2018年福建省高三毕业班质量检查测试(理科数学)

合集下载

2018年福建省普通高中毕业班质量检查

2018年福建省普通高中毕业班质量检查

2018年福建省普通高中毕业班质量检查理科数学第Ⅰ卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合13{|}A y y x ==,{ln (1)}B x y x ==-,则A B =( )A .[1,)+∞B .(0,1)C .(1,)+∞D .(,1)-∞ 2.已知纯虚数z 满足(12)1i z a i -=+,则实数a 等于( ) A .12B .12-C .-2D .23.在等差数列{}n a 中,已知37,a a 是函数2()43f x x x =-+的两个零点,则{}n a 的前9项和等于( )A .-18B .9C .18D .36 4.阅读下边的程序框图,运行相应的程序,输出的结果为( )A .3B .23C .12D .12-5.下列关于命题的说法错误的是( )A .命题“若2320x x -+=,则2x =”的逆否命题为“若2x ≠,则2320x x -+≠”;B .“2a =”是“函数()lo g a f x x =在区间(0,)+∞上为增函数”的充分不必要条件;C .若命题:p n N ∃∈,21000n >,则:p n N ⌝∀∈,21000n >;D .命题“(,0)x ∃∈-∞,23x x <”是假命题. 6. 6(1)(2)x x -+的展开式中4x 的系数为( ) A .100 B .15 C .-35 D .-2207.已知向量OA 与OB 的夹角为060,且||3O A=,||2O B=,若O C m O A n O B =+,且O C A B⊥,则实数m n的值为( )A .16B .14C .6D .48.中国古代数学著《九章算术》中记载了公元前344年商鞅督造一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),若π取3,其体积为13.5(立方寸),则图中的x 为( )A .2.4B .1.8C .1.6D .1.29.设不等式组104x x y x y ≥⎧⎪-≤⎨⎪+≤⎩,表示的平面区域为M ,若直线2y k x =-上存在M 内的点,则实数k 的取值范围是( ) A .[1,3] B .(,1][3,)-∞+∞ C .[2,5] D .(,2][5,)-∞+∞10.已知三棱锥P A B C -的四个顶点均在同一球面上,其中A B C ∆是正三角形,P A ⊥平面A B C,2P A A B == )A .8πB .16πC .32πD .36π 11.2的双曲线2222:1(0,0)x y C a b ab-=>>的左、右焦点分别为12,F F ,M是双曲线C 的一条渐近线上的点,且2O M M F ⊥,O 为坐标原点,若216O M F S ∆=,则双曲线C 的实轴长是( )A .32B .16C .8D .412.已知函数()f x 的定义域为R ,其图象关于点(1,0)-中心对称,其导函数'()f x ,当1x <-时,'(1)[()(1)()]0x f x x f x +++<,则不等式(1)(0)x f x f ->的解集为( )A .(1,)+∞B .(,1)-∞-C .(1,1)-D .(,1)(1,)-∞-+∞第Ⅱ卷本卷包括必考题和选考题两个部分,第13题—第21题为必考题,每个考生都必须作答,第22题—第23题为选考题,考生根据要求作答二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上。

福建省2018届高三毕业班质量检查测试数学试题(文)含答案

福建省2018届高三毕业班质量检查测试数学试题(文)含答案

14. 若 x , y 满足约束条件 x y 0
,则 z x y 的取值范围为

x 2y 6 0
15. 已知 A , B 分别为椭圆 C 的长轴端点和短轴端点, F 是 C 的焦点 . 若 ABF 为等腰三角
形,则 C 的离心率等于

16. 已知底面边长为 4 2 ,侧棱长为 2 5 的正四棱锥 S ABCD 内接于球 O1 . 若球 O2 在球 O1
D
. 1, 2
2. 已知向量 AB 1,1 , AC 2,3 ,则下列向量中与 BC 垂直的是( )
A. a 3,6
B . b 8, 6 C . c 6,8 D . d 6,3
3. 设等比数列 an 的前 n 项和为 Sn ,若 Sn 2n 1
,则
()
A. -2
B
. -1
C
.1
D
.2
4. 如图,曲线 y sin x 3 把边长为 4 的正方形 OABC 分成黑色部分和白色部分 . 在正方形 2
2018 年福建省高三毕业班质量检查测试
文科数学
一、选择题:本大题共 12 个小题,每小题 5 分,共 60 分. 在每小题给出的四个选项中,只有
一项是符合题目要求的 .
1. 已知集合 A x | x2 2x 3 0 , B

2, 1,1,2 ,则 A B ( )
A. 1,2
B
. 2,1
C . 1,2
低龄
者”为“高龄患者” . 根据表中数据,解决以下问题: ( i )将以下两个列联表补充完整,并判断“地域” “初次患病年龄”这两个变量中哪个变量 与该疾病的类型有关联的可能性更大 . (直接写出结论,不必说明理由) 表一:

2018年福建省质检数学(理科)试卷(含答案)

2018年福建省质检数学(理科)试卷(含答案)

