2013年全国名校初三模拟数学试卷分类汇编:50_新概念型问题
2013中考数学模拟测试卷
2013中考数学模拟测试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在题.前括号内.....【】1. -2的绝对值是A.2 B.-2 C.12- D.2±【】2. 下列计算正确的是A.3x2·4x2=12x2 B.x3·x5=x15 C.x4÷x=x3 D.(x5)2=x7【】3. 某同学在“百度”搜索引擎中输入“魅力南通”,能搜索到与之相关的结果个数约为3930000,这个数用科学记数法表示为A.0.393×107 B.393×104C.39.3×105 D.3.93×106【】4. 若一个多边形的内角和是900°,则这个多边形的边数是A.5 B.6 C.7 D.8【】5. 如图所示,△ABC的顶点是正方形网格的格点,则sin A的值为A.12B.5C.10D.25【】6. 如图,点A、C、B、D分别是⊙O上四点,OA⊥BC,∠AOB=50°则∠ADC的度数为A.20° B.25° C.40° D.50°【】7. 如图所示的工件的主视图是【】8. 某鞋店一天中卖出运动鞋11双,其中各种尺码的鞋的销售量如下表:则这11双鞋的尺码组成的一组数据中,众数和中位数分别是A.24.5,24.5 B.24.5,25 C.25,24.5 D.25,25尺码(cm)23.5 24 24.5 25 25.5销售量(双) 1 2 2 5 1A.B.C.D.(第5题)【 】9. 下列轴对称图形中,只用一把无刻度的直尺不能..画出对称轴的是 A .菱形B .矩形C .等腰梯形D .正五边形【 】10. 如图,已知在Rt△ABC 中,AB =AC =2,在△ABC 内作第一个内接正方形DEFG ;然后取GF 的中点P ,连接PD 、PE ,在△PDE 内作第二个内接正方形HIKJ ;再取线段KJ 的中点Q ,在△QHI 内作第三个内接正方形……依次进行下去,则第n 个内接正方形的边长为A .21()32n ⋅B .221()2n ⋅C .121()32n -⋅ D . 1221()2n -⋅二、填空题:本大题共8小题,每小题3分,共24分.请把最后结果填在题中横线上. 11. 计算:327-= .12. 将一直角三角板与两边平行的纸条如图所示放置,若∠1=53°,则∠2= °. 13. 已知分式21x x -+的值为0,那么x 的值为 . 14. 一个圆锥的母线长为4,侧面积为12π,则这个圆锥的底面圆的半径是 . 15. 如图,函数2y x =和5y ax =+的图象相交于A (m ,3),则不等式25x ax <+的解集 为 .16. 设m ,n 是方程220120x x --=的两个实数根,则2m n +的值为 . 17. 如图,已知正方形ABCD 的边长为2,对角线AC 、BD 相交于点O ,AE 平分∠BAC 交 BD 于点E , 则BE 的长为 . 18. 如图,点A 是双曲线4y x=在第一象限上的一动点,连接AO 并延长交另一分支于点B , 以AB 为斜边作等腰Rt △ABC ,点C 在第二象限,随着点A 的运动,点C 的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为 .A BCD EFGH I K J PQ (第10题)(第6题)OD C B12(第12题)三、解答题:本大题共10小题,共计96分.解答时应写出文字说明、证明过程或演算步骤.19.(本题满分10分) (1)计算:0(3)-+12cos30°-11()5- (2)解方程组:38 53 4 x y x y +=⎧⎨-=⎩①②20.(本题满分8分)化简分式222421444a aa a a -÷--++,并选取一个你认为合适的整数a 代入求值.y AOx(第15题)xBAC(第18题)O y(第17题)OE小敏为了解本市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示优的扇形的圆心角度数; (3)请估计该市这一年(365天)达到优和良的总天数.22.(本题满分8分)如图,AB 与⊙O 相切于点C ,OA =OB .(1)如图①,若⊙O 的直径为8cm ,AB =10cm ,求OA 的长(结果保留根号); (2)如图②,OA 、OB 与⊙O 分别交于点D 、E ,连接CD 、CE ,若四边形ODCE 为菱形,求ODOA的值.OA B C 图 ①ADCBOE图 ②本市若干天空气质量情况扇形统计图优良 64%轻微污染轻度污染 中度污染 重度污染轻微 污染 轻度 污染 天数(天)20 15105832311中度 污染 重度污染空气质如图,在边长为1的正方形组成的网格中,△ABC的顶点和O点均在格点上.(1)以点O为位似中心,在网格中将△ABC放大为原来的2倍,得到△A′B′C′;(2)△A′B′C′绕点B′顺时针旋转90°,画出旋转后得到的△A″B′C″,并求边A′B′在旋转过程中扫过的图形面积.24.(本题满分8分)如图,某飞机于空中探测某座山的高度,在点A处飞机的飞行高度是AF=3700米,从飞机上观测山顶目标C的俯角是45°,飞机继续以相同的高度飞行300米到B处,此时观测目标C的俯角是50°,求这座山的高度CD.DF甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为-7,-1,3,乙袋中的三张卡片所标的数值为-2,1,6,先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y 表示取出卡片上的数值.把x、y分别作为点A的横坐标和纵坐标.(1)用列表或画树形图的方法写出点A(x,y)的所有情况;(2)求点A落在直线2上的概率.y x26.(本题满分10分)甲、乙两组同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)的函数图象如图所示.(1)直接写出甲组加工零件的数量y与时间x之间的函数关系式▲;(2)求乙组加工零件总量a的值;(3)甲、乙两组加工出的零件合在一起装箱,每满300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?如图,在矩形ABCD中,AB=3,BC=4.动点P从点A出发沿AC向终点C运动,同时动点Q从点B出发沿BA向点A运动,到达A点后立刻以原来的速度沿AB返回.点P,Q运动速度均为每秒1个单位长度,当点P到达点C时停止运动,点Q也同时停止.连结PQ,设运动时间为t(t >0)秒.(1)当点Q从B点向A点运动时(未到达A点),若△APQ∽△ABC,求t的值;(2)伴随着P,Q两点的运动,线段PQ的垂直平分线为直线l.①当直线l经过点A时,射线QP交AD边于点E,求AE的长;②是否存在t的值,使得直线l经过点B?若存在,请求出所有t的值;若不存在,请说明理由.如图,二次函数212y x mx n =-++的图象与y 轴交于点N ,其顶点M 在直线32y x =-上运动,O 为坐标原点. (1)当m =-2时,求点N 的坐标;(2)当△MON 为直角三角形时,求m 、n 的值;(3)已知△ABC 的三个顶点的坐标分别为A (-4,2),B (-4,-3),C (-2,2),当抛物线212y x mx n =-++在对称轴左侧的部分与△ABC 的三边有公共点时,求m的取值范围.(第2问图)。
2013年中考数学模拟试卷(含答案)
