关键.知识点2配方法解一元二次方程将一元二次方程配成(x +m )2=n 的形式,再用直接开平方法求解,这种解一元二次方程的方法叫配方法.用配方法解一元二次方程的步骤:①把原方程化为ax 2+bx +c =0(a ≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.【题型2配方法解一元二次方程】1(23-24九年级上·广东深圳·期中)用配方法解方程,补全解答过程.3x 2-52=12x .解:两边同除以3,得______________________________.移项,得x 2-16x =56.配方,得_________________________________,即x -112 2=121144.两边开平方,得__________________,即x -112=1112,或x -112=-1112.所以x 1=1,x 2=-56.【答案】x 2-56=16x x 2-16x +112 2=56+112 2 x -112=±1112【分析】方程两边除以3把二次项系数化为1,常数项移到右边,两边加上一次项系数一半的平方,利用完全平方公式变形后,开方即可求出解.【详解】3x 2-52=12x .解:两边同除以3,得x 2-56=16x .移项,得x 2-16x =56.配方,得x2-16x+1122=56+112 2,即x-1 122=121144.两边开平方,得x-112=±1112,即x-112=1112,或x-112=-1112.所以x1=1,x2=-5 6.【点睛】此题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键.2(23-24九年级下·广西百色·期中)用配方法解方程x2-6x-1=0时,配方结果正确的是()A.x-32=9 B.x-32=10 C.x+32=8 D.x-32=8【答案】B【分析】此题考查了配方法求解一元二次方程,解题的关键是掌握配方法求解一元二次方程的步骤.根据配方法的步骤,求解即可.【详解】解:x2-6x-1=0移项得:x2-6x=1配方得:x2-6x+9=1+9即x-32=10故选:B3(24-25九年级上·全国·假期作业)用配方法解方程:x2+2mx-m2=0.【答案】x1=-m+2m,x2=-m-2m【分析】本题考查了解一元二次方程--配方法.先移项,再进行配方,最后开方即可得.【详解】解:移项得x2+2mx=m2,配方得x2+2mx+m2=m2+m2,即x+m2=2m2,所以原方程的解为:x1=-m+2m,x2=-m-2m.4(2024·贵州黔东南·一模)下面是小明用配方法解一元二次方程2x2+4x-8=0的过程,请认真阅读并完成相应的任务.解:移项,得2x2+4x=8第一步二次项系数化为1,得x2+2x=4第二步配方,得x+22=8第三步由此可得x+2=±22第四步所以,x1=-2+22,x2=-2-22第五步①小明同学的解答过程,从第步开始出现错误;②请写出你认为正确的解答过程.【答案】①第三步;②详见解析【分析】本题主要考查了解一元二次方程,熟练掌握配方法,先将方程2x2+4x-8=0变为x2+2x=4,然后配方为x+12=8,再开平方即可.【详解】解:①小明同学的解答过程,从第三步开始出现错误;②2x2+4x-8=0,移项,得2x2+4x=8,二次项系数化为1,得x2+2x=4,配方,得x+12=5,由此可得x+1=±5,所以,x1=-1+5,x2=-1-5.知识点3公式法解一元二次方程当b2-4ac≥0时,方程ax2+bx+c=0(a≠0)通过配方,其实数根可写为x=-b±b2-4ac2a的形式,这个式子叫做一元二次方程ax2+bx+c=0(a≠0)的求根公式,把各项系数的值直接代入这个公式,这种解一元二次方程的方法叫做公式法.【题型3公式法解一元二次方程】1(23-24九年级上·山西大同·阶段练习)用公式法解关于x的一元二次方程,得x= -6±62-4×4×12×4,则该一元二次方程是.【答案】4x2+6x+1=0【分析】根据公式法的公式x=-b±b2-4ac2a,可得方程的各项系数,即可解答.【详解】解:∵x=-b±b2-4ac2a=-6±62-4×4×12×4,∴a=4,b=6,c=1,从而得到一元二次方程为4x2+6x+1=0,故答案为:4x2+6x+1=0.【点睛】本题考查了用公式法解一元二次方程,熟记公式是解题的关键.2(23-24九年级上·广东深圳·期中)用公式法解一元二次方程:x-23x-5=0.解:方程化为3x2-11x+10=0.a=3,b=,c=10.Δ=b 2-4ac =-4×3×10=1>0.方程实数根.x ==,即x 1=,x 2=53.【答案】-11(-11)2有两个不相等的--11 ±12×311±162【分析】根据公式法解一元二次方程的解法步骤求解即.【详解】解:方程化为3x 2-11x +10=0.a =3,b =-11,c =10.Δ=b 2-4ac =-11 2-4×3×10=1>0.方程有两个不相等的实数根.x =--11 ±12×3=11±16,即x 1=2,x 2=53.故答案为:-11;(-11)2;有两个不相等的;--11 ±12×3;11±16;2.【点睛】本题考查公式法解一元二次方程,熟练掌握公式法解一元二次方程的解法步骤是解答的关键.3(23-24九年级上·河南三门峡·期中)用公式法解方程-ax 2+bx -c =0 (a ≠0),下列代入公式正确的是()A.x =-b ±b 2-4a ×(-c )2×(-a ) B.x =b ±b 2-4ac2a C.x =b ±b 2-4a ×(-c )2×(-a ) D.x =-b ±b 2-4ac2a【答案】B【分析】先将方程进行化简,然后根据一元二次方程的求根公式,即可做出判断.【详解】解:方程-ax 2+bx -c =0 (a ≠0)可化为ax 2-bx +c =0由求根公式可得:x =-(-b )±(-b )2-4ac 2a =b ±b 2-4ac 2a 故选:B【点睛】本题主要考查了一元二次方程的求根公式,准确的识记求根公式是解答本题的关键.4(23-24九年级上·广东深圳·期中)用求根公式法解得某方程ax 2+bx +c =0(a ≠0)的两个根互为相反数,则()A.b =0B.c =0C.b 2-4ac =0D.b +c =0【答案】A【分析】根据求根公式法求得一元二次方程的两个根x 1、x 2,由题意得x 1+x 2=0,可求出b =0.【详解】∵方程ax2+bx+c=0(a≠0)有两根,∴Δ=b2-4ac≥0且a≠0.求根公式得到方程的根为x=-b±b2-4ac2a,两根互为相反数,所以x1+x2=0,即-b+b2-4ac2a+-b-b2-4ac2a=0,解得b=0.故选:A.【点睛】本题考查了解一元二次方程-公式法,相反数的意义,熟练掌握用公式法解一元二次方程是解题的关键.知识点4因式分解法解一元二次方程当一个一元二次方程的一边是0,另一边能分解为两个一次因式的乘积时,就可以把解这样的一元二次方程转化为解两个一元一次方程,这种解一元二次方程的方法叫做因式分解法.【题型4因式分解法解一元二次方程】1(23-24九年级下·安徽亳州·期中)关于x的一元二次方程x x-2=2-x的根是()A.-1B.0C.1和2D.-1和2【答案】D【分析】本题主要考查了解一元二次方程,先移项,然后利用因式分解法解方程即可得到答案.【详解】解:∵x x-2=2-x,∴x x-2+x-2=0,∴x+1x-2=0,∴x+1=0或x-2=0,解得x=-1或x=2,故选:D.2(23-24九年级上·陕西榆林·阶段练习)以下是某同学解方程x2-3x=-2x+6的过程:解:方程两边因式分解,得x x-3=-2x-3,①方程两边同除以x-3,得x=-2,②∴原方程的解为x=-2.③(1)上面的运算过程第______步出现了错误.(2)请你写出正确的解答过程.【答案】(1)②(2)过程见解析【分析】(1)根据等式的性质作答即可;(2)先移项,然后用因式分解法求解.【详解】(1)解:∵x-3可能为0,∴不能除以x-3,∴第②步出现了错误故答案为②.(2)解:方程两边因式分解,得x x-3=-2x-3,移项,得x x-3+2x-3=0,∴x-3x+2=0,∴x1=3,x2=-2.【点睛】本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,熟练掌握各种方法是解答本题的关键.3(23-24九年级下·安徽安庆·期中)对于实数m,n,定义运算“※”:m※n=m2-2n,例如:2※3=22 -2×3=-2.若x※5x=0,则方程的根为()A.都为10B.都为0C.0或10D.5或-5【答案】C【分析】本题考查的知识点是新定义运算、解一元二次方程,解题关键是理解题意.现根据新定义运算得出一元二次方程,再求解即可.【详解】解:根据定义运算m※n=m2-2n可得,x※5x=0即为x2-5x·2=0,即x x-10=0,∴x1=0,x2=10,则方程的根为0或10.故选:C.4(13-14九年级·浙江·课后作业)利用因式分解求解方程(1)4y2=3y;(2)(2x+3)(2x-3)-x(2x+3)=0.【答案】(1)y1=0,y2=34;(2)x1=-32,x2=3【分析】(1)利用移项、提公因式法因式分解求出方程的根;(2)利用提公因式法分解因式求出方程的根.【详解】(1)4y2=3y;4y2-3y=0y(4y-3)=0y=0或4y-3=0∴y1=0,y2=34,故答案为:y1=0,y2=3 4;(2)(2x+3)(2x-3)-x(2x+3)=0(2x+3)(x-3)=02x+3=0或x-3=0 x1=-32,x2=3,故答案为:x1=-32,x2=3.【点睛】本题考查利用因式分解解方程,关键是防止丢掉方程的根.例如:解方程4y2=3y时,给方程两边同除以y,解得y=34,而丢掉y=0的情况.【题型5十字相乘法解一元二次方程】1(23-24九年级下·广西百色·期中)以下是解一元二次方程ax2+bx+c=0(a≠0)的一种方法:二次项的系数a分解成a1a2,常数项c分解成c1c2,并且把a1,a2,c1,c2排列为:然后按斜线交叉相乘,再相加,得到a1c2+a2c1,若此时满足a1c2+a2c1=b,那么ax2+bx+c=0(a≠0)就可以因式分解为(a1x +c1)(a2x+c2)=0,这种方法叫做“十字相乘法”.那么6x2-11x-10=0按照“十字相乘法”可因式分解为()A.(x-2)(6x+5)=0B.(2x+2)(3x-5)=0C.(x-5)(6x+2)=0D.(2x-5)(3x+2)=0【答案】D【分析】根据“十字相乘法”分解因式得出6x2-11x-10=(2x-5)(3x+2)即可.【详解】∵∴6x2-11x-10=2x-53x+2=0.故选:D.【点睛】本题主要考查了利用因式分解法解一元二次方程以及十字相乘法分解因式,正确分解常数项是解题关键.2(23-24九年级上·江西上饶·期末)试用十字相乘法解下列方程(1)x2+5x+4=0;(2)x2+3x-10=0.【答案】(1)x1=-4,x2=-1;(2)x1=2,x2=-5.【分析】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.(1)利用十字相乘法将方程的左边因式分解,继而得出两个关于x的一元一次方程,进一步求解可得答案;(2)利用十字相乘法将方程的左边因式分解,继而得出两个关于x的一元一次方程,进一步求解可得答案.【详解】(1)解:x2+5x+4=0x+4=0x+1x+4=0或x+1=0∴x1=-4,x2=-1;(2)解:x2+3x-10=0x+5=0x-2x+5=0或x-2=0∴x1=2,x2=-5.3(23-24九年级下·广西梧州·期中)解关于x的方程x2-7mx+12m2=0得()A.x1=-3m,x2=4mB.x1=3m,x2=4mC.x1=-3m,x2=-4mD.x1=3m,x2=-4m【答案】B【分析】本题主要考查了解一元二次方程,掌握运用十字相乘法求解即可.直接运用十字相乘法解一元二次方程即可.【详解】解:x2-7mx+12m2=0,x-3mx-4m=0,x-3m=0或x-4m=0,x1=3m,x2=4m.故选B.4(23-24九年级下·重庆·期中)阅读下面材料:材料一:分解因式是将一个多项式化为若干个整式积的形式的变形,“十字相乘法”可把某些二次三项式分解为两个一次式的乘积,具体做法如下:对关于x,y的二次三项式ax2+bxy+cy2,如图1,将x2项系数a=a1⋅a2,作为第一列,y2项系数c=c1⋅c2,作为第二列,若a1c2+a2c1恰好等于xy项的系数b,那么ax2+bxy+cy2可直接分解因式为:ax2+bxy+cy2=a1x+c1ya2x+c2y示例1:分解因式:x2+5xy+6y2解:如图2,其中1=1×1,6=2×3,而5=1×3+1×2;∴x2+5xy+6y2=(x+2y)(x+3y);示例2:分解因式:x2-4xy-12y2.解:如图3,其中1=1×1,-12=-6×2,而-4=1×2+1×(-6);∴x2-4xy-12y2=(x-6y)(x+2y);材料二:关于x,y的二次多项式ax2+bxy+cy2+d x+ey+f也可以用“十字相乘法”分解为两个一次式的乘积.如图4,将a=a1a2作为一列,c=c1c2作为第二列,f=f1f2作为第三列,若a1c2+a2c1=b,a1f2+a2f1=d,c1f2+c2f1=e,即第1、2列,第1、3列和第2、3列都满足十字相乘规则,则原式分解因式的结果为:ax2+bxy+cy2+d x+ey+f=a1x+c1y+f1a2x+c2y+f2;示例3:分解因式:x2-4xy+3y2-2x+8y-3.解:如图5,其中1=1×1,3=(-1)×(-3),-3=(-3)×1;满足-4=1×(-3)+1×(-1),-2=1×(-3)+1×1,8=(-3)×(-3)+(-1)×1;∴x2-4xy+3y2-2x+8y-3=(x-y-3)(x-3y+1)请根据上述材料,完成下列问题:(1)分解因式:x2+3x+2=;x2-5xy+6y2+x+2y-20=;(2)若x,y,m均为整数,且关于x,y的二次多项式x2+xy-6y2-2x+my-120可用“十字相乘法”分解为两个一次式的乘积,求出m的值,并求出关于x,y的方程x2+xy-6y2-2x+my-120=-1的整数解.【答案】(1)(x+1)(x+2),(x-3y+5)(x-2y-4);(2)m=54m=-56,x=-1y=4和x=2y=-4【分析】(1)①直接用十字相乘法分解因式;②把某个字母看成常数用十字相乘法分解即可;(2)用十字相乘法把能分解的集中情况全部列出求出m值.【详解】解:(1)①1=1×1,2=1×2,3=1×1+1×2,∴原式=(x+1)(x+2);②1=1×1,6=(-2)×(-3),-20=5×(-4)满足(-5)=1×(-2)+1×(-3),1=1×5+1×(-4),2=(-2)×5+(-3)×(-4)∴原式=(x-3y+5)(x-2y-4);(2)①1-35a1c1f11-2-4a2c2f2{a1c2+a2c1=-5a1f22+a2f1=1c1f2+c2f1=2②1-21013-12{a1c2+a2c1=1a1f2+a2f1=-2c1f2+c2f1=m1-2-121310(x-2y+10)(x+3y-12)=x2+xy-6y2-2x+my-120∴m=54(x-2y-12)(x+3y+10)=x2+xy-6y2-2x+my-120∴m=-56当m=54时,(x-2y+10)(x+3y-12)=-1{x-2y+10=1x+3y-12=-1或{x-2y+10=-1x+3y-12=1,x=-75y=245(舍),{x=-1y=4当m=-56时,(x-2y-12)(x+3y+10)=-1{x-2y-12=1x+3y+10=-1或{x-2y=12=1x+3y+10=1,{x=2y=-4或x=695y=25(舍)综上所述,方程x2+xy-6y2-2x+my-120=-1的整数解有{x=-1y=4和{x=2y=-4;方法二:x2+xy+(-6y2)-2x+my-120=(x+3y)(x-2y)-2x+my-12y =(x+3y+a)(x-2y+b)=(x+3y)(x-2y)+(a+b)x+(3b-2a)y+ab {a+b=-2⇒{a=-123b-2a=m ab=-120 b=10或{a=10⇒m=54b=-12m=-56.【点睛】本题考查了因式分解的方法--十字相乘法,弄清题目中的十字相乘的方法是解题关键.【题型6用适当方法解一元二次方程】1(23-24九年级上·江苏宿迁·期末)用适当的方法解下列方程:(1)x2=4x;(2)x-32-4=0;(3)2x2-4x-5=0;(4)x-1x+2=2x+2.【答案】(1)x1=4,x2=0(2)x1=5,x2=1(3)x1=2+142,x2=2-142(4)x1=-2,x2=3【分析】本题考查了一元二次方程的解法,解一元二次方程-因式分解法,公式法,熟练掌握解一元二次方程的方法是解题的关键.(1)利用解一元二次方程-因式分解法进行计算,即可解答;(2)利用解一元二次方程-因式分解法进行计算,即可解答;(3)利用解一元二次方程-公式法进行计算,即可解答;(4)利用解一元二次方程-因式分解法进行计算,即可解答.【详解】(1)解:x2-4x=0x x-4=0,解得x1=4,x2=0(2)解:x-3-2x-3+2=0x-5x-1=0,解得x1=5,x2=1(3)解:∵a=2,b=-4,c=-5∴b2-4ac=-42-4×2×-5=16--40=56∴x=4±562×2=2±142解得x1=2+142,x2=2-142(4)解:x-1x+2-2x+2=0x+2x-1-2=0,x+2x-3=0,∴x+2=0,x-3=0,解得x1=-2,x2=32(23-24九年级上·山西太原·期中)用适当的方法解下列一元二次方程:(1)x2+4x-2=0;(2)x x+3=5x+15.【答案】(1)x1=6-2,x2=-6-2(2)x1=-3,x2=5【分析】本题考查的是一元二次方程的解法,掌握配方法、因式分解法解一元二次方程的一般步骤是解题的关键.(1)利用配方法解方程;(2)先移项,再利用提公因式法解方程.【详解】(1)解:移项,得x2+4x=2,配方,得x2+4x+4=2+4,x+22=6,两边开平方,得x+2=±6,所以,x1=6-2,x2=-6-2;(2)解:原方程可变形为:x x+3=5x+3,x x+3-5x+3=0,x+3x-5=0,x+3=0或x-5=0,所以,x1=-3,x2=53(23-24九年级下·山东泰安·期末)用适当的方法解下列方程(1)3x2=54;(2)x+13x-1=1;(3)4x2x+1=32x+1;(4)x2+6x=10.【答案】(1)x1=32,x2=-32(2)x1=-1+73,x2=-1-73(3)x1=-12,x2=34(4)x1=-3+19,x2=-3-19【分析】(1)方程整理后,利用直接开平方法求解即可;(2)方程整理后,利用求根公式法求解即可;(3)方程利用因式分解法求解即可;(4)方程利用配方法求解即可.【详解】(1)解:方程整理得:x2=18,开方得:x=±32,解得:x1=32,x2=-32;(2)解:方程整理得:3x2+2x-2=0,这里a=3,b=2,c=-2,∵△=22-4×3×(-2)=4+24=28>0,∴x=-2±276=-1±73,解得:x1=-1+73,x2=-1-73;(3)解:方程移项得:4x(2x+1)-3(2x+1)=0,分解因式得:(2x+1)(4x-3)=0,所以2x+1=0或4x-3=0,解得:x1=-12,x2=34;(4)解:配方得:x2+6x+9=19,即(x+3)2=19,开方得:x+3=±19,解得:x1=-3+19,x2=-3-19.