2018年福建省高三毕业班质量检查测试理科数学一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合21{|log 0},33xA x xB x ⎧⎫⎪⎪⎛⎫=<=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A B =I ( )A .{|11}x x -<<B .{|01}x x <<C .{|0}x x >D .R1.【答案】B【考查意图】本小题以集合为载体,考查指数函数、对数函数的图象与性质,集合的运算等基础知识;考查运算求解能力,考查数形结合思想等.【答题分析】只要掌握指、对数函数的图象与性质,集合的运算等,便可解决问题.解:2log 0x <等价于22log log 1x <,解得01x <<,所以(0,1)A =;133x⎛⎫< ⎪⎝⎭等价于11133x-⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,解得1x >-,所以(1,)B =-+∞,从而(0,1)A B =I . 2.将函数sin 2y x =的图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数()y f x =的图象,则( )A .()y f x =的图象关于直线8x π=对称B .()f x 的最小正周期为2π C .()y f x =的图象关于点,02π⎛⎫⎪⎝⎭对称 D .()f x 在,36ππ⎛⎫-⎪⎝⎭单调递增 2.【答案】D【考查意图】本小题以三角函数为载体,考查函数的图象变换及三角函数的图象与性质等基础知识,考查推理论证能力,考查数形结合思想、特殊与一般思想等.【答题分析】只要掌握函数图象变换知识、三角函数的图象与性质,便可解决问题. 解:由题意得,()sin f x x =.sin y x =的图象对称轴为直线,2x k k Z ππ=+∈,所以选项A 错误;sin y x =的最小正周期为2T π=,所以选项B 错误; sin y x =的图象对称中心为(,0),k k Z π∈,所以选项C 错误;sin y x =的一个单调递增区间为,22ππ⎛⎫- ⎪⎝⎭,,,3622ππππ⎛⎫⎛⎫-⊆- ⎪ ⎪⎝⎭⎝⎭,所以选项D 正确.3.庄严美丽的国旗和国徽上的五角星是革命和光明的象征.正五角星是一个非常优美的几何图形,且与黄金分割有着密切的联系;在如图所示的正五角星中,以,,,,A B C D E 为顶点的多边形为正五边形,且51PT AT -=.下列关系中正确的是( ) A .512BP TS RS -=u u u r u u r u uu r B .512CQ TP TS +=u u u r u u r u ur C .512ES AP BQ -=u u u r u u u r u u ur D .512AT BQ CR +=u u u r u u u r u u ur ABCDEP QR S T【考察意图】本小题以正五角星为载体,考查平面向量的概念及运算等基础知识,考查推理论证能力,考查转化与化归思想等.【答题分析】只要掌握平面向量的概念,平面向量的加法、减法及数乘运算的几何意义,便可解决问题.解:由题意得,51BP TS TE TS SE RS +-=-==u u u r u u r u u r u u r u u r u uu r ,所以选项A 正确. 512CQ TP PA TP TA ST +=+==u u u r u u r u u u r u u r u u r u u u r ,所以选项B 错误;512ES AP RC QC RQ QB -=-==u u u r u u u r u u u r u u u r u u u r u u u r ,所以选项C 错误;51,2AT BQ SD RD CR RS RD SD +=+==-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ,若512AT BQ CR +=u u u r u u u r u u u r ,则0SD =u u u r r,不合题意,所以选项D 错误.故选A .4.已知5234560123456(2)(21)x x a a x a x a x a x a x a x +-=++++++,则024a a a ++=( ) A .123 B .91 C .120- D .152- 4.【答案】D【考查意图】本小题以代数恒等式为载体,考查二项式定理等基础知识,考查运算求解能力、抽象概括能力,考查函数与方程思想、特殊与一般思想等.【答题分析】只要掌握二项式定理,会合理赋值,便可解决问题.解法一:由5234560123456(2)(21)x x a a x a x a x a x a x a x +-=++++++,取1x =得:01234563a a a a a a a ++++++=, ①取1x =-得:0123456243a a a a a a a -+-+-+=-, ②+①②,得0246120a a a a +++=-,又561232a =⨯=,所以024152a a a ++=-.解法二:因为5(21)x -的展开式的第1r +项515(2)(1),0,1,2,3,4,5r r r r T C x r -+=-=, 所以5054143230525522(1)2,12(1)22(1)70a C a C C =⨯-=-=⨯-+⨯-=-, 23214145512(1)22(1)80a C C =⨯-+⨯-=-,所以024152a a a ++=-,故选D .5.程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.它问世后不久便风行宇内,成为明清之际研习数学者必读的教材,而且传到朝鲜、日本及东南亚地区,对推动汉字文化圈的数学发展起了重要的作用.卷八中第33问是:“今有三角果一垛,底阔每面七个.问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数S 为( ) A .120 B .84 C .56 D .28【答案】B【考查意图】本小题以数学文化为载体,考查程序框图等基础知识,考查运算求解能力、应用意识. 【答题分析】只要按程序框图逐步执行,便可解决问题. 解:按步骤执行程序框图中的循环体,具体如下:1,1,12,3,43,6,104,10,20i n S i n S i n S i n S ===→===→===→===; 5,15,356,21,567,28,84i n S i n S i n S ===→===→===.所以输出84S =.故选B .6.已知函数22()22x f x x x =-+.命题1:()p y f x =的图象关于点(1,1)对称;命题2:p 若2a b <<,则()()f a f b <.则在命题112212312:,:()(),:()q p p q p p q p p ∨⌝∧⌝⌝∨和 412:()q p p ∧⌝中,真命题是( )A .13,q qB .14,q qC .23,q qD .24,q q【答案】B【考察意图】本小题以分式函数为载体,考查函数的图象与性质、导数及其应用、逻辑联结词的含义等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、特殊与一般思想等.【答题分析】只要掌握逻辑联结词的含义、函数图象的对称性,会利用导数研究函数的单调性,会判断含逻辑联结词的命题的真假,便可解决问题.解法一:因为2222(2)44(2)(2)2(2)222x x x f x x x x x --+-==---+-+, 所以22244()(2)222x x x f x f x x x -+++-==-+,故()f x 的图象关于点(1,1)对称,故命题1p 为真命题; 因为2(2),(0)05f f -==,所以(2)0f ->,故命题2p 为假命题. 所以1p ⌝为假命题,2p ⌝为真命题,故1212,()p p p p ∨∧⌝为真命题.故选B .解法二:因为2222(1)()122(1)1x x f x x x x -==+-+-+,所以函数()y f x =的图象可由22()1xg x x =+的图象向右平移1个单位,再向上平移1个单位后得到.因为()()g x g x -=-,所以()g x 是奇函数,()g x 的图象关于原点对称,从而()y f x =的图象关于点(1,1)对称,故命题1p 为真命题.因为22224()(22)x xf x x x -+'=-+,令()0f x '>,得02x <<,所以()f x 的单调递增区间为(0,2);令()0f x '<,得0x <或2x >,所以()f x 的单调递减区间为(,0)-∞,(2,)+∞; 故命题2p 为假命题.所以1p ⌝为假命题,2p ⌝为真命题,故1212,()p p p p ∨∧⌝为真命题.故选B . 解法三:同解法一可得,命题1p 为真命题.因为当0x ≠时,2221()2211122x f x x x x x ==-+⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭,设2()221h t t t =-+,1t x =,则1t x=在(,0)-∞单调递减,当(,0)x ∈-∞时,(,0)t ∈-∞,又因为 2()221h t t t =-+在(,0)-∞单调递减,当(,0)t ∈-∞时,()(1,)h t ∈+∞,所以211122y x x ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭在(,0)-∞单调递增,又因为1y x =在(1,)+∞单调递减,所以()f x 在(,0)-∞单调递减,故命题2p 为假命题.所以1p ⌝为假命题,2p ⌝为真命题,故1212,()p p p p ∨∧⌝为真命题.故选B .7.如图,在平面直角坐标系xOy 中,质点,M N 间隔3分钟先后从点P 出发,绕原点按逆时针方向作角速度为6π弧度/分钟的运算圆周运动,则M 与N 的纵坐标之差第4次达到最大值时,N 运动的时间为( ) A .37.5分钟 B .40.5分钟 C .49.5分钟 D .52.5分钟O Py【答案】A【考查意图】本小题以匀速圆周运动为背景,考查任意角三角函数的定义、三角函数的图象与性质等基础知识,考查抽象概括能力、推理论证能力、运算求解能力、应用意识及创新意识,考查函数与方程思想、数形结合思想等.【答题分析】只要掌握任意角三角函数的定义、三角函数的图象与性质等,或结合平面几何知识直观判断,便可解决问题.解法一:设点N 出发后的运动的时间为t 分钟,圆O 的半径为1,由三角函数的定义,得sin cos 266N y t t πππ⎛⎫=-+=- ⎪⎝⎭,因为,M N 间隔3分钟,所以362MON ππ∠=⨯=,所以sin sin 2626M y t t ππππ⎛⎫=-++= ⎪⎝⎭,所以sincos26664M N y y t t t ππππ⎛⎫-=+=+ ⎪⎝⎭, 当2,642t k k Z ππππ+=+∈,即312,2t k k Z =+∈时, M N y y -取得最大值,故当3k =时,M N y y -第4次取得最大值,此时37.5t =,故选A .