2020学年八年级数学 专题 等腰三角形练习

合集下载

2020年沪科版八年级数学上册第15章轴对称图形与等腰三角形单元测试题(含答案)

2020年沪科版八年级数学上册第15章轴对称图形与等腰三角形单元测试题(含答案)

《第15章轴对称图形与等腰三角形》单元测试卷一.选择题(共10小题)1.如图,已知∠AOE=∠BOE=15°,EF∥OB,EC⊥OB于点C,EG⊥OA于点G,若EC =3,则OF长度是()A.3B.4C.5D.62.已知:如图,在△ABC中,边AB的垂直平分线分别交BC、AB于点G、D,若△AGC 的周长为31cm,AB=20cm,则△ABC的周长为()A.31cm B.41cm C.51cm D.61cm3.已知:如图,在△ABC中,AB=AC,∠C=72°,BC=.以点B为圆心,BC为半径画弧,交AC于点D,则线段AD的长为()A.2B.C.D.4.如图,已知直线PQ⊥MN于点O,点A,B分别在MN,PQ上,OA=1,OB=2,在直线MN或直线PQ上找一点C,使△ABC是等腰三角形,则这样的C点有()A.3个B.4个C.7个D.8个5.如图,△ABC中,BC=10,AC﹣AB=4,AD是∠BAC的角平分线,CD⊥AD,则S△BDC 的最大值为()A.40B.28C.20D.106.如图的方格纸中,左边图形到右边图形的变换是()A.向右平移7格B.以AB的垂直平分线为对称轴作轴对称变换,再以AB为对称轴作轴对称变换C.绕AB的中点旋转180°,再以AB为对称轴作轴对称D.以AB为对称轴作轴对称,再向右平移7格7.如图,在△ABC中,∠C=90°,点A关于BC边的对称点为A′,点B关于AC边的对称点为B′,点C关于AB边的对称点为C′,则△ABC与△A′B′C′的面积之比为()A.B.C.D.8.一平面镜以与水平面成45°角固定在水平面上,如图所示,一个小球以1m/s的速度沿桌面向点O匀速滚去,则小球在平面镜中的像是()A.以1m/s的速度,做竖直向上运动B.以1m/s的速度,做竖直向下运动C.以m/s的速度运动,且运动路线与地面成45°角D.以2m/s的速度,做竖直向下运动9.将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去上方的小三角形.将纸片展开,得到的图形是()A.B.C.D.10.如图,在平面直角坐标系中,点A坐标为(10,12),点B在x轴上,AO=AB,点C 在线段OB上,且OC=3BC,在线段AB的垂直平分线MN上有一动点D,则△BCD周长的最小值为()A.B.13C.D.18二.填空题(共8小题)11.如图,已知∠AOB=30°,P是∠AOB平分线上一点,CP∥OB,交OA于点C,PD⊥OB,垂足为点D,且PC=8,则PD的长为.12.如图,A、B、C三点在同一条直线上,∠A=50°,BD垂直平分AE,垂足为D,则∠EBC的度数为.13.在△ABC中,AB=AC,AB的垂直平分线交AC于D,交AB于E,连接BD,若∠ADE =40°,则∠DBC=.14.如图,线段AB的长度为2,AB所在直线上方存在点C,使得△ABC为等腰三角形,设△ABC的面积为S.当S=时,满足条件的点C恰有三个.15.如图是跳棋盘,其中格点上的黑色点为棋子,剩余的格点上没有棋子.我们约定跳棋游戏的规则是:把跳棋棋子在棋盘内,沿着棋子对称跳行,跳行一次称为一步.已知点A 为己方一枚棋子,欲将棋子A跳进对方区域(阴影部分的格点),则跳行的最少步数为步.16.如图,在△ABC中,∠A=75°,∠C=45°,BC=4,点M是AC边上的动点,点M 关于直线AB、BC的对称点分别为P、Q,则线段PQ长的取值范围是.17.如图所示的商标有条对称轴.18.小明从镜子里看到镜子对面的钟表里的时间是2点30分,实际时间为点分.三.解答题(共8小题)19.已知:如图,△ABC中,AD平分∠BAC,DE∥AB分别交BC、AC于D、C两点,CE =6,DE=5.过D作DF⊥AB于F.DF=4.(1)求AE的长;(2)求△ACD的面积.20.如图,在四边形ABCD中,E为AB的中点,DE⊥AB于点E,∠A=66°,∠ABC=90°,BC=AD,求∠C的度数.21.如图,等腰△ABC中,AB=AC,∠ABC=35°,E是BC边上一点且AE=CE,D是BC边上的中点,连接AD,AE.(1)求∠DAE的度数;(2)若BD上存在点F,且∠AFE=∠AEF,求证:BF=CE.22.如图,△ABC中,∠C=90°,AC=4cm,BC=3cm,若动点P从点C开始,按C→A →B→C的路径运动,且速度为每秒1cm,设运动的时间为x秒.(1)当x=时,CP把△ABC的面积分成相等的两部分,并求出此时CP=cm;(2)当x为何值时,△ABP为等腰三角形.23.(1)当a=时,代数式2a+5的值为3;(2)等边三角形有条对称轴.24.已知:如图,已知△ABC中,其中A(0,﹣2),B(2,﹣4),C(4,﹣1).(1)画出与△ABC关于y轴对称的图形△A1B1C1;(2)写出△A1B1C1各顶点坐标;(3)求△ABC的面积.25.如图,在3×3的正方形网格中,有格点△ABC和△DEF,且△ABC和△DEF关于某条直线成轴对称,请在下面给出的图中,画出3个不同位置的△DEF及其对称轴MN.26.在平面直角坐标系中,O是坐标原点,A(2,2),B(4,﹣3),P是x轴上的一点(1)若PA+PB的值最小,求P点的坐标;(2)若∠APO=∠BPO,①求此时P点的坐标;②在y轴上是否存在点Q,使得△QAB的面积等于△PAB的面积,若存在,求出Q点坐标;若不存在,说明理由.参考答案与试题解析一.选择题(共10小题)1.如图,已知∠AOE=∠BOE=15°,EF∥OB,EC⊥OB于点C,EG⊥OA于点G,若EC =3,则OF长度是()A.3B.4C.5D.6【分析】根据角平分线的性质得到EG的长度,再根据平行线的性质得到∠OEF=∠COE =15°,然后利用三角形的外角和内角的关系求出∠EFG=30°,利用30°角所对的直角边是斜边的一半,即可得到EF的长,进而得出OF的长.【解答】解:∵∠AOE=∠BOE=15°,EC⊥OB于点C,EG⊥OA于点G,∴CE=EG=3,∵EF∥OB,∴∠COE=∠OEF=15°∴∠EFG=15°+15°=30°,∠EOF=∠OEF,∴OF=EF=2EG=2×3=6.故选:D.【点评】本题考查了角平分线的性质、平行线的性质、含30°角的直角三角形的性质;熟练掌握角平分线的性质,证出∠EFG=30°是解决问题的关键.2.已知:如图,在△ABC中,边AB的垂直平分线分别交BC、AB于点G、D,若△AGC 的周长为31cm,AB=20cm,则△ABC的周长为()A.31cm B.41cm C.51cm D.61cm【分析】根据线段的垂直平分线的性质得到GA=GB,根据三角形的周长公式计算即可.【解答】解:∵DG是AB的垂直平分线,∴GA=GB,∵△AGC的周长为31cm,∴AG+GC+AC=BC+AC=31cm,又AB=20cm,∴△ABC的周长=AB+AC+BC=51cm,故选:C.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.3.已知:如图,在△ABC中,AB=AC,∠C=72°,BC=.以点B为圆心,BC为半径画弧,交AC于点D,则线段AD的长为()A.2B.C.D.【分析】由等腰三角形的性质得出∠ABC=∠ACB=72°,由三角形内角和定理得出∠A =36°,由作图得出BC=BD,得出∠BDC=∠C=72°,证出∠A=∠ABD,得出AD =BD=BC即可.【解答】解:∵AB=AC,∠C=72°,∴∠ABC=∠ACB=72°,∴∠A=180°﹣72°﹣72°=36°,∵以点B为圆心,BC为半径画弧,交AC于点D,∴BC=BD,∴∠BDC=∠C=72°,∴∠CBD=180°﹣72°﹣72°=36°,∴∠ABD=72°﹣36°=36°,∴∠A=∠ABD,∴AD=BD=BC=;故选:C.【点评】本题考查了等腰三角形的判定与性质、三角形内角和定理等知识;熟练掌握等腰三角形的判定与性质,证出AD=BD=BC是解题的关键.4.如图,已知直线PQ⊥MN于点O,点A,B分别在MN,PQ上,OA=1,OB=2,在直线MN或直线PQ上找一点C,使△ABC是等腰三角形,则这样的C点有()A.3个B.4个C.7个D.8个【分析】根据等腰三角形的判定分类别分别找寻,分AB可能为底,可能是腰进行分析.【解答】解:使△ABC是等腰三角形,当AB当底时,则作AB的垂直平分线,交PQ,MN的有两点,即有两个三角形.当让AB当腰时,则以点A为圆心,AB为半径画圆交PQ,MN有三点,所以有三个.当以点B为圆心,AB为半径画圆,交PQ,MN有三点,所以有三个.所以共8个.故选:D.【点评】本题考查了等腰三角形的判定;解题的关键是要分情况而定,所以学生一定要思维严密,不可遗漏.5.如图,△ABC 中,BC =10,AC ﹣AB =4,AD 是∠BAC 的角平分线,CD ⊥AD ,则S △BDC 的最大值为( )A .40B .28C .20D .10【分析】延长AB ,CD 交点于E ,可证△ADE ≌△ADC (ASA ),得出AC =AE ,DE =CD ,则S △BDC =S △BCE ,当BE ⊥BC 时,S △BEC 最大面积为20,即S △BDC 最大面积为10.【解答】解:如图:延长AB ,CD 交点于E ,∵AD 平分∠BAC ,∴∠CAD =∠EAD ,∵CD ⊥AD ,∴∠ADC =∠ADE =90°,在△ADE 和△ADC 中,,∴△ADE ≌△ADC (ASA ),∴AC =AE ,DE =CD ;∵AC ﹣AB =4,∴AE ﹣AB =4,即BE =4;∵DE =DC ,∴S △BDC =S △BEC ,∴当BE ⊥BC 时,S △BDC 面积最大,即S △BDC 最大面积=××10×4=10.故选:D .【点评】本题考查了角平分线定义、全等三角形的判定与性质、等腰三角形的性质等知识;利用三角形中线的性质得到S △BDC =S △BEC 是解题的关键.6.如图的方格纸中,左边图形到右边图形的变换是( )A .向右平移7格B .以AB 的垂直平分线为对称轴作轴对称变换,再以AB 为对称轴作轴对称变换C .绕AB 的中点旋转180°,再以AB 为对称轴作轴对称D .以AB 为对称轴作轴对称,再向右平移7格【分析】认真观察图形,找准特点,根据轴对称的性质及平移变化得出.【解答】解:观察可得:要使左边图形变化到右边图形,首先以AB 为对称轴作轴对称,再向右平移7格.故选:D .【点评】主要考查了轴对称的性质及平移变化.轴对称图形具有以下的性质:(1)轴对称图形的两部分是全等的;(2)对称轴是连接两个对称点的线段的垂直平分线.7.如图,在△ABC 中,∠C =90°,点A 关于BC 边的对称点为A ′,点B 关于AC 边的对称点为B ′,点C 关于AB 边的对称点为C ′,则△ABC 与△A ′B ′C ′的面积之比为( )A .B .C .D .【分析】连接CC '并延长交A 'B '于D ,连接CB ',CA ',依据AC =A 'C ,BC =B 'C ,∠ACB =∠A 'CB ',可得△ABC ≌△A 'B 'C ,进而得出S △ABC =S △A 'B 'C ,再根据CD =CE =EC ',可得S △A 'B 'C =S △A 'B 'C ',进而得到S △ABC =S △A 'B 'C '.【解答】解:如图,连接CC '并延长交A 'B '于D ,连接CB ',CA ',∵点A 关于BC 边的对称点为A ′,点B 关于AC 边的对称点为B ′,点C 关于AB 边的对称点为C ′,∴AC =A 'C ,BC =B 'C ,∠ACB =∠A 'CB ',AB 垂直平分CC ',∴△ABC ≌△A 'B 'C (SAS ),∴S △ABC =S △A 'B 'C ,∠A =∠AA 'B ',AB =A 'B ',∴AB ∥A 'B ',∴CD ⊥A 'B ',∴根据全等三角形对应边上的高相等,可得CD =CE ,∴CD =CE =EC ',∴S △A 'B 'C =S △A 'B 'C ',∴S △ABC =S △A 'B 'C ',∴△ABC 与△A ′B ′C ′的面积之比为,故选:B .【点评】本题考查的是轴对称的性质、三角形的面积及等积变换,解答此题的关键是熟知对称的性质:如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.8.一平面镜以与水平面成45°角固定在水平面上,如图所示,一个小球以1m/s的速度沿桌面向点O匀速滚去,则小球在平面镜中的像是()A.以1m/s的速度,做竖直向上运动B.以1m/s的速度,做竖直向下运动C.以m/s的速度运动,且运动路线与地面成45°角D.以2m/s的速度,做竖直向下运动【分析】利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.【解答】解:根据镜面对称的性质,在平面镜中的顺序与现实中的恰好相反,且关于镜面对称,则小球在平面镜中的像是以1m/s的速度,做竖直向下运动.故选:B.【点评】本题考查了镜面反射的原理与性质.解决此类题应认真观察,注意技巧,充分发挥想象能力.9.将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去上方的小三角形.将纸片展开,得到的图形是()A.B.C.D.【分析】严格按照所给方法向下对折,再向右对折,向右下对折,剪去上部分的等腰直角三角形,展开得到答案.【解答】解:易得剪去的4个小正方形正好两两位于原正方形一组对边的中间.故选:C.【点评】主要考查了剪纸问题;学生空间想象能力,动手操作能力是比较重要的,做题时,要注意培养.10.如图,在平面直角坐标系中,点A坐标为(10,12),点B在x轴上,AO=AB,点C 在线段OB上,且OC=3BC,在线段AB的垂直平分线MN上有一动点D,则△BCD周长的最小值为()A.B.13C.D.18【分析】过A作AH⊥OB于H,连接AD,根据MN垂直平分AB,即可得到AD=BD,当A,D,C在同一直线上时,△BCD周长的最小值为AC+BC的长,根据勾股定理求得AC的长,即可得到△BCD周长的最小值为13+5=18.【解答】解:如图,过A作AH⊥OB于H,连接AD,∵点A坐标为(10,12),AO=AB,∴OH=BH=10,AH=12,又∵OC=3BC,∴BC=5,CO=15,∴CH=15﹣10=5,∵MN垂直平分AB,∴AD=BD,∴BD+CD=AD+CD,∴当A,D,C在同一直线上时,△BCD周长的最小值为AC+BC的长,此时,Rt△ACH中,AC===13,∴△BCD周长的最小值=13+5=18,故选:D.【点评】本题主要考查了最短距离问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.二.填空题(共8小题)11.如图,已知∠AOB=30°,P是∠AOB平分线上一点,CP∥OB,交OA于点C,PD⊥OB,垂足为点D,且PC=8,则PD的长为4.【分析】过点P作PE⊥OA于点E,根据角平分线上的点到角的两边的距离相等可得PE =PD,再根据两直线平行,内错角相等可得∠POD=∠OPC,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠PCE=∠AOB,再根据直角三角形30°角所对的直角边等于斜边的一半得出PE=PC=4,根据角平分线的性质得到答案.【解答】解:作PE⊥OA于E,∵P是∠AOB平分线上一点,∴∠AOP=∠BOP=15°,∵PC∥OB,∴∠POD=∠OPC,∴∠PCE=∠POC+∠OPC=∠POC+∠POD=∠AOB=30°,∴PE=PC=4,∵P是∠AOB平分线上一点,PD⊥OB,PE⊥OA,∴PD=PE=4,故答案为:4.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,以及三角形的一个外角等于与它不相邻的两个内角的和,作辅助线构造含30°角的直角三角形是解题的关键.12.如图,A、B、C三点在同一条直线上,∠A=50°,BD垂直平分AE,垂足为D,则∠EBC的度数为100°.【分析】根据线段的垂直平分线的性质得到BE=BA,得到∠E=∠A=50°,根据三角形的外角的性质计算即可.【解答】解:∵BD垂直平分AE,∴BE=BA,∴∠E=∠A=50°,∴∠EBC=∠E+∠A=100°,故答案为:100°.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.13.在△ABC中,AB=AC,AB的垂直平分线交AC于D,交AB于E,连接BD,若∠ADE =40°,则∠DBC=15°.【分析】根据线段垂直平分线的概念得到∠AED=90°,进一步求出∠ABD=∠A=50°,根据三角形内角和定理和等腰三角形的性质计算即可.【解答】解:∵DE是AB的垂直平分线,∴DE⊥AB,∴∠AED=90°,又∵∠ADE=40°,∴∠ABD=∠A=50°,又∵AB=AC,∴∠ABC=65°,∴∠DBC=15°.故答案为:15°.【点评】本题考查的是线段垂直平分线的概念和等腰三角形的性质,掌握三角形内角和等于180°、等腰三角形等边对等角是解题的关键.14.如图,线段AB的长度为2,AB所在直线上方存在点C,使得△ABC为等腰三角形,设△ABC的面积为S.当S=或2时,满足条件的点C恰有三个.【分析】分别以A,B为圆心,AB长为半径作圆,两圆相交于点C1,过点C1作直线l ∥AB,分别交两圆于点C2,C3;分别以A,B为圆心,AB长为半径作圆,在两圆上方作直线l∥AB,与两圆分别相切于点C2,C3,再根据三角形的面积公式计算即可.【解答】解:(1)如图所示:分别以A,B为圆心,AB长为半径作圆,两圆相交于点C1,过点C1作直线l∥AB,分别交两圆于点C2,C3,此时满足条件的点C恰好有3个,△ABC1为边长为2的等边三角形,其高为∴S=×2×=(2)如图所示:分别以A,B为圆心,AB长为半径作圆,在两圆上方作直线l∥AB,与两圆分别相切于点C2,C3,点C1为l与线段AB的垂直平分线的交点,此时满足条件的点C恰好有3个,△ABC2和△ABC3均为腰长为2的等腰直角三角形,△ABC1为底边为2,高为2的等腰三角形∴S=×2×2=2故答案为:或2.【点评】本题考查了等腰三角形的判定,构造圆,结合圆的切线性质及平行线的性质分类讨论,是解题的关键.15.如图是跳棋盘,其中格点上的黑色点为棋子,剩余的格点上没有棋子.我们约定跳棋游戏的规则是:把跳棋棋子在棋盘内,沿着棋子对称跳行,跳行一次称为一步.已知点A 为己方一枚棋子,欲将棋子A跳进对方区域(阴影部分的格点),则跳行的最少步数为3步.【分析】根据题意:分别计算出两种跳法所需要的步数,比较就可以了.【解答】解:如图中红棋子所示,根据规则:①点A从右边通过3次轴对称后,位于阴影部分内;②点A从左边通过4次轴对称后,位于阴影部分内.所以跳行的最少步数为3步.【点评】本题考查轴对称的性质,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分.16.如图,在△ABC中,∠A=75°,∠C=45°,BC=4,点M是AC边上的动点,点M 关于直线AB、BC的对称点分别为P、Q,则线段PQ长的取值范围是.【分析】连接BP、BQ、BM,过点B作BD⊥PQ于点D,由对称性可知PB=BM=BQ、△PBQ等腰三角形,进而即可得出PD=PB,再根据BM的取值范围即可得出线段PQ长的取值范围.【解答】解:∵∠A=75°,∠C=45°,∴∠ABC=180°﹣75°﹣45°=60°,连接BP、BQ、BM,过点B作BD⊥PQ于点D,如图所示.∵点M关于直线AB、BC的对称点分别为P、Q,∴BP=BQ=BM,∠PBA=∠MBA,∠MBC=∠QBC,∴∠PBQ=120°,∵PB=BQ,∴∠BPQ=∠BQP=30°,∴cos30°==,∴PD=PB,∵BC=4,∠C=45°,∴2≤BM≤4,∵BM=PB,∴2≤PB≤4,∴2≤PD≤4×,即≤PD≤2,∵PQ=2PD,∴2≤PQ≤4.故答案为:2≤PQ≤4.【点评】本题考查了轴对称的性质,等腰三角形的判定和性质,直角三角形30度角的性质和三角函数,解题的关键是证得△BPQ是等腰三角形.17.如图所示的商标有两条对称轴.【分析】根据轴对称图形的对称轴的意义结合图形画出,即可得出答案.【解答】解:有两条对称轴,如图所示:直线AB和直线CD.故答案为:两.【点评】本题考查了对轴对称图形的应用,注意:在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形图形叫做轴对称图形轴对称图形,这条直线叫对称轴.18.小明从镜子里看到镜子对面的钟表里的时间是2点30分,实际时间为9点30分.【分析】根据镜面对称的性质,在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称,分析可得答案.【解答】解:2:30时,分针竖直向下,时针指23之间,根据对称性可得:与9:30时的指针指向成轴对称,故实际时间是9:30.【点评】本题考查镜面反射的原理与性质.解决此类题应认真观察,注意技巧.三.解答题(共8小题)19.已知:如图,△ABC中,AD平分∠BAC,DE∥AB分别交BC、AC于D、C两点,CE =6,DE=5.过D作DF⊥AB于F.DF=4.(1)求AE的长;(2)求△ACD的面积.【分析】(1)依据角平分线的定义以及平行线的性质,即可得到∠DAE=∠ADE,进而得出AE=DE=5;(2)过D作DG⊥AC于G,依据角平分线的性质以及三角形面积公式,即可得到△ACD 的面积.【解答】解:(1)∵AD平分∠BAC,∴∠DAB=∠DAC,∵DE∥AB,∴∠ADE=∠DAB,∴∠DAE=∠ADE,∴AE=DE=5;(2)如图,过D作DG⊥AC于G,又∵DF⊥AB,AD平分∠BAC,∴DG=DF=4,∵CE=6,∴AC=AE+CE=5+6=11,∴△ACD的面积=×AC×DG=×11×4=22.【点评】本题主要考查角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题的关键.20.如图,在四边形ABCD中,E为AB的中点,DE⊥AB于点E,∠A=66°,∠ABC=90°,BC=AD,求∠C的度数.【分析】连接BD,根据线段垂直平分线的性质得到DA=DB,根据等腰三角形的性质、三角形内角和定理计算即可.【解答】解:连接BD,∵E为AB的中点,DE⊥AB于点E,∴AD=BD,∴∠DBA=∠A,∴∠DBA=66°,∵∠ABC=90°,∴∠DBC=∠ABC﹣∠ABD=24°∵AD=BC,∴BD=BC,∴∠C=∠BDC,∴∠C==78°.【点评】本题考查的是线段垂直平分线的性质、等腰三角形的性质以及三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.21.如图,等腰△ABC中,AB=AC,∠ABC=35°,E是BC边上一点且AE=CE,D是BC边上的中点,连接AD,AE.(1)求∠DAE的度数;(2)若BD上存在点F,且∠AFE=∠AEF,求证:BF=CE.【分析】(1)根据等腰三角形的性质可求∠C,再根据等腰三角形的性质可求∠CAE,根据等腰三角形三线合一的性质和三角形内角和定理可求∠CAD,再根据角的和差关系可求∠DAE的度数;(2)等腰三角形三线合一的性质可得BD=CD,FD=ED,再根据线段的和差关系即可求解.【解答】解:(1)∵AB=AC,∠ABC=35°,∴∠C=35°,∴∠CAE=35°,∵D是BC边上的中点,∴AD⊥BC,∴∠ADC=90°,∴∠DAC=180°﹣90°﹣35°=55°,∴∠DAE=∠DAC﹣∠C=55°﹣35°=20°;(2)证明:∵D是BC边上的中点,∴BD=CD,∵∠AFE=∠AEF,∴AF=AE,∵AD⊥BC,∴D是EF边上的中点,∴FD=ED,∴BD﹣FD=CD﹣ED,即BF=CE.【点评】考查了等腰三角形的性质:①等腰三角形的两腰相等;②等腰三角形的两个底角相等;③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.22.如图,△ABC中,∠C=90°,AC=4cm,BC=3cm,若动点P从点C开始,按C→A →B→C的路径运动,且速度为每秒1cm,设运动的时间为x秒.(1)当x=时,CP把△ABC的面积分成相等的两部分,并求出此时CP=cm;(2)当x为何值时,△ABP为等腰三角形.【分析】(1)当CP把△ABC的面积分成相等的两部分时,点P为AB的中点,依据点P运动的路程为6.5cm,即可得到x的值以及CP的长;(2)△ABP为等腰三角形,点P只能在AC上且PA=PB.设CP=x,则AP=BP=4﹣x,依据勾股定理即可得到x的值.【解答】解:(1)∵∠C=90°,AC=4cm,BC=3cm,∴AB=5cm,当CP把△ABC的面积分成相等的两部分时,点P为AB的中点,∴点P运动的路程为6.5cm,∴x=6.5÷1=,此时CP=AB=cm;故答案为:,;(2)△ABP为等腰三角形,点P只能在AC上且PA=PB.设CP=x,则AP=BP=4﹣x,在Rt△BCP中,BC2+CP2=BP2,即32+x2=(4﹣x)2,解之得:x=,∴当x为时,△ABP为等腰三角形.【点评】本题考查了等腰三角形的判定与性质、勾股定理的应用,熟练掌握等腰三角形的判定与性质,利用勾股定理列方程是解决问题的关键.23.(1)当a=﹣1时,代数式2a+5的值为3;(2)等边三角形有3条对称轴.【分析】(1)根据题意得2a+5=3,解方程即可;(2)轴对称就是一个图形的一部分,沿着一条直线对折,能够和另一部分重合,这样的图形就是轴对称图形,这条直线就是对称轴,依据定义即可求解.【解答】解:(1)由题意得:2a+5=3,解得:a=﹣1,故当a=﹣1时,代数式2a+5的值为3;(2)等边三角形有3条对称轴.故答案为:﹣1,3.【点评】本题考查了轴对称的性质及解一元一次方程的知识,正确理解轴对称图形的定义是解决本题的关键,是一个基础题.24.已知:如图,已知△ABC中,其中A(0,﹣2),B(2,﹣4),C(4,﹣1).(1)画出与△ABC关于y轴对称的图形△A1B1C1;(2)写出△A1B1C1各顶点坐标;(3)求△ABC的面积.【分析】(1)根据轴对称变换的性质作图;(2)根据关于y轴对称的点的坐标特点解答;(3)根据矩形的面积公式和三角形的面积公式计算.【解答】解:(1)所作图形如图所示;(2)A1(0,﹣2),B1(﹣2,﹣4),C1(﹣4,﹣1);=3×4﹣×2×3﹣×4×1﹣×2×2=12﹣3﹣2﹣2=5.(3)S△ABC【点评】本题考查的是轴对称变换的性质,掌握轴对称变换中坐标的变化特点是解题的关键,注意坐标系中不规则图形的面积的求法.25.如图,在3×3的正方形网格中,有格点△ABC和△DEF,且△ABC和△DEF关于某条直线成轴对称,请在下面给出的图中,画出3个不同位置的△DEF及其对称轴MN.【分析】本题要求思维严密,根据对称图形关于某直线对称,找出不同的对称轴,画出不同的图形,对称轴可以随意确定,因为只要根据你确定的对称轴去画另一半对称图形,那这两个图形一定是轴对称图形.【解答】解:如图所示;【点评】本题主要考查的是利用轴对称设计图案,掌握轴对称图形的性质是解题的解题的关键.26.在平面直角坐标系中,O是坐标原点,A(2,2),B(4,﹣3),P是x轴上的一点(1)若PA+PB的值最小,求P点的坐标;(2)若∠APO=∠BPO,①求此时P点的坐标;②在y轴上是否存在点Q,使得△QAB的面积等于△PAB的面积,若存在,求出Q点坐标;若不存在,说明理由.【分析】(1)根据题意画坐标系描点,根据两点之间线段最短,求直线AB解析式,与x轴交点即为所求点P.(2)①作点A关于x轴的对称点A',根据轴对称性质有∠APO=∠A'PO,所以此时P、A'、B在同一直线上.求直线A'B解析式,与x轴交点即为所求点P.②法一,根据坐标系里三角形面积等于水平长(右左两顶点的横坐标差)与铅垂高(上下两顶点的纵坐标差)乘积的一半,求得△PAB的面积为12,进而求得△QAP的铅垂高等于6,再得出直线BQ上的点E坐标为(2,8)或(2,﹣4),求出直线BQ,即能求出点Q坐标.法二,根据△QAB与△PAB同以AB为底时,高应相等,所以点Q在平行于直线AB、且与直线AB距离等于P到直线AB距离的直线上.这样的直线有两条,一条即过点P且与AB平行的直线,另一条在AB上方,根据平移距离相等即可求出.所求直线与y轴交点即点Q.【解答】解:(1)∵两点之间线段最短∴当A、P、B在同一直线时,PA+PB=AB最短(如图1)设直线AB的解析式为:y=kx+b∵A(2,2),B(4,﹣3)∴解得:∴直线AB:y=﹣x+7当﹣x+7=0时,得:x=∴P点坐标为(,0)(2)①作点A(2,2)关于x轴的对称点A'(2,﹣2)根据轴对称性质有∠APO=∠A'PO∵∠APO=∠BPO∴∠A'PO=∠BPO∴P、A'、B在同一直线上(如图2)设直线A'B的解析式为:y=k'x+b'解得:∴直线A'B:y=﹣x﹣1当﹣x﹣1=0时,得:x=﹣2∴点P坐标为(﹣2,0)②存在满足条件的点Q法一:设直线AA'交x轴于点C,过B作BD⊥直线AA'于点D(如图3)∴PC =4,BD =2∴S △PAB =S △PAA '+S △BAA '=设BQ 与直线AA '(即直线x =2)的交点为E (如图4)∵S △QAB =S △PAB则S △QAB ==2AE =12∴AE =6∴E 的坐标为(2,8)或(2,﹣4)设直线BQ 解析式为:y =ax +q或 解得: 或∴直线BQ :y =或y =∴Q 点坐标为(0,19)或(0,﹣5)法二:∵S △QAB =S △PAB∴△QAB 与△PAB 以AB 为底时,高相等即点Q 到直线AB 的距离=点P 到直线AB 的距离i )若点Q 在直线AB 下方,则PQ ∥AB设直线PQ :y =x +c ,把点P (﹣2,0)代入解得c =﹣5,y =﹣x ﹣5即Q (0,﹣5)ii )若点Q 在直线AB 上方,∵直线y =﹣x ﹣5向上平移12个单位得直线AB :y =﹣x +7∴把直线AB :y =﹣x +7再向上平移12个单位得直线AB :y =﹣x +19∴Q (0,19)综上所述,y 轴上存在点Q 使得△QAB 的面积等于△PAB 的面积,Q 的坐标为(0,﹣5)或(0,19)【点评】本题考查了两点之间线段最短,轴对称性质,求直线解析式,求三角形面积,平行线之间距离处处相等.解题关键是根据题意画图描点,直角坐标系里三角形面积的求法()是较典型题,两三角形面积相等且等底时,高相等即第三个顶点在平行于底的直线上.1、天下兴亡,匹夫有责。