【点睛】此题考查了解一元二次方程-因式分解法,公式法,直接开平方法,配方法,熟练掌握根据方程的特征选择恰当的解法是解本题的关键.4(23-24九年级上·海南省直辖县级单位·期末)用适当的方法解下列方程.(1)(x+2)2-25=0;(2)x2+4x-5=0;(3)2x2-3x+1=0.【答案】(1)x1=3,x2=-7(2)x1=1,x2=-5(3)x1=12,x2=1【分析】(1)利用平方差公式,可以解答此方程;(2)利用因式分解法解方程即可;(3)利用因式分解法解方程即可.【详解】(1)解:(x+2)2-25=0,(x+2-5)(x+2+5)=0,∴x-3=0或x+7=0,解得x1=3,x2=-7;(2)解:x2+4x-5=0,x-1x+5=0,∴x-1=0或x+5=0,解得x1=1,x2=-5;(3)解:2x2-3x+1=0,2x-1x-1=0,∴2x-1=0或x-1=0,解得x1=12,x2=1.【点睛】本题考查了解一元二次方程-因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).【题型7用指定方法解一元二次方程】1(23-24九年级下·山东日照·期末)用指定的方法解下列方程:(1)4(x-1)2-36=0(直接开方法)(2)x2+2x-3=0(配方法)(3)(x+1)(x-2)=4(公式法)(4)2(x+1)-x(x+1)=0(因式分解法)【答案】(1)x1=4,x2=-2;(2)x1=1,x2=-3;(3)x1=3,x2=-2;(4)x1=-1,x2=2.【分析】(1)直接利用开方法进行求解即可得到答案;(2)直接利用配方法进行求解即可得到答案;(3)直接利用公式法进行求解即可得到答案;(4)直接利用因式分解法进行求解即可得到答案;【详解】解:(1)∵4x-12-36=0∴(x-1)2=9,∴x-1=±3,∴x1=4,x2=-2;(2)∵x2+2x=3,∴x2+2x+1=4,∴(x+1)2=4,∴x+1=±2,∴x1=1,x2=-3;(3)∵x2-x-6=0,∴△=1-4×1×(-6)=25,∴x=1±252=1±52,∴x1=3,x2=-2;(4)∵2x+1-x x+1=0∴(x+1)(2-x)=0,∴x+1=0或2-x=0,∴x1=-1,x2=2.【点睛】本题主要考查了解一元二次方程,解题的关键在于能够熟练掌握解一元二次方程的方法.2(23-24九年级下·山东烟台·期中)用指定的方法解方程:(1)x2-4x-1=0(用配方法)(2)3x2-11x=-9(用公式法)(3)5x-32=x2-9(用因式分解法)(4)2y2+4y=y+2(用适当的方法)【答案】(1)x1=5+2,x2=-5+2(2)x1=11+136,x2=11-136(3)x1=3,x2=92(4)y1=12,y2=-2【分析】本题考查了解一元二次方程,正确掌握相关性质内容是解题的关键.(1)运用配方法解方程,先移项再配方,然后开方即可作答.(2)先化为一般式,再根据Δ=b2-4ac算出,以及代入x=-b±Δ2a进行化简,即可作答.(3)先移项,再提取公因式,令每个因式为0,进行解出x的值,即可作答.(4)先移项,再提取公因式,令每个因式为0,进行解出x的值,即可作答.【详解】(1)解:x2-4x-1=0移项,得x2-4x=1配方,得x 2-4x +4=1+4,即x -2 2=5∴x -2=±5解得x 1=5+2,x 2=-5+2;(2)解:3x 2-11x =-93x 2-11x +9=0Δ=b 2-4ac =121-4×3×9=121-108=13∴x =11±136解得x 1=11+136,x 2=11-136;(3)解:5x -3 2=x 2-95x -3 2-x 2-9 =05x -3 2-x -3 x +3 =0x -3 5x -3 -x +3 =x -3 4x -18 =0则x -3=0,4x -18=0解得x 1=3,x 2=92;(4)解:2y 2+4y =y +22y 2+4y -y +2 =02y y +2 -y +2 =02y -1 y +2 =0∴2y -1=0,y +2=0解得y 1=12,y 2=-2.3(23-24九年级上·新疆乌鲁木齐·期中)用指定的方法解方程:(1)12x 2-2x -5=0(用配方法)(2)x 2=8x +20(用公式法)(3)x -3 2+4x x -3 =0(用因式分解法)(4)x +2 3x -1 =10(用适当的方法)【答案】(1)x 1=2+14,x 2=2-14(2)x 1=10,x 2=-2(3)x 1=3,x 2=0.6(4)x 1=-3,x 2=43【分析】(1)利用配方法解方程即可;(2)利用公式法解方程即可;(3)利用因式分解法解方程即可;(4)先将给出的方程进行变形,然后利用因式分解法解方程即可.【详解】(1)移项,得:12x 2-2x =5,系数化1,得:x 2-4x =10,配方,得:x 2-4x +4=14,(x -2)2=14,x -2=±14,∴x 1=2+14,x 2=2-14;(2)原方程可变形为x 2-8x -20=0,a =1,b =-8,c =-20,Δ=(-8)2-4×1×-20 =64+80=144>0,原方程有两个不相等的实数根,∴x =-b ±b 2-4ac 2a =8±1442=8±122,∴x 1=10,x 2=-2;(3)原方程可变形为:x -3 x -3+4x =0,整理得:x -3 5x -3 =0,解得x 1=3,x 2=0.6;(4)原方程可变形为:3x 2+5x -2-10=0,整理得:3x 2+5x -12=0,3x -4 x +3 =0,∴x 1=-3,x 2=43【点睛】本题主要考查的是配方法,公式法,因式分解法解一元二次方程的有关知识,掌握配方法的基本步骤,一元二次方程的求根公式是解题关键.4(23-24九年级上·河北邯郸·期中)按指定的方法解下列方程:(1)x 2=8x +9(配方法);(2)2y 2+7y +3=0(公式法);(3)x +2 2=3x +6(因式分解法).【答案】(1)x 1=9,x 2=-1.(2)x 1=-3,x 2=-12.(3)x 1=-2,x 2=1.【分析】(1)先把方程化为x 2-8x +16=25,可得x -4 2=25,再利用直接开平方法解方程即可;(2)先计算△=72-4×2×3=49-24=25>0,再利用求根公式解方程即可;(3)先移项,再把方程左边分解因式可得x +2 x -1 =0,再化为两个一次方程,再解一次方程即可.【详解】(1)解:x 2=8x +9,移项得:x 2-8x =9,∴x 2-8x +16=25,配方得:x-42=25,∴x-4=5或x-4=-5,解得:x1=9,x2=-1.(2)解:2y2+7y+3=0,∴△=72-4×2×3=49-24=25>0,∴x=-7±254=-7±54,∴x1=-3,x2=-12.(3)解:x+22=3x+6,移项得:x+22-3x+2=0,∴x+2x-1=0,∴x+2=0或x-1=0,解得:x1=-2,x2=1.【点睛】本题考查的是一元二次方程的解法,掌握“配方法,公式法,因式分解法解一元二次方程”是解本题的关键.【题型8用换元法解一元二次方程】1(23-24九年级下·浙江杭州·期中)已知a2+b2a2+b2+2-15=0,求a2+b2的值.【答案】3【分析】先用换元法令a2+b2=x(x>0),再解关于x的一元二次方程即可.【详解】解:令a2+b2=x(x>0),则原等式可化为:x(x+2)-15=0,解得:x1=3,x2=-5,∵x>0,∴x=3,即a2+b2=3.a2+b2的值为3.【点睛】本题考查了换元法、一元二次方程的解法,注意a2+b2为非负数是本题的关键.2(23-24九年级下·安徽合肥·期中)关于x的方程x2+x2+2x2+2x-3=0,则x2+x的值是()A.-3B.1C.-3或1D.3或-1【答案】B【分析】本题考查解一元二次方程,熟练掌握用换元法解方程是解题的关键.设x2+x=t,则此方程可化为t2+2t-3=0,然后用因式分解法求解即可.【详解】解:设x2+x=t,则此方程可化为t2+2t-3=0,∴t-1t+3=0,∴t-1=0或t+3=0,解得t1=1,t2=-3,∴x2+x的值是1或-3.∵x2+x=-3,即x2+x+3=0,Δ=12-4×1×3=-11<0方程无解,故x2+x=-3舍去,∴x2+x的值是1,故选:B.3(23-24九年级上·广东江门·期中)若a+5ba+5b+6=7,则a+5b=.【答案】1或-7【分析】本题主要考查解一元二次方程,设a+5b=x,则原方程可变形为x x+6=7,方程变形后运用因式分解法求出x的值即可得到结论.【详解】解:设a+5b=x,则原方程可变形为x x+6=7,整理得,x2+6x-7=0,x-1x+7=0,x-1=0,x+7=0,∴x=1,x=-7,即a+5b=1或-7,故答案为:1或-7.4(23-24九年级上·山东临沂·期中)利用换元法解下列方程:(1)2x4-3x2-2=0;(2)(x2-x)2-5(x2-x)+4=0.【答案】(1)x1=2,x2=-2(2)x1=1+172,x2=1-172,x3=1+52,x4=1-52【分析】(1)根据换元思想,设y=x2,则y=2或y=-12,由此即可求解;(2)设y=x2-x,则y=4或y=1,由此即可求解.【详解】(1)解:(1)设y=x2,则原方程化为2y2-3y-2=0,∴y=2或y=-12,当y=2时,x2=2,∴x1=2,x2=-2,当y=-12时,x2=-12,此时方程无解,∴原方程的解是x1=2,x2=-2.(2)解:设y=x2-x,则原方程化为y2-5y+4=0,∴y=4或y=1,当y=4时,x2-x=4,∴x1=1+172,x2=1-172,当y=1时,x2-x=1,∴x3=1+52,x4=1-52.∴原方程的解是x1=1+172,x2=1-172,x3=1+52,x4=1-52.【点睛】本题主要考查换元思想解高次方程,掌握我一元二次方程的解法是解题的关键.【题型9解含绝对值的一元二次方程】1(23-24九年级上·陕西榆林·阶段练习)阅读下面的材料,解答问题.材料:解含绝对值的方程:x2-3|x|-10=0.解:分两种情况:①当x≥0时,原方程化为x2-3x-10=0解得x1=5,x2=-2(舍去);②当x<0时,原方程化为x2+3x-10=0,解得x3=-5,x4=2(舍去).综上所述,原方程的解是x1=5,x2=-5.请参照上述方法解方程x2-|x+1|-1=0.【答案】x1=2,x2=-1【分析】根据题意分两种情况讨论,化简绝对值,然后解一元二次方程即可求解.【详解】解:分两种情况:①当x+1≥0,即x≥-1时,原方程化为x2-x+1-1=0,解得x1=2,x2=-1;②当x+1<0,即x<-1时,原方程化为x2+x+1-1=0,解得x3=0(舍去),x4=-1(舍去).综上所述,原方程的解是x1=2,x2=-1.【点睛】本题考查了解一元二次方程,分类讨论是解题的关键.2(23-24九年级上·内蒙古赤峰·期中)解方程x2+2|x+2|-4=0.【答案】x1=0,x2=-2【分析】对x+2进行分类讨论,先把绝对值号化简后方程变形为一般的一元二次方程,再利用因式分解法解出方程的解,最后结合x的取值范围最终确定答案即可.【详解】解:①当x+2≥0,即x≥-2时,方程变形得:x2+2(x+2)-4=0∴x2+2x=0∴x(x+2)=0∴x1=0,x2=-2;②当x+2<0,即x<-2时,方程变形得:x2-2(x+2)-4=0∴x2-2x-8=0∴(x+2)(x-4)=0∴x1=-2(舍去),x2=4(舍去)∴综上所述,原方程的解是x1=0或x2=-2.【点睛】本题考查了含绝对值的方程、一元二次方程的解法等知识,渗透了分类讨论的思想.3(23-24九年级下·安徽滁州·阶段练习)解方程x2-22x+3+9=0.【答案】x1=1,x2=3【分析】分x≥-32与x<-32,化简绝对值得到一元二次方程,解一元二次方程即可求解.【详解】当2x+1≥0,即x≥-32时,原方程可化为:x2-2(2x+3)+9=0整理得:x2-4x+3=0解得:x1=1,x2=3当2x+1<0,即x<-32时,原方程可化为:x2+2(2x+3)+9=0整理得x2+4x+15=0∵Δ=42-4×1×15=-44<0,∴此方程无实数解,综上所述,原方程的解为:x1=1,x2=3【点睛】本题考查了解一元二次方程,分类讨论化简绝对值是解题的关键.4(23-24九年级上·山西太原·阶段练习)解方程x2-|x-5|-2=0【答案】x1=-1+292,x2=-1-292【分析】根据题意分x-5≥0和x-5<0两种情况,分别解方程即可.【详解】解:①当x-5≥0时,即x≥5时,原方程化为x2-x+5-2=0,即x2-x+3=0,a=1,b=-1,c=3,∴Δ=b2-4ac=-12-4×1×3=-11<0,∴原方程无解,②当x-5<0时,即x<5时,原方程化为x2+x-5-2=0,即x2+x-7=0,a=1,b=1,c=-7,∴Δ=b2-4ac=12-4×1×-7=29>0x=-1±292×1解得:x1=-1+292,x2=-1-292.【点睛】此题考查了解含绝对值的一元二次方程,解题的关键是根据题意分两种情况讨论.【题型10配方法的应用】1(23-24九年级上·河北沧州·期中)【项目学习】配方法是数学中重要的一种思想方法.它是指将一个式子的某部分通过恒等变形化为完全平方式或几个完全平方式的和的方法,这种方法常被用到代数式的变形中,还能解决一些与非负数有关的问题或求代数式最大值,最小值等.例:求代数式y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4,∵y+22≥0,∴y+22+4≥4∴当y =-2时,y 2+4y +8的最小值是4.(1)【类比探究】求代数式x 2-6x +12的最小值;(2)【举一反三】若y =-x 2-2x 当x =________时,y 有最________值(填“大”或“小”),这个值是________;(3)【灵活运用】已知x 2-4x +y 2+2y +5=0,则x +y =________;(4)【拓展应用】如图某农场计划建造一个矩形养殖场,为充分利用现有资源,该矩形养殖场一面靠墙(墙的长度为15m ),另外三面用栅栏围成,中间再用栅栏把它分成两个面积为1:2的矩形,栅栏的总长度为24m .当BF 为多少时,矩形养殖场的总面积最大?最大值为多少?【答案】(1)3(2)-1;大;1(3)1(4)当BF =4m ,矩形养殖场的总面积最大,最大值为48m 2.【分析】本题主要考查了配方法的应用,熟练掌握配方法是解题的关键:(1)把原式利用配方法变形为x -3 2+3,再仿照题意求解即可;(2)把原式利用配方法变形为-x +1 2+1,再仿照题意求解即可;(3)把原式利用配方法变形为x -2 2+y +1 2=0,再利用非负数的性质求解即可;(4)设BF =xm ,则CF =2BF =2xm ,则BC =3xm ,进而求出AB =24-3x 3m ,则S 矩形ABCD =3x ⋅24-3x 3=-3x -4 2+48,据此可得答案.【详解】(1)解:x 2-6x +12=x 2-6x +9 +3=x -3 2+3,∵x -3 2≥0,∴x -3 2+3≥3,∴当x =3时,x 2-6x +12的最小值为3;(2)解:y =-x 2-2x=-x 2-2x -1+1=-x+12+1,∵x+12≥0,∴-x+12≤0,∴-x+12+1≤1,∴当x=-1时,y=-x2-2x有最大值,最大值为1,故答案为:-1;大;1;(3)解:∵x2-4x+y2+2y+5=0,∴x2-4x+4+y2+2y+1=0,∴x-22+y+12=0,∵x-22≥0,y+12≥0,∴x-22=y+12=0,∴x-2=0,y+1=0,∴x=2,y=-1,∴x+y=2-1=1;(4)解:设BF=xm,则CF=2BF=2xm,∴BC=3xm,∴AB=24-3x3m,∴S矩形ABCD =3x⋅24-3x3=-3x2+24x=-3x-42+48,∵x-42≥0,∴-3x-42≤0,∴-3x-42+48≤48,∵AD=BC=3x≤15,∴0<x≤5,∴当x=4时,S矩形ABCD最大,最大值为48,∴当BF=4m,矩形养殖场的总面积最大,最大值为48m2.2(2023·河北石家庄·一模)已知A=x2+6x+n2,B=2x2+4x+n2,下列结论正确的是()A.B-A的最大值是0B.B-A的最小值是-1C.当B=2A时,x为正数D.当B=2A时,x为负数【答案】B【分析】利用配方法表示出B-A,以及B=2A时,用含n的式子表示出x,确定x的符号,进行判断即可.【详解】解:∵A=x2+6x+n2,B=2x2+4x+n2,∴B-A=2x2+4x+n2-x2+6x+n2=2x2+4x+n2-x2-6x-n2=x2-2x=x-12-1;∴当x=1时,B-A有最小值-1;当B=2A时,即:2x2+4x+n2=2x2+6x+n2,∴2x2+4x+n2=2x2+12x+2n2,∴-8x=n2≥0,∴x≤0,即x是非正数;故选项A,C,D错误,选项B正确;故选B.【点睛】本题考查整式加减运算,配方法的应用.熟练掌握合并同类项,以及配方法,是解题的关键.3(23-24九年级上·四川攀枝花·期中)已知三角形的三条边为a,b,c,且满足a2-10a+b2-16b+89= 0,则这个三角形的最大边c的取值范围是()A.c>8B.5<c<8C.8<c<13D.5<c<13【答案】C【分析】先利用配方法对含a的式子和含有b的式子配方,再根据偶次方的非负性可得出a和b的值,然后根据三角形的三边关系可得答案.【详解】解:∵a2-10a+b2-16b+89=0,∴(a2-10a+25)+(b2-16b+64)=0,∴(a-5)2+(b-8)2=0,∵(a-5)2≥0,(b-8)2≥0,∴a-5=0,b-8=0,∴a=5,b=8.∵三角形的三条边为a,b,c,∴b-a<c<b+a,∴3<c<13.又∵这个三角形的最大边为c,∴8<c<13.故选:C.【点睛】本题考查了配方法在三角形的三边关系中的应用,熟练掌握配方法、偶次方的非负性及三角形的三边关系是解题的关键.4(23-24九年级下·浙江宁波·期中)我们已经学习了利用配方法解一元二次方程,其实配方法还有其他重要应用.例如:已知x可取任何实数,试求二次三项式x2+2x+3的最小值.解:x2+2x+3=x2+2x+1+2=(x+1)2+2;∵无论x取何实数,都有(x+1)2≥0,∴(x+1)2+2≥2,即x2+2x+3的最小值为2.【尝试应用】(1)请直接写出2x2+4x+10的最小值______;【拓展应用】(2)试说明:无论x取何实数,二次根式x2+x+2都有意义;【创新应用】(3)如图,在四边形ABCD中,AC⊥BD,若AC+BD=10,求四边形ABCD的面积最大值.【答案】(1)8;(2)见解析;(3)25 2【分析】(1)利用配方法把2x2+4x+10变形为2(x+1)2+8,然后根据非负数的性质可确定代数式的最小值;(2)利用配方法得到x2+x+2=x+122+74,则可判断x2+x+2>0,然后根据二次根式有意义的条件可判断无论x取何实数,二次根式x2+x+2都有意义;(3)利用三角形面积公式得到四边形ABCD的面积=12⋅AC⋅BD,由于BD=10-AC,则四边形ABCD的面积=12⋅AC⋅10-AC,利用配方法得到四边形ABCD的面积=-12(AC-5)2+252,然后根据非负数的性质解决问题.【详解】解:(1)2x2+4x+10=2x2+2x+10=2x2+2x+1-1+10=2(x+1)2+8,∵无论x取何实数,都有2(x+1)2≥0,∴(x+1)2+8≥8,即x2+2x+3的最小值为8;故答案为:8;(2)x2+x+2=x+122+74,∵x+122≥0,∴x2+x+2>0,∴无论x取何实数,二次根式x2+x+2都有意义;(3)∵AC⊥BD,。