数学试题 第1页(共4页)2013年初中毕业生学业水平调研测试数 学本试卷共4页,22小题,满分120分,考试时间100分钟. 注意事项:⒈ 答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的姓名、考生号等,用2B 铅笔把对应号码的标号涂黑.⒉ 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.⒊ 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.⒋ 考生务必保持答题卡整洁.考试结束时,将答卷和答题卡一并交回.一、选择题(本大题5小题,每小题3分,共15分)在每小题给出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.31的相反数是A .31 B .31-C .3D .3-2.下列算式正确的是A .632a a a =+B .532a a a =+C .632a a a =⋅D .532a a a =⋅ 3.如图1是一个底面水平放置的圆柱,它的左视图是A .B .C .D .4.菱形ABCD 的对角线长为分别32=AC ,2=BD ,则菱形的内角=∠BAD A .o30 B .o60 C .o120 D .o1505.袋中有2个红球和4个白球,它们除颜色上的区别外其他都相同.从袋中随机地取出一个球,取到红球的概率是 A .61 B .32 C .31 D .21二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上. 6.据统计,某市2011年有初中毕业生约53600人.试用科学计数法表示=53600 .数学试题 第2页(共4页)7.在2012年“植树节”义务植树活动中,某校九年级5个班植树的颗数分别为16、20、15、21、18,则这组数据的平均数是 . 8.若点)213, 12(-+m m P 在第四象限,则常数m 的取值范围是 .9.如图2,⊙O 的半径5=R ,13=PO ,过P 作⊙O 的切线,切点为A ,则=PA . 10.观察下列连等式:⑴21)1(1)1)(1(x x x x x x -=-+-=+-⑵222)1(1])1)[(1()1)(1(x x x x x x x x -+-=++-=++-⑶43332321)1(1])1)[(1()1)(1(x x x x x x x x x x x x -=-+-=+++-=+++- 依此下去,第四个连等式为: . 三、解答题㈠(本大题5小题,每小题6分,共30分) 11.计算:o145cos 2)21( |22|)13( +---+--.12.先化简,再求值:xx x xx 1121222+++÷+,其中3=x .13.如图3,E 、F 分别是平行四边形ABCD 的边AD 、BC 的中点.⑴求证:DF BE =;⑵直接写出直线BE 与DF 的位置关系(不需要证明.....).14.如图4,在边长为 1 个单位长度的正方形方格纸中建立直角坐标系,坐标轴都在格线上.已知ABC ∆各顶点的坐标为)0 , 1(-A 、)3 , 4(-B 、)1 , 5(-C . ⑴画出ABC ∆关于y 轴对称的///C B A ∆;⑵写出点/B 的坐标,并直接写出//A ABB 是怎样的特殊四边形(不需要证明.....).AB CDEF15.如图5,反比例函数xky=的部分图象与直线xy-=1交点A的横坐标为2-.⑴试确定k的值;⑵当31<≤x时,求反比例函数y的取值范围.四、解答题㈡(本大题4小题,每小题7分,共28分)16.去冬今春,我国西南地区遭遇历史上罕见的旱灾,武警某部接到了限期打30口水井的作业任务,部队官兵到达灾区后,目睹灾情心急如焚,他们增派机械车辆,争分夺秒,每天比原计划多打3口井,结果提前5天完成任务,求原计划每天打多少口井?17.开展阳光体育运动后,体育老师为了解九年级360名男生的身体素质状况,在九年级随机抽取50位男生进行100米跑测试,以测试数据为样本,绘制出如下的频数分布表和频数分布直方图(均未完成):请根据图表数据解答下列问题:⑴求频数分布表中a的值,并把频数分布直方图补充完整;⑵这个样本数据的中位数落在第组(直接填写结果,不必写出求解过程);⑶若九年级男生100米跑的时间小于3.14秒为优秀,根据以上图表,估计九年级全级大约有多少名男生达到优秀?18.如图6,已知ABD∆和ACE∆都是等边三角形,CD、BE相交于点F.⑴求证:ABE∆≌ADC∆;⑵ABE∆可由ADC∆经过怎样的旋转变换得到?数学试题第3页(共4页)数学试题 第4页(共4页)19.为美化环境,建设绿色校园,学校计划铺设一块面积为230m 的等腰三角形绿地,已知等腰三角形一边长为m 10,且顶角是锐角,试求这块等腰三角形绿地另外两边的长.五、解答题㈢(本大题3小题,每小题9分,共27分)20.如图7,B 是线段AD 上一点,ABC ∆和BDE ∆都是等边三角形,⊙O 是ABC ∆的外接圆.CE 与⊙O 相交于G ,CE 的延长线与AD 的延长线相交于F . ⑴求证:BCF ∆∽DEF ∆; ⑵求证:BE 是⊙O 的切线; ⑶若21=BCDE ,求CGEG .21.某商场销售一批进价为16元的日用品,为了获得更多利润,商场需要确定适当的销售价格.调查发现:若按每件20元销售,每月能卖出360件;若按每件25元销售,每月能卖出210件.假定每月销售量y (件)是销售价格x (元/件)的一次函数. ⑴试求y 与x 之间的函数关系式;⑵销售价格定为多少时,商场每月获得的利润最大?每月的最大利润是多少?22.如图8,在平面直角坐标系xOy 中,二次函数542++-=x x y 的图象交x 轴于点A 、B ,交y 轴于点C ,顶点为P ,点M 是x 轴上的动点. ⑴求MB MA +的最小值; ⑵求MC MP -的最大值;⑶当M 在x 轴的正半轴(不包含坐标原点)上运动时, 以CP 、CM 为邻边作平行四边形PCMD .PCMD 能否 为矩形?若能,求M 点的坐标;若不能,简要说明理由.(参考公式:二次函数c bx ax y ++=2图象的顶点坐标是)44, 2(2ab ac ab --)数学试题 第5页(共4页)评分参考一、选择题 BDABC二、填空题 6.41036.5⨯ 7.18 8.3121<<-m 9.1210.5444324321)1(1])1)[(1()1)(1(x x x x x x x x x x x x x x -=-+-=++++-=++++-三、解答题㈠ 11.原式222)2( )22(1⨯+---+=……4分(每项1分) 5=……6分12.原式xx x x 1)1()1(22++⨯+=……2分, xx xxx 321)1(2+=++=……4分,3=x 时,原式332+=……5分, 32+=……6分.13.⑴(方法一)ABCD 是平行四边形,所以BC AD //,且BC AD =……2分,因为E 、F 分别的边AD 、BC 的中点.所以BF ED =……3分,所以DEBF 是平行四边形……4分,所以DF BE =……5分.(方法二)ABCD 是平行四边形,所以CD AB =,BC AD =且C A ∠=∠……2分,因为E 、F 分别的边AD 、BC 的中点.所以CF AE =……3分,所以CDF ABE ∆≅∆……4分,所以DF BE =……5分.⑵DF BE //……6分.14.⑴正确画图……3分,正确写出顶点/A 、/B 、/C ……4分⑵)3 , 4(/B ……5分;//A ABB 是等腰梯形……6分.15.⑴2-=x 时,31=-=x y ……1分,所以632-=⨯-=k ……2分.