八下北师版等腰三角形和直角三角形练习题

八下北师版等腰三角形和直角三角形练习题

八下北师版等腰三角形和直角三角形练习题在八年级下册的数学学习中,等腰三角形和直角三角形是两个非常重要的几何图形。

为了帮助同学们更好地掌握这部分知识,我们来一起做一些练习题。

一、等腰三角形练习题1、已知等腰三角形的一个内角为 80°,则这个等腰三角形的顶角为()A 80°B 20°C 80°或 20°D 50°分析:当 80°角是顶角时,答案就是 80°;当 80°角是底角时,顶角为 180° 80°× 2 = 20°。

所以答案是 C。

2、等腰三角形的两边长分别为 3 和 6,则这个等腰三角形的周长为()A 12B 15C 12 或 15D 18分析:因为三角形的两边之和大于第三边,所以这个等腰三角形的腰长只能是 6,底边长为 3。

周长为 6 + 6 + 3 = 15,答案是 B。

3、如图,在△ABC 中,AB = AC,AD 是∠BAC 的平分线,DE⊥AB 于点 E,DF⊥AC 于点 F。

求证:BE = CF。

证明:因为 AB = AC,AD 是∠BAC 的平分线,所以∠BAD =∠CAD。

又因为 DE⊥AB,DF⊥AC,AD = AD,所以△ADE≌△ADF (AAS)。

所以 AE = AF。

因为 AB = AC,所以 AB AE = AC AF,即 BE = CF。

4、一个等腰三角形的周长为 16,其中一边长为 6,求另外两边的长。

分析:当 6 是腰长时,底边长为 16 6× 2 = 4;当 6 是底边长时,腰长为(16 6)÷ 2 = 5。

所以另外两边的长为 6,4 或 5,5。

二、直角三角形练习题1、在直角三角形中,如果一个锐角为 30°,斜边为 2,则斜边上的高为()A 1B √3C √3 / 2D 1 / 2分析:在直角三角形中,如果一个锐角为 30°,那么它所对的直角边是斜边的一半。

2019-2020学年八年级上学期数学专题13.3-13.4 等腰三角形与最短路径问题(讲练)(解析版)

2019-2020学年八年级上学期数学专题13.3-13.4 等腰三角形与最短路径问题(讲练)(解析版)