一元二次方程的重难点及题型

一元二次方程的重难点及题型

一元二次方程的重难点及题型【重难点1 一元二次方程的概念】【方法点拨】解决此类问题掌握一元二次方程的定义是关键;等号两边都是整式,只含有一个未知数,并且未知数的最高次数是2的方程,叫做一元二次方程。

【思路点拨】根据一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程进行分析即可.【题型】①ax2+x+2=0,当a=0时,该方程属于一元一次方程,故错误;②3(x﹣9)2﹣(x+1)2=1、④(a2+a+1)x2﹣a=0符合一元二次方程的定义,故正确;③x+3=1/x属于分式方程,故错误;⑤√x+1=x﹣1属于无理方程,故错误;故选:B【点睛】此题主要考查了一元二次方程的定义,关键是掌握一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2。

【重难点2 一元二次方程的解】【方法点拨】一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解,解决此类问题,通常是将方程的根或解反代回去再进行求解.【思路点拨】把x=0代入方程(m﹣3)x²+3x+m²﹣9=0中,解关于m的一元二次方程,注意m的取值不能使原方程对二次项系数为0【题型】把x=0代入方程(m﹣3)x²+3x+m²﹣9=0中,得m²﹣9=0,解得m=﹣3或3,当m=3时,原方程二次项系数m﹣3=0,舍去,故选:B【点睛】本题考查的是一元二次方程解的定义.能使方程成立的未知数的值,就是方程的解,同时,考查了一元二次方程的概念【重难点3 用指定方法解一元二次方程】【方法点拨】解决此类问题需熟练掌握直接开方法、配方法、公式法、因式分解法的步骤【思路点拨】(1)方程变形后,利用平方根的定义开方即可求出解;(2)方程常数项移到右边,两边加上一次项系数一半的平方,左边化为完全平方式,右边合并,开方即可求出解;(3)方程整理为一般形式,找出a,b,c的值,当根的判别式大于等于0时,代入求根公式即可求出解;(4)方程左边提取公因式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【点睛】此题考查了解一元二次方程﹣因式分解法,配方法,公式法,以及直接开平方法,熟练掌握各自解法是解本题的关键.【重难点4 一元二次方程根的判别式】【方法点拨】解决此类问题需熟练掌握根的判别式:当①b²-4ac>0时,方程有两个不相等的实数根;②b²-4ac=0时,方程有两个相等的实数根;③b²-4ac<0时,方程无实数根,反之亦成立.【思路点拨】(1)根据一元二次方程根的判别式列出不等式,结合一元二次方程的定义可得a的范围;(2)将a的值代入得出方程,解之可得.【题型】(1)由题意知△≥0,即4(a﹣1)²﹣4(a﹣2)(a+1)≥0,解得:a≤3,∴a≤3且a≠2;(2)由题意知a=3,则方程为x2﹣4x+4=0,解得:x1=x2=2.【点睛】本题考查的是根的判别式,熟知一元二次方程ax²+bx+c=0(a≠0)的根与△=b²﹣4ac的关系是解答此题的关键.【重难点5 一元二次方程根与系数的关系】【方法点拨】解决此类问题需熟练掌根与系数的关系,熟记两根之和与两根之积,并且能够灵活运用所学知识对代数式进行变形得到两根之和与两根之积的形式,代入即可求值.【思路点拨】(1)将所求的代数式进行变形处理:x₁²+x₂²=(x₁+x₂)²﹣2x₁x₂。

一元二次方程的解法(公式法3种题型)(解析版)

一元二次方程的解法(公式法3种题型)(解析版)