⑵1=x 时,反比例函数的值616-=-==x k y ……3分;3=x 时,236-=-==x k y……4分.所以,31<≤x 时,反比例函数的取值范围为26-<≤-y ……6分.数学试题 第6页(共4页)ABCADB CD四、解答题㈡16.设原计划每天打x 口井……1分,由题意得:533030=+-x x ……3分去分母,整理得01832=-+x x ……4分, 解得31=x ,62-=x …… 5分,经检验,31=x ,62-=x 都是原方程的根,但62-=x 不合题意,舍去……6分 答(略)……7分.17.⑴503122043=+++++a ……1分,所以8=a ……2分,画图……3分⑵4……5分⑶估计九年级达到优秀的男生大约有36050843⨯++……6分,108=(名)……7分.18.⑴因为A B D ∆和ACE ∆都是等边三角形,所以AE AC =,AB AD =……2分,60=∠=∠CAE BAD ……3分,BAC BAE DAC ∠+=∠=∠060……4分,所以ABE ∆≌ADC ∆……5分.⑵ABE ∆可由ADC ∆逆时针旋转060得到……7分.19.如图,等腰三角形ABC ∆,AC AB =,面积为230m若底边长m BC 10=(如左图),作BC AD ⊥,垂足为D ,由3021=⨯⨯=BC AD S 得6=AD ……1分,因为ABC ∆是等腰三角形,所以521=⨯=BC BD ……2分,所以61==AC AB ……3分若腰长m AC AB 10==(如右图),作AC BD ⊥,垂足为D ,由3021=⨯⨯=BD AC S 得6=BD ……4分,所以822=-=BDABAD ……5分,所以2=CD ,10222=+=BDCDBC ……6分所以,这块等腰三角形绿地另外两边的长为m 61、m 61或m 10、m 102……7分.数学试题 第7页(共4页)五、解答题㈢20.⑴ABC ∆和BDE ∆都是等边三角形,所以060=∠=∠BDE ABC ,所以DE BC //……1分,所以DEF BCF ∠=∠,又因为F F ∠=∠,所以BCF ∆∽DEF ∆……2分 ⑵连接OB ,依题意得,OB 是ABC ∠的平分线,03021=∠=∠ABC ABO ……3分,90)(180=∠+∠-=∠DBE ABO EBO ……4分,所以BE OB ⊥,BE 是⊙O 的切线……5分⑶由⑴DE BC //得21==BCDE BFDF ,所以DE DB DF ==,所以030=∠=∠=∠BCE DEF F ……6分,连接OC 、OG ,与⑵同理得030=∠OCB ,所以060=∠OCG ,从而060=∠COG ,3021=∠=∠COG CBG ……7分,在EBC ∆中,030=∠BCE ,060=∠CBE ,090=∠CEB ,所以BE CE 3=,同理在EBG ∆中,000303060=-=∠EBG ,090=∠GEB ,所以BE EG 33=……8分,所以EG CE 3=,从而21=CGEG ……9分.21.⑴依题意,设b kx y +=……1分,则⎩⎨⎧=+=+2102536020b k b k ……2分,解得⎩⎨⎧=-=96030b k (3)分,所以96030+-=x y ,3216≤≤x (不写x 的取值范围不扣分)……4分.⑵商场每月获利)16)(96030(-+-=x x w ……6分,153601440302-+-=x x ……7分,1920)24(302+--=x ……8分,所以,当24=x 时w 有最大值,最大值是1920元。
2013年中考模拟数学试卷5(有详细解答)
2013年中考模拟数学试题5(有详细答案)(本试卷满分120分,考试时间120分钟)第Ⅰ卷(选择题 共40分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.第1~8小题选对每小题得3分,第9~12小题选对每小题得4分,选错、不选或选出的答案超过一个均记零分.1..下列各数中,最小的数是( )A. -2B. -0.1C. 0D. |-1| 2.下列计算正确的是( )A .π-3=3-πB .30=0C .331-=- D .=±33.某校八年级8位同学身高排序后如下:162,164,167,167,173,176,183,184.则由这组数据得到的结论中错误的是( )A. 中位数 170B. 众数为168C. 极差22D. 平均数为1714.在平面直角坐标系中,将抛物线y =x 2-x -6向上(下)或向左(右)平移了m 个单位,使平移后的抛物线恰好经过原点,则|m |的最小值为( )A .1 B .2 C .3 D .65.如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△A 'O B ',若∠AOB =15°,则∠AOB '的度数是A .25°B .30°C .35°D . 40°6.如图,以点O 为位似中心,将五边形ABCDE 放大后得到五边形A′B′C′D′E′,已知OA=10cm ,OA′=20cm ,则五边形ABCDE 的周长与五边形A′B′C′D′E′的周长的比值是 .A .2:3B .3:4C .1:2D .2:57.下列四个结论中,正确的是( ) 故选D . A 、方程x+=﹣2有两个不相等的实数根 B 、方程x+=1有两个不相等的实数根C 、方程x+=2有两个不相等的实数根D 、方程x+=a (其中a 为常数,且|a|>2)有两个不相等的实数根 8.如图,已知AB 是⊙O 的直径,AD 切⊙O 于点A ,.则下列结论中不一定正确的是( )A. BA ⊥DAB. OC //AEC. ∠COE =2∠CAED. OD ⊥AC9.如图,在四边形ABCD 中,E 、F 分別是AB 、AD 的中点,若EF=2,BC=5,CD=3,则tanC 等于( )BA 'AB 'O第5题图 第6题图A 、43 B 、34 C 、53 D 、5410.小亮为今年参加中考的好友小杰制作了一个正方体礼品盒(如图),六个面上各有一个字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”,则它的平面展开图可能是( )11.如图,A(1),B(1.将△AOB 绕点O 旋转 150得到△A′OB′,则此时点A 的对应点A′的坐标为【 】.A .(l) B .(-2,0) C .(-l,-或(-2,0) D .(1)或(-2,0) 12.在锐角△ABC 中,∠BAC=60°,BN 、CM 为高,P 为BC 的中点,连接MN 、MP 、NP ,则结论:①NP=MP ②当∠ABC=60°时,MN ∥BC ③ BN=2AN ④AN ︰AB=AM ︰AC ,一定正确的有 ( ) A 、1个 B 、2个 C 、3个 D 、4个第8题图第9题图 第10题图第11题图第12题图第Ⅱ卷(非选择题 共80分)二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分. 13.分解因式:a 3b ﹣2a 2b 2+ab 3= _________ .14.已知关于x 的分式方程1+x a -xx x a +--212=0无解,则a 的值为 。
2013年全国名校初三模拟数学试卷分类汇编:40 实验应用型问题2013年全国名校初三模拟数学试卷分
