2019年秋人教版八年级数学上13.3等腰三角形强化训练含答案
人教版八年级上册数学《等腰三角形》同步训练含答案
八年级数学上册《13.3等腰三角形》同步达标测评一.选择题(共8小题,满分32分)1.等腰三角形一腰上的高与另一腰的夹角是36°,则此等腰三角形的两个相等底角的度数大小是()A.54°B.63°C.27°D.27°或63°2.已知等腰三角形的一个外角等于140°,则这个三角形的三个内角的度数分别是()A.20°、20°、140°B.40°、40°、100°C.70°、70°、40°D.40°、40°、100°或70°、70°、40°3.如图,△ABC中,DE∥BC,FB,FC分别平分∠ABC和∠ACB,已知BC=20,AB=18,AC=16,则△ADE的周长是()A.30B.32C.34D.364.如图钢架BAC中,焊上等长的钢条来加固钢架,若P1A=P1P2,量得∠BP5P4=100°,则∠A=()度.A.10B.20C.15D.255.如图,为了加固屋顶的钢架,焊上等长的钢条(P1P2、P2P3等).若∠A=15°,AP1=P1P2,则这样的钢条最多只能焊上()条.A.4B.5C.6D.76.如图,AB=BC=CD=DE=EF=FG,则∠A的范围是()A.0°<∠A<15°B.0°<∠A<18°C.0°<∠A<20°D.0°<∠A<22.5°7.如图,已知∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM 上;△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形.若OA1=1,则△A2021B2021A2022的边长为()A.4044B.4046C.22020D.220218.如图,直线AB⊥CD,垂足为O,点P在∠BOC的平分线上,点E在直线AB上,且△EOP是等腰三角形,则这样的点P有()A.1个B.2个C.3个D.4个二.填空题(共7小题,满分28分)9.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.则下列结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP.其中正确的是.10.如图,△ABC是等边三角形,BD平分∠ABC,点E在BC的延长线上,且CE=1,∠E=30°,则BC=.11.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以A n为顶点的底角度数是.12.如图,在△ABC中,AB=AC,∠BAD=30°,AE=AD,则∠EDC的度数是.13.已知等腰三角形一腰上的高与另一腰的夹角为30°,则这个等腰三角形顶角为°.14.如图,线段OP的一个端点O在直线a上,以OP为一边画等腰三角形,并且使另一个顶点在直线a上,这样的等腰三角形能有个.15.如果△ABM和△ACN分别是以△ABC的边AB、AC为边的形外等边三角形,MC交BN 于P,连P A,则∠APN=.三.解答题(共9小题,满分60分)16.如图,在△ABC中,已知AD平分∠BAC,过AD上一点P作EF⊥AD,交AB于E、交AC于F,交BC延长线于M,则有正确结论:∠M=(∠ACB﹣∠B).请说明理由.17.如图,在△ABC中,∠B=60°,延长BC到D,延长BA到E,使AE=BD,连接CE、DE,使EC=DE,求证:△ABC是等边三角形.18.如图,已知△ABC中,AB=AC,DE⊥AB,DF⊥AC,BG⊥AC.求证:DE+DF=BG.19.如图,已知∠EAC是△ABC的外角,AD平分∠EAC,AD∥BC,点F为BC中点.求证:AF⊥BC.20.如图,在等腰△ABC中,AB=AC,BD为∠ABC平分线,延长BC到点E,使CE=CD,作DH⊥BE于H,求证:H为BE的中点.21.已知:如图,在等边三角形ABC的三边上,分别取点D,E,F,使AD=BE=CF.求证:△DEF是等边三角形.22.如图,已知△ABC是等边三角形,E是AC延长线上一点,选择一点D,使得△CDE是等边三角形,如果M是线段AD的中点,N是线段BE的中点,求证:△CMN是等边三角形.23.如图,等边△ABC的边长为12cm,D为AC边上一动点,E为AB延长线上一动点,DE 交CB于点P,点P为DE中点(1)求证:CD=BE;(2)若DE⊥AC,求BP的长.24.如图,过等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,且P A=CQ,连PQ交AC边于D.(1)求证:PD=DQ;(2)若△ABC的边长为1,求DE的长.参考答案一.选择题(共8小题,满分32分)1.解:在三角形ABC中,设AB=AC,BD⊥AC于D.①若是锐角三角形,∠A=90°﹣36°=54°,底角=(180°﹣54°)÷2=63°;②若三角形是钝角三角形,∠BAC=36°+90°=126°,此时底角=(180°﹣126°)÷2=27°.所以等腰三角形底角的度数是63°或27°.故选:D.2.解:(1)当40°角是顶角时,另两个底角度数为70°,70°;(2)当40°角是底角时,另两个角度数为40°,100°.故选:D.3.解:∵DE∥BC,∴∠BFD=∠FBC,∠EFC=∠BCF,∵FC分别平分∠ABC和∠ACB,∴∠DBF=∠FBC,∠ECF=∠BCF,∴∠BFD=∠DBF,∠EFC=∠ECF,∴DF=DB,EF=EC,∵△ADE的周长=AD+AE+DE,DE=DF+EF,∴△ADE的周长=AD+BD+AE+EC=AB+AC,∵AB=18,AC=16,∴△ADE的周长=34.故选:C.4.解:∵AP1=P1P2,P1P2=P2P3,P3P4=P2P3,P3P4=P4P5,∴∠A=∠P1P2A,∠P2P1P3=∠P2P3P1,∠P3P2P4=∠P3P4P2,∠P4P3P5=∠P4P5P3,∴∠P3P5P4=4∠A,∵∠P3P5P4+∠BP5P4=180°,∠BP5P4=100°,∴∠P3P5P4=80°,∴∠A=20°.故选:B.5.解:∵∠A=∠P1P2A=15°∴∠P2P1P3=30°,∠P1P3P2=30°∴∠P1P2P3=120°∴∠P3P2P4=45°∴∠P3P2P4=45°∴∠P2P3P4=90°∴∠P4P3P5=60°∴∠P3P5P4=60°∴∠P3P4P5=60°∴∠P5P4P6=75°∴∠P4P6P5=75°∴∠P4P5P6=30°∴∠P6P5P7=90°,此时就不能在往上焊接了,综上所述总共可焊上5条.故选:B.6.解:采用排除法:①∵AB=BC=CD=DE=EF=FG,当∠A=15°,∴∠BCA=∠A=15°,∴∠CBD=∠BDC=∠BCA+∠A=15°+15°=30°,∴∠BCD=180°﹣(∠CBD+∠BDC)=180°﹣60°=120°,∴∠ECD=∠CED=180°﹣∠BCD﹣∠BCA=180°﹣120°﹣15°=45°,∴∠CDE=180°﹣(∠ECD+∠CED)=180°﹣90°=90°,∴∠EDF=∠EFD=180°﹣∠CDE﹣∠BDC=180°﹣90°﹣30°=60°,∴∠FGE=∠GEF=∠EFD+∠A=60°+15°=75°,即此时符合;①当∠A=18°时,同法求出∠FEG=∠FGE=90°,此时△FEG不存在,此时不符合,同样,当∠A取大于18°的角都不符合,当∠A=小于18°的数时,△FEG存在,即选项A、C、D错误,只有选项B正确;故选:B.7.解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∵∠MON=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:△A2021B2021A2022的边长为22020.故选:C.8.解:如图,①当OP=OE时,这样的点E由2个,②当PE=OE时,这样的点E由1个,③当OP=PE时,这样的点E由1个,∴这样的点P有4个,故选:D.二.填空题(共7小题,满分28分)9.解:∵等边△ABC和等边△CDE,∴AC=BC,CD=CE,∠ACB=∠ECD=60°,∴180°﹣∠ECD=180°﹣∠ACB,即∠ACD=∠BCE,在△ACD与△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE,故①小题正确;∵△ACD≌△BCE(已证),∴∠CAD=∠CBE,∵∠ACB=∠ECD=60°(已证),∴∠BCQ=180°﹣60°×2=60°,∴∠ACB=∠BCQ=60°,在△ACP与△BCQ中,,∴△ACP≌△BCQ(ASA),∴AP=BQ,故③小题正确;PC=QC,∴△PCQ是等边三角形,∴∠CPQ=60°,∴∠ACB=∠CPQ,∴PQ∥AE,故②小题正确;∵AD=BE,AP=BQ,∴AD﹣AP=BE﹣BQ,即DP=QE,∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,∴∠DQE≠∠CDE,故④小题错误.综上所述,正确的是①②③.故答案为:①②③.10.解:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,BA=BC,∵BD平分∠ABC,∴∠DBC=∠E=30°,BD⊥AC,∴∠BDC=90°,∴BC=2DC,∵∠ACB=∠E+∠CDE,∴∠CDE=∠E=30°,∴CD=CE=1,∴BC=2CD=2,故答案为211.解:∵在△CBA1中,∠B=30°,A1B=CB,∴∠BA1C==75°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=∠BA1C=×75°;同理可得∠EA3A2=()2×75°,∠F A4A3=()3×75°,∴第n个三角形中以A n为顶点的内角度数是()n﹣1×75°.故答案为:()n﹣1×75°.12.解:设∠EDC=x,∠B=∠C=y,∠AED=∠EDC+∠C=x+y,又因为AD=AE,所以∠ADE=∠AED=x+y,则∠ADC=∠ADE+∠EDC=2x+y,又因为∠ADC=∠B+∠BAD,所以2x+y=y+30,解得x=15,所以∠EDC的度数是15°.故答案是:15°.13.解:当高在三角形内部时(如图1),顶角是60°;当高在三角形外部时(如图2),顶角是120°.故答案为:60或120.14.解:△AOP,△BOP,△COP,△DOP就是所求的三角形.15.解:∵△ABM和△ACN都是等边三角形,∴AB=AM,AN=AC,∠BAM=∠CAN=60°,∴∠BAM+∠BAC=∠CAN+∠BAC,即∠CAM=∠BAN,在△ABN与△AMC中,,∴△ABN≌△AMC(SAS),∴∠ANP=∠ACP,又∵∠AEN=∠PEC(对顶角相等),∵∠AEP=∠NEC(对顶角相等),∴∠APN=∠ACN=60°.故答案为:60°.三.解答题(共9小题,满分60分)16.证明:∵EF⊥AD,AD平分∠BAC,∴∠1=∠2,∠APE=∠APF=90°,又∵∠AEF=180°﹣∠1﹣∠APE,∠AFE=180°﹣∠2﹣∠APF,∴∠AEF=∠AFE,∵∠CFM=∠AFE,∴∠AEF=∠AFE=∠CFM,∵∠AEF=∠B+∠M,∠MFC=∠ACB﹣∠M,∴∠B+∠M=∠ACB﹣∠M,即:∠M=(∠ACB﹣∠B).17.证明:延长BD至F,使DF=BC,连接EF,∵EC=ED,∴∠ECD=∠EDC,∴∠ECB=∠EDF,∴△ECB≌△EDF(SAS),∴BE=EF,∠B=60°,∴△BEF为等边三角形,∴BE=BF,∵AE=BD,∴DF=AB,BC=DF,∴AB=BC,∴△ABC是等边三角形.18.证明:连接AD.则△ABC的面积=△ABD的面积+△ACD的面积,AB•DE+AC•DF=AC•BG,∵AB=AC,∴DE+DF=BG.19.证明:∵AD∥BC,∴∠EAD=∠B,∠DAC=∠C,∵AD平分∠EAC,∴∠EAD=∠DAC,∴∠B=∠C,∴AB=AC,∵点F为BC中点,∴AF⊥BC.20.证明:∵AB=AC,∴∠ABC=∠SCB,∵BD平分∠ABC,∴∠ABD=∠CBD,∵CE=CD,∴∠CDE=∠E,∵∠ACB=∠E+∠CDE=2∠DBC,∴∠DBC=∠E,∴△BDE为等腰三角形,BD=ED,∵DH垂直于BE,∴H为BE中点(三线合一).21.证明:∵△ABC是等边三角形,∴AB=BC=AC,∵AD=BE=CF,∴AF=BD,在△ADF和△BED中,,∴△ADF≌△BED(SAS),∴DF=DE,同理DE=EF,∴DE=DF=EF.∴△DEF是等边三角形.22.证明:∵△ABC是等边三角形,△CDE是等边三角形,M是线段AD的中点,N是线段BE的中点,∴∠ACB=∠ECD=60°,∴∠ACB+∠BCD=∠ECD+∠BCD,即∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE,∴AD=BE,AM=BN;∴AC=BC,∠CAD=∠CBE,AM=BN,∴△AMC≌△BNC(SAS),∴CM=CN,∠ACM=∠BCN;又∵∠NCM=∠BCN﹣∠BCM,∠ACB=∠ACM﹣∠BCM,∴∠NCM=∠ACB=60°,∴△CMN是等边三角形.23.(1)证明:作DF∥AB交BC于F,如图所示:∵△ABC是等边三角形,∴∠A=∠ABC=∠C=60°,∵DF∥AB,∴∠CDF=∠A=60°,∠DFC=∠ABC=60°,∠DFP=∠EBP,∴△CDF是等边三角形,∴CD=DF,∵点P为DE中点,∴PD=PE,在△PDF和△PEB中,,∴△PDF≌△PEB(AAS),∴DF=BE,∴CD=BE;(2)解:∵DE⊥AC,∴∠ADE=90°,∴∠E=90°﹣∠A=30°,∴AD=AE,∠BPE=∠ACB﹣∠E=30°=∠E,∴BP=BE,由(1)得:CD=BE,∴BP=BE=CD,设BP=x,则BE=CD=x,AD=12﹣x,∵AE=2AD,∴12+x=2(12﹣x),解得:x=4,即BP的长为4.24.(1)证明:如图,过P做PF∥BC交AC于点F,∴∠AFP=∠ACB,∠FPD=∠Q,∠PFD=∠QCD ∵△ABC为等边三角形,∴∠A=∠ACB=60°,∴∠A=∠AFP=60°,∴△APF是等边三角形;∵AP=PF,AP=CQ,∴PF=CQ∴△PFD≌△QCD,∴PD=DQ.(2)△APF是等边三角形,∵PE⊥AC,∴AE=EF,△PFD≌△QCD,∴CD=DF,DE=EF+DF=AC,∵AC=1,DE=.。
2019人教新版八年级数学上 13.3 等腰三角形 同步练习卷 包含答案
13.3 等腰三角形一.选择题(共8小题)1.下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有()A.①②③B.①②④C.①③D.①②③④2.如图,△ABC、△ADE中,C、D两点分别在AE、AB上,BC与DE相交于F点.若BD=CD =CE,∠ADC+∠ACD=114°,则∠DFC的度数为何?()A.114 B.123 C.132 D.1473.如图,网格中的每个小正方形的边长为1,A、B是格点,以A、B、C为等腰三角形顶点的所有格点C的个数为()A.7个B.8个C.9个D.10个4.如图所示,△ABC是等边三角形,且BD=CE,∠1=15°,则∠2的度数为()A.15°B.30°C.45°D.60°5.如图,已知△ABC中,AB=AC,AD=AE,∠BAE=30°,则∠DEC等于()A.7.5°B.10°C.15°D.18°6.如图所示,在△ABC中,AB=AC,∠BAD=α,且AE=AD,则∠EDC=()A.αB.αC.αD.α7.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,其中一个动点到达端点时,另一个动点也随之停止运动,当△APQ是以PQ为底的等腰三角形时,运动的时间是()A.2.5秒B.3秒C.3.5秒D.4秒8.如图,已知AB=A1B,A1B1=A1A2,A2B2=A2A3,A3B3=A3A4…,若∠A=70°,则∠A n﹣1A n B n的度数为()﹣1A.B.C.D.二.填空题(共3小题)9.等腰三角形一腰上的高与另一腰的夹角为20°,则顶角的度数是.10.如图,在△ABC中,AB=AC,点E在CA延长线上,EP⊥BC于点P,交AB于点F,若AF =2,BF=3,则CE的长度为.11.如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D 为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,则△AMN的周长为.三.解答题(共8小题)12.如图,△ABC是等腰三角形,D,E分别是腰AB及AC延长线上的一点,且BD=CE,连接DE交底BC于G.求证GD=GE.13.如图所示,△ABC中,AB=BC,DE⊥AB于点E,DF⊥BC于点D,交AC于F.(1)若∠AFD=155°,求∠EDF的度数;(2)若点F是AC的中点,求证:∠CFD=∠B.14.等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ,问△APQ 是什么形状的三角形?试说明你的结论.15.如图,已知D是△ABC的边BC上的一点,CD=AB,∠BDA=∠BAD,AE是△ABD的中线.(1)若∠B=60°,求∠C的值;(2)求证:AD是∠EAC的平分线.16.已知:在△AOB和△COD中,OA=OB,OC=OD.(1)如图①,若∠AOB=∠COD=60°,求证:①AC=BD②∠APB=60°.(2)如图②,若∠AOB=∠COD=α,则AC与BD间的等量关系式为,∠APB的大小为(直接写出结果,不证明)17.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠BAD=°;点D从B向C运动时,∠BDA逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状也在改变,判断当∠BDA等于多少度时,△ADE是等腰三角形.18.如图1,已知线段AB的长为2a,点P是AB上的动点(P不与A,B重合),分别以AP、PB为边向线段AB的同一侧作正△APC和正△PBD.(1)当△APC与△PBD的面积之和取最小值时,AP=;(直接写结果)(2)连接AD、BC,相交于点Q,设∠AQC=α,那么α的大小是否会随点P的移动而变化?请说明理由;(3)如图2,若点P固定,将△PBD绕点P按顺时针方向旋转(旋转角小于180°),此时α的大小是否发生变化?(只需直接写出你的猜想,不必证明)19.如图,在Rt△ABC中,∠C=90°,∠A=60°,AB=12cm,若点P从B点出发以2cm/秒的速度向A点运动,点Q从A点出发以1cm/秒的速度向C点运动,设P、Q分别从B、A同时出发,运动时间为t秒.解答下列问题:(1)用含t的代数式表示线段AP,AQ的长;(2)当t为何值时△APQ是以PQ为底的等腰三角形?(3)当t为何值时PQ∥BC?参考答案一.选择题(共8小题)1.解:①两个角为60度,则第三个角也是60度,则其是等边三角形,故正确;②这是等边三角形的判定2,故正确;③三个外角相等则三个内角相等,则其是等边三角形,故正确;④根据线段的垂直平分线的性质.可以证明三边相等,故正确.所以都正确.故选:D.2.解:∵BD=CD=CE,∴∠B=∠DCB,∠E=∠CDE,∵∠ADC+∠ACD=114°,∴∠BDC+∠ECD=360°﹣114°=246°,∴∠B+∠DCB+∠E+∠CDE=360°﹣246°=114°,∴∠DCB+∠CDE=57°,∴∠DFC=180°﹣57°=123°,故选:B.3.解:如图所示,以A为圆心,AB长为半径画弧,则圆弧经过的格点C3、C8、C7即为点C 的位置;以B为圆心,AB长为半径画弧,则圆弧经过的格点C1、C2、C6、C4、C5即为点C的位置;作线段AB的垂直平分线,垂直平分线没有经过格点.故以A、B、C为等腰三角形顶点的所有格点C的个数为8个.故选:B.4.解:在△ABD和△BCE中,,∴△ABD≌△BCE,∴∠1=∠CBE,∵∠2=∠1+∠ABE,∴∠2=∠CBE+∠ABE=∠ABC=60°.故选:D.5.解:∵AC=AB,∴∠B=∠C,∵∠AEC=∠B+∠BAE=∠B+30°=∠AED+α,∴∠B=∠C=∠AED+α﹣30°,∵AE=AD,∴∠AED=∠ADE=∠C+α,即∠AED=∠AED+α﹣30°+α,∴2α=30°,∴α=15°,∠DEC=α=15°,故选:C.6.解:根据题意:在△ABC中,AB=AC∴∠B=∠C∵AE=AD∴∠ADE=∠AED,即∠B+∠α﹣∠EDC=∠C+∠EDC化简可得:∠α=2∠EDC∴∠EDC=α.