电路 第一章
第一章电路的基本概念和基本定律
开关
实际电路
电源
电路模型 3
(1)电源:供给电能的设备。
把其它形式的能量转换为电能。
(2)负载: 消耗电能的设备。
把电能转换为其它形式的能量
(3)中间环节(又称传输控制环节):
各种控制电器和导线,起传输、分 配、控制电能的作用。
4
1.1.2 电路中的物理量 1、电流
定义 电荷有规律的定向运动即形成电流
(2) 列电路方程:
Uab UR E
UR Uab E
IR
UR R
Uab E R
15Leabharlann R aIR E UR
b U
IR
U
R
E
(3) 数值计算
U 3V
IR
3-2 1
1A
(实际方向与假设方向一致)
U 1V
IR
1 2 1
1A
(实际方向与假设方向相反)
16
(共7 个)
31
(一) 克氏电流定律(KCL)
对任何节点,在任一瞬间,流入节点的电流等于由节点
流出的电流, 即: I 入= I 出 或者说,在任一瞬 间,一个节点上电流的代数和为 0。 即: I =0
例
I2
I1 I3 I2 I4
I1
I3
或:
I4
I1 I3 I2 I4 0
(二) 克氏电压定律(KVL)
对电路中的任一回路,沿任意循行方向转一周,其 电位升等于电位降。或各电压的代数和为 0。
I1
a
I2
即: U 0
R1
R2
例如: 回路 #3
电路原理第一章
(2) 设电流参考方向如 (c) 并在c点画上接地符号 并在 点画上接地符号
q 4 I = = − = −2 A t 2
= = W W
ac
电位: 电位:
V V V
a
q
bc
=
8 + 12 4
= 5V
b
q
12 = 4
= 3V
c
= 0
(c为参考点 为参考点) 为参考点
U
ab
所以电压: 所以电压:
= V a − V b = 5 − 3 = 2V
dw ( t ) p (t) = dt
由: u ( t ) = d w ( t )
对于实际电路,根据它的电气特性, 对于实际电路,根据它的电气特性,由电路 元件来抽象出它的电路模型的过程称为电路 的建模。电路的建模时, 的建模。电路的建模时,常需要用到理想化 来化简电路; 来化简电路;另一方面还需注意电器部件在 不同工作条件下的电气特性不一定相同, 不同工作条件下的电气特性不一定相同,因 而相应的电路模型也会不同。 而相应的电路模型也会不同。
选择的参考方向不同, 选择的参考方向不同,则列出的电路方程也 不一样,得到方程的解也不尽相同, 不一样,得到方程的解也不尽相同,但这些 解应该是大小相等而只存在着符号的差异。 解应该是大小相等而只存在着符号的差异。 综合解的符号和参考方向, 综合解的符号和参考方向,这些不同的电路 方程的解所表示的实际电流或电压应该是完 全一致的。 全一致的。 习惯上,电阻、电容、 习惯上,电阻、电容、电感等元件支路上的 端电压和流经电流取为关联参考方向。 端电压和流经电流取为关联参考方向。
抽象的电路元件用来体现单纯的电性质: 抽象的电路元件用来体现单纯的电性质: 导线----导通电流 导线 导通电流 电源----提供电能 电源 提供电能 电阻----消耗电能 电阻 消耗电能 电容----以电场形式储存电能 电容 以电场形式储存电能 电感----以磁场形式储存电能 电感 以磁场形式储存电能 这样就可以用理想化的电路元件来表示实际物 理电器件的某一方面电磁特性, 理电器件的某一方面电磁特性,而以其组合在 电路模型中来综合表示该实际物理电器件及其 构成的电路。 构成的电路。
电路的基本原理(第一章)
参考方向 实际方向
若 P = UI 0
a +
b U_ R
“吸收功率” I (负载)
若 P = UIa 0
I
+ + “发出功率”
-
U_ b
(电源)
(2)当U和I参考方向选择不一致的前提下
若 P = UI 0
a +
b U_ R
“吸收功率” I (负载)
若 P = UI 0
I
+
-
+
U_
“发出功率” (电源)
中间环节:连接电源和负载的部分,其传输和分 配电能的作用。例如:输电线路
举例:(电子电路,即信号电路)
放 大 器
电源 (信号源) 中间环节
负载
电路的作用之二:传递和处理信号。
1.2 电路模型
I
电 池
灯 泡
+ E
_
+
RU
_
电源
负载
理想电路元件:在一定条件下,突出其主要电磁性能, 忽略次要因素,将实际电路元件理想化
对任何节点,在任一瞬间,流入节点的电流等于 由节点流出的电流。或者说,在任一瞬间,一个节
点上电流的代数和为 0。 即: I =0
例
I2
I1 I3 I2 I4
I1
I3
或:
I4
I I I I 0
1
3
2
4
克氏电流定律的依据:电流的连续性
克氏电流定律的扩展