实验应用型问题一、选择题1、(2013江苏扬州弘扬中学二模)如图,在四边形ABCD 中,∠A =90°,AD =4,连接BD ,BD ⊥CD ,∠ADB =∠C .若P 是BC 边上一动点,则DP 长的最小值为____________.答案:4二、填空题1、如图所示,平面镜I 、II 的夹角是 15,光线从平面镜I 上O 点出发,照射到平面镜II 上的A 点,再经II 反射到B 点,再经C 点反射到D 点,接着沿原线路反射回去,则a ∠的大小为 度. 答案:452.数学家发明了一个魔术盒,当任意实数对()a b ,进入其中时,会得到一个新的实数:21a b ++.例如把(32)-,放入其中,就会得到23(2)18+-+=.现将实数对(m m 2,-)放入其中得到实数4,则m = .答案:-1或3三、解答题1、在北京举行的2008年奥运会中,某校学生会为了了解全校同学喜欢收看奥运会比赛项目的情况,随机调查了若干名同学(每人只能选其中一项),根据调查结果制作了频数分布表和统计图。
请根据图中提供的信息解答下列问题:(1)补全频数分布表和条形统计图;;(2)根据以上调查,试估计该校1800名学生中,最喜欢收看篮球比赛的人数.(3)根据统计图和统计表,谈谈你的想法。
.................1题图ODCB AIII a15︒答案:解:(1)最喜欢收看的项目 频数(人数) 频率足球 12(2)最喜欢收看篮球比赛的人数=1800×25%,=450(人);(3)因为喜欢看乒乓球的人数最多,所以在观看比赛时优先安排看乒乓球. 2.(本小题满分8分)如图,甲船从港口A 出发沿北偏东15°方向行驶,同时,乙船也从港口A 出发沿西北方向行驶。
若干小时之后,甲船位于点C 处,乙船位于港口B 的北偏东60°方向,距离岸边BD 10海里的P 处。
并且观测到此时点B 、P 、C 在同一条直线上。
2013年历年初三数学中考一模模拟练习试卷及答案
初三数学模拟练习测试卷一,选择题(每小题3分,共45分)1.计算(2﹣3)+(﹣1)的结果是( ) A . 2 B .0 C .1 D .-22.“十二五”期间,我国将新建保障性住房36 000 000套,用于解决中低收入和新参加工作的大学生住房的需求,把36 000 000用科学记数法表示应是( )A .3.6×107B .3.6×106C .36×106D .0.36×1083. ⊙O 1和⊙O 2的半径分别为1和4,若两圆相交,则圆心距O 1O 2的取值范围在数轴上表示正确的是A B C D4.下列计算正确的是() A .2a 2+a 2=3a 4 B .a 6÷a 2=a 3 C .a 6•a 2=a 12 D .(﹣a 6)2=a 12 5.下列图形中,既是轴对称图形,又是中心对称图形的是( )6.体育课上测量立定跳远,其中一组六个人的成绩(单位:米)分别是:1.0,1.3,2.2,2.0,1.8,1.6,则这组数据的中位数和极差分别是( )A .2.1,0.6B .1.7,1.2C .1.8,1.2D .1.6,1.27. A 种饮料B 种饮料单价少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设B 种饮料单价为x 元/瓶,那么下面所列方程正确的是( )A .2(1)313x x -+=B .2(1)313x x ++=C .23(1)13x x ++=D .23(1)13x x +-=8. 将宽为2cm 的长方形纸条折叠成如图所示的形状,那么折痕PQ 的长是( )A 233B 433C 5D .2cm 9.如图,把一块直角三角板的直角顶点放在直尺的一边上, 如果∠1=32o ,那么∠2的度数是( )A.32oB.6 8oC.5 8oD.60o10. 若x -2y +9与|x -y -3|互为相反数,则x +y 的值为( )A .3B .9C .12D .2711.物理学家波义耳1662年的一项重要研究结果是:在温度不变的情况下,气球内气体的压强()a p p 与它的体积3()v m 的乘积是一个常数k ,即pv k =(k 为常数,0k >),下列图象能正确反映p 与v 之间函数关系图像的是12.在“走进苏馨家园奉献助残爱心”的活动中,某班50位同学捐款金额统计如下,则在这次金额(元) 20 30 35 50 100 学生数(人)20105105A .10元B .25元C .30元D .35元 13.把三张大小相同的正方形卡片A 、B 、C 叠放在一个底面为正方形的盒底上,底面未被卡片覆盖的部分用阴影表示,若按图1摆放时,阴影部分的面积为S 1;若按图2摆放时,阴影部分的面积为S 2,则S 1 与S 2的大小关系是 A. S 1 >S 2B. S 1 < S 2C. S 1 = S 2D. 无法确定60°P Q2cm8题图219题图C BAC BA第14题图FDCBA(E)FED CB AHGF CD AB E14.如图,△ABC 是等边三角形,△DEF 是边长为7的等边三角形,点B 与点E 重合,点A 、B 、(E )、F 在 同一条直线上,将△ABC 沿E →F 方向平移至点A 与点F 重合时停止,设点B 、E 之间的距离为x , △ABC 与△DEF 重叠部分的面积为y ,则能大致反映y 与 x 之间函数关系的图象是15.如图,在菱形ABCD 中,AB =BD .点E 、F 分别在AB 、AD 上,且AE =DF .连接BF 与DE 相交于点G ,连接CG 与BD 相交于点H .下列结论:(1)△AED ≌△DFB ;(2)S 四边形BCDG =43 CG .(3)若AF =2DF ,则BG = 6 GF .其中正确的结论是 A.只有①② B.只有①③ C.只有②③ D.①②③二、填空题(每小题3分,共18分)16.化简22a a a +的结果是 17.不等式组210x ox -≤⎧⎨>⎩的解是18.如果从半径为3cm 的圆形纸片剪去13圆周的一个扇形, 将留下在扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的体积是 3cm . 19.平方根节是数学爱好者的节目,这一天的月份和日期的数字正好是当年年份最后两位数字的算术平方根,例如2009年的3月3日,2016年的4月4日.请你写出本世纪内你喜欢的一个平方根(题中所举例子除外)。
2013年中考模拟数学试卷数学答案
∴∠DBC=∠BAO,∵BD是直径,∴∠BCD=∠ABO=90°,
∴△BDC∽△AOB,(6分)∴ , (7分)
22.(1)设A组的频数是x,那么B组的频数为5x,那么x+5x=12,x=2,(2分)
12÷(1-40%-28%-8%)=50(4分)
(2) (7分)(3)(28%+8%)×500=180(户)(9分)
(2)S1=4m-4(m-4)=16,(5分)
S2=S梯形AECD-S△CEEF= =16,∴S1=S2(8分)
(求S2时也可以将两个三角形的面积一一求出,再求差)
.(3)∵△AEG与△FDG面积和为24,差为16,∴△AEG的面积=20(10分)
∴ ,∴AG=10,∵△FDG∽△FCE,∴ ,
m1=12,m2=6(舍去),∴tan∠BAE= (12分)
∴ ,即
∴ 或 .(14分)
19.解:原式= (4分)= (6分)
20. → (2分)→
→ (5分)→经检验,原方程的解是 (7分)
21.解:(1)证明:连结OC,
∵OB=OC,AB=AC,OA=OA,∴△ABO≌△ACO,(2分)
∴∠ABO=∠ACO,∵AC是切线,∴∠ACO=90°,
∴∠ABO=90°,∴AB是⊙O的切线.(4分)
26.(1)第一条抛物线的解析式是 (3分)
(2)第n个三角形的面积是 ,当n=1,2,5时为整数(6分)
(3)设第n条抛物线的解析式为 ,(7分)
又∵过点 ∴ ,设 ,∴
= ,∴
,n=2.(10分)
(4)作第m个三角形和第n个三角形底边上的高AmC和AnD,
∵顶角互补,∴底角互余.即△AmCBm-1∽△AnDBn-1.