故选:A.7.解:设运动的时间为x,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,当△APQ是等腰三角形时,AP=AQ,AP=20﹣3x,AQ=2x即20﹣3x=2x,解得x=4.故选:D.8.解:∵在△ABA1中,∠A=70°,AB=A1B,∴∠BA1A=70°,∵A1A2=A1B1,∠BA1A是△A1A2B1的外角,∴∠B1A2A1==35°;同理可得,∠B2A3A2=17.5°,∠B3A4A3=×17.5°=,∴∠A n﹣1A n B n﹣1=.故选:C.二.填空题(共3小题)9.解:此题要分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣20°=70°.故答案为:110°或70°.10.证明:在△ABC中,∵AB=AC,∴∠B=∠C,∵EP⊥BC,∴∠C+∠E=90°,∠B+∠BFP=90°,∴∠E=∠BFP,又∵∠BFP=∠AFE,∴∠E=∠AFE,∴AF=AE,∴△AEF是等腰三角形.又∵AF=2,BF=3,∴CA=AB=5,AE=2,∴CE=7.11.解:∵△BDC是等腰三角形,且∠BDC=120°∴∠BCD=∠DBC=30°∵△ABC是边长为3的等边三角形∴∠ABC=∠BAC=∠BCA=60°∴∠DBA=∠DCA=90°延长AB至F,使BF=CN,连接DF,在Rt△BDF和Rt△CND中,BF=CN,DB=DC∴△BDF≌△CDN,∴∠BDF=∠CDN,DF=DN∵∠MDN=60°∴∠BDM+∠CDN=60°∴∠BDM+∠BDF=60°,∠FDM=60°=∠MDN,DM为公共边∴△DMN≌△DMF,∴MN=MF∴△AMN的周长是:AM+AN+MN=AM+MB+BF+AN=AB+AC=6.三.解答题(共8小题)12.证明:过E作EF∥AB交BC延长线于F.∵AB=AC,∴∠B=∠ACB,∵EF∥AB,∴∠F=∠B,∵∠ACB=∠FCE,∴∠F=∠FCE,∴CE=EF,∵BD=CE,∴BD=EF,在△DBG与△GEF中,,∴△DGB≌△EGF(AAS),∴GD=GE.13.解:(1)∵∠AFD=155°,∴∠DFC=25°,∵DF⊥BC,DE⊥AB,在Rt△EDC中,∴∠C=90°﹣25°=65°,∵AB=BC,∴∠C=∠A=65°,∴∠EDF=360°﹣65°﹣155°﹣90°=50°.(2)连接BF∵AB=BC,且点F是AC的中点,∴BF⊥AC,∠ABF=∠CBF=∠ABC,∴∠CFD+∠BFD=90°,∠CBF+∠BFD=90°,∴∠CFD=∠CBF,∴∠CFD=∠ABC.14.解:△APQ为等边三角形.证明:∵△ABC为等边三角形,∴AB=AC.在△ABP与△ACQ中,∵,∴△ABP≌△ACQ(SAS).∴AP=AQ,∠BAP=∠CAQ.∵∠BAC=∠BAP+∠PAC=60°,∴∠PAQ=∠CAQ+∠PAC=60°,∴△APQ是等边三角形.15.(1)解:∵∠B=60°,∠BDA=∠BAD,∴AB=AD,∵CD=AB,∴CD=AD,∴∠DAC=∠C,∴∠BDA=∠DAC+∠C=2∠C,∵∠BAD=60°,∴∠C=30°;(2)证明:延长AE到M,使EM=AE,连接DM,在△ABE和△MDE中,,∴△ABE≌△MDE,∴∠B=∠MDE,AB=DM,∵∠ADC=∠B+∠BAD=∠MDE+∠BDA=∠ADM,在△MAD与△CAD,,∴△MAD≌△CAD,∴∠MAD=∠CAD,∴AD是∠EAC的平分线.16.解:(1)①证明:∵∠AOB=∠COD=60°,∴∠AOB+∠BOC=∠COD+∠BOC,∴∠AOC=∠BOD.在△AOC和△BOD中,,∴△AOC≌△BOD(SAS),∴AC=BD;②证明:∵△AOC≌△BOD,∴∠OAC=∠OBD,∴∠OAC+∠AOB=∠OBD+∠APB,∴∠OAC+60°=∠OBD+∠APB,∴∠APB=60°;(2)AC=BD,∠APB=α.17.解:(1)∠BAD=180°﹣∠ABD﹣∠BDA=180°﹣40°﹣115°=25°;从图中可以得知,点D从B向C运动时,∠BDA逐渐变小;故答案为:25°;小.(2)∵∠EDC+∠EDA+∠ADB=180°,∠DAB+∠B+∠ADB=180°,∠B=∠EDA=40°,∴∠EDC=∠DAB.∵∠B=∠C,∴△ABD≌△DCE.∴当DC=AB=2时,△ABD≌△DCE.(3)∵AB=AC,∴∠B=∠C=40°,①当AD=AE时,∠ADE=∠AED=40°,∵∠AED>∠C,∴此时不符合;②当DA=DE时,即∠DAE=∠DEA=(180°﹣40°)=70°,∵∠BAC=180°﹣40°﹣40°=100°,∴∠BAD=100°﹣70°=30°;∴∠BDA=180°﹣30°﹣40°=110°;③当EA=ED时,∠ADE=∠DAE=40°,∴∠BAD=100°﹣40°=60°,∴∠BDA=180°﹣60°﹣40°=80°;∴当∠ADB=110°或80°时,△ADE是等腰三角形.18.解:(1)设AP的长是x,则BP=2a﹣x,∴S△APC+S△PBD=x•x+(2a﹣x)•(2a﹣x)=x2﹣ax+a2,当x=﹣=﹣=a时△APC与△PBD的面积之和取最小值,故答案为:a;(2)α的大小不会随点P的移动而变化,理由:∵△APC是等边三角形,∴PA=PC,∠APC=60°,∵△BDP是等边三角形,∴PB=PD,∠BPD=60°,∴∠APC=∠BPD,∴∠APD=∠CPB,∴△APD≌△CPB,∴∠PAD=∠PCB,∵∠QAP+∠QAC+∠ACP=120°,∴∠QCP+∠QAC+∠ACP=120°,∴∠AQC=180°﹣120°=60°;(3)此时α的大小不会发生改变,始终等于60°.理由:∵△APC是等边三角形,∴PA=PC,∠APC=60°,∵△BDP是等边三角形,∴PB=PD,∠BPD=60°,∴∠APC=∠BPD,∴∠APD=∠CPB,∴△APD≌△CPB,∴∠PAD=∠PCB,∵∠QAP+∠QAC+∠ACP=120°,∴∠QCP+∠QAC+∠ACP=120°,∴∠AQC=180°﹣120°=60°.19.解:(1)∵Rt△ABC中,∠C=90°,∠A=60°,∴∠B=30°.又∵AB=12cm,∴AC=6cm,BP=2t,AP=AB﹣BP=12﹣2t,AQ=t.(2)∵△APQ是以PQ为底的等腰三角形,∴AP=AQ,即12﹣2t=t,解得t=4,即当t=4秒时△APQ是等腰三角形.(3)∵当AQ:AC=AP:AB时,有PQ∥BC,∴t:6=(12﹣2t):12,解得t=3.即当t=3秒时,PQ∥BC.。
人教版八年级上册数学 13.3 等腰三角形 同步习题(含答案)
13.3 等腰三角形同步习题一.选择题1.等腰三角形的两边长为3和7,则其周长为()A.17B.13C.13或17D.以上都不对2.等腰三角形的两边长分别为3cm和7cm,则周长为()A.13cm B.17cm C.13cm或17cm D.11cm或17cm 3.在△ABC中,∠A:∠B:∠C=1:2:3,最小边BC=4cm,则最长边AB的长为()A.8cm B.6cm C.cm D.5cm4.在△ABC中,AB=AC,若∠A=40°,则∠C为()A.40°B.70°C.40°或70°D.100°5.如图,在△ABC中,AB=AC,点D,点E分别是BC,AC上一点,且DE⊥AD,若∠BAD=55°,∠B=50°,则∠DEC的度数为()A.125°B.120°C.115°D.110°6.如图,将边长为7cm的等边△ABC沿边BC向右平移5cm得到△A'B'C',则四边形AA'C'B 的周长为()A.30cm B.31cm C.32cm D.33cm7.如图,在△ABC中,D、E分别为AB、AC边上的点,DA=DE,DB=BE=EC.若∠ABC =130°,则∠C的度数为()A.20°B.22.5°C.25°D.30°8.△ABC中,AB=AC,∠BAC=120°,BC=2,D为BC的中点,AE=AB,则△EBD 的面积为()A.B.C.D.9.如图,在△ABC中,AB=AC,点D,E在边BC上,∠BAD=∠CAE,若BC=15,DE =6,则CE的长为()A.3.5B.4.5C.5D.5.510.如图,在等边△ABC中,BC=4,D,E分别是AB,AC的中点,EF⊥BC于点F,连接DF.则DF等于()A.2B.3C.D.2二.填空题11.如图,AD、BE是等边△ABC的两条高线,AD、BE交于点O,则∠AOB=度.12.等腰三角形周长为20cm,则腰长xcm的取值范围是.13.在等腰三角形ABC中,BC边上的高恰好等于BC边长的一半,则∠BAC等于.14.如图,在△ABC中,AE=DE=BD,AD=EC,∠1=17°,则∠EBC的度数是.15.如图,点C为线段AB上一点,且CB=2,分别以AC、BC为边,在AB的同一侧作等边△ACD和等边△CBE,连接DE,AE,∠CDE=30°,则△ADE的面积为.三.解答题16.如图,在△ABC中,AB=AC,D是三角形内一点,连接AD,BD,CD,∠BDC=90°,∠DBC=45°.(1)求证:∠BAD=∠CAD;(2)求∠ADB的度数.17.如图,在△ABC中,点D,E分别在边AC,AB上,BD与CE交于点O,给出下列三个条件:①∠EBO=∠DCO;②BE=CD;③OB=OC.(1)上述三个条件中,由哪两个条件可以判定△ABC是等腰三角形?(用序号写出所有成立的情形)(2)请选择(1)中的一种情形,说明你的理由.参考答案1.A2.B3.A4.B5.C6.B7.D8.B9.B10.C11.120.12.5<x<1013.90°或75°或15°14.56°15.416.(1)证明:∵∠BDC=90°,∠DBC=45°,∴∠BCD=180°﹣∠BDC﹣∠DBC=45°,∴∠DBC=∠BCD,∴DB=DC.在△ABD与△ACD中,,∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD;(2)解:∵△ABD≌△ACD(SSS),∴∠ADB=∠ADC,∵∠ADB+∠ADC+∠BDC=360°,∠BDC=90°,∴∠ADB=(360°﹣90°)=135°.17.解:(1)由①②或①③可以判定△ABC是等腰三角形;(2)由①②判定△ABC是等腰三角形,理由如下:在△BOE和△COD中,∵∠EBO=∠DCO,BE=CD,∠BOE=∠COD,∴△BOE≌△COD,∴OB=OC,∴∠OBC=∠OCB,∴∠OBC+∠EBO=∠OCB+∠DCO,即:∠ABC=∠ACB,∴AB=AC,即△ABC是等腰三角形.①③判定△ABC是等腰三角形,理由如下:∵OB=OC,∴∠OBC=∠OCB,又∵∠EBO=∠DCO,∴∠OBC+∠EBO=∠OCB+∠DCO,即:∠ABC=∠ACB,∴AB=AC,即△ABC是等腰三角形.。
人教版 八年级数学上册 13.3 等腰三角形 课时训练(含答案)
人教版八年级数学上册13.3 等腰三角形课时训练一、选择题1. 以下列各组数据为边长,可以构成等腰三角形的是()A.1,1,2 B.1,1,3C.2,2,1 D.2,2,52. 如图,在Rt△ABC中,∠BCA=90°,∠A=30°,CD⊥AB,垂足为D,则AD 与BD的长度之比为()A.2∶1 B.3∶1 C.4∶1 D.5∶13. 如图,在等腰三角形中,若∠1=110°,则∠2的度数为()A.35°B.70°C.110°D.35°或55°4. 如图,已知直线l垂直平分线段AB,P是l上一点,已知P A=1,则PB()A.等于1 B.小于1C.大于1 D.最小为15. 如图,在△ABC中,∠C=90°,∠B=30°,AC=3,P是BC边上的动点,则AP的长可能是()A.2 B.5.2 C.7.8 D.86. 具备下列条件的三角形为等腰三角形的是链接听P27例1归纳总结() A.有两个角分别为20°,120°B.有两个角分别为40°,80°C.有两个角分别为30°,60°D.有两个角分别为50°,80°7. 如图,在△ABC中,AB=AC,AD,CE分别是△ABC的中线和角平分线.若∠CAD=20°,则∠ACE的度数是()A.20°B.35°C.40°D.70°8. 如图,AC=AD,BC=BD,则有()A.CD垂直平分ABB.AB垂直平分CDC.AB与CD互相垂直平分D.CD平分∠ACB9. 下列条件不能得到等边三角形的是()A.有两个内角是60°的三角形B.有一个角是60°的等腰三角形C.腰和底相等的等腰三角形D.有两个角相等的等腰三角形10. 如图,在△ABC中,∠BAC=72°,∠C=36°,∠BAC的平分线AD交BC于点D,则图中有等腰三角形()A.0个B.1个C.2个D.3个二、填空题11. 如图,等腰三角形ABC中,AB=AC=12,∠A=30°,则△ABC的面积等于________.12. 等腰三角形的两边长分别为6 cm,13 cm,其周长为________ cm.13. 如图,在△ABC中,AB=AC,E为BC的中点,BD⊥AC,垂足为D.若∠EAD =20°,则∠ABD=________°.14. 如图所示,OP平分∠AOB,∠AOP=15°,PC∥OA,PD⊥OA于点D,PC =4,则PD=________.15. 如图所示,在△ABC中,DE是AC的垂直平分线,AE=5 cm,△ABD的周长为18 cm,则△ABC的周长为.三、解答题16. 如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.求证:DF=2DC.17. 如图,已知Rt△ABC中,∠ACB=90°,CD⊥AB于点D,∠BAC的平分线分别交BC,CD于点E,F.求证:△CEF是等腰三角形.18. 如图,上午8时,一条船从海岛A出发,以15海里/时的速度向正北方向航行,上午10时到达海岛B处,从A,B望灯塔C,测得∠NAC=30°,∠NBC=60°.(1)求海岛B到灯塔C的距离;(2)这条船继续向正北方向航行,在什么时间小船与灯塔C的距离最短?19. 已知:如图所示,锐角三角形ABC 的两条高BD ,CE 相交于点O ,且OB=OC.(1)求证:△ABC 是等腰三角形;(2)判断点O 是否在∠BAC 的平分线上,并说明理由.20. 如图①,在△ABC 中,AB =AC ,P 为底边BC 上一点,PE ⊥AB ,PF ⊥AC ,CH ⊥AB ,垂足分别为E ,F ,H .易证PE +PF =CH .证明过程如下: 连接AP .∵PE ⊥AB ,PF ⊥AC ,CH ⊥AB ,∴S △ABP =12AB ·PE ,S △ACP =12AC ·PF ,S △ABC =12AB ·CH . 又∵S △ABP +S △ACP =S △ABC , ∴12AB ·PE +12AC ·PF =12AB ·CH . ∵AB =AC ,∴PE +PF =CH .如图②,若P 为BC 延长线上的点,其他条件不变,PE ,PF ,CH 之间又有怎样的数量关系?请写出你的猜想,并加以证明.人教版八年级数学上册13.3 等腰三角形课时训练-答案一、选择题1. 【答案】C2. 【答案】B[解析] ∵在Rt△ABC中,∠BCA=90°,∠A=30°,CD⊥AB,∴2BD=BC,2BC=AB.∴AB=4BD.∴AD∶BD=3∶1.3. 【答案】A4. 【答案】A5. 【答案】B[解析] 根据垂线段最短,可知AP的长不能小于3.∵在△ABC中,∠C=90°,∠B=30°,AC=3,∴AB=6.∴AP的长不能大于6.6. 【答案】D7. 【答案】B8. 【答案】B9. 【答案】D[解析] 有两个内角是60°的三角形,有一个角是60°的等腰三角形,腰和底相等的等腰三角形均可以得到等边三角形,而有两个角相等的等腰三角形不能得到等边三角形.10. 【答案】D[解析] ∵∠BAC=72°,∠C=36°,∴∠ABC=72°.∴∠BAC=∠ABC.∴CA=CB.∴△ABC是等腰三角形.∵∠BAC的平分线AD交BC于点D,∴∠DAB=∠CAD=36°.∴△ACD 是等腰三角形.∵∠ADB =∠CAD +∠C =72°,∴∠ADB =∠B.∴AD =AB. ∴△ADB 是等腰三角形.二、填空题11. 【答案】36[解析] 过点B 作BD ⊥AC 于点D.∵∠A =30°,AB =12,∴在Rt △ABD 中,BD =12AB =12×12=6. ∴S △ABC =12AC·BD =12×12×6=36.12. 【答案】32[解析] 由题意知,应分两种情况:(1)当腰长为6 cm 时,三角形的三边长为6 cm ,6 cm ,13 cm ,6+6<13,不能构成三角形;(2)当腰长为13 cm 时,三角形的三边长为6 cm ,13 cm ,13 cm ,能构成三角形,周长=2×13+6=32(cm).13. 【答案】50[解析] ∵AB =AC ,E 为BC 的中点,∴∠BAE =∠EAD =20°.∴∠BAD =40°,又∵BD ⊥AC ,∴∠ABD =90°-∠BAD =90°-40°=50°.14. 【答案】2[解析] 过点P 作PE ⊥OB 于点E.∵∠AOP =∠BOP ,PD ⊥OA ,PE ⊥OB , ∴PE =PD.∵∠BOP =∠AOP =15°,∴∠AOB =30°. ∵PC ∥OA ,∴∠BCP =∠AOB =30°. ∴在Rt △PCE 中,PE =12PC =12×4=2. ∴PD =PE =2.故答案是2.15. 【答案】28 cm三、解答题16. 【答案】证明:∵△ABC 是等边三角形,∵DE∥AB,∴∠EDC=∠B=60°,∠DEC=∠A=60°.∵EF⊥DE,∴∠DEF=90°.∴∠F=90°-∠EDC=30°.∵∠ACB=∠EDC=∠DEC=60°,∴△EDC是等边三角形.∴DE=DC.∵∠DEF=90°,∠F=30°,∴DF=2DE=2DC.17. 【答案】证明:∵∠ACB=90°,∴∠B+∠BAC=90°.∵CD⊥AB,∴∠CAD+∠ACD=90°.∴∠ACD=∠B.∵AE是∠BAC的平分线,∴∠CAE=∠EAB.∵∠EAB+∠B=∠CEF,∠CAE+∠ACD=∠CFE,∴∠CFE=∠CEF. ∴CF=CE.∴△CEF是等腰三角形.18. 【答案】解:(1)∵∠NBC=60°,∠NAC=30°,∴∠ACB=30°.∴AB=BC.∵AB=15×2=30(海里),∴BC=30 海里,即从海岛B到灯塔C的距离为30海里.(2)过点C作CP⊥AB于点P,则线段CP的长为小船与灯塔C的最短距离.∵∠NBC=60°,∠BPC=90°,∴∠PCB=90°-60°=30°.∴PB=12BC=15海里.∵15÷15=1(时),∴这条船继续向正北方向航行,在上午11时小船与灯塔C 的距离最短.19. 【答案】解:(1)证明:∵OB=OC , ∴∠OBC=∠OCB.∵锐角三角形ABC 的两条高BD ,CE 相交于点O , ∴∠BEC=∠CDB=90°.∵∠BEC+∠BCE+∠ABC=∠CDB+∠DBC+∠ACB=180°, ∴180°-∠BEC-∠BCE=180°-∠CDB-∠DBC , ∴∠ABC=∠ACB ,∴AB=AC ,∴△ABC 是等腰三角形. (2)点O 在∠BAC 的平分线上.理由:连接AO 并延长交BC 于点F .在△AOB 和△AOC 中,∴△AOB ≌△AOC (SSS),∴∠BAF=∠CAF , ∴点O 在∠BAC 的平分线上.20. 【答案】解:PE =PF +CH.证明如下: 连接AP.∵PE ⊥AB ,PF ⊥AC ,CH ⊥AB ,∴S △ABP =12AB·PE ,S △ACP =12AC·PF ,S △ABC =12AB·CH.∵S △ABP =S △ACP +S △ABC , ∴12AB·PE =12AC·PF +12AB·CH. ∵AB =AC ,∴PE =PF +CH.。
人教版数学八年级上册13.3 等腰三角形同步练习(解析版)
