高一数学必修一第一章集合与函数的概念讲义(集合的关系与运算)
最新人教版高一数学必修1第一章“集合与函数概念”本章概述
《集合与函数概念》本章概述
本章知识内容分为两大部分:第一部分是“集合”,这部分研究了集合的三个内容:集合的含义与表示、集合的基本关系、集合的基本运算.在小学和初中我们已经接触过集合,对于诸如数集(整数的集合、有理数的集合)、点集(直线、圆)等,都有了一定的感性认识.在此基础上,本教材首先结合实例引入了集合与集合的元素的概念,并介绍了集合的表示方法.然后,从讨论集合与集合之间的包含与相等的关系入手,给出了子集的概念.此外,还给出了与子集相联系的全集与补集的概念,接着,又讲述了集合运算的交集、并集的初步知识.第二部分是“函数”,这部分研究了函数的两个内容:函数的概念及表示、函数的单调性及奇偶性.在中学,函数的学习大致可分为三个阶段,第一阶段是在义务教育阶段,学习了函数的描述性概念,接触了正比例函数、反比例函数、一次函数、二次函数等简单的函数,了解了它们的图象、性质等.本章学习的函数概念、基本性质与后续将要学习的基本初等函数是函数学习的第二个阶段,这是对函数概念的再认识阶段.第三阶段是选修系列的导数及其应用的学习,这是函数学习的进一步深化和提高.
集合论是现代数学的一个重要的基础.在高中数学中,集合的初步知识与其他内容有着密切的联系,是学习、掌握和使用数学语言的基础.通过本模块的学习,使学生学会使用最基本的集合语言表示有关数学对象,并能在自然语言、图形语言、集合语言之间进行转换,体会用集合语言表达数学内容的简洁性、准确性,发展运用集合语言进行交流的能力.函数是中学数学中最重要的基本概念之一,是描述客观世界变化规律的重要数学模型.通过本模块的学习,使学生不仅把函数看成变量之间的依赖关系,同时还会用集合与对应的语言刻画函数,感受用函数概念建立模型的过程与方法,为后续学习奠定基础.。
人教版新课标高一数学必修一 第一章 集合与函数的概念 1..1 集合 集合的运算 教案及课后习题
微课程2:集合的运算子集真子集定义对于两个集合A、B,如果集合A中的任意一个元素都是集合B中的元素,称集合A为集合B的子集若集合A⊆B,但存在元素x ∈B,且x∉A,称集合A是集合B的真子集符号语言若任意x∈A,有x∈B,则A⊆B。
若集合A⊆B,但存在元素x ∈B ,且x∉A,则A B表示方法A为集合B的子集,记作A⊆B或B⊇A。
A不是B的子集时,记作A B或B A。
若集合A是集合B的真子集,记作A B或B A。
性质①A⊆A ②∅⊆A③A⊆B,B⊆C⇒A⊆CA B,且B C⇒A C子集个数含n个元素的集合A的子集个数为n2含n个元素的集合A的真子集个数为n2-1空集不含任何元素的集合,记为∅。
空集是任何集合的子集,用符号语言表示为∅⊆A;若A非空(即A≠∅),则有∅A。
集合的运算:1. 并集的概念(1)自然语言表示:由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集。
(2)符号语言表示:A∪B={x|x∈A,或x∈B}。
(3)图形语言(Venn图)表示:。
2. 交集的概念(1)自然语言表示:由属于集合A且属于集合B的所有元素所组成的集合,称为集合A与B的交集。
(2)符号语言表示:A∩B={x|x∈A,且x∈B}。
(3)图形语言表示(Venn图):。
3. 补集的概念(1)自然语言表示:对于集合A,由全集U中不属于集合A的所有元素所组成的集合,称为集合A相对于全集U的补集,简称为集合A的补集。
(2)符号语言表示:A={x|x∈U,且x∉A}。
(3)图形语言表示(Venn图):,阴影部分表示A。
【典例精析】例题1 判断下列说法是否正确,如果不正确,请加以改正。
(1){∅}表示空集;(2)空集是任何集合的真子集;(3){1,2,3}不是{3,2,1};(4){0,1}的所有子集是{0},{1},{0,1};(5)如果A ⊇B 且A≠B ,那么B 必是A 的真子集; (6)A ⊇B 与B ⊆A 不能同时成立。
高一数学集合与函数概念讲义新人教A版必修1
高一数学集合与函数概念讲义新人教A版必修1讲义一: 集合的含义与表示(Ⅰ)、基本概念及知识体系:1、了解集合的含义、领会集合中元素与集合的∈、∉关系;元素:用小写的字母a,b,c,…表示;元素之间用逗号隔开。
集合:用大写字母A ,B ,C ,…表示;2、能准确把握集合语言的描述与意义:列举法和描述法:注意以下表示的集合之区别:{y=x 2+1};{x 2-x-2=0},{x| x 2-x-2=0},{x|y=x 2+1};{t|y=t 2+1};{y|y=x 2+1};{(x,y)|y=x 2+1};∅;{∅},{0}3、特殊的集合:N 、Z 、Q 、R ;N*、∅;(Ⅱ)、典例剖析与课堂讲授过程:一、集合的概念以及元素与集合的关系:1、 元素:用小写的字母a,b,c,…表示;元素之间用逗号隔开。
集合:用大写字母A ,B ,C ,…表示;元素与集合的关系:∈、∉②、特殊的集合:N 、Z 、Q 、R ;N*、∅;③、集合中的元素具有确定性、互异性、无序性:★【例题1】、已知集合A={a-2,2a 2+5a,10},又-3∈A ,求出a 之值。
●解析:分类讨论思想;a=-1(舍去),a=-32▲★课堂练习:1、已知集合A={1,0,x },又x 2∈A ,求出x 之值。
(解:x=-1)2、已知集合A={a+2,(a+1)2,a 2+3a+3},又1∈A ,求出a 之值。
(解:a=0)二、集合的表示---------列举法和描述法★【例题3】、已知下列集合:(1)、1A ={n|n=2k+1,k ∈N,k ≤5};(2)、2A ={x|x=2k,k ∈N,k ≤3};(3)、3A ={x|x=4k +1,或x=4k -1,k ,N ∈k ≤3};问:(Ⅰ)、用列举法表示上述各集合;(Ⅱ)、对集合1A ,2A ,3A ,如果使k ∈Z,那么1A ,2A ,3A 所表示的集合分别是什么?并说明3A 与1A 的关系。
(word版)高中数学必修1第一章集合与函数概念知识点,文档
第一章集合与函数概念一:集合的含义与表示1、集合的含:集合一些确定的、不同的西的全体,人能意到些西,并且能判断一个定的西是否属于个整体。
把研究象称元素,把一些元素成的体叫集合,称集。
2、集合的中元素的三个特性:1〕元素确实定性:集合确定,一元素是否属于个集合是确定的:属于或不属于。
2〕元素的互异性:一个定集合中的元素是唯一的,不可重复的。
3〕元素的无序性:集合中元素的位置是可以改的,并且改位置不影响集合3、集合的表示:{⋯}1〕用大写字母表示集合:A={我校的球},B={1,2,3,4,5}2〕集合的表示方法:列法与描述法。
a、列法:将集合中的元素一一列出来 {a,b,c ⋯⋯}b、描述法:①区法:将集合中元素的公共属性描述出来,写在大括号内表示集合。
{x R|x-3>2},{x|x-3>2}②言描述法:例:{不是直角三角形的三角形 }Venn:画出一条封的曲,曲里面表示集合。
4、集合的分:1〕有限集:含有有限个元素的集合2〕无限集:含有无限个元素的集合3〕空集:不含任何元素的集合5、元素与集合的关系:1〕元素在集合里,元素属于集合,即:aA2〕元素不在集合里,元素不属于集合,即:a¢A注意:常用数集及其法:非整数集〔即自然数集〕作:N正整数集N* 或N+整数集Z有理数集Q数集R6、集合的根本关系〔1〕.“包含〞关系〔1〕—子集定:如果集合A的任何一个元素都是集合B的元素,我两个集合有包含关系,称集合A是集合B 的子集。
作:A B〔或BA〕注意:A B有两种可能〔1〕A是B的一局部;〔2〕A与B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,作AB或BA 〔2〕.“包含〞关系〔2〕—真子集如果集合A B,但存在元素xB且x¢A,集合A是集合B的真子集如果AB,且A B那就集合A是集合B的真子集,作〔3〕.“相等〞关系: A=B “元素相同两集合相等〞A B(或B A)作A真含与B如果AB 同B A那么A=B〔4〕. 不含任何元素的集合叫做空集,Φ定: 空集是任何集合的子集,空集是任何非空集合的真子集。
高一数学必修1知识点总结集合与函数
高中数学必修1知识点总结第一章 集合与函数概念【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集 B{x A A = ∅=∅ B A ⊆ B B ⊆并集A B{|,x x A ∈或}x B ∈(1)A A A = (2)A A ∅= (3)A B A ⊇ AB B ⊇BA补集AC U{|,}x x U x A ∈∉且)()()()()()(B C A C B A C B C A C B A C UA C A A C A U U U U U U U U ===∅=【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集||(0)x a a <> {|}x a x a -<< ||(0)x a a >>|x x a <-或}x a >||,||(0)ax b c ax b c c +<+>>把ax b+看成一个整体,化成||x a<,||(0)x a a >>型不等式来求解(2)一元二次不等式的解法判别式24b ac ∆=-0∆> 0∆= 0∆<二次函数2(0)y ax bx c a =++>的图象O一元二次方程20(0)ax bx c a ++=>的根21,242b b ac x a-±-=(其中12)x x <122b x x a==-无实根20(0)ax bx c a ++>>的解集1{|x x x <或2}x x >{|x }2b x a≠-R20(0)ax bx c a ++<>的解集12{|}x x x x <<∅ ∅〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零. ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值. ③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法yxo 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)yxox x 2f(x )f(x )211(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象下降为减) (4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数. ③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图像与性质()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、(0,]a 上为减函数.(3)最大(小)值定义 ①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M≤;(2)存在0x I ∈,使得0()f x M=.那么,我们称M 是函数()f x 的最大值,记作max ()f x M=.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法函数的 性 质定义图象判定方法 函数的 奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函..数..(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y 轴对称) ②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象. ①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.1.下列四组对象,能构成集合的是 ( )A 某班所有高个子的学生B 著名的艺术家C 一切很大的书D 倒数等于它自身的实数 2.集合{a ,b ,c }的真子集共有 个3.若集合M={y|y=x 2-2x+1,x ∈R},N={x|x ≥0},则M 与N 的关系是 . 4.设集合A=}{12x x <<,B=}{x x a <,若A ⊆B ,则a 的取值范围是5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人, 两种实验都做错得有4人,则这两种实验都做对的有 人。
(完整word版)高中数学必修1知识点总结:第一章集合与函数概念
高中数学必修1知识点总结第一章 集合与函数概念 【1。
1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性。
(2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集。
③不含有任何元素的集合叫做空集(∅).【1。
1。
2】集合间的基本关系(6)子集、真子集、集合相等真子集A ≠⊂B(或B ≠⊃A)B A ⊆,且B 中至少有一元素不属于A(1)A ≠∅⊂(A 为非空子集) (2)若A B ≠⊂且B C ≠⊂,则A C ≠⊂BA集合相等A B =A 中的任一元素都属于B ,B 中的任一元素都属于A(1)A ⊆B(2)B ⊆AA(B)(7)已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n-个真子集,它有21n-个非空子集,它有22n-非空真子集。
【1.1。
3】集合的基本运算(8)交集、并集、补集名称记号意义性质示意图交集A B{|,x x A ∈且}x B ∈(1)AA A = (2)A ∅=∅(3)A B A ⊆ A B B ⊆BA并集A B{|,x x A ∈或}x B ∈(1)AA A = (2)A A ∅=(3)A B A ⊇ AB B ⊇BA补集U A{|,}x x U x A ∈∉且1()U A A =∅2()U A A U =【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法()()()U U U A B A B =()()()UU U A B A B =不等式解集||(0)x a a<>{|}x a x a-<<||(0)x a a>>|x x a<-或}x a>||,||(0)ax b c ax b c c+<+>>把ax b+看成一个整体,化成||x a<,||(0)x a a>>型不等式来求解(2)一元二次不等式的解法判别式24b ac ∆=-∆>0∆=0∆<二次函数2(0)y ax bx c a=++>的图象O一元二次方程20(0) ax bx c a++=>的根21,242b b acxa-±-=(其中12)x x<122bx xa==-无实根20(0) ax bx c a++>>的解集1{|x x x<或2}x x>{|x}2bxa≠-R20(0) ax bx c a++<>的解集12{|}x x x x<<∅∅〖1.2〗函数及其表示【1.2。
高一数学必修一各章知识:集合的中元素的三个特
高一数学必修一各章知识:集合的中元素的三个特高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
(4)集合元素的三个特性使集合本身具有了确定性和整体性。
3、集合的表示:{…}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}1.用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}2.集合的表示方法:列举法与描述法。
注意啊:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+整数集Z有理数集Q实数集R关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a?A列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
用确定的条件表示某些对象是否属于这个集合的方法。
①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}4、集合的分类:1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合3.空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.“相等”关系(5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0}B={-1,1}“元素相同”结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B①任何一个集合是它本身的子集。
最新整理高一数学必修第一章集合与函数概念讲义
个子集的补集的含义,会求给定子集的补集;能使用 象概念的作用 .