电流定律还可以扩展到电路的任意封闭面。
例 I1 A
I
a
+
RO
+
U
E_
-
b
I=0
电路原理 第1章 电路的基本概念与基本定律
1.2.3 电功率
1. 电功率的定义 电功率的定义 图1.11(a)所示方框为电路中的一部分a、b段,图中采用了关 联参考方向,设在dt时间内,由a点转移到b点的正电荷量为dq, ab间的电压为u,根据对式(13)的讨论可知,在转移过程中dq失去 的能量为
dω (t ) = u (t )dq (t )
I1 a b I3 I2 c
d
图1.4例1.1图
1.2.2 电压及其参考方向 电压及其参考方向 1. 电压的定义及单位
u=
dω dq
(1—3)
在电路中,电压的单位为伏特,简称伏(V),实用中还有千 伏(kV),毫伏(mV)和微伏(µV)等。 2. 用电位表示电压及正负电压的讨论 (1—4) (1)如果正电荷由a点移到b点,获得能量,由a点到b点为电 位升(电压升),即 u ab = u a − ub < 0 (2)如果电荷由a点移到b点, 失去能量, 则a点为高电位端 (正极), b点为低电位端(负极)由a点到点b为电位降(电压降), 即 u ab = u a − ub > 0 3.直流电压的测量 直流电压的测量 在直流电路中, 测量电压时, 应根据电压的实际极性将直流 电压表跨接在待测支路两端 。
电路模型与电路图 所谓电路模型,就是把实际电路的本质抽象出来所 构成的理想化了的电路。将电路模型用规定的理想元件 符号画在平面上形成的图形称作电路图。 图1.1就是一个 最简单的电路图。
+ US - RS RL
图1.1电路模型图
1.2 电路变量
电学中几个重要的物理量,如:电流 电压 电功率 电流、电压 电功率和 电流 电压、电功率 电能量等是研究电路过程中必然要涉及的电路变量。 电能量 1.2.1 电流及其参考方向 1. 电流的表达式及单位 dq i= (1—1) dt q (1—2) I= t 国际单位制(SI)中,电荷的单位是库仑(C),时间的单 位是秒(s),电流的单位是安培, 简称安(A), 实用中还有 毫安(mA)和微安(µA)等。
第1章(电路的基本概念与基本定律)
U与 I 的参考方向选择亦 为非关联参考方向。
电阻
而电压U’与电流 I 的参考方向为关联 参考方向。
电源
电功率
功率的概念:设电路任意两点间的电压为 U ,流入部分
电路的电流为 I, 则这部分电路消耗的功率为:
a
b
I
U
P U I
R
W
功率有无正负? 如果U I方向不一 致结果如何?
在 U、 I 正方向选择一致的前提下:
U=-IR
例题1
如图所示
I=0.28A E=3V + I =-0.28A
电动势为E=3V 方向由负极指向正极
U=2.8V U =-2.8V
电压为U=2.8V 由指向 电流为I=0.28A 由左流向右 R0 其参考方向为关联参考方向。
U 与 I 的参考方向选择亦 为关联参考方向。 而电压U 与电流 I 的参考方向为非关 联参考方向。
负载电阻两端 的电压为
为电源外特性关系式
U=IR
有载工作状态
一般常见电源的内阻都 很小当R0« 时, R 则 U E
a
E R0 b U
I
此时当电流(负载)变动 时,电源的端电压变化 不大。
R
有载工作状态(功率平衡式)
由 得:
U=E-IR0 UI=EI-I2R
I
0
a
E R0 U R
负载吸收的功率
转换成电能,是向电路提供能量的装置。
负载:指电动机、电灯等各类用电器,在电路中是接
收 电能的装置,可将其它形式的能量转换成电能。
中间环节:将电源和负载连成通路的输电导线、控
制电路通断的开关设备和保护电路的设备等。
电路课件_第1章(第五版_邱关源_高等教育出版社)
+
+
_
(2) 电压、电流的参考方向关联;
+
u
P uS i
吸收功率,充当负载
_
物理意义: 电场力做功 , 电源吸收功率。
例
计算图示电路各元件的功率。
R 5
5V
_
i
_
PR Ri 5 1 5W
2
满足:P(发)=P(吸)
+
10V
uR
+
_ +
解
uR (10 5) 5V
i
§1-3 电功率和能量(power)
一.电功率 电压的定义: 电流的定义:
dW u dq
dq i dt
电功率:
dW u dq u i dt p u i dt dt dt
(Watt,瓦特) (Joule,焦耳)
功率的单位:W (瓦) 能量的单位: J (焦)
二.判断元件是吸收功率还是发出功率
注
具有相同的主要电磁性能的实际电路部件, 在一定条件下可用同一模型表示; 同一实际电路部件在不同的应用条件下,其 模型可以有不同的形式
例
§1-2 电流和电压的参考方向
一、问题的引入
电流方向?