人教版数学八年级上册13.3:等腰三角形同步练习一.选择题(共15小题)1.在Rt△ABC中,∠C=90°,∠B=30°,斜边AB的长为2cm,则AC长为()A.4 cm B.2 cm C.1 cm D.cm2.一个等腰三角形但不是等边三角形,它的角平分线、高线、中线总数共()条.A.9B.7C.6D.33.如图,△ABC是等边三角形,AE⊥BC于E,AD⊥CD于D,AB∥CD,则图中60°的角有()A.3个B.4个C.5个D.6个4.下列判断不正确的是()A.等腰三角形的两底角相等B.等腰三角形的两腰相等C.等边三角形的三个内角都是60°D.两个内角分别为120°、40°的三角形是等腰三角形5.在△ABC中,∠ACB=90°,∠B=30°,CD⊥AB于D,若AC=6,则BD等于()A.6B.3C.9D.126.等腰三角形的对称轴,最多可以有()A.1条B.3条C.6条D.无数条7.等腰三角形两边的长分别为2cm和5cm,则这个三角形的周长是()A.9cm B.12cmC.9cm或12cm D.在9cm或12cm之间8.如图,在△ABC中,AB=AC,D为BC的中点,E为AC边上一点,且AE=AD,∠BAC =40°,则∠EDC的度数是()A.10°B.20°C.30°D.40°9.一个三角形有两条边相等,这个三角形一边等于5cm,一边等于10cm,则另一边等于()A.5cm B.10cm C.15cm D.12cm10.如图,△ABC是等腰三角形,AD是底边BC上的高线,DE⊥AB于E,DF⊥AC于F,图中除AB=AC外,相等的线段共有()A.1对B.2对C.3对D.4对11.等腰三角形一腰上的高与底边所夹的角为a,则这个等腰三角形的顶角为()A.a B.90°﹣a C.12a D.2a12.等腰三角形的底角为a,则a的取值范围是()A.a≤45°B.0°<a<90°C.45°<a<90°D.0°≤a<90°13.如图,在等边三角形ABC中,三条中线AE,BD,CF相交于点O,则等边三角形ABC 中,从△BOF到△COD需要经过的变换是()A.轴对称变换B.旋转变换C.平移变换D.相似变换14.如果以4cm长的线段为底组成一个等腰三角形,腰长x的取值范围是()A.x>4cm B.x>2cm C.x≥4cm D.x≥2cm15.等腰三角形周长是32cm,一边长为10cm,则其他两边的长分别为()A.10cm,12cm B.11cm,11cmC.11cm,11cm或10cm,12cm D.不能确定二.填空题(共6小题)16.若等腰三角形的一腰上的高与另一腰的夹角等于50°,则其顶角的度数为.若等腰三角形的一腰上的高与底边的夹角等于50°,则其顶角的度数为.17.一个等腰三角形的腰长为3cm,则底边长的取值范围是.18.如图,AB=AC,∠A=100°,AB∥CD,则∠BCD=度.19.等腰三角形的顶角与底角的度数之比为4:1,则它的各内角度数为.20.△ABC中,∠A:∠B:∠C=1:2:3,AB=10,则BC=.21.(1)等腰三角形的一个角为100°,那么另外两个角分别为.(2)等腰三角形的一个角为50°,则底角是.三.解答题(共9小题)22.已知等腰三角形的周长为28cm,其中的一边长是另一边长的倍,求这个等腰三角形各边的长.23.如图,已知AB=AC,D为BC边中点,你能说出AD与BC的位置关系吗?请说明理由.24.如图,△ABC是等腰三角形,且AB=AC,试作出BC边上的中线和高以及∠A的平分线,从中你发现了什么?与其他同学进行交流.25.如图,在△ABC中,AB=AC,∠C=2∠A,BD平分∠ABC.请找出图中其他的等腰三角形,并选择其中的一个说明理由.26.已知D是等腰△ABC底边BC上的一个点,DE⊥AB于E,DF⊥AC于F,当D点在什么位置时,DE=DF,并加以证明.27.如图,AD是等腰△ABC顶角的外角的平分线,那么AD与BC平行吗?为什么?28.如图,在△ABC中,AD平分∠BAC,G是CA延长线上一点,GE∥AD交AB于F.交BC于E,试判断△AGF的形状并加以证明.29.如图,在等腰△ABC中,AB=AC,AD是BC边上的高,点E、F分别是边AB、AC上的点,且EF∥BC.(1)试说明△AEF是等腰三角形;(2)试比较DE与DF的大小关系,并说明理由.30.已知:如图,△ABC中,AB=AC,D是BC延长线上一点,E是AC延长线上一点,且DE∥AB,求证:ED=EC.人教版数学八年级上册13.3:等腰三角形同步练习参考答案一.选择题(共15小题)1.在Rt△ABC中,∠C=90°,∠B=30°,斜边AB的长为2cm,则AC长为()A.4 cm B.2 cm C.1 cm D.cm【解答】解:∵∠C=90°,∠B=30°,∴AB=2AC,∵AB=2cm,∴AC=AB=1cm,故选:C.2.一个等腰三角形但不是等边三角形,它的角平分线、高线、中线总数共()条.A.9B.7C.6D.3【解答】解:由于任意一个三角形都有三条角平分线、三条高线、三条中线,而等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合,所以一个等腰三角形但不是等边三角形,它的角平分线、高线、中线总数共7条.故选:B.3.如图,△ABC是等边三角形,AE⊥BC于E,AD⊥CD于D,AB∥CD,则图中60°的角有()A.3个B.4个C.5个D.6个【解答】解:∵△ABC是等边三角形,∴∠ABC=∠ACB=∠CAB=60°∵AB∥CD,∴∠ACD=∠CAB=60°,∵AD⊥CD,∴∠DAB=90°,∵AE⊥BC,∴∠BAE=∠CAE=30°,∴∠DAE=60°∴图中60°的角有5个,故选:C.4.下列判断不正确的是()A.等腰三角形的两底角相等B.等腰三角形的两腰相等C.等边三角形的三个内角都是60°D.两个内角分别为120°、40°的三角形是等腰三角形【解答】解:A、等腰三角形的两底角相等,正确,故本选项错误;B、等腰三角形的两腰相等,正确,故本选项错误;C、等边三角形的三个内角都是60°,正确,故本选项错误;D、两个内角分别为120°、40°的三角形的第三个内角为20°,不是等腰三角形,故本选项正确.故选:D.5.在△ABC中,∠ACB=90°,∠B=30°,CD⊥AB于D,若AC=6,则BD等于()A.6B.3C.9D.12【解答】解:∵∠ACB=90°,CD⊥AB,∴∠ACD=∠B=30°,∵AC=6,∴AD=AC=×6=3,AB=2AC=2×6=12,∴BD=AB﹣AD=12﹣3=9.故选:C.6.等腰三角形的对称轴,最多可以有()A.1条B.3条C.6条D.无数条【解答】解:等腰三角形为等边三角形时对称轴最多,可以有3条.故选:B.7.等腰三角形两边的长分别为2cm和5cm,则这个三角形的周长是()A.9cm B.12cmC.9cm或12cm D.在9cm或12cm之间【解答】解:当腰长是2cm时,因为2+2<5,不符合三角形的三边关系,应排除;当腰长是5cm时,因为5+5>2,符合三角形三边关系,此时周长是12cm.故选:B.8.如图,在△ABC中,AB=AC,D为BC的中点,E为AC边上一点,且AE=AD,∠BAC =40°,则∠EDC的度数是()A.10°B.20°C.30°D.40°【解答】解:∵在△ABC中,D为BC中点,AB=AC,∴AD⊥BC,AD是∠BAC的角平分线,又∵AD=AE,∠BAC=40°,∴∠ADE=80°∴∠EDC=∠ADC﹣∠ADE=90°﹣80°=10°.故选:A.9.一个三角形有两条边相等,这个三角形一边等于5cm,一边等于10cm,则另一边等于()A.5cm B.10cm C.15cm D.12cm【解答】解:当第三边是5cm时,则5+5=10,不能构成三角形,当另一边长是10cm时,能构成三角形.故选:B.10.如图,△ABC是等腰三角形,AD是底边BC上的高线,DE⊥AB于E,DF⊥AC于F,图中除AB=AC外,相等的线段共有()A.1对B.2对C.3对D.4对【解答】解:∵△ABC是等腰三角形,AD是底边BC上的高线,∴BD=CD,∠BAD=∠CAD,∵DE⊥AB,DF⊥AC,∴DE=DF,∠BED=∠DFC=90°,在Rt△BED和Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL),∴BE=CF,∵AB=AC,∴AE=AF.故图中除AB=AC外,相等的线段共有4对.故选:D.11.等腰三角形一腰上的高与底边所夹的角为a,则这个等腰三角形的顶角为()A.a B.90°﹣a C.12a D.2a【解答】解:如图,AB=AC,BD是腰AC的高,则∠DBC=α∴∠C=90°﹣α∴∠A=180°﹣2(90°﹣α)=2α故选:D.12.等腰三角形的底角为a,则a的取值范围是()A.a≤45°B.0°<a<90°C.45°<a<90°D.0°≤a<90°【解答】解:∵等腰三角形的底角为a,且三角形的内角和等于180°,∴0°<2a<180°,∴0°<a<90°.故选:B.13.如图,在等边三角形ABC中,三条中线AE,BD,CF相交于点O,则等边三角形ABC 中,从△BOF到△COD需要经过的变换是()A.轴对称变换B.旋转变换C.平移变换D.相似变换【解答】解:∵△BOF与△COD是关于OE的轴对称图形,∴从△BOF到△COD需要经过轴对称变换.故选A14.如果以4cm长的线段为底组成一个等腰三角形,腰长x的取值范围是()A.x>4cm B.x>2cm C.x≥4cm D.x≥2cm【解答】解:此等腰三角形的底为4cm,则有2x>4,解得x>2,故选:B.15.等腰三角形周长是32cm,一边长为10cm,则其他两边的长分别为()A.10cm,12cm B.11cm,11cmC.11cm,11cm或10cm,12cm D.不能确定【解答】解:当该边是腰时,底边是32﹣20=12cm,则另外两边是10cm,12cm;当该边是底时,则腰的长为:(32﹣10)÷2=11cm,则另外两边是11cm,11cm;经检验,两种情况都符合三角形的三边关系.故选:C.二.填空题(共6小题)16.若等腰三角形的一腰上的高与另一腰的夹角等于50°,则其顶角的度数为40°或140°.若等腰三角形的一腰上的高与底边的夹角等于50°,则其顶角的度数为100°.【解答】解:(1)①当为锐角三角形时可以画图,高与右边腰成50°夹角,由三角形内角和为180°可得,顶角为40°;②当为钝角三角形时可画图,此时垂足落到三角形外面,因为三角形内角和为180°,由图可以看出等腰三角形的顶角的补角为40°,三角形的顶角为140°.(2)如图,①顶角是钝角时,∠B=90°﹣50°=40°,则顶角=180°﹣2×40°=100°,是钝角,符合;②顶角是锐角时,∠B=90°﹣50°=40°,∠A=180°﹣2×40°=100°,是钝角,不符合.故答案为:40°或140°;100°.17.一个等腰三角形的腰长为3cm,则底边长的取值范围是0<底边<6cm.【解答】解:∵3﹣3=0,3+3=6cm,∴底边的取值范围是0<底边<6cm.故答案为:0<底边<6cm.18.如图,AB=AC,∠A=100°,AB∥CD,则∠BCD=40度.【解答】解:∵AB=AC∴∠B=∠ACB=(180﹣∠A)=40°∵AB∥CD∴∠BCD=∠B=40°.故填40.19.等腰三角形的顶角与底角的度数之比为4:1,则它的各内角度数为120°,30°,30°.【解答】解:设等腰三角形的各角为4x,x,x∵4x+x+x=180°∴x=30°∴三个内角分别是120°,30°,30°.故填120°,30°,30°.20.△ABC中,∠A:∠B:∠C=1:2:3,AB=10,则BC=5.【解答】解:由∠A:∠B:∠C=1:2:3,可设∠A=x°,则∠B=2x°,∠C=3x°.∵∠A+∠B+∠C=180°,∴x+2x+3x=180,∴x=30,∴∠A=30°,∠B=60°,∠C=90°,∴BC=AB=×10=5.故答案为5.21.(1)等腰三角形的一个角为100°,那么另外两个角分别为40°,40°.(2)等腰三角形的一个角为50°,则底角是50°,65°.【解答】解:(1)∵等腰三角形的一个角为100°∴两底角的和=180°﹣100°=80°又∵等腰三角形的两底角相等∴两底角都为40°.(2)当50°的角是底角,则底角就为50°;当50°的角是顶角,则两底角的和等于130°,所以底角等于65°.故填40°,40°;50°,65°.三.解答题(共9小题)22.已知等腰三角形的周长为28cm,其中的一边长是另一边长的倍,求这个等腰三角形各边的长.【解答】解:设等腰三角形的一边长为xcm,则另一边长为xcm,则等腰三角形的三边有两种情况:xcm,xcm,xcm或xcm,xcm,xcm,则有:①x+x+x=28,得x=8cm,所以三边为:8cm、8cm、12cm;②x+x+x=28,得x=7cm,所以三边为7cm、10.5cm、10.5cm.因此等腰三角形的三边的长为:8cm,8cm,12cm或7cm,10.5cm,10.5cm.23.如图,已知AB=AC,D为BC边中点,你能说出AD与BC的位置关系吗?请说明理由.【解答】解:AD⊥BC.理由如下:∵AB=AC,D为BC边中点,∴AD⊥BC.24.如图,△ABC是等腰三角形,且AB=AC,试作出BC边上的中线和高以及∠A的平分线,从中你发现了什么?与其他同学进行交流.【解答】解:如图,过点A作AD⊥BC于点D,在Rt△ABD和Rt△ACD中,∵AB=AC,AD=AD,∴Rt△ABD≌Rt△ACD(HL)∴BD=CD,即AD也是中线,∴∠BAD=∠CAD,即AD又是高线,所以等腰三角形底边上的中线、高以及顶角的角平分线重合.25.如图,在△ABC中,AB=AC,∠C=2∠A,BD平分∠ABC.请找出图中其他的等腰三角形,并选择其中的一个说明理由.【解答】解:△ABD、△BCD.理由:∵在△ABC中,AB=AC,∠C=2∠A,∴∠ABC=∠C=2∠A,∵∠A+∠ABC+∠C=180°,∴∠A+2∠A+2∠A=180°,解得:∠A=36°,∴∠ABC=∠C=72°,∵BD平分∠ABC,∴∠ABD=∠DBC=36°,∴∠A=∠ABD=36°,∠BDC=∠C=72°,∴△ABD与△BCD是等腰三角形.26.已知D是等腰△ABC底边BC上的一个点,DE⊥AB于E,DF⊥AC于F,当D点在什么位置时,DE=DF,并加以证明.【解答】解:当D是BC中点时DE=DF,理由:∵AB=AC,∴∠B=∠C;∵∠BED=∠CFD=90°,BD=CD;∴△BDE≌△CDF;∴DE=DF.27.如图,AD是等腰△ABC顶角的外角的平分线,那么AD与BC平行吗?为什么?【解答】解:AD∥BC.∵△ABC是等腰三角形,∴∠B=∠C,又∵∠EAC是△ABC的一个外角,∴∠EAC=∠B+∠C=2∠B,∵AD是等腰△ABC顶角的外角的平分线,∴2∠DAC=∠EAC,∴∠C=∠DAC,∴AD∥BC(内错角相等,两直线平行).28.如图,在△ABC中,AD平分∠BAC,G是CA延长线上一点,GE∥AD交AB于F.交BC于E,试判断△AGF的形状并加以证明.【解答】解:△AGF是等腰三角形;理由:∵GE∥AD,∴∠G=∠CAD,∠BAD=∠GF A,∵AD平分∠BAC,∴∠CAD=∠BAD,∴∠G=∠GF A,∴AG=AF,∴△AGF是等腰三角形.29.如图,在等腰△ABC中,AB=AC,AD是BC边上的高,点E、F分别是边AB、AC上的点,且EF∥BC.(1)试说明△AEF是等腰三角形;(2)试比较DE与DF的大小关系,并说明理由.【解答】解:(1)∵EF∥BC,∴∠AEF=∠B,∠AFE=∠C.又∵AB=AC,∴∠B=∠C,∴∠AEF=∠AFE,∴AE=AF,即△AEF是等腰三角形;(2)DE=DF.理由如下:∵AD是等腰三角形ABC的底边上的高,∴AD也是∠BAC的平分线.又∵△AEF是等腰三角形,∴AG是底边EF上的高和中线,∴AD⊥EF,GE=GF,∴AD是线段EF的垂直平分线,∴DE=DF.30.已知:如图,△ABC中,AB=AC,D是BC延长线上一点,E是AC延长线上一点,且DE∥AB,求证:ED=EC.【解答】证明:∵AB=AC,∴∠B=∠ACB,∵AB∥ED,∴∠B=∠D,∴∠ACB=∠D,又∵∠ACB=∠ECD,∴∠ECD=∠D,∴ED=EC.。
人教版八年级数学上册同步练习 13.3 等腰三角形 同步练习及答案.doc
第13章《轴对称》同步练习(§13.3)班级 学号 姓名 得分一、填空题(每题3分,共30分)1.等腰三角形的一个角是110°,则它的底角为_______°.2.等腰三角形的腰长是6,则底边长3,周长为______________________.3.等腰三角形一个底角为50°,则此等腰三角形顶角为________________________. 4.在△ABC 中,AB =AC ,点D 在AC 边上,且BD =BC =AD ,则∠A = °.5.已知直线yy ′⊥xx ′,垂足为O ,则图形①与图形_____成轴对称 6.等腰三角形一腰上的中线把这个三角形的周长分成15㎝和12㎝,则这个三角形的底边长为 ㎝.7.腰长为12㎝,底角为15°的等腰三角形的面积为 . 8.到三角形各顶点距离相等的点是三角形 的交点. 9.在直角坐标系内有两点A (-1,1)、B (2,3),若M 为x 轴上一点,且MA +MB 最小,则M 的坐标是________,MA +MB =________.10.等腰三角形的周长为13cm,其中一边长为5cm,则该等腰三角形的腰边长为_____cm..二、选择题(每题3分,共24分)11.点M (1,2)关于原点对称的点的坐标为 ( )A .(—1,2)B .(-1,-2)C .(1,-2)D .(2,-1)12.下列说法正确的是( )A .等腰三角形的高、中线、角平分线互相重合B .顶角相等的两个等腰三角形全等C .等腰三角形一边不可以是另一边的二倍D .等腰三角形的两个底角相等13.已知∠AOB =30°,点P 在∠AOB 的内部,P 1与P 关于OB 对称,P 2与P关于OA 对称,则P ,P 1,P 2三点构成的三角形是( ) A .直角三角形 B .钝角三角形C .等腰三角形D .等边三角形14.如图,DE 是∆ABC 中AC 边的垂直平分线,若BC =8厘米,AB =10厘米,则∆EBC 的周长为( )厘米 A .16 B .28 C .26 D .18 15.等腰三角形的对称轴,最多可以有( )A .1条B .3条C .6条D .无数条① y ′③②x ′Oxy (第5题)(第14题)E DABC16.下列判断不正确的是( )A .等腰三角形的两底角相等B .等腰三角形的两腰相等C .等边三角形的三个内角都是60°D .两个内角分别为120°、40°的三角形是等腰三角形 17.下列轴对称图形中对称轴最多的是( )A .等腰直角三角形;B .正方形;C .有一个角为60°的等腰三角形;D .圆18.如图,∠A =15°,AB =BC =CD =DE =EF ,则∠FEM =( )A .45°B .60°C .75°D .90°三、解答题(共46分)19.(7分)已知,如图ΔABC 中,AB =AC ,D 点在BC 上,且BD =AD ,DC =AC .将图中的等腰三角形全都写出来.并求∠B 的度数.20.(7分)如图,在⊿ABC 中,∠ABC 和∠ACB 的平分线交于点O ,过O 点作EF ∥BC ,交AB 于E ,交AC 于F ,BE =5cm ,CF =3cm ,求EF 的长.21.(8分)如图,已知P 点是∠AOB 平分线上一点,PC,(1)∠PCD =∠PDC 吗? 为什么?(2)OP 是CD 的垂直平分线吗? 为什么?NMEFCBAD (第18题)BC D22.(8分)已知:如图,AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC ,DB =DC ,求证:△ABC 是等腰三角形.23.(8分)如图,已知直线MN 与MN 同侧两点A 、B 求作:点P ,使点P 在MN 上,且∠APM =∠BPN24.(8分)如图,在⊿ABC 中,∠ACB =90,DE是AB 的垂直平分线,∠CAE :∠EAB =4:1. 求∠B 的度数.D A C BEC参考答案一、填空题1.35 2.15 3.80°4.36°5.②6.7或11 7.36 8.线段中垂线9.)0,41(,5 10.5或4二、选择题11.B 12.D 13.D 14.D 15.B 16.D 17.D 18.C三、解答题19.⊿ABC,⊿ADB,⊿ADC ,∠B=36°20.EF=8㎝21.(1)利用角平分线性质得PC=PD,所以∠PCD=∠PDC (2)成立22.略23.略24.15°。
人教版八年级上册数学《等腰三角形》同步训练附答案