解法二:因为,M N 间隔3分钟,所以362MON ππ∠=⨯=,当M N y y -取得最大值时,MN x ⊥轴,且4PON π∠=,O PyNM当M N y y -第一次取得最大值时,N 运动的时间为4 1.56ππ=分钟;又质点N 运动一周的时间为2126ππ=分钟,当M N y y -第4次取得最大值时,N 运动的时间为1.512337.5+⨯=分钟.8.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,俯视图中的两条曲线均为圆弧,则该几何体的体积为( ) A .32643π-B .648π-C .16643π-D .8643π-【答案】C【考查意图】本小题以空间几何体为载体,考查三视图,正方体,圆柱,圆锥的体积等基础知识;考查空间想象能力,运算求解能力.【答题分析】只要掌握三视图及正方体、圆柱、圆锥的体积计算公式,便可解决问题. 解:由三视图可知该几何体是由棱长为4的正方体截去14个圆锥和14个圆柱所得的几何体,且圆锥的底面半径为2,高为4;圆柱的底面半径为2,高为4,如图. 所以该几何体的体积为311164444464433πππ⎛⎫-⨯⨯⨯+⨯⨯=- ⎪⎝⎭.故选C .9.已知5台机器中有2台存在故障,现需要通过逐台检测直至区分出2台故障机器为止.若检测一台机器的费用为1000元,则所需检测费的均值为( ) A .3200元 B .3400元 C .3500元 D .3600元 【答案】C【考查意图】本小题以故障机器问题为载体,考查计数原理、排列与组合、随机变量的分布列与数学期望等基础知识,考查抽象概括能力、运算求解能力及应用意识,考查统计与概率思想、分类与整合思想等. 【答题分析】只要能列出随机变量的所有取值并应用计数原理及排列组合知识计算对应的概率,理解数学期望的意义,便可解决问题.解法一:设检测机器的台数为ξ,则ξ的所有可能取值为2,3,4.1123223232235513133(2),(3),(4)1101010105C C A A A P P P A A ξξξ+========--=, 所以133234 3.510105E ξ=⨯+⨯+⨯=,故所需检测费用的均值为10003500E ξ⨯=元. 解法二:设检测费为η元,则η的所有可能取值为2000,3000,4000.1123223232235513133(2000),(3000),(4000)1101010105C C A A A P P P A A ηηη+========--=所以133200030004000350010105E η=⨯+⨯+⨯=,故所需检测费用的均值为3500元. 10.已知抛物线2:2(0)E y px p =>的焦点为F ,过F 且斜率为1的直线交E 于,A B 两点,线段AB 的中点为M ,其垂直平分线交x 轴于点C ,MN y ⊥轴于点N .若四边形CMNF 的面积等于7,则E 的方程为( )A .2y x =B .22y x =C .24y x =D .28y x =【答案】C【考查意图】本小题以抛物线为载体,考查抛物线的标准方程及其简单几何性质、直线与抛物线的位置关系等基础知识,考查运算求解能力、推理论证能力,考查数形结合思想、函数与方程思想等.【答题分析】只要掌握抛物线的标准方程及其简单几何性质,直线与抛物线的位置关系,并根据题意准确作//FC NM ,设112200(,),(,),(,)A x y B x y M x y ,则1212221212122122AB y y y y pk y y x x y y p p--====-+- 所以122y y p +=,所以0y p =,作MK x ⊥轴于K ,则MK p =,因为AB 的斜率为1, 所以FMK △为等腰直角三角形,故FK KC p ==,所以32MN OK OF FK p ==+=,所以四边形CMNF 的面积为132722p p p ⎛⎫⨯+⨯= ⎪⎝⎭,解得2p =,故抛物线方程为24y x =. 解法二:由题意,得,02p F ⎛⎫⎪⎝⎭,直线AB 的方程为2p y x =-,四边形CNMF 为梯形,且//FC NM ,设112200(,),(,),(,)A x y B x y M x y ,由222p y x y px ⎧=-⎪⎨⎪=⎩,得2220y py p --=,则122y y p +=,所以0y p =,故(0,)N p ,由于2p y x =-,令0y p =,得032x p =, 所以3,2M p p ⎛⎫⎪⎝⎭,因为MC AB ⊥,所以1MC AB k k ⋅=-,故1MC k =-,从而直线MC 的方程为52y x p =-+,令0y =,得52C x p =,故5,02p C ⎛⎫⎪⎝⎭,所以四边形CMNF 的面积为132722p p p ⎛⎫⨯+⨯= ⎪⎝⎭,解得2p =,故抛物线方程为24y x =.11.已知,,,A B C D 四点均在以点1O 为球心的球面上,且25AB AC AD ===,42,8BC BD CD ===.若球2O 在球1O 内且与平面BCD 相切,则球2O 直径的最大值为( )A .1B .2C .4D .8【答案】D【考查意图】本小题以球为载体,考查空间几何体,球的性质等基础知识,考查空间想象能力、运算求解能力,考查函数与方程思想等.【答题分析】只要通过长度关系,认清以,,,A B C D 四点为顶点的三棱锥的图形特征,正确判断球心1O 的位置,借助方程求出球1O 的半径,直观判断球2O 的位置,便可解决问题.解法一:取CD 的中点O ,连结,AO BO ,如图,因为42BC BD ==8CD =,所以222BD BC CD +=,所以BC BD ⊥,故O 为BCD △的外心,因为25AC AD ==AO CD ⊥,且2AO =,故AO OB ⊥,又BO CD O =I ,所以AO ⊥平面BCD ,所以1O 在直线AO 上,连结1O D ,设1O D R =,则1AO R =,12OO R =-,因为1OO DO ⊥,所以22211DO OO O D +=,即2216(2)R R +-=,解得5R =,球2O 的直径最大时,球2O 与平面BCD 相切且与球1O 相切,12,,,A O O O 四点共线,此时球2O 的直径为18R OO +=.解法二:将Rt BCD △补形成正方形ECBD ,如图,易知四棱锥A BCED -为正四棱锥,正方形BDEC 的中心为O ,BO CD ⊥.连结,AO BO ,则O 为BCD △的外心,因为25AC AD ==AO CD ⊥,且2AO =,又因为4,4OD BO ==,所以222AO BO AB +=,故AO OB ⊥,又BO CD O =I ,所以AO ⊥平面CBDE ,设1O D R =,则1AO R =,12OO R =-,因为1OO DO ⊥,所以22211DO OO O D +=,即2216(2)R R +-=,解得5R =,球2O 的直径最大时,球2O 与平面BCD 相切且与球1O 相切,12,,,A O O O 四点共线,此时球2O 的直径为18R OO +=.1O 2O A BC DO 1O 2O A BCDO E12.已知函数3()()3(0)f x x a x a a =--+>在[1,]b -上的值域为[22,0]a --,则b 的取值范围是( ) A .[0,3]B .[0,2]C .[2,3]D .(1,3]-【答案】A【考查意图】本题以三次函数为载体,考查导数及其应用等基础知识,考查运算求解能力、推理论证能力及创新意识,考查函数与方程思想、分类与整合思想、数形结合思想、化归与转化思想等. 【答题分析】只要将函数3()()3()2f x x a x a a =----的图象作平移变换得到3()3g x x x =-,将条件转化为“当[1,]x a b a ∈---时,()g x 的值域为[2,2]a -”,注意到()g x 的极小值与它在[1,]a b a ---上的最小值相等,再结合函数图象,由()g x 的值域为[2,2]a -直观判断b a -的取值范围;或直接研究函数()f x 的图象与性质,通过分类讨论确定a 的值,进而根据图象直观判断出b 的取值范围. 解法一:将函数33()()3()3()2f x x a x a x a x a a =--+=----的图象向左平移a 个单位,再向上平移2a 个单位,得到3()3g x x x =-的图象,故条件等价于3()3g x x x =-在[1,]a b a ---的值域为[2,2]a -.2()333(1)(1)g x x x x '=-=+-,所以当(,1)x ∈-∞-或(1,)x ∈+∞时,()0g x '>,故()g x 的单调递增区间为(,1),(1,)-∞-+∞;当(1,1)x ∈-时,()0g x '<,故()g x 的单调递减区间为(1,1)-.又(1)2,(1)2g g -==-,令()2g x =,得3320x x -+=,即2(1)(2)0x x -+=,得2x =-或1x =,因为0a >,所以11a --<-,由图象得12a ---≥,故01a <≤.①当1a =时,3()3g x x x =-在[2,1]b --的值域为[2,2]-,因为(1)(2)2g a g --=-=-,令()2g x =,得3320x x --=,即2(1)(2)0x x +-=,解得:1x =-或2x =,故由图象得112b --≤≤,解得03b ≤≤;②当01a <<时,211,022a a -<--<-<<,所以1b a -<-,又()g x 在(1,)a b a ---上单调递增,所以()(1)2g x g a -->-≥,此时与题意矛盾. 综上,可知03b ≤≤,故选A .解法二:因为3()()3f x x a x a =--+,所以2()3()3f x x a '=--,令()0f x '=得:1x a =+或1x a =-,又(1)22,(1)22f a a f a a +=---=-+,当x 变化时,(),()f x f x '的变化情况如下表:x (,1)a -∞-1a -(1,1)a a -+1a +(1,)a ++∞()f x ' ()0f x '>()0f x '<()0f x '>()f x单调递增22a -+ 单调递减22a --单调递增① 若(1)22f a -=--,则32340a a +-=,整理得,2(1)(2)0a a -+=,解得:1a =或2a =-(舍去),此时3()(1)31f x x x =--+,令()4f x =-,解得1x =-或2x =;令()0f x =,解得0x =或3x =,因为()f x 在[1,]b -的值域为[4,0]-,故由图象可得03b ≤≤. ②若(1)22f a ->--,因为0a >,所以11a ->-,要使()f x 在[1,]b -上的值域为[22,0]a --,则1a b +≤,所以1[1,]a b -∈-,所以(1)22(1)0f a f a ->--⎧⎨-⎩≤, 即3(1)322220a a a a ⎧--++>--⎨-⎩≤,即2(1)(2)01a a a ⎧-+<⎨⎩≥,无解. 综上,可得03b ≤≤,故选A .二、填空题:本大题共4小题,每小题5分,共20分。