考虑电路中每个电阻的电流方向
5Ω 3Ω
10V
9V
1.2 电压和电流的参考方向
1. 电路基本物理量的实际方向 物理中对基本物理量规定的方向 物理量 电流 I 实 际 方 向 正电荷运动的方向 高电位 低电位 (电位降低的方向) 低电位 高电位 (电位升高的方向) 单 位 kA 、A、mA、 μA kV 、V、mV、 μV kV 、V、mV、 μV
电路 第一章
绪论1. “电路分析”是电类(强电、弱电)专业本科生必修的重要的是电气程专业的主本课程的地位修的一门重要的专业基础课。
是电气工程专业的主干技术基础课程。
通过对本课程的学习,使同学们基本论分析计算电路的掌握电路的基本理论、分析计算电路的基本方法和进行实验的基本技能,为后续课程准备必要的电路知识知识。
前续课程高等数学大学物理等前续课程:高等数学、大学物理等。
后续课程:模拟电子技术、数字电子技术、信号与系统等与系统等。
3.研究的内容●电路理论的研究体系:电路分析(analysis):在给定的激励(excitation)下,求结构已知的电路的响应(response)。
激励给定响应待求?电路已知re电路综合(synthesis):在特定的激励下,为了得到预期的响在特定的激励为得到预期的响应而研究如何构成所需的电路。
激励已知目标给定电路未知re●电路分析(analysis)研究内容:以电路模型为基础,编写描述电路的方程式,通过响应的求解、分析,认识已知电路的功能和特性。
根据所分析电路的不同可分为:1、电阻电路分析;2、动态电路分析;动态电路分析3、正弦稳态电路分析4、二端口网络二端口网络(简单电路)5. 教材及主要参考书1.教材:12006[]邱关源,《电路》,高等教育出版社,第五版,2.参考书:[2]汪缉光,刘秀成主编,《电路原理》(第二版),清华大学出版社。
[3](美)尼尔森.《电路》.北京:电子工业出版社,20086. 具体要求及成绩评定⑴自主学习要求:⑵听课要积极主动⑶课后及时做思考题、作业,有问题及时课后时做考题作有问题时解决认真作业,必须独立完成;必须抄题目、画电路,电路图使用铅笔和尺子,下一节课前必须交上一节课的作业。
20 %平时成绩成绩评定标准:实验成绩期末考试20 %60 %(平时成绩:考勤、作业、课堂练习提问、答疑)第一章电路模型和电路定律第章电路模型和电路定律1.1电路和电路模型.1.2电流和电压的参考方向1.3电功率和能量1.4电路元件141.5电阻元件1.6电压源和电流源161.7受控电源1.8基尔霍夫定律教学目标1.牢固掌握电路模型和理想电路元件的特性。
第一章电路的基本概念和定律
§1.1 电路与电路模型
基本的电路参数有3个,即电阻、电容和电感。 基本的集中参数元件有电阻元件、电感元件和电容元件,分别用图13(a),(b)和(c)来表示。
图1-3 三种基本的集中参数元件
返回
§1.2 电路中的基本描述量
电流 电压 电阻 电功及电功率
§1.2 电路中的基本描述量
电流——它是指电荷在电路中做规则的定向运动 (如图案1.2-1) 。电流分直流和 交流两种。电流的大小和方向不随时间变化的叫做直流,用符号DC 表示。 电流的大小和方向随时间变化的叫做交流,用符号AC表示。
我们以d为参考点(即Ud=0) 设Uc=15V,R=5欧姆则电流 I=(Uc-Ud)/R= 15/5=3A Ub=IR=3×(4+5)
=3×9=27V Ua=IR=3×(2+4+5)=3×11=33V 我们再以b为参考点(即Ub=0)设Ua=6V R=2欧姆 则电流I=(UaUb)/R=6/2=3A
P=U×I (P>0吸收能量 P<0释放能量) 非关联参考方向:(电路图如右)-──→─□───+(电压为U,电流为I, 电阻为R) P=-U×I (P>0吸收能量 P<0释放能量) 举例如下:
如下图所示:R=6欧姆、电压1和2分别为2V和6V,求两个电压元件各自的功 率?并判断吸收和释放 分析:首先要求功率必须先求出电流,然后在利用公 式P=UI来求解。
Uc=;5)=-27V (可见c、d两 点的电位为负) 总结:电路中某点电位数值随选参考点的不同而改变,但参考点一经 选定,那么某点电位就是唯一确定的数值。
返回
§1.2 电路中的基本描述量
电功—电流通过负载时,将电场能转换成 其他形式的能,即电流做功叫做电功。 电功用符号“W”表示,单位为焦耳(J)。 电功W可用下式表示:
电路分析-第1章 电路的基本概念和基本定律
Uad=φa—φd=10—(—3)=13V
Ubd=Uba+Uad=—2+13=11V
以上用两种思路计算所得结果完全相同,由此可 (1) 两点之间的电压等于这两点之间路径上的
(2) 测Uab和Ubd的电压表应按图(b)所示跨接在 待测电压的两端,其极性已标注在图上。
§1-3 电功率与电能
一 、电功率 1. 定义 图中表示电路中的一部分 a 、 b 段,图中采 用了关联参考方向,设在 dt 时间内,由 a 点转移 到b点的正电荷量为dq,ab间的电压为u,在转移 过程中dq失去的能量为 d udq 因此,ab段电路所消耗的功率为
(a)开路状态;
(b)短路状态
§1-5电压源和电流源
例1.5 某电压源的开路电压 为30V,当外接电阻R后, 其端电压为25V,此时流经 的电流为5A,求R及电压源 内阻RS。 解: 用实际电压源模型表征该 电压源,可得电路如图所示。 即: 设电流及电压的参考方向如图 中所示,根据欧姆定律可得:
+ 30 V - RS R I + U -
U=U -R I S S
(a)
(b)
内阻
电阻Rs表示实际 电源的能量损耗
§1-5电压源和电流源
电路的两种特殊状态 开路状态。如图(a)所示。此时不接负载,电 流为零,端电压等于开路电压。可用开路电压 和内阻两个参数来表征。