人教版八年级数学上册《13.3等腰三角形》同步训练1.如图,△ABC是等边三角形,△BCD是等腰三角形,且BD=CD,过点D作AB的平行线交AC于点E,若AB=8,DE=6,则BD的长为()A.6B.C.D.2.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.已知:如图,∠CAE是△ABC的外角,∠1=∠2,AD∥BC.求证AB=AC.以下是排乱的证明过程:①又∠1=∠2,②∴∠B=∠C,③∵AD∥BC,④∴∠1=∠B,∠2=∠C,⑤∴AB=AC.证明步骤正确的顺序是()A.③→②→①→④→⑤B.③→④→①→②→⑤C..①→②→④→③→⑤D.①→④→③→②→⑤3.如图,△ABC是等边三角形,AD是BC边上的中线,点E在AD上,且DE=BC,则∠AFE=()A.100°B.105°C.110°D.115°4.如图,已知△ABC是等边三角形,D是BC边上的一个动点(异于点B、C),过点D作DE⊥AB,垂足为E,DE的垂直平分线分别交AC、BC于点F、G,连接FD,FE.当点D在BC边上移动时,有下列三个结论:①△DEF一定为等腰三角形;②△CFG一定为等边三角形;③△FDC可能为等腰三角形.其中正确的有()A.0个B.1个C.2个D.3个5.如图,在Rt△ABC中,∠A=90°,CM平分∠ACB交AB于点M,过点M作MN∥BC 交AC于点N,且MN平分∠AMC,若AN=2,则BC的长为()A.12B.16C.20D.86.如图,AB∥CD,CB平分∠ACD,点E在AB上,DE⊥CB,垂足为F,连接AF则下列结论中错误的是()A.AB=AC B.∠AFC=∠DC.∠AEF+∠D=180°D.∠AFC>∠FCD7.如果一个等腰三角形的两边长为2和5,那么这个三角形的周长是()A.9B.12C.9或12D.不确定8.若等腰三角形的一个内角比另一个内角大30°,则这个等腰三角形的底角度数是()A.50°B.80°C.50°或70°D.80°或40°9.若等腰三角形一边长9cm,另一边长4cm,则它的周长为()A.22cm B.17cm C.22cm或17cm D.22cm或19cm 10.等腰三角形一边长9cm,另一边长4cm,它的第三边是()cm.A.4 B.9 C.4或9 D.大于5且小于1311.下列对△ABC的判断,错误的是()A.若∠A:∠B:∠C=1:2:3,则△ABC是直角三角形B.若AB=BC,∠C=50°,则∠B=50°C.若AB=BC,∠A=60°,则△ABC是等边三角形D.若∠A=20°,∠C=80°,则△ABC是等腰三角形12.已知等腰三角形的周长为19,一边长为8,则此等腰三角形的底边长为()A.3B.8C.3或8D.8或5.513.若等腰三角形的顶角是大于60°的锐角,则底角度数的取值范围是()A.x<60°B.x≤60°C.45°<x<60°D.45°≤x<60°14.△ABC中,∠BAC=∠BCA,AD平分∠BAC,DE∥AC,下列说法正确的是()A.∠B=36°B.∠ADB=108°C.∠ADB=3∠EDA D.∠AED=3∠B 15.等腰三角形的两边长为3和8,则这个等腰三角形的周长是()A.14B.19C.14或19D.2016.如图,在△ABC中,AB=AC,尺规作图:(1)分别以B,C为圆心,BC长为半径作弧,两弧交于点D;(2)作射线AD,连接BD,CD.则下列结论中错误的是()A.∠BAD=∠CAD B.△BCD是等边三角形C.AD垂直平分BC D.S四边形ABDC=AD⋅BC17.如图,在△ABC中,AB=AC,AC的垂直平分线l交BC于点D.若∠BAD=78°,则∠B的度数是()A.34°B.30°C.28°D.26°18.如图,在△ABC中,AB=AC,以点C为圆心,CB长为半径画弧,交AB于点B和点D,再分别以点B,D为圆心,大于BD长为半径画弧,两弧相交于点M,作射线CM 交AB于点E.若AE=5,BE=1,则EC的长度是()A.B.C.9D.19.如图,在等腰△ABD中,∠A=32°,取大于AB的长为半径,分别以点A,B为圆心作弧相交于两点,过此两点的直线交AD边于点E(作图痕迹如图所示),连接BE,BD,则∠EBD的度数为.20.如图,在△ABC中,AB=AC,以点B为圆心,BC长为半径画弧交AC于点C和点D,再分别以点C和点D为圆心,大于DC长为半径画弧,两弧相交于点F,作射线BF交AC于点E.若∠A=40°,则∠EBC=度.21.如图,在边长为2的等边三角形ABC中,D,E分别为AB,BC的中点,EF⊥AC于点F,G为EF的中点,连接DG,则DG的长为.22.如图,在△ABC中,AB=AC,∠B=35°,D是BC边上的动点,连接AD,若△ABD 为直角三角形,则∠DAC的度数为.23.已知等腰三角形的一个内角为110°,则等腰三角形的底角的度数为.24.用三根木棒首尾相连围成一个等腰三角形,其中两根木棒的长度分别为3cm和6cm,则第三根木棒长为cm.25.如图,在△ABC中,AB=AC,AD平分∠BAC交BC于点D,BC=16cm,则BD=cm.26.如图,在平面直角坐标系中,点A的坐标为(0,2),点B的坐标为(4,0),在y轴上取一点C使△ABC为等腰三角形,符合条件的C点有个.27.如图,在△ABC中,AB=AC,∠BAC=108°,AC的中垂线交BC于点D,交AC于点E,连接AD,则图中等腰三角形有个.28.如图,在△ABC中,以点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠B=40°,∠C=32°,求∠DAC的度数.29.如图,已知△ABC中,AB=AC,∠ABC、∠ACB的平分线交于点E,直线AE交BC于点D,说明AD⊥BC的理由.30.若关于x,y的二元一次方程组的解都是正数.(1)求a的取值范围;(2)若此方程组的解是一个等腰三角形的一条腰和底边的长,且这个等腰三角形的周长为12,求a的值.31.如图,在△ABC中,D是三角形内一点,连接DA、DB、DC,且∠1=∠2,∠3=∠4,求证:AB=AC.参考答案1.解:连接AD交BC于点O,取AC中点N,连接ON,如图,∵△ABC是等边三角形,∴AB=AC=BC=8,∠ABC=60°,∵△BCD是等腰三角形,∴BD=DC,∴AD垂直平分BC,∴BO=CO=4,∵AN=CN,∴ON=AB=4,ON∥AB,∵AB∥DE,∴ON∥DE,∴OD=AO,∴AO=4,∴OD=2,在Rt△BOD中,BD==2.故选:B.2.解:∵③AD∥BC,∴④∠1=∠B,∠2=∠C,∵①∠1=∠2,∴②∠B=∠C,∴⑤AB=AC,故证明步骤正确的顺序是③→④→①→②→⑤,3.解:∵△ABC是等边三角形,∴∠BAC=60°,∵AD是BC边上的中线,∴∠BAD=BAC=30°,AD⊥BC,BD=CD=BC,∴∠CDE=90°,∵DE=BC,∴DE=DC,∴∠DEC=∠DCE=45°,∴∠AEF=∠DEC=45°,∴∠AFE=180°﹣∠BAD﹣∠AEF=180°﹣30°﹣45°=105°,故选:B.4.解:∵DE的垂直平分线分别交AC、BC于点F、G,∴FE=FD,∴△DEF一定为等腰三角形,故①正确;∵DE⊥AB,DE⊥FG,∴AB∥FG,∴∠FGC=∠B=60°,又∵△ABC是等边三角形,∴∠C=60°,∴△CFG中,∠C=∠CFG=∠CGF,∴△CFG一定为等边三角形;故②正确;∵∠FDC>∠FGC=60°,∠C=60°,∠CFD<∠CFG=60°,∴△FDC不可能为等腰三角形.故③错误;5.解:∵CM平分∠ACB交AB于点M,∴∠NCM=∠BCM,∵MN∥BC∴∠NCM=∠BCM=∠NMC,∵MN平分∠AMC,∴∠AMN=∠NMC=∠B,∴∠ACB=2∠B,NM=NC,∴∠B=30°;∵AN=2,∠AMN=∠B=30°,∴MN=2AN=4,∴NM=NC=4,∴AC=AN+NC=6,∴BC=2AC=12,故选:A.6.解:∵AB∥CD,∴∠B=∠BCD,∠AEF+∠D=180°,故C选项正确;∵CB平分∠ACD,∴∠ACB=∠BCD,∴∠ACB=∠B,∴AC=AB,故A选项正确;∵DE⊥CB,∴∠CFD=90°,∴∠D+∠BCD=90°,假如∠AFC=∠D,则∠CAF=∠CFD=90°,而∠CAF不一定是90°,∴∠AFC与∠D不一定相等,故B选项错误;∵∠AFC是△ABF的外角,∴∠AFC>∠B,∵∠B=∠FCD,∴∠AFC>∠FCD,故D选项正确,故选:B.7.解:∵2+2=4<5,∴腰的长不能为2,只能为5,∴等腰三角形的周长=2×5+2=12,故选:B.8.解:在△ABC中,设∠A=x,∠B=x+30°,分情况讨论:当∠A=∠C为底角时,2x+(x+30°)=180°,解得x=50°,底角∠A=50°;当∠B=∠C为底角时,2(x+30°)+x=180°,解得x=40°,底角∠B=70°.故这个等腰三角形的底角的度数为50°或70°.故选:C.9.解:①当腰为4cm时,三边为4cm,4cm,9cm,∵4+4<9,∴不符合三角形的三边关系定理,此种情况舍去;②当腰为9cm时,三边为4cm,9cm,9cm,此时符合三角形的三边关系定理,此时等腰三角形的周长是4cm+9cm+9cm=22cm,故选:A.10.解:①当腰为4cm时,三边为4cm,4cm,9cm,∵4+4<9,∴不符合三角形的三边关系定理,此种情况舍去;②当腰为9cm时,三边为4cm,9cm,9cm,此时符合三角形的三边关系定理,所以三角形的第三边为9cm,故选:B.11.解:A.若∠A:∠B:∠C=1:2:3,则∠A=30°,∠B=60°,∠C=90°,所以△ABC是直角三角形,故此选项正确,不符合题意;B.若AB=BC,∠C=50°,则∠A=∠C=50°,∠B=100°,故此选项错误,符合题意;C.若AB=BC,∠A=60°,则∠A=∠C=60°,∠B=60°,所以△ABC是等边三角形,故此选项正确,不符合题意;D.若∠A=20°,∠C=80°,则∠B=80°,∠C=∠B=80°,所以△ABC是等腰三角形,故此选项正确,不符合题意.故选:B.12.解:本题可分两种情况:①当腰长为8时,底边长=19﹣2×8=3;经检验,符合三角形三边关系;②底边长为8,此时腰长=(19﹣8)÷2=5.5,经检验,符合三角形三边关系;因此该等腰三角形的底边长为3或8.故选:C.13.解:设等腰三角形的底角为x°,则顶角为(180°﹣2x),由题意可得:60°<180°﹣2x<90°,∴45°<x<60°,∴底角度数的取值范围是45°<x<60°,故选:C.14.解:设∠CAD=x°,∵AD平分∠BAC,∠BAC=∠BCA,∴∠BCA=∠BAC=2x°,∵DE∥AC,∴∠BDE=∠BCA=2x°,∠ADE=∠CAD=x°,∴∠ADB=∠BDE+∠ADE=2x°+x°=3x°,即∠ADB=3∠EDA,故选:C.15.解:①若3是腰,则另一腰也是3,底是8,但是3+3<8,故不构成三角形,舍去.②若3是底,则腰是8,8.3+8>8,符合条件.成立.故周长为:3+8+8=19.故选:B.16.解:根据作图方法可得BC=BD=CD,∵BD=CD,∴点D在BC的垂直平分线上,∵AB=AC,∴点A在BC的垂直平分线上,∴AD是BC的垂直平分线,故C结论正确;∴O为BC中点,∴AO是△BAC的中线,∵AB=AC,∴∠BAD=∠CAD,故A结论正确;∵BC=BD=CD,∴△BCD是等边三角形,故B结论正确;∵四边形ABDC的面积=S△BCD+S△ABC=BC•DO+BC•AO=BC•AD,故D选项错误,故选:D.17.解:∵AB=AC,∴∠B=∠C,∵AC的垂直平分线l交BC于点D,∴AD=DC,∴∠DAC=∠C,∵∠ADB=∠DAC+∠C=2∠C,∴∠ADB=2∠B,∵∠BAD=78°,∴∠B+∠ADB+∠BAD=∠B+2∠B+78°=180°,∴∠B=34°,故选:A.18.解:由作法得CE⊥AB,则∠AEC=90°,AC=AB=BE+AE=5+1=6,在Rt△ACE中,CE==,故选:A.19.解:∵AD=AB,∠A=32°,∴∠ABD=∠ADB=(180°﹣∠A)=74°,由作图可知,EA=EB,∴∠ABE=∠A=32°,∴∠EBD=∠ABD﹣∠ABE=74°﹣32°=42°,故答案为:42°.20.解:∵AB=AC,∠A=40°,∴∠ACB=(180°﹣40°)÷2=70°,由题意可知,BC=BD,∴∠BDC=∠ACB=70°,∴∠CBD=180°﹣70°×2=40°,由题意可知,BF平分∠DBC,∴∠EBC=∠CBD=20°.故答案为:20.21.解:连接DE,∵在边长为2的等边△ABC中,D,E分别为AB,BC的中点,∴DE是△ABC的中位线,∴DE=1,且DE∥AC,BD=BE=EC=1,∵EF⊥AC于点F,∠C=60°,∴∠FEC=30°,∠DEF=∠EFC=90°,∴FC=EC=,故EF===,∵G为EF的中点,∴EG=,∴DG==,故答案为:.22.解:如图,∵AB=AC,∠B=35°,∴∠B=∠C=35°,∴∠BAC=110°,当∠BAD=90°时,∠DAC=110°﹣90°=20°;当∠ADB=90°时,∵AB=AC,AD⊥BC,∴∠DAC=∠BAD=55°.故答案为:20°或55°.23.解:∵等腰三角形的一个内角是110°,∴等腰三角形的顶角为110°,∴等腰三角形的底角为35°,故答案为:35°.24.解:组成等腰三角形的两根木棒的长度分别为3cm和6cm,根据三角形三边关系可得,组成等腰三角形的第三根木棒长为6cm,故答案为:6.25.解:∵AB=AC,AD平分∠BAC交BC于点D,∴BD=DC=BC,∵BC=16cm,故答案为:8.26.解:观察图形可知,若以点A为圆心,以AB为半径画弧,与y轴有2个交点,但其中一个与B点重合,故此时符合条件的点由1个;若以点B为圆心,以AB为半径画弧,与y轴有2个交点;线段AB的垂直平分线与y轴有1个交点;∴符合条件的C点有:1+2+1=4(个),故答案为:4.27.解:∵AB=AC,∠BAC=108°,∴△ABC是等腰三角形,∠B=∠C=(180°﹣∠BAC)÷2=36°,∵AC的中垂线交BC于点D,交AC于点E,∴AD=CD,∴△ADC是等腰三角形,∠DAC=∠C=36°,∴∠BAD=∠BAC﹣∠DAC=72°,∠ADB=∠DAC+∠C=72°,∴∠BAD=∠ADB,∴△BAD是等腰三角形.故图中等腰三角形有3个.故答案为:3.28.解:∵∠B=40°,∠C=32°,∴∠BAC=180°﹣∠B﹣∠C=108°,由作图可知:BA=BD,∴∠BAD=∠BDA=(180°﹣∠B)÷2=70°,∴∠DAC=∠BAC﹣∠BAD=38°.29.证明:∵AB=AC,∴∠ABC=∠ACB,∵BE平分∠ABC,CE平分∠ACB,∴∠EBC=,,∴∠EBC=∠ECB,∴EB=EC,∴AE垂直平分BC,∴AD⊥BC.30.解:(1)解得,∵若关于x、y的二元一次方程组的解都为正数,∴,解得:a>1;(2)∵二元一次方程组的解是一个等腰三角形的一条腰和一条底边的长,这个等腰三角形的周长为12,∴2(a﹣1)+a+2=12,解得:a=4,∴x=3,y=6,故3,3,6不能组成三角形,∴2(a+2)+a﹣1=12,解得:a=3,∴x=2,y=5,故2,5,5能组成等腰三角形,∴a的值是3.31.证明:∵∠1=∠2,∴DB=CD,在△ABD和△ACD中,,∴△ABD≌△ACD(SAS),∴AB=AC.。
人教版八年级数学上册 13.3 等腰三角形 课后训练(含答案)
课后训练基础巩固1.若等腰三角形底角为72°,则顶角为().A.108°B.72°C.54°D.36°2.如图,在△ABC中,AB=AC,AD=BD=BC,则∠C=().A.72°B.60°C.75°D.45°3.若等腰三角形的周长为26 cm,一边为11 cm,则腰长为().A.11 cm B.7.5 cmC.11 cm或7.5 cm D.以上都不对4.下列三角形:①有两个角等于60°的三角形;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有().A.①②③B.①②④C.①③D.①②③④5.如图所示,已知∠1=∠2,要使BD=CD,还应增加的条件是().①AB=AC②∠B=∠C③AD⊥BC④AB=BCA.①B.①②C.①②③D.①②③④6.如图所示,在△ABC中,∠ACB=90°,∠B=30°,CD⊥AB于点D,若AD=2,则AB=__________.能力提升7.如图,在△ABC中,AB=AC,BD和CD分别是∠ABC和∠ACB的平分线,EF过D点,且EF∥BC,图中等腰三角形共有().A.2个B.3个C.4个D.5个8.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C 也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是().A.6 B.7 C.8 D.99.如图,D是△ABC中BC边上一点,AB=AC=BD,则∠1和∠2的关系是().A.∠1=2∠2 B.∠1+∠2=90°C.180°-∠1=3∠2 D.180°+∠2=3∠110.如图,△ABC中,AB=AC,∠C=30°,DA⊥BA于A,BC=4.2 cm,则AD=__________.11.如图,若B、D、F在AN上,C、E在AM上,且AB=BC=CD,EC=ED=EF,∠A=20°,则∠FED=__________.12.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.13.(综合应用)如图所示,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,求PD的长.14.如图所示,在△ABC中,AB=AC,点E在CA的延长线上,且∠AEF=∠AFE.求证:EF⊥BC.(第14题图) (第15题图)15.如图,在△ABC中,∠ACB=45°,∠A=90°,BD是∠ABC的角平分线,CH⊥BD,交B D的延长线于H,求证:BD=2CH.16.(实际应用题)如图,某船上午11时30分在A处观测岛B在东偏北30°,该船以10海里/时的速度向东航行到C处,再观测海岛在东偏北60°,且船距海岛40海里.(1)求船到达C点的时间;(2)若该船从C点继续向东航行,何时到达B岛正南的D处?参考答案1.D点拨:等腰三角形两底角相等,所以顶角为36°,故选D.2.A点拨:设∠A=x,由已知可知,∠BDC=∠C=∠ABC=2∠A=2x,因为∠A+∠ABC+∠C=180°,所以x+2x+2x=180°.解得x=36°,所以∠C=72°,故选A.3.C点拨:边长为11 cm的边长可能是腰,也可能是底,所以要分两种情况讨论.一种情况腰长为11 cm;另一种情况底边为11 cm,此时腰长为7.5 cm,两种情况都成立,故选C.4.D点拨:①②为判定定理,③每个外角都相等,则都是120°,所以每个内角都是60°,④一腰上的中线也是这条腰上的高,说明这条线段所在的直线是这条腰的垂直平分线,所以腰等于底,也是等边三角形,四个都成立,故选D.5.C点拨:①②说明△ABC为等腰三角形,由“三线合一”可知BD=CD,由③能得到△ABD≌△ACD,所以BD=CD,④不能得到BD=CD,故选C.6.8点拨:由题意可知,在Rt△ACD和Rt△ABC中,∠ACD=∠B=30°,所以AC=2AD,AB=2AC.所以AB=4AD=4×2=8.7.D点拨:由题意知,AB=AC,AE=AF,BE=DE,CF=DF,BD=CD,所以所有的三角形都是等腰三角形,共有5个,故选D.8.C点拨:如图,共有8个格点.注意3和8也是,故选C.9.D点拨:因为AB=BD,所以∠B=180°-2∠1,∠C=∠1-∠2.因为AB=AC,所以∠B=∠C.所以180°-2∠1=∠1-∠2,整理得180°+∠2=3∠1,故选D.10.1.4 cm点拨:由已知可以推出∠B=∠CAD=∠C=30°,AD=DC,∠C=30°,DA⊥BA于A,所以BD=2AD.所以BC=3DC=3AD=4.2(cm).所以AD=1.4 cm.11.20°点拨:运用一个外角等于和它不相邻的内角,及等腰三角形两底角相等可求出∠FED=20°.12.(1)证明:∵BE=CF,∴BE+EF=CF+EF,即BF=CE.又∵∠A=∠D,∠B=∠C,∴△ABF≌△DCE(AAS).∴AB=DC.(2)解:△OEF为等腰三角形,理由如下:∵△ABF≌△DCE,∴∠AFB=∠DEC.∴OE=OF.∴△OEF为等腰三角形.13.解:如图,过P作PE⊥OB,垂足为E.∵∠AOP =∠BOP =15°,PD ⊥OA ,∴PD =PE .∵PC ∥OA ,∴∠CPO =∠AOP =15°.∴∠BCP =∠BOP +∠CPO =30°,在Rt △CPE 中,∠BCP =30°,∴PE =114 2.22PC =⨯=. ∴PD =PE =2.14.证明:如图,过A 作AD ⊥BC ,垂足为D ,∵AB =AC ,∴∠BAD =12BAC ∠. ∵∠AEF =∠AFE , ∠BAC =∠AEF +∠AFE , ∴∠EF A =12BAC ∠. ∴∠EF A =∠BAD .∴EF ∥AD ,∴EF ⊥BC .15.证明:如图,延长CH 、BA 交于点E .∵CH ⊥BD ,BD 是∠ABC 的角平分线, ∴∠CHB =∠EHB =90°,∠CBH =∠EBH . 又∵BH =BH ,∴△CBH ≌△EBH .∴CH =EH .∴CE =2CH .∵∠ACB =45°,∠CAB =90°,∴∠ABC =45°,∴∠ACB =∠ABC .∴AC =AB .∵∠CAB =∠CAE =90°,∴∠E +∠ECA =90°.∵CH ⊥BD ,∴∠E +∠EBH =90°.∴∠ECA =∠EBH .∴△ECA ≌△DBA .∴CE =BD .∴BD =2CH .16.解:(1)∵∠A =30°,∠BCD =60°, ∴∠ABC =30°.∴∠A =∠ABC .∴AC =BC =40(海里),40÷10=4(小时). 答:船到达C 点的时间是15时30分.(2)在Rt△BCD中,∠CBD=30°,∴CD=1122BC ×40=20(海里),20÷10=2(小时).答:该船在17时30分到达D处.。