一元二次方程的解法(公式法3种题型)1.了解求根公式的推导过程.(难点)2.掌握用公式法解一元二次方程.(重点)3.理解并会用判别式求一元二次方程的根.4.会用判别式判断一元二次方程的根的情况一、公式引入一元二次方程20ax bx c ++=(0a ≠),可用配方法进行求解:得:2224()24b b acx a a −+=.对上面这个方程进行讨论:因为0a ≠,所以240a >①当240b ac −≥时,22404b aca−≥利用开平方法,得:x += 即:x = ②当240b ac −<时,22404b ac a −< 这时,在实数范围内,x 取任何值都不能使方程2224()24b b acx a a−+=左右两边的值相等,所以原方程没有实数根.二、求根公式一元二次方程20ax bx c ++=(0a ≠),当240b ac −≥时,有两个实数根:1x =2x =这就是一元二次方程20ax bx c ++=(0a ≠)的求根公式. 三、用公式法解一元二次方程一般步骤①把一元二次方程化成一般形式20ax bx c ++=(0a ≠); ②确定a 、b 、c 的值;③求出24b ac −的值(或代数式);④若240b ac −≥,则把a 、b 、c 及24b ac −的值代入求根公式,求出1x 、2x ;若240b ac −<,则方程无解.四、 根的判别式1.一元二次方程根的判别式:我们把24b ac −叫做一元二次方程20(0)ax bx c a ++=≠的根的判别式,通常用符号“∆”表示,记作2=4b ac ∆−.2.一元二次方程20(0)ax bx c a ++=≠, 当2=40b ac ∆−>时,方程有两个不相等的实数根; 当2=40b ac ∆−=时,方程有两个相等的实数根;当2=40b ac ∆−<时,方程没有实数根.五、根的判别式的应用(1)不解方程判定方程根的情况; (2)根据参数系数的性质确定根的范围; (3)解与根有关的证明题.题型1根的判别式例1.选择:(1) 下列关于x 的一元二次方程中,有两个不.相等的实数根的方程是( )(A )012=+x(B )0122=++x x (C )0322=++x x(D )0322=−+x x(2) 不解方程,判别方程25750x x −+=的根的情况是()(A )有两个相等的实数根 (B )有两个不相等的实数根 (C )只有一个实数根(D )没有实数根(3)方程2510x x −−=的根的情况是()(A )有两个相等实根 (B )有两个不等实根 (C )没有实根(D )无法确定(4) 一元二次方程2310x x +−=的根的情况为()(A )有两个不相等的实数根 (B )有两个相等的实数根 (C )只有一个实数根(D )没有实数根【答案】(1)D ;(2)D ;(3)B ;(4)A .【答案】【答案】【解析】(1)A :1a =,0b =,1c =,2440b ac ∆=−=−<,方程无实根;B :1a =,2b =,1c =,240b ac ∆=−=,方程有两个相等实根; C :1a =,2b =,3c =,2480b ac ∆=−=−<,方程无实根;D :1a =,2b =,3c =−,24160b ac ∆=−=>,方程有两不等实根实根,故选D ;(2)5a =,7b =−,5c =,24510b ac ∆=−=−<,方程无实根,故选D ; (3)1a =,5b =−,1c =−,24290b ac ∆=−=>,方程有两不等实根,故选B ; (4)1a =,3b =,1c =−,24130b ac ∆=−=>,方程有两个相等实根,故选A .【总结】考查一元二次方程根的判别式判定方程根的情况,先列出方程中的a 、b 、c ,再代值计算∆,根据∆与0的大小关系确定方程根的情况,注意a 、c 异号时则必有两不等实根. 例2.不解方程,判别下列方程的根的情况: (1)24530x x −−=; (2)22430x x ++=;(3)223x +=;(4)22340x x +−=.【答案】(1)方程有两不等实根;(2)方程无实数根;(3)方程有两相等实根; (4)方程有两不等实根.【答案】【答案】【解析】(1)4a =,5b =−,3c =−,24730b ac ∆=−=>,方程有两不等实根;2a =,4b =,3c =,2480b ac ∆=−=−<,方程无实数根;2a =,b =−3c =,240b ac ∆=−=,方程有两相等实根;(4)2a =,3b =,4c =−,24410b ac ∆=−=>,方程有两不等实根.【总结】考查一元二次方程根的判别式判定方程根的情况,先将方程整理成一般形式,列出方程中的a 、b 、c ,再代值计算∆,根据∆与0的大小关系确定方程根的情况,注意a 、c 异号时则必有两不等实根.题型2用公式法解一元二次方程例3.(2022秋·江苏苏州·九年级校考期中)用公式法解方程:22720x x −+=.【答案】12x x ==【分析】根据公式法解一元二次方程即可求解.【详解】解:22720x x −+=,∴2,7,2a b c ==−=,244942233b ac ∆=−=−⨯⨯=,∴x ==,解得:12x x ==.【点睛】本题考查了公式法解一元二次方程,掌握一元二次方程的求根公式是解题的关键. 例4.用公式法解下列方程:(1)2320x x +−=;(2)25610x x −++=.【答案】(1)12x x ==;(2)12x x =.【解析】(1)132a b c ===−,,1742=−ac b ,则2173±−=x ,∴12x x ==;(2)561a b c =−==,,,则5642=−ac b ,则101426−±−=x ,∴123355x x −==,.【总结】本题主要考查一元二次方程求根公式x =的运用.例5.用公式法解下列方程:(1)291x +=;(220+−=.【答案】(1)12x x ==;(2)12x x ==【解析】(1)1,66,9=−==c b a ,则18042=−ac b ,则185666±=x ,∴原方程的解为:12x x ==;22,34,2−===c b a ,则6442=−ac b ,则22834±−=x ,∴原方程的解为:12x x ==【总结】本题主要考查一元二次方程求根公式的运用.题型3根的判别式的应用例6.(2022秋·江苏扬州·九年级校联考期中)关于x 的一元二次方程()21360x k x k +++−=.(1)求证:方程总有两个实数根;(2)若方程有一个根不小于7,求k 的取值范围. 【答案】(1)见解析. (2)5k ≤−.【分析】(1)计算根的判别式的值,利用配方法得到()25k ∆=−,根据非负数的性质得到0∆≥,然后根据判别式的意义得到结论; (2)利用求根公式得到13x =−,22kx =−.根据题意得到27k −≥,即可求得k 的取值范围.【详解】(1)解:()()21436k k ∆=+−−2211224k k k =++−+ 21025k k =−+()250k =−≥,∴方程总有实数根; (2)解:∵()250k ∆=−≥,∴()()152k k x −+±−=,解方程得:13x =−,22kx =−,由于方程有一个根不小于7, ∴27k −≥, 解得:5k ≤−.【点睛】本题考查的是根的判别式及一元二次方程的解的定义,在解答(2)时得到方程的两个根是解题的关键.例7.(2023·江苏苏州·统考一模)已知关于x 的一元二次方程22210x mx m −+−=. (1)若该方程有一个根是2x =,求m 的值;(2)求证:无论m 取什么值,该方程总有两个实数根. 【答案】(1)32m =(2)证明见解析【分析】(1)直接把2x =代入到原方程中得到关于m 的方程,解方程即可得到答案; (2)根据一元二次方程根的判别式进行求解即可.【详解】(1)解:∵关于x 的一元二次方程22210x mx m −+−=的一个根为2x =,∴224210m m −+−=,∴32m =;(2)证明:由题意得,()()()222242421484410b ac m m m m m ∆=−=−−−=−+=−≥,∴无论m 取什么值,该方程总有两个实数根.【点睛】本题主要考查了一元二次方程的解和根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根;一元二次方程的解是使方程左右两边相等的未知数的值.例8.(2023秋·江苏扬州·九年级校考期末)关于x 的一元二次方程()23220x k x k −+++=.(1)求证:方程总有两个实数根;(2)若方程有一个根小于2,求k 的取值范围. 【答案】(1)见解析 (2)1k <【分析】(1)计算一元二次方程根的判别式,根据根的判别式进行判断即可得证;(2)根据公式法求得方程的解,得出122,1==+x x k ,根据题意列出不等式,解不等式即可求解. 【详解】(1)证明:关于x 的一元二次方程()23220x k x k −+++=,∴1,(3),22a b k c k ==−+=+ ∵[]224(3)41(22)−=−+−⨯⨯+b ac k k221k k =−+2(1)0k =−≥,∴此方程总有两个实数根; (2)∵()23220x k x k −+++=∵2(1)k ∆=−∴3(1)2+±−==k k x解得:122,1==+x x k ,∵方程有一个根小于2, ∴12k +<, 解得1k <.【点睛】本题考查了一元二次方程根的判别式,解一元二次方程,熟练掌握一元二次方程根的情况与判别式的关系是解题的关键.一、单选题1.(2023·江苏徐州·统考一模)关于一元二次方程2430x x ++=根的情况,下列说法中正确的是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根 D .无法确定【答案】A【分析】直接利用一元二次方程根的判别式即可得.【详解】解:2430x x ++=其中1a =,4b =,3c =,∴2Δ441340=−⨯⨯=>,∴方程有两个不相等的实数根. 故选:A .【点睛】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题关键. 2.(2023·江苏徐州·校考一模)关于x 的一元二次方程240x x k −+=有实数根,则k 的值可以是( ) A .4 B .5 C .6 D .7【答案】A【分析】利用一元二次方程根的判别式求解即可.【详解】解:∵关于x 的一元二次方程240x x k −+=有实数根,∴()2440k ∆=−−≥,∴4k ≤,∴四个选项中只有A 选项符合题意, 故选A .【点睛】本题主要考查次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.3.(2023秋·江苏盐城·九年级统考期末)若关于x 的一元二次方程240x x k −−=没有实数根,则k 的值可以是( ) A .5− B .4− C .3− D .2【答案】A【分析】利用一元二次方程根的判别式求解即可.【详解】解:∵关于x 的一元二次方程240x x k −−=无实数根,∴()2440k ∆=−+<,∴4k <−,∴四个选项中,只有A 选项符合题意, 故A .【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.4.(2023春·江苏盐城·九年级统考期末)若关于x 的一元二次方程220x x k −+=没有实数根,则k 的值可以是( ) A .2 B .1 C .0 D .1−【答案】A【分析】根据一元二次方程根的判别式进行求解即可.【详解】解:∵关于x 的一元二次方程220x x k −+=没有实数根,∴()2240k ∆=−−<,∴1k >,∴四个选项中,只有选项A 符合题意, 故选A .【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.5.(2023秋·江苏·九年级统考期末)若关于x 的一元二次方程2440x x k −−+=没有实数根,则k 的取值范围为( ) A .0k > B .4k > C .0k < D .4k <【答案】C【分析】根据一元二次方程根的判别式进行判断即可求解.【详解】解:∵关于x 的一元二次方程2440x x k −−+=没有实数根,∴()2416440b ac k ∆=−=−−<,解得:0k <故选:C .【点睛】本题考查了一元二次方程20ax bx c ++= (0a a b c ≠,,,为常数)的根的判别式24b ac ∆=−,理解根的判别式对应的根的三种情况是解题的关键.当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程没有实数根. 二、填空题6.(2023·江苏常州·校考一模)若关于x 的一元二次方程()22210k x x −−−=有实数根,则实数k 的取值范围是______. 【答案】1k ≥且2k ≠【分析】根据一元二次方程的定义和判别式的性质计算,即可得到答案.【详解】∵关于x 的一元二次方程()22210k x x −−−=有实数根, ∴()()()22024210k k −≠⎧⎪⎨−−−⨯−≥⎪⎩ ∴21k k ≠⎧⎨≥⎩,即1k ≥且2k ≠. 故答案为:1k ≥且2k ≠.【点睛】本题考查了一元二次方程的定义和跟的判别式,解题的关键是熟练掌握一元二次方程的定义和判别式的性质,从而完成求解.7.(2023·江苏常州·统考一模)若关于x 的方程20x x m −+=(m 为常数)有两个相等的实数根,则m =______.【答案】14【分析】先根据方程有两个相等的实数根得出△0=,求出m 的值即可.【详解】解:关于x 的方程20(x x m m −+=为常数)有两个相等的实数根,∴△2(1)40m =−−=,解得14m =.故答案为:14.【点睛】本题考查的是根的判别式,孰知当△0=时,一元二次方程2(0)y ax bx c a =++≠有两个相等的实数根是解答此题的关键.8.(2023·江苏盐城·校考二模)已知关于x 的一元二次方程240x ax ++=有一个根为1,则a 的值为________.【答案】5a =−【分析】将1x =代入方程240x ax ++=,解方程即可得到a 的值.【详解】∵关于x 的一元二次方程240x ax ++=有一个根为1,∴将1x =代入方程240x ax ++=,得140a ++=,解得:5a =−, 故答案为:5−【点睛】本题主要考查一元二次方程的解,理解一元二次方程的解是使得方程左右两边相等的未知数的值是解题的关键.9.(2023·江苏宿迁·模拟预测)关于x 的方程()21210m x x −−+=有实数根,则m 的取值范围是______. 【答案】2m ≤/2m ≥【分析】分当10m −=时,当10m −≠,即1m ≠时,两种情况讨论求解即可. 【详解】解:当10m −=时,即1m =时,原方程即为210x −+=,解得12x =,符合题意;当10m −≠,即1m ≠时,∵关于x 的方程()21210m x x −−+= ∴()()22410m ∆=−−−≥,解得2m ≤且1m ≠; 综上所述,2m ≤, 故答案为:2m ≤.【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.10.(2023·江苏·模拟预测)请填写一个常数,使得一元二次方程25x x −+____________0=没有实数根.【答案】7(答案不唯一)【分析】设这个常数为a ,根据根的判别式求出a 的取值范围即可得到答案. 【详解】解:设这个常数为a ,∴方程250x x a −+=没有实数根,∴()2540a ∆=−−<,∴254a >,∴7a =满足题意,故答案为:7(答案不唯一).【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.11.(2023秋·江苏无锡·九年级校联考期末)请填写一个常数,使得关于x 的方程24x x −+________=0有两个不相等的实数根. 【答案】1(答案不唯一)【分析】根据方程的系数结合根的判别式2=40b ac ∆−>,即可得出关于c 的不等式,求解即可得出答案.【详解】解:1a =,4b =−,设常数为c ,()22=44410b ac c ∆−=−−⨯⨯>4c ∴<故答案为:1(答案不唯一).【点睛】本题考查了根的判别式,牢记“当0∆>时,方程有两个不相等的实数根”是解题的关键. 三、解答题12.(2022秋·江苏淮安·九年级统考期末)求证:关于x 的方程2()0()x m n x mn m n +++=≠有两个不相等的实数根. 【答案】见解析【分析】根据224()41b ac m n mn ∆=−=+−⨯⨯,再判断出的符号,即可得出结论. 【详解】解∶2222()412()m n mn m n mn m n ∆=+−⨯⨯=+−=−,m n ≠()2m n ∴−>∴方程有两个不相等的实数根.【点睛】本题考查了一元二次方程20(0)ax bx c a ++=≠的根的判别式2Δ4b ac =−:当0∆>,方程有两个不相等的实数根;当Δ0=,方程有两个相等的实数根;当Δ0<,方程没有实数根. 13.(2023·江苏盐城·校考一模)已知关于x 的一元二次方程210x ax a −+−=. (1)求证:方程总有两个实数根;(2)若该方程有一实数根大于4,求a 的取值范围. 【答案】(1)见解析 (2)5a >【分析】(1)根据一元二次方程根的判别式进行求解即可;(2)利用因式分解法解方程求出方程两个根为1211x x a ==−,,再根据该方程有一实数根大于4进行求解即可.【详解】(1)解:∵知关于x 的一元二次方程为210x ax a −+−=,∴()()()222414420a a a a a ∆=−−−=−+=−≥,∴方程总有两个实数根;(2)解:∵210x ax a −+−=,∴()()110x x a −+−=,∴10x −=或10x a +−=, 解得1211x x a ==−,,∵该方程有一实数根大于4, ∴14a −>, ∴5a >.【点睛】本题主要考查了一元二次方程根的判别式,解一元二次方程,灵活运用所学知识是解题的关键. 14.(2023秋·江苏南通·九年级统考期末)关于x 的一元二次方程2(23)10mx m x m ++++=有两个不等的实数根.(1)求m 的取值范围;(2)当m 取最小整数时,求x 的值. 【答案】(1)98m >−且0m ≠(2)10x =,21x =【分析】(1)由0∆>得到关于m 的不等式,解之得到m 的范围,根据一元二次方程的定义求得答案; (2)由(1)知1m =−,还原方程,利用因式分解法求解可得.【详解】(1)解:由题意得:2(23)4(1)0m m m +−+>, 解得:98m >−且0m ≠;(2)由(1)知,m 最小整数为1−,此时方程为:20x x −+=,解得:10x =,21x =.【点睛】本题主要考查一元二次方程的定义及根的判别式,解题的关键是熟练掌握方程的根的情况与判别式的值之间的关系.【答案】(1)28n m =−(2)见解析【分析】(1)根据根的判别式符号进行求解;(2)根据判别式以及一元二次方程的解法即可求出答案. 【详解】(1)由题意得:()242n m ∆=−⋅−28n m ∆=+方程有两个相等的实数根, 0∴∆=280n m ∴+= 28n m ∴=−(2)当2n m =−()228m m ∆=−+2Δ44m m =++()224420m m m ++=+≥∴方程始终有两个实数根【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的判别式.一、单选题1.(2023春·江苏南京·九年级南京市竹山中学校考阶段练习)一元二次方程2440x x +−=的根的情况是( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .没有实数根 D .无法确定【答案】B【分析】利用一元二次方程根的判别式求解即可. 【详解】解:由题意得,()24414320∆=−⨯⨯−=>,∴原方程有两个不相等的实数根, 故选B .【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.2.(2022秋·江苏宿迁·九年级校考阶段练习)关于x 的一元二次方程250x ax −−=的根的情况是( ) A .有两个不相等的实数根 B .可能有实数根,也可能没有 C .有两个相等的实数根 D .没有实数根【答案】A【分析】利用一元二次方程根的判别式求解即可.【详解】解:∵关于x 的一元二次方程为250x ax −−=,∴()()22451200a a ∆=−−⨯−⨯=+>,∴关于x 的一元二次方程250x ax −−=有两个不相等的实数根,故答案为:A .【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.3.(2023春·江苏宿迁·九年级统考阶段练习)若关于x 的一元二次方程22(1)0x x k +−−=有实数根,则k 的取值范围是( ) A .0k > B .0k ≥ C .0k < D .0k ≤【答案】B【分析】根据一元二次方程有实数根,可知240b ac −≥,求出解即可.【详解】∵一元二次方程22(1)0x x k +−−=有实数根,∴240b ac −≥,即224[(1)]0k −−−≥, 解得0k ≥. 故选:B .【点睛】本题主要考查了一元二次方程根的判别式,掌握24b ac −与一元二次方程20(0)ax bx c a ++=≠的根的关系是解题的关键.即当240b ac −>时,一元二次方程20(0)ax bx c a ++=≠有两个不相等的实数根;当240b ac −=时,一元二次方程20(0)ax bx c a ++=≠有两个相等的实数根;当240b ac −<时,一元二次方程20(0)ax bx c a ++=≠没有实数根.5.(2023春·江苏盐城·九年级校考阶段练习)关于x 的一元二次方程2210kx x −−=有两个不相等的实数根,则k 的取值范围是( ) A .1k >−B .1k <C .1k >−且0k ≠D .1k <且0k ≠【答案】C【分析】根据一元二次方程的定义,以及一元二次方程根的判别式得出不等式组,解不等式组即可求解.【详解】解:∵关于x 的一元二次方程2210kx x −−=有两个不相等的实数根,∴0k ≠且0∆>,即2(2)4(1)0k −−⨯⨯−>, 解得1k >−且0k ≠. 故选:C .【点睛】本题考查了一元二次方程20ax bx c ++= (0a a b c ≠,,,为常数)的根的判别式24b ac ∆=−,理解根的判别式对应的根的三种情况是解题的关键.当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程没有实数根. 二、填空题5.(2023春·江苏泰州·九年级校联考阶段练习)请填写一个常数,使得关于x 的方程22+−x x __________0=有两个相等的实数根. 【答案】1【分析】设这个常数为a ,利用一元二次方程根的判别式得出a 的方程,解方程即可得到答案. 【详解】解:设这个常数为a , ∵要使原方程有两个相等的实数根, ∴()2=240a ∆−−=,∴1a =,∴满足题意的常数可以为1, 故答案为:1.【点睛】本题考查了根的判别式,一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=−有如下关系:当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程无实数根.6.(2023春·江苏泰州·九年级靖江市靖城中学校考阶段练习)方程220x x m −+=没有实数根,则m 的取值范围是______. 【答案】1m >/1m <【分析】根据一元二次方程无实数根得到Δ0<,代入即可得出答案.【详解】方程220x x m −+=没有实数根,4410m ∴∆=−⨯⨯<, 1m ∴>,故答案为:1m >.【点睛】本题考查一元二次方程有无实数根,熟记判别式24b ac ∆=−是解题的关键.三、解答题7.(2022秋·江苏连云港·九年级校考阶段练习)已知关于x 的一元二次方程210x ax a ++−=. (1)若该方程的一个根为2−,求a 的值及该方程的另一根; (2)求证:无论a 取何实数,该方程都有实数根. 【答案】(1)3a =,该方程的另一根为1− (2)证明见解析【分析】(1)先根据一元二次方程解的定义把2x =−代入到210x ax a ++−=中求出a 的值,再利用因式分解法解方程即可;(2)根据一元二次方程根的判别式进行求解即可.【详解】(1)解:∵关于x 的一元二次方程210x ax a ++−=的一个根为2−,∴4210a a −+−=, ∴3a =,∴原方程即为2320x x ++=,∴()()120x x ++=,解得=1x −或2x =−, ∴方程的另一个根为1−;(2)解:∵关于x 的一元二次方程为210x ax a ++−=,∴()()222414420a a a a a ∆=−−=−+=−≥,∴无论a 取何实数,该方程都有实数根.【点睛】本题主要考查了一元二次方程解的定义,解一元二次方程,一元二次方程判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.8.(2023春·江苏盐城·九年级校考阶段练习)关于x 的一元二次方程2430mx x -+=有实数根. (1)求m 的取值范围;(2)若m 为正整数,求出此时方程的根. 【答案】(1)43m ≤且0m ≠(2)11x =,23x =【分析】(1)由二次项系数非零及根的判别式0∆≥,可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围;(2)由(1)的结论,结合m 为正整数,可得出m 的值,再其代入原方程,解之即可得出结论.【详解】(1)解:∵关于x 的一元二次方程2430mx x -+=有实数根,∴()20Δ4430m m ≠⎧⎪⎨=−−⨯⨯≥⎪⎩, 解得:43m ≤且0m ≠,∴m 的取值范围为43m ≤且0m ≠;(2)∵43m ≤且0m ≠,且m 为正整数, ∴1m =,∴原方程为2430x x −+=,即()()310x x −−=, 解得:11x =,23x =.【点睛】本题考查了一元二次方程根的判别式、一元二次方程的定义以及因式分解法解一元二次方程,解题的关键是:(1)利用二次项系数非零及根的判别式0∆≥,找出关于m 的一元一次不等式组;(2)代入m 的值,求出方程的解.9.(2022秋·江苏南京·九年级校考阶段练习)已知关于x 的方程()242440mx m x m +−+−=(m 为常数,且0m ≠)(1)求证:方程总有实数根; (2)若该方程有两个实数根;①不论m 取何实数,该方程总有一个不变的实数根为______; ②若m 为整数,且方程的两个实数根都是整数,求m 的值. 【答案】(1)证明见解析 (2)①2−;②1m =±或2m =±【分析】(1)利用一元二次方程根的判别式求解即可;(2)①利用公式法求出方程的两个实数根即可得到答案;②根据①所求两实数根,结合m 为整数,且方程的两个实数根都是整数进行求解即可. 【详解】(1)解:由题意得()()22=442444b ac m m m ∆−=−−−2216164161640m m m m =−+−+=>,∴方程总有实数根; (2)解:①∵关于x 的方程()242440mx m x m +−+−=有两个实数根,∴2422m x m −±==, ∴1224222242222m m m x x m m m −+−−−====−,,∴不论m 取何实数,该方程总有一个不变的实数根为2−, 故答案为:2−;②由①得,方程的两个实数根为12222mx x m −==−,,∵m 为整数,且方程的两个实数根都是整数, ∴2222m m m −=−为整数,∴1m =±或2m =±.【点睛】本题主要考查了一元二次方程根的判别式,公式法解一元二次方程,熟知一元二次方程的相关知识是解题的关键.10.(2022秋·江苏南通·九年级校考阶段练习)已知关于x 的方程2(1)(3)20m x m x +−++=. (1)证明:不论m 为何值时,方程总有实数根; (2)m 为何整数时,方程有两个不相等的正整数根. 【答案】(1)证明见解析(2)0m =【分析】(1)求出方程根的判别式,利用配方法进行变形,根据平方的非负性证明即可;(2)利用一元二次方程求根公式求出方程的两个根,根据题意求出m 的值.【详解】(1)(1)证明:①1m =−时,该方程为一元一次方程220x −+=,有实数根1x =;②1m ≠−时,该方程为一元二次方程,2(3)8(1)m m ∆=+−+221m m =−+2(1)m =−,不论m 为何值时,2(1)0m −…, ∴0∆…, ∴方程总有实数根;综上,不论m 为何值时,方程总有实数根.(2)解:解方程得,(3)(1)2(1)m m x m +±−=+, 11x =,221x m =+,方程有两个不相等的正整数根,m 为整数,0m ∴=.【点睛】本题考查的是一元二次方程根的判别式和求根公式的应用,掌握一元二次方程根的情况与判别式△的关系:0∆>⇔方程有两个不相等的实数根;0∆=⇔方程有两个相等的实数根;0∆<⇔方程没有实数根是解题的关键.【答案】22212x x x −−或【分析】根据分式的混合运算法则化简后,再求出x 的值,代入求值即可.【详解】解:221222121x x x x x x x ⎛⎫÷ ⎪⎝⎭−−−−+++()()()()()22112221121x x x x x x x x x x x ⎡⎤=÷⎢⎥⎣⎦+−−−−++++()()()()21211112x x x x x x +=⨯++−−()2211x x x =−− 22221x x x =−−∵210x x −−=,∴21x x −=,∴原式()2221x x x −=−2211x =−⨯12x =−, 对于210x x −−=来说,1,1,1,a b c ==−=−∵()()22414115b ac −=−−⨯⨯−=,∴x =,∴12x x ==,∴当x =时,原式12x =−,当x =时,原式12x =−=.【点睛】此题考查了分式的化简求值,解一元二次方程等知识,熟练掌握运算法则是解题的关键. 12.(2022秋·江苏盐城·九年级校考阶段练习)解下列方程:2231x x +=【答案】x x ==12,【分析】先将原方程化为一元二次方程的一般形式,然后用公式法求解即可;【详解】解:原方程可化为:22310x x +−=a b c ===−231 , ,()b ac −=−⨯⨯−=>2243421170x ∴==x x ==12,【点睛】本题考查了一元二次方程的解法,掌握一元二次方程的基本解法是解题的关键. 13.(2022秋·江苏无锡·九年级校联考阶段练习)已知关于x 的方程220x mx m +−=−.(1)当该方程的一个根为1−时,求m 的值及该方程的另一根;(2)求证:不论m 取何实数,该方程都有两个不相等的实数根.【答案】(1)1=2m ,方程的另一根为32(2)见解析【分析】(1)把1x =−代入原方程求得m 的值,进一步求得方程的另一个根即可;(2)计算出根的判别式,进一步利用配方法和非负数的性质证得结论即可.【详解】(1)解:把1x =−代入方程 220x mx m +−=−得 120m m ++−=∴1=2m ,把1=2m 代入到原方程得 213022x x −−=∴1x =−或3=2x 故答案为:1=2m ,方程的另一根为32;(2)证明:∵方程220x mx m +−=−,∴根的判别式()()()224224m m m ∆=−−−=−+∵()220m −≥∴()2240m ∆=−+> ∴不论m 取何实数,该方程都有两个不相等的实数根.【点睛】本题考查了一元二次方程的根的判别式的性质,对于一元二次方程()200ax bx c a ++=≠的根的判别式24b ac ∆=−:当0∆>,方程有两个不相等的实数根;当0∆=,方程有两个相等的实数根;当0∆<,方程没有实数根;熟练掌握一元二次方程根的判别式的性质是解本题的关键. 14.(2022秋·江苏常州·九年级校考阶段练习)用指定方法解下列一元二次方程:(1)2820x x −−=(配方法)(2)2320x x ++=(公式法)【答案】(1)14x =+24x =−(2)11x =−,22x =−【分析】(1)将常数项移至方程的右边,然后两边都加上一次项系数的一半的平方配方成完全平方后,再开方,即可得出结果;(2)利用公式法计算即可.【详解】(1)解:2820x x −−=移项,得:282x x −=,配方,得:2228424x x −+=+,即()2418x −=,由此可得:4x −=±14x =+24x =−(2)解:2320x x ++=1a =,3b =,2c =,224341210b ac ∆=−=−⨯⨯=>,方程有两个不等的实数根,3131212x −±−±===⨯,即11x =−,22x =−.【点睛】本题考查了解一元二次方程,解本题的关键在熟练掌握用配方法和公式法解一元二次方程.解一元二次方程的基本思路是:将二次方程转化为一次方程,即降次.。

完整版)一元二次方程(知识点考点题型总结)

完整版)一元二次方程(知识点考点题型总结)

完整版)一元二次方程(知识点考点题型总结)一元二次方程专题复考点一、概念一元二次方程是只含有一个未知数,且未知数的最高次数是2的整式方程。

一般表达式为ax^2+bx+c=0,其中a不等于0.关于“未知数的最高次数是2”,需要注意以下三点:一是该项系数不为0;二是未知数指数为2;三是若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。

典型例题:例1、下列方程中是关于x的一元二次方程的是():A。

2x^2+11x-2=0B。

ax^2+bx+c=DC。

2x=x+1变式:当k时,关于x的方程kx+2x=x+3是一元二次方程。

例2、方程m+2xm+1=0是关于x的一元一次方程,求m 的值,并写出关于x的一元一次方程。

针对练:1.方程8x^2+3mx+1=0是关于x的一元二次方程,则m的值为多少?2.若方程m-2x=0是关于x的一元一次方程,求m的值,并写出关于x的一元一次方程。

3.若方程(m-1)x+m·x=1是关于x的一元二次方程,则m 的取值范围是多少?4.若方程nx+x-2x=0是一元二次方程,则下列不可能的是():A。

m=n=2B。

m=2.n=1C。

n=2.m=1D。

m=n=1考点二、方程的解方程的解是指使方程两边相等的未知数的值。

根的概念可用于求代数式的值。

典型例题:例1、已知2y+y^2-3的值为2,则4y+2y^2+1的值为多少?例2、关于x的一元二次方程(a-2)x^2+x+a-4=0的一个根为2,求a的值。

例3、已知关于x的一元二次方程ax^2+bx+c=0的系数满足a+c=b,则此方程必有一根为多少?例4、已知a,b是方程x^2-4x+m=0的两个根,b,c是方程y^2-8y+5m=0的两个根,则m的值为多少?针对练:1.已知方程x+kx-10=0的一根是2,则k为多少?另一根是多少?2.已知关于x的方程x^2+kx-2=0的一个解与方程(x+1)/(x-1)=3的解相同,求k的值,并求方程的另一个解。

初三一元二次方程题型总结(经典全面)

初三一元二次方程题型总结(经典全面)

第一部分:定义定义:...只含有一个未知数........,并且未知数的最高次数是.........2.这样的整式方程....就是一元二次方程。

一般表达式:)0(02≠=++a c bx ax 注意: 1:a ≠02:未知数的最高次数是2 3:要为整式方程4:化简后再判断(看2x 是否会被抵消)题型一:一元二次方程判断1、下列方程中是关于x 的一元二次方程的是( ) A ()()12132+=+x xB 02112=-+x xC 02=++c bx axD 1222+=+x x x2.(2016•凉山州模拟)下列方程中,一元二次方程共有( )个 ①x 2﹣2x ﹣1=0;②ax 2+bx+c=0;③+3x ﹣5=0;④﹣x 2=0;⑤(x ﹣1)2+y 2=2;⑥(x ﹣1)(x ﹣3)=x 2.A .1B .2C .3D .4题型二:一元二次方程定义求参3.关于x 的方程(m ﹣3)x﹣mx+6=0是一元二次方程,则它的一次项系数是( ) A .﹣1 B .1 C .3 D .3或﹣14.当k 时,关于x 的方程3222+=+x x kx 一元二次方程。

5.方程()0132=+++mx x m m是关于x 的一元二次方程,则m 的值为 。

第二部分:方程的根x 的一元二次方程()04222=-++-a x x a 的一0,则a 的值为 。

0102=-+kx x 的一根是2,则k 为 x 的方程022=-+kx x 的一个解与方程3=的解相同,求k 的值; m 是方程012=--x x 的一个根,则代数式=m 3 。

a 是0132=+-x x 的根,则=a 6 。

1与2为根的一元二次方程式。

1与-2为根的一元二次方程式。

13.写出一个一元二次方程,要求二次项系数不为1,且两根互为倒数:14.写出一个一元二次方程,要求二次项系数不为1,且两根互为相反数:题型五:已知特征式求根16.已知一元二次方程ax 2+bx+c=0,若a+b+c=0,则该方程一定有一个根为( )A .0B .1C .﹣1D .2 17.已知一元二次方程ax 2+bx+c=0,若4a-2b+c=0,则该方程一定有一个根为( )A .0B .1C .﹣1D .218、已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程 必有一根为 。