专题13.3-13.4等腰三角形与最短路径问题(讲练)一、知识点1、等腰三角形的性质:①等腰三角形的两个底角相等(“等边对等角”); ②等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合;2、等腰三角形是轴对称图形,三线合一所在直线是其对称轴;(只有1条对称轴) 等腰三角形的判定:①如果一个三角形有两条边相等;②如果一个三角形有两个角相等,那么这两个角所对的边也相等;(等角对等边) 3、等边三角形:三条边都相等的三角形;(等边三角形是特殊的等腰三角形) 等边三角形的性质:①等边三角形的三个内角都是60〬 ②等边三角形的每条边都存在三线合一;4、等边三角形是轴对称图形,对称轴是三线合一所在直线;(有3条对称轴)5、等边三角形的判定:①三条边都相等的三角形是等边三角形; ②三个角都相等的三角形是等边三角形; ③有一个角是60〬的等腰三角形是等边三角形;6、在直角三角形中,如果一个锐角等于30〬,那么它所对的直角边等于斜边的一半;7、最短路径的选择①当两点在某一条直线的两侧时,这两点的最短距离就是连接这两点的线段与直线的交点就是最短路径的点.②当两点在某条直线的同侧时,这两点到直线上某一点的最短距离的作法:作任意一个点关于这条直线的对称点,然后再连接对称点与另一点之间的线段,与直线的交点就是最短距离的点的位置.[来源:学&科&网Z&X&X&K]注意:在解决最短路径的问题时,我们通常利用平移、轴对称等变化把已知问题转化成容易解决的问题,从而作出最短路径的选择.二、标准例题:例1:如图、已知60AOB ∠=︒,点P 在边OA 上,OP=12,点M ,N 在边OB 上,PM=PN ,若MN=2,则OM=( )A.3 B.4 C.5 D.6【答案】C【解析】作PH⊥MN于H,∵PM=PN,∴MH=NH=12MN=1,∵∠AOB=60°,∴∠OPH=30°,∴OH=12OP=6,∴OM=OH-MH=5,故选C.总结:本题考查的是直角三角形的性质、等腰三角形的性质,掌握直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.例2:如图,△ABC中∠ACB=90°,CD是AB边上的高,∠BAC的角平分线AF交CD于E,则△CEF必为()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形【答案】A【解析】∵∠ACB=90°,∴∠BCD+∠ACD=90°,∵CD是AB边上的高,∴∠B+∠BCD=90°,∴∠B=∠DCA,∵AF是∠BAC的平分线,∴∠1=∠2,∵∠1+∠B=∠CFE,∠2+∠DCA=∠FEC,∴∠CFE=∠FEC,∴CF=CE,∴△CEF是等腰三角形.故选A总结:此题考查等腰三角形的判定,解题关键在于掌握判定定理.例3:如图,在等边三角形ABC中,BC边上的中线,E是AD上的一个动点,F是边AB上的一个动点,在点E、F运动的过程中,的最小值是______.【答案】4【解析】如图:连接CE,△ 是等边三角形,AD 是中线, 垂直平分BC , ,,当点C ,点E ,点F 三点共线,且 时, 值最小,即 的值最小. 此时: △ 是等边三角形, , , , 即 的最小值是4, 故答案为:4.总结:本题考查了最短路径问题,等边三角形的性质,熟练掌握和运用等边三角形的性质以及轴对称的性质是解决本题的关键 解题时注意,最小值问题一般需要考虑两点之间线段最短或垂线段最短等结论. 例4:已知:如图,在等边ABC ∆中,060ADE ∠=,且DE 交ABC ∆外角平分线CE 于点E .(1)当点D 为BC 中点时,试说明AD 与DE 的数量关系; (2)当点D 不是BC 中点时,试说明AD 与DE 的数量关系. 【答案】(1)AD DE =,见解析.(2)AD DE =,见解析. 【解析】(1)结论:AD=DE ,理由如下: 如图: 过点D 作DF ∥AC ,交AB 于点F ,∵△ABC 是等边三角形,∴AB=BC ,∠B=∠ACB=∠ABC=60°. 又∵DF ∥AC , ∴∠BDF=∠ACB=60°, ∴△BDF 是等边三角形, ∴DF=BD ,∠BFD=60°, ∵BD=CD , ∴DF=CD ∴∠AFD=120°.∵EC 是外角的平分线,∴∠ACE=60°, ∴∠DCE=∠ACB+∠ACE=120°=∠AFD , ∵∠ADB=∠ADC=90°, ∴∠ADF=∠EDC=30°, 在△AFD 与△EDC 中,AFD DCE DF CDADF EDC ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△AFD ≌△DCE (ASA ), ∴AD=DE ;(2)结论:AD=DE ;理由如下:如图2,过点D 作DF ∥AC ,交AB 于点F ,∵△ABC 是等边三角形,∴AB=BC ,∠B=∠ACB=∠ABC=60°, 又∵DF ∥AC , ∴∠BDF=∠ACB=60°,∴△BDF 是等边三角形,∴BF=BD ,∠BFD=60°, ∴AF=CD ,∠AFD=120°,∵EC 是外角的平分线,∴∠ACE=60°, ∴∠DCE=∠ACB+∠ACE=120°=∠AFD , ∵∠ADC 是△ABD 的外角, ∴∠ADC=∠B+∠FAD=60°+∠FAD , ∵∠ADC=∠ADE+∠EDC=60°+∠EDC , ∴∠FAD=∠EDC , 在△AFD 和△DCE 中,DAF EDC AF CDAFD DCE ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△AFD ≌△DCE (ASA ), ∴AD=DE.总结:考查了全等三角形的性质与判定,等边三角形的性质,平行线的性质,线段的垂直平分线的性质等知识,解题的关键是熟练掌握全等三角形的判定和性质,学会添加常用辅助线,构造全等三角形解决问题.三、练习1.如图,在ABC ∆中,ABC ∠和ACB ∠的平分线交于点D ,过D 作EF BC ∕∕交AB 于E 交AC 于F ,若10,7,8AB BC AC ===,则AEF ∆的周长为( )A.15 B.18 C.17 D.16【答案】B【解析】解:∵EF∥BC,∴∠EDB=∠DBC,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠EBD=∠EDB,∴ED=EB,同理可证得DF=FC,∴AE+AF+EF=AE+EB+AF+FC=AB+AC=10+8=18,即△AEF的周长为18,故选:B.2.若等腰三角形的底角为15°,则一腰上的高是腰长的()A.14B.12C.1倍D.2倍【答案】B【解析】解:过点C作AB边上的高交BA延长线于D,根据题意可知,∠DAC=∠B+∠ACB=30°,∴在直角三角形ADC中,CD=12AC ,故答案为:B.3.等腰三角形的一个内角为80°,则它的顶角度数为A.20°B.80°C.20°或80°D.50°或80°【答案】C【解析】解:由题意可判定,分两种情况: 当该内角为顶角时,即顶角为80°;②当该内角为底角时,根据等腰三角形的性质,可得顶角度数为180808020︒-︒-︒=︒综上所述,顶角度数为20°或80°, 故答案为C.4.已知等腰三角形一腰上的中线将它的周长分成6cm 和12cm 两部分,则等腰三角形的底边长为( ) A .10cm B .2cmC .6cm 或4cmD .2cm 或10cm【答案】B【解析】设等腰三角形的腰长、底边长分别为xcm ,ycm ,由题意得1621122x x x y ⎧⎪⎪⎨+=+=⎪⎪⎩ 或1122162x x x y +=+=⎧⎪⎪⎨⎪⎪⎩ , 解得410x y ==⎧⎨⎩ 或82x y ==⎧⎨⎩∵4+4<10,不能构成三角形, 故等腰三角形的底边长为2cm , 故选B.5.如图,将ABC ∆绕点C 按逆时针方向旋转得A B C ∆'',且A '点在AB 上,A B ''交CB 于点D ,若BCB β'∠=,则CA B ''∠的度数为( )A .180β︒-B .1902β︒+C .11802β︒-D .1902β︒-【答案】D【解析】∵将△ABC 绕点C 按逆时针方向旋转得△A′B′C , ∴AC=A′C ,∠A=∠CA′B′,∠ACA′=BCB β'∠=,∴∠A=∠CA′B′=01802ACA -∠'=1902β︒- 故选:D.6.已知030AOB ∠=,点P 在AOB ∠内部,点1P 与点P 关于OA 对称,点2P 与点P 关于OB 对称,则12POP ∆是( )A .含30°角的直角三角形B .顶角是30°的等腰三角形C .等边三角形D .等腰直角三角形【答案】C 【解析】如图,∵P ,P 1关于直线OA 对称,P 、P 2关于直线OB 对称, ∴OP=OP 1=OP 2,∠AOP=∠AOP 1,∠BOP=∠BOP 2, ∵∠AOB=30°,∴∠P 1OP 2=2∠AOP+2∠BOP=2(∠AOP+∠BOP )=2∠AOB=60°, ∴△P 1OP 2是等边三角形. 故选:C .7.如图,三角形ABC 中,,AB AC AD AE ==,050BAD ∠=,则CDE ∠=( )A.40°B.45°C.25°D.20°【答案】C【解析】∵AB=AC,AD=AE,∴∠B=∠C,∠ADE=∠AED,∵∠EDC+∠C=∠AED,∠ADE=∠AED,∴∠C+∠EDC=∠ADE,又∵∠B+∠BAD=∠ADC,∴∠B+50°=∠C+∠EDC+∠EDC,∵∠B=∠C.∴2∠EDC=50°,∴∠EDC=25°.故选:C.8.一个等腰三角形的周长为40 cm,以一边为边作等边三角形,这个等边三角形周长为45 cm,那么这个等腰三角形的底边长为()A.15 cm B.10 cmC.30 cm或10 cm D.15 cm或10 cm【答案】D【解析】解:∵等边三角形周长为45cm,∴其边长为15cm,即等腰三角形的一边为15cm,则:若该边为腰长,则底边为:40-2×15=10cm,若该边为底边,则腰长为:(40-15)÷2=12.5,∴等腰三角形的底边为15cm,10cm.故选:D.9.如图,在△ABC中,∠BAC=90°,AB=3,AC=4,BC=5,EF垂直平分BC,点P为直线EF上的任一点,则AP+BP的最小值是()A.5 B.4 C.3 D.7【答案】B【解析】解:连接PC.∵EF是BC的垂直平分线,∴BP=PC.∴PA+BP=AP+PC.∴当点A,P,C在一条直线上时,PA+BP有最小值,最小值=AC=4.故选:B.10.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点若点D为BC边的中点,点M为线段EF上一动点,则△周长的最小值为A.6 B.8 C.10 D.12【答案】C【解析】连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=16,解得AD=8,∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+BC=8+×4=8+2=10.故选:C.11.如图,在正方形ABCD(四个边相等,四个角为直角)中,E,F分别为AD,BC的中点,P为对角线BD上的一个动点,则下列线段的长等于AP+EP最小值的是( )A.AB B.DE C.AF D.BD【答案】C【解析】如图,连接CP,由AD=CD,∠ADP=∠CDP=45°,DP=DP,可得△ADP≌△CDP,∴AP=CP,∴AP+PE=CP+PE,∴当点E,P,C在同一直线上时,AP+PE的最小值为CE长,此时,由AB=CD,∠ABF=∠CDE,BF=DE,可得△ABF≌△CDE,∴AF=CE,∴AP+EP最小值等于线段AF的长,故选:C.12.如图,在△ABC中,AB=AC,∠B=40°,D为BC上一点,DE∥AC交AB于E,则∠BED等于_____度【答案】100【解析】∵AB=AC,∠B=40°,∴∠C=40°,∴∠A=180°-40°-40°=100°,∵DE∥AC,∴∠BED=∠A=100°,故答案为:100.13.如图,在△ABC中,AB=AC,AB的垂直平分线DE交CA的延长线于点E,垂足为D,∠CBE=69°.则∠C=________°.【答案】23°【解析】解:设∠C的度数为x,∵AB=AC,∴∠ABC=∠C=x,∠EAB=2x,∵ED为线段AB的垂直平分线,∴∠EBA=∠EAB=2x,∵∠CBE的度数为69°,∴2x+x=69°,∴∠C=x=23°.14.如图,在四边形中,∠BAD=108°,∠B=∠D=90°,在上分别找一点,使的周长最小,此时的度数为__________°.【答案】144【解析】作A 关于BC 和CD 的对称点A′,A″,连接A′A″,交BC 于M ,交CD 于N ,则A′A″即为△AMN 的周长最小值.作DA 延长线AH ,∵∠DAB=100°, ∴∠HAA′=80°,∴∠AA′M+∠A″=∠HAA′=80°,∵∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN ,∠NAD+∠A″=∠ANM , ∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×80°=160° 15.如图,点,D E 分别在等边ABC △的边,AC BC 上,BD 与AE 交于点P ,ABD CAE ∠=∠,BF AE ⊥,10AE =,2DP =,求PF 的长度.【答案】4【解析】解:∵等边△ABC ,∴AB=AC ,∠C=∠BAD=∠ABC=60°, 又∵∠ABD=∠CAE , ∴△BAD ≌△ACE∴BD=AE=10,∵PD=2,∴BP=10-2=8,∵∠BPF=∠ABP+∠BAP=∠CAE+∠BAP=∠SAC=60°,又∵BF⊥AE,∴∠PBF=90°-60°=30°,在Rt△BPF中,PF=12BP=4,答:PF的长为4.16.如图所示,在△ABC中,∠B=90°,AB=BC,BD=CE,M是AC边的中点,求证△DEM是等腰三角形.【答案】详见解析【解析】证明:连接BM,∵AB=BC,AM=MC,∴BM⊥AC,且∠ABM=∠CBM=12∠ABC=45°,∵AB=BC,所以∠A=∠C=1802ABC︒-∠=45°,∴∠A=∠ABM,所以AM=BM,∵BD=CE,AB=BC,∴AB-BD=BC-CE,即AD=BE,在△ADM 和△BEM 中,,45,,AD BE A EBM AM BM =⎧⎪∠=∠=︒⎨⎪=⎩∴△ADM ≌△BEM (SAS ), ∴DM =EM ,∴△DEM 是等腰三角形.17.尺规作图:(不要求写作法,只保留作图痕迹)如图,工厂A 和工厂B ,位于两条公路OC 、OD 之间的地带,现要建一座货物中转站P .若要求中转站P 到两条公路OC 、OD 的距离相等,且到工厂A 和工厂B 的距离之和最短,请用尺规作出P 的位置.【答案】详见解析.【解析】解:如图所示:点P 即为所求.18.如图,ABC ∠的平分线BF 与ACG ∠的平分线CF 相交于点F ,过点F 作//DE BC 交AB 与点D ,交AC 于点E ,若8BD =,3DE =,求CE 的长.【答案】CE 的长为5.【解析】∵BF 、CF 分别平分∠ABC 、∠ACB 的外角, ∴∠DBF=∠CBF ,∠FCE=∠FCG , ∵DE ∥BC ,∴∠DFB=∠CBF ,∠EFC=∠FCG ,∴∠DBF=∠DFB ,∠FCE=∠EFC , ∴BD=FD ,EF=CE , ∴BD-CE=FD-EF=DE , ∴EF=DF-DE=BD-DE=8-3=5, ∴EC=5.19.作图题.如图,小河边有两个村庄A 、B ,要在河边建一自来水厂P ,向A 村B 村供水. (1)若要使厂部到A 、B 两村的距离相等,则厂部P 应选在哪里?在图①中画出;(2)若要使厂部到A 、B 两村的输水管长度之和最小,则厂部P 应选在什么地方?在图②中画出.(保留作图痕迹,不写作法,但要写结论)【答案】(1)见解析;(2)见解析【解析】解:(1)如图①所示:点C 即为所求; (2)如图②所示:点C 即为所求..20.如图,ABC △中,90ACB ∠=,以AC 为边在ABC △外作等边三角形ACD ,过点D 作AC 的垂线,垂足为F ,与AB 相交于点E ,连接CE .(1)说明:AE CE BE ==;(2)若DA AB ⊥,6BC =,P 是直线DE 上的一点.则当P 在何处时,PB PC +最小,并求此时PB PC +的值.【答案】(1)证明见解析;(2)点P 在点E 处时PB+PC 最小,最小值为12cm. 【解析】∵DF ⊥AC ,△ACD 是等边三角形, ∴DF 垂直平分AC , ∴AE=CE , ∴∠ACE=∠CAE , ∵∠ACB=90°,∴∠ACE+∠BCE=∠CAE+∠B=90°, ∴∠BCE=∠B , ∴CE=BE , ∴AE=CE=BE ;(2)∵DA ⊥AB ,∠DAC=60°, ∴∠BAC=30°, ∵∠ACB=90°,BC=6, ∴AB=2BC=12,由(1)知,DE 垂直平分AC , ∴PC=PA , ∴PB+PC=PB+PA ;∴当PB+PC 最小时,即PB+PA 最小, ∵点P 、B 、A 在同一直线上时,PB+PA 最小, ∴点P 在点E 处时PB+PA 最小.即PB+PC 最小, 当点P 在E 处时,PB+PC=BE+CE=BE+AE=AB=12cm .21.如图(1),在Rt ABC ∆中,090ACB ∠=,030A ∠=,P 为BC 边上任意一点,Q 为AC 边一动点,分别以,CP PQ 为边作等边三角形PCF 和等边三角形PQE ,连接EF .(1)试探索EF 与AB 的位置关系,并证明;(2)如图(2)当P 为BC 延长线上任意一点时,(1)中的结论是否成立?请说明理由;(3)如图(3)在Rt ABC ∆中,090ACB ∠=,0A n ∠=,P 为BC 延长线上一点,Q 为AC 边一动点,分别以,CP PQ 为边作等腰三角形PCF 和等腰三角形PQE ,使得,PC PF PQ PE ==,连接EF .要使(1)中的结论依然成立,还需要添加怎样的条件?为什么?【答案】(1)EF AB ⊥,见解析;(2)成立,EF AB ⊥,见解析;(3)要使(1)中的结论依然成立,还需要添加的条件是CPF EPQ B ∠=∠=∠,见解析. 【解析】(1)EF AB ⊥,证明如下: ∵PCF ∆和PQE ∆都是等边三角形,∴,,60PC PF PQ PE CPF EPQ ==∠=∠=︒, ∴CPQ QPF EPF QPF ∠+∠=∠+∠, ∴CPQ EPF ∠=∠ 在PCQ ∆和PFE ∆中PC PF CPQ EPF PQ PE =⎧⎪∠=∠⎨⎪=⎩∴PCQ PFE ∆≅∆, ∴PCQ PFE ∠=∠, ∵90ACB ∠=︒,∴90PFE PCQ ∠=∠=︒, ∴PF FE ⊥,∵60CPF ∠=︒,30A ∠=︒, ∴60B ∠=︒, ∴B CPF ∠=∠, ∴//PF AB , ∴EF AB ⊥(2)成立,EF AB ⊥,理由如下: ∵PCF ∆和PQE ∆都是等边三角形,∴,,60PC PF PQ PE CPF EPQ ==∠=∠=︒, ∴CPQ CPE EPF CPE ∠+∠=∠+∠, ∴CPQ EPF ∠=∠, 在PCQ ∆和PFE ∆中PC PF CPQ EPF PQ PE =⎧⎪∠=∠⎨⎪=⎩∴PCQ PFE ∆≅∆ ∴PCQ PFE ∠=∠, ∵90ACB ∠=︒, ∴90PCQ ∠=︒,∴90PFE PCQ ∠=∠=︒, ∴PF FE ⊥,∵60CPF ∠=︒,30A ∠=︒, ∴60B ∠=︒, ∴B CPF ∠=∠, ∴//PF AB , ∴EF AB ⊥.(3)要使(1)中的结论依然成立,还需要添加的条件是CPF EPQ B ∠=∠=∠,理由如下: ∵,,PC PF PQ PE CPF EPQ ==∠=∠,21 ∴CPF CPE EPQ CPE ∠+∠=∠+∠, ∴CPQ EPF ∠=∠,∴PCQ PFE ∆≅∆,∴PCQ PFE ∠=∠,∵90ACB ∠=︒,∴90PCQ ∠=︒,∴90PFE PCQ ∠=∠=︒,∴PF FE ⊥,又∵CPF B ∠=∠,∴//PF AB ,∴EF AB ⊥.。

2020年人教版 八年级数学上册课时作业本 轴对称与等腰三角形-等腰三角形解答题专练(含答案)

2020年人教版 八年级数学上册课时作业本 轴对称与等腰三角形-等腰三角形解答题专练(含答案)