人教版数学八年级上册:13.3 等腰三角形 同步练习(附答案)
13.3等腰三角形13.3.1等腰三角形第1课时等腰三角形的性质知识点1等边对等角1.若等腰三角形的顶角为40°,则它的底角度数为()A.40° B.50° C.60° D.70°2.如图,AB∥CD,点E在线段BC上,CD=CE.若∠ABC=30°,则∠D为() A.85°B.75°C.60°D.30°3.如图1是一把园林剪刀,把它抽象为图2,其中OA=OB.若剪刀张开的角为30°,则∠A =.4.如图,在△ABC中,∠B=90°,AB=BD,AD=CD,求∠CAD的度数.5.如图,在△ABC中,AB=AC,D是△ABC内一点,且BD=DC.求证:∠ABD=∠ACD.知识点2等腰三角形“三线合一”6.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是() A.∠B=∠CB.AD⊥BCC.AD平分∠BACD.AB=2BD7.如图,在△ABC中,AB=AC,AD⊥BC,垂足为D.若BD=2 cm,则CD=cm.第7题图第8题图8.如图,在△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠C的度数为.9.如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE =∠BAD.10.已知等腰三角形的一个外角为130°,则它的顶角的度数为.11.如图,在△ABC中,AB=AC,BD⊥AC于点D,∠A=50°,则∠DBC的度数为.12.如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD 的度数为()A.30° B.45°C.50°D.75°第12题图第13题图13.如图,在△ABC中,AB=AC,点E在BC边上,在线段AC的延长线上取点D,使得CD=CE,连接DE,CF是△CDE的中线.若∠FCE=52°,则∠A的度数为() A.38° B.34°C.32° D.28°14.如图,在△ABC中,AB=BC,∠ABC=110°,AB的垂直平分线DE交AC于点D,连接BD,则∠ABD=.第14题图第15题图15.如图,在△ABC中,点D在BC边上,BD=AD=AC,E为CD的中点.若∠CAE=16°,则∠B=.16.如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.17.如图,在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点,直线BF垂直于直线CE于点F,交CD于点G.求证:AE=CG.第2课时等腰三角形的判定知识点1等角对等边1.如图,在△ABC中,∠B=∠C,AB=5,则AC的长为()A.2B.3C.4D.52.在△ABC中,∠A和∠B的度数如下,能判定△ABC是等腰三角形的是() A.∠A=50°,∠B=70°B.∠A=70°,∠B=40°C.∠A=30°,∠B=90°D.∠A=80°,∠B=60°3.如图,已知OC平分∠AOB,CD∥OB,则△COD 等腰三角形.(填“是”或“不是”)第3题图第4题图4.如图,在△ABC中,BD⊥AC,∠A=50°,∠CBD=25°,若AC=5 cm,则AB=.5.如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E,DF⊥AC 于点F.求证:△ABC是等腰三角形.6.如图,△ABC的边AB的延长线上有一个点D,过点D作DF⊥AC于F,交BC于E,且BD=BE,求证:△ABC为等腰三角形.知识点2用尺规作等腰三角形7.已知等腰三角形的底边长为a,顶角的平分线长为b,求作这个等腰三角形.8.如图,已知点P是射线ON上一动点(即P可在射线ON上运动),∠AON=45°,当∠A =时,△AOP为等腰三角形.9.如图,在△ABC中,∠B=∠C=40°,D,E是BC上的两点,且∠ADE=∠AED=80°,则图中共有等腰三角形()A.6个B.5个C.4个D.3个第9题图第10题图10.如图,在△ABC中,BP平分∠CBA,AP平分∠CAB,且DE∥AB,若CB=12,AC =18,则△CDE的周长是.11.如图,AD平分∠BAC,AD⊥BD,垂足为D,DE∥AC.求证:△BDE是等腰三角形.12.如图,在△ABC中,AB=AC,∠BAC=36°,CD是∠ACD的平分线,交AB于点D,过点A作AE∥BC,交CD的延长线于点E.(1)求∠ADC的度数;(2)求证:AE=AC;(3)试问△ADE是等腰三角形吗?请说明理由.13.如图,OA平分∠BAC,∠1=∠2.求证:△ABC是等腰三角形.参考答案第1课时 等腰三角形的性质1.D 2.B 3.75°.4.解:∵△ABC 中,∠B =90°,AB =BD ,AD =CD ,∴∠BAD =∠ADB =45°,∠DCA =∠CAD. ∴∠BDA =2∠CAD =45°. ∴∠CAD =22.5°. 5.证明:∵AB =AC ,∴∠ABC =∠ACB. ∵BD =CD ,∴∠DBC =∠DCB.∴∠ABC -∠DBC =∠ACB -∠DCB , 即∠ABD =∠ACD. 6.D 7.2 8.55°.9.证明:∵AB =AC ,∴∠ABD =∠C.又∵AD 是BC 边上的中线, ∴AD ⊥BC.∵BE ⊥AC ,∴∠BEC =∠ADB =90°. ∴∠C +∠CBE =∠ABD +∠BAD =90°. ∴∠CBE =∠BAD. 10.50°或80°. 11.25°. 12.B 13.D 14.35°. 15.37°.16.证明:∵AB =AC ,∴∠B =∠C.在△ABD 和△ACE 中,⎩⎪⎨⎪⎧AB =AC ,∠B =∠C ,BD =CE ,∴△ABD ≌△ACE(SAS ). ∴AD =AE.17.证明:∵点D 是AB 中点,AC =BC ,∠ACB =90°,∴CD ⊥AB ,∠ACD =∠BCD =45°,∠CAD =∠CBD =45°. ∴∠CAE =∠BCG. 又∵BF ⊥CE ,∴∠CBG +∠BCF =90°. 又∵∠ACE +∠BCF =90°, ∴∠ACE =∠CBG.在△AEC 和△CGB 中, ⎩⎪⎨⎪⎧∠CAE =∠BCG ,AC =CB ,∠ACE =∠CBG , ∴△AEC ≌△CGB(ASA ). ∴AE =CG.第2课时 等腰三角形的判定1.D 2.B 3.是4.5__cm .5.证明:∵AD 平分∠BAC ,DE ⊥AB 于点E ,DF ⊥AC 于点F ,∴DE =DF.∵点D 是BC 的中点, ∴BD =CD.在Rt △BDE 和Rt △CDF 中,⎩⎪⎨⎪⎧BD =CD ,DE =DF , ∴Rt △BDE ≌Rt △CDF(HL ). ∴∠B =∠C.∴AB =AC ,即△ABC 为等腰三角形. 6.证明:∵DF ⊥AC ,∴∠DFA =∠EFC =90°. ∴∠A =∠EFC -∠D , ∠C =∠DFA -∠CEF. ∵BD =BE , ∴∠BED =∠D. ∵∠BED =∠CEF , ∴∠D =∠CEF. ∴∠A =∠C.∴△ABC 为等腰三角形. 7.解:①作线段AB =a ;②作线段AB 的垂直平分线MN ,与AB 交于点D ; ③以点D 为圆心,b 为半径画弧,交MN 于点C ; ④连接AC ,BC ,则△ABC 就是所求作的三角形. 8.45°或67.5°或90° 9.C 10.30.11.证明:∵DE ∥AC ,∴∠CAD =∠ADE.∵AD 平分∠BAC , ∴∠CAD =∠DAE. ∴∠ADE =∠DAE. ∵AD ⊥BD ,∴∠DAE +∠B =90°, ∠ADE +∠BDE =90°. ∴∠B =∠BDE.∴BE =DE ,即△BDE 是等腰三角形. 12.解:(1)∵AB =AC ,∠BAC =36°,∴∠B =∠ACB =12(180°-∠BAC )=72°.∵CD 是∠ACB 的平分线, ∴∠DCB =12∠ACB =36°.∴∠ADC =∠B +∠DCB =72°+36°=108°. (2)证明:∵CD 是∠ACB 的平分线, ∴∠BCE =∠ACE. ∵AE ∥BC , ∴∠BCE =∠E. ∴∠ACE =∠E. ∴AE =AC.(3)△ADE 是等腰三角形. 理由:∵AE ∥BC , ∴∠EAB =∠B =72°.∵∠B =72°,∠DCB =36°,∴∠ADE =∠BDC =180°-72°-36°=72°. ∴∠EAD =∠ADE. ∴AE =DE.∴△ADE 是等腰三角形. 13.证明:过点O 作OD ⊥AB 于点D ,OE ⊥AC 于点E ,则△BOD 和△COE 都是直角三角形.∵OA 平分∠BAC ,OD ⊥AB ,OE ⊥AC , ∴OD =OE. ∵∠1=∠2, ∴OB =OC.∴Rt △BOD ≌Rt △COE(HL ). ∴∠ABO =∠ACO.又∵∠1=∠2,∴∠ABC=∠ACB.∴AB=AC.∴△ABC是等腰三角形.。
人教版八年级上册数学习题133答案
.人教版八年级上册数学习题13.3答案1.(1) 35度,35°;(2) 解:当80°的角是等腰三角形的一个底角时,那么等腰三角形的另一个底角为80°,根据三角形的角和定理可以求出顶角为180°-80°-80°=20°;当80°的角是等腰三角形的顶角时,那么它的两个底角相等,均为1/2(°-80°)=50°.综上,等腰三角形的另外两个角是20°,80°或50°,50°.2.3.解:∵五角星的五个角都是顶角为36°的等腰三角形,∴每个底角的度数是1/2×(°- 36°)=72°.∴∠AMB=°-72°108°.4.资料Word. 5.证明:CE//DA,∴∠A=∠CEB.6.7.8.已知:如图13 -3-29所示,点P是直线AB上一点,求作直线CD,使CD⊥AB于点P.资料Word.F,,AB于点E作法:(1)以点P为圆心作弧交,CC两弧相交于点,过大于E(2)分别以点,F为圆心,1/2EF的长为半径作弧,CD为所求直线.,则直线P作直线CD.解:他们的判断是对的.理由:因为等腰三角形底边上的中线和底边上的高9 重合.10.资料Word.11.12.资料Word.13.解:等腰三角形两底角的平分线相等,两腰上的中线相等,两腰上的高相等.以等腰三角形两腰上的高相等为例进行证明.已知:在△ABC中,AB=AC,BD⊥AC,CE⊥AB,垂足分别为点D,E求证:BD=CE.14.资料Word.15.解:如图13-3-31所示,作∠BAC的平分线AD交BC于点D,过点D作DE ⊥AB于点E,则△ADC≌△ADE≌△BDE.人教版八年级上册数学第91页复习题答案1.解:除了第三个图形,其余的都是轴对称图形.找对称轴略.2.解:如图13-5-22所示.资料Word.3.证明:连接BC,∵点D是AB的中点,CD⊥AB,∴AC= BC.同理,AB=BC,∴AC=AB.4.解:点A与点B关于x轴对称;点B与点E关于y轴对称;点C与点E不关于x轴对称,因为它们的纵坐标分别是3,-2,不互为相反数.5.解:∠D=25°,∠E=40°,∠DAE=115°.6.7.8.解:等边三角形有3条对称轴,形有4条对称轴,正五边形有5条对称轴,正六边形右6条对称轴,正八边形有8条对称轴,正n边形有n条对称轴.资料Word.轴;x(4)的对称轴是是平移. (1)的对称轴是y轴;9.解:(1)(4)是轴对称;(2)(3)(3)个单位长度得到图形Ⅱ;再向左平移5I先向下平移3个单位长度,(2)中图形3个单位长度得到图形Ⅱ.I先向右平移5个单位长度,再向下平移中图形,于点EAB,ACABC是△的角平分线,DE,DF分别垂直于10.证明:因为AD,ADF≌Rt△,所以Rt△ADEDA=DA,F,所以DE= DF∠DEA= ∠DFA= 90°.又因为EF. 垂直平分,所以AD所以AE=AF是等边三角形,证明:∵△ABC11. °,∠B=∠C=60AB=BC=AC∴,/A= AD= BE=CF,又∵BD=CE=AF.∴CFF,. ≌△ADF≌△BED∴△.∴DF=ED=FE 是等边三角形.△DEF即所示,正五边形的每一如图13 - 5-235个点为正五边形的5个顶点,12.解:这都是等腰三角形.同理,ABEABD,△△ABC两点为例,,,以108个角为°AB △,.其他任意三点组成的三角形也都是等腰三角形资料Word.点拨:由正五边形的各边都相等,各角都为108°,各对角线都相等可联想到本题结论.13.14.资料Word.15.解:如图13-5-24所示,作点A关于MN的对称点A′,再作点B关于L 的对称点B′,连接A'B',交MN于点C,交L于点D,则A一C一D一B是牧马人定的最短路径.资料Word。
人教版八年级数学上册13.3等腰三角形(包含答案 )
13.3等腰三角形知识要点:1.等腰三角形的性质(1)等腰三角形的两个底角相等(简写成“等边对等角”).(2)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(简写成“三线合一”).2.等腰三角形的判定(1)有两边相等的三角形是等腰三角形;(2)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).3.等边三角形的概念:三边都相等的三角形是等边三角形.4.一在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半一、单选题1.将一张正方形纸片按如图1,图2所示的方向对折,然后沿图3中的虚线剪裁得到图4,将图4的纸片展开铺平,再得到的图案是()A.B.C.D.【答案】B2.如图,在△ABC中,点D,E分别是边AB,AC的中点,AF△BC,垂足为点F,△ADE =30°,DF=2,则△ABF的周长为()A.B.C.D.【答案】D3.如图,△ABC中△ACB=90°,CD是AB边上的高,△BAC的角平分线AF交CD于E,则△CEF必为()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形【答案】A4.如图,梯形ABCD中,AD△BC,△B=30°,△BCD=60°,AD=2,AC平分△BCD,则BC长为( ).A.4B.6C.D.【答案】B5.如果过三角形重心的一条直线将该三角形分成两个直角三角形,则该三角形一定是()A.锐角三角形B.钝角三角形C.等腰三角形D.等边三角形【答案】C6.如图,有一底角为35°的等腰三角形纸片,现过底边上一点,沿与腰垂直的方向将其剪开,分成三角形和四边形两部分,则四边形中,最大角的度数是()A.110°B.125°C.140°D.160°【答案】B7.如图,矩形ABCD中,AB=7,BC=4,按以下步骤作图:以点B为圆心,适当长为半径画弧,交AB,BC于点E,F;再分别以点E,F为圆心,大于12EF的长为半径画弧,两弧在△ABC内部相交于点H,作射线BH,交DC于点G,则DG的长为( )A.1B.112C.3D.212【答案】C8.如图,已知AB△CD,BC平分△ABE,△C=32°,则△BED的度数是()A.32°B.16°C.49°D.64°【答案】D9.若等腰三角形的周长为18cm,其中一边长为4cm,则该等腰三角形的底边长为()A.10B.7或10C.4D.7或4【答案】C10.如图,在Rt△ABC中,△C=90°,D是AB的中点,E在边AC上,若D与C关于BE成轴对称,则下列结论:△△A=30°;△△ABE是等腰三角形;△点B到△CED 的两边距离相等.其中正确的有()A.0个B.1个C.2个D.3个【答案】D11.等腰三角形的顶角为150°,则它的底角为( )A.30°B.15°C.30°或15°D.50°【答案】B12.下列说法错误的是( )A.等腰三角形底边上的高所在直线是它的对称轴;B.等腰三角形底边上的中线所在直线是它的对称轴;C.等腰三角形顶角的平分线所在直线是它的对称轴;D.等腰三角形的一内角平分线所在直线是它的对称轴.【答案】D二、填空题13.如图,等边△ABC中,AD是中线,AD=AE,则△EDC = ______________【答案】15°14.如图,△ABC中,AB =AC,DE是AB的中垂线,△BCD的周长是14,BC = 5,那么AB =_________.【答案】915.等腰三角形周长为40,以一腰为边作等边三角形,其周长为45,则等腰三角形的底边长为_________【答案】1016.等边三角形的周长是30厘米,则边长为_______.【答案】10厘米17.等腰三角形的腰长为10,则底边长m的取值范围是_____.【答案】0<m<2018.等腰三角形的一个角是50°,则它的底角为__________°.【答案】50或65.19.等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的腰长为_____cm.【答案】5三、解答题20.如图所示,在△ABC中,△B=90°,AB=BC,BD=CE,M是AC边的中点,求证△DEM 是等腰三角形.证明:连接BM ,∵AB =BC ,AM =MC ,∵BM∵AC ,且∵ABM =∵CBM =12∵ABC =45°, ∵AB =BC ,所以∵A =∵C =1802ABC ︒-∠=45°, ∵∵A =∵ABM ,所以AM =BM ,∵BD =CE ,AB =BC ,∵AB -BD =BC -CE ,即AD =BE ,在∵ADM 和∵BEM 中,,45,,AD BE A EBM AM BM =⎧⎪∠=∠=︒⎨⎪=⎩∵∵ADM∵∵BEM (SAS ),∵DM =EM ,∵∵DEM 是等腰三角形.21.如图所示,在△ABC中,AB=AC,D是BC边上的点,DE△AB,DF△AC,垂足分别为点E、F,△BAC=120°.求证:12DE DF BC+=.证明:∵AB=AC,∵BAC=120°,∵∵B=∵C=30°,∵DE∵AB,DF∵AC,垂足为E,F,∵DE=12BD,DF=12DC,∵DE+DF=12BD+12DC=12(BD+DC)=12BC.∵DE+DF=12 BC.22.如图:已知在△ABC中,AB=AC,AE△BC,试说明AE平分△DAC.证明:∵AB=AC,∵∵B=∵C,∵AE∵BC,∵∵DAE=∵B,∵CAE=∵C,∵∵DAE=∵EAC,∵AE平分∵DAC.23.如图,已知AB=AC,D是AB上一点,DE△BC于E,ED的延长线交CA的延长线于F,那么△ADF是等腰三角形吗?为什么?【答案】∵ADF是等腰三角形,理由见解析.∵ADF是等腰三角形,理由如下:∵AB=AC,∵∵B=∵C(等边对等角),∵DE∵BC于E,∵∵FEB=∵FEC=90°,∵∵B+∵EDB=∵C+∵EFC=90°,∵∵EFC=∵EDB(等角的余角相等),∵∵EDB=∵ADF(对顶角相等),∵∵EFC=∵ADF,∵∵ADF是等腰三角形.24.如图,在△ABC中,AB=AC,△ABC和△ACB的平分线交于点O.(1) 结合图形,请你写出你认为正确的结论;(2) 过O作EF△BC交AB于E,交AC于F. 请你写出图中所有等腰三角形,并探究EF、BE、FC之间的关系;(3) 若AB≠AC,其他条件不变,图中还有等腰三角形吗?若有,请写出所有的等腰三角形,若没有,请说明理由;线段EF、BE、FC之间,上面探究的结论是否还成立?【答案】(1)结论:∵ABO=∵CBO=∵ACO=∵BCO,理由如下:∵AB=AC,∵∵ABC=∵ACB.∵OB平分∵ABC,OC平分∵ACB,∵∵ABO=∵CBO=∵ACO=∵BCO.(2)等腰三角形有:∵ABC、∵AEF,∵BEO,∵COF,∵BOC;EF、BE、FC之间的关系EF=BE+CF,理由如下:由(1)可得,∵ABC、∵BOC是等腰三角形;∵EF∵BC,∵∵ABC=∵AEF,∵AFE=∵ACB,∵∵ABC=∵ACB,∵∵AEF=∵AFE,∵AE=AF,即∵AEF是等腰三角形;∵BO平分∵ABC,∵∵EBO=∵OBC;∵EF∵BC,∵∵OBC=∵EOB,∵∵EBO=∵EOB;∵EO=BE,∵∵BEO是等腰三角形;同理可得OF=FC,∵∵COF是等腰三角形;∵EO+OF=BE+FC,即EF=BE+CF.(3)图中的等腰三角形有:∵BEO,∵COF ;结论仍然成立,理由如下:∵BO平分∵ABC,∵∵EBO=∵OBC;∵EF∵BC,∵∵OBC=∵EOB,∵∵EBO=∵EOB;∵EO=BE,人教版八年级数学上册13.3等腰三角形(包含答案)∵∵BEO是等腰三角形;同理可得OF=FC,∵∵COF是等腰三角形;∵EO+OF=BE+FC,即EF=BE+CF.11/ 11。