¤知识要点 :
Venn 图表达集合的关系及运算,体会直观图示对理解抽
集合的基本运算有三种,即交、并、补,学习时先理解概念,并掌握符号等,再结合解题的训练,而达到
掌握的层次 . 下面以表格的形式归纳三种基本运算如下
.
概念
并集 由所有属于集合 A 或属于集 合 B 的元素所组成的集合, 称为集合 A 与 B 的并集 ( union set )
).
24
42
A. x0∈ N
B. x0 N
C. x0∈ N 或 x0 N
D. 不能确定
5.已知集合 P={ x|x2=1} ,集合 Q={ x|ax=1} ,若 Q P,那么 a 的值是(
).
A. 1
B. - 1
C. 1 或- 1
D. 0 , 1 或- 1
6.已知集合 A a, b, c, ,则集合 A 的真子集的个数是
xa * 【例 4】已知集合 A { a | 2
1有唯一实数解 } ,试用列举法表示集合
A.
x2
第 1 练 §1.1.1 集合的含义与表示
※基础达标
1.以下元素的全体不能够构成集合的是(
).
A. 中国古代四大发明
B. 地球上的小河流
2
C. 方程 x 1 0 的实数解
D. 周长为 10cm 的三角形
函数的最值
函数的奇偶性
函数基本性质综合
1. 评讲函数测试 2. 总结做题方法 1.指数运算 2.指数函数 1.指数函数性质 2.评讲习题 1.对数与对数运算 2.对数函数 1.对数函数的性质 2.幂函数 1.方程的根与函数的零 点 2.二分法求方程的近似 解
高中数学必修(1)第一章集合和函数概念(知识点汇总).docx
《集合》知识点汇总1、集合的概念:一般地,我们把研究对象统称为元素,把-些元素组成的总体叫做集合。
2、元素与集合的关系:属于:不属于:”尹;3、集合与集合的关系:包含:或n” ;真包含:“U或二相等:“二”;丰工4、集合中元素具有的特性:确定性,互异性,无序性。
5、集合的表示方法:①列举法;②描述法;6、集合的分类:①有限集;②无限集;③空集;7、集合屮子、真子、交、并、补、全的概念:①子集:若集合A中的任何一个元素都是集合B的元素,则称集合A是集合B的子集,记作A o B(或B o A);②真子集:若AoB,且集合B中至少有一个元素不属于A,即xwB,且xgA,则称A是B的真子集,记作人匸皿或^二①;工*③交集:由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集,记作A门B, 即:AC\B = {x\xeA,Rx^B};④并集:由属于集合A或属于集合B的所有元素组成的集合,称为八与B的并集,记作AUB, 即:A U 3 = {兀I兀丘A,或x e B];⑤补集:对于一个集合A,由全集U中不屈于集合A的所有元素组成的集合,称为集合A相对于全集U的补集,记作即:C]二{xwt/,且xgA};⑥全集:如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集, 通常记作8、空集:我们把不含任何元素的集合叫做空集,记为0。
规定:空集是任何集合的子集。
9、集合相等:如果AgB,且Bq 4,则4 = 3;10、V enn图:在数学中,我们经常用平面上封闭曲线的内部代表集合,这种图称Venn图。
11、数轴法表示集合:我们通常用数轴来表示集合之间的关系,求集合与集合之间的交集和并集通常用采用此法。
12、含n个元素的集合的子集、真子集、非空子集、非空真子集的个数:①含n个元素的集合的所有子集有2〃个;②含n个元素的集合的所有真子集有2" -1个;③含n个元素的集合的所有非空子集有2" -1个;④含n个元素的集合的所有非空真子集有2〃-2个;13、集合屮的常用性质:(1)若A,则人=3;若则AyC;(2)A,若则0u A;(3)的心4,的0 = 0,的3 = 3门&(4)AUA = A,AU^ = A,AUB = BUA;(5)/OdAUC)= U;(6)(AAB)o Ac(AUB);(AnB)oBo(4UB);(7)AqBo 的3 = Ao AUB = 3;⑻的(3门0 = 0422 4U(BUC) = (AUB)UC⑼ An(BUc)=(AnB)u(Anc); AU(Bnc)=(Aus)n(Auc);do) C^=(C^)U(CJ); C;uj(c;m(C{);14、数学中一些常用的数集及其记法:实数集:R;整数集:Z;自然数集:N;正整数集:N*或N+有理数集:Q;15、区分集合中的数集与点集:①数集的表示法{X\y = f(x)}t {y\y = f(x)}i②点集的表示法{(x, y) I y = f(x)};16、新定义集合:A-B = {x\xe AJHLx纟B]AXB={x|xGAUB 且x年A QB}P^Q = {x\x = ab,ae P.beQ}A®B = {z\ z = xy(x+ y),xE A.y^B}《函数》知识点汇总1、函数的概念:给定两个非空数集A和B,如果按照某个对应关系/,对于集合A屮任何一个数x,在集合B中都存在唯一确定的数/(兀)与Z对应,那么就把对应关系/叫做定义在集合A上的函数,记作f : A T B ,或y=f (x), xe Ao此吋,x叫做自变量,集合A 叫做函数的定义域,集合{f(x)\xeA}叫做函数的值域。
必修一数学第一章集合与函数概念知识点总结
必修一数学第一章集合与函数概念知识点总结一、集合有关概念1. 集合的含义2. 集合的中元素的三个特性:(1) 元素的确定性如:世界上最高的山(2) 元素的互异性如:由HAPPY 的字母组成的集合{H,A,P ,Y} (3) 元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2) 集合的表示方法:列举法与描述法。
◆ 注意:常用数集及其记法: 非负整数集(即自然数集) 记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R1) 列举法:{a,b,c ……} 2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x ∈R|x-3>2} ,{x| x-3>2}3) 语言描述法:例:{不是直角三角形的三角形} 4) Venn 图: 4、集合的分类:(1) 有限集 含有有限个元素的集合 (2) 无限集 含有无限个元素的集合(3) 空集 不含任何元素的集合 例:{x|x 2=-5}二、集合间的基本关系 1.“包含”关系—子集注意:有两种可能(1)A 是B 的一部分,;(2)A 与B 是同一集合。
反之: 集合A 不包含于集合B,或集合B 不包含集合A,记作A B 或B A 2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设 A={x|x 2-1=0} B={-1,1} “元素相同则两集合相等” 即:① 任何一个集合是它本身的子集。
A ⊆A②真子集:如果A ⊆B,且A ≠ B 那就说集合A 是集合B 的真子集,记作A B(或B A)③如果 A ⊆B, B ⊆C ,那么 A ⊆C④ 如果A ⊆B 同时 B ⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
高一数学必修①第一章_集合与函数概念讲义
1第1讲 §1.1.1 集合的含义与表示¤学习目标:通过实例,了解集合的含义,体会元素与集合的“属于”关系;能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;掌握集合的表示方法、常用数集及其记法、集合元素的三个特征.¤知识要点:1. 把一些元素组成的总体叫作集合(set ),其元素具有三个特征,即确定性、互异性、无序性.2. 集合的表示方法有两种:列举法,即把集合的元素一一列举出来,并用花括号“{ }”括起来,基本形式为123{,,,,}n a a a a ⋅⋅⋅,适用于有限集或元素间存在规律的无限集. 描述法,即用集合所含元素的共同特征来表示,基本形式为{|()x A P x ∈},既要关注代表元素x ,也要把握其属性()P x ,适用于无限集.3. 通常用大写拉丁字母,,,A B C ⋅⋅⋅表示集合. 要记住一些常见数集的表示,如自然数集N ,正整数集*N 或N +,整数集Z ,有理数集Q ,实数集R .4. 元素与集合之间的关系是属于(belong to )与不属于(not belong to ),分别用符号∈、∉表示,例如3N ∈,2N -∉.¤例题精讲:【例1】试分别用列举法和描述法表示下列集合:(1)由方程2(23)0x x x --=的所有实数根组成的集合;(2)大于2且小于7的整数.【例2】用适当的符号填空:已知{|32,}A x x k k Z ==+∈,{|61,}B x x m m Z ==-∈,则有: 17 A ; -5 A ; 17 B .【例3】试选择适当的方法表示下列集合:(教材P 6 练习题2, P 13 A 组题4) (1)一次函数3y x =+与26y x =-+的图象的交点组成的集合; (2)二次函数24y x =-的函数值组成的集合; (3)反比例函数2y x=的自变量的值组成的集合.*【例4】已知集合2{|1}2x aA a x +==-有唯一实数解,试用列举法表示集合A .第1练 §1.1.1 集合的含义与表示※基础达标1.以下元素的全体不能够构成集合的是( ).A. 中国古代四大发明B. 地球上的小河流C. 方程210x -=的实数解D. 周长为10cm 的三角形 2.方程组{23211x y x y -=+=的解集是( ).A . {}51, B. {}15, C.(){}51, D. (){}15, 3.给出下列关系:①12R ∈;Q ;③ *3N ∈;④0Z ∈. 其中正确的个数是( ). A. 1 B. 2 C. 3 D. 4 4.有下列说法:(1)0与{0}表示同一个集合;(2)由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};(3)方程2(1)(2)0x x --=的所有解的集合可表示为{1,1,2};(4)集合{45}x x <<是有限集. 其中正确的说法是( ).A. 只有(1)和(4)B. 只有(2)和(3)2A BB A A B A B A . B .C .D . C. 只有(2) D. 以上四种说法都不对 5.下列各组中的两个集合M 和N, 表示同一集合的是( ).A. {}M π=, {3.14159}N =B. {2,3}M =, {(2,3)}N =C. {|11,}M x x x N =-<≤∈, {1}N =D. {}M π=, {,1,|N π= 6.已知实数2a =,集合{|13}B x x =-<<,则a 与B 的关系是 . 7.已知x R ∈,则集合2{3,,2}x x x -中元素x 所应满足的条件为 . ※能力提高8.试选择适当的方法表示下列集合:(1)二次函数223y x x =-+的函数值组成的集合; (2)函数232y x =-的自变量的值组成的集合.9.已知集合4{|}3A x N Z x =∈∈-,试用列举法表示集合A .※探究创新10.给出下列集合:①{(x ,y )|x ≠1,y ≠1,x ≠2,y ≠-3}; ②{{12(,)13x x x y y y ⎧⎫≠≠⎨⎬≠≠-⎩⎭且 ③{{12(,)13x x x y y y ⎧⎫≠≠⎨⎬≠≠-⎩⎭或 ; ④{(x ,y )|[(x -1)2+(y -1)2]·[(x -2)2+(y +3)2]≠0}. 其中不能表示“在直角坐标系xOy 平面内,除去点(1,1),(2,-3)之外的所有点的集合”的序号有 .第2讲 §1.1.2 集合间的基本关系¤学习目标:理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中,了解全集与空集的含义;能利用Venn 图表达集合间的关系.¤知识要点:1. 一般地,对于两个集合A 、B ,如果集合A 中的任意一个元素都是集合B 中的元素,则说两个集合有包含关系,其中集合A 是集合B 的子集(subset ),记作A B ⊆(或B A ⊇),读作“A 含于B ”(或“B 包含A ”).2. 