福建省泉州市2018届高三1月单科质量检查 数学(理) Word版含答案

福建省泉州市2018届高三1月单科质量检查 数学(理) Word版含答案

泉州市2018届高中毕业班单科质量检查理科数学试题一、选择题:本大题共12小题,每小题5分,在每个小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合{}210A x x =-≥,{}210B x x =-≤,则A B = (A ){}1x x ≥- (B ){}1x x ≥ (C )112x x ⎧⎫-≤≤⎨⎬⎩⎭ (D )112x x ⎧⎫≤≤⎨⎬⎩⎭【命题意图】本小题主要考查解不等式、交集等基础知识,考查运算求解能力,考查化归与转化思想,考查数学运算. 【试题简析】因为1{|}2A x x =≥,{|11}B x x =-≤≤,所以1{|1}2A B x x =≤ ,故选D. 【错选原因】错选A :误求成A B ;错选B :集合B 解错,解成{}11或B x x x =≤-≥;错选C :集合A 解错,解成1{|}2A x x =≤.【变式题源】(2015全国卷I·理1)已知集合{}1A x x =<,{}31x B x =<,则 (A ){|0}A B x x =< (B )A B =R (C ){|1}A B x x => (D )A B =∅(2)已知z 为复数z 的共轭复数,()1i 2i z -=,则z =(A )1i --(B )1i -+(C )1i - (D )1i + 【命题意图】本小题主要考查复数的运算、共轭复数等基础知识,考查运算求解能力,考查化归与转化思想,考查数学运算. 【试题简析】因为22(1)11(1)(1)i i i z i i i i +===-+--+,所以1z i =--,故选(A ). 【错选原因】错选B :求出1z i =-+,忘了求z ;错选C :错解1i z =+;错选D :错解1i z =-.【变式题源】(2015全国卷Ⅰ·文3)已知复数z 满足(z -1)i =1+i ,则z=A .-2-iB .-2+iC .2-iD .2+i(3)设等差数列{}n a 的前n 项和为n S .若212a a -=,549S S -=,则50a =(A )99 (B )101 (C ) 2500 (D )4592⨯【命题意图】本小题主要考查等差数列等基础知识,考查运算求解能力,考查化归与转化思想,考查数学运算.【试题简析】依题意得,212d a a =-=,5549a S S =-=,所以5054599a a d =+=,故选C.【错选原因】错选A :n S 的公式记忆错误,导致计算错误;错选B :n S 的公式记忆错误,导致计算错误;错选D :误认为544S S a -=.【变式题源】(2017全国卷Ⅰ·理4)记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .8(4)已知点(2,1)在双曲线2222:1(0,0)x y E a b a b-=>>的渐近线上,则E 的离心率等于 (A(B(C(D【命题意图】本小题主要考查双曲线的渐近线、离心率等基础知识,考查运算求解能力,考查化归与转化思想、函数与方程思想,考查数学运算.【试题简析】由题意得,点(2,1)在直线b y x a =上,则12b a =,所以e == B. 【错选原因】错选A :误认为222c a b =-导致错误;错选C :误认为双曲线的焦点在y 轴上.错选D :未判断双曲线的焦点位置. 【变式题源】(2013全国卷Ⅰ·理4)已知双曲线C :2222=1x y a b -(a >0,b >0)C 的渐近线方程为(A )y =14x ± (B )y =13x ± (C )y =12x ± (D )y x =± (5)已知实数,x y 满足1,30,220,x x y x y ≥⎧⎪+-≤⎨⎪--≤⎩则z x y =-的最大值为(A )-1 (B )13(C )1 (D )3【命题意图】本小题主要考查线性规划等基础知识;考查运算求解能力,考查化归与转化思想、数形结合思想、函数与方程思想,考查直观想象、数学运算等.【试题简析】由已知条件,可行域如右图阴影部分.其中阴影区域三角形的三个顶点分别为54(1,0),(1,2),(,)33,把三个点分别代入z x y =-检验得:当1,0x y ==时,z 取得最大值1,故选D.【错选原因】错选A :误把z -的最大值当成z x y =-的最大值;错选B :误把z 的最小值当成z x y =-的最大值;错选C :误把z -的最小值当成z x y =-的最大值.【变式题源】(2017全国卷Ⅰ·理14)设x ,y 满足约束条件21,21,0,x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩则32z x y =-的最小值为 .(6)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为(A )16π3 (B )11π2 (C )17π3 (D ) 35π6【命题意图】本小题主要考查三视图、空间几何体的体积,等基础知识,考查空间想像能力、运算求解能力、创新意识,考查化归与转化思想、数形结合思想,考查数学抽象、直观想象等. 【试题简析】该几何体可以看成:在一个半球上叠加一个14圆锥,然后挖掉一个相同的14圆锥,所以该几何体的体积和半球的体积相等,因此321633V r ππ==,故选A. 【错选原因】错选B :把该几何体可以看成:在一个半球上叠加一个14圆锥,且未挖掉一个相同的14圆锥. 错选C :把该几何体可以看成:在一个半球上叠加一个12圆锥,且未挖掉一个相同的14圆锥. 错选D :圆锥的公式记忆错误.【变式题源】(2016全国卷Ⅰ·理6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是328π,则它的表面积是 (A )π17 (B )π18(C )π20 (D )π28(7)《九章算术》中的“两鼠穿墙”问题为“今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半,问何日相逢?”可用如图所示的程序框图解决此类问题.现执行该程序框图,输入的d 的值为33,则输出的i 的值为(A )4 (B )5 (C )6 (D )7【命题意图】本小题主要考查程序框图,数列求和等基础知识;考查学生的运算求解能力及数据处理能力;考查化归与转化思想、分类与整合思想;考查数学抽象和数学运算等.【试题简析】解法一:0,0,1,1i S x y ====开始执行,然后11,11,2,2i S x y ==+==⋅⋅⋅ 111115,(124816)(1)33,32,2481632i S x y ==+++++++++<==,再执行一行,然后输出6i = 解法二:本题要解决的问题是数列求和的问题,11211111,2,,2(2)22n n n a a a n --=+=+⋅⋅⋅=+≥ 1233n a a a ++⋅⋅⋅+≥,解得n 的最小值为6.【错选原因】错选A :可能把2x x =误当成2x x =来算;错选B :当执行到5i =时,11113224816S =++++,学生估值失误,误以为会达到33或按四舍五入得到. 错选D :可能先执行了1i i =+后才输出.【变式题源】(2015年全国卷Ⅱ·理8)右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”. 执行该程序框图,若输入a ,b 分别为14,18,则输出的a = (A )0(B )2 (C )4 (D )14(8)下列函数中,图象关于原点对称且单调递增的是(A )()sin f x x x =-(B )()()()ln 1ln 1f x x x =--+ (C )()e e 2x xf x -+= (D )()e 1e 1x x f x -=+【命题意图】本小题主要考查函数的图象与奇偶性、单调性、定义域等基础知识;考查学生的运算求解能力;考查数形结合思想、特殊与一般思想;考查数学抽象、直观想象和数学运算等.【试题简析】A 选项:()cos 10f x x '=-≤,不符合图象上升这个条件;B 选项:定义域不关于原点对称;C 选项函数图象先减后增,在0x =时函数取得最小值;故选D【错选原因】错选A :符合图象关于原点对称这个条件;错选B :有的学生可能会通过各种方法判断函数的单调性,却忽略了定义域不关于原点对称;错选C :有的学生可能根据函数过(0,0)而错选此项.【变式题源】(2011年全国卷Ⅱ·理2)下列函数中,既是偶函数又在+∞(0,)单调递增的函数是( )(A )3y x = (B )||1y x =+ (C )21y x =-+(D )||2x y -=(9)已知 1.50.5a -=,6log 15b =,5log 16c =,则(A )b c a << (B )c b a << (C )a b c << (D )a c b <<【命题意图】本小题主要考查指对数函数等基础知识;考查学生的推理论证能力、运算求解能力以及数据处理能力;考查化归与转化思想、函数与方程思想;考查数学运算和数据分析.【试题简析】 1.5 1.5655log 15log 15log 16220.5-<<<<=【错选原因】错选B :对数函数的换底公式不熟悉导致;错选D :对数函数的换底公式不熟悉导致;错选C :指数的运算不过关导致.【变式题源】(2013年全国卷Ⅱ·理8)设3log 6a =,5log 10b =,7log 14c =,则(A )c b a >>(B )b c a >> (C )a c b >> (D )a b c >>(10)已知1(,2)2P 是函数()sin()(0)f x A x ωϕω=+>图象的一个最高点,,B C 是与P 相邻的两个最低点.若7cos 25BPC ∠=,则()f x 的图象对称中心可以是 (A )()0,0 (B )()1,0 (C ) ()2,0 (D )()3,0【命题意图】本小题考查三角函数的图象和性质、解三角形、二倍角公式等基础知识;考查学生的抽象概括能力、运算求解能力以及数据处理能力;考查数形结合思想、化归与转化思想以及函数与方程思想;考查数学抽象、直观想象和数学分析等.【试题简析】如图,取BC 的中点D ,连结PD ,则4PD =,设BD x =,则PB PC =余弦定理可得,2222(2)cos x BPC =+-∠,解得3x =,57(,2),(,2)22B C ---,,BP CP 的中点都是()f x 图象的对称中心.故选C .【错选原因】错选A :平时缺乏训练,只记得正弦函数的对称中心是(0,0)错选B :误把最高点的2当成了周期;错选D :这类同学可以求出函数的周期是6,但没注意到函数并未过原点.【变式题源】(2015年全国卷I·理8)函数()f x =cos()x ωϕ+的部分图象如图所示,则()f x 的单调递减区间为(A )13(,),44k k k ππ-+∈Z (B )13(2,2),44k k k ππ-+∈Z (C )13(,),44k k k -+∈Z (D )13(2,2),44kk k -+∈Z(11)已知直线l :0mx y m -+=,圆C :()224x a y -+=.若对任意[1,)a ∈+∞,存在l 被C 截得弦长为2,则实数m 的取值范围是(A)[ (B)(,)-∞+∞(C)[ (D)(,)-∞+∞【命题意图】本小题主要考查直线与圆、点到直线的距离、解三角形等基础知识;考查学生的抽象概括能力、运算求解能力以及数据处理能力;考查化归与转化思想、数形结合思想、必然与或然思想;考查数学抽象、数学建模、数学运算与数据分析等.【试题简析】解法一:由题意可得,圆心C 到l的距离d === 所以223(1)3m a =+-,又因为1a ≥,所以203m<≤,0m ≤<或0m <. 解法二:由题意可得,圆心C 到l的距离d =又l :0mx y m -+=恒过定点()1,0A -,1a ≥,所以2AC ≥,另设直线l 的倾斜角为θ,所以sin (0,2AC θ=∈,所以l 的斜率tan [m θ=∈ .【错选原因】错选A :在计算223[(1)3]m a =+-时,分子误当成1来计算; 错选B :分离变量时,误把223[(1)3]m a =+-写成22[(1)3]3a m +-=; 错选D :把最后的23m ≤计算成23m ≥【变式题源】(2016年全国卷Ⅱ·理4)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a =(A )43-(B )34- (C (D )2(12)已知函数()222,0,e e ,0,x x x a x f x ax x ⎧++<⎪=⎨-+-≥⎪⎩恰有两个零点,则实数a 的取值范围是 (A )()0,1 (B )()e,+∞ (C )()()0,1e,+∞ (D )()()20,1e ,+∞ 【命题意图】本小题主要考查二次函数的图象与性质、分段函数的图象、复合函数的图象以及零点问题等知识点;考查学生的抽象概括能力、运算求解能力以及应用意识;考查数形结合思想、分类与整合、函数与方程思想;考查数学抽象、数学运算和数据分析等.【试题简析】解法一:当0x =时,2()1e 0f x =--≠,故0x =不是函数()f x 的零点.当(0,)x ∈+∞时,()0f x =等价于2e e x a x+=, 令2e e ()(0)x g x x x +=>,则22e e e ()x x x g x x--'=, 当2x <时,()0g x '<,当2x =时,()0g x '=,当2x >时,()0g x '>;所以2()[e ,)g x ∈+∞,①当01a <<时,()f x 在(,0)-∞有两个零点,故()f x 在(0,)+∞没有零点,从而2e a <,所以01a <<;②当0a ≤或1a =时,()f x 在(,0)-∞有一个零点,故()f x 在(0,)+∞有一个零点,此时不合题意;③当1a >时,()f x 在(,0)-∞有没有零点,故()f x 在(0,)+∞有两个零点,从而2e a >.综上可得01a <<或2e a >.故选D.解法二:当[0,)x ∈+∞时,2()e e x f x ax =-+-,()e x f x a '=-+,①当01a <<时,()f x 在(,0)-∞有两个零点,又当[0,)x ∈+∞时,2max ()(ln 1)e 0f x a a =--<,故()f x 在[0,)+∞没有零点,所以01a <<; ②当0a ≤或1a =时,()f x 在(,0)-∞有一个零点,又当[0,)x ∈+∞时,()e 0x f x a '=-+<,()f x 在[0,)+∞上单调递减,故2()(0)1e 0f x f ≤=--<,不合题意;③当1a >时,()f x 在(,0)-∞有没有零点,此时()f x 在[0,)+∞上必有两个零点.当[0,)x ∈+∞时,当ln x a <时,()0f x '>,当ln x a =时,()0f x '=,当ln x a >时,()0f x '<,所以2ma x ()(ln )ln ef x f a a a a ==-+-,要使()f x 在[0,)+∞上必有两个零点,只需满足2ma x ()(ln )ln e 0f x f a a a a ==-+->. 令2()ln eg t t t t =--,则'()ln g t t =,当1t >时,'()0g x >,故()g t 单调递增.又2(e )0g =,故2ln e 0a a a -+->即2()(e )g a g >,解得2e a >.综上可得01a <<或2e a >.故选D.【错选原因】错选A :只会做二次函数部分,无视另一种情况,即左右各有一个零点.错选B :用特殊值0或1代入,发现不成立,故排除了其他三个选项得到;错选C :可能根本没去做,综合了A 和B ,于是选C. 【变式题源】(2013年全国卷I·理11)已知函数f (x )=220ln(1)0.x x x x x ⎧-+≤⎨+>⎩,,,若|f (x )|≥ax ,则a 的取值范围是( )(A )(-∞,0] (B )(-∞,1] (C )[-2,1] (D )[-2,0]二、填空题:本大题共4小题,每小题5分。