人教版 八年级数学上册 13.3 等腰三角形 同步训练(含答案)
人教版八年级数学上册13.3 等腰三角形同步训练一、选择题1. 如图,等腰三角形的对称轴是()A.直线l1B.直线l2C.直线l3D.直线l42. 如图,AC=AD,BC=BD,则有()A.CD垂直平分ABB.AB垂直平分CDC.AB与CD互相垂直平分D.CD平分∠ACB3. 已知等腰三角形的一个角等于42°,则它的底角为()A.42°B.69°C.69°或84°D.42°或69°4. 已知实数x、y满足|x-4|+y-8=0,则以x、y的值为两边长的等腰三角形的周长是()A. 20或16B. 20C. 16D. 以上答案均不对5. 如图,AD是△ABC的中线,下列条件中不能推出△ABC是等腰三角形的是()A.∠BAD+∠B=∠CAD+∠C B.AB-BD=AC-CDC.AB+BD=AC+CD D.AD=BC6. 如图,∠AOB=50°,OM平分∠AOB,MA⊥OA于点A,MB⊥OB于点B,则∠MAB等于()A.50°B.40°C.25°7. 如图,△ABC是等边三角形,DE∥BC.若AB=10,BD=6,则△ADE的周长为()A.4 B.12 C.18 D.308. 如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠EAB=120°,则∠BCD的度数为()A.150°B.160°C.130°D.60°9. 如图所示的正方形网格中,网格线的交点称为格点. 已知A,B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形.....,那么符合题意的点C的个数是()A. 6B. 7C. 8D. 910. “三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在点O相连并可绕点O转动,点C固定,OC=CD=DE,点D,E可在槽中滑动.若∠BDE=75°,则∠CDE的度数是()A.60°B.65°C.75°D.80°二、填空题11. 如图,在△ABC中,AB=AC,D是AC上一点,且BC=BD.若∠CBD=46°,则∠A=________°.12. 如图,直线a∥b,△ABC的顶点C在直线b上,边AB与直线b相交于点D.若△BCD是等边三角形,∠A=20°,则∠1=________.13. 一个等腰三角形的一边长是2,一个外角是120°,则它的周长是________.14. 如图所示,在△ABC中,DE是AC的垂直平分线,AE=5 cm,△ABD的周长为18 cm,则△ABC的周长为.15. 如图,BO平分∠CBA,CO平分∠ACB,MN过点O且MN∥BC,设AB=12,AC=18,则△AMN的周长为________.16. 如图,在△ABC中,若AB=AC=8,∠A=30°,则S△ABC=________.三、解答题17. 如图,在△ABC中,AB=BD,根据图中的数据,求∠BAC的度数.18. 如图,在△ABC中,O是边AC上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交△ABC的外角平分线于点F.探究线段OE与OF的数量关系,并说明理由.19. 如图,已知Rt△ABC中,∠ACB=90°,CD⊥AB于点D,∠BAC的平分线分别交BC,CD于点E,F.求证:△CEF是等腰三角形.人教版八年级数学上册13.3 等腰三角形同步训练-答案一、选择题1. 【答案】A2. 【答案】B3. 【答案】D[解析] 在等腰三角形中,当一个锐角在未指明为顶角还是底角时,一定要分类讨论.①42°的角为等腰三角形的底角;②42°的角为等腰三角形的顶角,则底角为(180°-42°)÷2=69°.所以底角为42°或69°.4. 【答案】B【解析】∵|x-4|+y-8=0,∴x-4=0,y-8=0,解得x=4,y=8.分两种情况讨论:①当4为腰时,根据三角形三边关系知4+4=8,∴这样的等腰三角形不存在;②当8为腰时,则有4+8>8,这样能够组成等腰三角形,∴此三角形的周长是8+8+4=20.5. 【答案】D[解析] 由∠BAD+∠B=∠CAD+∠C可得∠ADB=∠ADC,又∠ADB+∠ADC=180°,所以∠ADB=∠ADC=90°,又BD=DC,由垂直平分线的性质可得AB =AC.由等式的性质,根据AB -BD =AC -CD ,AB +BD =AC +CD ,又BD =CD ,均可得AB =AC.选项D 不能得到AB =AC.6. 【答案】C[解析] ∵OM 平分∠AOB ,MA ⊥OA 于点A ,MB ⊥OB 于点B ,∴∠AOM =∠BOM =25°,MA =MB.∴∠OMA =∠OMB =65°.∴∠AMB =130°.∴∠MAB =12×(180°-130°)=25°.故选C.7. 【答案】B[解析] ∵△ABC 为等边三角形,∴∠A =∠B =∠C =60°.∵DE ∥BC ,∴∠ADE =∠B =60°,∠AED =∠C =60°.∴△ADE 为等边三角形.∵AB =10,BD =6,∴AD =AB -BD =10-6=4.∴△ADE 的周长为4×3=12.8. 【答案】A[解析] ∵AB ∥ED ,∴∠E =180°-∠EAB =180°-120°=60°. 又∵AD =AE ,∴△ADE 是等边三角形.∴∠EAD =60°.∴∠BAD =∠EAB -∠EAD =120°-60°=60°.∵AB =AC =AD ,∴∠B =∠ACB ,∠ACD =∠ADC.在四边形ABCD 中,∠BCD =∠B +∠ADC =12(360°-∠BAD)=12×(360°-60°)=150°. 故选A. 9. 【答案】C10. 【答案】D[解析] ∵OC =CD =DE ,∴∠O =∠ODC ,∠DCE =∠DEC. ∴∠DCE =∠O +∠ODC =2∠ODC. ∵∠O +∠OED =3∠ODC =∠BDE =75°, ∴∠ODC =25°.∵∠CDE +∠ODC =180°-∠BDE =105°, ∴∠CDE =105°-∠ODC =80°.二、填空题11. 【答案】46[解析] ∵BC=BD,∠CBD=46°,∴∠C=∠BDC=12(180°-46°)=67°.∵AB=AC,∴∠ABC=∠C=67°.∴∠A=46°.12. 【答案】40°[解析] 如图.∵△BCD是等边三角形,∴∠BDC=60°.∵a∥b,∴∠2=∠BDC=60°.由三角形的外角性质和对顶角的性质可知,∠1=∠2-∠A=40°.13. 【答案】6[解析] 已知三角形的一外角为120°,则相邻内角度数为60°,那么含有60°角的等腰三角形是等边三角形.已知等边三角形的一边长为2,则其周长为6.14. 【答案】28 cm15. 【答案】30[解析] ∵MN∥BC,∴∠MOB=∠OBC.∵∠OBM=∠OBC,∴∠MOB=∠OBM.∴MO=MB.同理NO=NC.∴△AMN的周长=AM+MO+AN+NO=AM+MB+AN+NC=AB+AC=30.16. 【答案】16[解析] 如图,过点C作CD⊥AB,垂足为D,则△ADC是含30°角的直角三角形,那么DC=12AC=4,∴S△ABC=12AB·DC=12×8×4=16.三、解答题17. 【答案】解:∵∠ADB=30°+40°=70°,AB=BD,∴∠BAD=∠ADB=70°.∴∠BAC=∠BAD+∠CAD=100°.18. 【答案】解:OE=OF.理由:∵MN∥BC,∴∠OEC=∠BCE,∠OFC=∠DCF.∵CE平分∠ACB,CF平分∠ACD,∴∠OCE=∠BCE,∠OCF=∠DCF.∴∠OEC=∠OCE,∠OFC=∠OCF.∴OE=OC,OC=OF.∴OE=OF.19. 【答案】证明:∵∠ACB=90°,∴∠B+∠BAC=90°.∵CD⊥AB,∴∠CAD+∠ACD=90°.∴∠ACD=∠B.∵AE是∠BAC的平分线,∴∠CAE=∠EAB.∵∠EAB+∠B=∠CEF,∠CAE+∠ACD=∠CFE,∴∠CFE=∠CEF. ∴CF=CE.∴△CEF是等腰三角形.。
人教版八年级数学上册 13.3 等腰三角形 同步练习卷 含答案
13.3 等腰三角形一.选择题(共10小题)1.如果等腰三角形的一个角是80°,那么它的底角是()A.80°或50°B.50°或20°C.80°或20°D.50°2.已知等腰三角形的周长是20,其中一边长为6,则其它两边的长度分别是()A.6和8 B.7和7 C.6和8或7和7 D.3和113.如图,在△ABC中,AB=AC,∠A=36°,BD,CE分别是∠ABC、∠BCD的平分线,则图中的等腰三角形有()A.3个B.4个C.5个D.2个4.如图,在△ABD中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥AB交AB于N,交AC于N,若BM+CN=8,则线段MN的长为()A.5 B.6 C.7 D.85.如图,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE的度数为()A.30°B.36°C.45°D.48°6.如图,等腰△ABC的面积为S,AB=AC=m,点D为BC边上任意一点,DE⊥AB于E,DF ⊥AC于F,则DE+DF=()A.B.C.D.7.如图,在△ABC中,AB=3cm、AC=4cm、BC=5cm,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画的条数为()A.3 B.4 C.5 D.68.如图,已知每个小方格的边长为1,A,B两点都在小方格的格点(顶点)上,请在图中找一个格点C,使△ABC是以AB为腰的等腰三角形,这样的格点C有()A.3个B.4个C.5个D.6个9.如果等腰三角形的周长20cm,那么这个等腰三角形腰长x的取值范围是()A.x≥5cm B.5cm≤x<10cm C.x<10cm D.5cm<x<10cm 10.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN 为等边三角形,则满足上述条件的△PMN有()A.2个B.3个C.4个D.无数个二.填空题(共11小题)11.在等腰△ABC中,一腰上的高与另一腰的夹角为26°,则底角的度数为.12.如图,在△ABC中,AC=BC,点D在BC边上,∠BAD+∠C=90°,点E在AC边上,∠AED=2∠BAD,若BD=16,CE=7,则DE的长为.13.在△ABC中,AB=AC,BC=10,AB的垂直平分线与AC的垂直平分线分别交BC于点D,E,且DE=4,则AD+AE的值为.14.等腰三角形周长为17cm,一腰上的中线将三角形分为两个三角形,这两个三角形的周长差为4cm,则此等腰三角形的底边长为.15.等腰三角形的一个外角等于100°,则这个等腰三角形顶角的度数为.16.△ABC中,AB=AC=5,S△ABC=7.5,则BC的长为.17.我们知道,经过三角形一顶点和此顶点所对边上的任意一点的直线,均能把三角形分割成两个三角形,(1)如图,在△ABC中,∠A=25°,∠ABC=105°,过B作一直线交AC于D,若BD把△ABC分割成两个等腰三角形,则∠BDA的度数是.(2)已知在△ABC中,AB=AC,过顶点和顶点对边上一点的直线,把△ABC分割成两个等腰三角形,则∠A的最小度数为.18.如图,线段AB=a,点P是AB中垂线MN上的一动点,过点P作直线CD∥AB.若在直线CD上存在点Q使得△ABQ为等腰三角形,且满足条件的点Q有且只有3个,则PM的长为.19.如图,在△ABC中,AC=BC,∠ACB=100°,点D在线段AB上运动(D不与A,B重合),连接CD,作∠CDE=40°,DE交BC于点E.若△CDE是等腰三角形,则∠ADC的度数是.20.已知如图等腰△ABC,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,下面的结论:①∠APO+∠DCO=30°;②∠APO=∠DCO;③△OPC是等边三角形;④AB=AO+AP.其中正确的序号是.三.解答题(共5小题)21.(1)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于D.请说明△BDC 是等腰三角形;(2)在(1)的条件下请设计四个不同的方案,将△ABC分割成三个等腰三角形,请直接画出示意图并标出每个等腰三角形顶角度数;(3)若有一个内角为36°的三角形被分割成两个等腰三角形,则原三角形中最大内角的所有可能值为.22.数学课上,张老师举了下面的例题:例1:等腰△ABC中,∠A=110°,求∠B的度数;例2:等腰△ABC中,∠A=40°,求∠B的度数.爱思考的小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同.如果在等腰△ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.参考答案一.选择题(共10小题)1.解:根据题意,一个等腰三角形的一个角等于80°,①当这个角是底角时,即该等腰三角形的底角的度数是80°,②当这个角80°是顶角,设等腰三角形的底角是x°,则2x+80°=180°,解可得,x=50°,即该等腰三角形的底角的度数是50°;故选:A.2.解:当腰为6时,另一腰也为6,则底为20﹣2×6=8,∵6+6=12>8,∴三边能构成三角形.当底为6时,腰为(20﹣6)÷2=7,∵7+7>6,∴三边能构成三角形.故选:C.3.解:共有5个.∵AB=AC∴△ABC是等腰三角形;∵BD、CE分别是∠ABC、∠BCD的角平分线∴∠EBC=∠ABC,∠ECB=∠BCD,∵△ABC是等腰三角形,∴∠EBC=∠ECB,∴△BCE是等腰三角形;∵∠A=36°,AB=AC,∴∠ABC=∠ACB=(180°﹣36°)=72°,又BD是∠ABC的角平分线,∴∠ABD=∠ABC=36°=∠A,∴△ABD是等腰三角形;同理可证△CDE和△BCD是等腰三角形.故选:C.4.解:∵∠ABC、∠ACB的平分线相交于点E,∴∠MBE=∠EBC,∠ECN=∠ECB,∵MN∥BC,∴∠EBC=∠MEB,∠NEC=∠ECB,∴∠MBE=∠MEB,∠NEC=∠ECN,∴BM=ME,EN=CN,∴MN=ME+EN,即MN=BM+CN.∵BM+CN=8,∴MN=8,故选:D.5.解:设∠DCE=x,∠ACD=y,则∠ACE=x+y,∠BCE=90°﹣∠ACE=90°﹣x﹣y.∵AE=AC,∴∠ACE=∠AEC=x+y,∵BD=BC,∴∠BDC=∠BCD=∠BCE+∠DCE=90°﹣x﹣y+x=90°﹣y.在△DCE中,∵∠DCE+∠CDE+∠DEC=180°,∴x+(90°﹣y)+(x+y)=180°,解得x=45°,∴∠DCE=45°.故选:C.6.解:如图所示:连接AD,∵AB=AC=m,△ABC的面积是S,∴AB•DE+AC•DF=S,∵AB=AC=m,∴DE+DF=,故选:B.7.解:如图所示:BC=3,AC=4,AB=5,∵32+42=52,∴△ABC是直角三角形,∠ACB=90°.当CD1=AC=4,CD3=AD3,BA=BD4=3,AB=AD2=3,D5A=AB,BD6=CD,故能得到符合题意的等腰三角形6个.故选:D.8.解:当AB为腰时,分别以A、B点为顶点,以AB为半径作圆,可找出格点点C的个数有6个;故使△ABC是以AB为腰的等腰三角形的格点C有6个.故选:D.9.解:∵等腰三角形的腰长为xcm,周长20cm,∴底边为(20﹣2x)cm,∴20﹣2x>0且2x>20﹣2x,解得x<10且x>5.∴腰长x的取值范围是 5cm<x<10cm.故选:D.10.解:如图在OA、OB上截取OE=OF=OP,作∠MPN=60°.∵OP平分∠AOB,∴∠EOP=∠POF=60°,∵OP=OE=OF,∴△OPE,△OPF是等边三角形,∴EP=OP,∠EPO=∠OEP=∠PON=∠MPN=60°,∴∠EPM=∠OPN,在△PEM和△PON中,,∴△PEM≌△PON(ASA).∴PM=PN,∵∠MPN=60°,∴△PNM是等边三角形,∴只要∠MPN=60°,△PMN就是等边三角形,故这样的三角形有无数个.故选:D.二.填空题(共11小题)11.解:①∵AB=AC,∠ABD=26°,BD⊥AC,∴∠A=64°,∴∠ABC=∠C=(180°﹣64°)÷2=58°.②∵AB=AC,∠ABD=26°,BD⊥AC,∴∠BAC=26°+90°=116°∴∠ABC=∠C=(180°﹣116°)÷2=32°.故答案为:58°或32°.12.解:设∠C=2α,∵∠BAD+∠C=90°,∴∠BAD=90°﹣2α,∵AC=BC,∴∠B=∠BAC=90°﹣α,∴∠CAD=α,作∠ADF=∠DAE=α交AE于F,∴∠DFE=2α,AF=DF,∵∠AED=2∠BAD=180°﹣4α,∴∠EDF=2α,∴∠EFD=∠EDF=∠C,∴EF=DE,DF=CD,∴AF=CD,∴CF=BD=16,∵CE=7,∴EF=DE=9,故答案为:9.13.解:∵AB、AC的垂直平分线分别交BC于点D、E,∴AD=BD,AE=CE,∴AD+AE=BD+CE,∵BC=10,DE=4,当BD与CE无重合时,如图1,AD+AE=BD+CE=BC﹣DE=10﹣4=6,当BD与CE有重合时,如图2,AD+AE=BD+CE=BC+DE=10+4=14,综上所述,AD+AE=6或14.故答案为:6或14.14.解:如图所示,等腰△ABC中,AB=AC,点D为AC的中点,设AB=AC=x,∵点D为AC的中点,∴AD=CD=AB,BC=17﹣(AB+AC)=17﹣2x.①当△ABD的周长大于△BCD的周长时,∵AB+AD+BD﹣(BC+CD+BD)=4,∴AB﹣BC=4,即x﹣(17﹣2x)=4,解得x=7,17﹣2x=3,7,7,3能够组成三角形,符合题意;②当△BCD的周长大于△ABD的周长时,∵BC+CD+BD﹣(AB+AD+BD)=4,∴BC﹣AB=4,即17﹣2x﹣x=4,解得x=,17﹣2x=,,,能够组成三角形,符合题意.综上所述,这个等腰三角形的底边长为3或,故答案为:3或,15.解:当100°的角是顶角的外角时,顶角的度数为180°﹣100°=80°;当100°的角是底角的外角时,底角的度数为180°﹣100°=80°,所以顶角的度数为180°﹣2×80°=20°;所以这个等腰三角形顶角的度数为80°或20°.故答案为80°或20°.16.解:若△ABC是锐角三角形时,过点C作CD⊥AB于点D,过点A作AE⊥BC于点E,∵AB•CD=,∴CD=3,∴由勾股定理可知:AD=4,∴BD=1,∴BC=,若△ABC是钝角三角形时,同理可求出得BC=3,故答案为:或317.解:(1)根据题意得DA=DB,∴∠ABD=∠A=25°,∴∠BDA=180°﹣25°×2=130°.故答案为:130°;(2)如图所示:AB=AC,AD=BD,BC=CD,∵AD=BD,∴∠ABD=∠A,∵BC=CD,∴∠CBD=∠CDB=2∠A,∴∠ABC=∠ABD+∠CBD=3∠A,∵AB=AC,∴∠C=∠ABC=3∠A,∵∠A+∠ABC+∠C=180°,∴∠A=.故答案为:.18.解:如图所示,分别以A,B为圆心,AB长为半径画弧,①当直线CD经过两弧的交点时,直线CD与两弧共有3个交点G1,G2,G3,此时满足△GAB是等腰三角形的点G有且只有3个,△PAB是等边三角形,∴PM=a;②当直线CD与两弧均相切时,直线CD与两弧、直线MN共有3个交点G1,G2,G3,此时满足△GAB是等腰三角形的点G有且只有3个,∴PM=AG1=AB=a,故答案为:a或a.19.解:分三种情况:①当CD=DE时,∴∠DCE=∠DEC=70°,∴∠ADC=∠B+∠DCE=110°,②当DE=CE时,∵∠CDE=40°,∴∠DCE=∠CDE=40°,∴∠ADC=∠DCE+∠B=80°.③当EC=CD时,∠BCD=180°﹣∠CED﹣∠CDE=180°﹣40°﹣40°=100°,∵∠ACB=100°,∴此时,点D与点A重合,不合题意.综上所述,若△ADC是等腰三角形,则∠ADC的度数为80°或110°.故答案为:80°或110°.20.