如果集合A 是集合B 的子集(A B ⊆),且集合B 是集合A 的子集(B A ⊇),即集合A 与集合B 的元素是一样的,因此集合A 与集合B 相等,记作A B =.3. 如果集合A B ⊆,但存在元素x B ∈,且x A ∉,则称集合A 是集合B 的真子集(proper subset ),记作A ≠⊂B (或B ≠⊃A ).4. 不含任何元素的集合叫作空集(empty set ),记作∅,并规定空集是任何集合的子集.5. 性质:A A ⊆;若A B ⊆,B C ⊆,则A C ⊆;若A B A =,则A B ⊆;若A B A =,则B A ⊆. ¤例题精讲:【例1】用适当的符号填空:(1){菱形} {平行四边形}; {等腰三角形} {等边三角形}.(2)∅ 2{|20}x R x∈+=; 0 {0}; ∅ {0}; N {0}.【例2】设集合1,,}22{|,{|n n x n n A x x B x =∈=+∈==Z}Z ,则下列图形能表示A 与B 关系的是( ).3【例3】若集合{}{}2|60,|10M x x x N x ax =+-==-=,且N M ⊆,求实数a 的值.【例4】已知集合A ={a ,a +b ,a +2b },B ={a ,ax ,ax 2}. 若A =B ,求实数x 的值.第2练 §1.1.2 集合间的基本关系※基础达标1.已知集合{}{}3,,6,A x x k k Z B x x k k Z ==∈==∈, 则A 与B 之间最适合的关系是( ).A.A B ⊆B.A B ⊇C. A ≠⊂B D. A ≠⊃B2.设集合{}|12M x x =-≤<,{}|0N x x k =-≤,若M N ⊆,则k 的取值范围是( ). A .2k ≤ B .1k ≥- C .1k >- D .2k ≥ 3.若2{,0,1}{,,0}a a b -=,则20072007a b +的值为( ). A. 0 B. 1 C. 1- D. 24.已知集合M ={x |x =2k +14,k ∈Z }, N ={x |x =4k +12, k ∈Z }. 若x 0∈M ,则x 0与N 的关系是( ). A. x 0∈N B. x 0∉N C. x 0∈N 或x 0∉N D.不能确定 5.已知集合P ={x |x 2=1},集合Q ={x |ax =1},若Q ⊆P ,那么a 的值是( ).A. 1B. -1C. 1或-1D. 0,1或-1 6.已知集合{},,,A a b c =,则集合A 的真子集的个数是 . 7.当2{1,,}{0,,}b a a a b a=+时,a =_________,b =_________.※能力提高8.已知A ={2,3},M ={2,5,235a a -+},N ={1,3, 2610a a -+},A ⊆M ,且A ⊆N ,求实数a 的值.9.已知集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-.若B A ⊆,求实数m 的取值范围.※探究创新10.集合S ={0,1,2,3,4,5},A 是S 的一个子集,当x ∈A 时,若有x -1∉A 且x +1∉A ,则称x 为A 的一个“孤立元素”,写出S 中所有无“孤立元素”的4元子集.第3讲 §1.1.3 集合的基本运算(一)¤学习目标:理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;理解在给定集合中一个子集的补集的含义,会求给定子集的补集;能使用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.4B (读作“B (读作“{|B x x ={|B x x =¤例题精讲:【例1】设集合,{|15},{|39},,()U U R A x x B x x A B A B ==-≤≤=<<求ð.【例2】设{|||6}A x Z x =∈≤,{}{}1,2,3,3,4,5,6B C ==,求: (1)()A BC ; (2)()A A BC ð.【例3】已知集合{|24}A x x =-<<,{|}B x x m =≤,且A B A =,求实数m 的取值范围.【例4】已知全集*{|10,}U x x x N =<∈且,{2,4,5,8}A =,{1,3,5,8}B =,求()U C A B ,()U C A B ,()()U U C A C B , ()()U U C A C B ,并比较它们的关系.第3练 §1.1.3 集合的基本运算(一)※基础达标1.已知全集{}1,2,3,4,5,6,7U =,{}2,4,5A =,则U A =ð( ).A. ∅B. {}2,4,6C. {}1,3,6,7D. {}1,3,5,7 2.若{|0{|12}A x x B x x =<<=≤<,则A B =( ).A. {|x xB. {|1}x x ≥C. {|1x x ≤<D. {|02}x x <<3.右图中阴影部分表示的集合是( ). A. U A B ð B. U A B ð C. ()U AB ð D. ()U A B ð4.若{}{}0,1,2,3,|3,A B x x a a A ===∈,则AB =( ).A. {}1,2B. {}0,1C. {}0,3D. {}3A55.设集合{|12}M x x =-≤<,{|0}N x x k =-≤,若M N φ≠,则k 的取值范围是( ). A .2k ≤ B .1k ≥- C .1k -> D .12k -<≤6.设全集*{|8}U x N x =∈<,{1,3,5,7}A =,{2,4,5}B =,则()U C A B = . 7.已知集合{(,)|2},{(,)|4}M x y x y N x y x y =+==-=,那么集合M N = . ※能力提高8.设全集*{|010,}U x x x N =<<∈,若{3}A B =,{1,5,7}U A B =ð,{9}U UAB =痧,求集合A 、B .9.设U R =,{|24}A x x =-≤<,{|8237}B x x x =-≥-,求()U A B ð、()()U UA B 痧.※探究创新10.设集合{|(4)()0,}A x x x a a R =--=∈,{|(1)(4)0}B x x x =--=. (1)求A B ,A B ;(2)若A B ⊆,求实数a 的值;(3)若5a =,则A B 的真子集共有 个, 集合P 满足条件()A B ≠⊂P ≠⊂()AB ,写出所有可能的集合P .第4讲 §1.1.3 集合的基本运算(二)¤学习目标:掌握集合、交集、并集、补集的有关性质,运行性质解决一些简单的问题;掌握集合运算中的一些数学思想方法.¤知识要点:1. 含两个集合的Venn 图有四个区域,分别对应着这两个集合运算的结果. 我们需通过Venn 图理解和掌握各区域的集合运算表示,解决一类可用列举法表示的集合运算. 通过图形,我们还可以发现一些集合性质:()()()U U U C A B C A C B =,()()()U U U C A B C A C B =.2. 集合元素个数公式:()()()()n A B n A n B n A B =+-.3. 在研究集合问题时,常常用到分类讨论思想、数形结合思想等. 也常由新的定义考查创新思维. ¤例题精讲:【例1】设集合{}{}24,21,,9,5,1A a a B a a =--=--,若{}9AB =,求实数a 的值.【例2】设集合{|(3)()0,}A x x x a a R =--=∈,{|(4)(1)0}B x x x =--=,求A B , AB .(教材P 14 B组题2)6【例3】设集合A ={x |240x x +=}, B ={x |222(1)10x a x a +++-=,a R ∈},若A B =B ,求实数a 的值.【例4】对集合A 与B ,若定义{|,}A B x x A x B -=∈∉且,当集合*{|8,}A x x x N =≤∈,集合{|(2)(5)(6)0}B x x x x x =---=时,有A B -= . (由教材P 12 补集定义“集合A 相对于全集U 的补集为{|,}U C A x x x A =∈∉且”而拓展)第4练 §1.1.3 集合的基本运算(二)※基础达标1.已知集合A = {}1,2,4, B ={}8x x 是的正约数, 则A 与B 的关系是( ).A. A = BB. A ≠⊂B C. A ≠⊃B D. A ∪B =∅2.已知,,a b c 为非零实数, 代数式||||||||a b c abc a b c abc +++的值所组成的集合为M , 则下列判断正确的是( ). A. 0M ∉ B. 4M -∉ C. 2M ∈ D. 4M ∈ 3.(08年湖南卷.文1)已知{}2,3,4,5,6,7U =,{}3,4,5,7M =,{}2,4,5,6N =,则( ).A .{}4,6MN = B.MN U = C .()u C N M U = D. ()u C M N N =4.定义集合A 、B 的一种运算:1212{,,}A B x x x x x A x B *==+∈∈其中,若{1,2,3}A =,{1,2}B =,则A B *中的所有元素数字之和为( ).A .9 B. 14 C. 18 D. 215.设全集U 是实数集R ,{}2|4M x x =>与{}|31N x x x =≥<或都是U 的子集(如右图所示),则阴影部分所表示的集合为( ).A. {}|21x x -≤<B. {}|22x x -≤≤C. {}|12x x <≤D. {}|2x x <6.已知集合{11}A x x =-≤≤,{}B x x a =>,且满足AB φ=,则实数a 的取值范围是 .7.经统计知,某村有电话的家庭有35家,有农用三轮车的家庭有65家,既有电话又有农用三轮车的家庭有20家,则电话和农用三轮车至少有一种的家庭数为 .※能力提高8.已知集合2{|0}A x x px q =++=, 2{|20}B x x px q =--=,且{1}A B =-,求A B .9.已知集合U =2{2,3,23}a a +-,A ={|a +1|,2},U C A ={a +3},求实数a 的值.7※探究创新 10.(1)给定集合A 、B ,定义A ※B ={x |x =m -n ,m ∈A ,n ∈B }.若A ={4,5,6},B ={1,2,3},则集合A ※B 中的所有元素之和为 ( )A .15B .14C .29D .-14(2)设全集为U ,集合A 、B 是U 的子集,定义集合A 、B 的运算:A *B ={x |x ∈A ,或x ∈B ,且x ∉A ∩B },则(A *B )*A 等于( )A .AB .BC .()U A B ð∩D .()U A B ð∪(3)已知集合A ={x |2x n ≠且3x n ≠,n ∈N ,x ∈N *,x ≤100},试求出集合A 的元素之和.第5讲 §1.2.1 函数的概念¤学习目标:通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域.¤知识要点:1. 设A 、B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数(function ),记作y =()f x ,x A ∈.其中,x 叫自变量,x 的取值范围A 叫作定义域(domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域(range ).2. 设a 、b 是两个实数,且a <b ,则:{x |a ≤x ≤b }=[a ,b ] 叫闭区间; {x |a <x <b }=(a ,b ) 叫开区间; {x |a ≤x <b }=[,)a b , {x |a <x ≤b }=(,]a b ,都叫半开半闭区间.符号:“∞”读“无穷大”;“-∞”读“负无穷大”;“+∞”读“正无穷大”. 则{|}(,)x x a a >=+∞,{|}[,)x x a a ≥=+∞,{|}(,)x x b b <=-∞,{|}(,]x x b b ≤=-∞,(,)R =-∞+∞. 3. 决定函数的三个要素是定义域、值域和对应法则. 