+ US - RS - U=UOC + + US - RS ISC = UOC RS
§1-5电压源和电流源
U R I
根据
S S
U R I
25 5 5
U U R I
30 25 1 5
U S U 可得:R S I
§1-5电压源和电流源
第1章 电路的基本知识.ppt
来代替,如图1-24所示.这种实际电流源的伏安关系式为
(1-24)
图1-25为实际电流源的伏安特性曲线。其中,实际电流源 的开路电压UOC=R0′Is,短路电流ISC=IS。
上一页 返回
1.6 基尔霍夫定律
基尔霍夫定律(Kirchhoff's Law)是德国物理学家基尔霍 夫于1845年提出来的。基尔霍夫定律是电路中各电流、电 压都必须遵守的基本规律。基尔霍夫定律有两大定律:第一定 律,也叫电流定律(Kirchhoff's Current Law),简写为 KCI;第二定律,也叫电压定律(Kirchhoff's Voltage Law),简写为KVI。
线性电阻元件的图形符号如图1-9所示。在电压和电流参考
方向关联的情况下,其伏安特性曲线如图1-10所示,表达
式为
u=Ri
(1-10)
满足欧姆定律。其中,R为电阻元件,它一方面表示了这个 元件是电阻元件,另一方面也表示了该元件的参数。
下一页 返回
1. 3 电阻元件
线性电阻元件也可用另一个参数电导表征,电导用符号G表 示,其定义为
上一页 下一页 返回
1. 2 电路的主要物理量
我们规定电压降低的方向为电压的实际方向。其表示方法有 三种,如图1-3所示,且都表示电压的参考方向由A指向B。
对于任意一个元件的电流或电压参考方向可以独立设定。如 果电流和电压的参考方向相同,则称为关联参考方向,如图 1-4(a)所示;如果电流和电压的参考方向不相同,则称为非 关联参考方向,如图1-4(b)所示。
下一页 返回
1.5 电压源和电流源
1.5.2电流源
理想电流源是一种能给电路提供稳定电流的理想元件。理想 电流源输出的电流始终保持恒定值Is或为给定的时间函数is, 而与加在它上面的电压无关,简称电流源。实际电路元件中 的光电池,其输出电压受外电路的影响很大,但输出的电流 却近似恒定,可近似地视为电流源。常用的晶体管也可看作 输出电流受控制的电流源。电流源在电路中的图形符号如图 1-18所示,其中Is和is、为电流源的源电流,箭头表示其参 考方向。
电路第1章电路的基本定律
图1.15(b)
3、短路
图1.16(c)
短路电流:
IS
E R0
电源端电压: U 0
负载消耗功率:P 0
短路时,由于电源内阻R0很小,故短
路电流很大,电源所产生功率全部消
电耗源在短内路阻是上一。种非常严重的事故,应该
在电路中设置短路保护装置。
例1-4 。试
在图1.16所示电路中,已知E=100V,
例如,图示复杂电路各支路电流关系 可写成: I1 I2 I3
或
I1 I2 I3 0
基尔霍夫定律不仅适用于电路中的任一节点,也可 推广至任一 封闭面如图1.19。
节点a: Ica Ia Iab
节点b: 节点c:
Iab Ibc Ib
Ibc Ica Ic
图1.19 KCL推广形式
图1.18 复 杂电路
1、基尔霍夫电流定律(KC L)任一瞬间流入某个节点的电流之和等于流出该节点的
电流之和。其表示式为
Ii I0
也可写成
Ii I0 Ii (I0 ) 0
I 0
也可表述成,任一瞬间流入某个节点的电流代 数和为0。若流入节点的电流为正,那么流出节 点的电流就取负。
图1.14 线性电容元件
1.3 电气设备的额定值及电路的 工作状态
• 1.3.1 电气设备的额定值 • 1.3.2 电路的3种工作状态
1.3.1 电气设备的额定值
基本概念:
• 额定电流 I N :为使电气设备工作温度不超过其最高允许温度,对电气设 备长期运行时的最大容许电流设定了一个限制值,该限制值便是电气设备 的额定电流。
• 信号的处理.如电话机、电视机、收音机等。将 声音或图像信号转换成电信号经各种处理后,送 到负载,负载再将电信号转换成声音或图像信号 。
电路基础-第1章 电路的基本概念
I
i
当它向外电路提供电流时,它的端电压U总是小于US , 电流越大端电压U 越小。
31
实际电流源模型
BUCT
一个实际电流源,可用一个电流为 iS 的理想电流源和一个 内电导 Gs 并联的模型来表征其特性。Gs: 电源内电导,一般很小。 iS
Gs i I + u U _
U
iS=IS时,其外特性曲线如下:
#对于25W的灯泡,则电流 I=P/U=25/220=0.114A; #对于1000W的电炉子,则电流 I=P/U=1000/220=4.55A;
26
二、 理想电流源:
光电池、光电管 iS
BUCT
电源输出电流为iS,其值与此电源的端电压u 无关。
电路符号:
特点: (a) 电源电流由电源本身决定,与外电路无关;
第一章 电路的基本概念 ( basic concepts of circuit )
重点:
1.电流和电压的参考方向
2. 电路元件特性
BUCT
3. 基尔霍夫定律
1
第一章 电路的基本概念
1.1 电路和电路模型 1.2 电路的基本物理量 1.3 电功率和电能量 1.4 无源二端元件 1.5 有源二端元件 1.6 受控源 1.7 运算放大器 1.8 基尔霍夫定律
1、等效电压源和等效电流源
电压源的串并联
串联: n个电压源的串联,可以用一个电压源等效替代。
例:
+ 12V _ _
º + 9V_ º
º
3V
+
º
28
电流源的串并联 并联:n个电流源的并联可以用一个电流源等效替代。 º iS1 iS2 iSk º iS º º
第一章 电路的基本概念与基本定律
元件
想想 练练
电压、电位、 电动势有何异 同?