人教版2020年八年级数学上册课时作业本轴对称与等腰三角形-等腰三角形解答题专练1.如图,△ABC中,AB=AC=5,AB的垂直平分线DE交AB、AC于E、D,(1)若△BCD的周长为8,求BC的长;(2)若∠ABD:∠DBC=1:1,求∠A的度数.2.如图,在△ABC中,已知点D在线段AB的反向延长线上,过AC的中点F作线段GE交∠DAC的平分线于E,交BC于G,且AE∥BC.(1)求证:△ABC是等腰三角形;(2)若AE=8cm,AB=10cm,GC=2BGcm,求△ABC的周长.3.如图,△ACB和△ADE均为等边三角形,点C、E、D在同一直线上,连接BD,试猜想线段CE、BD之间的数量关系,并说明理由.4.如图,在△ABC中,AC=DC=DB,∠ACD=100°,求∠B的度数.5.如图,在△ABC中,AB=AC,D为BC上一点,∠B=30°,连接AD.(1)若∠BAD=45°,求证:△ACD为等腰三角形;(2)若△ACD为直角三角形,求∠BAD的度数.6.如图,在△ABC中,已知点D在线段AB的反向延长线上,过AC的中点F作线段GE交∠DAC的平分线于E,交BC于G,且AE∥BC.(1)求证:△ABC是等腰三角形;(2)若AE=8,AB=10,GC=2BG,求△ABC的周长.7.如图,已知△ABC中,AB=AC,∠BAC=90°,分别过B、C向过点A的直线作垂线,垂足分别为点E、F.(1)如图(1),过A的直线与斜边BC不相交时,求证:①△ABE≌△CAF;②EF=BE+CF (2)如图(2),过A的直线与斜边BC相交时,其他条件不变,若BE=10,CF=3,试求EF的长.8.如图:AD为△ABC的高,∠B=2∠C,用轴对称图形说明:CD=AB+BD.9.如图,已知ΔABC中,∠ACB=90°,CD⊥AB于D,BF平分∠ABC交CD于E,交AC于F.求证:CE=CF.10.已知,如图①,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=50°(1)求证:①AC=BD;②∠APB=50°;(2)如图②,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=α,则AC与BD间的等量关系为,∠APB的大小为11.如图,在△ABC中,∠C=90°,AC=BC,∠BAC的平分线AE交BC于点D,且AE⊥BE.(1)求∠DBE的大小;(2)求证:AD=2BE.12.如图,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥DF,交AB于点E,连结EG、EF.(1)求证:BG=CF;(2)请你判断BE+CF与EF的大小关系,并说明理由.13.在△ABC中,AB=AC.(1)如图1,如果∠BAD=30°,AD是BC上的高,AD=AE,则∠EDC=(2)如图2,如果∠BAD=40°,AD是BC上的高,AD=AE,则∠EDC=(3)思考:通过以上两题,你发现∠BAD与∠EDC之间有什么关系?请用式子表示:(4)如图3,如果AD不是BC上的高,AD=AE,是否仍有上述关系?如有,请你写出来,并说明理由.14.如图,已知△ABC中,AB=AC=12cm,BC=9cm,点D为AB的中点.(1)如果点P在线段BC上以3cm/s的速度由点B向点C运动,同时点Q在线段CA上由点C向点A运动.①若点P的运动速度与点Q的运动速度相等,1秒钟时,△BPD与△CQP是否全等,请说明理由?②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以(1)②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC的三边运动,直接写出经过多长时间点P与点Q第一次相遇.参考答案1.①3,②36°2.(1)证明略;(2)32cm;3.解:CE=BD,理由:∵△ACB和△ADE均为等边三角形,∴AD=AE,AB=AC,∠DAE=∠BAC=60°,∴∠DAE﹣∠BAE=∠BAC﹣∠BAE,∴∠DAB=∠EAC.在△ADB和△AEC中,,∴△ADB≌△AEC(SAS),∴CE=BD.4.解:∵AC=DC=DB,∠ACD=100°,∴∠CAD=(180°﹣100°)÷2=40°,∵∠CDB是△ACD的外角,∴∠CDB=∠A+∠ACD=100°=40°+100°=140°,∵DC=DB,∴∠B=(180°﹣140°)÷2=20°.5.解:(1)证明:∵AB=AC,∠B=30°,∴∠B=∠C=30°,∴∠BAC=180°﹣30°﹣30°=120°,∵∠BAD=45°,∴∠CAD=∠BAC﹣∠BAD=120°﹣45°=75°,∠ADC=∠B+∠BAD=75°,∴∠ADC=∠CAD,∴AC=CD,即△ACD为等腰三角形;(2)解:有两种情况:①当∠ADC=90°时,∵∠B=30°,∴∠BAD=∠ADC﹣∠B=90°﹣30°=60°;②当∠CAD=90°时,∠BAD=∠BAC﹣∠CAD=120°﹣90°=30°;即∠BAD的度数是60°或30°.6.7.(1)证明:①∵BE⊥EF,CF⊥EF,∴∠AEB=∠CFA=90°,∴∠EAB+∠EBA=90°,∵∠BAC=90°,∴∠EAB+∠FAC=90°,∴∠EBA=∠FAC,在△AEB与△CFA中∴△ABE≌△CAF(AAS),②∵△ABE≌△CAF,∴EA=FC,EB=FA,∴EF=AF+AE=BE+CF;(2)解:∵BE⊥AF,CF⊥AF∴∠AEB=∠CFA=90°∴∠EAB+∠EBA=90°∵∠BAC=90°∴∠EAB+∠FAC=90°∴∠EBA=∠FAC,在△AEB与△CFA中∴△ABE≌△CAF(AAS),∴EA=FC,EB=FA,∴EF=FA﹣EA=EB﹣FC=10﹣3=7.8.证明:在CD上取一点E使DE=BD,连接AE.∵BD=DE,且∠AED为△AEC的外角,∠B=2∠C,∴∠B=∠AED=∠C+∠EAC=2∠C,9.证明:∵∠ACB=90°,CD⊥AB∴∠CBF+∠CFB=∠DBE+∠DEB=90°∵BF平分∠ABC∴∠CBF=∠DBE∵∠CBF+∠CFB=∠DBE+∠DEB∴∠CFB=∠DEB∵∠FEC=∠DEB∴∠CFB=∠FEC∴CE=CF10.证明:(1)∵∠AOB=∠COD=50°,∴∠AOC=∠BOD,在△AOC和△BOD中,∴△AOC≌△BOD,∴AC=BD,∠CAO=∠DBO,根据三角形内角和可知∠CAO+∠AOB=∠DBO+∠APB,∴∠APB=∠AOB=50°.(2)解:AC=BD,∠APB=α,理由是:)∵∠AOB=∠COD=50°,∴∠AOC=∠BOD,在△AOC和△BOD中,∴△AOC≌△BOD,∴AC=BD,∠CAO=∠DBO,根据三角形内角和可知∠CAO+∠AOB=∠DBO+∠APB,∴∠APB=∠AOB=α,故答案为:AC=BD,α.11.解:(1)∵∠C=90°,AC=BC,∴∠BAC=45°,∵AE是∠BAC的平分线,∴∠CAD=∠BAC=22.5°,∵AE⊥BE,∴∠BED=90°,∴∠ACD=∠BED=90°,∵∠ADC=∠BDE,∴∠DBE=∠CAD=22.5°.(2)延长AC、BE交于点G.∵AE⊥BG,∴∠AEB=∠AEG=90°,在△AEB和△AEG中,,∴△AEB≌△AEG,∴BE=EG,在△ACD和△BCG中,,∴△ACD≌△BCG,∴AD=BG=2BE,∴AD=2BE.12.解:(1)∵BG∥AC,∴∠DBG=∠DCF.∵D为BC的中点,∴BD=CD 又∵∠BDG=∠CDF,在△BGD与△CFD中,∵∴△BGD≌△CFD(ASA).∴BG=CF.(2)BE+CF>EF.∵△BGD≌△CFD,∴GD=FD,BG=CF.又∵DE⊥FG,∴EG=EF(垂直平分线到线段端点的距离相等).∴在△EBG中,BE+BG>EG,即BE+CF>EF.word版初中数学13.解:(1)∵在△ABC中,AB=AC,AD是BC上的高,∴∠BAD=∠CAD,∵∠BAD=30°,∴∠BAD=∠CAD=30°,∵AD=AE,∴∠ADE=∠AED=75°,∴∠EDC=15°.(2)∵在△ABC中,AB=AC,AD是BC上的高,∴∠BAD=∠CAD,∵∠BAD=40°,∴∠BAD=∠CAD=40°,∵AD=AE,∴∠ADE=∠AED=70°,∴∠EDC=20°.(3)∠BAD=2∠EDC(或∠EDC=0.5∠BAD)(4)仍成立,理由如下∵AD=AE,∴∠ADE=∠AED,∴∠BAD+∠B=∠ADC=∠ADE+∠EDC=∠AED+∠EDC=(∠EDC+∠C)+∠EDC=2∠EDC+∠C又∵AB=AC,∴∠B=∠C∴∠BAD=2∠EDC.故分别填15°,20°,∠EDC=0.5∠BAD14.答案为:(1)全等;(2)全等;(3)24秒.11 / 11。

北师大版八年级下册数学等腰三角形专项训练(原创)

北师大版八年级下册数学等腰三角形专项训练(原创)

北师大版八年级下册数学等腰三角形专项训练(原创) 学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,等腰三角形ABC 中,,AB AC =延长BC 至点,D 恰好使得,CA CD =若84BAD ∠=︒,则B 为( )A .32B .48C .52D .64 2.如图,AD ,CE 分别是△ABC 的中线和角平分线.若AB=AC ,∠CAD=20°,则∠ACE 的度数是( )A .20°B .35°C .40°D .70° 3.一个等腰三角形的三边长分别为21x -、1x +、32x -,该等腰三角形的周长是( ) A .10或4 B .10或7 C .4或7 D .10或4或7 4.若等腰三角形的一个内角为80°,则这个等腰三角形的底角为( )A .80°B .50°C .80°或50°D .80°或20° 5.如图,在Rt △ABC 中,∠ACB=90°,AB=2BC ,在直线BC 或AC 上取一点P ,使得△PAB 为等腰三角形,则符合条件的点P 共有( )A .4个B .5个C .6个D .7个6.已知等腰三角形的两边长x ,y 满足2|4|(8)0x y -+-=,则这个等腰三角形的周长为( )A .16B .20C .16或20D .以上都不对 7.如图,已知 AB =AC =BD ,则∠1与∠2的关系是( )A .3∠1﹣∠2=180°B .2∠1+∠2=180°C .∠1+3∠2=180°D .∠1=2∠28.如图,在△ABC 中,AB =AC ,∠A =36°,BD 、CE 分别是∠ABC 、∠BCD 的平分线,则图中的等腰三角形有( )A .5个B .4个C .3个D .2个9.如图,在△ABC 中,∠B =45°,∠ACB =60°,AB =16,AD ⊥BC ,垂足为D ,∠ACB 的平分线交AD 于点E ,则AE 的长为( )A B . C .163 D .二、填空题10.有两边相等的三角形的一边是7,另一边是4,则此三角形的周长是_____. 11.等腰三角形的一个底角为50︒,则它的顶角的度数为__________.12.有一个顶角为30°的等腰三角形,若腰长为4,则腰上的高是________13.在Rt ABC ∆中,90C ∠=︒,30A ∠=︒,32BC =,AB =_______.14.已知直角三角形中30°角所对的直角边为2cm ,则斜边的长度为_______cm . 15.在ABC 中,AB AC =,60A ∠=︒,6BC =,则AB =____.三、解答题16.已知:如图,AB AC =,DE AC ,求证:DBE 是等腰三角形.17.已知:如图,在梯形ABCD 中,//CD AB ,AD BC =,E 是AB 上一点,且AE CD =,60B ∠=,求证:EBC ∆是等边三角形.18.如图,在ABC 中,90ACB ∠=︒,AC BC =,点D 在AB 边上,AD AC =,过点B 作BE CD ⊥,交CD 的延长线于点E .(1)求BCD ∠的度数;(2)求证:2CD BE =.19.如图,以平行四边形ABCD 的边DC BC 、分别做等边BCE ∆和等边CDF ∆. (1)求证:AE AF =;(2)求EAF ∠的度数.20.已知:如图,点B,C,D在同一直线上,△ABC和△CDE都是等边三角形,BE交AC于点F,AD交CE于点H,(1)求证:△BCE≌△ACD;(2)求证:CF=CH;(3)判断△CFH的形状并说明理由.21.如图,△ABC中,∠ABC=∠ACB,点D在BC所在的直线上,点E在射线AC上,且AD=AE,连接DE.⑴如图①,若∠B=∠C=35°,∠BAD=80°,求∠CDE的度数;⑵如图②,若∠ABC=∠ACB=75°,∠CDE=18°,求∠BAD的度数;⑶当点D在直线BC上(不与点B、C重合)运动时,试探究∠BAD与∠CDE的数量关系,并说明理由.参考答案1.D【来源】重庆市西南大学附中2018-2019学年七年级下学期期末数学试题【解析】【分析】根据等边对等角可得CAD D ∠=∠,再通过三角形外角的性质可得2ACB CAD D D =+=∠∠∠∠,再根据等边对等角可得2B ACB D ==∠∠∠,再根据三角形内角和定理求出32D ∠=︒,即可求出B 的度数.【详解】∵CA CD =∴CAD D ∠=∠∴2ACB CAD D D =+=∠∠∠∠∵AB AC =∴2B ACB D ==∠∠∠∵84BAD ∠=︒∴180180284BAD B D D D ∠=︒--=︒--=︒∠∠∠∠∴32D ∠=︒∴264B D ==︒∠∠故答案为:D .【点睛】本题考查了三角形内角的度数问题,掌握等边对等角、三角形外角的性质、三角形内角和定理是解题的关键.2.B【来源】浙江省湖州市2018年中考数学试题【解析】【分析】先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=12(180°-∠CAB )=70°.再利用角平分线定义即可得出∠ACE=12∠ACB=35°. 【详解】∵AD 是△ABC 的中线,AB=AC ,∠CAD=20°, ∴∠CAB=2∠CAD=40°,∠B=∠ACB=12(180°-∠CAB )=70°. ∵CE 是△ABC 的角平分线,∴∠ACE=12∠ACB=35°. 故选B .【点睛】本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.3.B【来源】湖南省长沙市湘郡培粹实验中学2019-2020学年八年级上学期10月月考数学试题【解析】【分析】三边的长度都不清楚,所以需要讨论三种情况,然后找出能组成三角形的组合,算出答案.【详解】解:若21x -=1x +,则x=2,则三边为3,3,4,符合条件,周长为10;若21x -=32x -,则x=1,则三边为1,1,2 无法构成三角形.若1x +=32x -,则x=32,则三边为52,52,2,符合条件,周长为7; 综上该等腰三角形的周长为10或7.【点睛】求三角形的周长一定要注意三边能否构成三角形.4.C【来源】【区级联考】山东省枣庄市薛城区2018-2019学年八年级第二学期期中考试数学试题【解析】【分析】利用等腰三角形的性质,分两种情况解答本题即可得到答案.【详解】①当80°为顶角时,底角=()18080250︒︒︒-÷=,②当80°为底角时,底角为80°,∴底角为 80°或50°,故选C.【点睛】本题考查等腰三角形的性质,以及分类讨论思想.分两种情况讨论是解答本题的关键. 5.C【来源】2014-2015学年四川省自贡赵化中学八年级上学期第三次段考数学试卷(带解析)【解析】【分析】根据等腰三角形的判定,“在同一三角形中,有两条边相等的三角形是等腰三角形(简称:在同一三角形中,等边对等角)”分三种情况解答即可.【详解】解:如图,①AB 的垂直平分线交AC 一点P 1(PA=PB ),交直线BC 于点P 2;②以A 为圆心,AB 为半径画圆,交AC 有二点P 3,P 4,交BC 有一点P 2,(此时AB=AP ); ③以B 为圆心,BA 为半径画圆,交BC 有二点P 5,P 2,交AC 有一点P 6(此时BP=BA ). 2+(3-1)+(3-1)=6,∴符合条件的点有六个.故选C .6.B【来源】山西省运城市芮城县2018-2019学年七年级下学期期末数学试题【解析】【分析】先根据非负数的性质列式求出x、y的值,再分4是腰长与底边两种情况讨论求解.【详解】根据题意得,x−4=0,y−8=0,解得x=4,y=8,①4是腰长时,三角形的三边分别为4、4、8,∵4+4=8,∴不能组成三角形;②4是底边时,三角形的三边分别为4、8、8,能组成三角形,周长=4+8+8=20.所以,三角形的周长为20.故选:B.【点睛】本题考查了等腰三角形的性质,绝对值非负数,平方非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0求出x、y的值是解题的关键,难点在于要分情况讨论并且利用三角形的三边关系进行判断.7.A【来源】湖北省武汉市洪山区2018-2019学年八年级上学期期中调研考试数学试卷(word)【解析】【分析】根据等腰三角形的性质和三角形内角和定理可得∠1 和∠C 之间的关系,再根据三角形外角的性质可得∠1 和∠2 之间的关系.【详解】解:∵AB=AC=BD,∴∠B=∠C=180°﹣2∠1,∴∠1﹣∠2=180°﹣2∠1,∴3∠1﹣∠2=180°.故选A.【点睛】本题考查等腰三角形的性质:等腰三角形的两个底角相等,三角形内角和定理以及三角形外角的性质;熟练掌握等腰三角形的性质,弄清角之间的数量关系是解决问题的关键,本题难度适中.8.A【来源】山东省德州市武城县实验中学2019-2020学年八年级上学期期中数学试题【解析】【分析】由等边对等角可求出∠ABC=∠ACB=72°,再根据角平分线与三角形外角性质求出图中其余角度,在图中标注出角度,根据相等的角找出等腰三角形即可得解.【详解】∵在△ABC 中,AB =AC ,∠A =36°∴∠ABC=∠ACB=()1180A 2-∠=72° ∵BD 、CE 分别是∠ABC 、∠BCD 的平分线∴∠ABD=∠CBD=12∠ABC=36°,∠ACE=∠BCE=12∠ACB=36° ∴∠CDE=∠A+∠ABD=72°,∠CED=∠BCE+∠CBD=72°,在图中标注如下:等腰三角形有:△ABC ,△ABD ,△BCE ,△CDE ,△BCD ,总共5个,故选A.【点睛】本题考查等腰三角形的判断,根据三角形内角和与外角性质求出角度是关键.9.C【来源】广东省汕头市潮南区两英镇2018-2019学年八年级期末数学试题【解析】【分析】在Rt △ABD 中,利用等腰直角三角形的性质列方程求解可求出AD 和BD 的长度,在Rt △ADC 中;根据直角三角形中30度角所对的直角边是斜边的一半的性质可列方程解出CD ,同理可得DE 的长度,再利用AE=AD −DE 即可求出AE 的长度.【详解】解:∵AD ⊥BC ,∴∠ADB =∠ADC =90°,即△ABD 、△ADC 和△CDE 为直角三角形,在Rt △ABD 中,∵∠ADB =90°,AB =16,∠B =45°,∴∠B=∠BAD =45°,则AD =BD ,设AD =BD=x ,由勾股定理得:22216+=x x ,解得:=x AD =BD=在Rt △ADC 中,∵∠ADC =90°,∠ACD =60°,AD =∴∠CAD =30°,则12CD AC =, 设CD =x ,则AC =2x ,由勾股定理得:222(2)+=x x ,解得:3=x ,即CD 3=, ∵CE 平分∠ACD ,∴∠ECD =30°,在Rt △CDE 中,同理得:DE =,∴AE =AD ﹣DE =3=3=, 故选:C .【点睛】 本题主要考查了勾股定理、等腰直角三角形的性质和直角三角形中30度角所对的直角边是斜边的一半,根据勾股定理构造方程是解题的关键.10.15或18【来源】北京交大附中2018-2019学年七年级下学期期末数学试题【解析】【分析】有两边相等的三角形是等腰三角形,由于不确定哪边是底,哪边是腰,故分两种情况讨论,并结合构成三角形的三边的关系,即可得解.【详解】若7为底,则三边为7,4,4,由于4+4>7,故可以构成三角形,周长为15;若4为底,则三边为4,7,7,也可以构成三角形,周长为18.故答案为:15或18.【点睛】本题考查等腰三角形的性质及三角形三边关系,分类讨论哪边为底哪边为腰是解题关键.11.80【来源】四川省成都市2018年中考数学试题【解析】分析:本题给出了一个底角为50°,利用等腰三角形的性质得另一底角的大小,然后利用三角形内角和可求顶角的大小.详解:∵等腰三角形底角相等,∴180°-50°×2=80°,∴顶角为80°.故答案为80°.点睛:本题考查等腰三角形的性质,即等边对等角.找出角之间的关系利用三角形内角和求角度是解答本题的关键.12.2【来源】上海市静安区实验中学九年级下学期沪教版五四制第一轮复习直角三角形【解析】【分析】根据等腰三角形和直角三角形的性质即可得到结论.【详解】如图,∵AC=AB=4,∠A=30°,∵BD⊥AC于D,∴∠ADB=90°,∴BD=12AB=2,故答案为2.【点睛】此题考查等腰三角形的性质和直角三角形的性质,熟练掌握等腰三角形的性质是解题的关键.13.3【来源】吉林省长春市东北师范大学附属中学2017-2018学年八年级下学期期末数学试题【解析】【分析】根据30°所对的直角边等于斜边的一半求解.【详解】解:∵∠C=90°,∠A=30°,BC=32,∴AB=2BC=3.故答案为:3.【点睛】本题考查含30°角的直角三角形的性质,熟练掌握直角三角形的性质是解题的关键.14.4【来源】福建省平潭县2018-2019学年八年级上学期期中数学试题【解析】【分析】在直角三角形中,30°角所对的直角边为斜边的一半,据此进一步求解即可.【详解】∵在直角三角形中,30°角所对的直角边为斜边的一半,且该直角边长为2cm,∴该直角三角形斜边长度为4cm,故答案为:4.【点睛】本题主要考查了直角三角形性质,熟练掌握相关概念是解题关键.15.6【来源】吉林省名校2019-2020学年八年级上学期期中调研A数学试题【解析】【分析】根据等边三角形的判定与性质即可得.【详解】=AB AC∴是等腰三角形ABC∠=︒A60∴等腰ABC是等边三角形∴==AB BC6故答案为:6.【点睛】本题考查了等边三角形的判定与性质,掌握等边三角形的判定与性质是解题关键.16.见解析【来源】北京市第一六六中学2017-2018学年八年级上学期期中考试数学试题【解析】试题分析:根据等角对等边即可证明.试题解析:=,证明:∵AB AC∠=∠,∴B C∵DE∥AC,∠=∠=∠,∴C ADE B=,∴DB DE∴DBE 为等腰三角形.17.见解析.【来源】安徽省宿州市萧县2018-2019学年八年级下学期期末数学试题【解析】【分析】由已知条件证得四边形AECD 是平行四边形,则CE=AD ,从而得出CE=CB ,然后根据有一个角是60°的等腰三角形是等边三角形即可证得结论.【详解】证明://CD AB ,AE CD =,∴四边形AECD 是平行四边形,CE AD ∴=,AD BC =,BC EC ∴=60B ∠=,BEC ∴∆是等边三角形.【点睛】本题考查了等腰梯形的性质,等边三角形的判定,平行四边形的判定和性质,熟练掌握各定理是解题的关键.18.(1)22.5︒;(2)见解析【来源】广西壮族自治区贵港市覃塘区2018-2019学年八年级下学期期中数学试题【解析】【分析】(1)根据等腰三角形的性质以及三角形的内角和定理求解即可;(2)过点作AF CD ⊥于点F ,得出122.52CAF BAC ∠=∠=︒,因此,22.5BCE CAF ∠=∠=︒,再证明BCE CAF ≌△△,推出BE CF =,然后即可证明结论. 【详解】解:(1)∵90ACB ∠=︒,AC BC =,∴45BAC ABC ∠=∠=︒,∵AD AC =, ∴()11804567.52ACD ADC ︒︒∠=∠=⨯-=︒, ∴9067.522.5BCD ACB ACD ∠=∠-∠=︒-︒=︒.(2)证明:如图,过点作AF CD ⊥于点F .∵AD AC =,45BAC ∠=︒, ∴122.52CAF BAC ∠=∠=︒, ∴22.5BCE CAF ∠=∠=︒,又BE CD ⊥,∴90AFC BEC ∠=∠=︒,∵BC AC =,∴BCE CAF ≌△△,∴BE CF =, 又12CF DF CD ==, ∴2CD BE =.【点睛】本题考查的知识点是三角形的内角和定理,角平分线的性质,全等三角形的判定及性质,根据图形找准各角之间的数量关系是解此题的关键.19.(1)见解析(2)60°【来源】河南省洛阳市高新区三山学校2018-2019学年八年级下学期期中数学试题【解析】【分析】(1)根据平行四边形的性质得出AB=CD ,BC=AD ,∠ABC=∠ADC ,根据等边三角形的性质得出DC=DF ,BC=BE ,∠EBC=∠CDF=60°,求出AB=DF ,BE=DA ,∠ABE=∠FDA ,根据SAS 推出△ABE ≌△FDA 即可.(2)连结EF ,设∠ABC=α,则∠BCD=180°-α,通过图形上角的关系,用α表示出∠FCE ,∠ABE 即可得到关键条件∠ABE=∠FCE ,再用同(1)的方法证明△ABE ≌△FCE ,得到EF=AE ,进一步得到AE=AF=EF ,△AEF 为等边三角形求得EAF ∠=60°. 【详解】解:(1)证明:∵四边形ABCD 是平行四边形,∴AB=CD ,BC=AD ,∠ABC=∠ADC ,∵△BCE 和△CDF 为等边三角形,∴DC=DF ,BC=BE ,∠EBC=∠CDF=60°,∴AB=DF ,BE=DA ,∠ABE=∠FDA ,在△ABE 和△FDA 中AB DF ABE FDA BE AD =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△FDA (SAS ),∴AE=AF .(2)连结EF ,设∠ABC=α,∵四边形ABCD 是平行四边形,∴∠BCD=180°-α, ∴∠FCE=360°-∠BCE-∠DCF-∠BC,D=360°-60°-60°-(180°-α)= 60°+α, 而∠ABE=∠CBE+∠ABC=60°+α,∴∠ABE=∠FCE ,又∵△BCE 和△CDF 为等边三角形,∴EC=BE ,CF=CD ,∵四边形ABCD 是平行四边形,∴AB=CD ,∴CF=AB ,在△ABE 和△FCE 中AB CF ABE FCE BC EC =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△FCE(SAS),∴EF=AE,∴AE=AF=EF,∴△AEF 为等边三角形,∴EAF ∠=60°【点睛】本题考查了平行四边形的性质,全等三角形的性质和判定,等边三角形的性质的应用,能综合运用定理进行推理是解此题的关键.20.①证明见解析②证明△BCF≌△ACH;③△CFH 是等边三角形【来源】人教版八年级上册数学第13章13.3.2《等边三角形》【同步练习】【解析】试题分析:①利用等边三角形的性质得出条件,可证明:△BCE ≌△ACD ;②利用△BCE ≌△ACD 得出∠CBF=∠CAH ,再运用平角定义得出∠BCF=∠ACH 进而得出△BCF ≌△ACH 因此CF=CH .③由CF=CH 和∠ACH=60°根据“有一个角是60°的三角形是等边三角形可得△CFH 是等边三角形.试题解析:①证明:∵∠BCA=∠DCE=60°,∴∠BCE=∠ACD .又BC=AC 、CE=CD ,∴△BCE ≌△ACD .②∵△BCE ≌△ACD ,∴∠CBF=∠CAH .∵∠ACB=∠DCE=60°,∴∠ACH=60°.∴∠BCF=∠ACH.又BC=AC,∴△BCF≌△ACH.∴CF=CH.③∵CF=CH,∠ACH=60°,∴△CFH是等边三角形.点睛:本题考查了三角形全等的判定和性质及等边三角形的性质;普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS.同时还要结合等边三角形的性质,创造条件证明三角形全等是正确解答本题的关键.21.(1)40°;(2)36°;(3)2∠CDE=∠BAD,理由见解析.【来源】湖北省孝感市八校联谊2017-2018学年八年级上12月联考数学试卷含答案【解析】【分析】(1)根据等腰三角形的性质得到∠BAC=110°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(2)根据三角形的外角的性质得到∠E=75°-18°=57°,根据等腰三角形的性质和三角形的外角的性质即可得到结论;(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β,分3种情况:①如图1,当点D在点B的左侧时,∠ADC=x°-α,②如图2,当点D在线段BC上时,∠ADC=y°+α,③如图3,当点D在点C右侧时,∠ADC=y°-α,根据这3种情况分别列方程组即,解方程组即可得到结论.【详解】解:(1)∵∠B=∠C=35°,∴∠BAC=110°,∵∠BAD=80°,∴∠DAE=30°,∵AD=AE,∴∠ADE=∠AED=75°,∴∠CDE=∠AED-∠C=75°−35°=40°;(2)∵∠ACB=75°,∠CDE=18°,∴∠E=75°−18°=57°,∴∠ADE=∠AED=57°,∴∠ADC=39°,∵∠ABC=∠ADB+∠DAB=75° ,∴∠BAD=36°.(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β①如图1,当点D 在点B 的左侧时,∠ADC=x°﹣α∴y x y x ααβ=+⎧⎨=-+⎩①② -②得,2α﹣β=0,∴2α=β;②如图2,当点D 在线段BC 上时,∠ADC=y°+α∴+y x y x ααβ=+⎧⎨=+⎩①② -①得,α=β﹣α,∴2α=β;③如图3,当点D 在点C 右侧时,∠ADC=y°﹣α∴180180y x y x αβα-++=⎧⎨++=⎩①② -①得,2α﹣β=0,∴2α=β.综上所述,∠BAD 与∠CDE 的数量关系是2∠CDE=∠BAD .【点睛】本题考查了等腰三角形的性质,三角形外角的性质,三角形的内角和,熟知三角形的外角等于与之不相邻的两个内角的和是解答此题的关键.。