(全国120套)2013年中考数学试卷分类汇编(打包53套)-50.doc
几何体1、(绵阳市2013年)把右图中的三棱柱展开,所得到的展开图是( B )[解析]两个全等的三角形,再侧面三个长方形的两侧,这样的图形围成的是三棱柱,一个底面相邻可以是三个长方形,只有B。
2、(2013年南京)如图,一个几何体上半部为正四棱椎,下半部为立方体,且有一个面涂有颜色,下列图形中,是该几何体的表面展开图的是答案:B解析:涂有颜色的面在侧面,而A、C还原后,有颜色的面在底面,故错;D还原不回去,故错,选B。
3、(2013•宁波)下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一4、(2013河南省)如图是正方形的一种张开图,其中每个面上都标有一个数字。
那么在原正方形中,与数字“2”相对的面上的数字是【】(A)1 (B)4 (C)5 (D)6【解析】将正方形重新还原后可知:“2”与“4”对应,“3”与“5”对应,“1”与“6”对应。
【答案】B5、(2013•自贡)如图,将一张边长为3的正方形纸片按虚线裁剪后,恰好围成一个底面是正三角形的棱柱,这个棱柱的侧面积为(),高为=6、(2013山西,3,2分)如图是一个长方体包装盒,则它的平面展开图是()【答案】A【解析】长方体的四个侧面中,有两个对对面的小长方形,另两个是相对面的大长方形,B、C中两个小的与两个大的相邻,错,D中底面不符合,只有A符合。
7、(2013•温州)下列各图中,经过折叠能围成一个立方体的是()8、(2013•巴中)如图,是一个正方体的表面展开图,则原正方体中“梦”字所在的面相对的面上标的字是()9、(2013菏泽)下列图形中,能通过折叠围成一个三棱柱的是( )A .B .C .D .考点:展开图折叠成几何体.分析:根据三棱柱及其表面展开图的特点对各选项分析判断即可得解.解答:解:A .另一底面的三角形是直角三角形,两底面的三角形不全等,故本选项错误;B.折叠后两侧面重叠,不能围成三棱柱,故本选项错误;C.折叠后能围成三棱柱,故本选项正确;D.折叠后两侧面重叠,不能围成三棱柱,故本选项错误.故选C.点评:本题考查了三棱柱表面展开图,上、下两底面应在侧面展开图长方形的两侧,且是全等的三角形,不能有两个侧面在两三角形的同一侧.10、(2013•黄冈)已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为()B C...13、(2013•南宁)如图所示,将平面图形绕轴旋转一周,得到的几何体是()14、(2013台湾、25)附图的长方体与下列选项中的立体图形均是由边长为1公分的小正方体紧密堆砌而成.若下列有一立体图形的表面积与附图的表面积相同,则此图形为何?( )A .B .C .D .考点:几何体的表面积.分析:根据立体图形的面积求法,分别得出几何体的表面积即可. 解答:解:∵立体图形均是由边长为1公分的小正方体紧密堆砌而成,∴附图的表面积为:6×2+3×2+2×2=22,只有选项B的表面积为:5×2+3+4+5=22.故选:B.点评:此题主要考查了几何体的表面积求法,根据已知图形求出表面积是解题关键.15、(2013杭州)四边形ABCD是直角梯形,AB∥CD,AB⊥BC,且BC=CD=2,AB=3,把梯形ABCD分别绕直线AB,CD旋转一周,所得几何体的表面积分别为S1,S2,则|S1﹣S2|= (平方单位)考点:圆锥的计算;点、线、面、体;圆柱的计算.分析:梯形ABCD分别绕直线AB,CD旋转一周所得的几何体的表面积的差就是AB和CD旋转一周形成的圆柱的侧面的差.解答:解:AB旋转一周形成的圆柱的侧面的面积是:2π×2×3=12π;AC旋转一周形成的圆柱的侧面的面积是:2π×2×2=8π,则|S1﹣S2|=4π.故答案是:4π.点评:本题考查了图形的旋转,理解梯形ABCD分别绕直线AB,CD旋转一周所得的几何体的表面积的差就是AB和CD旋转一周形成的圆柱的侧面的差是关键.16、(2013•咸宁)如图是正方体的一种平面展开图,它的每个面上都有一个汉字,那么在原正方体的表面上,与汉字“香”相对的面上的汉字是泉.。
2013 年中考数学模拟试卷参考答案
1 1 1 1 6( x 2) 2 x x(6 x) x 2 x 6 2 2 2 2 当 4 x 6 时,△EPQ 的面积等于梯形 ABPQ 的面积减去△AEQ 和△BEP 的面积 1 1 1 y 4( x 10 x) 2(10 x) 2 x 10 2 2 2 y
1 2
3 2
15. 4 3 3或4 3 3 三、解答题(本大题共 11 小题,共 88 分) 17(本题 6 分) 解:△= 62 4 7 8
16. 2 2 2或2 - 2 2
x1
6 8 6 8 3 2, x2 3 2 2 2
18(本题 9 分)
2013 年中考数学模拟试卷参考答案
一、选择题(每小题 2 分,共 12 分) 题号 答案 1 B 2 D 3 D 4 B 5 D 6 B
二、填空题(每小题 2 分,共 20 分) 7. 4 11.9.0 8.圆柱体(此题答案不唯一) 12.( 1,3 ) 9. 1或 1 13. 10. 6 14. m 1且m
4x 1 x 解不等式 3 4 x 6 x 6
得 3 x 1 满足条件的整数 a 的值为-2、-1、0、1 但由
a2 1 a 2 2a 1 1 知 a 1 a2 a a
a -1、0、1
所以满足条件的整数 a 的值只有-2
a2 1 a 2 2a 1 1 a 1 a2 a a (a 1) 2 1 (a 1)(a 1) a 1 a (a 1) a (a 1) 1 a 1 a (a 1) a 1 1 a 1 a a a 1 = 当a 2时,原式= 1
y1 950 250 x, y2 300( x 0.5)
2013年中考数学模拟试题及参考答案