解:①如图1,连接OB,∵AB=AC,AD⊥BC,∴BD=CD,∠BAD=∠BAC=×120°=60°,∴OB=OC,∠ABC=90°﹣∠BAD=30°∵OP=OC,∴OB=OC=OP,∴∠APO=∠ABO,∠DCO=∠DBO,∴∠APO+∠DCO=∠ABO+∠DBO=∠ABD=30°;故①正确;②由①知:∠APO=∠ABO,∠DCO=∠DBO,∵点O是线段AD上一点,∴∠ABO与∠DBO不一定相等,则∠APO与∠DCO不一定相等,故②不正确;③∵∠APC+∠DCP+∠PBC=180°,∴∠APC+∠DCP=150°,∵∠APO+∠DCO=30°,∴∠OPC+∠OCP=120°,∴∠POC=180°﹣(∠OPC+∠OCP)=60°,∵OP=OC,∴△OPC是等边三角形;故③正确;④如图2,在AC上截取AE=PA,连接PB,∵∠PAE=180°﹣∠BAC=60°,∴△APE是等边三角形,∴∠PEA=∠APE=60°,PE=PA,∴∠APO+∠OPE=60°,∵∠OPE+∠CPE=∠CPO=60°,∴∠APO=∠CPE,∵OP=CP,在△OPA和△CPE中,,∴△OPA≌△CPE(SAS),∴AO=CE,∴AB=AC=AE+CE=AO+AP;故④正确;本题正确的结论有:①③④,故答案为①③④.三.解答题(共5小题)21.解:(1)∵AB=AC,∵∠A=36°,∴∠C=∠ABC=72°.∵BD平分∠ABC交AC于D,∴∠ABD=∠DBC=36°,∵∠A=∠ABD=36°,∴∠BDC=∠A+∠ABD=36°+36°=72°=∠C,∴△BDC是等腰三角形;(2)如图方案1,做∠B的角平分线BD交AC于点D,作∠BDC得角平分线DE交BC于点E,∵∠A=36°,∴∠C=∠ABC=72°,∴∠DBC=36°,∠BDC=72°,∴∠EDG=∠BDE=36°,∴△ABD,△BDE,△DEC为等腰三角形;如图方案2,做∠B的角平分线BF交AC于点F,作∠C得角平分线CM交BF于点M,∵∠A=36°,∴∠ACB=∠ABC=72°,∴∠FBC=∠ABF=36°,∠FCM=∠MCB=72°,∴∠CFM=∠CMF=72°,∴△ABF,△BMC,△CMF为等腰三角形;如图方案3,做∠C的角平分线CN交AB于点N,作∠BNC得角平分线NP交BC于点P,∵∠A=36°,∴∠ACB=∠ABC=72°,∴∠BCN=∠ACN=36°,∠BNC=∠B=72°,∴∠BNP=∠PNC=36°,∠NPB=72°,∴△ANC,△NPC,△BNP为等腰三角形;如图方案4,作∠B的角平分线BD交AC于点D,作∠BDE=∠BDC交AB于点E,∵∠A=36°,∴∠ACB=∠ABC=72°,∴∠BCD=∠BDE=∠BED=72°,∠AED=108°,∴∠A=∠ADE=36°,∴△AED,△BDE,△BCD为等腰三角形;(3)①原三角形是锐角三角形,最大角是72°的情况如图所示:∠ABC=∠ACB=72°,∠A=36°,AD=BD=BC;②原三角形是直角三角形,最大角是90°的情况如图所示:∠ABC=90°,∠A=36°,AD=CD=BD;③原三角形是钝角三角形,最大角是108°的情况如图所示:④原三角形是钝角三角形,最大角是126°的情况如图所示:∠ABC=126°,∠C=36°,AD=BD=BC;⑤原三角形是钝角三角形,最大角是132°的情况如图所示:∠C=132°,∠ABC=36°,AD=BD,CD=CB.综上,原三角形最大内角的所有可能值为72°,90°,108°,132°,126°.故答案为:72°,90°,108°,132°,126°.22.解:例题1:根据三角形内角和定理,∵∠A=110°>90°,∠B=∠C=35°;例题2:若∠A为顶角,则∠B=(180°﹣∠A)÷2=70°;若∠A为底角,∠B为顶角,则∠B=180°﹣2×40°=100°;若∠A为底角,∠B为底角,则∠B=40°;故∠B=50°或20°或80°;问题:分两种情况:①当90≤x<180时,∠A只能为顶角,∴∠B的度数只有一个;②当0<x<90时,若∠A为顶角,则∠B=()°;若∠A为底角,∠B为顶角,则∠B=(180﹣2x)°;若∠A为底角,∠B为底角,则∠B=x°.当≠180﹣2x且180﹣2x≠x且≠x,即x≠60时,∠B有三个不同的度数.综上所述,可知当0<x<90且x≠60时,∠B有三个不同的度数.。
人教版八年级数学上册 13.3等腰三角形 同步练习(包含答案)
13.3等腰三角形知识要点:1.应用“三线合一”性质的前提条件是在等腰三角形中,且必须是底边上的中线、底边上的高和顶角平分线,若是一腰上的高与中线就不一定重合.2.等腰三角形是轴对称图形,顶角平分线(或底边上的高、底边上的中线)所在的直线是它的对称轴.3.等边三角形的性质:等边三角形的三个内角都相等,并且每一个角都等于60°4.一在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.一、单选题1.已知等腰三角形的周长为10,一边长为4,则此等腰三角形的腰长为( )A.2B.3C.4D.3或4【答案】D2.如图,在△ABC中,AB=AC,△A=36°,BE平分△ABC,CD平分△ACB,CD交BE 于点F,那么图中的等腰三角形共有( )个.A.6B.7C.8D.9【答案】C3.如果一个三角形的一内角平分线垂直于对边,那么这个三角形是( )A.等腰三角形B.等边三角形C.锐角三角形D.不能确定【答案】A4.在Rt△ABC中,△C=90°,△B=30°,则( )A.AB=2AC B.AC=2AB C.AB=AC D.AB=3AC【答案】A5.已知一个等腰三角形的一边长为5,另一边长为7,则这个等腰三角形的周长为( ) A.12 B.17 C.17或19 D.19【答案】C6.如图,在△ABC中,AB=AC,AD是△ABC的角平分线,DE△AB,DF△AC,垂足分别为E,F.则下列结论:△AD上任意一点到点C,B的距离相等;△AD上任意一点到边AB,AC的距离相等;△BD=CD,AD△BC;△△BDE=△CDF.其中正确的个数为()A.4B.3C.2D.1【答案】A7.下列能判定△ABC为等腰三角形的是( )A.△A=30°,△B=60° B.△A=50°,△B=80°C.△A=2△B=80° D.AB=3,BC=6,周长为13【答案】B8.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A.6 B.8 C.10 D.12【答案】C9.如图,AD△BC,D是BC的中点,那么下列结论错误的是()A.△ABD△△ACD B.△B=△C C.△ABC是等腰三角形D.△ABC是等边三角形【答案】D10.如图,在△ABC中,△ACB=90°,BE平分△ABC,ED△AB与点D,△A=30°,AE=6cm,那么CE等于()A.4cm B.2cm C.3cm D.1cm【答案】C11.如图,在△ABC中,△A=45°,△B=30°,CD△AB,垂足为D,AD=1,则BD的长为()A.√2B.2 C.√3D.3【答案】C12.等边三角形的边长为2,则该三角形的面积为()A.4√3B.2√3C.√3D.3【答案】C13.如图,AB=AC,△BAC=120°,AB的垂直平分线交BC于点D,那么△ADC的度数为()A.120° B.30° C.60° D.80°【答案】C14.已知A和B两点在线段EF的中垂线上,且△EBF=100°,△EAF=70°,则△AEB等于( )A.95° B.15° C.95°或15° D.170°或30°【答案】C二、填空题15.等腰△ABC中,若△A=30°,则△B=________.【答案】30°或75°或120°16.已知等腰△ABC的腰AB=AC=10cm,底边BC=12cm,则△A的平分线的长是______cm.【答案】817.已知等腰三角形的周长为13,其中一边长为3,其它两边的长为____________【答案】5,518.在直角三角形中,最长边为10 cm,最短边为5 cm,则这个三角形中最小的内角为__________度.【答案】3019.如图,在Rt△ABC中,△C=90°,△A=30°,AB的垂直平分线交AC于点E,垂足为D,BE平分△ABC,若AE=2,则CE的长为______.【答案】120.已知等腰△ABC的两边长a、b满足(a-2)2+|b-4|=0,则等腰△ABC的周长为______ .【答案】10三、解答题21.如图,等边三角形ABC的边长是10cm,求:(1)高AD的长(2)S△ABC(结果保留根号)【答案】2∵等边三角形三线合一的性质,∵D 为BC 中点,BD=DC=5cm ,∵AD∵BC ,=,∵∵ABC 的面积为211•10cm 22S BC AD ==⨯⨯=22.如图,在△ABC 中,△A=30°,AC=2√3,△B=60°,求点C 到AB 的距离和△ABC 的面积.【答案】√3,2√3.过点C 作CD∵AB,则∵ADC=90°,因为∵A=30°,AC=2√3,所以CD=√3,在∵ABC 中,因为∵A=30°,∵B=60°,所以∵ACB=90°,在Rt∵ABC 中,设BC=x,则AB=2x,因为AB 2=BC 2+AC 2,所以(2x)2=x 2+(2√3)2,x=2,所以S ∵ABC =12AC·BC=12×2√3×2=2√3.23.已知:如图,在△ABC 中,△A=30°,△ACB=90°,M 、D 分别为AB 、MB 的中点. 求证:CD△AB.∵∵ACB =90°,M 为AB 中点,∵CM 12=AB =BM . ∵∵ACB =90°,∵A =30°,∵CB 12=AB =BM ,∵CM =CB .∵D为MB的中点,∵CD∵BM,即CD∵AB.24.如图,在△ABC中,△ACB=90°,CD△AB于点D,AF平分△CAB,交CD于点E,交BC于点F,若AF=BF,求证:△CEF是等边三角形.证明:如图,∵AF是∵BAC的平分线,∵∵CAB=2∵1=2∵2,∵AF=BF,∵∵2=∵B,∵∵ACB=90°,∵∵B+∵CAB=90°,即∵B+2∵1=∵B+2∵2=90°,∵∵B=∵1=∵2=30°,∵∵4是∵ABF的外角,∵∵4=∵2+∵B=60°,∵CD是AB边上的高,∵∵2+∵3=90°,∵∵3=60°,∵∵5=∵3,∵∵4=∵5=60°,∵∵CEF是等边三角形.。
2018-2019人教版数学八年级上册 13.3《等腰三角形》同步测试题(含答案及解析)
ᦙᦙ 中, ᦙ 䁪 ᦙ,AB 的垂直平分线 MN 交 AC 1 . 如图,在 于 D 点.若 BD 平分 ᦙᦙ,则 䁪______ .
ᦙᦙ 中, ᦙ 䁪 ᦙ 䁪 1 ,ᦙᦙ 䁪 1 ,D 是 AB 的中点, . 如图,在 ᦙ 于点 E,则 DE 的长是______. 过点 D 作 ′‸
三、计算题(本大题共 4 小题,共 24.0 分) ᦙᦙ 中, ᦙ 䁪 ᦙ,D,E,F 分别为 AB,BC,CA 1. 如图, 上的点,且 ᦙ′ 䁪 ᦙ‸, ′‸ 䁪 ᦙ 1 求证: ᦙ′‸≌ ᦙ‸ ; 若 䁪 ,求 ‸′ 的度数.
四、解答题(本大题共 2 小题,共 16.0 分) ᦙᦙ 中, ‸ ᦙᦙ 于 E, ‸ 䁪 ᦙ‸,D 是 AE 上的一点,且 ′‸ 䁪 ᦙ‸, ⸵. 如图 1,在 连接 BD,CD.
1 试判断 BD 与 AC 的位置关系和数量关系,并说明理由; 如图 2,若将 ′ᦙ‸ 绕点 E 旋转一定的角度后,试判断 BD 与 AC 的位置关系和 数量关系是否发生变化,并说明理由; 如图 3,若将 中的等腰直角三角形都换成等边三角形,其他条件不变. 试猜想 BD 与 AC 的数量关系,请直接写出结论; 你能求出 BD 与 AC 的夹角度数吗?如果能,请直接写出夹角度数;如果不能, 请说明理由.
四边形 ABCD 是边长为 6 的正方形, 点 E 在边 AB 上, 1 . 如图, ᦙ‸ 䁪 ,过点 E 作 ‸ ᦙᦙ,分别交 BD,CD 于 G,F 两 点.若 M,N 分别是 DG,CE 的中点,则 MN 的长为
A. 3 B. C. 1 D. 4
二、填空题(本大题共 10 小题,共 30.0 分) ᦙᦙ 中, ᦙᦙ 䁪 ᦙ, ᦙ 䁪 1 , ᦙ 䁪 , 11. 如图, 在 ᦙ‸ ′ 于 E, AD 平分 ᦙ ᦙ, 交 BC 于点 D, 则 ᦙ‸ 䁪 ______ .
人教版八年级数学上册 第十三章轴对称13.3 等腰三角形13.3.1等腰三角形的性质 同步练习含答案
第十三章轴对称 13.3 等腰三角形 13.3.1 等腰三角形的性质1. 等腰三角形的一个内角是50°,则这个三角形的底角的大小是( ) A.65°或50° B.80°或40°C.65°或80° D.50°或80°2. 等腰三角形有一个角是90°,则另两个角分别是( )A.30°,60° B.45°,45°C.45°,90° D.20°,70°3. 如图,在△ABC中,AB=AC,过点A作AD∥BC,若∠1=70°,则∠BAC的大小为( )A.40° B.30° C.70° D.50°4. 如图,等腰三角形ABC中,AB=AC,BD平分∠ABC, ∠A=36°, 则∠1的度数为( )A.36° B.60° C.72° D.108°5. 等腰三角形的两边长分别为2和5,则它的周长是( )A.30 B.20 C.18 D.126. 等腰三角形一个底角为75°,它的另外两个角为____ __.7. 等腰三角形一个角为36°,它的另外两个角为____________________.8. 等腰三角形一个角为120°,它的另外两个角为_ ___ __.9. 在△ABC中, AB=AC,AB的垂直平分线与AC所在的直线相交得的锐角为50°,则底角的大小为___________.10. 如图,AB=AC,若∠B=35°,则x的值为____.11.如图,AB∥CD,AB=AC,∠ABC=70°,则∠ACD=____.12.如图,△ABC中,AB=AC,BD⊥AC于D,∠ABC=72°,则∠ABD=____.13.如图,在△ABC中,AB=AC,D为BC的中点,∠BAD=35°,则∠C的度数为____.14. 判断正(√;X)(1) 等腰三角形的顶角一定是锐角. ( )(2) 等腰三角形的底角可能是锐角或者直角、钝角都可以. ( )(3) 钝角三角形不可能是等腰三角形. ( )(4) 等腰三角形的顶角平分线一定垂直底边. ( )(5) 等腰三角形的角平分线、中线和高互相重合. ( )(6) 等腰三角形底边上的中线一定平分顶角. ( )15. 如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数.16. 如图,在△ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数.17. 如图,△ABC中,D是BC上一点,AC=AD=DB,∠BAC=102°,求∠ADC的度数.18. 已知点D、E在△ABC的边BC上,AB=AC.(1)如图①,若AD=AE,求证:BD=CE;(2)如图②,若BD=CE,F为DE的中点,求证:AF⊥BC.答案:1---5 ABACD6. 75°, 30°7. 72°,72°或36°,108°8. 30°,30°9. 70°或20°10. 70°11. 40°12. 54°13. 55°14. (1) X(2) X(3) X(4) √(5) X(6) √15. 解:∵AB=AC,BD=BC=AD,∴∠ABC=∠C=∠BDC,∠A=∠ABD.设∠A=x,则∠BDC= ∠A+ ∠ABD=2x,从而∠ABC= ∠C= ∠BDC=2x,于是在△ABC中,有∠A+∠ABC+∠C=x+2x+2x=180 ° ,解得x=36 ° ,在△ABC中,∠A=36°,∠ABC=∠C=72°.16. 解:∵AB=AD=DC ∴ ∠B= ∠ADB,∠C= ∠DAC设∠C=x,则∠DAC=x,∠B= ∠ADB= ∠C+ ∠DAC=2x,在△ABC中,根据三角形内角和定理,得2x+x+26°+x=180°,解得x=38.5°.∴ ∠C= x=38.5°,∠B=2x=77°.17. 解:设∠B=∠BAD=x,则∠ADC=2x=∠C,∴x+2x+102°=180°,x=26°,∴∠ADC=52°.18. 证明:(1)如图①,过A作AG⊥BC于G.∵AB=AC,AD=AE,∴BG=CG,DG=EG,∴BG-DG=CG-EG,∴BD=CE;(2)∵BD=CE,F为DE的中点,∴BD+DF=CE+EF,∴BF=CF.∵AB=AC,∴AF⊥BC.。
人教版数学八年级上册13.3等腰三角形专项练习含答案
八年级上册13.3等腰三角形专项练习(含答案)(满分:100分)班级:姓名:学号:成绩:、选择题(每小题3分,共36分)1、如右图所示,在4ABC中,AB=AC , D是BC的中点,下列结论中不正确的是()B、AD^BCC、AD 平分/BACD、/B = /C2、如图,等腰4ABC的周长为21 ,底边BC = 5, AB的垂直平分线DE交AB于点D,交AC于点E,则aBEC 的周长为()A. 13B. 14C. 15D. 163、如图,在正三角形犯。
中,。
,町f分别是肥/。
,岫上的点,DE L AC ,EFL AB ,FD1BC,则△口£尸的面积与△血的面积之比等于()C.布:2D.招:3A. 1 :3B. 2 : 3,AB=BC=CD=DE=EF , WJ/DEF 等于(C: 70° D: 6005、若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是()A: 750或15 ° B: 75° C: 15° D : 75 ° A30 °6、如图,在Rt△肥C中,二91,艮0是工C的垂直平分线,交NC于点。
,交8c于点E •已知」朋月二1。
二则NC的度数为()A•狗B- 40° C- 5/D- 6T7、某小区现有一块等腰直角三角形形状的绿地,腰长为100米,直角顶点为A .小区物业管委会准备把它分割成面积相等的两块,有如下的分割方法:方法一:在底边BC上找一点D,连接AD作为分割线;方法二:在腰AC上找一点D,连接BD作为分割线;方法三:在腰AB上找一点D,作DE //BC,交AC于点E, DE作为分割线;方法四:以顶点A为圆心,AD为半径作弧,交AB于点D,交AC于点E,弧DE作为分割线.这些分割方法中分割线最短的是()方法一方法二方法三方法四A.方法一B.方法二C.方法三D.方法四8、等腰三角形一腰上的高与另一腰的夹角为60,,则顶角的度数为()A. 30° B . 30° 或150 0 C . 60r曲50r D.61或120r9、如图所示,BEX AC 于点D,且AD=CD, BD = ED,若/ABC = 54° ,则/=()A.25B.27C.30D.4510、等腰直角三角形的一个底角的度数是A3a B- 4? C 60° D- 9伊11、已知AABC是等边三角形,点D、E分别在AC、1BC边上,且AD=CE,AE与BD交于点F,则/AFD的度数为()A.60 0B.45°C.750D. 70 °12、如图,△施中,儿5=乂。
八年级数学上册13.3 等腰三角形强化训练含答案