电功率大的用电器, 电功也一定大,这种说 法正确吗?为什么?
思考 回答
在电路分析中,引入参考方向的目的是什么? 应用参考方向时,你能说明“正、负”、“加、 减” 及“相同、相反”这几对词的不同之处吗? 电路分析中引入参考方向的目的是为分析和计算电路提 供方便和依据。应用参考方向时,“正、负”是指在参考方 向下,电压和电流的数值前面的正、负号,若参考方向下一 个电流为“-2A”,说明它的实际方向与参考方向相反,参考 方向下一个电压为“+20V”,说明其实际方向与参考方向一 致;“加、减”指参考方向下列写电路方程式时,各项前面 的正、负符号;“相同、相反”则是指电压、电流是否为关 联参考方向, “相同”是指电压、电流参考方向关联,“相 反”指的是电压、电流参考方向非关联。
1.2.2 电压、电位和电动势
a
电动势E 只存 在于电源内部 ,其大小反映 了电源力作功 的本领。其方 向规定由电源 “负极”指向 电源“正极” 。
S
I
R0
+
U
+ _
b E
RL
–
电压U是反映电 场力作功本领的 物理量,是产生 电流的根本原因 。电压的正方向 规定由“高”电 位指向“低”电 位。
电位V是相对于参考点的电压。参考点的 电位:Vb=0;a点电位: Va=E-IR0=IR
电压和电位的关系:Uab=Va-Vb
电动势和电位一样属于一种势能,它能够将低 电位的正电荷推向高电位,如同水路中的水泵能够 把低处的水抽到高处的作用一样。电动势在电路分 析中也是一个有方向的物理量,其方向规定由电源 负极指向电源正极,即电位升高的方向。
电压、电位和电动势的区别
第一章 电路基础知识
课题第一章电路的基本概念教学目标1.掌握电路的组成及其作用,电气符号。
2.理解电流产生的条件,掌握电流的计算公式。
3.理解电流的概念、方向,掌握电流的测量。
4.掌握电压、电位和电动势的计算方法和他们的测量以及他们三者之间的关系。
5.了解电阻的概念和电阻与温度的关系,掌握电阻定律以及电阻的测量。
6.掌握欧姆定律和电路的三种状态。
7.理解电能和电功率的概念。
8.掌握焦耳定律以及电能、电功率的计算。
教学重点1.电路各部分的作用,电流的计算公式和电流的测量。
2.电压、电位和电动势的计算方法和他们的测量以及他们三者之间的关系。
3.电阻定律以及电阻的测量,欧姆定律及电路的三种状态。
4.焦耳定律以及电能、电功率的计算,实际功率的计算。
5.额定功率与实际功率的关系。
教学难点1.电流产生的条件,对电路的三种状态的理解。
2.R与U、I无关,温度对导体电阻的影响。
3.额定功率与实际功率的关系。
教学课时16课时教学内容课题§1-1 电流和电压教学目标1.电路的组成及其作用,电气符号。
2.理解电流产生的条件,掌握电流的计算公式。
3.理解电流的概念、方向,掌握电流的测量。
4.掌握电压、电位和电动势的计算方法和他们的测量以及他们三者之间的关系。
教学重点1.电路各部分的作用。
2.电流的计算公式和电流的测量。
3.电压、电位和电动势的计算方法和他们的测量以及他们三者之间的关系。
教学难点1.电流产生的条件和电流的测量。
2.电位的计算方法和测量。
3.电压、电位和电动势三者之间的关系。
讲授式+讨论式+分析式教学形式教学课时8课时教育思想本节内容应与物理联系起来,并进行内容上的比较,注意这不是简单的重复,而是达到温故知新的目的,而且并节内容的图片较多,很直容易理解。
运用公式应灵活,不能读死书,处理生活中的问题也是一样,会随机应变。
新课引入根据初中物理上所学的电路知识,要求学生分析并画出教室里面的日光灯电路和电风扇电路,同时要求学生根据自己所画的电路图分析日光灯电路和电风扇电路的工作原理,老师总结学生的分析并讲解该电路来引入电工基础上的电路内容。
电工学第一章-电路基本定义
在分析电路时,欧姆定律可以帮助我 们计算电流的大小。在设计电路时, 欧姆定律可以帮助我们选择合适的电 阻元件。在计算功率和能量时,欧姆 定律也是重要的工具。
注意事项
总结词
在使用欧姆定律时,需要注意其适用条件和局限性。
详细描述
欧姆定律适用于线性电路,即电阻值不随电压或电流的变化而变化的电路。对于非线性电路,欧姆定 律可能不适用。此外,欧姆定律也假定电路中没有电容和电感的影响,因此在实际应用中需要考虑这 些因素的影响。
05
电功率与电能
电功率的定义与计算
电功率
表示电场力做功的快慢程度,即 单位时间内电场力所做的功。
电功率计算公式
$P = frac{U^2}{R}$ 或 $P = I^2R$,其中 $U$ 是电压,$I$ 是 电流,$R$ 是电阻。
电能的定义与计算
电能
表示电场力做功的多少,即电场力所做的功与做功时间的比 值。
电工学第一章-电路基本定义
目录