2018年福州市高中毕业班质量检测参考答案(理科数学)

2018年福州市高中毕业班质量检测参考答案(理科数学)

(9) 【答案】C.
【解析】由三视图可知,该几何体是由直四棱柱与半圆锥组合而成的简单组合体.因
1 1 1 为 V四棱柱 = 1 2 2 2 6, V半圆锥 = 12 2 ,所以该几何体的体积为 2 2 3 3
V V四棱柱 V圆锥 6 (10) 【答案】C.

题意,排除 A;故选 C.
(11) 【答案】D.
理科数学参考答案及评分细则 第 2 页(共 14 页)
所以 D 与 B1 重合. 分别过点 A, B 作 AA1 , BB1 垂直于 l , 【解析】 依题意, 易证 BD // x 轴, 且 垂 足 分 别 为 A1 , B 1 , 由 已 知 条 件 BE 2 BF 得 BE 2 BF 2 BB1 , 所 以
(7) 【答案】D.
【解析】根据程序框图的功能,可知判断框内应填 S 1 000 .由程序框图知,当首次 满足 S 1 000 时,已多执行两次“ i i 1 ”,故输出框中应填写“输出 i 2 ”.
(8) 【答案】B.
【解析】 可分两步: 第一步, 甲、 乙两个展区各安排一个人, 有 A62 种不同的安排方法; 第二步,剩下两个展区各两个人,有 C42 C22 种不同的安排方法;根据分步计数原理,有 不同的安排方案的种数为 A62 C42 C22 180 .
x x2 y 2 1 ,所以 E 的渐近线方程为 y . 4 2
2 1 i 2 1 i , z 对应的点为 1,1 , i 1 i 11 i
(2)C (8)B
(3)B (9)C
(4)B (10)C
(5)D (11)D
(6)A (12)B

2018年福建省高三毕业班质量检查测试文科数学 参考答案及评分细则

2018年福建省高三毕业班质量检查测试文科数学 参考答案及评分细则
5 3 b c 7 5 ,得 ,解得 sin C .··········10 分 14 sin B sin C sin C 3 2 BD a 在 △BCD 中,由正弦定理 , sin C sin BDC
在 △ABC 中,由正弦定理
3 45 BD 3 ,所以 ,解得 BD .········································· 12 分 3 14 5 3 3 14 3 解法二: (1)同解法一.··································································· 6 分
则 sin C sin( A B) sin
在 △BCD 中,由正弦定理 因为 sin BDC
3 45 BD 3 ,所以 ,解得 BD .········································· 12 分 3 14 5 3 3 14 3
18.本小题主要考查几何体的体积及直线与直线、直线与平面、平面与平面的位置关系等 基础知识,考查空间想象能力、推理论证能力、运算求解能力,考查化归与转化思想 等.满分 12 分. 解法一: (1)当 P 满足 C1 P B1C 时, AP PC1 .························································· 1 分 证明如下: 在直三棱柱 ABC A1B1C1 中,C1C 平面 ABC , AC 平面 ABC ,所以 C1C AC . 又因为 AC BC , C1C BC C ,所以 AC 平面 BCC1B1 .····························3 分 因为 PC1 平面 BCC1B1 ,所以 AC PC1 .·····························································4 分

2019年4月福建省高中毕业班质量检查测试理科数学(解析版)

2019年4月福建省高中毕业班质量检查测试理科数学(解析版)

16.答案: 26 解析:如图,设 P1(x1, y1) 为双曲线上一点,y y1 分别与渐近线 y 3x 、y 轴交于 P2 (x2 , y1), H (0, y1) ,
则线段 P1P2 绕 y 轴旋转一周所得圆环的面积为 S1
2
2
HP1 HP2
(x12
x22 ) ,其中
x12
3
(2)由(1)知, a2 3, a3 7 ,所以 b3 a2 3, b7 a3 7 ,………………………………7 分
设{bn}的公差为 d ,则 b7 b3 4d 4, d 1.…………………………………………………8 分
c2
由椭圆的定义得: PF1 PF2 2c 2
2c 2a ,所以 E 的离心率为 e a 22
2
2 1.
10.如图,AB 是圆锥 SO 的底面圆 O 的直径,D 是圆 O 上异于 A, B 的任意一点,以 AO 为直径的圆与 AD
的另一个交点为 C , P 为 SD 的中点.现给出以下结论:
B.{x |1 x 2}
C.{x |1 x ≤ 2}
D.{x | x ≥ 2}
1.答案:C
解析: A {x | x 1}, B {x | 2 ≤ x ≤ 2} ,所以 A B {x |1 x ≤ 2}.
2.若复数 z 满足 (z 1)i 1 i ,则 z ( )
A. i
B.1 i
2019 年 3 月福建省高中毕业班质量检查测试 理科数学
一、选择题:本题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目 要求的.
1.已知集合 A {x | y ln(x 1)}, B {x | x2 4 ≤ 0} ,则 A B ( )