作品编号:4862354798562348112533学 校: 兽古上山市名扬镇装载小学* 教 师: 葛蝇给* 班 级: 朱雀捌班*等腰三角形基础训练1.若一个等腰三角形的两边长分别为2和5,则它的周长为(A ) A. 12 B. 9 C. 12或9 D. 9或72.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是(D )A. 1,2,3B. 1,1, 2C. 1,1,3D. 1,2, 33.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角度数为(D ) A. 60° B. 120°C. 60°或150°D. 60°或120°4.下面给出的几种三角形:①有两个角为60°的三角形;②三个外角都相等的三角形;③一边上的高也是这边上的中线的等腰三角形;④有一个角为60°的等腰三角形.其中一定是等边三角形的有(B )A. 4个B. 3个C. 2个D. 1个(第5题图)5.如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,过点O 作EF ∥BC 交AB 于点E ,交AC 于点F ,过点O 作OD ⊥AC 于D ,下列四个结论:①EF =BE +CF ;②∠BOC =90°+12∠A ;③点O 到△ABC 各边的距离相等;④设OD =m ,AE +AF =n ,则S △AEF =mn . 其中正确的结论是( A )A. ①②③B. ①②④C. ②③④D. ①③④(第6题图)6.如图,在△ABC 中,D ,E 分别是AC ,AB 上的点,BD 与CE 交于点O .给出下列三个条件:①∠EBO =∠DCO ;②∠BEO =∠CDO ;③BE =CD .上述三个条件中,哪两个条件组合可判定△ABC 是等腰三角形(用序号写出一种情形):①③或②③.7.在△ABC 中,AB =22,BC =145°,以AB 为一边作等腰直角三角形ABD ,使∠ABD =90°,连结CD ,则线段CD 的长为__5或13__.(第8题图)8.如图,在△ABC 中,AB =AC ,D 为CA 延长线上一点,DE ⊥BC ,交线段AB 于点F .请找出一组相等的线段(AB =AC 除外)并加以证明.解:AD =AF .证明如下: ∵AB =AC ,∴∠B =∠C . ∵DE ⊥BC ,∴∠B +∠BFE =∠C +∠D =90°, ∴∠BFE =∠D . ∵∠BFE =∠DF A , ∴∠DF A =∠D , ∴AF =AD .拓展提高(第9题图)9.如图,△ABC 是等边三角形,点P 是∠ABC 的平分线BD 上一点,PE ⊥AB 于点E ,线段BP 的垂直平分线交BC 于点F ,垂足为Q .若BF =2,则PE 的长为(B )A. 2B. 3C. 23D. 310.已知等腰△ABC 中,AD ⊥BC 于点D ,且AD =12BC ,则△ABC 底角的度数为(D )A. 45°B. 75°C. 60°D. 45°或75°11.在平面直角坐标系中,点A (2,2),B (32,32),动点C 在x 轴上,若以A ,B ,C 三点为顶点的三角形是等腰三角形,则点C 的个数为(B )A. 2B. 3C. 4D. 512.如图,等腰△ABC 纸片(AB =AC )可按图中所示方法折成一个四边形,点A 与点B 重合,点C 与点D 重合,则在原等腰△ABC 中,∠B =72度.(第12题图)(第13题图)13.如图,在四边形ABCD 中,AD ∥BC ,∠ABC 与∠DCB 的平分线相交于点H ,过H 作AD 的平分线交AB 于E ,交CD 于F .若BE =3,CF =2,则EF =__5__.14.如图,已知∠AOB =α,在射线OA ,OB 上分别取点OA =OB 1,连结AB 1,在B 1A ,B 1B 上分别取点A 1,B 2,使B 1B 2=B 1A 1,连结A 1B 2,…,按此规律下去,记∠A 1B 1B 2=θ1,∠A 2B 2B 3=θ2,…,∠A n B n B n +1=θn ,则:(1)θ1=180°+α2;(2) θn =()2n -1·180°+α2n.,(第14题图))15.在如图所示的钢架中,焊上等长的13根钢条来加固钢架.若AP 1=P 1P 2=P 2P 3=…=P 13P 14=P 14A ,则∠A 的度数是__12°__.,(第15题图))16.如图,∠BOC =9°,点A 在OB 上,且OA =1,按下列要求画图: 以点A 为圆心,1为半径向右画弧交OC 于点A 1,得第1条线段AA 1; 再以点A 1为圆心,1为半径向右画弧交OB 于点A 2,得第2条线段A 1A 2; 再以点A 2为圆心,1为半径向右画弧交OC 于点A 3,得第3条线段A 2A 3; ……这样画下去,直到得第n 条线段,之后就不能再画出符合要求的线段了,则n =__9__.,(第16题图))17.如图,已知点A (3,0),B (0,4),C 为x 轴上一点. (1)画出等腰三角形ABC . (2)求出C 点的坐标.,(第17题图))解:(1)如解图.,(第17题图解))(2)①当A 是顶点时,C 1(-2,0),C 2(8,0), ②当B 是顶点时,C 3(-3,0)③当C 是顶点时,C 4⎝⎛⎭⎫-76,0.(第18题图)18.如图,在△ABC 中,AD ⊥BC ,垂足为D ,BE ⊥AC ,垂足为E ,M 为AB 边的中点,连结ME ,MD ,ED .(1)求证:△MED 为等腰三角形. (2)求证:∠EMD =2∠DAC .解:(1)证明:∵M 为AB 边的中点,AD ⊥BC ,BE ⊥AC ,∴ME =12AB ,MD =12AB ,∴ME =MD ,∴△MED 为等腰三角形.(2)∵ME =12AB =MA ,∴∠MAE =∠MEA , ∴∠BME =2∠MAE .同理,MD =12AB =MA ,∴∠MAD =∠MDA , ∴∠BMD =2∠MAD ,∴∠EMD =∠BME -∠BMD =2∠MAE -2∠MAD =2∠DAC .(第19题图)19.如图,已知点D 为等腰直角△ABC 内一点,∠CAD =∠CBD =15°,E 为AD 延长线上的一点,且CE =CA .(1)求证:DE 平分∠BDC .(2)若点M 在DE 上,且DC =DM ,求证:ME =BD . 解:(1)证明:∵△ABC 为等腰Rt △, ∴AC =BC ,∠CAB =∠CBA =45°. ∵∠CAD =∠CBD =15°,∴∠BAD =∠ABD =45°-15°=30°,∴BD =AD . 又∵CA =CB ,∴△BDC ≌△ADC (SAS ). ∴∠DCA =∠DCB .又∵∠ACB =90°,∴∠DCA =∠DCB =45°.∵∠BDE =∠ABD +∠BAD =30°+30°=60°,∠EDC =∠DAC +∠DCA =15°+45°=60°, ∴∠BDM =∠EDC .∴DE 平分∠BDC .(第19题图解)(2)如解图,连结MC .∵DC =DM ,且∠MDC =60°, ∴△MDC 是等边三角形, ∴CM =CD .又∵∠EMC=180°-∠DMC=180°-60°=120°,∠ADC=180°-∠MDC=180°-60°=120°,∴∠EMC=∠ADC.又∵CE=CA,∴∠DAC=∠CEM=15°.∴△ADC≌△EMC(AAS).∴ME=AD=BD.。
2019年秋人教版八年级上册数学13.3.1等腰三角形 课后练习
2019年秋人教版八年级上册数学13.3.1等腰三角形 课后练习一、单选题1.如图,在△ABC 中,AB=AC ,BD=BC ,AD=DE=EB ,则△A 是( )A .30B .45C .36D .202.如图,在△ABC 中,AD △BC ,垂足为D ,AD =BD =CD ,则下列结论错误的是( )A .AB AC = B .AD 平分BAC ∠ C .AB BC = D .90BAC ∠=o3.如图,在△ABC 中,△A =36°,AB =AC ,CD 是△ACB 的角平分线.若在边AC 上截取CE =CB ,连接DE ,则图中等腰三角形共有( )A .2个B .3个C .4个D .5个4.如果等腰三角形的周长为16,那么这个等腰三角形腰长x 的取值范围是( )A .x >3B .x <6C .3<x <6D .4<x <85.已知等腰三角形的两边长分别为4和9,则此三角形的周长是( )A .17B .22C .17或22D .126.如图,下列条件不能推出△ABC 是等腰三角形的是( )A .△B =△C B .AD △BC ,△BAD =△CADC.AD△BC,BD=CD D.AD△BC,△BAD=△ACD7.如图:Rt△ABC 中,AC=BC,△ACB=90°,D 为BC 边中点,CF△AD 交AD 于E,交AB 于F,BE交AC 于G,连DF,下列结论:△AC=AF,△CD+DF=AD,△△ADC=△BDF,△CE=BE,△△ BED=45°,其中正确的有()A.5 个B.4 个C.3 个D.2 个8.如图,在△ABC中,AB=AC,直线l1△l2,且分别与△ABC的两条边相交,若△1=40°,△2=23°,则△C的度数为()A.40°B.50°C.63°D.67°二、填空题9.在△ABC中,AB=AC,若△A-△B=30°则△A=_____,△B=_____.10.如图,点D为△ABC的边AB上一点,若△1=△2,AB=7,AC=3,则△ACD的周长为______.11.等腰三角形一腰上的高与另一腰的夹角为30° ,则顶角的度数是__________12.在平面直角坐标系中,点A与点B的坐标分别是A(1,0)和B(5,0).以线段AB为底边作高为2的等腰三角形ABC,则顶点C的坐标为______.13.如图,D 为△ABC 的AC 边上的一点,△A=△DBC=36°,△C=72°,则图中共有等腰三角形____个.14.如图,在等腰Rt ABC ∆中,90︒∠=C ,点F 是AB 的中点,且2AC =,将一块直角三角板的直角顶点放在点F 处,始终保持该直角三角板的两直角边分别与AC 、BC 相交,交点分别为D 、E ,则CD CE +的值为____.三、解答题15.已知等腰三角形的两条边长分别是a 、b ,满足()2a b 2a 2b 70-+++-=,求这个等腰三角形的周长. 16.如图,在△ABC 中,AB =AC ,DE 垂直平分AB .(1)若AB =AC =10cm ,BC =6cm ,求△BCE 的周长;(2)若△A =40°,求△EBC 的度数.17.如图,在四边形ABCD 中,AD △BC ,E 为CD 的中点,连接AE 、BE ,BE △AE ,延长AE 交BC 的延长线于点F . 求证:△ABF 是等腰三角形.18.如图,在△ABC 中,BA =BC ,D 在边CB 上,且DB =DA =AC(1)填空:如图1,△B = °,△C = °;(2)如图2,若M 为线段BC 上的点,过M 作MH△AD ,交AD 的延长线于点H ,分别交直线AB 、AC 与点N 、E.△求证:△ANE是等腰三角形;△线段BN、CE、CD之间的数量关系是.19.已知在△ABC和△ABD中,△DAB=△ABC=90°,AD=AB=CB,BD=6cm,F为线段BD上一动点,以每秒1cm 的速度从B匀速运动到D,过F作直线FQ△AF,且FQ=AF,点Q在直线AF的右侧,设点F运动时间为t(s).(1)当△ABF为等腰三角形时,t=;(2)当F点在线段BO上时,过Q点作QH△BD于点H,求证:△AOF△△FHQ;(3)当F点在线段OD上运动的过程中,△ABQ的面积是否变化?若不变,求出它的值.参考答案1.B 2.C 3.D 4.D 5.B 6.D 7.D 8.C 9.80°,50° 10.10 11.60°或120°. 12.(3,2)(3,−2). 13.3 14.215.解∵()2a b2a2b70-+++-=,∵+20270a ba b-=⎧⎨+-=⎩,解得13ab=⎧⎨=⎩,当b为底边,a为腰时,112<+,此种情况不成立;当a为底边,b为腰时,这个等腰三角形的周长为:1+3+3=7.16.解(1)∵DE垂直平分AB,∵EA=EB,∵AB=AC=10cm,BC=6cm,∵∵BCE的周长=BC+CE+BE=BC+CE+AE=BC+AC=10cm+6cm=16cm.(2)∵AB=AC,∵A=40°,∵∵ABC=∵C=70°,∵EA=EB,∵A=40°,∵∵A=∵ABE=40°,∵∵EBC=∵ABC-∵ABE=70°-40°=30°.17.解∵AD∵BC,∵∵ADC=∵ECF,∵E是CD的中点,∵DE=EC.在∵ADE与∵FCE中,ADC ECFDE ECAED CEF∠∠⎧⎪⎨⎪∠∠⎩===,∵∵ADE∵∵FCE(ASA),∵AE=EF,∵BE∵AE,∵∵ABF是等腰三角形.18.解:(1)∵BA=BC,∵∵BCA=∵BAC,∵DA=DB,∵∵BAD=∵B,∵AD=AC,∵∵ADC=∵C=∵BAC=2∵B,∵∵DAC=∵B,∵∵DAC+∵ADC+∵C=180°,∵2∵B+2∵B+∵B=180°,∵∵B=36°,∵C=2∵B=72°,故答案为:36;72;(2)∵在∵ADB中,∵DB=DA,∵B=36°,∵∵BAD=36°,在∵ACD中,∵AD=AC,∵∵ACD=∵ADC=72°,∵∵CAD=36°,∵∵BAD=∵CAD=36°,∵MH∵AD,∵∵AHN=∵AHE=90°,∵∵AEN=∵ANE=54°,即∵ANE是等腰三角形;∵CD=BN+CE.证明:由∵知AN=AE,又∵BA=BC,DB=AC,∵BN=AB﹣AN=BC﹣AE,CE=AE﹣AC=AE﹣BD,∵BN+CE=BC﹣BD=CD,即CD=BN+CE19.解:(1)∵∵BAD=90°,AB=AD,∵∵ABD=∵ADB=45°,若AB=AF时,即点F与点D重合,∵BF=BD=6cm,∵t=6=6s,1若BF=AF时,∵∵ABF=∵BAF=45°,∵∵AFB=90°,∵AF∵BD,且AB=AD∵BF=DF=3cm,∵t=3=3s,1故答案为:3s或6s;(2)如图1,∵∵DAB=∵ABC=90°,AD=AB=CB,∵∵ABD=∵ADB=45°,∵BAC=∵ACB=45°,∵∵AOB=90°,∵AF∵FQ,QH∵BD,∵∵AFQ=∵FHQ=90°,∵∵QFH+∵FQH=90°,∵AFO+∵QFH=90°,∵∵AFO=∵FQH,AF=FQ,∵AOF=∵FHQ=90°∵∵AOF∵∵FHQ(AAS);(3)不变,理由如下:如图2,过点Q作QH∵BD,∵∵DAB=∵ABC=90°,AD=AB=CB,∵∵ABD=∵ADB=45°,∵BAC=∵ACB=45°,∵∵AOB=90°,∵AF∵FQ,QH∵BD,∵∵AFQ=∵FHQ=90°,∵∵QFH+∵FQH=90°,∵AFO+∵QFH=90°,∵∵AFO=∵FQH,AF=FQ,∵AOF=∵FHQ=90°∵∵AOF∵∵FHQ(AAS)∵OF=QH=t﹣3,∵S∵ABQ=S∵AOF+S∵AFQ﹣S∵BFQ=12BF×AO+12×AF2﹣12×BF×QH,∵S∵ABQ=12×t×3+12[32+(t﹣3)2]﹣12×t×(t﹣3)=9,故∵ABQ的面积不发生变化.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等腰三角形
基础训练
1.若一个等腰三角形的两边长分别为2和5,则它的周长为(A ) A. 12 B. 9 C. 12或9 D. 9或7
2.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是(D )
A. 1,2,3
B. 1,1, 2
C. 1,1,3
D. 1,2, 3
3.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角度数为(D ) A. 60° B. 120°
C. 60°或150°
D. 60°或120°
4.下面给出的几种三角形:①有两个角为60°的三角形;②三个外角都相等的三角形;③一边上的高也是这边上的中线的等腰三角形;④有一个角为60°的等腰三角形.其中一定是等边三角形的有(B )
A. 4个
B. 3个
C. 2个
D. 1个
(第5题图)
5.如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于点O ,过点O 作EF ∥BC 交AB 于点E ,交AC 于点F ,过点O 作OD ⊥AC 于D ,下列四个结论:
①EF =BE +CF ;
②∠BOC =90°+1
2
∠A ;
③点O 到△ABC 各边的距离相等;
④设OD =m ,AE +AF =n ,则S △AEF =mn . 其中正确的结论是( A )
A. ①②③
B. ①②④
C. ②③④
D. ①③④
(第6题图)
6.如图,在△ABC 中,D ,E 分别是AC ,AB 上的点,BD 与CE 交于点O .给出下列三个条件:①∠EBO =∠DCO ;②∠BEO =∠CDO ;③BE =CD .上述三个条件中,哪两个条件组合可判定△ABC 是等腰三角形(用序号写出一种情形):①③或②③.
7.在△ABC 中,AB =22,BC =1,∠ ABC =45°,以AB 为一边作等腰直角三角形ABD ,使∠ABD =90°,连结CD ,则线段CD 的长为__5或13__.
(第8题图)
8.如图,在△ABC 中,AB =AC ,D 为CA 延长线上一点,DE ⊥BC ,交线段AB 于点F .请找出一组相等的线段(AB =AC 除外)并加以证明.
解:AD =AF .证明如下: ∵AB =AC ,∴∠B =∠C . ∵DE ⊥BC ,
∴∠B +∠BFE =∠C +∠D =90°, ∴∠BFE =∠D . ∵∠BFE =∠DF A , ∴∠DF A =∠D , ∴AF =AD .
拓展提高
(第9题图)
9.如图,△ABC 是等边三角形,点P 是∠ABC 的平分线BD 上一点,PE ⊥AB 于点E ,线段BP 的垂直平分线交BC 于点F ,垂足为Q .若BF =2,则PE 的长为(B )
A. 2
B. 3
C. 23
D. 3
10.已知等腰△ABC 中,AD ⊥BC 于点D ,且AD =1
2
BC ,则△ABC 底角的度数为(D )
A. 45°
B. 75°
C. 60°
D. 45°或75°
11.在平面直角坐标系中,点A (2,2),B (32,32),动点C 在x 轴上,若以A ,B ,C 三点为顶点的三角形是等腰三角形,则点C 的个数为(B )
A. 2
B. 3
C. 4
D. 5
12.如图,等腰△ABC 纸片(AB =AC )可按图中所示方法折成一个四边形,点A 与点B 重合,点C 与点D 重合,则在原等腰△ABC 中,∠B =72度.
(第12题图)
(第13题图)
13.如图,在四边形ABCD 中,AD ∥BC ,∠ABC 与∠DCB 的平分线相交于点H ,过H 作AD 的平分线交AB 于E ,交CD 于F .若BE =3,CF =2,则EF =__5__.
14.如图,已知∠AOB =α,在射线OA ,OB 上分别取点OA =OB 1,连结AB 1,在B 1A ,B 1B 上分别取点A 1,B 2,使B 1B 2=B 1A 1,连结A 1B 2,…,按此规律下去,记∠A 1B 1B 2=θ1,∠A 2B 2B 3=θ2,…,∠A n B n B n +1=θn ,则:
(1)θ1=180°+α
2;(2) θn =()
2n -1·180°+α2n
.
,(第14题图))
15.在如图所示的钢架中,焊上等长的13根钢条来加固钢架.若AP 1=P 1P 2=P 2P 3=…=P 13P 14=P 14A ,则∠A 的度数是__12°__.
,(第15题图))
16.如图,∠BOC =9°,点A 在OB 上,且OA =1,按下列要求画图: 以点A 为圆心,1为半径向右画弧交OC 于点A 1,得第1条线段AA 1; 再以点A 1为圆心,1为半径向右画弧交OB 于点A 2,得第2条线段A 1A 2; 再以点A 2为圆心,1为半径向右画弧交OC 于点A 3,得第3条线段A 2A 3; ……
这样画下去,直到得第n 条线段,之后就不能再画出符合要求的线段了,则n =__9__.
,(第16题图))
17.如图,已知点A (3,0),B (0,4),C 为x 轴上一点. (1)画出等腰三角形ABC . (2)求出C 点的坐标.
,(第17题图))
解:(1)如解图.
,(第17题图解))
(2)①当A 是顶点时,C 1(-2,0),C 2(8,0), ②当B 是顶点时,C 3(-3,0)
③当C 是顶点时,C 4⎝⎛⎭
⎫-7
6,0.
(第18题图)
18.如图,在△ABC 中,AD ⊥BC ,垂足为D ,BE ⊥AC ,垂足为E ,M 为AB 边的中点,连结ME ,MD ,ED .
(1)求证:△MED 为等腰三角形. (2)求证:∠EMD =2∠DAC .
解:(1)证明:∵M 为AB 边的中点,AD ⊥BC ,BE ⊥AC ,
∴ME =12AB ,MD =1
2AB ,
∴ME =MD ,
∴△MED 为等腰三角形. (2)∵ME =1
2AB =MA ,
∴∠MAE =∠MEA , ∴∠BME =2∠MAE .
同理,MD =1
2AB =MA ,
∴∠MAD =∠MDA , ∴∠BMD =2∠MAD ,
∴∠EMD =∠BME -∠BMD =2∠MAE -2∠MAD =2∠DAC .
(第19题图)
19.如图,已知点D 为等腰直角△ABC 内一点,∠CAD =∠CBD =15°,E 为AD 延长线上的一点,且CE =CA .
(1)求证:DE 平分∠BDC .
(2)若点M 在DE 上,且DC =DM ,求证:ME =BD .
解:(1)证明:∵△ABC 为等腰Rt △, ∴AC =BC ,∠CAB =∠CBA =45°. ∵∠CAD =∠CBD =15°,
∴∠BAD =∠ABD =45°-15°=30°,∴BD =AD . 又∵CA =CB ,∴△BDC ≌△ADC (SAS ). ∴∠DCA =∠DCB .
又∵∠ACB =90°,∴∠DCA =∠DCB =45°.
∵∠BDE =∠ABD +∠BAD =30°+30°=60°,∠EDC =∠DAC +∠DCA =15°+45°=60°,
∴∠BDM=∠EDC.∴DE平分∠BDC.
(第19题图解) (2)如解图,连结MC.
∵DC=DM,且∠MDC=60°,
∴△MDC是等边三角形,
∴CM=CD.
又∵∠EMC=180°-∠DMC=180°-60°=120°,
∠ADC=180°-∠MDC=180°-60°=120°,
∴∠EMC=∠ADC.
又∵CE=CA,∴∠DAC=∠CEM=15°.
∴△ADC≌△EMC(AAS).∴ME=AD=BD.。