• 电路的组成 • 电路的状态 • 电流与电压 • 欧姆定律 • 电功率与电能
01
电路的组成
电源
电源是将其他形式的能量转换为电能的装置,如电池、发电机等。
电源的特性主要包括电动势和内阻。电动势表示电源将单位正电荷从负极移动到正 极时所做的功,而内阻则表示电源内部对电流的阻力。
开路通常是由于电路中某个或多个开关处于断开状态,或者电路中存在故障导 致某段线路断开而形成的。在开路状态下,电路中的电压和电流均为零,电器 元件无法正常工作。
短路
总结词
短路是指电路中电流不经过负载直接流回电源的状态。
详细描述
短路通常是由于电路中存在低阻抗的路径,使得电流不经过正常的负载而直接流 回电源。在短路状态下,电路中的电流会非常大,可能造成电器元件的损坏或火 灾等危险。
电路课件第一章(第五版邱关源)
叠加定理
总结词
叠加定理是一种将复杂电路问题分解为多个简单电路问题的方法,通过分别求解 各个简单电路问题,最后得到复杂电路的总响应。
详细描述
叠加定理的基本思想是将原电路分解为多个独立电源的简单电路,分别求解各个 简单电路的响应,然后将各个响应叠加起来得到原电路的总响应。这种方法适用 于任何线性时不变电路,可以大大简化复杂电路的分析过程。
正弦稳态电路的分析方法
总结词
正弦稳态电路的分析方法主要包括相量法、阻抗法和导纳法等。
详细描述
相量法是一种将正弦波形的电压和电流表示为复数形式的方法,通过相量图可以直观地分析电路的相 位和幅度关系。阻抗法和导纳法则是将电路中的元件表示为阻抗或导纳的形式,通过代数运算来求解 电路的电压和电流。
正弦稳态电路的功率
过渡过程的特性
过渡过程的特性包括时间常数、最大值、 最小值、稳态值等,这些特性可以通过计
算或实验得到。
过渡过程的计算
过渡过程的计算需要使用动态电路的微分 方程,通过求解微分方程可以得到过渡过 程中电压和电流的变化情况。
过渡过程的应用
过渡过程的应用包括信号处理、控制系统、 通信系统等领域,通过研究过渡过程可以 更好地理解和控制系统的动态行为。0102Fra bibliotek0304
电阻器
限制电流流动,将电能转换为 热能。
电容器
储存电荷,具有隔直通交的特 性。
电感器
储存磁能,具有隔交通直的特 性。
二极管
单向导电,用于整流、开关等 应用。
电路的基本物理量
电流
电压
功率
电阻
单位时间内流过导体的 电荷量,用符号I表示。
电场力将单位正电荷从 一点移动到另一点所做 的功,用符号U表示。
电路第一章
第一章电路模型和电路定律§1-1 电路和电路模型1.实际电路实际电路——由电器设备组成(如电动机、变压器、晶体管、电容等等),为完成某种预期的目的而设计、连接和安装形成电流通路。
图1是最简单的一种实际照明电路。
它由三部分组成:1)提供电能的能源(图中为干电池),简称电源或激励源或输入,电源把其它形式的能量转换成电能;2)用电设备(图中为灯泡),简称负载,负载把电能转换为其他形式的能量。
3)连接导线,导线提供电流通路,电路中产生的电压和电流称为响应。
任何实际电路都不可缺少这三个组成部分。
图1 手电筒电路实际电路功能:1)进行能量的传输、分配与转换(如电力系统中的输电电路)。
2)进行信息的传递与处理(如信号的放大、滤波、调协、检波等等)。
实际电路的外貌结构、具体功能以及设计方法各不相同,但遵循同一理论基础,即电路理论。
2.电路模型电路模型——足以反映实际电路中电工设备和器件(实际部件)的电磁性能的理想电路元件或它们的组合。
理想电路元件——抽掉了实际部件的外形、尺寸等差异性,反映其电磁性能共性的电路模型的最小单元。
发生在实际电路器件中的电磁现象按性质可分为:1)消耗电能;2)供给电能;3)储存电场能量;4)储存磁场能量假定这些现象可以分别研究。
将每一种性质的电磁现象用一理想电路元件来表征,有如下几种基本的理想电路元件:1)电阻——反映消耗电能转换成其他形式能量的过程(如电阻器、灯泡、电炉等)。
2)电容——反映产生电场,储存电场能量的特征。
3)电感——反映产生磁场,储存磁场能量的特征。
4)电源元件——表示各种将其它形式的能量转变成电能的元件需要注意的是:1)具有相同的主要电磁性能的实际电路部件,在一定条件下可用同一模型表示;2)同一实际电路部件在不同的工作条件下,其模型可以有不同的形式。
如在直流情况下,一个线圈的模型可以是一个电阻元件;在较低频率下,就要用电阻元件和电感元件的串联组合模拟;在较高频率下,还应计及导体表面的电荷作用,即电容效应,所以其模型还需要包含电容元件。
电工第一章电工学
三. 短路工作状态
当电源两端由于某种原因而联 在一起时,称电源被短路。
IS a
c
短路时,可将电源外电阻视 E
R
为零,电流有捷径流过而不 通过负载。
R0