2013年中考数学模拟考试数学试题一、选择题(本大题共有8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.-2的相反数是A.-2B.2C.-21 D.212.已知两圆的半径分别为6和4,圆心距为7,则两圆的位置关系是 A .相交B .内切C .外切D .内含3.下列计算中,正确的是( )A .42232a a a =+ B .()52322x x x -=-⋅ C .()53282a a -=- D .22326x x xm m=÷4.下列美丽的图案,既是轴对称图形又是中心对称图形的个数是A .1个B . 2个C . 3个D . 4个 5.下列说法正确的是A .若甲组数据的方差20.01S =甲,乙组数据的方差20.1S =乙,则乙组数据比甲组数据稳定B .为了解全国中学生的心理健康情况,应该采用普查的方式C .一组数据6,8,7,8,8,9,10的众数和中位数都是8D .一个游戏的中奖概率是110,则做10次这样的游戏一定会中奖 6.下面四个几何体中,左视图是四边形的几何体共有A. 1个B. 2个C. 3个D. 4个7.如图所示,在方格纸上建立的平面直角坐标系中,将△ABO 绕点O 按顺时针方向旋转90°,得A B O ''△ ,则点A '的坐标为A .(3,1)B .(3,2)C .(2,3)D .(1,3)y C 2C 1C y 24 3B8.在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(1,0),点D 的坐标为(0,2).延长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ;延长C 1B 1交x 轴于点A 2,作正方形A 2B 2C 2C 1…按这样的规律进行下去,第2011个正方形的面积为 ( ) A .201035()2⨯B .201195()4⨯ C . 200995()4⨯ D .402035()2⨯二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9.去年冬季的某一天,学校一室内温度是8℃,室外温度是2-℃,则室内外温度相差 ▲ ℃.10.国家游泳中心“水立方”是北京2008年奥运会场馆之一,它的外层膜的展开面积约为260 000平方米,将260 000用科学记数法表示应为 ▲ 平方米. 11.五边形的内角和为 ▲ 度.12.已知反比例函数的图象经过点A (6,-1),请你写出该函数的表达式 ▲ . 13.已知二元一次方程组⎩⎨⎧=-=-52832y x y x ,则y x -的值为 ▲ .14.不等式组30210x x -<⎧⎨-⎩≥的解集是 ▲ .15.在如图的甲、乙两个转盘中,指针指向每一个数字的机会是均等的.当同时转动两个转盘,停止后指针所指的两个数字表示两条线段的长,如果第三条线段的长为5,那么这三条线段能构成三角形的概率为_____▲____.16.如图,点A 、B 、C 在⊙O 上,若∠BAC = 24°,则∠BOC = °.17.已知圆锥的底面半径是3cm ,母线长为6cm ,则这个圆锥的侧面积为_ ▲ .cm 2.(结果保留π)B 题)yxO BCA (第18题)OAC(第16题)·(第15题)18.如图,A 、B 是双曲线 y = k x(k >0) 上的点, A 、B 两点的横坐标分别是a 、2a ,线段AB 的延长线交x 轴于点C ,若S △AOC =6.则k= ▲ .三、解答题(本大题共有10小题,共74分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题6分)计算:(1)200821(1)()162---+; (2)2311()11x x x x--⋅-+. 20.(本题6分)为了增强环境保护意识,6月5日“世界环境日”当天,在环保局工作人员指导下,若干名“环保小卫士”组成的“控制噪声污染”课题学习研究小组,抽样调查了全市40个噪声测量点在某时刻的噪声声级(单位:dB ),将调查的数据进行处理(设所测数据是正整数),得频数分布表如下: 组 别 噪声声级分组 频 数 频 率 1 44.5——59.5 4 0.1 2 59.5——74.5 a 0.2 3 74.5——89.5 10 0.25 4 89.5——104.5 bc 5 104.5——119.56 0.15 合 计401.00根据表中提供的信息解答下列问题:(1)频数分布表中的a =________,b =________,c =_________; (2)补充完整频数分布直方图;(3)如果全市共有200个测量点,那么在这一时刻噪声声级小于75dB 的测量点约有多少个?21.(本题6分)小晶和小红玩掷骰子游戏,每人将一个各面分别标有1,2,3,4,5,6的正方体骰子掷一次,把两人掷得的点数相加,并约定:点数之和等于6,小晶赢;点数之和等于7.小红赢;点数之和是其它数,两人不分胜负.问他们两人谁获胜的概率大?请你用“画树状图”或“列表”的方法加以分析说明.22.(本题6分)某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1.在温室内,沿前侧内墙保留3m 宽的空地,其它三侧内墙各保留1m 宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是2288m ?23.(本题8分)如图,点E 、F 是四边形ABCD 的对角线AC 上的两点,AF =CE ,DF =BE ,DF ∥BE .(第24题)(第22题)蔬菜种植区域前 侧 空 地F EDCBA(第23题)(1)求证:△AFD ≌△CEB(2)四边形ABCD 是平行四边形吗?请说明理由.24.(本题8分)如图15,河旁有一座小山,从山顶A 处测得河对岸点C 的俯角为30°,测得岸边点D 的俯角为45°,又知河宽CD 为50米.现需从山顶A 到河对岸点C 拉一条笔直的缆绳AC ,求缆绳AC 的长(结果精确到0.1m )(参考数据:2 1.41≈,3 1.73≈) 25.(本题8分)如图,A (-1,0)、B (2,-3)两点在二次函数y 1=ax 2+bx -3与一次函数y 2=-x +m 图像上。
2013届初中毕业生学业考试模拟试卷数学试题
参考答案一、选择题(每小题3分,共36分)题1 2 3 4 5 6 7 8 9 10 11 12号答C B B C BD C D A B B C案二、填空题(每小题3分,共18分)题号13 14 15 16 17 18答案 3.61×1083(x+3)(x﹣3)39 80 30°三、解答题(本大题共8小题,共76分,其中第19题6分,第20、21各7分,第22、23各9分,第24、25各12分,第26题14分;请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.计算:(﹣1)2008﹣(π﹣3)0+解:原式=1﹣1+2=2 对一个得一分,答案对得3分,共6分20.解:(1)根据BC2=32+22,∴BC=,tanB==,故答案为:BC=,tanB=;2分(2)如图所示,∵△DEF∽△ABC,并且DE:AB=2:1.∴△DEF与△ABC的周长之比为:2:1.故答案为:2:1.4分7分21.解(1)∵=,∴选出的恰好是“每天锻炼超过1小时”的学生的概率是; 2 分(2)720×﹣120﹣20=400 4分故“没时间”锻炼的人数是400名.频数分布图为:5分(3)1.2×=0.9(万人)故估计2011年我县八年级学生中每天锻炼未超过1小时的学生约有0.9万人.7分22.解:如图,过点A作AD⊥BC,垂足为D.