一元二次方程应用题七大题型

一元二次方程应用题七大题型

一元二次方程应用题七大题型
1. 求解物体运动距离
题型:一个物体从静止开始运动,加速度为 a,运动时间为 t。

求物体运动的距离。

公式:距离 = (1/2) 加速度时间²
2. 求解物体最终速度
题型:一个物体从静止开始运动,加速度为 a,运动时间为 t。

求物体最终速度。

公式:最终速度 = 加速度时间
3. 求解物体运动时间
题型:一个物体从静止开始运动,最终速度为 v,加速度为 a。

求物体运动的时间。

公式:时间 = 最终速度 / 加速度
4. 求解物体加速度
题型:一个物体从静止开始运动,运动时间为 t,最终速度为v。

求物体加速度。

公式:加速度 = 最终速度 / 时间
5. 求解运动物体速度
题型:一个物体从静止开始运动,在 t1 时刻速度为 v1,在
t2 时刻速度为 v2。

求物体在 t3 时刻的速度。

公式:速度 = (最终速度 - 初始速度) / (最终时间 - 初始
时间)
6. 求解运动物体加速度变化率
题型:一个物体的加速度从 a1 变化到 a2,时间间隔为Δt。

求加速度的变化率。

公式:加速度变化率 = (最终加速度 - 初始加速度) / 时间间隔
7. 求解运动物体速度变化率
题型:一个物体的速度从 v1 变化到 v2,时间间隔为Δt。

求速度的变化率。

公式:速度变化率 = (最终速度 - 初始速度) / 时间间隔。

一元二次方程应用题型

一元二次方程应用题型

一元二次方程应用题型一元二次方程是数学中常见的一种方程形式,它的一般形式为ax^2 + bx + c = 0,其中a、b、c为已知常数,且a ≠ 0。

下面我将为你提供几个常见的一元二次方程应用题型,并从多个角度进行详细解答。

1. 飞行物体的抛体运动问题:假设一个物体从地面抛出,以初速度v0与水平面成θ角度抛出,忽略空气阻力。

求物体的飞行时间t和最大高度h。

解答:首先,我们可以将水平方向的运动和竖直方向的运动分开考虑。

水平方向的运动速度恒定,记为Vx = v0 * cosθ。

竖直方向的运动受重力加速度影响,初速度为Vy = v0 * sinθ。

根据运动学公式,物体的竖直位移y可以表示为y = Vy * t - (1/2) * g * t^2,其中g为重力加速度。

当物体到达最高点时,竖直速度为0,即Vy = 0。

解方程可得t = 2 * v0 * sinθ / g。

将t代入y的表达式,可以求得最大高度h = (v0^2 * sin^2θ) / (2g)。

2. 面积问题:一个矩形的长比宽多1,将宽减少2,长增加3,面积增加18。

求原矩形的长和宽。

解答:设原矩形的宽为x,则长为x + 1。

根据题意,新矩形的宽为x - 2,长为x + 1+ 3 = x + 4。

根据面积公式,原矩形的面积为A1 = (x + 1) * x,新矩形的面积为A2 = (x + 4) * (x - 2)。

根据题意,A2 - A1 = 18。

展开并化简方程可得x^2 + 2x - 6 = 18。

将方程移项并合并同类项,得到x^2 + 2x - 24 = 0。

解这个一元二次方程,可以使用因式分解或求根公式,得到x = 4或x = -6。

由于宽为正值,所以宽x = 4,长x + 1 = 5。

3. 时间问题:甲、乙两车分别从A、B两地同向出发,相隔200公里。

甲车速度为60 km/h,乙车速度为80 km/h。

若乙车晚于甲车1小时出发,问乙车多久能追上甲车?解答:设乙车追上甲车的时间为t小时。

1元2次方程题型

1元2次方程题型

1元2次方程题型题型一:利润问题【常用公式】【例题】某商场销售一批名牌衬衫,现在平均每天可售出20件,每件盈利40元,为了扩大销售量,增加盈利,尽快减少库存,商场决定采取适当的降价措施。

经调查发现,如果这种衬衫的售价每降低1元,那么衬衫平均每天多售出2件,商场若要平均每天盈利1200元,每件衬衫应降价多少元?【解析】假设每件衬衫应降价x元,现每件盈利为(40-x)元,现每天销售衬衫为(20+2x)件,根据等量关系:每件衬衫的利润×销售衬衫数量=销售利润,可列出方程。

解:设每件衬衫应降价x元,根据题意,得(40- x)(20+2x)=1200解得X1=10,X2=20。

因尽快减少库存,故取x =20答:每件应降价20元。

题型二:利息问题【常用公式】【例题】某人将2000元人民币按一年定期存入银行,到期后支取1000元用于购物,剩下的1000元及应得利息又全部按一年定期存入银行。

若存款的利率不变,到期后本金和利息共1320元。

求这种存款方式的年利率(本题不计利息税)?【解析】假设这种存款方式的年利率为x,2000元存一年后本息和为2000(1+x)元,支取1000元后,还剩[2000(1+x)-1000]元。

将所剩[2000(1+x)-1000]元再存入银行一年,到期后本息共1320元。

根据本息和=本金×(1+利率)等量关系可列出方程。

解:设这种存款方式的年利率为x。

根据题意得,[2000(1+x)-1000](1+ x)=1320整理可得:2000x2+3000x-320=0解得:x1=-1.6(舍去),x2=0.1=10%答:这种存款方式的年利率为10%。

题型三:与几何图形的面积问题①几何图形的面积问题【等量关系】面积公式是此类问题的等量关系。

【例题】如图1-1所示,某小区规划在一个“长为40m,宽为26m”的矩矩形场地A B C D上修建三条同样宽的道路,使其中两条与A B平行,另一条与A D平行,其余部分种草。

一元二次方程经典题型

一元二次方程经典题型

一元二次方程经典题型一、一元一次方程1、应用一元一次方程的定义求值:x +2x-7=0为一元二次方程。

当m= 时,方程(m-1)|m|12、一元二次方程的解的应用题:已知x=-2是一元二次方程2x+ax+b=0的一个根,则代数式42a+2b-4ab的值是3、从实际问题中抽象出一元二次方程:某校九年级学生毕业时,每个同学将自己的相片向全班各赠送一张作纪念,全班共送2070张相片,若全班有x名学生,根据题意列方程为。

二、解一元二次方程1、直接降次解一元二次方程:2、用配方法解方程:(1)(2x-1)2-16=0 (1)x2-2x-35=0 (2) 3x2-6x-2=03、用公式法解一元二次方程: 4 用因式分解法解一元二次方程:(1)x2+3x-1=0 (1)x2+5x=0 (2)(x-3)2+2x-6=05、用适当的方法解下列方程:(1)x2-6x=-9 (2)x(2x-1)=3(1-2x) (3)x2-3x-10=0三、一元二次方程根的判别式1、利用根的判别式判断根的情况:一元二次方程x2+2x+2=0的根的情况是()A、有两个相等的实数根B、有两个不相等的实数根C、只有一个实数根D、无实数2、根据根的情况求字母参数的值或取值范围:关于x的一元二次方程x2-5x+k=0有两个不相等的实数根,则k可能的最大整数值为。

四、一元二次方程根与系数的关系1、利用根与系数的关系求方程的根或字母参数的值:若关于x 的方程x2-5x-3k=0的一个根是-3,则k= ,另一个根是。

2、利用根与系数的关系求关于两根的代数式的值:若一元二次方程x2-x-1=0的两个根分别为x1、x2,则1112x x= 。

3、与根与系数的关系的综合问题:已知关于x的一元二次方程x2+2(m+1)x+m2-1=0,(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根分别为x1、x2,,且满足(x1-x2)2=16-x1.x2,求实数m的值。

一元二次方程(知识点+考点+题型总结)

一元二次方程(知识点+考点+题型总结)

一元二次方程(知识点+考点+题型总结)类型三、配方法()002≠=++a c bx ax 222442a acb a b x -=⎪⎭⎫ ⎝⎛+⇒※在解方程中,多不用配方法;但常利用配方思想求解代数式的值或极值之类的问题。

典型例题:例1、 试用配方法说明322+-x x 的值恒大于0。

例2、 已知x 、y 为实数,求代数式74222+-++y x y x 的最小值。

例3、 已知,x、y y x y x 0136422=+-++为实数,求y x 的值。

例4、 分解因式:31242++x x针对练习:★★1、试用配方法说明47102-+-x x 的值恒小于0。

★★2、已知041122=---+x x x x ,则=+x x 1.★★★3、若912322-+--=x x t ,则t 的最大值为 ,最小值为 。

★★★4、如果4122411-++-=--++b a c b a ,那么c b a 32-+的值为 。

类型四、公式法⑴条件:()04,02≥-≠ac b a 且⑵公式: a acb b x 242-±-=,()04,02≥-≠ac b a 且典型例题:例1、选择适当方法解下列方程:⑴().6132=+x ⑵()().863-=++x x ⑶0142=+-x x⑷01432=--x x ⑸()()()()5211313+-=+-x x x x例2、在实数范围内分解因式:(1)3222--x x ; (2)1842-+-x x . ⑶22542y xy x --说明:①对于二次三项式c bx ax ++2的因式分解,如果在有理数范围内不能分解,一般情况要用求根公式,这种方法首先令c bx ax ++2=0,求出两根,再写成c bx ax ++2=))((21x x x x a --.②分解结果是否把二次项系数乘进括号内,取决于能否把括号内的分母化去.类型五、 “降次思想”的应用⑴求代数式的值; ⑵解二元二次方程组。

第二章:一元二次函数、方程与不等式重点题型复习-【题型分类归纳】(解析版)

第二章:一元二次函数、方程与不等式重点题型复习-【题型分类归纳】(解析版)