由于R0很小,所以此时电流
b
d
很大,称之为短路电流 Is 。
U=0
电路短路时的特征为
I = Is = E / R0
P = P = I2 R0
§1-6 基尔霍夫定律
大小:a、b两点间电压 Uab 在数值上等于电场力把单位正电荷 从a点移到b点所作的功。也就是单位正电荷在移动过程中所 失去的电能。
方向:正电荷在电场的作用下,从高电位向低 电位移动。规定这时正电荷的的移动方向为电 压的正方向。
在分析电路之前,可以任意选择某一方向为电 压的参考方向。当实际电压方向与参考方向一 致时,电压值为正,反之为负。
为维持导体中的电流能够连续不断地流 过,且应使得导体a、b两端的电压不致 丧失,就要将b端的正电荷移至a端。但 电场力的作用方向恰好与此相反,因此 就必须要有另一种力去克服电场力而使 b端的正电荷移至a端。电源中必须具有 这种力——电源力(非静电力)。
I
a+
Eab b
Uab _
电源力
大小:电源电动势Eab的数值等于电源力把单位正电荷 从电源的低电位b端经电源内部移到电源高电位a端所 作的功,也就是单位正电荷从电源低电位端移到高电 位端所获得的能量。
如图中的ab、acb 及adb共3条支路。
一条支路中各部分都流过一个相 同的电流,称为支路电流。
如图中的I1、 I2 及I3共3个电流。 2. 节点:电路中三条或三条以上 的支路相联结的点称为节点。
I1 c
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
能量
从 t0 到 t 电阻消耗的能量:
WR pdξ uidξ
t0 t0
t
t
u
0 i
4.电阻的开路与短路
开路
uu
i
i R
i0
u0
u 0 i
+ +
R or G 0
––
短路
i0 u0 R 0 or G
返 回
上 页
下 页
实际电阻器
返 回 上 页 下 页
U6 - 6 + U5 5 - I3
I1
+ 2 U2 - + U3 3
求图示电路中各 方框所代表的元件吸 收或产生的功率。
+
-
I2
已知: U1=1V, U2= -3V,U3=8V, U4= -4V, U5=7V, U6= -3V,I1=2A, I2=1A,,I3= -1A
返 回
上 页
下 页
+
U1 - + 1 - U4 4
返 回 上 页 下 页
1.3
1.电功率
p dw dt
电功率和能量
单位时间内电场力所做的功。
u dw dq
i
dq dt
p
dw dt
dw dq dq dt
ui
功率的单位:W (瓦) (Watt,瓦特) 能量的单位:J (焦) (Joule,焦耳)
返 回 上 页 下 页
2. 电路吸收或发出功率的判断
页
注
采用理想化电路元件的原因
a 电路元件只体现单一的电磁特性,可以用精 确的数学关系描述。(实际器件特性复杂) b 一种电路元件可以表征一类实际器件,用很少 的几种电路元件可以描述种类繁多的实际器件。 所以,对由理想化电路元件构成的电路模型可 以建立有效的分析方法。
返 回 上 页 下 页
5种基本的理想电路元件(按照器件的主要电磁作用): 电阻元件:表示消耗电能的元件 电感元件:表示产生磁场,储存磁场能量的元件 电容元件:表示产生电场,储存电场能量的元件 电压源和电流源:表示将其它形式的能量转变成 电能的元件。
u, i 取关联参考方向
+ u
i
u
P=ui 表示元件吸收的功率 P>0 吸收正功率 (实际吸收) P<0 吸收负功率 (实际发出)
u, i 取非关联参考方向
i
+
P = ui 表示元件发出的功率 P>0 发出正功率 (实际发出) P<0 发出负功率 (实际吸收)
返 回 上 页 下 页
例
+
U1 - + 1 - U4 4
1kA=103A 1mA=10-3A
1 A=10-6A
方向 规定正电荷的运动方向为电流的实际方向 元件(导线)中电流流动的实际方向只有两种可能:
实际方向
A
B B
返 回 上 页 下 页
A
实际方向
问题
对于复杂电路或电路中的电流随时间变 化时,电流的实际方向往往很难事先判断, 是未知的。
参考方向
页
2.集总参数电路
由集总元件构成的电路
集总元件 集总条件 假定发生的电磁过程都集中在元 件内部进行。
d
注意 集总参数电路中u、i 可以是时间的函
数,但与空间坐标无关。因此,任何时刻,流 入两端元件一个端子的电流等于从另一端子流 出的电流;端子间的电压为单值量。
返 回 上 页 下 页
例 两线传输线的等效电路
注意
①5种基本理想电路元件有三个特征:
(a)只有两个端子;
(b)可以用电压或电流按数学方式描述; (c)不能被分解为其他元件。
返 回 上 页 下 页
注意