当且仅当函数定义域、对应法则分别相同时,函数才是同一函数.¤例题精讲:【例1】求下列函数的定义域: (1)121y x =+-;(2)y =.【例2】求下列函数的定义域与值域:(1)3254x y x+=-; (2)22y x x =-++.【例3】已知函数1()1xf x x-=+. 求:(1)(2)f 的值; (2)()f x 的表达式【例4】已知函数22(),1x f x x R x =∈+. (1)求1()(f x f x +的值;(2)计算:111(1)(2)(3)(4)()()(234f f f f f f f ++++++.第5练 §1.2.1 函数的概念※基础达标81.下列各组函数中,表示同一函数的是( ). A. 1,xy y==B. 11,y x y =+C. ,y x y =D. 2||,y x y == 2.函数y =的定义域为( ).A. (,1]-∞B. (,2]-∞C. 11(,)(,1]22-∞-- D. 11(,)(,1]22-∞-- 3.集合{}22M x x =-≤≤,{}02N y y =≤≤,给出下列四个图形,其中能表示以M 为定义域,N 为值域的函数关系的是( ).4.下列四个图象中,不是函数图象的是( ).5.已知函数()f x 的定义域为[1,2)-,则(1)f x -的定义域为( ). A .[1,2)- B .[0,2)- C .[0,3)- D .[2,1)-6.已知()fx =2x +x +1,则f =______;f [(2)f ]=______. 7.已知2(21)2f x x x +=-,则(3)f = . ※能力提高 8.(1)求函数y =(2)求函数2113x y x+=-的定义域与值域.9.已知2()f x ax bx c =++,(0)0f =,且(1)()1f x f x x +=++,试求()f x 的表达式.※探究创新10.已知函数()f x ,()g x 同时满足:()()()()()g x y g x g y fx f y -=+;(1)1f -=-,(0)0f =,(1)1f =,求(0),(1),(2)g g g 的值.第6讲§1.2.2 函数的表示法¤学习目标:在实际情境中,会根据不同的需要选择恰当的方法(图象法、列表法、解析法)表示函数;通过具体实例,了解简单的分段函数,并能简单应用;了解映射的概念.¤知识要点:1. 函数有三种表示方法:解析法(用数学表达式表示两个变量之间的对应关系,优点:简明,给自变量可求函数值);图象法(用图象表示两个变量的对应关系,优点:直观形象,反应变化趋势);列表法(列出表格表示两A. B. C. D.9个变量之间的对应关系,优点:不需计算就可看出函数值).2. 分段函数的表示法与意义(一个函数,不同范围的x ,对应法则不同).3. 一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应:f A B →为从集合A 到集合B 的一个映射(mapping ).记作“:f A B →”.判别一个对应是否映射的关键:A 中任意,B 中唯一;对应法则f . ¤例题精讲:【例1】如图,有一块边长为a 的正方形铁皮,将其四个角各截去一个边长为x 的小正方形,然后折成一个无盖的盒子,写出体积V 以x 为自变量的函数式是_____,这个函数的定义域为_______.【例2】已知f(x )=33x x-+⎪⎩ (,1)(1,)x x ∈-∞∈+∞,求f [f (0)]的值.【例3】画出下列函数的图象:(1)|2|y x =-; (教材P 26 练习题3) (2)|1||24|y x x =-++.【例4】函数()[]f x x =的函数值表示不超过x 的最大整数,例如[ 3.5]4-=-,[2.1]2=,当( 2.5,3]x ∈-时,写出()f x 的解析式,并作出函数的图象.第6练 §1.2.2 函数的表示法※基础达标1.函数f (x )= 2(1)xx x ⎧⎨+⎩,0,0x x ≥< ,则(2)f -=( ).A. 1 B .2 C. 3 D. 42.某同学从家里到学校,为了不迟到,先跑,跑累了再走余下的路,设在途中花的时间为t ,离开家里的路程为d ,下面图形中,能反映该同学的行程的是( ).3.已知函数()f x 满足()()()f ab f a f b =+,且(2)f p =,(3)f q =,那么(12)f 等于( ).10A . p q + B. 2p q + C. 2p q + D. 2p q +4.设集合A ={x |0≤x ≤6},B ={y |0≤y ≤2},从A 到B 的对应法则f 不是映射的是( ).A. f :x →y =12x B. f :x →y =13x C. f :x →y =14x D. f :x →y =16x5.拟定从甲地到乙地通话m 分钟的话费由[]3.71,(04)() 1.06(0.52),(4)m f m m m <≤⎧⎪=⎨+>⎪⎩给出,其中[]m 是不超过m 的最大整数,如:[]3.743=,从甲地到乙地通话5.2分钟的话费是( ).A. 3.71B. 4.24C. 4.77D. 7.956.已知函数(),mf x x x=+且此函数图象过点(1,5),实数m 的值为 . 7.24,02(),(2)2,2x x f x f x x ⎧-≤≤==⎨>⎩已知函数则 ;若00()8,f x x ==则 .※能力提高8.画出下列函数的图象:(1)22||3y x x =-++; (2)2|23|y x x =-++.9.设二次函数()f x 满足(2)(2)f x f x +=-且()f x =0的两实根平方和为10,图象过点(0,3),求()f x 的解析式※探究创新 10.(1)设集合{,,}A a b c =,{0,1}B =. 试问:从A 到B 的映射共有几个? (2)集合A 有元素m 个,集合B 有元素n 个,试问:从A 到B 的映射共有几个?第7讲 §1.3.1 函数的单调性¤学习目标:通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;学会运用函数图像理解和研究函数的性质. 理解增区间、减区间等概念,掌握增(减)函数的证明和判别.¤知识要点:1. 增函数:设函数y =f (x )的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2),那么就说f (x )在区间D 上是增函数(increasing function ). 仿照增函数的定义可定义减函数.2. 如果函数f (x )在某个区间D 上是增函数或减函数,就说f (x )在这一区间上具有(严格的)单调性,区间D 叫f(x )的单调区间. 在单调区间上,增函数的图象是从左向右是上升的(如右图1),减函数的图象从左向右是下降的(如右图2). 由此,可以直观观察函数图象上升与下降的变化趋势,得到函数的单调区间及单调性.3. 判断单调性的步骤:设x 1、x 2∈给定区间,且x 1<x 2;→计算f (x 1)-f (x 2) →判断符号→下结论.¤例题精讲:【例1】试用函数单调性的定义判断函数2()1xf x x =-在区间(0,1)上的单调性.11【例2】求二次函数2()(0)f x ax bx c a =++<的单调区间及单调性.【例3】求下列函数的单调区间: (1)|1||24|y x x =-++;(2)22||3y x x =-++.【例4】已知31()2x f x x +=+,指出()f x 的单调区间.第7练 §1.3.1 函数的单调性※基础达标1.函数26y x x =-的减区间是( ).A . (,2]-∞ B. [2,)+∞ C. [3,)+∞ D. (,3]-∞ 2.在区间(0,2)上是增函数的是( ).A. y =-x +1B. yC. y = x 2-4x +5D. y =2x3.函数()||()(2)f x x g x x x ==-和的递增区间依次是( ).A. (,0],(,1]-∞-∞B. (,0],[1,)-∞+∞C. [0,),(,1]+∞-∞D. [0,),[1,)+∞+∞ 4.已知()f x 是R 上的增函数,令()(1)3F x f x =-+,则()F x 是R 上的( ).A .增函数B .减函数C .先减后增D .先增后减5.二次函数2()2f x x ax b =++在区间(-∞,4)上是减函数,你能确定的是( ). A. 2a ≥ B. 2b ≥ C. 4a ≤- D. 4b ≤-6.函数()f x 的定义域为(,)a b ,且对其内任意实数12,x x 均有:1212()[()()]0x x f x f x -->,则()f x 在(,)a b 上是 . (填“增函数”或“减函数”或“非单调函数”)7.已知函数f (x )= x 2-2x +2,那么f (1),f (-1),f之间的大小关系为 . ※能力提高8.指出下列函数的单调区间及单调性:(1)3()1x f x x +=-;(2)2|23|y x x =-++9.若2()f x x bx c =++,且(1)0,(3)0f f ==. (1)求b 与c 的值;(2)试证明函数()f x 在区间(2,)+∞上是增函数.※探究创新10.已知函数()f x 的定义域为R ,对任意实数m 、n 均有()()()1f m n f m f n +=+-,且1()22f =,又当12x >-时,有()0f x >. (1)求1()2f -的值; (2)求证:()f x 是单调递增函数.12第8讲 §1.3.1 函数最大(小)值¤学习目标:通过已学过的函数特别是二次函数,理解函数的最大(小)值及其几何意义;学会运用函数图像理解和研究函数的性质. 能利用单调性求函数的最大(小)值.¤知识要点:1. 定义最大值:设函数()y f x =的定义域为I ,如果存在实数M 满足:对于任意的x ∈I ,都有()f x ≤M ;存在x 0∈I ,使得0()f x = M . 那么,称M 是函数()y f x =的最大值(Maximum Value ). 仿照最大值定义,可以给出最小值(Minimum Value )的定义.2. 配方法:研究二次函数2(0)y ax bx c a =++≠的最大(小)值,先配方成224()24b ac b y a x a a-=++后,当0a >时,函数取最小值为244ac b a -;当0a <时,函数取最大值244ac b a-.3. 单调法:一些函数的单调性,比较容易观察出来,或者可以先证明出函数的单调性,再利用函数的单调性求函数的最大值或最小值.4. 图象法:先作出其函数图象后,然后观察图象得到函数的最大值或最小值. ¤例题精讲:【例1】求函数261y x x =++的最大值.【例2】某商人如果将进货单价为8元的商品按每件10元售出时,每天可售出100件. 现在他采用提高售出价,减少进货量的办法增加利润,已知这种商品每件提价1元,其销售量就要减少10件,问他将售出价定为多少元时,才能使每天所赚得的利润最大?并求出最大利润.【例3】求函数2y x =.【例4】求下列函数的最大值和最小值:(1)25332,[,]22y x x x =--∈-; (2)|1||2|y x x =+--.第8练 §1.3.1 函数最大(小)值※基础达标 1.函数42y x =-在区间 []3,6上是减函数,则y 的最小值是( ). A . 1 B. 3 C. -2 D. 52.函数221y x x =-+的最大值是( ).A. 8B. 83C. 4D. 433.函数2()2f x x ax a =-+在区间(,1)-∞上有最小值,则a 的取值范围是( ). A .1a < B .1a ≤ C .1a > D . 1a ≥ 4.某部队练习发射炮弹,炮弹的高度h 与时间t 的函数关系式是()24.914.718h t t t =-++则炮弹在发射几秒后13最高呢( ).A. 1.3秒B. 1.4秒C. 1.5秒 D 1.6秒5. 23()1,[0,2f x x x x =++∈已知函数的最大(小)值情况为( ).A. 有最大值34,但无最小值B. 有最小值34,有最大值1C. 有最小值1,有最大值194D. 无最大值,也无最小值6.函数3y x =的最大值是 .7.已知3()3xf x x =-,[4,6]x ∈. 