2020-2021学年北师大版八年级下册数学 1.1等腰三角形 同步练习 (含解析)

2020-2021学年北师大版八年级下册数学 1.1等腰三角形 同步练习 (含解析)

1.1等腰三角形同步练习一.选择题1.已知等腰三角形的周长为17cm,一边长为4cm,则它的腰长为()A.4cm B.6.5cm C.6.5cm或9cm D.4cm或6.5cm 2.下列条件中,不能判定△ABC是等腰三角形的是()A.a=3,b=3,c=4B.a:b:c=2:3:4C.∠B=50°,∠C=80°D.∠A:∠B:∠C=1:1:23.在△ABC中,AB=AC,∠B=40°,则∠C的度数是()A.80°B.100°C.50°D.40°4.如图,∠B、∠C的平分线相交于F,过点F作DE∥BC,交AB于D,交AC于E,那么下列结论正确的是①△BDF、△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周长为AB+AC;④BD=CE.()A.③④B.①②C.①②③D.②③④5.如图,△ABC中,AC=BC,∠C=36°,BD平分∠ABC,则图中等腰三角形的个数为()A.4B.3C.2D.16.如图,在△ABC中,∠BAC=120°,AD平分∠BAC,DE∥AB,AD=3,CE=5,则AC 的长为()A.9B.8C.6D.77.如图,已知∠AOB=60°,点P在边OA上,OP=10,点M,N在边OB上,PM=PN,若NM=4,则OM的值()A.2B.3C.4D.58.如图,D为△ABC边上一点,连接CD,则下列推理过程中,因果关系与所填依据不符的是()A.∵AD=BD,∠ACD=∠BCD(已知)∴AC=BC(等腰三角形三线合一)B.∵AC=BC,AD=BD(已知)∴∠ACD=∠BCD(等腰三角形三线合一)C.∵AC=BC,∠ACD=∠BCD(已知)∴AD=BD(等腰三角形三线合一)D.∵AC=BC,AD=BD(已知)∴CD⊥AB(等腰三角形三线合一)9.如图,△ABC中,∠ACB=90°,∠CAB=60°,动点P在斜边AB所在的直线m上运动,连结PC,那点P在直线m上运动时,能使图中出现等腰三角形的点P的位置有()A.6个B.5个C.4个D.3个10.如图,在△ABC中,AB=AC,AD是边BC上的高,E,F是AD上的两点,且AE=EF=FD.若△ABC的面积为6cm2,则图中阴影部分的面积是()cm2.A.2B.3C.4.8D.5二.填空题11.在△ABC中,若∠A=66°,∠B=∠C,则∠B=.12.如图,在△ABC中,AB=BC,∠ABC=120°,D是AC边上的点,DA=DB=3,则AC的长为.13.如图,△ABC是等边三角形,AD⊥BC于点D,DE⊥AC于点E.若AD=12,则DE =;△EDC与△ABC的面积关系是:=.14.如图,∠ABC的平分线BF与△ABC中∠ACB的相邻外角∠ACG的平分线CF相交于点F,过F作DF∥BC,交AB于D,交AC于E,若BD=9cm,DE=4cm,求CE的长为cm.15.如图,已知∠AOB=α,在射线OA、OB上分别取点A1、B1,使OA1=OB1,连接A1B1,在A1B1、B1B上分别取点A2、B2,使B1B2=B1A2,连接A2B2,…,按此规律下去,记∠A2B1B2=θ1,∠A3B2B3=θ2,…,∠A n+1B n B n+1=θn,则θn=.(用含α的式子表示)三.解答题16.如图,在△ABC中,AB=AC,D是BC边上的中点,∠B=40°.求:(1)∠ADC的大小;(2)∠BAD的大小.17.如图,△ABC中,∠ABC=∠ACB,点D、E分别在AB、AC上,DE∥BC,BE,CD 交于点F.(1)求证:DC=EB;(2)在不添加任何辅助线的情况下,请直接写出图中所有的等腰三角形.18.如图,在△ABC中,AB=AC,M,N分别是AB,AC边上的点,并且MN∥BC.(1)△AMN是否是等腰三角形?说明理由;(2)点P是MN上的一点,并且BP平分∠ABC,CP平分∠ACB.①求证:△BPM是等腰三角形;②若△ABC的周长为a,BC=b(a>2b),求△AMN的周长(用含a,b的式子表示).参考答案一.选择题1.解:①若4cm是腰长,则底边长为:20﹣4﹣4=12(cm),∵4+4<12,不能组成三角形,舍去;②若4cm是底边长,则腰长为:=6.5(cm).则腰长为6.5cm.故选:B.2.解:A、∵a=3,b=3,c=4,∴a=b,∴△ABC是等腰三角形;B、∵a:b:c=2:3:4∴a≠b≠c,∴△ABC不是等腰三角形;C、∵∠B=50°,∠C=80°,∴∠A=180°﹣∠B﹣∠C=50°,∴∠A=∠B,∴AC=BC,∴△ABC是等腰三角形;D、∵∠A:∠B:∠C=1:1:2,∵∠A=∠B,∴AC=BC,∴△ABC是等腰三角形.故选:B.3.解:∵AB=AC,∴∠B=∠C,∵∠B=40°,∴∠C=40°.故选:D.4.解:∵DE∥BC,∴∠DFB=∠FBC,∠EFC=∠FCB,∵BF是∠ABC的平分线,CF是∠ACB的平分线,∴∠FBC=∠DFB,∠FCE=∠FCB,∵∠DBF=∠DFB,∠EFC=∠ECF,∴△DFB,△FEC都是等腰三角形.∴DF=DB,FE=EC,即有DE=DF+FE=DB+EC,∴△ADE的周长AD+AE+DE=AD+AE+DB+EC=AB+AC.故选:C.5.解:由图可知,∵AC=BC,∴△ABC为等腰三角形,∵∠C=36°,BD平分∠ABC,∴∠CBD=∠DBA=∠C=36°∴△CBD为等腰三角形,∵∠BDA=∠C+∠CBD=72°=∠A∴△BAD均为等腰三角形,∴图中三角形共有三个.故选:B.6.解:∵∠BAC=120°,AD平分∠BAC,∴∠BAD=∠CAD=BAC=60°,∵DE∥AB,∴∠BAD=∠ADE=60°,∠DEC=∠BAC=120°,∴∠AED=60°,∴∠ADE=∠AED,∴△ADE是等边三角形,∴AE=AD=3,∴AC=AE+CE=3+5=8,故选:B.7.解:过点P作PH⊥MN于H,∵PM=PN,∴MH=NH=MN=2,∵∠AOB=60°,∴∠OPH=30°,∵OP=10,∴OH=OP=5,∴OM=OH﹣MH=3,故选:B.8.解:A.∵AD=BD,∠ACD=∠BCD(已知),∴AC=BC(等腰三角形三线合一),条件没有等腰三角形,故因果关系与所填依据不符;B.∵AC=BC,AD=BD(已知),∴∠ACD=∠BCD(等腰三角形三线合一),因果关系与所填依据相符;C.∵AC=BC,∠ACD=∠BCD(已知),∴AD=BD(等腰三角形三线合一),因果关系与所填依据相符;D.∵AC=BC,AD=BD(已知),∴CD⊥AB(等腰三角形三线合一),因果关系与所填依据相符;故选:A.9.解:如图所示:以B为圆心,BC长为半径画弧,交直线m于点P4,P2,以A为圆心,AC长为半径画弧,交直线m于点P1,P3,边AC和BC的垂直平分线都交于点P3位置,因此出现等腰三角形的点P的位置有4个,故选:C.10.解:∵AB=AC,AD是BC边上的高,∴BD=CD,∵阴影部分的面积等于△ABC的面积的一半,∵△ABC的面积6cm2,∴阴影部分的面积=3cm2.故选:B.二.填空题11.解:∵∠A=66°,∠B=∠C,∴∠B==×(180°﹣66°)=57°.故答案为:57°.12.解:∵AB=BC,∠ABC=120°,∴∠A=∠C=30°,∵DA=DB=3,∴∠DBC=∠A=30°,∴∠DBC=∠ABC﹣∠DBA=120°﹣30°=90°,∴DC=2DB=6,∴AC=AD+CD=3+6=9.故答案为:9.13.解:∵△ABC是等边三角形,∴∠C=∠BAC=60°,∵AD⊥BC,∴BD=CD,∠DAC=∠BAC=30°,∵AD=12,∴DE=AD=6;∵DE⊥AC,∴∠EDC=90°﹣∠C=90°﹣60°=30°,∴EC=DC,∴BC=4EC,∵S△EDC=×6×EC=3EC,S△ABC=×12×BC=6BC=24EC,∴.故答案为:6,.14.证明:∵BF、CF分别平分∠ABC、∠ACG,∴∠DBF=∠CBF,∠FCE=∠FCG,∵DE∥BC,∴∠DFB=∠CBF,∠EFC=∠FCG,∴∠DBF=∠DFB,∠FCE=∠EFC,∴BD=FD,EF=CE,∴△BDF和△CEF为等腰三角形;∵DF=BD,CE=EF,∴BD﹣CE=FD﹣EF=DE,∴EF=DF﹣DE=BD﹣DE=9﹣4=5(cm),∴EC=5(cm),故答案为:5.15.解:设∠A1B1O=x,则α+2x=180°,x=180°﹣θ1,∴θ1=,设∠A2B2B1=y,则θ2+y=180°①,θ1+2y=180°②,①×2﹣②得:2θ2﹣θ1=180°,∴θ2==,…θn=.故答案为:.三.解答题16.解:(1)∵AB=AC,D是BC边上的中点,∴AD⊥BC,即∠ADC=90°;(2)∵∠B=40°,∴∠BAD=50°.17.(1)证明:∵∠ABC=∠ACB,∴AB=AC,∵DE∥BC,∴∠ADE=∠ABC,∠AED=∠ACB,∴∠ADE=∠AED,∴AD=AE,∴AB=AD=AC=AE,即BD=CE,在△DBC和△ECB中,,∴△DBC≌△ECB(SAS),∴DC=EB;(2)解:图中所有的等腰三角形为△ABC、△ADE、△DEF、△BCF,理由如下:由(1)得:AB=AC,AD=AE,△DBC≌△ECB,∴△ABC、△ADE是等腰三角形,∠BCD=∠CBE,∴△BCF是等腰三角形,BF=CF,∵DE∥BC,∴∠FDE=∠BCD,∠FED=∠CBE,∴∠FDE=∠FED,∴△DEF是等腰三角形,FE=FD.18.(1)解:△AMN是是等腰三角形,理由如下:∵AB=AC,∴∠ABC=∠ACB,∵MN∥BC,∴∠AMN=∠ABC,∠ANM=∠ACB,∴∠AMN=∠ANM,∴AM=AN,∴△AMN是等腰三角形;(2)①证明:∵BP平分∠ABC,∴∠PBM=∠PBC,∵MN∥BC,∴∠MPB=∠PBC∴∠PBM=∠MPB,∴MB=MP,∴△BPM是等腰三角形;②由①知MB=MP,同理可得:NC=NP,∴△AMN的周长=AM+MP+NP+AN=AM+MB+NC+AN=AB+AC,∵△ABC的周长为a,BC=b,∴AB+AC+b=a,∴AB+AC=a﹣b∴△AMN的周长=a﹣b.。