第二章:一元二次函数、方程与不等式重点题型复习题型一 不等式的性质应用【例1】若,,R a b c ∈,则下列命题为假命题的是( ) A a b >a b > B .若a b >,则ac bc > C .若0b a >>,则11a b> D .若22ac bc >,则a b > 【答案】B【解析】对A a b 0a b >≥,故选项A 正确;对B :因为a b >,R c ∈,所以当0c >时,ac bc >; 当0c 时,ac bc =;当0c <时,ac bc <,故选项B 错误;对C :因为0b a >>,所以由不等式的性质可得110ab>>,故选项C 正确; 对D :因为22ac bc >,所以20c >,所以a b >,故选项D 正确. 故选:B.【变式1-1】已知120b a<<,则下列不等式正确的是( ) A .11a b ab <+ B .21a b ab >+ C .2aba b>+ D .22ab b < 【答案】A【解析】方法一:因为120ba<<,可知0,0a b <<,所以20a b <<,所以0ab >,0a b +<,所以11a b ab <+,21a b ab <+,0aba b<+, 所以A 正确,B ,C 错误.因为20a b <<,所以22ab b >,所以D 错误,故选:A 方法二;因为120b a<<,设10a =-,2b =-, 所以20ab =,12a b +=-,228b =,所以11a b ab <+,21a b ab <+,2ab a b<+,22ab b >,所以A 正确,B ,C ,D 错误,故选:A【变式1-2】(多选)若0a b >>,则下列正确的是( ) A .55a ab b+<+ B .2a b ab +> C .11a b b a+>+ D a b a b >-【答案】ABC【解析】选项A ,因为0a b >>,所以()()55055b a b b a a a a -+-=<++,55b b a a +∴<+,故A 正确; 选项B ,由均值不等式,当0,0a b >>,2a bab +0a b >>, 故等号不成立,即2a bab +>B 正确; 选项C ,由于0a b >>,故110ba>>,故11a b ba+>+,故C 正确; 选项D ,取4,1a b ==3a b a b =-=D 错误 故选:ABC【变式1-3】(多选)若0a b <<,且1a b +=,则在22,,2,a a b ab b +四个数中正确的是( )A .222a b ab +>B . 12a < C .12b < D .22b a b >+ 【答案】ABD【解析】由于0a b <<,则222a b ab +>,又1a b +=,所以1012a b <<<<,又()()2222122120a b b a b ab b ab b a ab a b +-=+--=--=-=-<,即22b a b >+.故选:ABD题型二 利用不等式求代数式的取值范围【例2】已知23,21<<-<<-a b ,则2-a b 的取值范围为( ) A .(0,2) B .(2,5) C .(5,8) D .(6,7) 【答案】C【解析】23,21<<-<<-a b ,故426a <<,12b <-<,得528<-<a b 故选:C【变式2-1】若实数x ,y 满足1522x y x y +≥⎧⎨+≥⎩,则2x y +的取值范围( )A .[1,)+∞B .[3,)+∞C .[4,)+∞D .[9,)+∞ 【答案】A【解析】设2()(52)x y m x y n x y +=+++,则5221m n m n +=⎧⎨+=⎩,解得13m n ==,故112()(52)33x y x y x y +=+++,又因1522x y x y +≥⎧⎨+≥⎩,所以()()1112,523333x y x y +≥+≥,所以21x y +≥.故选:A.【变式2-2】已知15a b ≤+≤,13a b -≤-≤,求32a b -的取值范围.【答案】[20]1-,【解析】设()()32a b m a b n a b -=++-,则有:32m n m n +=⎧⎨-=-⎩,解得:1252m n ⎧=⎪⎪⎨⎪=⎪⎩,所以()()153222a b a b a b -=++-.因为15a b ≤+≤,所以()115222a b ≤+≤,因为13a b -≤-≤,所以()5515222a b -≤-≤, 所以()()1521022a b a b -≤++-≤, 即23210a b -≤-≤, 所以32a b -的取值范围为.【变式2-3】已知1260a ,1536b ,求2a b -,2ab的取值范围. 【答案】2a b -的取值范围是()60,30-,2a b 的取值范围是2,83⎛⎫ ⎪⎝⎭. 【解析】因为1536b ,所以72230b -<-<-.又1260a ,所以127226030a b -<-<-, 即60230a b -<-<.因为1260a ,所以242120a , 因为1536b ,所以1113615b <<, 所以2421203615a b <<,即2283a b<<. 所以2a b -的取值范围是()60,30-,2a b 的取值范围是2,83⎛⎫⎪⎝⎭.题型三 解一元二次不等式【例3】已知集合{}210210A x x x =-+≤,{}7524B x x =-≤-≤,则A ∩B =( )A .132x x ⎧⎫≤≤⎨⎬⎩⎭ B .{}67x x ≤≤ C .{}27x x -≤≤D .{}36x x ≤≤ 【答案】D【解析】因为{|37}A x x =≤≤,1|62x x B ⎧⎫=≤⎨⎩≤⎬⎭,所以{|36}A B x x ⋂=≤≤.故选:D【变式3-1】不等式23180x x -++<的解集为( )A .{6x x >或3}x <-B .{}36x x -<<C .{3x x >或6}x <-D .{}63x x -<< 【答案】A【解析】23180x x -++<可化为23180x x -->,即()()630x x -+>,即6x >或3x <-. 所以不等式的解集为{6x x >或3}x <-.故选:A【变式3-2】解下列不等式: (1)262318x x x -≤-<; (2)1232x x +≥-; (3)2320x x -+>. 【答案】(1){32x x -<≤-或}36x ≤<;(2)213x x ⎧⎫<≤⎨⎬⎩⎭;(3){2x x <-或11x -<<或}2x >【解析】(1)原不等式等价于22623318x x x x x ⎧-≤-⎨-<⎩,即22603180x x x x ⎧--≥⎨--<⎩,即()()()()320630x x x x ⎧-+≥⎪⎨-+<⎪⎩,所以2336x x x ≤-≥⎧⎨-<<⎩或,所以32x -<≤-或36x <≤,所以原不等式的解集{32x x -<≤-或}36x ≤<; (2)由1232x x +≥-,可得155203232x x x x +-+-=≥--, 所以()()55320320x x x ⎧--≤⎨-≠⎩,解得213x <≤,所以原不等式的解集为213x x ⎧⎫<≤⎨⎬⎩⎭;(3)原不等式等价于23200x x x ⎧-+>⎨≥⎩或23200x x x ⎧-+>⎨<⎩,分别解这两个不等式组,得01x ≤<或2x >或10x -<<或2x <-, 故原不等式的解集为{2x x <-或11x -<<或}2x >.【变式3-3】解下列关于x 的不等式:(a 为实数) (1)220x x a ++<;(2)102ax x ->-. 【答案】(1)详见解析;(2)详见解析【解析】(1)原不等式对应的一元二次方程为:220x x a ++=,Δ44a =-,当1a ≥时,Δ440a =-≤,原不等式无解;当1a <时,对应一元二次方程的两个解为:11x a =-- 所以220x x a ++<的解为:1111a x a --<<-- 综上所述,1a ≥时,原不等式无解,当1a <时,原不等式的解集为{1111}xa x a --<<-+-∣; (2)原不等式等价于()()120ax x -->,当0a =时,解集为(),2-∞;当0a <时,原不等式可化为()()120ax x -+-<, 因为12a <,所以解集为1,2a ⎛⎫ ⎪⎝⎭;当102a <<时,12a >,解集为()1,2,a ⎛⎫-∞⋃+∞ ⎪⎝⎭; 当12a =时,原不等式等价于()11202x x ⎛⎫--> ⎪⎝⎭, 所以2(2)0x ->,解集为{}2xx ≠∣;当12a >时,12a <,解集为()1,2,a ⎛⎫-∞⋃+∞ ⎪⎝⎭; 综上所述,当0a =时,解集为(),2-∞;当0a <时,解集为1,2a ⎛⎫ ⎪⎝⎭; 当102a <≤时,解集为()1,2,a ⎛⎫-∞⋃+∞ ⎪⎝⎭;当12a >时,解集为()1,2,a ⎛⎫-∞⋃+∞ ⎪⎝⎭.题型四 三个“二次”之间的关系【例4】已知关于x 的一元二次不等式20ax bx c -+<的解集为{}23x x -<<,则不等式20bx ax c -+<的解集是( )A .()2,3-B .()(),23,-∞-+∞C .()3,2-D .()(),32,-∞-+∞【答案】A【解析】不等式20ax bx c -+<的解集是()2,3-,所以方程20ax bx c -+=的解是2-和3,且0a >,则()()2323b a c a ⎧-+=⎪⎪⎨⎪-⨯=⎪⎩,解得b a =,6c a =-, 所以不等式20bx ax c -+<化为260ax ax a --<, 即260x x --<,解得23x -<<,所以,所求不等式的解集是()2,3-.故选:A .【变式4-1】不等式20ax bx c ++>的解集为()2,4-,则不等式0ax cbx c+≤-的解集为______.【答案】()[),48,-∞+∞【解析】因为20ax bx c ++>的解集为()2,4-,则0a <,且对应方程的根为-2和4, 所以242b a -=-+=,248ca=-⨯=-,且0a <, 不等式0ax c bx c+≤-可化为8028ax aax a -≤-+, 则8028x x -≤-+,即804x x-≤-,解得4x <或8x ≥. 故答案为()[),48,-∞+∞.【变式4-2】已知不等式20ax bx c ++>的解集是{|}x x αβ<<,0α>,则不等式20cx bx a ++>的解集是____________. 【答案】11βα⎛⎫⎪⎝⎭,【解析】由不等式20ax bx c ++>的解集是{|}0x x αβα<<>(),可知:α,β是一元二次方程20ax bx c ++=的实数根,且0a <;由根与系数的关系可得:ba αβ+=-,c aαβ⋅= , 所以不等式20cx bx a ++>化为210c bx x a a++<, 即:()210x x αβαβ-++<;化为()()110x x αβ--<;又,0<>αβα,110αβ∴>>;∴不等式20cx bx a ++<的解集为:{x |11x βα<<},故答案为:11βα⎛⎫⎪⎝⎭,【变式4-3】已知二次函数2y ax bx c =++的图象如图所示,则不等式20ax bx c ++>的解集是( )A .{}21x x -<<B .{|2x x <-或1}x >C .{}21x x -≤≤D .{|2x x ≤-或1}x ≥ 【答案】A【解析】由二次函数图象知:20ax bx c ++>有21x -<<.故选:A【变式4-4】已知二次函数2y x bx c =++图象如图所示.则不等式230bx cx -+≤的解集为_________.【答案】(][),13,-∞-⋃+∞【解析】根据二次函数2y x bx c =++的图象可知,1,2-为方程20x bx c ++=的两根,故12,12b c -+=--⨯=,即1,2b c =-=-,则230bx cx -+≤即2230x x -++≤,也即2230x x --≥,()()310x x -+≥,解得3x ≥或1x ≤-.故不等式解集为(][),13,-∞-⋃+∞. 故答案为:(][),13,-∞-⋃+∞.题型五 一元二次不等式恒成立与有解问题【例5】“关于x 的不等式220x ax a -+>对x ∀∈R 恒成立”的一个必要不充分条件是( )A .01a <<B .02a <<C .102a << D .1a >【答案】B【解析】由“关于x 的不等式220x ax a -+>对R x ∀∈恒成立”,可得()2240a a --<,解得:01a <<.故选:B .【变式5-1】已知对任意[]1,3m ∈,215mx mx m --<-+恒成立,则实数x 的取值范围是( )A .6,7⎛⎫+∞ ⎪⎝⎭B .1515∞∞⎛⎫-+-⋃+ ⎪ ⎪⎝⎭⎝⎭C .6,7⎛⎫-∞ ⎪⎝⎭ D .1515-+⎝⎭【答案】D【解析】对任意[]1,3m ∈,不等式215mx mx m --<-+恒成立,即对任意[]1,3m ∈,()216m x x -+<恒成立, 所以对任意[]1,3m ∈,261x x m -+<恒成立, 所以对任意[]1,3m ∈,2min612x x m ⎛⎫-+<= ⎪⎝⎭,所以212x x -+<1515x -+<<, 故实数x 的取值范围是1515-+⎝⎭.故选:D .【变式5-2】若关于x 的不等式2210ax x ++<有实数解,则a 的取值范围是( ) A .(0,1] B .[0,1) C .(,1]-∞ D .(,1)-∞ 【答案】D【解析】当0a =时,不等式为210x +<,有实数解,满足题意;当0a <时,不等式对应的二次函数开口向下, 所以不等式2210ax x ++<有实数解,满足题意;当0a >时,要使不等式有实数解,则需满足440∆=->a ,解得01a <<, 综上,a 的取值范围是(,1)-∞.故选:D.【变式5-3】已知命题p :“[1,5]x ∃∈,250x ax -->”为真命题,则实数a 的取值范围是( ) A .4a < B .4a C .4a > D .4a >-【答案】A【解析】由题意不等式250x ax -->在[1,5]上有解,所以150a -->或25550a -->, 解得4a或4a <,所以4a <.故选:A .题型六 利用基本不等式求最值【例6】已知0a >,0b >,则()28a b a b ⎛⎫++ ⎪⎝⎭的最小值为___________.(人教B 版)【答案】18 【解析】0a >,0b >,()2828101021088128b a b a b a b a a b a b =++≥+⨯=⎛⎫∴+⎝⎭++= ⎪当且仅当28b aa b =,即2b a =时,等号成立,()28a b a b ⎛⎫++ ⎪⎝⎭∴的最小值为18,故答案为:18.【变式6-1】已知正实数a 、b 满足11m ab+=,若11a b b a ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭的最小值为4,则实数m 的取值范围是( )A .{}2B .[)2,+∞C .(]0,2D .()0,∞+ 【答案】B【解析】因为,a b 为正实数,11a b b a ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭=12abab 1224≥⋅=ab ab, 当1ab ab =,即1ab =时等号成立,此时有1b a =, 又因为11m ab+=,所以1am a,由基本不等式可知12a a +≥(1a =时等号成立), 所以2m ≥.故选:B.【变式6-2】已知正实数a ,b 满足12a b +=,则12ab a+的最小值是( ) A .52 B .3 C .92D .221 【答案】A【解析】因为12a b +=,所以12>0a b =-,所以02b << ,所以()122221+212112bbb b b a a b b b ⎛⎫-+=- ⎪-+-⎝⎭=,令21b t -=,则+12t b =,且13t -<< , 所以+11111522+2++222222122t t t t t t ab a t =≥⋅=+=,当且仅当122t t =,即12t =,32,43b a ==时,取等号, 所以12ab a+的最小值是52.故选:A.【变式6-3】已知正实数x ,y 满足211x y +=,则436xy x y --的最小值为( )A .2B .4C .8D .12 【答案】C【解析】解:由0x >,0y >且211x y +=,可得2xy x y =+,所以43648362xy x y x y x y x y--=+--=+()214424428y x y x x y x y x y x y ⎛⎫=++=++≥+⋅ ⎪⎝⎭, 当且仅当4y xx y =,即4x =,2y =时取等号.故选:C【变式6-4】下列命题中不正确的为( )①.若正实数a ,b 满足2a b +=,则222a b +的最小值为83②.已知0a >,0b >,21a b +=a b 2③.存在实数a ,b 满足2a b +=,使得33a b +的最小值是6 ④.若2x y +=,则11211x y +++的最小值为56A .④B .②④C .③④D .①② 【答案】A【解析】①正实数a ,b 满足2a b +=,故2b a =-,所以()22222228222344333a b a a a a a ⎛⎫+=+-=-+=-+ ⎪⎝⎭,当23a =时,222283332a a b ⎛⎫=-+ +⎪⎝⎭取得最小值为83,故①正确;②因为0a >,0b >,所以)22221212a ba b ab ab a b =++=+≤++=,a b =(2a b ∈, a b 2,②正确; ③因为30,30a b >>,所以233233236a ba b a b ++≥⋅=⨯=,当且仅当33a b =,即1a b ==时,等号成立,故存在实数a ,b 满足2a b +=,使得33a b +的最小值是6,③正确; ④当1x =-,3y =时,满足2x y +=,此时111351211446x y +=-+=-<++, 故11211x y +++的最小值不是56;④错误故选:A题型七 基本不等式恒成立问题【例7】已知0,0x y >>且141x y +=,若28x y m m +>+恒成立,则实数m 的取值范围是( )A .1|2x x ⎧⎫≥⎨⎬⎩⎭B .{}|3x x ≤-}C .{}|1x x ≥D .{}|91x x -<< 【答案】D【解析】∵0,0x y >>,且141x y +=,∴1444()()5259y x y x x y x y xyxy x y+=++=++≥⋅=, 当且仅当3,6x y ==时取等号,∴min ()9x y +=,由28x y m m +>+恒成立可得2min 8()9m m x y +<+=,解得:91m -<<,故选:D.【变式7-1】已知实数x 、y 满足2241x y xy +-=,且不等式20x y c ++>恒成立,则c 的取值范围是( )A .()23+∞,B 26⎫+∞⎪⎪⎝⎭C .()32+∞, D .(22-∞, 【答案】B【解析】2241x y xy +-=,225(2)151(2)8x y xy x y ∴+=+≤++,当且仅当2x y =时“=”成立,()2823x y ∴+≤26262x y ≤+≤又不等式20x y c ++>恒成立,260c ∴>,26c ∴> c ∴的取值范围是26⎫+∞⎪⎪⎝⎭.故选:B .【变式7-2】若对任意正数x ,不等式22214a x x+≤+恒成立,则实数a 的取值范围为( )A .[)0,∞+B .1,4⎡⎫-+∞⎪⎢⎣⎭ C .1,4⎡⎫+∞⎪⎢⎣⎭ D .1,2⎡⎫+∞⎪⎢⎣⎭【答案】B【解析】依题意得,当0x >时,2222144x a x x x+=++ 恒成立,又因为44x x+,当且仅当2x =时取等号, 所以,24x x+的最大值为12,所以1212a +,解得a 的取值范围为1[,)4-+∞.故选:B【变式7-3】对任意12x ≤≤及13y ≤≤,不等式2220x axy y -+≥恒成立,则实数a的取值范围是( )A .92a ≤ B .22a ≥ C .113a ≤D .22a ≤【答案】D【解析】依题意,对任意12x ≤≤及13y ≤≤,不等式2220x axy y -+≥恒成立等价于对任意12x ≤≤及13y ≤≤,2222x y x ya xy y x+≤=+恒成立. 设yt x=,则22x y t y xt +=+. 因为12x ≤≤,13y ≤≤, 所以1112x ≤≤,则132y x ≤≤,即132t ≤≤, 则22222t t tt+≥⋅当且仅当2t t=,即2t =时取等号, ∴22a ≤故选:D.【变式7-4】若关于x 的不等式4142x a x +≥-对任意2x >恒成立,则正实数a 的取值集合为( )A .(-1,4]B .(0,4)C .(0,4]D .(1,4] 【答案】C【解析】由题意可得4(2)1842x a x a-+--对任意2x >恒成立, 由0,2a x >>,可得4(2)122x a x -+-4(2)12x a x a-⋅-, 当且仅当4(2)12x a x -=-即2ax = 则844aa-,解得04a <.故选:C.【变式7-5】已知a >b >c ,若14m a b b c a c+≥---恒成立,则m 的最大值为( ) A .3 B .4 C .8 D .9 【答案】D【解析】由a b c >>,知0a b ->,0b c ->,0a c ->,由14m a b b c a c+---,得14()()ma c ab b c-+--, 又a c ab bc -=-+-,1414()()[()()]()a c a b b c a b a b b c∴-+=-+-+---4()4()5529a b b c a b b c b c a b b c a b----=+++⋅----,当且仅当4()a b b cb c a b--=--, 即2()b c a b -=-时,14()()a c a b b c -+--取得最小值9,9m ∴,m ∴的最大值为9.故选:D .。

一元二次方程重点题型(全)

一元二次方程重点题型(全)