则()f x 的最大值与最小值分别为 .※能力提高8.已知函数2()2f x x x =-+.(1)证明()f x 在[1,)+∞上是减函数;(2)当[]2,5x ∈时,求()f x 的最大值和最小值.9.一个星级旅馆有100个标准房,经过一段时间的经营,经理得到一些定价和住房率的数据如右:欲使每天的的营业额最高,应如何定价?※探究创新10.已知函数2142a y x ax =-+-+在区间[0,1]上的最大值为2,求实数a 的值.第9讲 §1.3.2 函数的奇偶性¤学习目标:结合具体函数,了解奇偶性的含义;学会运用函数图像理解和研究函数的性质. 理解奇函数、偶函数的几何意义,能熟练判别函数的奇偶性.¤知识要点:1. 定义:一般地,对于函数()f x 定义域内的任意一个x ,都有()()f x f x -=,那么函数()f x 叫偶函数(even function ). 如果对于函数定义域内的任意一个x ,都有()()f x f x -=-),那么函数()f x 叫奇函数(odd function ).2. 具有奇偶性的函数其定义域关于原点对称,奇函数的图象关于原点中心对称,偶函数图象关于y 轴轴对称.3. 判别方法:先考察定义域是否关于原点对称,再用比较法、计算和差、比商法等判别()f x -与()f x 的关系. ¤例题精讲:【例1】判别下列函数的奇偶性: (1)31()f x x x=-; (2)()|1||1|f x x x =-++;(3)23()f x x x =-.14【例2】已知()f x 是奇函数,()g x 是偶函数,且1()()1f xg x x -=+,求()f x 、()g x .【例3】已知()f x 是偶函数,0x ≥时,2()24f x x x =-+,求0x <时()f x 的解析式.【例4】设函数()f x 是定义在R 上的奇函数,且在区间(,0)-∞上是减函数,实数a 满足不等式22(33)(32)f a a f a a +-<-,求实数a 的取值范围.第9练 §1.3.2 函数的奇偶性※基础达标1.函数(||1)y x x =- (|x |≤3)的奇偶性是( ).A .奇函数 B. 偶函数 C. 非奇非偶函数 D. 既奇又偶函数2.(08年全国卷Ⅱ.理3文4)函数1()f x x x=-的图像关于( ). A .y 轴对称 B .直线y x =-对称 C .坐标原点对称 D .直线y x =对称 3.已知函数()f x 是奇函数,当0x >时,()(1)f x x x =-;当0x <时,()f x 等于( ). A. (1)x x -+ B. (1)x x + C. (1)x x - D. (1)x x --4.函数()11f x x x =+--,那么()f x 的奇偶性是( ).A .奇函数B .既不是奇函数也不是偶函数C .偶函数D .既是奇函数也是偶函数5.若奇函数()f x 在[3, 7]上是增函数,且最小值是1,则它在[7,3]--上是( ).A. 增函数且最小值是-1B. 增函数且最大值是-1C. 减函数且最大值是-1D. 减函数且最小值是-16.已知53()8f x x ax bx =++-,(2)10f -=,则(2)f = .7.已知()f x 是定义在R 上的奇函数,在(0,)+∞是增函数,且(1)0f =,则(1)0f x +<的解集为 .※能力提高8.已知函数211()()12f x x x =+-. (1)求函数()f x 的定义域; (2)判断函数()f x 的奇偶性并证明你的结论 ++9.若对于一切实数,x y ,都有()()()f x y f x f y +=+:(1)求(0)f ,并证明()f x 为奇函数; (2)若(1)3f =,求(3)f -.※探究创新 10.已知22()()1xf x x R x=∈+,讨论函数()f x 的性质,并作出图象.15第10讲 第一章 集合与函数概念 复习¤复习目标:强化对集合与集合关系题目的训练,理解集合中代表元素的真正意义,注意利用几何直观性研究问题,注意运用文氏图解题方法的训练,加强两种集合表示方法转换和化简训练. 深刻理解函数的有关概念.掌握对应法则、图象等有关性质. 理解掌握函数的单调性和奇偶性的概念,并掌握基本的判定方法和步骤,并会运用.¤例题精讲:【例1】已知a ,b 为常数,若22()43,()1024f x x x f ax b x x =+++=++,则5a b -= .【例2】已知()f x 是偶函数,而且在(0,)+∞上是减函数,判断()f x 在(,0)-∞上是增函数还是减函数,并加以证明.【例3】集合{|17}A x x =-≤≤,{|231}B x m x m =-<<+,若A B B =,求实数m 的取值范围.【例4】设a 为实数,函数2()||1f x x x a =+-+,x ∈R .(1)讨论()f x 的奇偶性; (2)若x ≥a ,求()f x 的最小值.第10练 第一章 集合与函数概念测试※基础达标1.已知集合{}|110,P x N x =∈≤≤ {}2|60,Q x R x x =∈+-=则P Q 等于( ).A. {}1,2,3B. {}2,3C. {}1,2D. {}22.已知集合{1,2,3,4,5,6,7}U =,{2,4,5,7}A =,{3,4,5}B =,则()()U U A B =痧( ). A. {1,6} B. {4,5} C. {2,3,4,5,7} D. {1,2,3,6,7} 3.设()f x 是R 上的任意函数,下列叙述正确的是( )A. ()()f x f x -是奇函数B. ()()f x f x -是奇函数C. ()()f x f x +-是偶函数D. ()()f x f x --是偶函数4.设集合{}12A =,,则满足{}123A B =,,的集合B 的个数是( ).A. 1B. 3C. 4D. 85.已知定义在R 上的奇函数f (x )满足f (x+2)=-f (x ),则f (6)的值为( ). A. -1 B. 0 C. 1 D. 26.)已知集合{1,3,21}A m =--,集合2{3,}B m =.若B ⊆A ,则实数m = .7.已知函数()f x 是定义在(,)-∞+∞上的偶函数. 当(,0)x ∈-∞时,4()f x x x =-,则当(0,)x ∈+∞时,16()f x = .※能力提高8.已知全集*{|9,}U x x x N =≤∈,两个集合A 与B 同时满足: {2,4}AB =,(){1,3,5}U AC B =,且(){7,8}U C A B =. 求集合A 、B .9.已知函数2()8f x x x =-+,求()f x 在区间[],1t t +上的最大值()h t .※探究创新10.已知定义在实数集上的函数y =f (x )满足条件:对于任意的x 、y ∈R ,f (x +y )=f (x )+f (y ). (1)求证:f (0)=0; (2)求证f (x )是奇函数,并举出两个这样的函数;(3)若当x ≥0时,f (x )<0. (i )试判断函数f (x )在R 上的单调性,并证明之;(ii )判断方程│f (x )│=a 所有可能的解的个数,并求出对应的a 的范围.。
高一数学必修一集合与函数的概念
⾼⼀数学必修⼀集合与函数的概念 集合与函数都是⾼⼀的数学学习的知识点,需要学⽣学习和掌握,下⾯店铺的⼩编将为⼤家带来关于集合与函数的概念的分析介绍,希望能够帮助到⼤家。
⾼⼀数学必修⼀集合与函数概念介绍 第⼀章集合与函数概念 ⼀:集合的含义与表⽰ 1、集合的含义:集合为⼀些确定的、不同的东西的全体,⼈们能意识到这些东西,并且能判断⼀个给定的东西是否属于这个整体。
把研究对象统称为元素,把⼀些元素组成的总体叫集合,简称为集。
2、集合的中元素的三个特性: (1)元素的确定性:集合确定,则⼀元素是否属于这个集合是确定的:属于或不属于。
(2)元素的互异性:⼀个给定集合中的元素是唯⼀的,不可重复的。
(3)元素的⽆序性:集合中元素的位置是可以改变的,并且改变位置不影响集合 3、集合的表⽰:{…} (1)⽤⼤写字母表⽰集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表⽰⽅法:列举法与描述法。
a、列举法:将集合中的元素⼀⼀列举出来{a,b,c……} b、描述法: ①区间法:将集合中元素的公共属性描述出来,写在⼤括号内表⽰集合。
{xR|x-3>2},{x|x-3>2} ②语⾔描述法:例:{不是直⾓三⾓形的三⾓形} ③Venn图:画出⼀条封闭的曲线,曲线⾥⾯表⽰集合。
4、集合的分类: (1)有限集:含有有限个元素的集合 (2)⽆限集:含有⽆限个元素的集合 (3)空集:不含任何元素的集合 5、元素与集合的关系: (1)元素在集合⾥,则元素属于集合,即:aA (2)元素不在集合⾥,则元素不属于集合,即:a¢A 注意:常⽤数集及其记法: ⾮负整数集(即⾃然数集)记作:N 正整数集N*或N+ 整数集Z 有理数集Q 实数集R 6、集合间的基本关系 (1).“包含”关系(1)—⼦集 定义:如果集合A的任何⼀个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的⼦集。
高一数学必修一重点知识点解读
高一数学必修一重点知识点解读1. 集合与函数概念1.1 集合- 集合的定义与表示方法:理解集合的概念,掌握集合的表示方法(列举法、描述法)。
- 集合之间的关系:掌握集合之间的包含、相等、不相交等基本关系。
- 集合的基本运算:熟悉并、交、补集等基本集合运算。
1.2 函数概念- 函数的定义:理解函数的定义,即对于非空数集A、B,如果按照某个确定的对应法则f,使对于A中的任意一个数x,在B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的函数。
- 函数的表示方法:掌握函数的解析式表示法、列表表示法和图象表示法。
- 函数的性质:理解并掌握函数的单调性、奇偶性、周期性等基本性质。
2. 实数及其运算2.1 实数- 实数的分类:了解有理数、无理数、实数的分类,理解它们之间的关系。
- 实数的性质:掌握实数的加、减、乘、除和乘方等基本运算。
2.2 函数的性质- 单调性:理解函数单调性的概念,掌握单调增函数和单调减函数的性质。
- 奇偶性:理解函数奇偶性的概念,掌握奇函数和偶函数的性质。
- 周期性:理解函数周期性的概念,掌握周期函数的性质。
3. 方程与不等式3.1 方程- 一元一次方程:掌握一元一次方程的解法。
- 一元二次方程:掌握一元二次方程的解法,了解判别式的意义。
- 方程组:掌握二元一次方程组的解法,了解三元一次方程组和解法。
3.2 不等式- 一元一次不等式:掌握一元一次不等式的解法。
- 一元二次不等式:掌握一元二次不等式的解法。
- 不等式组:掌握不等式组的解法。
4. 函数的图像4.1 坐标系与直线- 坐标系:了解直角坐标系、极坐标系等基本概念。
- 直线方程:掌握直线方程的点斜式、截距式等表示方法。
4.2 函数图像- 一次函数图像:了解一次函数图像的特点。
- 二次函数图像:了解二次函数图像的特点,掌握顶点、开口方向等概念。
- 其他函数图像:了解指数函数、对数函数、三角函数等图像的特点。
5. 立体几何5.1 空间点、线、面- 点、线、面的基本概念:了解点、线、面的基本概念和性质。
数学必修讲义
高一数学第一章集合一、集合有关概念1.集合的含义:2.集合的中元素的三个特性:3.集合的表示:A={…}有法和法。
如:A={我校的篮球队员},B={太平洋,大西洋},C={x?R|x-3>2}★注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+整数集Z有理数集Q实数集R4、集合的分类:(1)有限集含有个元素的集合;(2)无限集含有个元素的集合;(3)空集元素的集合。
例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集A⊆有两种可能:(1)A是B的一部分,;(2)A与B是同一集合。
注意:B另外规定:空集是的子集。
反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA真子集:如果那就说集合A是集合B的真子集,记作AB(或BA)规定:空集是任何非空集合的真子集。