①具有相同的主要电磁性能的实际电路部件, 在 一定条件下可用同一电路模型表示; ②同一实际电路部件在不同的应用条件下,其电路 模型可以有不同的形式。
第1章
电路模型和电路定律
本章重点
1.1
电路和电路模型 电流和电压的参考方向 电功率和能量 电路元件
1.5
电阻元件
1.2
1.3
1.6
1.7
电压源和电流源
受控电源
1.4
1.8
基尔霍夫定律
首页
本章主要内容
1.电路基本概念:理想元件、电路模型、 集总假设、参考方向、 开路、短路、电位 2.电路分析的基本变量:电压、电流、功率 3.电路分析的基本依据:——两类约束 两类约束:元件特性约束(VCR) 拓扑约束(KCL 、KVL)
当两线传输线的长度 l 与电磁波的波长满足:
l
z
i i +
u(t)
集总参 数电路
L
R
i(t )
C
-
返 回
上 页
下 页
当两线传输线的长度 l 与电磁波的波长满足: z
i i
L0 z
l
R0 z L0 z R0 z
分布参 数电路
+
i( z, t )
C0 z C0 z
+
i ( z z, t )
重点: 1. 电压、电流的参考方向 2. 电阻元件和电源元件的特性(VCR)
3. 基尔霍夫定律(KCL、KVL)
返 回
1.1 电路和电路模型
1.实际电路
功能 由电工设备和电气器件按预期
目的连接构成的电流的通路。
a 能量的传输、分配与转换; b 信息的传递、控制与处理。
发电机
共性
输电线 降压 建立在同一电路理论基础上。 升压 电动机、
U
(2)用正负极性表示
+
(3)用双下标表示
U
UAB = UA - UB
A
UAB
B
返 回 上 页 下 页
问题 在分析电路时,有时要考虑电压和电流的
参考方向的相对关系。如:分析一个元件 或一个端口的功率;说明二端口特性…
3.电流与电压关联参考方向
元件或支路的u,i 采用相同的参考方向称之为 关联参考方向。反之,称为非关联参考方向。
U
单位
dW dq
1kV=103V 1mV=10-3V
1 V=10-6V
V (伏)、kV、mV、V
实际电压方向
电位真正降低的方向。
返 回 上 页 下 页
例
a
b
已知:4C正电荷由a点均匀移动 至b点电场力做功8J,由b点移 动到c点电场力做功为12J,
①若以b点为参考点,求a、b、c 点的电位和电压Uab、U bc;
U6 - 6 + U5 5 - I3
解
P U1I1 1 2 2W(发出) 1
P U 2 I1 (3) 2 6W(发出) 2
I1
+ 2 U2 - + U3 3
P U 3 I1 8 2 16 W(吸收) 3
P U 4 I 2 (4) 1 4W(发出) 4
c
解
(2) c 0
a
b
Wac q
Wbc q
8 12 4
12 4
5V
a
b
3V
U ab a b 5 3 2 V
c
结论
U bc b c 3 0 3 V
电路中电位参考点可任意选择;参考点一经选定, 电路中各点的电位值就唯一确定;当选择不同的电位 参考点时,电路中各点电位值将改变,但任意两点间 电压保持不变。
i
+ u
关联参考方向
i
u
非关联参考方向
返 回 上 页 下 页
+
例
A
+
i
B
u
-
电压电流参考方向如图中所标, 问:对A、B两部分电路电压电 流参考方向关联否? 答:A电压、电流参考方向非关联; B电压、电流参考方向关联。
注意
① 分析电路前必须选定电压和电流的参考方向(任 意选定) ② 参考方向一经选定,必须在图中相应位置标注 (包括方向和符号),在计算过程中不得任意改变 ③参考方向不相同时,其表达式相差一负号,但电 压、电流的实际方向不变。
任意假定一个正电荷运动的方 向即为电流的参考方向。 i 参考方向 B
返 回 上 页 下 页
A
电流的参考方向与实际方向的关系: i A 参考方向 实际方向 B A i 参考方向 实际方向 B
i>0 表明
电流(代数量) 大小 方向(正负)
i<0
返 回
上 页
下 页
电流参考方向的两种表示: 用箭头表示:箭头的指向为电流的参考方向。 i A 参考方向 B
则欧姆定律写为
u
+
i –G u
u –R i
公式和参考方向必须配套使用!
返 回 上 页 下 页
3.功率和能量
功率
i
R
+
i
u
R
+
p u i i2R u2 / R
p u i (–R i) i
–i2 R - u2/ R
-
u
表明 电阻元件在任何时刻总是消耗功率的。
返 回 上 页 下 页
u ( z, t )
-
u(z z,t ) -
返 回
上 页
下 页
1.5 电阻元件
1.定义
对电流呈现阻力的元件。其特性可 电阻元件 用u~i平面上的一条曲线来描述: u 伏安 f (u, i ) 0 特性 i 0
2.线性时不变电阻元件
任何时刻端电压与电流成正比的电阻元件。 R 电路符号