2018年福建省普通高中毕业班质量检查

2018年福建省普通高中毕业班质量检查

2018年福建省普通高中毕业班质量检查文科数学第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的,1.下列表示旅客搭乘动车的流程中,正确的是()A.买票→候车厅候车→上车→候车检票口检票B.候车厅候车→买票→上车→候车检票口检票C.买票→候车厅候车→候车检票口检票→上车D.候车厅候车→上车→候车检票口检票→买票2.复数1﹣i在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.关于衡量两个变量y与x之间线性相关关系的相关系数r与相关指数R2中,下列说法中正确的是()A.r越大,两变量的线性相关性越强B.R2越大,两变量的线性相关性越强C.r的取值范围为(﹣∞,+∞)D.R2的取值范围为[0,+∞)4.若,则=()A.i B.﹣i C.﹣1 D.15.给出下列一段推理:若一条直线平行于平面,则这条直线平行于平面内所有直线.已知直线a⊄平面α,直线b⊂平面α,且a∥α,所以a∥b.上述推理的结论不一定是正确的,其原因是()A.大前提错误B.小前提错误C.推理形式错误D.非以上错误6.在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据,并制作成如图所示的人体脂肪含量与年龄关系的散点图.根据该图,下列结论中正确的是()A.人体脂肪含量与年龄正相关,且脂肪含量的中位数等于20%B.人体脂肪含量与年龄正相关,且脂肪含量的中位数小于20%C.人体脂肪含量与年龄负相关,且脂肪含量的中位数等于20%D.人体脂肪含量与年龄负相关,且脂肪含量的中位数小于20%7.若函数f(x)满足f(4)=2,且对于任意正数x1,x2,都有f(x1•x2)=f(x1)+f(x2)成立.则f(x)可能为()A.B. C.f(x)=log2x D.f(x)=2x8.复平面上矩形ABCD的四个顶点中,A、B、C所对应的复数分别为2+3i、3+2i、﹣2﹣3i,则D点对应的复数是()A.﹣2+3i B.﹣3﹣2i C.2﹣3i D.3﹣2i9.下表给出的是两个具有线性相关关系的变量x,y的一组样本数据:得到的回归方程为y=bx+a.若已知上述样本数据的中心为(5,0.9),则当x每增加1个单位时,y就()A.增加1.4个单位B.减少1.4个单位C.增加7.9个单位D.减少7.9个单位10.按流程图的程序计算,若开始输入的值为x=3,则输出的x的值是()A.6 B.21 C.156 D.23111.给出下面类比推理命题(其中Q为有理数集,R为实数集,C为复数集)①“若a,b∈R,则a﹣b=0⇒a=b”类比推出“若a,b∈C,则a﹣b=0⇒a=b”②“若a,b,c,d∈R,则复数a+bi=c+di⇒a=c,b=d”类比推出“若a ,b ,c ,d ∈Q ,则a +b=c +d ⇐a=c ,b=d”; 其中类比结论正确的情况是( )A .①②全错B .①对②错C .①错②对D .①②全对12.如果复数z 满足|z +3i |+|z ﹣3i |=6,那么|z +1+i |的最小值是( ) A .1B .C .2D .第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.已知3sin 5α=,且(0,)2πα∈,则tan()4πα+=. 14.若抛物线2(0)y ax a =>上任意一点到x 轴距离比到焦点的距离小1,则实数a 的值为.15.某几何体的三视图如图所示,设该几何体中最长棱所在的直线为m ,与直线m 不相交的其中一条棱所在直线为n ,则直线m 与n 所成的角为.16.已知函数22()log ,()f x x g x x ==,则函数(())y g f x x =-零点的个数为. 三、解答题 :解答应写出文字说明、证明过程或演算步骤.17. 已知数列{}n a 的前n 项和为n S ,且22n n S a =-.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设1n nn b a +=,求数列{}n b 前n 项和n T .18.某市为了引导居民合理用水,居民生活用水实行二级阶梯式水价计量办法,具体如下:第一阶梯,每户居民月用水量不超过12吨,价格为4元/吨;第二阶梯,每户居民月用水量超过12吨,超过部分的价格为8元/吨.为了了解全市居民月用水量的分布情况,通过抽样获得了100户居民的月用水量(单位:吨),将数据按照[]0,2,(2,4],,(14,16] 分成8组,制成了如图1所示的频率分布直方图.(Ⅰ)求频率分布直方图中字母a 的值,并求该组的频率;(Ⅱ)通过频率分布直方图,估计该市居民每月的用水量的中位数m 的值(保留两位小数); (Ⅲ)如图2是该市居民张某2016年1~6月份的月用水费y (元)与月份x 的散点图,其拟合的线性回归方程是233y x ∧=+.若张某2016年1~7月份水费总支出为312元,试估计张某7月份的用水吨数.19.如图,在四棱锥P ABCD -中,侧面PAD ⊥底面ABCD ,底面ABCD 是平行四边形,45ABC ∠= ,2AD AP ==,AB DP ==,E 为CD 的中点,点F 在线段PB 上.(Ⅰ)求证:AD PC ⊥;(Ⅱ)当三棱锥B EFC -的体积等于四棱锥P ABCD -体积的16时,求PF PB 的值.20.已知直线y x m =+与抛物线24x y =相切,且与x 轴的交点为M ,点(1,0)N -.若动点P 与两定点,M N 所构成三角形的周长为6.(Ⅰ)求动点P 的轨迹C 的方程;(Ⅱ)设斜率为12的直线l 交曲线C 于,A B 两点,当PN MN ⊥时,证明APN BPN ∠=∠.21.已知函数3215()36f x x ax bx =++-(0,)a b R >∈,()f x 在1x x =和2x x =处取得极值,且12x x -=,曲线()y f x =在(1,(1))f 处的切线与直线20x y +-=垂直. (Ⅰ)求()f x 的解析式;(Ⅱ)证明关于x 的方程21(1)()0x k e kf x -'+-=至多只有两个实数根(其中()f x '是()f x 的导函数,e 是自然对数的底数).请考生在(22)、(23)两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个题目记分,做答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系.若直线l 的极cos()204πθ--=,曲线C 的极坐标方程为2sin cos ρθθ=,将曲线C 上所有点的横坐标缩短为原来的一半,纵坐标不变,然后再向右平移一个单位得到曲线1C . (Ⅰ)求曲线1C 的直角坐标方程;(Ⅱ)已知直线l 与曲线1C 交于,A B 两点,点(2,0)P ,求||||PA PB +的值.23.选修4-5:不等式选讲已知函数()|2||21|f x x a x =-+-,a R ∈.(Ⅰ)当3a =时,求关于x 的不等式()6f x ≤的解集;(Ⅱ)当x R ∈时,2()13f x a a ≥--,求实数a 的取值范围.试卷答案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的,1.下列表示旅客搭乘动车的流程中,正确的是()A.买票→候车厅候车→上车→候车检票口检票B.候车厅候车→买票→上车→候车检票口检票C.买票→候车厅候车→候车检票口检票→上车D.候车厅候车→上车→候车检票口检票→买票【考点】EH:绘制简单实际问题的流程图.【分析】旅客搭乘动车,应买票→候车→检票→上车,可得结论.【解答】解:旅客搭乘动车,应买票→候车→检票→上车,故选C.【点评】本题考查流程图的作用,考查学生分析解决问题的能力,属于基础题.2.复数1﹣i在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【考点】A4:复数的代数表示法及其几何意义.【分析】先求出复数1﹣i的在复平面内对应的点的坐标为(1,﹣1),得到复数1﹣i的在复平面内对应的点位于第四象限.【解答】解:复数1﹣i的在复平面内对应的点的坐标为(1,﹣1),因为﹣1<0,1>0,所以(1,﹣1)在第四象限,所以复数1﹣i的在复平面内对应的点位于第四象限,故选:D.【点评】本题考查复数z=a+bi(a,b∈R)与复平面的点(a,b)一一对应,属于基础题.3.关于衡量两个变量y与x之间线性相关关系的相关系数r与相关指数R2中,下列说法中正确的是()A.r越大,两变量的线性相关性越强B.R2越大,两变量的线性相关性越强C.r的取值范围为(﹣∞,+∞)D.R2的取值范围为[0,+∞)【考点】BS:相关系数.【分析】根据题意,由两个变量的相关系数r与相关指数R2的意义,依次分析选项,即可得答案.【解答】解:根据题意,依次分析4个选项:对于A、相关系数的绝对值|r|越大,越具有强大相关性,故A错误;对于B、个变量y与x之间的R2越大,两变量的线性相关性越强,B正确;对于C、r的取值范围为(﹣1,1),故C错误;对于D、R2的取值范围为[0,1],故D错误;故选:B.【点评】本题考查两个变量的相关系数r与相关指数R2的意义,注意区分相关系数r与相关指数R2的不同.4.若,则=()A.i B.﹣i C.﹣1 D.1【考点】A8:复数求模.【分析】利用复数的运算法则、模的计算公式即可得出.【解答】解:===i,则=1.故选:D.【点评】本题考查了复数的运算法则、模的计算公式,考查了推理能力与计算能力,属于基础题.5.给出下列一段推理:若一条直线平行于平面,则这条直线平行于平面内所有直线.已知直线a⊄平面α,直线b⊂平面α,且a∥α,所以a∥b.上述推理的结论不一定是正确的,其原因是()A.大前提错误B.小前提错误C.推理形式错误D.非以上错误【考点】F5:演绎推理的意义.【分析】分析该演绎推理的三段论,即可得出错误的原因是什么.【解答】解:该演绎推理的大前提是:若直线平行于平面,则该直线平行于平面内所有直线;小前提是:已知直线a⊄平面α,直线b⊂平面α,且a∥α;结论是:a∥b;该结论是错误的,因为大前提是错误的,正确叙述是“若直线平行于平面,过该直线作平面与已知平面相交,则交线与该直线平行”.故选:A.【点评】本题通过演绎推理的三段论叙述,考查了空间中线面垂直的性质定理的应用问题,是基础题.6.在一次对人体脂肪含量和年龄关系的研究中,研究人员获得了一组样本数据,并制作成如图所示的人体脂肪含量与年龄关系的散点图.根据该图,下列结论中正确的是()A.人体脂肪含量与年龄正相关,且脂肪含量的中位数等于20%B.人体脂肪含量与年龄正相关,且脂肪含量的中位数小于20%C.人体脂肪含量与年龄负相关,且脂肪含量的中位数等于20%D.人体脂肪含量与年龄负相关,且脂肪含量的中位数小于20%【考点】BB:众数、中位数、平均数.【分析】根据散点图中的点的分布,可以判断两个变化是否具有相关关系,根据点的单调性可以判断是正相关还是负相关,以及中位数.【解答】解:由散点图可知点的分布都集中在一条直线附近,所以由此可以判断两个变量具有相关关系,而且是正相关,再由散点图中点的个数得到中位数为最中间两数的平均数,则且脂肪含量的中位数小于20%,故选:B.【点评】本题主要考查利用散点图的判断变量相关关系已经线性相关性,比较基础.7.若函数f(x)满足f(4)=2,且对于任意正数x1,x2,都有f(x1•x2)=f(x1)+f(x2)成立.则f(x)可能为()A.B. C.f(x)=log2x D.f(x)=2x【考点】3P:抽象函数及其应用.【分析】对A、B、C、D中的四种基本初等函数的运算性质逐一分析即可得到答案.【解答】解:对于A,∵,∴f(x1•x2)=≠+,故A错误;对于B,,同理可得f(x1•x2)≠f(x1)+f(x2),故B错误;对于C,∵f(x)=log2x,∴f(x1•x2)=log2(x1•x2)=log2(x1)+log2(x2)=f(x1)+f(x2)成立.故C正确;对于D,∵f(x)=2x,∴f(4)=24=16≠2,故D错误.故选:C.