有n个元素的集合,含有个子集,个真子集性质:如果A?B,B?C,那么AC;如果A?B同时B?A那么AB2.“相等”关系:A=B如:(5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”记住这个结论:例1:设{}{}(){}2,|,,,y x ax b A x y x a M a b M =++====求例2:若集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,求m 的值。
例3:已知集合{}|2A x x a =-≤≤,{}|23,B y y x x A ==+∈,{}2|,C z z x x A ==∈,且C B ⊆,求a 的取值范围。
巩固一下:请在30分钟内完成下列各题:1.若集合{},,Ma b c =中的元素是△ABC 的三边长,则△ABC 一定不是()A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形 2.下列四个集合中,是空集的是()A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-= C .}0|{2≤x x D .},01|{2R x x x x ∈=+- 3.下列表示图形中的阴影部分的是() A .()()A C B C U I U B .()()A B A C U I U C .()()A B B C U I U D .()A B C U I 4.方程组⎩⎨⎧=-=+9122y x y x 的解集是()A .()5,4B .()4,5-C .(){}4,5-D .(){}4,5-。
高一数学必修一知识点总结(集合与函数概念)
高一数学必修一知识点总结(集合与函数概念)对第一章的内容进行了总结,其中包含了集合的有关概念、集合间的基本关系、集合的运算等一些重要的知识点!一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
(4)集合元素的三个特性使集合本身具有了确定性和整体性。
3、集合的表示:{}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}1.用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}2.集合的表示方法:列举法与描述法。
注意啊:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+整数集Z有理数集Q实数集R关于属于的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作aA,相反,a不属于集合A记作a?A列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
用确定的条件表示某些对象是否属于这个集合的方法。
①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-32的解集是{x?R|x-32}或{x|x-32}4、集合的分类:1.有限集含有有限个元素的集合 2.无限集含有无限个元素的集合3.空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.包含关系子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
高中数学必修1知识点总结第一章 集合与函数概念
高中数学必修1知识点总结第一章 集合与函数概念 【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N*或N +表示正整数集,Z表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集 B{x A A =∅=∅ B A ⊆ B B ⊆B{x A A = A ∅= B A ⊇ B B ⊇()U A =∅ð ()U A U =ð【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法(2)一元二次不等式的解法0)〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定()()()U U A B A B =痧?()()()U U A B A B =痧?的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f)叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且ab <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零. ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值. ③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减o 去一个增函数为减函数. ③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图象与性质()f x 分别在(,-∞、)+∞上为增函数,分别在[、]a 上为减函数.(3)最大(小)值定义 ①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1,都有()f x M≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M是函数()f x 作max ()f x M =.②一般地,设函数()y f x =的定义域为I,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象. ①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴()()y f x y f x =−−−→=--原点 1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.。
高一数学必修一 第一章 知识点与习题讲解
精心整理必修1第一章集合与函数基础知识点整理第1讲§1.1.1集合的含义与表示¤学习目标:通过实例,了解集合的含义,体会元素与集合的“属于”关系;能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;掌握集合的表示方法、常用数集及其记法、集合元素的三个特征.¤知识要点:1.把一些元素组成的总体叫作集合(set ),其元素具有三个特征,即确定性、互异性、无序性.2.集合的表示方法有两种:列举法,即把集合的元素一一列举出来,并用花括号“{}”括起来,基本形式为{*N 或N +N ,2-解:(1)3{(,)|}{(1,4)}26y x x y y x =+⎧=⎨=-+⎩. (2)2{|4}{|4}y y x y y =-=≥-. (3)2{|}{|0}x y x x x==≠.点评:以上代表元素,分别是点、函数值、自变量.在解题中不能把点的坐标混淆为{1,4},也注意对比(2)与(3)中的两个集合,自变量的范围和函数值的范围,有着本质上不同,分析时一定要细心.*【例4】已知集合2{|1}2x aA a x +==-有唯一实数解,试用列举法表示集合A .解:化方程212x a x +=-为:2(2)0x x a --+=.应分以下三种情况: ⑴方程有等根且不是=0,得94a =-,此时的解为12x =,合.x =a =1x =-⑶方程有一解为x =代入得a =1x =+,合. 综上可知,9{,4A =-.点评:运用分类讨论思想方法,研究出根的情况,从而列举法表示.注意分式方程易造成增根的现象.包含包含A 的元,记作B A =,则A B A =,则¤例题精讲:1】用适当的符号填空:){菱形}{平行四边形等腰三角形}{等边三角形,;,∈,,. (). 两A =易知B ≠A ,故答案选A .另解:由21,}2{|n x n B x +=∈=Z ,易知B ≠⊂A ,故答案选A .【例3】若集合{}{}2|60,|10M x x x N x ax =+-==-=,且N M ⊆,求实数a 的值.解:由26023x x x +-=⇒=-或,因此,{}2,3M =-. (i )若0a =时,得N =∅,此时,N M ⊆; (ii )若0a ≠时,得1{}N a =.若N M ⊆,满足1123a a ==-或,解得1123a a ==-或. 故所求实数a 的值为0或12或13-.点评:在考察“A B ⊆”这一关系时,不要忘记“∅”,因为A =∅时存在A B ⊆.从而需要分情况讨论.题中讨论的主线是依据待定的元素进行.【例4】已知集合A ={a ,a +b ,a +2b },B ={a ,ax ,ax 2}.若A =B ,求实数x 的值.解:若22a b axa b ax+=⎧⎨+=⎩⇒a +ax 2-2ax =0,所以a (x -1)2=0,即a =0或x =1. 当a =0时,集合B 中的元素均为0,故舍去; 当x =1时,集合B 中的元素均相同,故舍去. 若22a b ax a b ax⎧+=⎨+=⎩⇒2ax 2-ax -a =0. 因为a ≠0,所以2x 2-x -1=0,即(x -1)(2x +1)=0.又x ≠1,所以只有1x =-. A B (读作“A B (读作“,()U B AB ð.{|3A B x =()U A B =【例2】设{|||6}A x Z x =∈≤,{}{}1,2,3,3,4,5,6B C ==,求: (1)()A B C ;(2)()A A B C ð.解:{}6,5,4,3,2,1,0,1,2,3,4,5,6A =------.(1)又{}3B C =,∴()A B C ={}3;(2)又{}1,2,3,4,5,6BC =,得{}()6,5,4,3,2,1,0A C BC =------.∴()A A C B C {}6,5,4,3,2,1,0=------.【例3】已知集合{|24}A x x =-<<,{|}B x x m =≤,且A B A =,求实数m 的取值范围.A-13 5 9 x解:由A B A =,可得A B ⊆.在数轴上表示集合A 与集合B ,如右图所示: 由图形可知,4m ≥.点评:研究不等式所表示的集合问题,常常由集合之间的关系,得到各端点之间的关系,特别要注意是否含端点的问题.【例4】已知全集*{|10,}U x x x N =<∈且,{2,4,5,8}A =,{1,3,5,8}B =,求()U C AB ,()UC AB ,()()U U C A C B ,()()U U C A C B ,并比较它们的关系.解:由{1,2,3,4,5,8}A B =,则(){6,7,9}U C AB =.由{5,8}AB =,则(){1,2,3,4,6,7,9}UC AB =由{1,3,6,7,9}U C A =,{2,4,6,7,9}U C B =,()U C B =由计算结果可以知道,()()U U C B C AB =,()()U U C B C AB =.另解:作出Venn 图,如右图所示,由图形可以直接观察出来结果可用Venn 图研究()()()U U U C A C B C AB =与()()()U U U C A C B C AB =,在理解的基础记住此结论,有助于今后迅速解决一些集合问题.4讲§1.1.3集合的基本运算(二):掌握集合、交集、并集、补集的有关性质,运行性质解决一些简单的问题;掌握集合运算中)()()U U U C B C A C B =,()()()U U U C A B C A C B =.2.集合元素个数公式:()()()()n ABn A n B n A B =+-.3.在研究集合问题时,常常用到分类讨论思想、数形结合思想等.