根据题意,可得∠BAD=30°,∠CAD=60°,AD=66.在Rt△ADB中,由tan∠BAD=,得BD=AD•tan∠BAD=66×tan30°=66×.3分在Rt△ADC中,由tan∠CAD=,得CD=AD•tan∠CAD=66×tan60°=66×.6分∴BC=BD+CD=≈152.2.答:这栋楼高约为152.2m.9分23. 解:(1)∵∠AOB=60°,半径为3cm的⊙P沿边OA从右向左平行移动,与边OA相切的切点记为点C.∴∠DPC=120°,∴劣弧的长为:=2πcm;3分(2)可分两种情况,①如图2,当P在∠AOB内部,连接PE,PC,过点P做PM⊥EF于点M,延长CP交OB 于点N,∵EF=cm,∴EM=2cm,在Rt△EPM中,PM==1cm,∵∠AOB=60°,∴∠PNM=30°,∴PN=2PM=2cm,∴NC=PN+PC=5cm,在Rt△OCN中,OC=NC×tan30°=5×=cm.7分②如图3,当P在∠AOB外部,连接PF,PC,PC交EF于点N,过点P作PM⊥EF于点M,由①可知,PN=2cm,∴NC=PC﹣PN=1cm,在Rt△OCN中,OC=NC×tan30°=1×=cm.9分综上所述,OC的长为cm或cm.24.解:(1)从B地返回到A地所用的时间为4小时;2分(2)小王出发6小时.由于6>3,可知小王此时在返回途中,于是,设DE所在的直线的解析式为y=kx+b.由图象可知:解得:∴DE 的解析式是y=﹣60x+420(3≤x ≤7). 当x=6时,有y=﹣60x+420=60.∴小王出发6小时后距A 地60千米; 7分(3)设AD 所在直线的解析式是y=mx . 由图象可知3m=240,解得m=80∴AD 所在直线的解析式是y=80x (0≤x ≤3)设小王从C 到B 用了n 小时,则去时C 与A 的距离为y=240﹣80n . 返回时,从B 到C 用了(﹣n )小时,这时C 与A 的距离为y=﹣60[3+(﹣n )]+420=100+60n由240﹣80n=100+60n ,解得n=1故C 与A 的距离为240﹣80n=240﹣80=160千米. 12分另解:设从C 到B 用1t 小时,从B 到C 用2t 小时,从A 到B 的速度为80千米/小时,从B 到A 的速度为60千米/小时,则121122743380601t t t t t t ⎧⎧+==⎪⎪⇒⎨⎨⎪⎪==⎩⎩所以,AC=240-80=160千米25.解:①观察图形即可发现△ABC ≌△AC ′D ,即BC=AD ,∠C ′AD=∠ACB , ∴∠CAC ′=180°﹣∠C ′AD ﹣∠CAB=90°; 故答案为:AD ,90. 2分②∵∠FAQ+∠CAG=90°,∠FAQ+∠AFQ=90°, ∴∠AFQ=∠CAG ,同理∠ACG=∠FAQ , 又∵AF=AC ,∴△AFQ ≌△CAG , ∴FQ=AG , 同理EP=AG ,∴FQ=EP . 7分③HE=HF .理由:过点E 作EP ⊥GA ,FQ ⊥GA ,垂足分别为P 、Q . ∵四边形ABME 是矩形, ∴∠BAE=90°,∴∠BAG+∠EAP=90°, 又AG ⊥BC ,∴∠BAG+∠ABG=90°,∴∠ABG=∠EAP.∵∠AGB=∠EPA=90°,∴△ABG∽△EAP,∴AG:EP=AB:EA.同理△ACG∽△FAQ,∴AG:FQ=AC:FA.∵AB=k•AE,AC=k•AF,∴AB:EA=AC:FA=k,∴AG:EP=AG:FQ.∴EP=FQ.又∵∠EHP=∠FHQ,∠EPH=∠FQH,∴Rt△EPH≌Rt△FQH(AAS).∴HE=HF.12分26.解:(1)∵抛物线y=ax2+bx+3(a≠0)经过A(3,0),B(4,1)两点,∴,解得:,∴y=x2﹣x+3;∴点C的坐标为:(0,3);3分(2)假设存在,分两种情况:①当△PAB是以AB为直角边的直角三角形,且∠PAB=90°,如图1,过点B作BM⊥x轴于点M,∵A(3,0),B(4,1),∴AM=BM=1,∴∠BAM=45°,∴∠DAO=45°,∴AO=DO,∵A点坐标为(3,0),∴D点的坐标为:(0,3),∴直线AD解析式为:y=kx+b,将A,D分别代入得:∴0=3k+b,b=3,∴k=﹣1,∴y=﹣x+3,∴y=x2﹣x+3=﹣x+3,∴x 2﹣3x=0,解得:x=0或3,∴y=3,y=0(不合题意舍去),∴P点坐标为(0,3),∴点P、C、D重合,7分②当△PAB是以AB为直角边的直角三角形,且∠PBA=90°,如图2,过点B作BF⊥y轴于点F,由(1)得,FB=4,∠FBA=45°,∴∠DBF=45°,∴DF=4,∴D点坐标为:(0,5),B点坐标为:(4,1),∴直线BD解析式为:y=kx+b,将B,D分别代入得:∴1=4k+b,b=5,∴k=﹣1,∴y=﹣x+5,∴y=x2﹣x+3=﹣x+5,∴x2﹣3x﹣4=0,解得:x1=﹣1,x2=4(舍),∴y=6,∴P点坐标为(﹣1,6),∴点P的坐标为:(﹣1,6),(0,3);10分求出一个得四分求出二个得七分(3)如图3:作EM⊥AO于M,∵直线AB的解析式为:y=x﹣3,∴tan∠OAC=1,∴∠OAC=45°,∴∠OAC=∠OAF=45°,∴AC⊥AF,∵S△FEO=OE×OF,OE最小时S△FEO最小,∵OE⊥AC时OE最小,∵AC⊥AF∴OE∥AF∴∠EOM=45°,∴MO=EM,∵E在直线CA上,∴E点坐标为(x,﹣x+3),∴x=﹣x+3,解得:x=,∴E点坐标为(,).14分。
2013年九年级中考数学模拟试卷
年九年级中考数学模拟试卷全卷共五大题25小题,卷面分数:120分考试时限:120分钟)I卷时请将解答结果填写在第II卷上指II卷..第Ⅰ卷(选择题、填空题共45分)10个小题,每小题3分,共30分))A B C D)B、3与|-3|C、-3与2)3(-D、32与(-3)2)6B、x8÷x4=x2C、x4+x4=2x8D、x4·x3=x1252”栏目中的有一种竞猜游戏,规则如下:在20个商标牌中,有5其余商标牌的背面是一张哭脸,若翻到哭脸,就不,某观众前两次翻牌)B、51C、61D、203b,点B在直线b上,且AB⊥BC,2的度数为()、450 C、550 D、12502. 62×10-5秒.已知电磁波的传播速度为3.0×108)米 B、7.86×104米 C、1.572×103米 D、1.572×104米7、下列图案中既是中心对称图形,又是轴对称图形的是( )考场号_____座位号_______姓名_____A.B.C.D.8、如图,路灯E距地面的距离EO为8米,身高1.6(点O)20米的点A处,沿OA所在的直线行走14米到点N时,人影的长度()A、增大1.5米B、减小1.5米C、增大3.5米D、减小3.5米9、如果a+b<0,且b>0,那么a、b、-a、-b的大小关系为(A、a<b<-a<-bB、-b<a<-a<bC、a<-b<-a<bD、a<-b<b<-a10、在同一直角坐标系中,函数y=kx+k与y=xk(k≠0)的图象大致为()A B C D二、填空题:(3分×5=15分)11、甲、乙两班各有51名同学,一次数学考试成绩甲、乙两班的中位数分别是66分、79分,若不少于79分算优秀,则甲、乙两班优秀率高的班级是_____________12、在Rt△ABC中,∠C=900,AB=5,AC=4,则sinA的值为__________13、一个口袋中装有黑球8个和若干个白球,为估计白球的个数,若不许将球倒出来,现从口袋中随机摸出一球,记下其颜色,再把它放回袋中,不断重复上述过程,共摸了200次,其中有57次摸到黑球,则口袋中大约有白球_______个。