部编数学八年级上册专题09等腰等边三角形问题(解析版)含答案

部编数学八年级上册专题09等腰等边三角形问题(解析版)含答案

2023--2024学年度人教版数学八年级上册期末复习核心考点三种题型精炼专题09 等腰等边三角形问题选择题一、选择题1. (2023贵州省)5月26日,“2023中国国际大数据产业博览会”在贵阳开幕,在“自动化立体库”中有许多几何元素,其中有一个等腰三角形模型(示意图如图所示),它的顶角为120°,腰长为12m ,则底边上的高是( )A. 4mB. 6mC. 10mD. 12m【答案】B 【解析】作AD BC ^于点D ,根据等腰三角形的性质和三角形内角和定理可得()1180302B C BAC Ð=Ð=°-Ð=°,再根据含30度角的直角三角形的性质即可得出答案.如图,作AD BC ^于点D ,Q ABC V 中,120BAC Ð=°,AB AC =,\()1180302B C BAC Ð=Ð=°-Ð=°,Q AD BC ^,\11126m 22AD AB ==´=,故选B .【点睛】本题考查等腰三角形的性质,三角形内角和定理,含30度角的直角三角形的性质等,解题的关键是掌握30度角所对的直角边等于斜边的一半.2.如图,点F 在正五边形ABCDE 的内部,ABF V 为等边三角形,则AFC Ð等于( )A. 108°B. 120°C. 126°D. 132°【答案】C【解析】根据多边形内角和公式可求出∠ABC的度数,根据正五边形的性质可得AB=BC,根据等边三角形的性质可得∠ABF=∠AFB=60°,AB=BF,可得BF=BC,根据角的和差关系可得出∠FBC的度数,根据等腰三角形的性质可求出∠BFC的度数,根据角的和差关系即可得答案.∵ABCDE是正五边形,∴∠ABC=(52)1805-´°=108°,AB=BC,∵ABFV为等边三角形,∴∠ABF=∠AFB=60°,AB=BF,∴BF=BC,∠FBC=∠ABC-∠ABF=48°,∴∠BFC=1(180)2FBC°-Ð=66°,∴AFCÐ=∠AFB+∠BFC=126°,【点睛】本题考查多边形内角和、等腰三角形的性质、等边三角形的性质,熟练掌握多边形内角和公式是解题关键.3. 如图所示,点D是△ABC的边AC上一点(不含端点),AD=BD,则下列结论正确的是( )A.AC>BC B.AC=BC C.∠A>∠ABC D.∠A=∠ABC【答案】A【解析】本题考查了等腰三角形的性质:等腰三角形的两腰相等;等腰三角形的两个底角相等;等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.根据等腰三角形的两个底角相等,由AD=BD 得到∠A=∠ABD ,所以∠ABC >∠A ,则对各C 、D 选项进行判断;根据大边对大角可对A 、B 进行判断.∵AD=BD ,∴∠A=∠ABD ,∴∠ABC >∠A ,所以C 选项和D 选项错误;∴AC >BC ,所以A 选项正确;B 选项错误.4. 如图所示,直线a ∥b ,点A 在直线a 上,点B 在直线b 上,AC =BC ,∠C =120°,∠1=43°,则∠2的度数为( )A. 57°B. 63°C. 67°D. 73°【答案】D 【解析】根据等腰三角形的性质可求出30ABC Ð=°,可得出+173ABC ÐÐ=°,再根据平行线的性质可得结论.∵AC =BC ,∴ABC D 是等腰三角形,∵=120C а ∴11(180)(180120)3022ABC C Ð=°-Ð=°-°=° ∴1304373ABC Ð+Ð=°+°=°∵a ∥b ,∴2173ABC Ð=Ð+Ð=°故选:D【点睛】本题主要考查了等腰三角形的判定与性质,以及平行线的性质,求出173ABC Ð+Ð=°是解答本题的关键.二、填空题1. 如图,屋顶钢架外框是等腰三角形,其中AB AC =,立柱AD BC ^,且顶角120BAC Ð=°,则C Ð大小为 .【答案】30°##30度【解析】先由等边对等角得到B C Ð=Ð,再根据三角形的内角和进行求解即可.AB AC =Q ,B C \Ð=Ð,120BAC Ð=°Q ,180BAC B C Ð+Ð+Ð=°,180120302C °-°\Ð==°,故答案为:30°.【点睛】本题考查了等腰三角形的性质及三角形的内角和定理,熟练掌握知识点是解题的关键.2. 如图,在ABC V 中,40ABC Ð=°,80BAC Ð=°,以点A 为圆心,AC 长为半径作弧,交射线BA 于点D ,连接CD ,则BCD Ð的度数是 .【答案】10°或100°【解析】分两种情况画图,由作图可知得AC AD =,根据等腰三角形的性质和三角形内角和定理解答即可.如图,点D 即为所求;的在ABC D 中,40ABC Ð=°,80BAC Ð=°,180408060ACB \Ð=°-°-°=°,由作图可知:AC AD =,1(18080)502ACD ADC \Ð=Ð=°-°=°,605010BCD ACB ACD \Ð=Ð-Ð=°-°=°;由作图可知:AC AD =¢,ACD AD C \Т=Т,80ACD AD C BAC Т+Т=Ð=°Q ,40AD C \Т=°,1801804040100BCD ABC AD C \Т=°-Ð-Т=°-°-°=°.综上所述:BCD Ð度数是10°或100°.故答案为:10°或100°.【点睛】本题考查了作图-复杂作图,三角形内角和定理,等腰三角形判定与性质,解题的关键是掌握基本作图方法.3.如图,在△ABC 中,AB=AC=2a ,∠ABC=∠ACB=15°,CD 是腰AB 上的高.则CD 的长为 .【答案】a【解析】观察图形可以发现,在Rt △ADC 中,AC=2a ,而∠DAC 是△ABC 的一个外角, 则∠DAC=15°×2=30°,根据在直角三角形中,30°角所对的边是斜边的一半, 可求出CD .∵∠ABC=∠ACB=15°,∴∠DAC=∠ABC+∠BAC=30°.的的∴CD=AC=a(在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半).4.在等腰ABC D 中,AD BC ^交直线BC 于点D ,若12AD BC =,则ABC D 的顶角的度数为 .【答案】30°或150°或90°..【解析】①BC 为腰,∵AD ⊥BC 于点D ,AD=12BC ,∴∠ACD=30°,如图1,AD 在△ABC 内部时,顶角∠C=30°,如图2,AD 在△ABC 外部时,顶角∠ACB=180°﹣30°=150°,②BC 为底,如图3,∵AD ⊥BC 于点D ,AD=12BC ,∴AD=BD=CD ,∴∠B=∠BAD ,∠C=∠CAD ,∴∠BAD+∠CAD=12×180°=90°,∴顶角∠BAC=90°,综上所述,等腰三角形ABC 的顶角度数为30°或150°或90°.5.在直角三角形中,如果一个锐角等于30°, 那么它所对的直角边等于斜边的 _.【答案】一半。

2020年秋人教版八年级数学上册第13章《等腰三角形》(讲义、随堂测试、习题及答案)

2020年秋人教版八年级数学上册第13章《等腰三角形》(讲义、随堂测试、习题及答案)

人教版八年级数学上册第13章等腰三角形(讲义)➢ 课前预习1. 已知:如图,在△ABC 中,AB =AC .(1)若∠1=∠2,则BD ____DC (填“>”,“<”或“=”); (2)若BD =CD ,则AD ____BC (填“⊥”或“∥”); (3)若AD ⊥BC ,则∠1____∠2(填“>”,“<”或“=”).D CB A 212. 已知等腰三角形的两边长分别为5和8,则这个三角形的周长为_________.➢ 知识点睛1. ______________的三角形叫做等腰三角形.2. 等腰三角形是_________图形.等腰三角形顶角的平分线、底边上的中线、底边上的高重合(也称“__________”),它们所在的直线都是等腰三角形的_________.3. 等腰三角形的两个底角________,简称______________.如果一个三角形有两个角相等,那么它们所对的边也______,简称_________________.4. 三边都______的三角形是等边三角形.等边三角形三边都相等,三个内角都是________. 5. “三线合一”模块书写:已知:如图,在△ABC 中,AB =AC ,AD 平分∠BAC 交BC 于点D .求证:BD =CD . 证明:➢ 精讲精练1. 在下面的等腰三角形中,∠A 是顶角,请分别将它们底角的度数标注在相应的图上.CB C B C B AAA108°60°2. 如图,在△ACD 中,AD =BD =BC ,若∠C =25°,则∠ADB =____.D CB ADCBAEDCBA第2题图第3题图3. 如图,在△ABC 中,AB =AC ,BD 平分∠ABC ,BD =BE ,∠A =100°,则∠DEC =________.4. 如图,在等腰三角形ABC 中,AB =AC ,D 为边BC 上一点,CD =AC ,AD =BD ,则∠BAC =______.CD B AABCE第4题图第5题图5. 如图,在△ABC 中,AB =AC ,点D 是BC 的中点,点E 在AC 上,AD =AE ,若∠BAD =50°,则∠CDE =________.6. 如图,在△ABC 中,已知AB =AC ,AD ⊥BC 于点D ,过点D 作DE ∥AB 交AC 于点E .求证:AE =ED .7. 已知:如图,在△ABC 中,AB =AC ,点D 在△ABC 外,CD ⊥AD于点D ,12CD BC.求证:∠ACD =∠B . E CB AAB CD8. 已知:如图,△ABC 是等边三角形,D 是BC 的中点,DF ⊥AC 于F ,延长DF 到E ,使EF =DF ,连接AE .求∠E 的度数.FE DCBA9. 若等腰三角形的周长为13 cm ,其中一边长为3 cm ,则该等腰三角形的底边长为_______________.10. 若等腰三角形的一个内角为40°,则此等腰三角形的顶角为______________.11.若等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为40°,则此等腰三角形的顶角为______________.12.已知:如图,线段AB的端点A在直线l上(AB与l不垂直),请在直线l上另找一点C,使△ABC是等腰三角形.这样的点能找几个?请你找出所有符合条件的点.13.已知:如图,线段AB的端点A在直线l上,AB与l的夹角为60°,请在直线l上另找一点C,使△ABC是等腰三角形.这样的点能找几个?请你找出所有符合条件的点.➢课前预习1.(1)=(2)⊥(3)=2.18或21➢知识点睛1.有两边相等2.轴对称,三线合一,对称轴3.相等,等边对等角相等,等角对等边4.相等,60°5.证明:如图∵AB=AC,AD平分∠BAC∴D为BC的中点(等腰三角形三线合一)∴BD=CD➢精讲精练1.60°,60°;45°,45°;36°,36°2.80°3.100°4.108°5.25°6.证明略提示:根据等腰三角形三线合一可得∠BAD=∠CAD,再由平行可以得到∠CAD=∠BAD=∠ADE,从而AE=DE7.证明略提示:过点A作AE⊥BC于点E,根据等腰三角形三线合一可得BE=CD,再证△ABE≌△ACD即可.8.∠E=60°提示:连接AD,利用垂直平分线定理得AD=AE,从而∠E=∠ADE9.3cm10.40°或100°11.50°或130°12.这样的点能找4个,作图略13.这样的点能找2个,作图略等腰三角形(随堂测试)1.如图,在△ABC中,D为AC边上一点,且AD=BD=BC.若∠A=40°,则∠DBC=______.CDB 2.已知等腰三角形的周长为28cm,其中一边长为10cm,则该等腰三角形的底边长为_______________.3. 已知:如图,在△ABC 中,E 为BC 边上一点,连接AE ,D 为AE 的中点,连接BD ,∠BAD =∠EAC +∠C .求证:AD ⊥BD .【参考答案】1. 20°2. 10cm 或8cm3. 证明略提示:利用外角可以得到∠AEB =∠BAD ,根据等角对等边,得BA =BE ,因为D 是AE 的中点,利用等腰三角形三线合一,可以得到AD ⊥BD等腰三角形(习题)➢ 例题示范E DCB A例1:如图,在△ABC 中,AB =AC ,点D 在△ABC 外,CD ⊥AD 于点D ,12CD BC =.求证:∠ACD =∠B . 【思路分析】 ① 读题标注:② 梳理思路:由条件12CD BC =,可尝试取BC 的中点E ,此时结合等腰构造三线合一的线AE ,如图所示.要证∠ACD =∠B ,可以证明△ABE ≌△ACD .【过程书写】证明:如图,取BC 的中点E ,连接AE .∵E 是BC 的中点∴12BE BC =∵12CD BC = ∴BE =CD∵AB =AC ,E 是BC 的中点 ∴AE ⊥BC ∴∠AEB =90° ∵CD ⊥AD ∴∠D =90°∴∠AEB =∠D =90°在Rt △ABE 和Rt △ACD 中 AB AC BE CD =⎧⎨=⎩(已知)(已证)∴Rt △ABE ≌Rt △ACD (HL ) ∴∠ACD =∠B例2:等腰三角形的周长为12cm ,其中一边长为5cm ,则该等腰三角形的底边长为__________cm .【思路分析】ACDEA B C D A CD等腰三角形一边长为5cm ,这一边可能是底,也可能是腰,故需分类讨论: ① 如果5cm 为底,则根据周长为12cm ,可知腰长为3.5cm .此时两边之和大于第三边,这个三角形存在.② 如果5cm 为腰,则根据周长为12cm ,可知底边长为2cm .此时两边之和大于第三边,这个三角形存在.综上,该等腰三角形的底边长为5cm 或2cm . ➢ 巩固练习1. 已知:如图,在△ABC 中,AB =AC ,∠A =80°,求∠C 的度数.2. 如图,在△ABC 中,AB =AC ,BE ∥AC ,∠BDE =100°,∠BAD =70°,则∠E =______.第2题图第3题图3. 已知:如图,在△ABC 中,AB =AC ,D 为AB 边上一点,若CD =AD =BC ,则∠A =_________.4. 如图,在△ABC 中,∠ABC 的平分线和∠ACB 的平分线相交于点E ,过点E作MN ∥BC ,交AB 于点M ,交AC 于点N .若BM +CN =9,则线段MN 的长为()CBAED CB ADB AA .6B .7C .8D .95. 已知:如图,在△ABC 中,AB =AC ,AD 是BC 边上的中线,点P 在AD 上.求证:PB=PC .6. 已知:如图,B ,D ,E ,C 在同一直线上,AB =AC ,AD =AE .求证:BD =CE .N M EC BADCBAPA B CD E7.已知等腰三角形的两边长分别为4和8,则该等腰三角形的周长为_________________.8.若等腰三角形的一个角比另一个角大30°,则该等腰三角形的顶角的度数为_____________.9.已知:如图,线段AB的端点A在直线l上,AB与l的夹角是30°,请在直线l上另找一点C,使△ABC是等腰三角形.这样的点能找几个?请找出所有符合条件的点.➢思考小结1.要证明边相等或角相等,可以考虑两种思路:①如果边或者角在两个三角形里面,则证明两个三角形__________;②如果边或角在一个三角形里面,证明三角形是_______三角形.2.将两个含30°角的三角板如图放置,则△ABD是_________三角形(“等腰”或“等边”),故AB_____BD,BC=____BD,所以BC=____AB,从而得到对于含有30°角的直角三角形,30°角所对的直角边是斜边的_______.【参考答案】➢巩固练习 1.50° 2.50° 3.36° 4. D5. 证明略提示:利用等腰三角形三线合一的性质,得AD 垂直平分BC ,从而得到PB =PC6. 证明略提示:根据等边对等角可得∠B =∠C ,∠ADE =∠AED ,进而可得∠BAD =∠CAE ,从而证明△ABD ≌△ACE ,根据全等三角形对应边相等,可得BD =CE7. 20 D C B A8.80°或40°9.这样的点能找4个,作图略➢思考小结1.①全等②等腰2.等边,=,12,12,一半。

2020-2021学年北师大版数学八年级下册1.1等腰三角形 练习题2

2020-2021学年北师大版数学八年级下册1.1等腰三角形 练习题2

等腰三角形性质3:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(简称“三线合一) 几何语言:在△ABC 中,如果AB=AC ,D 点在BC 上。

(1)∵∠1=∠2,∴ ⊥ , = (2)∵BD=CD ,∴∠ =∠ , ⊥ ; (3)∵AD ⊥BC ,∴∠ =∠ , = 。

练习:1、如图,在△ABC 中,AB=AC 。

(1)当∠1=∠2,DB=3cm 时,则BC= cm(2)当BD=DC=2cm ,AD=5cm 时,△ABC 的面积= cm 22、已知在△ABC 中,AB=BC ,D 是AC 边上的中点,则以下说法错误的是( ) A 、BD 是底边上的中线 B 、BD 是底边上的高 C 、BD 是顶角的平分线 D 、BD 是一腰上的中线3、如图,△ABC 中,AB =AC ,D 是BC 中点,下列结论中不正确的是( ) A 、∠B =∠C B 、AD ⊥BC C 、AD 平分∠BAC D 、AB =2BD4、如图,∠A =36°,∠DBC =36°,∠C =72°,则图中等腰三角形有_______个.5、在△ABC 中,∠A=65°,∠B=50°,则下列结论正确的是( ) A 、AB=AC B 、AB=BC C 、AC=BC D 、AB=AC=BC6、如图所示,厂房屋顶钢架外框是等腰三角形,其中AB=AC , 立柱AD ⊥BC ,且顶角∠BAC=100°,则∠B= °, ∠C= °,∠BAD= °,∠CAD= °7、在△ABC 中,已知AB =AC ,AD 是中线,∠B =70°,BC =15cm , 则∠BAC =________,∠DAC =________,BD =________cm 。

8、在△ABC 中,∠BAC =90°,AD ⊥BC 于D ,AB =3,AC =4,则AD =________。

八上数学 小专题(十二) 等腰直角三角形常见的解题模型

八上数学 小专题(十二) 等腰直角三角形常见的解题模型

【变式】 将第 3 题中的“∠AEB=45°”改为“∠AEC=135°”, 第 3 题中的结论还成立吗?并说明理由.
解:第 3 题中的结论仍然成立. 理由:如图,过点 A 作 AF⊥AE,交 CE 的延长线于点 F, 则∠BAE=90°+∠CAE=∠CAF. ∵∠AEC=135°, ∴∠AEF=45°. ∴△AEF 为等腰直角三角形,AE=AF.
模型二 等腰直角三角形+8 字模型中有两直角,常用截长补短若 BE⊥CE, 则有∠1=∠2.常通过在 BE 上取点 F,使得 BF=CE⇒△ABF≌△ACE.
2.如图,△ABC 为等腰直角三角形,∠BAC=90°,AB=AC, D 是 AC 上一点.若 CE⊥BD 于点 E,连接 AE.求证:∠AEB=45°.
证明:在 BE 上截取 BF=CE, 连接 AF. 易证∠ABF=∠ACE, △ABF≌△ACE(SAS), 得等腰 Rt△AFE, ∴∠AEB=45°.
模型二变式 等腰直角三角形及 8 字模型中只有一个直角,过等 腰直角三角形的顶点作垂线构造直角
如图,已知等腰 Rt△ABC,∠AEB=45°,常过点 A 作 AF⊥AE, 则∠FAE=90°,∠1=∠2.
4.如图,在平面直角坐标系中,A(2,0),B(0,1),AC 由 AB 绕 点 A 顺时针旋转 90°而得,则点 C 的坐标为 (3,2).
2020年秋人教版 八年级上册数学 同步课时训练
模型一 等腰直角三角形+斜边的中点→连接直角顶点和斜边中 点
如图,在等腰 Rt△ABC 中,D 为斜边的中点,则连接 AD⇒AD= BD=DC,∠B=∠DAF=45°.常结合已知条件证△BDE≌△ADF 或 △ADE≌△CDF 得出相关结论.
1.如图,在△ABC 中,∠A=90°,AB=AC,D 为 BC 的中点, E,F 分别是 AB,AC 上的点,且 BE=AF.求证:△DEF 为等腰直角 三角形.