也常由新的定义考查创新思维¤例题精讲:}{}21,,9,5,1a B a a -=--,若{}9A B =,求实数{}9B =,则有:={9, 0, 4}-,不合题意,故舍去;不合题意,故舍去;P 14B组题2)解:{1,4}B =.当3a =时,{3}A =,则{1,3,4}A B =,A B =∅;当1a =时,{1,3}A =,则{1,3,4}A B =,{1}A B =;当4a =时,{3,4}A =,则{1,3,4}AB =,{4}A B =;当3a ≠且1a ≠且4a ≠时,{3,}A a =,则{1,3,4,}AB a =,A B =∅.点评:集合A 含有参数a ,需要对参数a 进行分情况讨论.罗列参数a 的各种情况时,需依据集合的性质和影响运算结果的可能而进行分析,不多不少是分类的原则.【例3】设集合A ={x |240x x +=},B ={x |222(1)10x a x a +++-=,a R ∈},若AB =B ,求实数a 的值.解:先化简集合A ={4,0}-.由AB =B ,则B ⊆A ,可知集合B 可为∅,或为{0},或{-4},或{4,0}-.(i )若B =∅,则224(1)4(1)0a a ∆=+--<,解得a <1-; (ii )若0∈B ,代入得2a 1-=0⇒a =1或a =1-, 当a =1时,B =A ,符合题意;当a =1-时,B ={0}⊆A ,也符合题意.(iii )若-4∈B ,代入得2870a a -+=⇒a =7或a =1, 当a =1时,已经讨论,符合题意;当a =7时,B ={-12,-4},不符合题意. 综上可得,a =1或a ≤1-.点评:此题考查分类讨论的思想,以及集合间的关系的应用.通过深刻理解集合表示法的转换,及集合之集合B =,UC x A ∉且:根据题意可知,{|B x x -={1,3,4,7,8}=()U C B .进一步体会函数是描述变量之间的依赖关系的重要数学模型,了解构成函数的要素,B y =). 3.决定函数的三个要素是定义域、值域和对应法则.当且仅当函数定义域、对应法则分别相同时,函数才是同一函数.¤例题精讲:【例1】求下列函数的定义域:(1)121y x =+-;(2)y =.解:(1)由210x +-≠,解得1x ≠-且3x ≠-, 所以原函数定义域为(,3)(3,1)(1,)-∞----+∞.(2)由3020x -≥⎧⎪≠,解得3x ≥且9x ≠,所以原函数定义域为[3,9)(9,)+∞.【例2】求下列函数的定义域与值域:(1)3254x y x+=-;(2)22y x x =-++. 解:(1)要使函数有意义,则540x -≠,解得54x ≠.所以原函数的定义域是5{|}4x x ≠.32112813(45)233233305445445445444x x x y x x x x ++-+==⨯=⨯=-+≠-+=-----,所以值域为3{|}4y y ≠-.(2)22192()24y x x x =-++=--+.所以原函数的定义域是R ,值域是9(,]4-∞.【例3】已知函数1()1xf x x-=+.求:(1)(2)f 的值;(2)()f x 的表达式素(mapping ).记作“:f A B →”.判别一个对应是否映射的关键:A 中任意,B 中唯一;对应法则f .¤例题精讲:【例1】如图,有一块边长为a 的正方形铁皮,将其四个角各截去一个边长为x 的小正方形,然后折成一个无盖的盒子,写出体积V 以x 为自变量的函数式是_____,这个函数的定义域为_______.解:盒子的高为x ,长、宽为2a x -,所以体积为V =2(2)x a x -. 又由20a x >-,解得2a x <. 所以,体积V 以x 为自变量的函数式是2(2)V x a x =-,定义域为{|0}2a x x <<.【例2】已知f (x)=33x x-+⎪⎩(,1)(1,)x x ∈-∞∈+∞,求f [f (0)]的值.解:∵0(,1)∈-∞,∴f(0)=,∴f3-3=2+12=52,即f [f (0)]=52. 【例3】画出下列函数的图象:(1)|2|y x =-;(教材P 26练习题3) (2)|1||24|y x x =-++.解:(1)由绝对值的概念,有2,2|2|x x y x -≥⎧=-=⎨.区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2),那么就说f (x )在区间D 上是增函数(increasingfunction ).仿照增函数的定义可定义减函数.2.如果函数f (x )在某个区间D 上是增函数或减函数,就说f (x )在这一区间上具有(严格的)单调性,区间D 叫f(x )的单调区间.在单调区间上,增函数的图象是从左向右是上升的(如右图1),减函数的图象从左向右是下降的(如右图2).由此,可以直观观察函数图象上升与下降的变化趋势,得到函数的单调区间及单调性.3.判断单调性的步骤:设x 1、x 2∈给定区间,且x 1<x 2;→计算f (x 1)-f (x 2)→判断符号→下结论.¤例题精讲:【例1】试用函数单调性的定义判断函数2()1xf x x =-在区间(0,1)上的单调性. 解:任取12,x x ∈(0,1),且12x x <.则1221121212222()()()11(1)(1)x x x x f x f x x x x x --=-=----. 由于1201x x <<<,110x -<,210x -<,210x x ->,故12()()0f x f x ->,即12()()f x f x >.所以,函数2()1xf x x =-在(0,1)上是减函数.【例2】求二次函数2()(0)f x ax bx c a =++<的单调区间及单调性.解:设任意12,x x R ∈,且12x x <.则22121122()()()()f x f x ax bx c ax bx c -=++-++221212()()a x x b x x =-+-1212()[()]x x a x x b =-++.b b0<,即(f得到f ¤学习目标:通过已学过的函数特别是二次函数,理解函数的最大(小)值及其几何意义;学会运用函数图像理解和研究函数的性质.能利用单调性求函数的最大(小)值.¤知识要点:1.定义最大值:设函数()y f x =的定义域为I ,如果存在实数M 满足:对于任意的x ∈I ,都有()f x ≤M ;存在x 0∈I ,使得0()f x =M .那么,称M 是函数()y f x =的最大值(MaximumValue ).仿照最大值定义,可以给出最小值(MinimumValue )的定义.2.配方法:研究二次函数2(0)y ax bx c a =++≠的最大(小)值,先配方成224(24b ac b y a x a a-=++后,当0a >时,函数取最小值为244ac b a -;当0a <时,函数取最大值244ac b a-.3.单调法:一些函数的单调性,比较容易观察出来,或者可以先证明出函数的单调性,再利用函数的单调性求函数的最大值或最小值.4.图象法:先作出其函数图象后,然后观察图象得到函数的最大值或最小值. ¤例题精讲:【例1】求函数261y x x =++的最大值. 解:配方为2613()24y x =++,由2133()244x ++≥,得260813()24x <≤++. 所以函数的最大值为8.【例2】某商人如果将进货单价为8元的商品按每件10元售出时,每天可售出100件.现在他采用提高解10(10)x -件,所赚得的利润为8)[10010(10)]x --.即2280160010(x +-=-时,max 360y =所以,他将售出价定为14元时,才能使每天所赚得的利润最大,最大利润为】求函数21y x x =+-的最小值解在t ≥(解(作出函数的图象,由图可知,[3,3]y ∈-.所以函数的最大值为3,最小值为-3.点评:二次函数在闭区间上的最大值或最小值,常根据闭区间与对称轴的关系,结合图象进行分析.含绝对值的函数,常分零点讨论去绝对值,转化为分段函数进行研究.分段函数的图象注意分段作出.第9讲§1.3.2函数的奇偶性¤学习目标:结合具体函数,了解奇偶性的含义;学会运用函数图像理解和研究函数的性质.理解奇函数、偶函数的几何意义,能熟练判别函数的奇偶性.¤知识要点:1.定义:一般地,对于函数()f x 定义域内的任意一个x ,都有()()f x f x -=,那么函数()f x 叫偶函数(evenfunction ).如果对于函数定义域内的任意一个x ,都有()()f x f x -=-),那么函数()f x 叫奇函数(oddfunction ).2.具有奇偶性的函数其定义域关于原点对称,奇函数的图象关于原点中心对称,偶函数图象关于y 轴轴对称.3.判别方法:先考察定义域是否关于原点对称,再用比较法、计算和差、比商法等判别()f x -与()f x 的关系.¤例题精讲:【例1】判别下列函数的奇偶性:(1)31()f x x x=-;(2)()|1||1|f x x x =-++;(3)23()f x x x =-. 解:(1)原函数定义域为{|0}x x ≠,对于定义域的每一个x ,都有3311()()(()f x x x f x x x-=--=--=--,所以为奇函数..2(3f a 又∵()f x 是奇函数,∴()f x 的图象关于原点中心对称,则在y 轴右侧同样递减. 又(0)(0)f f -=-,解得(0)0f =,所以()f x 的图象在R 上递减. ∵22(33)(32)f a a f a a +-<-, ∴223332a a a a +->-,解得1a >.点评:定义在R 上的奇函数的图象一定经过原点.由图象对称性可以得到,奇函数在关于原点对称区间上单调性一致,偶函数在关于原点对称区间上的单调性相反.集合与函数基础测试一、选择题(共12小题,每题5分,四个选项中只有一个符合要求)1.函数y ==x 2-6x +10在区间(2,4)上是( )A .递减函数B .递增函数C .先递减再递增D .选递增再递减.2.方程组20{=+=-y x y x 的解构成的集合是 ()A .)}1,1{(B .}1,1{C .(1,1)D .}1{3.已知集合A ={a ,b ,c },下列可以作为集合A 的子集的是(),B ∈A B B A B C A C U U D.B C A C U U11.下列函数中为偶函数的是()A .x y =B .x y =C .2x y =D .13+=x y12.如果集合A={x |ax 2+2x +1=0}中只有一个元素,则a 的值是()A .0B .0或1C .1D .不能确定二、填空题(共4小题,每题4分,把答案填在题中横线上)13.函数f (x )=2×2-3|x |的单调减区间是___________.14.函数y =11+x 的单调区间为___________. 15.含有三个实数的集合既可表示成}1,,{ab a ,又可表示成}0,,{2b a a +,则=+20042003b a . 16.已知集合}33|{≤≤-=x x U ,}11|{<<-=x x M ,}20|{<<=x x N C U 那么集合=N ,=⋂)(N C M U ,=⋃N M .三、解答题(共4小题,共44分)17.已知集合}04{2=-=x x A ,集合}02{=-=ax x B ,若A B ⊆,求实数a 的取值集合.18.19.x )在R 20.};)],1=f 所以f [x (x -2)]>f (3),又f (x )是定义在R 上的增函数,所以有x (x -2)>3,可解得x >3或x <-1.答案:x >3或x <-1.19..解析:本题主要是培养学生理解概念的能力.f (x )=x 3+2x 2-1.因f (x )为奇函数,∴f (0)=-1. 当x <0时,-x >0,f (-x )=(-x )3+2(-x )2-1=-x 3+2x 2-1, ∴f (x )=x 3-2x 2+1.20. 二次函数222)1(2)(m m x m x x f -+-+-=的图象关于y 轴对称, ∴1=m ,则1)(2+-=x x f ,函数)(x f 的单调递增区间为(]0,∞-. .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识点3、集合间的基本关系知识梳理1、子集的概念定义一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集图示(1)任何一个集合是它本身的子集,即A⊆A.