【点评】本题考查抽象函数及其应用,突出考查基本初等函数的运算性质,属于中档题.8.复平面上矩形ABCD的四个顶点中,A、B、C所对应的复数分别为2+3i、3+2i、﹣2﹣3i,则D点对应的复数是()A.﹣2+3i B.﹣3﹣2i C.2﹣3i D.3﹣2i【考点】A4:复数的代数表示法及其几何意义.【分析】根据复数的几何意义以及矩形的性质即可得到结论.【解答】解:根据复数的几何意义可得A(2,3),B(3,2),C(﹣2,﹣3),设D(x,y),,即(x﹣2,y﹣3)=(﹣5,﹣5),则,解得x=﹣3,y=﹣2,即D点对应的复数是﹣3﹣2i,故选:B.【点评】本题主要考查复数的几何意义,利用矩形的对边平行且相等是解决本题的关键.9.下表给出的是两个具有线性相关关系的变量x,y的一组样本数据:得到的回归方程为y=bx+a.若已知上述样本数据的中心为(5,0.9),则当x每增加1个单位时,y就()A.增加1.4个单位B.减少1.4个单位C.增加7.9个单位D.减少7.9个单位【考点】BK:线性回归方程.【分析】求出a,b的关系,将样本数据的中心代入回归方程求出a,b的值,从而求出回归方程,求出答案即可.【解答】解:=(4+a﹣5.4﹣0.5+0.5+b﹣0.6)=(a+b﹣2)=0.9,故a+b﹣2=4.5,解得:a=6.5﹣b,将(5,0.9)代入方程得:0.9=5b+6.5﹣b,解得:b=﹣1.4,a=7.9,故y=﹣1.4x+7.9,故当x每增加1个单位时,y减少1.4个单位,故选:B.【点评】本题考查了求回归方程问题,考查样本数据的中心,是一道基础题.10.按流程图的程序计算,若开始输入的值为x=3,则输出的x的值是()A.6 B.21 C.156 D.231【考点】EF:程序框图.【分析】根据程序可知,输入x,计算出的值,若≤100,然后再把作为x,输入,再计算的值,直到>100,再输出.【解答】解:∵x=3,∴=6,∵6<100,∴当x=6时,=21<100,∴当x=21时,=231>100,停止循环则最后输出的结果是231,故选D.【点评】此题考查的知识点是代数式求值,解答本题的关键就是弄清楚题图给出的计算程序.11.给出下面类比推理命题(其中Q为有理数集,R为实数集,C为复数集)①“若a,b∈R,则a﹣b=0⇒a=b”类比推出“若a,b∈C,则a﹣b=0⇒a=b”②“若a,b,c,d∈R,则复数a+bi=c+di⇒a=c,b=d”类比推出“若a,b,c,d∈Q,则a+b=c+d⇐a=c,b=d”;其中类比结论正确的情况是()A.①②全错B.①对②错C.①错②对D.①②全对【考点】F3:类比推理.【分析】在数集的扩展过程中,有些性质是可以传递的,但有些性质不能传递,因此,要判断类比的结果是否正确,关键是要在新的数集里进行论证,当然要想证明一个结论是错误的,也可直接举一个反例,要想得到本题的正确答案,可对2个结论逐一进行分析,不难解答.【解答】解:①在复数集C中,若两个复数满足a﹣b=0,则它们的实部和虚部均相等,则a,b相等.故①正确;②在有理数集Q中,若a+b=c+d,则(a﹣c)+(b﹣d)=0,易得:a=c,b=d.故②正确;故选:D.【点评】类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).但类比推理的结论不一定正确,还需要经过证明.12.如果复数z满足|z+3i|+|z﹣3i|=6,那么|z+1+i|的最小值是()A.1 B.C.2 D.【考点】A4:复数的代数表示法及其几何意义.【分析】根据复数的几何意义进行求解即可.【解答】解:复数z满足|z+3i|+|z﹣3i|=6,∴z的几何意义是以A(0,3),B(0,﹣3)为端点的线段AB,则|z+1+i|=|z﹣(﹣1﹣i)|的几何意义为AB上的点到C(﹣1,﹣1)的距离,则由图象知C到线段AB的距离的最小值为1,故选:A.【点评】本题主要考查点到直线的距离的求解,根据复数的几何意义进行求解是解决本题的关键.二、填空题13.7 14.14 15.3π16.3 三、解答题17. 解:(Ⅰ)22n n S a =-, 当1n =时,1122a a =-,则12a =, 当2n ≥时,22n n S a =-,1122n n S a --=-, 两式相减,得122n n n a a a -=-,所以12n n a a -=. 所以{}n a 是以首项为2,公比为2的等比数列, 所以2nn a =. (Ⅱ)因为11(1)()22nn n n b n +==+, 2311112()3()4()(1)()2222n n T n =⨯+⨯+⨯+++⨯ ,2341111112()3()4()(1)()22222n n T n +=⨯+⨯+⨯+++⨯ , 两式相减,即得12311111112()()()()(1)()222222n n n T n +=⨯++++-+ , 1121111()()()2222n T =+++31111()()(1)()222n n n +++-+ , 111[1()]11122(1)()22212n n n T n +-=+-+-, 111111()(1)()2222n n n T n +=+--+,所以13(3)()2n n T n =-+. 18.解:(Ⅰ)∵(0.020.040.080.130.080.030.02)21a +++++++⨯=, ∴0.10a =.第四组的频率为:0.120.2⨯=.(Ⅱ)因为0.0220.0420.0820.102(8)0.130.5m ⨯+⨯+⨯+⨯+-⨯=,所以0.50.4888.150.13m -=+≈.(Ⅲ)∵17(123456)62x =+++++=,且233y x ∧=+,∴7233402y =⨯+=.所以张某7月份的用水费为31264072-⨯=. 设张某7月份的用水吨数x 吨, ∵1244872⨯=<∴124(12)872x ⨯+-⨯=,15x =. 则张某7月份的用水吨数15吨.19.解:(Ⅰ)证明:在平行四边形ABCD 中,连接AC ,因为AB =2BC =,45ABC ∠= ,由余弦定理得28422cos454AC =+-= ,得2AC =, 所以90ACB ∠= ,即BC AC ⊥,又//AD BC , 所以AD AC ⊥,又2AD AP ==,DP =PA AD ⊥,AP AC A = , 所以AD ⊥平面PAC ,所以AD PC ⊥. (Ⅱ)因为E 为CD 的中点,∴14BEC ABCDS S ∆=四边形, ∵侧面PAD ⊥底面ABCD ,侧面PAD 底面ABCD AD =,PA AD ⊥,∴PA ⊥平面ABCD .设F 到平面ABCD 的距离为h ,∵16B EFC F BEC F ABCD V V V ---==,∴111363BEC ABCD S h S PA ∆⋅⨯=⋅⋅⋅, ∴23h PA =,所以13PF PB =. 20.解:(Ⅰ)因为直线y x m =+与抛物线24x y =相切,所以方程24()x x m =+有等根, 则16160m +=,即1m =-,所以(1,0)M .又因为动点P 与定点(1,0),(1,0)M N -所构成的三角形周长为6,且2MN =,所以42PM PN MN +=>=,根据椭圆的定义,动点P 在以,M N 为焦点的椭圆上,且不在x 轴上, 所以24,22a c ==,得2,1a c ==,则b =即曲线C 的方程为221(0)43x y y +=≠.(Ⅱ)设直线l 方程1(1)2y x t t =+≠±,联立2212143y x t x y ⎧=+⎪⎪⎨⎪+=⎪⎩,得2230x tx t ++-=, 23120t ∆=-+>,所以22t -<<,此时直线l 与曲线C 有两个交点,A B ,设1122(,),(,)A x y B x y ,则12x x t +=-,2123x x t =-,∵PN MN ⊥,不妨取3(1,)2P ,要证明APN BPN ∠=∠恒成立,即证明0AP BP K K +=,即证121233220y y x x --+=,也就是要证122133()(1)()(1)022y x y x --+--=, 即证121212()2()320x x t x x x x t ++-++-=,由韦达定理所得结论可得此式子显然成立, 所以APN BPN ∠=∠成立.21.解:(Ⅰ)2()2f x x ax b '=++,因为()f x 在1x x =和2x x =处取得极值, 所以1x x =和2x x =是方程220x ax b ++=的两个根,则122x x a +=-,12x x b =,又12x x -=,则21212()45x x x x +-=,所以2445a b -=.由已知曲线()y f x =在(1,(1))f 处的切线与直线20x y +-=垂直,所以可得(1)1f '=,即211a b ++=,由此可得244520a b a b ⎧-=⎨+=⎩,解得121a b ⎧=⎪⎨⎪=-⎩.所以32115()326f x x x x =+--.(Ⅱ)对于21(1)()0x k e kf x -'+-=,(1)当0k =时,得10x e -=,方程无实数根;(2)当0k ≠时,得2111x x x k k e -+-+=,令211()x x x g x e -+-=, 22(1)(2)()x xx x x x g x e ee e --+-'=-=- 当(,1)(2,)x ∈-∞-+∞ 时,()0g x '<;当1x =-或2时,()0g x '=;当(1,2)x ∈-时,()0g x '>.∴()g x 的单调递减区间是(,1)-∞-和(2,)+∞,单调递增区间是(1,2)-. 函数()g x 在1x =-和2x =处分别取得极小值和极大值.2(())=(1)0g x g e -=-<极小,5(())=g(2)=0g x e>极大,对于211()x x x g x e-+-=,由于10x e ->恒成立. 且21y x x =+-是与x 轴有两个交点,开口向上的抛物线, 所以曲线()y g x =与x 轴有且只有两个交点,从而()g x 无最大值,2min (())(())g x g x e ==-极小.若0k <时12k k ⇒+≤-,直线1y k k =+与曲线()y g x =至多有两个交点; 若1502(())k k g x k e >⇒+≥>=极大,直线1y k k=+与曲线()y g x =只有一个交点;综上所述,无论k 取何实数,方程21(1)()0x k e kf x -'+-=至多只有两实数根. 22.解:(Ⅰ)曲线C 的直角坐标方程为2y x =, 所以曲线1C 的直角坐标方程为22(1)y x =-.(Ⅱ)由直线l cos()204πθ--=,得cos sin 20ρθρθ+-=,所以直线l 的直角坐标方程为20x y +-=,又点(2,0)P 在直线l 上,所以直线l的参数方程为:22x y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数),代入1C的直角坐标方程得240t +-=, 设,A B 对应的参数分别为12,t t ,则8160∆=+>,12t t +=-124t t =-, 所以1212||||||||||PA PB t t t t +=+=-===.23.解:(Ⅰ)当3a =时,不等式()6f x ≤为|23||21|6x x -+-≤,若12x <时,不等式可化为(23)(21)446x x x ----=-+≤,解得1122x -≤<, 若1322x ≤≤时,不等式可化为(23)(21)26x x --+-=≤,解得1322x ≤≤, 若32x >时,不等式可化为(23)(21)446x x x -+-=-≤,解得3522x <≤,综上所述,关于x 的不等式()6f x ≤的解集为15|22x x ⎧⎫-≤≤⎨⎬⎩⎭. (Ⅱ)当x R ∈时,()|2|21|f x x a x =-+-≥|212||1|x a x a -+-=-, 所以当x R ∈时,2()13f x a a ≥--等价于2|1|13a a a -≥--, 当1a ≤时,等价于2113a a a -≥--,解得1a ≤≤; 当1a >时,等价于2113a a a -≥--,解得11a <≤ 所以a的取值范围为[.。