一元二次方程重点题型一.选择题(共7小题)定义1.(2016•凉山州模拟)下列方程中,一元二次方程共有()个①x2﹣2x﹣1=0;②ax2+bx+c=0;③+3x﹣5=0;④﹣x2=0;⑤(x﹣1)2+y2=2;⑥(x﹣1)(x﹣3)=x2.A.1 B.2 C.3 D.4一般形式2.(2016春•荣成市期中)关于x的方程(m﹣3)x﹣mx+6=0是一元二次方程,则它的一次项系数是()A.﹣1 B.1 C.3 D.3或﹣13.(2016春•宁国市期中)方程2x2﹣6x﹣9=0的二次项系数、一次项系数、常数项分别为()A.6;2;9 B.2;﹣6;﹣9 C.2;﹣6;9 D.﹣2;6;9一元二次方程的解4.(2016•山西校级模拟)已知一元二次方程ax2+bx+c=0,若a+b+c=0,则该方程一定有一个根为()A.0 B.1 C.﹣1 D.25.(2016•诏安县校级模拟)关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.1 B.﹣1 C.1或﹣1 D.6.(2016•济宁校级模拟)一元二次方程ax2+bx+c=0,若4a﹣2b+c=0,则它的一个根是()A.﹣2 B. C.﹣4 D.27.(2015•诏安县校级模拟)方程(x﹣1)2=2的根是()A.﹣1,3 B.1,﹣3 C.,D.,二.填空题(共12小题)8.(2016春•长兴县月考)用配方法将方程x2+6x﹣7=0化为(x+m)2=n的形式为.9.(2016•罗平县校级模拟)如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x米,则可列方程为.(9题)(10题)10.学校课外生物小组的试验园地是长35米、宽20米的矩形,为便于管理,现要在中间开辟一横两纵三条等宽的小道(如图),要使种植面积为600平方米,求小道的宽.若设小道的宽为x米,则可列方程为.11.(2016•丹东模拟)某药店响应国家政策,某品牌药连续两次降价,由开始每盒16元下降到每盒14元.设每次降价的平均百分率是x,则列出关于x的方程是.11.(2016•松江区二模)某商品原价289元,经连续两次降价后售价为256元,设平均每次降价的百分率为x,那么根据题意可列关于x的方程是.12.(2016•萧山区模拟)某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6080元的利润,应将销售单价定位多少元?15.(2015•东西湖区校级模拟)商场某种商品平均每天可销售30件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.据此规律计算:每件商品降价元时,商场日盈利可达到2100元.13.在一次同学聚会上,若每两人握一次手,一共握了45次手,则参加这次聚会的同学一共有名.16.(2015•东西湖区校级模拟)某种植物的主干长出若干数目的支干,每个支干又长出同样多数目的小分支,主干、支干、小分支一共是91个,则每个支干长出的小分支数目为.17.(2015春•乳山市期末)如图,一块矩形铁皮的长是宽的2倍,将这个铁皮的四角各剪去一个边长为3cm的小正方形,做成一个无盖的盒子,若盒子的容积是240cm3,则原铁皮的宽为cm.18.(2015秋•洪山区期中)卫生部门为控制流感的传染,对某种流感研究发现:若一人患了流感,经过两轮传染后共有100人患了流感,若按此传染速度,第三轮传染后,患流感人数共有人.19.(2015秋•临汾校级月考)如图,要建一个面积为130m2的仓库,仓库的一边靠墙(墙长16m)并在与墙平行的一边开一道1m宽的门,现有能围成32m长的木板,仓库的长和宽分别为m与m.三.解答题(共11小题)20.(2015春•沂源县期末)解下列方程:(1)x2﹣2x=2x+1(配方)(2)2x2﹣2x﹣5=0(公式)①x2﹣2x﹣8=0(因式分解)②(x﹣4)2=9(直接开)③2x2﹣4x﹣1=0(公式)④x2+8x﹣9=0(配方)22.(2015春•阜宁县期末)选用适当的方法解下列方程:(1)x2﹣6x=7 (2)2x2﹣6x﹣1=0 (3)3x(x+2)=5(x+2)23.(2016•唐河县一模)已知关于x的一元二次方程(m﹣2)x2+2mx+m+3=0 有两个不相等的实数根.(1)求m的取值范围;(2)当m取满足条件的最大整数时,求方程的根.24.(2016•洛阳模拟)已知关于x的方程x2﹣2(m+1)x+m2=0(1)当m取什么值时,原方程没有实数根;(2)对m选取一个合适的非零整数,使原方程有两个不相等的实数根,并求出这两个实数根.25.(2016•信阳一模)已知关于x的一元二次方程x2﹣(k+3)x+3k=0.(1)求证:不论k取何实数,该方程总有实数根.(2)若等腰△ABC的一边长为2,另两边长恰好是方程的两个根,求△ABC的周长.26.(2016•西峡县二模)关于x的一元二次方程(m﹣1)x2+2x﹣3=0.(1)若原方程有两个不相等的实数根,求m的取值范围;(2)若原方程的一个根是1,求此时m的值及方程的另外一个根.27.(2016•平武县一模)已知关于x的方程kx2+(2k+1)x+2=0.(1)求证:无论k取任何实数时,方程总有实数根.(2)是否存在实数k使方程两根的倒数和为2?若存在,请求出k的值;若不存在,请说明理由.28.(2016•宛城区一模)已知关于x的方程mx2﹣(m+2)x+2=0(1)求证:不论m为何值,方程总有实数根;(2)若方程的一个根是2,求m的值及方程的另一个根.29.(2015秋•余干县校级期末)已知x2+y2+6x﹣4y+13=0,求(xy)﹣2.30.(2016•洪泽县一模)如图,要设计一本画册的封面,封面长40cm,宽30cm,正中央是一个与整个封面长宽比例相同的矩形画.如果要使四周的边衬所占面积是封面面积的,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度(结果保留小数点后一位,参考数据:≈2.236).2016年06月03日2456000759的初中数学组卷参考答案与试题解析一.选择题(共7小题)1.(2016•凉山州模拟)下列方程中,一元二次方程共有()个①x2﹣2x﹣1=0;②ax2+bx+c=0;③+3x﹣5=0;④﹣x2=0;⑤(x﹣1)2+y2=2;⑥(x﹣1)(x﹣3)=x2.A.1 B.2 C.3 D.4【解答】解:①x2﹣2x﹣1=0,符合一元二次方程的定义;②ax2+bx+c=0,没有二次项系数不为0这个条件,不符合一元二次方程的定义;③+3x﹣5=0不是整式方程,不符合一元二次方程的定义;④﹣x2=0,符合一元二次方程的定义;⑤(x﹣1)2+y2=2,方程含有两个未知数,不符合一元二次方程的定义;⑥(x﹣1)(x﹣3)=x2,方程整理后,未知数的最高次数是1,不符合一元二次方程的定义.一元二次方程共有2个.故选:B.2.(2016春•荣成市期中)关于x的方程(m﹣3)x﹣mx+6=0是一元二次方程,则它的一次项系数是()A.﹣1 B.1 C.3 D.3或﹣1【解答】解:由题意得:m2﹣2m﹣1=2,m﹣3≠0,解得m=±1.故选:B.3.(2016春•宁国市期中)方程2x2﹣6x﹣9=0的二次项系数、一次项系数、常数项分别为()A.6;2;9 B.2;﹣6;﹣9 C.2;﹣6;9 D.﹣2;6;9【解答】解:∵方程一般形式是2x2﹣6x﹣9=0,∴二次项系数为2,一次项系数为﹣6,常数项为﹣9.故选B.4.(2016•山西校级模拟)已知一元二次方程ax2+bx+c=0,若a+b+c=0,则该方程一定有一个根为()A.0 B.1 C.﹣1 D.2【解答】解:依题意,得c=﹣a﹣b,原方程化为ax2+bx﹣a﹣b=0,即a(x+1)(x﹣1)+b(x﹣1)=0,∴(x﹣1)(ax+a+b)=0,∴x=1为原方程的一个根,故选B.5.(2016•诏安县校级模拟)关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.1 B.﹣1 C.1或﹣1 D.【解答】解:根据题意得:a2﹣1=0且a﹣1≠0,解得:a=﹣1.故选B.6.(2016•济宁校级模拟)一元二次方程ax2+bx+c=0,若4a﹣2b+c=0,则它的一个根是()A.﹣2 B. C.﹣4 D.2【解答】解:将x=﹣2代入ax2+bx+c=0的左边得:a×(﹣2)2+b×(﹣2)+c=4a﹣2b+c,∵4a﹣2b+c=0,∴x=﹣2是方程ax2+bx+c=0的根.故选A.7.(2015•诏安县校级模拟)方程(x﹣1)2=2的根是()A.﹣1,3 B.1,﹣3 C.,D.,【解答】解:x﹣1=±∴x=1±.故选C.二.填空题(共12小题)8.(2016春•长兴县月考)用配方法将方程x2+6x﹣7=0化为(x+m)2=n的形式为(x﹣3)2=2.【解答】解:移项,得x2﹣6x=﹣7,在方程两边加上一次项系数一半的平方得,x2﹣6x+9=﹣7+9,(x﹣3)2=2.故答案为:(x﹣3)2=2.9.(2016•罗平县校级模拟)如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x米,则可列方程为(100﹣x)(80﹣x)=7644.【解答】解:设道路的宽应为x米,由题意有(100﹣x)(80﹣x)=7644,故答案为:(100﹣x)(80﹣x)=7644.10.(2016•丹东模拟)某药店响应国家政策,某品牌药连续两次降价,由开始每盒16元下降到每盒14元.设每次降价的平均百分率是x,则列出关于x的方程是16(1﹣x)2=14.【解答】解:设该药品平均每次降价的百分率是x,根据题意得16×(1﹣x)(1﹣x)=14,整理得:16(1﹣x)2=14.故答案为:16(1﹣x)2=14.11.(2016•松江区二模)某商品原价289元,经连续两次降价后售价为256元,设平均每次降价的百分率为x,那么根据题意可列关于x的方程是289(1﹣x)2=256.【解答】解:根据题意可得两次降价后售价为289(1﹣x)2,即方程为289(1﹣x)2=256.故答案为:289(1﹣x)2=256.12.(2016•萧山区模拟)某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6080元的利润,应将销售单价定位多少元?【解答】解:设每件降价为x元,则(60﹣x﹣40)(300+20x)=6080,得x2﹣5x+4=0,解得x=4或x=1,要使顾客实惠,则x=4,定价为60﹣4=56元.答:应将销售单价定位56元.13.(2016•南岗区模拟)在一次同学聚会上,若每两人握一次手,一共握了45次手,则参加这次聚会的同学一共有10名.【解答】解:设这次参加聚会的同学有x人,则每人应握(x﹣1)次手,由题意得:x(x﹣1)=45,即:x2﹣x﹣90=0,解得:x1=10,x2=﹣9(不符合题意舍去)故参加这次聚会的同学共有10人.故答案是:10.14.(2015•平定县一模)学校课外生物小组的试验园地是长35米、宽20米的矩形,为便于管理,现要在中间开辟一横两纵三条等宽的小道(如图),要使种植面积为600平方米,求小道的宽.若设小道的宽为x米,则可列方程为(35﹣2x)(20﹣x)=600(或2x2﹣75x+100=0).【解答】解:把阴影部分分别移到矩形的上边和左边可得矩形的长为(35﹣2x)米,宽为(20﹣x)米,∴可列方程为(35﹣2x)(20﹣x)=600(或2x2﹣75x+100=0),故答案为(35﹣2x)(20﹣x)=600(或2x2﹣75x+100=0).15.(2015•东西湖区校级模拟)商场某种商品平均每天可销售30件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出2件.据此规律计算:每件商品降价20元时,商场日盈利可达到2100元.【解答】解:∵降价1元,可多售出2件,降价x元,可多售出2x件,盈利的钱数=50﹣x,由题意得:(50﹣x)(30+2x)=2100,化简得:x2﹣35x+300=0,解得:x1=15,x2=20,∵该商场为了尽快减少库存,∴降的越多,越吸引顾客,∴选x=20,故答案为:20.16.(2015•东西湖区校级模拟)某种植物的主干长出若干数目的支干,每个支干又长出同样多数目的小分支,主干、支干、小分支一共是91个,则每个支干长出的小分支数目为9.【解答】解:设每个支干长出的小分支的数目是x个,根据题意列方程得:x2+x+1=91,解得:x=9或x=﹣10(不合题意,应舍去);∴x=9;故答案为:917.(2015春•乳山市期末)如图,一块矩形铁皮的长是宽的2倍,将这个铁皮的四角各剪去一个边长为3cm的小正方形,做成一个无盖的盒子,若盒子的容积是240cm3,则原铁皮的宽为11cm.【解答】解:设这块铁片的宽为xcm,则铁片的长为2xcm,由题意,得3(2x﹣6)(x﹣6)=240解得x1=11,x2=﹣2(不合题意,舍去)答:这块铁片的宽为11cm.18.(2015秋•洪山区期中)卫生部门为控制流感的传染,对某种流感研究发现:若一人患了流感,经过两轮传染后共有100人患了流感,若按此传染速度,第三轮传染后,患流感人数共有1000人.【解答】解:设每轮传染中平均一个人传染的人数为x人,第一轮过后有(1+x)个人感染,第二轮过后有(1+x)+x(1+x)个人感染,那么由题意可知1+x+x(1+x)=100,整理得,x2+2x﹣99=0,解得x=9或﹣11,x=﹣11不符合题意,舍去.那么每轮传染中平均一个人传染的人数为9人.第三轮传染后,患流感人数共有:100+9×100=1000.故答案为1000.19.(2015秋•临汾校级月考)如图,要建一个面积为130m2的仓库,仓库的一边靠墙(墙长16m)并在与墙平行的一边开一道1m宽的门,现有能围成32m长的木板,仓库的长和宽分别为10m与13m.【解答】解:设仓库的垂直于墙的一边长为x,依题意得(32﹣2x+1)x=130,2x2﹣33x+130=0,(x﹣10)(2x﹣13)=0,∴x1=10或x2=6.5,当x1=10时,32﹣2x+1=13<16;当x2=6.5时,32﹣2x+1=20>16,不合题意舍去.答:仓库的长和宽分别为13m,10m.故答案为:10,13.三.解答题(共11小题)20.(2015春•沂源县期末)解下列方程:(1)x2﹣2x=2x+1(配方法)(2)2x2﹣2x﹣5=0(公式法)【解答】解:(1)方程整理得:x2﹣4x=1,配方得:x2﹣4x+4=5,即(x﹣2)2=5,开方得:x﹣2=±,解得:x1=2+,x2=2﹣;(2)这里a=2,b=﹣2,c=﹣5,∵△=8+40=48,∴x==.21.(2015•金堂县一模)用规定的方法解下列方程①x2﹣2x﹣8=0(因式分解法)②(x﹣4)2=9(直接开平方法)③2x2﹣4x﹣1=0(公式法)④x2+8x﹣9=0(配方法)【解答】解:①∵x2﹣2x﹣8=0,∴(x+2)(x﹣4)=0,∴x+2=0或x﹣4=0,∴x1=﹣2,x2=4;②∵(x﹣4)2=9,∴x﹣4=±3,∴x1=1,x2=7;③∵2x2﹣4x﹣1=0,∴a=2,b=﹣4,c=﹣1,b2﹣4ac=16+8=24,∴x===1±,∴x1=1﹣,x2=1+;④∵x2+8x﹣9=0,∴x2+8x+16﹣16﹣9=0,∴(x+4)2=25,∴x+4=±5,∴x1=1,x2=﹣9.22.(2015春•阜宁县期末)选用适当的方法解下列方程:(1)x2﹣6x=7(2)2x2﹣6x﹣1=0(3)3x(x+2)=5(x+2)【解答】解:(1)方程变形得:x2﹣6x﹣7=0,分解因式得:(x﹣7)(x+1)=0,解得:x1=7,x2=﹣1;(2)这里a=2,b=﹣6,c=﹣1,∵△=36+8=44,∴x==;(3)方程变形得:(3x﹣5)(x+2)=0,解得:x1=,x2=﹣2.23.(2016•唐河县一模)已知关于x的一元二次方程(m﹣2)x2+2mx+m+3=0 有两个不相等的实数根.(1)求m的取值范围;(2)当m取满足条件的最大整数时,求方程的根.【解答】解:(1)根据题意得m﹣2≠0且△=4m2﹣4(m﹣2)(m+3)>0,解得m<6且m≠2;(2)m满足条件的最大整数为5,则原方程化为3x2+10x+8=0,∴(3x+4)(x+2)=0,∴x1=﹣,x2=﹣2.24.(2016•洛阳模拟)已知关于x的方程x2﹣2(m+1)x+m2=0(1)当m取什么值时,原方程没有实数根;(2)对m选取一个合适的非零整数,使原方程有两个不相等的实数根,并求出这两个实数根.【解答】解:(1)∵方程没有实数根,∴b2﹣4ac=[﹣2(m+1)]2﹣4m2=8m+4<0,∴m<﹣,∴当m<﹣时,原方程没有实数根;(2)由(1)可知,当m≥﹣时,方程有实数根,当m=1时,原方程变为x2﹣4x+1=0,设此时方程的两根分别为x1,x2,解得x1=2+,x2=2﹣.25.(2016•信阳一模)已知关于x的一元二次方程x2﹣(k+3)x+3k=0.(1)求证:不论k取何实数,该方程总有实数根.(2)若等腰△ABC的一边长为2,另两边长恰好是方程的两个根,求△ABC的周长.【解答】(1)证明:△=(k+3)2﹣4×3k=(k﹣3)2≥0,故不论k取何实数,该方程总有实数根;(2)解:当△ABC的底边长为2时,方程有两个相等的实数根,则(k﹣3)2=0,解得k=3,方程为x2﹣6x+9=0,解得x1=x2=3,故△ABC的周长为:2+3+3=8;当△ABC的一腰长为2时,方程有一根为2,方程为x2﹣5x+6=0,解得,x1=2,x2=3,故△ABC的周长为:2+2+3=7.26.(2016•西峡县二模)关于x的一元二次方程(m﹣1)x2+2x﹣3=0.(1)若原方程有两个不相等的实数根,求m的取值范围;(2)若原方程的一个根是1,求此时m的值及方程的另外一个根.【解答】解:(1)由题意知,m﹣1≠0,所以m≠1.∵原方程有两个不相等的实数根,∴△=22﹣4(m﹣1)×(﹣3)=12m﹣8>0,解得:m>,综上所述,m的取值范围是m>且m≠1;(2)把x=1代入原方程,得:m﹣1+2﹣3=0.解得:m=2.把m=2代入原方程,得:x2+2x﹣3=0,解得:x1=1,x2=﹣3.∴此时m的值为2,方程的另外一个根为是﹣3.27.(2016•平武县一模)已知关于x的方程kx2+(2k+1)x+2=0.(1)求证:无论k取任何实数时,方程总有实数根.(2)是否存在实数k使方程两根的倒数和为2?若存在,请求出k的值;若不存在,请说明理由.【解答】解:(1)当k=0时,方程变形为x+2=0,解得x=﹣2;当k≠0时,△=(2k+1)2﹣4•k•2=(2k﹣1)2,∵(2k﹣1)2≥0,∴△≥0,∴当k≠0时,方程有实数根,∴无论k取任何实数时,方程总有实数根;(2)存在,设方程两根为x1、x2,则x1+x2=﹣,x1x2=,∵+=2,即=2,∴=2,即﹣=2,解得:k=﹣,故存在实数k使方程两根的倒数和为2.28.(2016•宛城区一模)已知关于x的方程mx2﹣(m+2)x+2=0(1)求证:不论m为何值,方程总有实数根;(2)若方程的一个根是2,求m的值及方程的另一个根.【解答】(1)证明:当m=0时,方程变形为﹣2x+2=0,解得x=1;当m≠0时,△=(m+2)2﹣4m•2=(m﹣2)2≥0,方程有两个实数解,所以不论m为何值,方程总有实数根;(2)设方程的另一个根为t,根据题意得2+t=,2t=,则2+t=1+2t,解得t=1,所以m=1,即m的值位1,方程的另一个根为1.29.(2015秋•余干县校级期末)已知x2+y2+6x﹣4y+13=0,求(xy)﹣2.【解答】解:∵x2+y2+6x﹣4y+13=0,∴(x+3)2+(y﹣2)2=0,∴x+3=0,y﹣2=0,∴x=﹣3,y=2,∴(xy)﹣2=(﹣3×2)﹣2=.30.(2016•洪泽县一模)如图,要设计一本画册的封面,封面长40cm,宽30cm,正中央是一个与整个封面长宽比例相同的矩形画.如果要使四周的边衬所占面积是封面面积的,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度(结果保留小数点后一位,参考数据:≈2.236).【解答】解一:设上、下边衬宽均为4xcm,左、右边衬宽均为3xcm,则(40﹣8x)(30﹣6x)=×40×30.整理,得x2﹣10x+5=0,解之得x=5±2,∴x1≈0.53,x2≈9.47(舍去),答:上、下边衬宽均为2.1cm,左、右边衬宽均为1.6cm.解二:设中央矩形的长为4xcm,宽为3xcm,则4x×3x=×40×30,解得x1=4,x2=﹣4(舍去),∴上、下边衬宽为20﹣8≈2.1,左、右边衬宽均为15﹣6≈1.6,答:上、下边衬宽均为2.1cm,左、右边衬宽均为1.6cm.。

一元二次方程重点题型

一元二次方程重点题型

一元二次方程是中学数学中一个非常重要的部分。

以下是一些一元二次方程的重点题型:
1. 求解一元二次方程,尤其是需要使用求根公式的方程
2. 确定一元二次方程的形式,例如找到顶点、轴等
3. 通过图形方法解决一元二次方程,例如在坐标系中绘制一元二次函数并找到解
4. 解决一元二次方程的应用问题,例如在物理或几何问题中,通过建立方程来求解未知量
5. 将现实生活中的问题转化为一元二次方程,例如关于时间、距离和速度的问题等。

6. 判别一元二次方程解的个数和形式,通过计算判定一元二次方程的解的性质
7. 使用因式分解等代数方法简化一元二次方程并求解
8. 不等式应用,例如解决带有一元二次方程的不等式问题
9. 将一元二次方程转化为其他形式的方程或不等式,例如将一元二次方程转化为三角形面积方程等
以上这些题型在中学数学中非常常见,是需要我们重点掌握和练习的,通过不断地练习和巩固,我们可以更好地理解和掌握一元二次方程的各种性质和解题技巧,从而提高我们的数学水平。

同时,我们也需要注意在实际问题中,如何合理地使用一元二次方程解决更为复杂的问题,这也是需要我们不断思考和探索的方向。

一元二次方程常见题型总结

一元二次方程常见题型总结

一元二次方程常见题型总结一元二次方程常见题型总结题型1:一元二次方程的概念1.若方程$(a-1)x^2-3x+2=0$是关于$x$的一元二次方程,则$a$的取值范围为【】(A)$a\neq1$(B)$a>1$(C)$a\neq1$(D)$a>1$答案:$a\neq1$2.若$1-3$是方程$x^2-2x+c=0$的一个根,则$c$的值为【】(A)$-2$(B)$4/3$(C)$3/2$(D)$4$答案:$4/3$3.已知关于$x$的一元二次方程$(k+4)x^2+3x+k^2+3k-4=0$的一个根为$0$,且$k$的值为【】答案:$k=-4$或$k=1$题型2:一元二次方程的解法4.一个等腰三角形的底边长是$6$,腰长是一元二次方程$x^2-7x+12=0$的一个根,则此三角形的周长是【】(A)$12$(B)$13$(C)$14$(D)$12$或$14$答案:$14$5.方程$(x+3)^2=5(x+3)$的解为__________。

答案:$x=-2$或$x=2$6.用适当的方法解下列方程:1)$4x^2-144=0$;(2)$2x^2+3x=3$;(3)$x^2-2x-24=0$;(4)$x(2x-5)=4x-10$。

题型3:一元二次方程根的判别式及根与系数的关系定理7.已知$a,b,c$为常数,点$P(a,c)$在第二象限,则关于$x$的方程$ax^2+bx+c=0$的根的情况是【】(A)有两个相等的实数根(B)有两个不相等的实数根(C)没有实数根(D)无法判断答案:$B$8.若关于$x$的一元二次方程$x^2+(2k-1)x+k^2-1=0$没有实数根,则$k$的取值范围为__________。