初中数学 八年级上册等腰三角形练习题

初中数学 八年级上册等腰三角形练习题

八年级上册等腰三角形练习题一. 选择题:1. 等腰三角形的一个角是94°,则腰与底边上的高的夹角为()A. 43°B. 53°C. 47°D. 90°2. 等腰三角形周长为13cm,其中一边长为3cm,则该等腰三角形底边长()A. 7cmB. 3cmC. 7cm或3cmD. 5cm3. 等腰三角形的两个内角的比是1:2,则这个等腰三角形是()A. 锐角三角形B. 直角三角形C. 锐角三角形或直角三角形D. 以上结论都不对4. 已知等腰三角形的一个外角等于70°,则底角的度数为()A. 110°B. 55°C. 35°D. 不能确定5. 等腰三角形一腰上的高与底边所成角为36°,这个等腰三角形的顶角为()A. 36°B. 72°C. 36°或72°D. 54°二. 填空题:1. 如果等腰三角形一个角是45°,那么另外两个角的度数为2. 等腰三角形一个外角等于110°,则底角的度数是3. 等腰三角形互相重合4. 等腰三角形底边长为10,则其腰长x的范围是5. 等腰三角形的底边长为5,一腰上中线把这个三角形周长分为两部分,它们的差为3,则腰长为三. 解答题:1. 如图,△ABC中,AB=AC,BC=BD,AD=DE=EB求∠A的度数2.如图,CA=CB,DF=DB,AE=AD 求∠A的度数A B3. 如图,△ABC中,AB=AC,D在BC上,DE⊥AB于E,DF⊥BC交AC于点F,若∠EDF=70°,求∠AFD的度数4. 如图,△ABC中,AB=AC,BC=BD=ED=EA 求∠A的度数设∠A为xC FDB5. 如图,△ABC 中,AD 平分∠BAC ,若AC=AB+BD求∠B :∠C 的值四、证明题:7. 如图,△ABC 中,∠ABC,∠CAB 的平分线交于点P ,过点P 作DE ∥AB ,分别交BC 、AC 于点D 、E求证:DE=BD+AE8. 如图,△DEF 中,∠EDF=2∠E ,FA ⊥DE 于点A ,问:DF 、AD 、AE 间有什么样的大小关系C B ADE P B CD A D F E9. 如图,△ABC中,∠B=60°,角平分线AD、CE交于点O求证:AE+CD=AC10. 如图,△ABC中,AB=AC, ∠A=100°,BD平分∠ABC, 求证:BC=BD+AD OABCDEAC。

人教版初中数学-学年八年级上学期期末专题复习 专题5:等腰三角形 解析版

人教版初中数学-学年八年级上学期期末专题复习 专题5:等腰三角形 解析版

人教版初中数学2019-2020学年八年级上学期期末专题复习专题5:等腰三角形一、单选题1.△ABC中,AB=AC,∠A=∠C,则△ABC是()A. 等腰三角形B. 等边三角形C. 不等边三角形D. 不能确定2.已知∠AOB=30°,点P在∠AOB的内部,点P1和点P关于OA对称,点P2和点P关于OB对称,则P1、O、P2三点构成的三角形是()A. 直角三角形B. 钝角三角形C. 等腰直角三角形D. 等边三角形3.如图,△ABC中,AB=AC,BD平分∠ABC交AC于G,DM∥BC交∠ABC的外角平分线于M,交AB,AC于F,E,以下结论:①MB⊥BD,②FD=EC,③EC=EF+DG,④CE=MD/2,其中一定正确的有()A. 1个B. 2个C. 3个D. 4个4.如图,在△ABC 中,∠BAC=72°,∠C=36°,∠BAC 的平分线AD 交BC 于D,则图中有等腰三角形()A. 0 个B. 1 个C. 2 个D. 3 个二、填空题5.如图,在中,,,,与的关系是________.6.如图,D是AB边上的中点,将△ABC沿过D的直线折叠,使点A落在BC上F处,若∠B=50°,则∠BDF=________度.7.如图,等腰三角形ABC底边BC的长为4cm,面积是12cm2,腰AB的垂直平分线EF交AC于点F,若D为BC边上的中点,M为线段EF上一动点,则△BDM的周长最短为________cm.8.如图,等边△ABC边长为10,P在AB上,Q在BC延长线,CQ=P A,过点P作PE⊥AC点E,过点P作PF∥BQ,交AC边于点F,连接PQ交AC于点D,则DE的长为________.三、综合题9.如果三角形有一边上的中线恰好等于这边的长,那么我们称这个三角形为“美丽三角形”,(1)如图△ABC中,AB=AC= ,BC=2,求证:△ABC是“美丽三角形”;(2)在Rt△ABC中,∠C=90°,AC=2 ,若△ABC是“美丽三角形”,求BC的长.10.图1、图2中,点B为线段AE上一点,△ABC与△BED都是等边三角形.(1)如图1,求证:AD=CE.(2)如图2,设CE与AD交于点F,连接BF.①求证:∠CFA=60°.②求证:CF+BF=AF.11.如图,D是等边三角形ABC内一点,将线段AD绕点A顺时针旋转60°,得到线段AE,连接CD,BE.(1)求证:∠AEB=∠ADC;(2)连接DE,若∠ADC=105°,求∠BED的度数.答案解析部分一、单选题1. B解:∵△ABC中,AB=AC,∴∠B=∠C,又∵∠A=∠C,∴∠A=∠B=∠C,△ABC是等边三角形.故答案为:B.【分析】根据等边对等角得出∠B=∠C,又∠A=∠C,故∠A=∠B=∠C,根据三个角都相等的三角形是等边三角形即可得出结论:△ABC是等边三角形.2. D如图,根据轴对称的性质可知,OP1=OP2=OP,∠P1OP2=60°,∴△P1OP2是等边三角形.故答案为:D.【分析】根据轴对称的性质及有一个角是60°的等腰三角形是等边三角形即可判断得出答案.3. Cj解:∵BD分别是∠ABC的角平分线,BM是∠ABC的外角平分线,故MB⊥BD,①成立;而AB=AC,∴∠FDB=∠DBC;∵∠FBD=∠DBC,∴∠FBD=∠FDB,∴FD=BF,FD=EC,②成立;∠C与∠BGC的大小不确定,∴DE不一定等于DG,∵EC=DF=EF+DE,∴EC不一定等于EF+DG;故错误;而CE=BF,④成立.故答案为:C.【分析】根据角平分线的定义及邻补角的定义得出∠MBD=90°,故MB⊥BD,①成立;根据平行线分线段成比例定理得出BF=EC,根据平行线的性质及角平分线的定义得出∠FBD=∠FDB,根据等角对等边得出FB=FD,所以FD=EC,②成立;由于∠C与∠BGC的大小不确定,DE不一定等于DG,EC不一定等于EF+DG,故错误;根据直角三角形斜边上的中线等于斜边的一半得出而CE=BF,故④成立,综上所述即可得出答案.4. D解:在△ABC中,∠BAC=72°,∠C=36°,∴∠B=180°-72°-36°=72°=∠BAC,∴AC=BC,∵AD平分∠BAC,∴∠CAD=∠BAD=36°=∠C,∴AD=CD,∠ADB=72°=∠B,∴AD=BD,∴△ABC、△ABD、△ACD是等腰三角形,故等腰三角形有3个;故答案为::D.【分析】根据三角形的内角和定理及等量代换得出∠B==72°=∠BAC,根据角平分线的定义及等量代换得出∠CAD=∠BAD=36°=∠C,根据等角对等边得出AC=BC,AD=CD,根据等边对等角及三角形的外角定理得出∠ADB=72°=∠B,从而根据等腰三角形的判定方法得出△ABC、△ABD、△ACD是等腰三角形.二、填空题5.解:∵AB=AC,∴∠B=∠C,∵BF=CD,BD=CE,∴△BDF≌△CED(SAS),∴∠BFD=∠EDC,∵α+∠BDF+∠EDC=180°,∴α+∠BDF+∠BFD=180°,∵∠B+∠BDF+∠BFD=180°,∴∠B=α,∴∠C=∠B=α,∵∠A+∠B+∠C=180°,∴2α+∠A=180°,∴,故答案为:.【分析】根据等边对等角得出∠B=∠C,从而利用SAS判断出△BDF≌△CED,根据全等三角形的对应角相等得出∠BFD=∠EDC,根据平角的定义及三角形的内角和、等式的性质得出∠B=α,从而根据三角形的内角和即可得出.6. 80解:根据折叠的性质,可得:AD=DF,∵D是AB边上的中点,即AD=BD,∴BD=DF,∵∠B=50°,∴∠DFB=∠B=50°,∴∠BDF=180°﹣∠B﹣∠DFB=80°.故答案为:80.【分析】根据折叠的性质及中点的定义得出BD=DF,根据等边对等角得出∠DFB=∠B=50°,然后根据三角形的内角和定理即可得出∠BDF的度数.7. 8解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC= BC•AD= ×4×AD=12,解得AD=6cm,∵EF是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为BM+MD的最小值,∴△BDM的周长最短=(BM+MD)+BD=AD+ BC=6+ ×4=6+=8cm.【分析】连接AD,根据等腰三角形的三线合一得出AD⊥BC,从而根据三角形的面积计算方法列出方程求出AD的长,根据垂直平分线的性质得出点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,从而即可解决问题.8. 5∵PF∥BQ,∴∠Q=∠FPD,∵△ABC是等边三角形,∴∠APF=∠B=60°,∠AFP=∠ACB=60°,∴△APF是等边三角形,∴AP=PF,∵AP=CQ,∴PF=CQ,∵在△PFD和△QCD中,,∴△PFD≌△QCD(AAS),∴FD=CD,∵PE⊥AC于E,△APF是等边三角形,∴AE=EF,∴AE+DC=EF+FD,∴DE=AC,∵AC=10,∴DE=AC=5.故答案为:5.【分析】先证明△PFD和△QCD全等,推出FD=CD,再通过证明△APF是等边三角形和PE⊥AC,推出AE=EF,即可推出AE+DC=EF+FD,可得DE= AC,即可推出DE的长度.三、综合题9. (1)证明:如图,作BC的中线AD,如图,∵AB=AC= ,AD是BC的中线,∴AD⊥BC, BD=CD= ,在Rt△ABD中,由勾股定理得AD= ,∴AD=BC,∴△ABC是美丽三角形.(2)解:①如图1,作AC的中线BD,△ABC是“美丽三角形”,当BD=AC= 时,则CD= ,由勾股定理得.②如图2,作BC的中线AD,△ABC是“美丽三角形”,当BC=AD时,则CD= ,在Rt△ACD中,由勾股定理得,则,解得CD=2,∴BC=2CD=4.故BC=3或BC=4【分析】(1)作BC的中线AD,利用等腰三角形三线合一的性质,可求出BD的长,再利用勾股定理求出AD的长,从而可证得AD=BC,即可证得结论。

2020-2021年度北师大版八年级数学下册《1.1等腰三角形》同步提升训练(附答案)

2020-2021年度北师大版八年级数学下册《1.1等腰三角形》同步提升训练(附答案)