如果集合A是集合B的子集(A⊆B),且集合B是集合A的子集(B⊆A),此时,集合A与集合B中的元素是一样的,因此,集合A与集合B相等,记作A=B.3、真子集的概念(1)A⊂B且B⊂C,则A⊂C;(2)A⊆B且A≠B,则A⊂B常考题型题型一、集合间关系的判断例1、(1)下列各式中,正确的个数是()①{0}∈{0,1,2};②{0,1,2}⊆{2,1,0};③∅⊆{0,1,2};④∅={0};⑤{0,1}={(0,1)};⑥0={0}A.1B.2 C.3 D.4①A={-1,1},B={(-1,-1),(-1,1),(1,-1),(1,1)};②A={x|x是等边三角形},B={x|x是等腰三角形};③M={x|x=2n-1,n∈N*},N={x|x=2n+1,n∈N*}.判断集合间关系的方法(1)用定义判断.首先,判断一个集合A中的任意元素是否属于另一集合B,若是,则A⊆B,否则A不是B的子集;其次,判断另一个集合B中的任意元素是否属于第一个集合A,若是,则B⊆A,否则B不是A的子集;若既有A⊆B,又有B⊆A,则A=B.(2)数形结合判断.对于不等式表示的数集,可在数轴上标出集合的元素,直观地进行判断,但要注意端点值的取舍.变式训练能正确表示集合M={x∈R|0≤x≤2}和集合N={x∈R|x2-x=0}关系的Venn图是()A. B. C. D.题型二、有限集合子集的确定例2、(1)集合M={1,2,3}的真子集个数是()A.6 B.7 C.8 D.9(2)满足{1,2}⊂≠M⊆{1,2,3,4,5}的集合M有________个.公式法求有限集合的子集个数(1)含n个元素的集合有2n个子集.(2)含n个元素的集合有(2n-1)个真子集.(3)含n个元素的集合有(2n-1)个非空子集.(4)含有n个元素的集合有(2n-2)个非空真子集.(5)若集合A有n(n≥1)个元素,集合C有m(m≥1)个元素,且A⊆B⊆C,则符合条件的集合B有2m-n个.变式训练非空集合S⊆{1,2,3,4,5}且满足“若a∈S,则6-a∈S”,则这样的集合S共有________个.题型三、集合间关系的应用例3、已知集合A={x|x<-1或x>4},B={x|2a≤x≤a+3},若B⊆A,求实数a的取值范围.变式训练已知集合A={x|1<ax<2},B={x|-1<x<1},求满足A⊆B的实数a的取值范围.课时小测1、给出下列四个判断:①∅={0};②空集没有子集;③任何一个集合必有两个或两个以上的子集;④空集是任何一个集合的子集.其中,正确的有()A.0个B.1个C.2个D.3个2、已知A={x|x是菱形},B={x|x是正方形},C={x|x是平行四边形},那么A,B,C之间的关系是()A.A⊆B⊆C B.B⊆A⊆C C.A⊂≠B⊆C D.A=B⊆C3、已知集合A={-1,3,m},B={3,4},若B⊆A,则实数m=________.4、集合A={x|0≤x<3且x∈N}的真子集的个数为________.5、已知集合A={x|1≤x≤2},B={x|1≤x≤a}.(1)若A是B的真子集,求a的取值范围;(2)若B是A的子集,求a的取值范围;(3)若A=B,求a的取值范围.同步练习一、选择题1.已知集合A,B,若A不是B的子集,则下列命题中正确的是A.对任意的a∈A,都有a∉B B.对任意的b∈B,都有b∉A2.如果{}|1A x x =>-,那么A .0A ⊆B .{}0A ∈C .A ∅∈D .{}0A ⊆ 3.下列各式中,正确的个数是(1){0}∈{0,1,2};(2){0,1,2}⊆{2,1,0};(3)∅⊆{0,1,2}. A .0 B .1 C .2 D .3 4.若集合{}|0A x x =≥,且B A ⊆,则集合B 可能是A .{}1,2B .{}|1x x ≤C .{}1,0,1-D .R 5.若2{|,}x x a a ⊂∅≤∈≠R ,则实数a 的取值范围是A .B .C .D . 6.已知全集U =R ,则正确表示集合{}1,0,1M =-和{}2|0N x x x =+=关系的韦恩(Venn)图是A B C D7.设集合{1,2}M =,2{}N a =,那么 A .若1a =,则N M ⊆B .若N M ⊆,则1a =C .若1a =,则N M ⊆,反之也成立D .1a =和N M ⊆成立没有关系8.已知集合{}4,5,6P =,,定义{},,P Q x x p q p P q Q ⊕==-∈∈,则集合P Q ⊕的所有非空真子集的个数为A .32B .31C .30D .以上都不对二、填空题9.设P ={x |x <4},Q ={x |-2<x <2},则P Q .10.已知集合,,则满足条件的集合C 的个数为_____.三、解答题11.写出集合{0,1,2}的所有子集,并指出其中哪些是它的真子集. (0,)+∞[0,)+∞(,0]-∞(,0)-∞{}1,2,3Q =2{|320,}A x x x x =-+=∈R {|05,}B x x x =<<∈N A C B ⊆⊆12.已知集合{}{}2,4,6,8,9,1,2,3,5,8A B ==,又知非空集合C 是这样一个集合:其各元素都加2后,就变为A 的一个子集;若各元素都减去2后,则变为B 的一个子集,求集合C .13.已知集合A ={x|2a −1<x <3a +1},集合B ={x|−1<x <4}.(1)若A ⊆B ,求实数a 的取值范围;(2)是否存在实数a ,使A =B ?若存在,求出a 的值;若不存在,说明理由.知识点4、集合的并集、交集知识梳理1、并集的概念、并集的性质(1)A ∪B =B ∪A ,即两个集合的并集满足交换律.(2)A ∪A =A ,即任何集合与其本身的并集等于这个集合本身. (3)A ∪∅=∅∪A =A ,即任何集合与空集的并集等于这个集合本身.(4)A ⊆(A ∪B),B ⊆ (A ∪B),即任何集合都是该集合与另一个集合并集的子集.(5)若A ⊆B ,则A ∪B =B ,反之也成立,即任何集合同它的子集的并集,等于这个集合本身. 3、交集的概念4、交集的性质(1)A∩B=B∩A,即两个集合的交集满足交换律.(2)A∩A=A,即任何集合与其本身的交集等于这个集合本身.(3)A∩∅=∅∩A=∅,即任何集合与空集的交集等于空集.(4)A∩B⊆A,A∩B⊆B,即两个集合的交集是其中任一集合的子集.(5)若A⊆B,则A∩B=A,反之也成立,即若A是B的子集,则A,B的公共部分是A.常考题型题型一、并集的运算例1、(1)设集合M={4,5,6,8},集合N={3,5,7,8},那么M∪N等于()A.{3,4,5,6,7,8}B.{5,8} C.{3,5,7,8} D.{4,5,6,8} (2)若集合A={x|x>-1},B={x|-2<x<2},则A∪B等于()A.{x|x>-2} B.{x|x>-1} C.{x|-2<x<-1} D.{x|-1<x<2}变式训练若集合A={1,4,x},B={1,x2},A∪B={1,4,x},则满足条件的实数x有()A.1个B.2个C.3个D.4个题型二、交集的运算例2、(1)若A={0,1,2,3},B={x|x=3a,a∈A},则A∩B等于()A.{1,2} B.{0,1} C.{0,3} D.{3}(2)设集合A={x|-1≤x≤2},B={x|0≤x≤4},则A∩B等于()A.{x|0≤x≤2} B.{x|1≤x≤2} C.{x|0≤x≤4} D.{x|1≤x≤4}求交集运算应关注两点(1)求交集就是求两集合的所有公共元素形成的集合.(2)利用集合的并、交求参数的值时,要检验集合元素的互异性.变式训练已知M={1,2,a2-3a-1},N={-1,a,3},M∩N={3},求实数a的值.题型三、交集、并集的性质及应用例3、已知集合A={x|-3<x≤4},集合B={x|k+1≤x≤2k-1},且A∪B=A,试求k的取值范围.变式训练已知集合A={x|-3<x≤4},集合B={x|k+1≤x≤2k-1},且A∩B=A,试求k的取值范围.课时小测1、设集合M={m∈Z|-3<m<2},N={n∈Z|-1≤n≤3},则M∩N=()A.{0,1}B.{-1,0,1}C.{0,1,2} D.{-1,0,1,2}2、已知S={(x,y)|y=1,x∈R},T={(x,y)|x=1,y∈R},则S∩T=()A.空集B.{1}C.(1,1) D.{(1,1)}3、若集合A={x|-1<x<5},B={x|x≤-1,或x≥4},则A∪B=________,A∩B=________.4、已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是________.5、设集合A={2,-1,x2-x+1},B={2y,-4,x+4},C={-1,7},且A∩B=C,求实数x,y的值及A∪B.知识点5、补集及综合应用知识梳理1、全集的定义及表示(1)定义:如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集.(2)符号表示:全集通常记作U.2、补集的概念及性质的补集,记作U=∅,U∅U U(U(U U常考题型题型一、补集的运算例1、(1)设全集U=R,集合A={x|2<x≤5},则U A=________.(2)设U={x|-5≤x<-2,或2<x≤5,x∈Z},A={x|x2-2x-15=0},B={-3,3,4},则U A=________,U B=________.变式训练设全集U={1,3,5,7,9},A={1,|a-5|,9),U A={5,7},则a的值为________.题型二、集合的交、并、补的综合运算例2、已知全集U={x|x≤4},集合A={x|-2<x<3},B={x|-3≤x≤2},求A∩B,(U A)∪B,A∩(U B),U(A∪B).变式训练已知全集U={x|x<10,x∈N*},A={2,4,5,8},B={1,3,5,8},求U(A∪B),U(A∩B),(U A)∩(U B),(U A)∪(U B).题型三、补集的综合应用例3、设全集U=R,M={x|3a<x<2a+5},P={x|-2≤x≤1},若M⊂≠U P,求实数a的取值范围.变式训练已知集合A={x|x<a},B={x<-1,或x>0},若A∩(R B)=∅,求实数a的取值范围.课时小测2、已知全集U =R ,集合A ={x |-2≤x ≤3},B ={x |x <-1,或x >4},那么集合A ∩(U B )等于( )A .{x |-2≤x <4}B .{x |x ≤3,或x ≥4}C .{x |-2≤x <-1}D .{x |-1≤x ≤3}3、已知集合A ={3,4,m },集合B ={3,4},若A B ={5},则实数m =________. 4、已知全集U =R ,M ={x |-1<x <1},U N ={x |0<x <2},那么集合M ∪N =________.5、设U =R ,已知集合A ={x|-5<x<5},B ={x|0≤x<7},求(1)A∩B ;(2)A ∪B ;(3)A ∪(U B);(4)B∩(U A);(5)(U A )∩(U B ).同步练习一、选择题1、已知集合{1,2,3,4,5,6}U =,{1,3,4}A =,则UA =A .{5,6}B .{1,2,3,4}C .{2,5,6}D .{2,3,4,5,6} 2、已知集合{}|1A x x =>,{|1}B x x =≤,则 A .AB ≠∅ B .A B =RC .B A ⊆D .A B ⊆3、若集合{}{}1,2,3,4,2A B x x ==∈≤N ,则AB 中的元素个数是A .4B .6C .2D .34、已知全集U ={1,2,3,4,5,6},集合P ={1,3,5},Q ={1,2,4},则U P Q ()= A .{1}B .{3,5}C .{1,2,4,6}D .{1,2,3,4,5}5、设集合{},A a b =,集合{}1,5B a =+,若{}2A B =,则A B =A .{}1,2B .{}1,5C .{}2,5D .{}1,2,5 6、若集合AB BC =,则集合A,B,C 的关系下列表示正确的是。