答案:$k1$9.已知关于$x$的一元二次方程$x^2+(2k+1)x+k^2=0$有两个不相等的实数根。

1)求$k$的取值范围;2)设方程的两个实数根分别为$x_1,x_2$,当$k=1$时,求$x_1^2+x_2^2$的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程重点题型一.选择题(共7小题)定义1.(2016•凉山州模拟)下列方程中,一元二次方程共有()个①x2﹣2x﹣1=0;②ax2+bx+c=0;③+3x﹣5=0;④﹣x2=0;⑤(x﹣1)2+y2=2;⑥(x﹣1)(x﹣3)=x2.A.1 B.2 C.3 D.4一般形式2.(2016春•荣成市期中)关于x的方程(m﹣3)x﹣mx+6=0是一元二次方程,则它的一次项系数是()A.﹣1 B.1 C.3 D.3或﹣13.(2016春•宁国市期中)方程2x2﹣6x﹣9=0的二次项系数、一次项系数、常数项分别为()A.6;2; 9 B.2;﹣6;﹣9 C.2;﹣6; 9 D.﹣2; 6;9一元二次方程的解4.(2016•山西校级模拟)已知一元二次方程ax2+bx+c=0,若a+b+c=0,则该方程一定有一个根为()A.0 B.1 C.﹣1 D.25.(2016•诏安县校级模拟)关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.1 B.﹣1 C.1或﹣1 D.6.(2016•济宁校级模拟)一元二次方程ax2+bx+c=0,若4a﹣2b+c=0,则它的一个根是()A.﹣2 B.C.﹣4 D.27.(2015•诏安县校级模拟)方程(x﹣1)2=2的根是()A.﹣1,3 B.1,﹣3 C.,D.,二.填空题(共12小题)8.(2016春•长兴县月考)用配方法将方程x2+6x﹣7=0化为(x+m)2=n的形式为.9.(2016•罗平县校级模拟)如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x米,则可列方程为.(9题)(10题)10.学校课外生物小组的试验园地是长35米、宽20米的矩形,为便于管理,现要在中间开辟一横两纵三条等宽的小道(如图),要使种植面积为600平方米,求小道的宽.若设小道的宽为x米,则可列方程为.11.(2016•丹东模拟)某药店响应国家政策,某品牌药连续两次降价,由开始每盒16元下降到每盒14元.设每次降价的平均百分率是x,则列出关于x的方程是.11.(2016•松江区二模)某商品原价289元,经连续两次降价后售价为256元,设平均每次降价的百分率为x,那么根据题意可列关于x的方程是.12.(2016•萧山区模拟)某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6080元的利润,应将销售单价定位多少元?15.(2015•东西湖区校级模拟)商场某种商品平均每天可销售30件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出 2件.据此规律计算:每件商品降价元时,商场日盈利可达到2100元.13.在一次同学聚会上,若每两人握一次手,一共握了45次手,则参加这次聚会的同学一共有名.16.(2015•东西湖区校级模拟)某种植物的主干长出若干数目的支干,每个支干又长出同样多数目的小分支,主干、支干、小分支一共是91个,则每个支干长出的小分支数目为.17.(2015春•乳山市期末)如图,一块矩形铁皮的长是宽的2倍,将这个铁皮的四角各剪去一个边长为3cm的小正方形,做成一个无盖的盒子,若盒子的容积是240cm3,则原铁皮的宽为cm.18.(2015秋•洪山区期中)卫生部门为控制流感的传染,对某种流感研究发现:若一人患了流感,经过两轮传染后共有100人患了流感,若按此传染速度,第三轮传染后,患流感人数共有人.19.(2015秋•临汾校级月考)如图,要建一个面积为130m2的仓库,仓库的一边靠墙(墙长16m)并在与墙平行的一边开一道1m宽的门,现有能围成32m长的木板,仓库的长和宽分别为m与m.三.解答题(共11小题)20.(2015春•沂源县期末)解下列方程:(1)x2﹣2x=2x+1(配方)(2)2x2﹣2x﹣5=0(公式)①x2﹣2x﹣8=0(因式分解)②(x﹣4)2=9(直接开)③2x2﹣4x﹣1=0(公式)④x2+8x﹣9=0(配方)22.(2015春•阜宁县期末)选用适当的方法解下列方程:(1)x2﹣6x=7 (2)2x2﹣6x﹣1=0 (3)3x(x+2)=5(x+2)23.(2016•唐河县一模)已知关于x的一元二次方程(m﹣2)x2+2mx+m+3=0 有两个不相等的实数根.(1)求m的取值范围;(2)当m取满足条件的最大整数时,求方程的根.24.(2016•洛阳模拟)已知关于x的方程x2﹣2(m+1)x+m2=0(1)当m取什么值时,原方程没有实数根;(2)对m选取一个合适的非零整数,使原方程有两个不相等的实数根,并求出这两个实数根.25.(2016•信阳一模)已知关于x的一元二次方程x2﹣(k+3)x+3k=0.(1)求证:不论k取何实数,该方程总有实数根.(2)若等腰△ABC的一边长为2,另两边长恰好是方程的两个根,求△ABC的周长.26.(2016•西峡县二模)关于x的一元二次方程(m﹣1)x2+2x﹣3=0.(1)若原方程有两个不相等的实数根,求m的取值范围;(2)若原方程的一个根是1,求此时m的值及方程的另外一个根.27.(2016•平武县一模)已知关于x的方程kx2+(2k+1)x+2=0.(1)求证:无论k取任何实数时,方程总有实数根.(2)是否存在实数k使方程两根的倒数和为2?若存在,请求出k的值;若不存在,请说明理由.28.(2016•宛城区一模)已知关于x的方程mx2﹣(m+2)x+2=0(1)求证:不论m为何值,方程总有实数根;(2)若方程的一个根是2,求m的值及方程的另一个根.29.(2015秋•余干县校级期末)已知x2+y2+6x﹣4y+13=0,求(xy)﹣2.30.(2016•洪泽县一模)如图,要设计一本画册的封面,封面长40cm,宽30cm,正中央是一个与整个封面长宽比例相同的矩形画.如果要使四周的边衬所占面积是封面面积的,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度(结果保留小数点后一位,参考数据:≈2.236).2016年06月03日2456000759的初中数学组卷参考答案与试题解析一.选择题(共7小题)1.(2016•凉山州模拟)下列方程中,一元二次方程共有()个①x2﹣2x﹣1=0;②ax2+bx+c=0;③+3x﹣5=0;④﹣x2=0;⑤(x﹣1)2+y2=2;⑥(x﹣1)(x﹣3)=x2.A.1 B.2 C.3 D.4【解答】解:①x2﹣2x﹣1=0,符合一元二次方程的定义;②ax2+bx+c=0,没有二次项系数不为0这个条件,不符合一元二次方程的定义;③+3x﹣5=0不是整式方程,不符合一元二次方程的定义;④﹣x2=0,符合一元二次方程的定义;⑤(x﹣1)2+y2=2,方程含有两个未知数,不符合一元二次方程的定义;⑥(x﹣1)(x﹣3)=x2,方程整理后,未知数的最高次数是1,不符合一元二次方程的定义.一元二次方程共有2个.故选:B.2.(2016春•荣成市期中)关于x的方程(m﹣3)x﹣mx+6=0是一元二次方程,则它的一次项系数是()A.﹣1 B.1 C.3 D.3或﹣1【解答】解:由题意得:m2﹣2m﹣1=2,m﹣3≠0,解得m=±1.故选:B.3.(2016春•宁国市期中)方程2x2﹣6x﹣9=0的二次项系数、一次项系数、常数项分别为()A.6;2; 9 B.2;﹣6;﹣9 C.2;﹣6; 9 D.﹣2; 6;9【解答】解:∵方程一般形式是2x2﹣6x﹣9=0,∴二次项系数为2,一次项系数为﹣6,常数项为﹣9.故选B.4.(2016•山西校级模拟)已知一元二次方程ax2+bx+c=0,若a+b+c=0,则该方程一定有一个根为()A.0 B.1 C.﹣1 D.2【解答】解:依题意,得c=﹣a﹣b,原方程化为ax2+bx﹣a﹣b=0,即a(x+1)(x﹣1)+b(x﹣1)=0,∴(x﹣1)(ax+a+b)=0,∴x=1为原方程的一个根,故选B.5.(2016•诏安县校级模拟)关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.1 B.﹣1 C.1或﹣1 D.【解答】解:根据题意得:a2﹣1=0且a﹣1≠0,解得:a=﹣1.故选B.6.(2016•济宁校级模拟)一元二次方程ax2+bx+c=0,若4a﹣2b+c=0,则它的一个根是()A.﹣2 B.C.﹣4 D.2【解答】解:将x=﹣2代入ax2+bx+c=0的左边得:a×(﹣2)2+b×(﹣2)+c=4a﹣2b+c,∵4a﹣2b+c=0,∴x=﹣2是方程ax2+bx+c=0的根.故选A.7.(2015•诏安县校级模拟)方程(x﹣1)2=2的根是()A.﹣1,3 B.1,﹣3 C.,D.,【解答】解:x﹣1=±∴x=1±.故选C.二.填空题(共12小题)8.(2016春•长兴县月考)用配方法将方程x2+6x﹣7=0化为(x+m)2=n的形式为(x﹣3)2=2.【解答】解:移项,得x2﹣6x=﹣7,在方程两边加上一次项系数一半的平方得,x2﹣6x+9=﹣7+9,(x﹣3)2=2.故答案为:(x﹣3)2=2.9.(2016•罗平县校级模拟)如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x米,则可列方程为(100﹣x)(80﹣x)=7644.【解答】解:设道路的宽应为x米,由题意有(100﹣x)(80﹣x)=7644,故答案为:(100﹣x)(80﹣x)=7644.10.(2016•丹东模拟)某药店响应国家政策,某品牌药连续两次降价,由开始每盒16元下降到每盒14元.设每次降价的平均百分率是x,则列出关于x的方程是16(1﹣x)2=14.【解答】解:设该药品平均每次降价的百分率是x,根据题意得16×(1﹣x)(1﹣x)=14,整理得:16(1﹣x)2=14.故答案为:16(1﹣x)2=14.11.(2016•松江区二模)某商品原价289元,经连续两次降价后售价为256元,设平均每次降价的百分率为x,那么根据题意可列关于x的方程是289(1﹣x)2=256.【解答】解:根据题意可得两次降价后售价为289(1﹣x)2,即方程为289(1﹣x)2=256.故答案为:289(1﹣x)2=256.12.(2016•萧山区模拟)某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6080元的利润,应将销售单价定位多少元?【解答】解:设每件降价为x元,则(60﹣x﹣40)(300+20x)=6080,得x2﹣5x+4=0,解得x=4或x=1,要使顾客实惠,则x=4,定价为60﹣4=56元.答:应将销售单价定位56元.13.(2016•南岗区模拟)在一次同学聚会上,若每两人握一次手,一共握了45次手,则参加这次聚会的同学一共有10名.【解答】解:设这次参加聚会的同学有x人,则每人应握(x﹣1)次手,由题意得:x(x﹣1)=45,即:x2﹣x﹣90=0,解得:x1=10,x2=﹣9(不符合题意舍去)故参加这次聚会的同学共有10人.故答案是:10.14.(2015•平定县一模)学校课外生物小组的试验园地是长35米、宽20米的矩形,为便于管理,现要在中间开辟一横两纵三条等宽的小道(如图),要使种植面积为600平方米,求小道的宽.若设小道的宽为x米,则可列方程为(35﹣2x)(20﹣x)=600(或2x2﹣75x+100=0).【解答】解:把阴影部分分别移到矩形的上边和左边可得矩形的长为(35﹣2x)米,宽为(20﹣x)米,∴可列方程为(35﹣2x)(20﹣x)=600(或2x2﹣75x+100=0),故答案为(35﹣2x)(20﹣x)=600(或2x2﹣75x+100=0).15.(2015•东西湖区校级模拟)商场某种商品平均每天可销售30件,每件盈利50元.为了尽快减少库存,商场决定采取适当的降价措施.经调查发现,每件商品每降价1元,商场平均每天可多售出 2件.据此规律计算:每件商品降价20元时,商场日盈利可达到2100元.【解答】解:∵降价1元,可多售出2件,降价x元,可多售出2x件,盈利的钱数=50﹣x,由题意得:(50﹣x)(30+2x)=2100,化简得:x2﹣35x+300=0,解得:x1=15,x2=20,∵该商场为了尽快减少库存,∴降的越多,越吸引顾客,∴选x=20,故答案为:20.16.(2015•东西湖区校级模拟)某种植物的主干长出若干数目的支干,每个支干又长出同样多数目的小分支,主干、支干、小分支一共是91个,则每个支干长出的小分支数目为9.【解答】解:设每个支干长出的小分支的数目是x个,根据题意列方程得:x2+x+1=91,解得:x=9或x=﹣10(不合题意,应舍去);∴x=9;故答案为:917.(2015春•乳山市期末)如图,一块矩形铁皮的长是宽的2倍,将这个铁皮的四角各剪去一个边长为3cm的小正方形,做成一个无盖的盒子,若盒子的容积是240cm3,则原铁皮的宽为11cm.【解答】解:设这块铁片的宽为xcm,则铁片的长为2xcm,由题意,得3(2x﹣6)(x﹣6)=240解得x1=11,x2=﹣2(不合题意,舍去)答:这块铁片的宽为11cm.18.(2015秋•洪山区期中)卫生部门为控制流感的传染,对某种流感研究发现:若一人患了流感,经过两轮传染后共有100人患了流感,若按此传染速度,第三轮传染后,患流感人数共有1000人.【解答】解:设每轮传染中平均一个人传染的人数为x人,第一轮过后有(1+x)个人感染,第二轮过后有(1+x)+x(1+x)个人感染,那么由题意可知1+x+x(1+x)=100,整理得,x2+2x﹣99=0,解得x=9或﹣11,x=﹣11不符合题意,舍去.那么每轮传染中平均一个人传染的人数为9人.第三轮传染后,患流感人数共有:100+9×100=1000.故答案为1000.19.(2015秋•临汾校级月考)如图,要建一个面积为130m2的仓库,仓库的一边靠墙(墙长16m)并在与墙平行的一边开一道1m宽的门,现有能围成32m长的木板,仓库的长和宽分别为10m与13m.【解答】解:设仓库的垂直于墙的一边长为x,依题意得(32﹣2x+1)x=130,2x2﹣33x+130=0,(x﹣10)(2x﹣13)=0,∴x1=10或x2=6.5,当x1=10时,32﹣2x+1=13<16;当x2=6.5时,32﹣2x+1=20>16,不合题意舍去.答:仓库的长和宽分别为13m,10m.故答案为:10,13.三.解答题(共11小题)20.(2015春•沂源县期末)解下列方程:(1)x2﹣2x=2x+1(配方法)(2)2x2﹣2x﹣5=0(公式法)【解答】解:(1)方程整理得:x2﹣4x=1,配方得:x2﹣4x+4=5,即(x﹣2)2=5,开方得:x﹣2=±,解得:x1=2+,x2=2﹣;(2)这里a=2,b=﹣2,c=﹣5,∵△=8+40=48,∴x==.21.(2015•金堂县一模)用规定的方法解下列方程①x2﹣2x﹣8=0(因式分解法)②(x﹣4)2=9(直接开平方法)③2x2﹣4x﹣1=0(公式法)④x2+8x﹣9=0(配方法)【解答】解:①∵x2﹣2x﹣8=0,∴(x+2)(x﹣4)=0,∴x+2=0或x﹣4=0,∴x1=﹣2,x2=4;②∵(x﹣4)2=9,∴x﹣4=±3,∴x1=1,x2=7;③∵2x2﹣4x﹣1=0,∴a=2,b=﹣4,c=﹣1,b2﹣4ac=16+8=24,∴x===1±,∴x1=1﹣,x2=1+;④∵x2+8x﹣9=0,∴x2+8x+16﹣16﹣9=0,∴(x+4)2=25,∴x+4=±5,∴x1=1,x2=﹣9.22.(2015春•阜宁县期末)选用适当的方法解下列方程:(1)x2﹣6x=7(2)2x2﹣6x﹣1=0(3)3x(x+2)=5(x+2)【解答】解:(1)方程变形得:x2﹣6x﹣7=0,分解因式得:(x﹣7)(x+1)=0,解得:x1=7,x2=﹣1;(2)这里a=2,b=﹣6,c=﹣1,∵△=36+8=44,∴x==;(3)方程变形得:(3x﹣5)(x+2)=0,解得:x1=,x2=﹣2.23.(2016•唐河县一模)已知关于x的一元二次方程(m﹣2)x2+2mx+m+3=0 有两个不相等的实数根.(1)求m的取值范围;(2)当m取满足条件的最大整数时,求方程的根.【解答】解:(1)根据题意得m﹣2≠0且△=4m2﹣4(m﹣2)(m+3)>0,解得m<6且m≠2;(2)m满足条件的最大整数为5,则原方程化为3x2+10x+8=0,∴(3x+4)(x+2)=0,∴x1=﹣,x2=﹣2.24.(2016•洛阳模拟)已知关于x的方程x2﹣2(m+1)x+m2=0(1)当m取什么值时,原方程没有实数根;(2)对m选取一个合适的非零整数,使原方程有两个不相等的实数根,并求出这两个实数根.【解答】解:(1)∵方程没有实数根,∴b2﹣4ac=[﹣2(m+1)]2﹣4m2=8m+4<0,∴m<﹣,∴当m<﹣时,原方程没有实数根;(2)由(1)可知,当m≥﹣时,方程有实数根,当m=1时,原方程变为x2﹣4x+1=0,设此时方程的两根分别为x1,x2,解得x1=2+,x2=2﹣.25.(2016•信阳一模)已知关于x的一元二次方程x2﹣(k+3)x+3k=0.(1)求证:不论k取何实数,该方程总有实数根.(2)若等腰△ABC的一边长为2,另两边长恰好是方程的两个根,求△ABC的周长.【解答】(1)证明:△=(k+3)2﹣4×3k=(k﹣3)2≥0,故不论k取何实数,该方程总有实数根;(2)解:当△ABC的底边长为2时,方程有两个相等的实数根,则(k﹣3)2=0,解得k=3,方程为x2﹣6x+9=0,解得x1=x2=3,故△ABC的周长为:2+3+3=8;当△ABC的一腰长为2时,方程有一根为2,方程为x2﹣5x+6=0,解得,x1=2,x2=3,故△ABC的周长为:2+2+3=7.26.(2016•西峡县二模)关于x的一元二次方程(m﹣1)x2+2x﹣3=0.(1)若原方程有两个不相等的实数根,求m的取值范围;(2)若原方程的一个根是1,求此时m的值及方程的另外一个根.【解答】解:(1)由题意知,m﹣1≠0,所以m≠1.∵原方程有两个不相等的实数根,∴△=22﹣4(m﹣1)×(﹣3)=12m﹣8>0,解得:m>,综上所述,m的取值范围是m>且m≠1;(2)把x=1代入原方程,得:m﹣1+2﹣3=0.解得:m=2.把m=2代入原方程,得:x2+2x﹣3=0,解得:x1=1,x2=﹣3.∴此时m的值为2,方程的另外一个根为是﹣3.27.(2016•平武县一模)已知关于x的方程kx2+(2k+1)x+2=0.(1)求证:无论k取任何实数时,方程总有实数根.(2)是否存在实数k使方程两根的倒数和为2?若存在,请求出k的值;若不存在,请说明理由.【解答】解:(1)当k=0时,方程变形为x+2=0,解得x=﹣2;当k≠0时,△=(2k+1)2﹣4•k•2=(2k﹣1)2,∵(2k﹣1)2≥0,∴△≥0,∴当k≠0时,方程有实数根,∴无论k取任何实数时,方程总有实数根;(2)存在,设方程两根为x1、x2,则x1+x2=﹣,x1x2=,∵+=2,即=2,∴=2,即﹣=2,解得:k=﹣,故存在实数k使方程两根的倒数和为2.28.(2016•宛城区一模)已知关于x的方程mx2﹣(m+2)x+2=0(1)求证:不论m为何值,方程总有实数根;(2)若方程的一个根是2,求m的值及方程的另一个根.【解答】(1)证明:当m=0时,方程变形为﹣2x+2=0,解得x=1;当m≠0时,△=(m+2)2﹣4m•2=(m﹣2)2≥0,方程有两个实数解,所以不论m为何值,方程总有实数根;(2)设方程的另一个根为t,根据题意得2+t=,2t=,则2+t=1+2t,解得t=1,所以m=1,即m的值位1,方程的另一个根为1.29.(2015秋•余干县校级期末)已知x2+y2+6x﹣4y+13=0,求(xy)﹣2.【解答】解:∵x2+y2+6x﹣4y+13=0,∴(x+3)2+(y﹣2)2=0,∴x+3=0,y﹣2=0,∴x=﹣3,y=2,∴(xy)﹣2=(﹣3×2)﹣2=.30.(2016•洪泽县一模)如图,要设计一本画册的封面,封面长40cm,宽30cm,正中央是一个与整个封面长宽比例相同的矩形画.如果要使四周的边衬所占面积是封面面积的,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度(结果保留小数点后一位,参考数据:≈2.236).【解答】解一:设上、下边衬宽均为4xcm,左、右边衬宽均为3xcm,则(40﹣8x)(30﹣6x)=×40×30.整理,得x2﹣10x+5=0,解之得x=5±2,∴x1≈0.53,x2≈9.47(舍去),答:上、下边衬宽均为2.1cm,左、右边衬宽均为1.6cm.解二:设中央矩形的长为4xcm,宽为3xcm,则4x×3x=×40×30,解得x1=4,x2=﹣4(舍去),∴上、下边衬宽为20﹣8≈2.1,左、右边衬宽均为15﹣6≈1.6,答:上、下边衬宽均为2.1cm,左、右边衬宽均为1.6cm.。

相关文档
最新文档