2020-2021年度北师大版八年级数学下册《1.1等腰三角形》同步提升训练(附答案)1.已知等腰三角形的两边长分别为2和5,则该等腰三角形的周长为()A.7B.9C.9或12D.122.如图,点D在AC上,点E在AB上,且AB=AC,BC=BD,AD=DE=BE,则∠A=()度.A.30B.36C.45D.503.如图,AB=BC=CD=DE=EF,如果∠DEF=60°,则∠A的度数为()A.20°B.15°C.12°D.10°4.如图,在△ABC中,AC=BC,D是BA延长线上一点,E是CB延长线上一点,F是AC 延长线上一点,∠DAC=131°,则∠ECF的度数为()A.49°B.88°C.98°D.131°5.若一条长为24cm的细线能围成一边长等于6cm的等腰三角形,则该等腰三角形的腰长为()A.6cm B.9cm C.6cm或9cm D.12cm6.如图,△ABC中,BO平分∠ABC,CO平分∠ACB,M,N经过点O,且MN∥BC,若AB=5,△AMN的周长等于12,则AC的长为()A.7B.6C.5D.47.在等腰三角形ABC中,BC边上的高恰好等于BC边长的一半,则∠BAC等于()A.90°B.90°或75°C.90°或15°D.90°或75°或15°8.如图所示,在平面直角坐标系中,点A(3,1),点P在x轴上,若以P、O、A为顶点的三角形是等腰三角形,则满足条件的点P共有()A.2 个B.3 个C.4 个D.5 个9.如图,AB=AC,AE=EC=CD,∠A=60°,若EF=2,则DF=()A.3B.4C.5D.610.如图,在等腰△ABC中,AB=AC,∠A=40°,D是AC边上的一点,且AD=BD,则∠CBD=()A.30°B.40°C.50°D.60°11.如图,△ABC中,AB=8,AC=2,∠BAC的外角平分线交BC延长线于点E,BD⊥AE 于D,若AE=AC,则AD的长为.12.如图,在四边形ABCD中,AB=BC,点E为对角线AC与BD的交点,∠AEB=70°,若∠ABC=2∠ADB=4∠CBD,则∠ACD=°.13.如图,△ABC为等腰三角形,AB=AC,∠A=100°,D为BC的中点,点E在AB上,∠BDE=15°,P是等腰△ABC腰上的一点,若△EDP是以DE为腰的等腰三角形,则∠EDP的大小为.14.如图,在△ABC中,AB=BC,BE平分∠ABC,AD为BC边上的高,且AD=BD.则∠3=°.15.如图所示的正方形网格中,网格线的交点称为格点.已知A,B是两个格点,若点C也是图中的格点,且使得△ABC为等腰三角形,则符合条件的点C有个.16.如图,△ABC的面积为16cm2,BP平分∠ABC,且AP⊥BP于P,则△PBC的面积为cm2.17.若等腰三角形一腰上的高与另一腰的夹角为40°,腰长为6,则这个等腰三角形的底角度数是.18.如图,在△ABC中,AB=BC,中线AD将这个三角形的周长分成18和15两部分,则AC的长为.19.在Rt△ABC中,∠ACB=90°,点D为斜边AB上的一点,∠ACD=35°,若△ACD 为等腰三角形,那么∠B的度数为.20.如图,在等边△ABC中,AB=8,E是BA延长线上一点,且EA=4,D是BC上一点,且DE=EC,则BD的长为.21.已知,如图,在△ABC中,AB=AC,D,E分别在CA,BA的延长线上,且BE=CD,连BD,CE.(1)求证:∠D=∠E;(2)若∠BAC=108°,∠D=36o,则图中共有个等腰三角形.22.如图,在△ABC中,AB=AC,∠BAC=36°,BD平分∠ABC交AC于点D,过点A 作AE∥BC,交BD的延长线于点E.(1)求∠ADB的度数;(2)求证:△ADE是等腰三角形.23.在△ABC中,AB=AC,∠BAC=120°,AD是△ABC的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于F.(1)证明:△ADF是等腰三角形;(2)若AB=6,求DE的长.24.△ABC中,AB=AC,∠B=30°,点P在BC边上运动(P不与B、C重合),连接AP,作∠APQ=∠B,PQ交AB于点Q.(1)如图1,当PQ∥CA时,判断△APB的形状并说明理由;(2)在点P的运动过程中,△APQ的形状可以是等腰三角形吗?若可以,请直接写出∠BQP的度数;若不可以,请说明理由.25.如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求证:CE=CF;(2)若CD=2,求DF的长.26.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,CE平分∠DCB交AB于点E.(1)求证:∠AEC=∠ACE;(2)若∠AEC=2∠B,AD=1,求BD的长.27.在△ABC中,AB=AC,在△ABC的外部作等边三角形△ACD,E为AC的中点,连接DE并延长交BC于点F,连接BD.(1)如图1,若∠BAC=100°,求∠BDF的度数;(2)如图2,∠ACB的平分线交AB于点M,交EF于点N,连接BN.①补全图2;②若BN=DN,求证:MB=MN.参考答案1.解:当2为腰时,三边为2,2,5,由三角形三边关系定理可知,不能构成三角形,当5为腰时,三边为5,5,2,符合三角形三边关系定理,周长为:5+5+2=12.故选:D.2.解:设∠EBD=x,∵DE=BE,∴∠AED=2x,又∵AD=DE,∴∠A=2x,∴∠BDC=x+2x=3x,而BC=BD,则∠C=3x,∵AB=AC,∴∠ABC=3x,∴3x+3x+2x=180°,∴∠A=2x=45°.故选:C.3.解:∵DE=EF,∠DEF=60°,∴△DEF为等边三角形,∴∠EDF=60°,∵AB=BC=CD.∴△ABC和△BCD为等腰三角形,∠A=∠ACB,∠CBD=∠CDB,∵∠CBD=∠A+∠ACB=2∠A,∴∠CDB=2∠A,∵∠ECD=∠A+∠CDB=3∠A,CD=DE,∴△CDE为等腰三角形,∴∠ECD=∠DEC=3∠A,∠EDF=∠A+∠DEC=4∠A=60°,∴∠A=15°.故选:B.4.解:∵∠DAC=131°,∠DAC+∠CAB=180°,∴∠CAB=49°,∵AC=BC,∴∠CBA=49°,∠ACB=180°﹣49°﹣49°=82°,∴∠ECF=180°﹣82°=98°,故选:C.5.解:若6cm为底时,腰长=(24﹣6)=9cm,三角形的三边分别为6cm、9cm、9cm,能围成等腰三角形,若6cm为腰时,底边=24﹣6×2=12,三角形的三边分别为6cm、6cm、12cm,∵6+6=12,∴不能围成三角形,综上所述,腰长是9cm,故选:B.6.解:∵BO平分∠CBA,CO平分∠ACB,∴∠MBO=∠OBC,∠OCN=∠OCB,∵MN∥BC,∴∠MOB=∠OBC,∠NOC=∠OCB,∴∠MBO=∠MOB,∠NOC=∠NCO,∴MO=MB,NO=NC,∵AB=5,△AMN的周长等于12,∴△AMN的周长=AM+MN+AN=AB+AC=5+AC=12,∴AC=7,故选:A.7.解:如下图,分三种情况:①如图1,AB=BC,AD⊥BC,AD在三角形的内部,由题意知,AD=BC=AB,∵sin∠B==,∴∠B=30°,∠C=(180°﹣∠B)=75°,∴∠BAC=∠C=75°;②如图2,AC=BC,AD⊥BC,AD在三角形的外部,由题意知,AD=BC=AC,∵sin∠ACD==,∴∠ACD=30°=∠B+∠CAB,∵∠B=∠CAB,∴∠BAC=∠ACD=15°;③如图3,AC=BC,AD⊥BC,BC边为等腰三角形的底边,由等腰三角形的底边上的高与底边上中线,顶角的平分线重合,可得点D为BC的中点,由题意知,AD=BC=CD=BD,∴△ABD,△ADC均为等腰直角三角形,∴∠BAD=∠CAD=45°,∴∠BAC=90°,∴∠BAC的度数为90°或75°或15°,故选:D.8.解:如图,以点O、A为圆心,以OA的长度为半径画弧,OA的垂直平分线与x轴的交点有4个.故选:C.9.解:如图,过点E作EG⊥BC,交BC于点G∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴∠ACB=60°,∵EC=CD,∴∠CED=∠CDE=∠ACB=30°,∴∠AEF=30°,∴∠AFE=90°,即EF⊥AB,∵△ABC是等边三角形,AE=CE,∴BE平分∠ABC,∴EG=EF=2,在Rt△DEG中,DE=2EG=4,∴DF=EF+DE=2+4=6;方法二、∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴∠ACB=60°,∵EC=CD,∴∠CED=∠CDE=∠ACB=30°,∵△ABC是等边三角形,AE=CE,∴BE平分∠ABC,∴∠ABE=∠CBE=30°=∠CDE,∴BE=DE,∠BFD=90°,∴BE=2EF=4=DE,∴DF=DE+EF=6;故选:D.10.解:∵AB=AC,∠A=40°,∴∠ABC=∠C=70°,∵AD=BD,∴∠ABD=∠A=40°,∴∠CBD=70°﹣40°=30°,故选:A.11.解:延长AD至点G,使DG=AD,连接BG,延长BA至F,∵BD垂直平分AG,∴BA=BG=8,∠BAG=∠G∵∠BAG=∠EAF,∠BAC的外角平分线交BC延长线于点E,∴∠EAF=∠G,∠CAE=∠EAF,∴∠G=∠CAE,∴AC∥GB,∴∠ACE=∠GBE,∵AE=AC=2,∴∠ACE=∠E,∴∠GBE=∠E,∴GB=GE=8,∵DG+d=G﹣AE,∴2AD=6,∴AD=3.故答案为3.12.解:设∠CBD=x,由题意得:∠ABC=2∠ADB=4∠CBD=4x,∵AB=BC,∴∠BAC=∠ACB=(180°﹣4x)=90°﹣2x,∵∠ABE+∠BAE+∠AEB=180°,∴3x+90°﹣2x+70°=180°,∴x=20°,∴∠BDC=20°,∴∠ACD=180°﹣∠DEC﹣∠BDC=90°,故答案为:90.13.解:∵AB=AC,∠A=100°,∴∠B=(180°﹣∠A)=40°,∵∠BDE=15°,∴∠AED=55°,∵当△DEP是以DE为腰的等腰三角形,①当点P在AB上,∵DE=DP1,∴∠DP1E=∠AED=55°,∴∠EDP1=180°﹣55°﹣55°=70°,②当点P在AC上,∵AB=AC,D为BC的中点,∴∠BAD=∠CAD,过D作DG⊥AB于G,DH⊥AC于H,∴DG=DH,在Rt△DEG与Rt△DP2H中,,∴Rt△DEG≌Rt△DP2H(HL),∴∠AP2D=∠AED=55°,∵∠BAC=100°,∴∠EDP2=150°,③当点P在AC上,同理证得Rt△DEG≌Rt△DPH(HL),∴∠EDG=∠P3DH,∴∠EDP3=∠GDH=180°﹣100°=80°,④当点P在AB上,EP=ED时,∠EDP=(180°﹣55°)=62.5°.故答案为:62.5°或70°或80°或150°.14.解:∵AD为BC边上的高,∴∠ADB=90°,∵AD=BD,∴∠ABD=∠BAD=(180°﹣∠ADB)=45°,∵BE平分∠ABC,∴∠1=∠2=∠ABD=22.5°,BE⊥AC,∴∠BEA=90°=∠ADB,∵∠3+∠BEA+∠AHE=180°,∠2+∠ADB+∠BHD=180°,∠AHE=∠BHD,∴∠3=∠2=22.5°.故答案为:22.5°.15.解:如图:分情况讨论.①AB为等腰△ABC底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故答案为:8.16.解:延长AP交BC于点E,∵BP平分∠ABC,∴∠ABP=∠EBP,∵AP⊥BP,∴∠APB=∠EPB=90°,在△ABP和△EBP中,,∴△ABP≌△EBP(ASA),∴AP=PE,∴S△ABP=S△EBP,S△ACP=S△ECP,∴S△PBC=S△ABC=×16cm2=8cm2,故答案为:8.17.解:在等腰△ABC中,AB=AC,BD为腰AC上的高,∠ABD=40°,当BD在△ABC内部时,如图1,∵BD为高,∴∠ADB=90°,∴∠BAD=90°﹣40°=50°,∵AB=AC,∴∠ABC=∠ACB=(180°﹣50°)=65°;当BD在△ABC外部时,如图2,∵BD为高,∴∠ADB=90°,∴∠BAD=90°﹣40°=50°,∵AB=AC,∴∠ABC=∠ACB,而∠BAD=∠ABC+∠ACB,∴∠ACB=∠BAD=25°,综上所述,这个等腰三角形底角的度数为65°或25°.故答案为:65°或25°.18.解:设AB=BC=2x,AC=y,则BD=CD=x,∵BC上的中线AD将这个三角形的周长分成18和15两部分,∴有两种情况:1、当3x=18且x+y=15时,解得x=6,y=9,即AC的长为9;2、当x+y=18且3x=15时,解得x=5,y=13,此时腰为10,即AC的长为13.综上所述,AC的长为9或13.故答案为:9或13.19.解:如图1,当DA=DC时,∵∠ACD=35°,∴∠A=35°,∵∠ACB=90°,∴∠B=55°;如图2,当CA=CD时,∵∠ACD=35°,∴∠A=(180°﹣35°)÷2=72.5°,∵∠ACB=90°,∴∠B=17.5°.综上所述,∠B的度数为55°或17.5°.故答案为:55°或17.5°.20.解:过点E作EF⊥BC于F;如图所示:则∠BFE=90°,∵△ABC是等边三角形,∴∠B=60°,BC=AB=8,∴∠FEB=90°﹣60°=30°,∵BE=AB+AE=8+4=12,∴BF=BE=6,∴CF=BC﹣BF=2,∵ED=EC,EF⊥BC,∴DF=CF=2,∴BD=BF﹣DF=4;故答案为:4.21.(1)证明:∵AB=AC,∴∠ABC=∠ACB,在△EBC和△DCB中,,∴△EBC≌△DCB(SAS),∴BE=CD.(2)图中共有5个等腰三角形.∵∠BAC=108°,AB=AC,∴∠ABC=∠ACB=36°,∵∠D=∠E=36°,∴∠D=∠BCD,∠E=∠CBE,∴∠DAB=∠EAC=72°,∴∠DBA=∠DAB=72°,∠EAC=∠ECA=72°,∴DB=DA,EA=EC,∴△ABD,△AEC,△BCD,△BCE,△ABC是等腰三角形.故答案为:5.22.(1)解:∵AB=AC,∠BAC=36°,∴∠ABC=∠C=(180°﹣∠BAC)=72°,∵BD平分∠ABC,∴∠DBC=∠ABC=36°,∴∠ADB=∠C+∠DBC=72°+36°=108°;(2)证明:∵AE∥BC,∴∠EAC=∠C=72°,∵∠C=72°,∠DBC=36°,∴∠ADE=∠CDB=180°﹣72°﹣36°=72°,∴∠EAD=∠ADE,∴AE=DE,∴△ADE是等腰三角形.23.证明:(1)∵△ABC是等腰三角形,D为底边的中点,∴AD⊥BC,即∠ADB=90°,∵AE是∠BAD的角平分线,∴∠DAE=∠EAB=30°,∵DF∥AB,∴∠F=∠BAE=30°,∴∠DAF=∠F=30°,∴AD=DF,∴△ADF是等腰三角形;(2)∵△ABC是等腰三角形,D为底边的中点,∴AD⊥BC,∠BAD=∠CAD,∵∠BAC=120°,∴∠BAD=60°,∴∠DAE=∠EAB=30°,在Rt△ADB中,∠B=30°,AB=6,∴AD=3,在Rt△ADE中,AD=3,∠DAE=30°,∴DE=.24.解:(1)△APB是直角三角形,理由如下:∵AB=AC,∠B=30°,∴∠C=30°=∠B=∠APQ,∵PQ∥AC,∴∠BPQ=∠C,∴∠APB=60°,∴∠BAP=90°,∴△APB是直角三角形;(2)当AQ=QP时,∴∠QAP=∠APQ=30°,∴∠BQP=∠QAP+∠APQ=60°,当AP=PQ时,则∠AQP=∠P AQ=75°,∴∠BQP=105°,当AQ=AP时,则∠AQP=∠APQ=30°,∵P不与B、C重合,∴不存在,综上所述:∠BQP=105°或60°.25.证明:(1)∵△ABC是等边三角形,∴∠A=∠B=∠ACB=60°.∵DE∥AB,∴∠B=EDC=60°,∠A=∠CED=60°,∴∠EDC=∠ECD=∠DEC=60°,∵EF⊥ED,∴∠DEF=90°,∴∠F=30°∵∠F+∠FEC=∠ECD=60°,∴∠F=∠FEC=30°,∴CE=CF.(2)由(1)可知∠EDC=∠ECD=∠DEC=60°,∴CE=DC=2.又∵CE=CF,∴CF=2.∴DF=DC+CF=2+2=4.26.解:(1)∵∠ACB=90°,CD⊥AB,∴∠ACD+∠A=∠B+∠A=90°,∴∠ACD=∠B,∵CE平分∠BCD,∴∠BCE=∠DCE,∴∠B+∠BCE=∠ACD+∠DCE,即∠AEC=∠ACE;(2)∵∠AEC=∠B+∠BCE,∠AEC=2∠B,∴∠B=∠BCE,又∵∠ACD=∠B,∠BCE=∠DCE,∴∠ACD=∠BCE=∠DCE,又∵∠ACB=90°,∴∠ACD=30°,∠B=30°,∴Rt△ACD中,AC=2AD=2,∴Rt△ABC中,AB=2AC=4,∴BD=AB﹣AD=4﹣1=3.27.(1)解:如图1中,在等边三角形△ACD中,∠CAD=∠ADC=60°,AD=AC.∵E为AC的中点,∴∠ADE=∠ADC=30°,∵AB=AC,∴AD=AB,∵∠BAD=∠BAC+∠CAD=160°,∴∠ADB=∠ABD=10°,∴∠BDF=∠ADF﹣∠ADB=20°.(2)①补全图形,如图所示.②证明:连接AN.∵CM平分∠ACB,∴设∠ACM=∠BCM=α,∵AB=AC,∴∠ABC=∠ACB=2α.在等边三角形△ACD中,∵E为AC的中点,∴DN⊥AC,∴NA=NC,∴∠NAC=∠NCA=α,∴∠DAN=60°+α,在△ABN和△ADN中,∴△ABN≌△ADN(SSS),∴∠ABN=∠ADN=30°,∠BAN=∠DAN=60°+α,∴∠BAC=60°+2α,在△ABC中,∠BAC+∠ACB+∠ABC=180°,∴60°+2α+2α+2 α=180°,∴α=20°,∴∠NBC=∠ABC﹣∠ABN=10°,∴∠MNB=∠NBC+∠NCB=30°,∴∠MNB=∠MBN,∴MB=MN。

人教版八年级下册数学专题复习及练习(含解析):等腰三角形

人教版八年级下册数学专题复习及练习(含解析):等腰三角形

专题13.3 等腰三角形知识点1:等腰三角形1.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.2.等腰三角形的性质:(1)等腰三角形的两个底角相等(简写成“等边对等角”).(2)等腰三角形的顶角平分线,底边上的中线、 底边上的高互相重合(通常称作“三线合一”).3.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).知识点2:等边三角形1.定义:三条边相等的三角形叫做等边三角形.2.等边三角形的性质和判定:(1)等边三角形的三个内角都相等,并且每一个角都等于60°。

(2)三个角都相等的三角形是等边三角形。

(3)有一个角是60°的等腰三角形是等边三角形。

知识点3:直角三角形的一个定理在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.【例题1】如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求:△ABC各角的度数.【例题2】证明:在直角三角形中,如果一个锐角等于30°, 那么它所对的直角边等于斜边的一半. 已知:如图,在Rt △ABC 中,∠C=90°,∠BAC=30°.求证:BC=AB .【例题7】已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( )A .B .C .D .不能确定【例题3】如图,已知AC ⊥BC ,BD ⊥AD ,AC 与BD 交于点O ,AC=BD.求证:(1)BC=AD ;(2)△OAB 是等腰三角形.一、选择题1.已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( )12C AA.B.C.D.不能确定2.如图所示,点D是△ABC的边AC上一点(不含端点),AD=BD,则下列结论正确的是()A.AC>BC B.AC=BC C.∠A>∠ABC D.∠A=∠ABC3.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN 为等边三角形,则满足上述条件的△PMN有()A.1个B.2个C.3个D.3个以上4.如图所示,底边BC为2,顶角A为120°的等腰△ABC中,DE垂直平分AB于D,则△ACE的周长为()A.2+2B.2+C.4 D.3二、解答题5.已知:在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且DE=DF.求证:△ABC是等边三角形.6.如图,在△ABC中,过C作∠BAC的平分线AD的垂线,垂足为D,DE∥AB交AC于E.求证:AE=CE.7.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.已知:∠CAE 是△ABC 的外角,∠1=∠2,AD ∥BC (如图).求证:AB=AC .8.已知:如图,AD ∥BC ,BD 平分∠ABC .求证:AB=AD .9.证明:等腰三角形两底角的平分线相等.已知:如图,在△ABC 中,AB=AC ,BD 、CE 是△ABC 的平分线.求证:BD=CE .10.证明:等腰三角形两腰上的高相等.已知:如图,在△ABC 中,AB=AC ,BE 、CF 分别是△ABC 的高.E DCAB11.证明:等腰三角形两腰上的中线相等.已知:如图,在△ABC 中,AB=AC ,BD 、CE 分别是两腰上的中线.求证:BD=CE .12.已知:如图,在△ABC 中,AB=AC=2a ,∠ABC=∠ACB=15°,CD 是腰AB 上的高.求:CD 的长.13.已知:如图,△ABC 中,∠ACB=90°,CD 是高,∠A=30°.求证:BD=AB .14.已知直角三角形的一个锐角等于另一个锐角的2倍,这个角的平分线把对边分成两条线段.求证:其中一条是另一条的2倍.已知:在Rt △ABC 中,∠A=90°,∠ABC=2∠C ,BD 是∠ABC 的平分线.1415.已知:如图,在Rt △ABC 中,∠C=90°,BC=AB .求证:∠BAC=30°.16.已知,如图,点C 为线段AB 上一点,△ACM 、△CBN 是等边三角形.求证:AN=BM .17.一个直角三角形房梁如图所示,其中BC ⊥AC ,∠BAC=30°,AB=10cm , CB 1⊥AB ,B 1C ⊥AC 1,垂足分别是B 1、C 1,那么BC 的长是多少?18.如图,△ABC 中,AB=AC ,∠A=36°,AC 的垂直平分线交AB 于E ,D 为垂足,连接EC .(1)求∠ECD 的度数;(2)若CE=5,求BC 长.12专题13.3 等腰三角形知识点1:等腰三角形1.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.2.等腰三角形的性质:(1)等腰三角形的两个底角相等(简写成“等边对等角”).(2)等腰三角形的顶角平分线,底边上的中线、 底边上的高互相重合(通常称作“三线合一”).3.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).知识点2:等边三角形1.定义:三条边相等的三角形叫做等边三角形.2.等边三角形的性质和判定:(1)等边三角形的三个内角都相等,并且每一个角都等于60°。

2020学年八年级上数学(人教版)《三角形》单元测试(5)

2020学年八年级上数学(人教版)《三角形》单元测试(5)

2020学年八年级上数学(人教版)《三角形》单元测试(5)姓名:班级:学号:成绩:第Ⅰ卷一、选择题(每题3分,共30分)1.等腰三角形中,一个角为50°,则这个等腰三角形的顶角的度数为()A.150°B.80°C.50°或80°D.70°2.下面四个图形中,线段BE是⊿ABC的高的图是()3.已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是()A.13cm B.6cm C.5cm D.4cm4.三角形一个外角小于与它相邻的内角,这个三角形是()A.直角三角形 B.锐角三角形 C.钝角三角形 D.不能确定5.如图,在直角三角形ABC中,AC≠AB,AD是斜边上的高,第2题图DE ⊥AC ,DF ⊥AB ,垂足分别为E 、F ,则图中与∠C(∠C 除外)相等的角的个数是( )A 、3个B 、4个C 、5个D 、6个6.五角星的顶点为A 、B 、C 、D 、E , ∠A +∠B +∠C +∠D +∠E 的度数为( )A 、90°B 、180°C 、270°D 、360°7.如图,将一副三角板叠放在一起,使直角的顶点重合 于O ,则∠AOC+∠DOB=( )A 、900B 、1200C 、1600D 、18008.已知△ABC 中,∠A=20°,∠B=∠C ,那么三角形△ABC 是( )A .锐角三角形B .直角三角形C .钝角三角形D .正三角形9.如图,BD 平分∠ABC ,CD ⊥BD ,D 为垂足,∠C=55°,则∠ABC 的度数是( )A .35°B .55°C .60°D .70°DA第5题图第9题图第10题图10.如图,AD是△ABC的角平分线,点O在AD上,且OE⊥BC于点E,∠BAC=60°,∠C=80°,则∠EOD的度数为()A.20°B.30°C.10°D.15°二、填空题(每题3分,共18分)11.如图,一面小红旗其中∠A=60°, ∠B=30°,则∠BCD= 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020学年八年级数学练习专题:等腰三角形
【模拟试题】
一. 选择题:
1. 等腰三角形的一个角是94°,则腰与底边上的高的夹角为()
A. 43°
B. 53°
C. 47°
D. 90°
2. 等腰三角形周长为13cm,其中一边长为3cm,则该等腰三角形底边长()
A. 7cm
B. 3cm
C. 7cm或3cm
D. 5cm
3. 等腰三角形的两个内角的比是1:2,则这个等腰三角形是()
A. 锐角三角形
B. 直角三角形
C. 锐角三角形或直角三角形
D. 以上结论都不对
4. 已知等腰三角形的一个外角等于70°,则底角的度数为()
A. 110°
B. 55°
C. 35°
D. 不能确定
5. 等腰三角形一腰上的高与底边所成角为36°,这个等腰三角形的顶角为()
A. 36°
B. 72°
C. 36°或72°
D. 54°
二. 填空题:
1. 如果等腰三角形一个角是45°,那么另外两个角的度数为
2. 等腰三角形一个外角等于110°,则底角的度数是
3. 等腰三角形互相重合
4. 等腰三角形底边长为10,则其腰长x的范围是
5. 等腰三角形的底边长为5,一腰上中线把这个三角形周长分为两部分,它们的差为3,则腰长为
三. 解答题:
1. 如图,已知AB=AE,∠B=∠E,BC=ED,F是CD中点,求证:AF⊥CD
2. 如图,CE、CF分别平分∠ACB和∠ACB的外角,EF∥BC交AC于D,求证:DE=DF
【试题答案】
一.
1. C
2. B
3. C
4. C
5. B
二.
1. 45°和90°或67.5°和67.5°
2. 70°或55°
3. 顶角角平分线和底边中线和底边高线
4. 大于5
5. 8
三.
1. 连结AC和AD,证明△ABC≌△AED,得到AC=AD,再利用等腰三角形三线合一
2. 分别证明DE=DC,DF=DC,所以DE=DF。

相关文档
最新文档