2018高三数学理质量检查测试4月试卷福建附答案

2018高三数学理质量检查测试4月试卷福建附答案

以一




相一




,一
在一


过一
程一
中一
要一
注一
意一
对一
n
的一
取一
值一
进一
行一
分一
类一
讨一
论一
错一
因一
分一
析一
考-
生一
可一
能一
存一
在一
的一
错一
误一
有一
不一
懂一
得一
根一
据一
数一
列一
通-
项一
的一
特一
征一
选一
择一
错-
位一
相一
减一
法一
求一
和-
,-
从一
而一
无一
从一

手一
用-
错一

相一
减一
法一
求一
和一

2

存在故障
章,

1需
即要
通过逐
刍检
令测直至区分出
2
台^
故障机器为
丿止
-

若检测-
.台
宁机器的费用
寸为
1000元,则所需检测费的均值为()
A.3200元B.3400元C.3500元D・3600元
10.已知抛物线丨: 的焦点为 ,过且斜
率为
1

直线
交]于
两点|
,线段
n的中
点为
,
其垂
直平分线交
轴于'

【高三数学试题精选】2018年福建省普通高中毕业班质量检查数学试卷(文)及答案

【高三数学试题精选】2018年福建省普通高中毕业班质量检查数学试卷(文)及答案

2018年福建省普通高中毕业班质量检查数学试卷(文)及答

5 c 5
7.已知 , ,若 ,则实数的取值范围是
A. B. c. D.
8.如图给出的是计算的值的程序框图,其中判断框内应填入的是
A. B.
c. D..
9.函数 ( )的图象的相邻两条对称轴间的距离是.若将函数图象向右平移个单位,得到函数的解析式为
A. B.
c. D.
10.已知 , 点是圆上的动点,则点到直线AB的最大距离是A. B. c. D.
11.一只蚂蚁从正方体的顶点处出发,经正方体的表面,按最短路线爬行到达顶点位置,则下列图形中可以表示正方体及蚂蚁最短爬行路线的正视图是
A.①② B.①③ c.②④ D.③④
12.设函数及其导函数都是定义在R上的函数,则“
”是“ ”的
A.充分而不必要条 B.必要而不充分条
c.充要条 D.既不充分也不必要条
第Ⅱ卷(非选择题共90分)
二、填空题本大题共4小题,每小题4分,共16分.把答案填在答题卡相应位置.
13.已知向量,,若,则 _____________.。

2018年福建省普通高中毕业班数学质量检查模拟试卷(理科)带答案

2018年福建省普通高中毕业班数学质量检查模拟试卷(理科)带答案

2018年福建省普通高中毕业班单科质量检查理科数学试题模拟卷(满分:150分 考试时间:120分钟)注意事项:1.本试题分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,第I 卷1至2页,第Ⅱ卷3至4页。

2.答题前,考生务必将自己的姓名、准考证号填写在本试卷相应的位置。

3.全部答案答在答题卡上,答在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

第I 卷一、选择题:本大题有12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)如果复数)1)((2mi i m ++是实数,则实数m = (A )1(B )-1 (C )2(D )-2(2)设集合}2|||{},0|{2<=<-=x x N x x x M ,则(A )=N M ∅ (B )M N M = (C )M N M =(D )=N M R(3)设}{n a 是公差为正数的等差数列,若321321,15a a a a a a =++=80,则131211a a a ++=(A )120 (B )105 (C )90(D )75(4)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c . 若a 、b 、c 成等比数列,且==B a c cos ,2则(A )41 (B )43(C )42 (D )32 (5)我国古代数学典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”现用程序框图描述,如图所示,则输出结果 (A )2 (B )3 (C )4 (D )5 (6)某几何体的正视图和俯视图如右图所示,则该几何体的侧视图可以是(A ) (B ) (C ) (D )(7)抛物线2x y -=上的点到直线0834=-+y x 距离的最小值是(A )34(B )57 (C )58 (D )3(8)五名同学进行百米赛跑比赛,先后到达终点,则甲比乙先到达的情况有(A )240种 (B )120种 (C )60种 (D )30种 (9)函数sin sin y x x =+图象的一条对称轴是(A )4x π=-(B )4x π=(C )2x π=(D )34x π=(10)设平面向量a 1、a 2、a 3的和a 1+a 2+a 3=0. 如果平面向量b 1、b 2、b 3满足 i i i a a b 且|,|2||=顺时针旋转30°后与b i 同向,其中i =1,2,3,则(A )0321=++-b b b (B )0321=+-b b b(C )0321=-+b b b(D )0321=++b b b(11)点P 是椭圆22122:11x y C a a +=+与双曲线22222:11x y C a a -=-的交点,F 1与F 2是椭圆C 1的焦点,则12F PF ∠等于(A )3π (B )2π(C )23π (D )与a 的取值有关(12)国际上常用恩格尔系数(恩格尔系数=食品支出金额总支出金额)来衡量一个国家和地区人民生活水平的状况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档