2013年历年初三数学中考模拟试卷及答案
2013年中考数学模拟试卷一、选择题(本大题共有8小题,每小题3分,共计24分.在每小题所给出的四个选项中,只有一项是正确的,请将正确选项前的字母代号涂在答题卡相应位......置.上) 1.51-的绝对值是( ▲ ) A .-5 B .15 C .15- D . 52.下列图形是生活中常见的道路标识,其中不是..轴对称图形的是( ▲ )A .B .C .D .3.下列运算正确的是( ▲ )A .22a a a =+B .4226)3(a a =C .49)23)(23(2-=-+-a a aD .ab ba ab 2=+4.两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的主视图是( ▲ )A .两个外离的圆B .两个相交的圆C .两个外切的圆D .两个内切的圆5. 将不等式组x 1x 3≥⎧⎨≤⎩的解集在数轴上表示出来,正确的是( ▲ ) A. B.C. D.6.下列说法中正确的是( ▲ )A .“打开电视,正在播放《新闻联播》”是必然事件B .想了解某种饮料中含色素的情况,宜采用抽样调查C .数据1,1,2,2,3的众数是3D .一组数据的波动越大,方差越小7. 若直线y 3x m =+经过第一、三、四象限,则抛物线2y (x m)1=-+的顶点必在 ( ▲ )A .第一象限B .第二象限C .第三象限D .第四象限8. 下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为( ▲ )二、填空题(本大题共有10小题,每小题3分,共计30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9. 4的算术平方根为 ▲ .10.若代数式21-+x x 的值为零,则x = ▲ . 11.分解因式:y xy -= ▲ . 12.今年3月底在上海和安徽两地发现的H7N9型禽流感是一种新型禽流感.研究表明,禽流感病毒的颗粒呈球形,杆状或长丝状,其最小直径约为0.00000008m , 其最小直径用科学计数法表示约为 ▲ m .13.如图,过CDF ∠的一边DC 上的点E 作直线AB ∥DF ,若110AEC ∠=o,则CDF ∠的度数为 ▲ o .14. 已知关于x 的一元二次方程x 2+2x ﹣a=0有两个相等的实数根,则a 的值是 ▲ .15.如图,AB 是⊙O 的直径,圆心O 到弦BC 的距离是1,则AC 的长是 ▲ .第13题 第15题 第18题16. 某学校用420元钱到商场去购买“84”消毒液,经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,求原价每瓶多少元?若设原价每瓶x 元,则可列出方程为 ▲ .17.将一个圆心角为120°,半径为6cm 的扇形围成一个圆锥的侧面,则所得圆锥的高为 ▲ cm .18. 如图所示,点1A 、2A 、3A 在x 轴上,且11223OA A A A A ==,分别过点1A 、2A 、3A 作y 轴的平行线,与反比例函数()80y x x=>的图象分别交于点1B 、2B 、3B ,分别过点1B ,2B ,3B 作x 轴的平行线,分别与y 轴交于点1C ,2C ,3C ,连接1OB ,2OB ,3OB ,那么图中阴影部分的面积之和为 ▲ .三、解答题(本大题共有10小题,共计96分.请在答题卡指定区域内作答..........,解答时应写出必要的文字说明、证明过程或演算步骤)19. (本题满分8分)(1)计算:()10230sin 3-︒-+-π;(2)化简:2242(1)44a a a a-÷-++.20.(本题满分8分)某班从2名男生和2名女生中随机抽取学生参加学校举行的“我的中国梦”演讲比赛,求下列事件的概率:(1)抽取1名,恰好是男生;(2)抽取2名,恰好是1名女生和1名男生.21(本题满分8分)小敏为了解我市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示优的扇形的圆心角度数;(3)请估计该市这一年(365天)达到优和良的总天数.如图,点E ,F 在平行四边形ABCD 的对角线AC上,AE =CF .(1)证明:ABE ∆≌CDF ∆;(2)猜想:BE 与DF 平行吗?对你的猜想加以证明.23.(本题满分10分)如图,在我国钓鱼岛附近海域有两艘自西向东航行的海监船A 、B ,B 船在A 船的正东方向,且两船保持10海里的距离,某一时刻两海监船同时测得在A 的东北方向,B 的北偏东15°方向有一不明国籍的渔船C ,求此时渔船C 与海监船B 的距离是多少.(结果保留根号)24.(本题满分10分)如图, Rt ABC △中,90ABC ∠=°,以AB 为直径作半圆⊙O 交AC于点D ,点E 为BC 的中点,连结DE .(1)求证:DE 是半圆⊙O 的切线;(2)若︒=∠30BAC ,DE =2,求AD 的长.A B C D E F·先锋岛大润发超市进了一批成本为8元/个的文具盒. 调查发现:这种文具盒每个星期的销售量y(个)与它的定价x(元/个)的关系如图所示:(1)求这种文具盒每个星期的销售量y(个)与它的定价x(元/个)之间的函数关系式(不必写出自变量x的取值范围);(2)每个文具盒的定价是多少元时,超市每星期销售这种文具盒(不考虑其他因素)可获得的利润最高?最高利润是多少?26.(本题满分10分)在直角坐标系中,点A是抛物线y=x2在第二象限上的点,连接OA,过点O 作OB⊥OA,交抛物线于点B,以OA、OB为边构造矩形AOBC.(1)如图1,当点A的横坐标为▲时,矩形AOBC是正方形;(2)如图2,当点A的横坐标为时,①求点B的坐标;②将抛物线y=x2作关于x轴的轴对称变换得到一个新抛物线,试判断新抛物线经过平移变换后,能否经过A,B,C三点?如果可以,说出变换的过程;如果不可以,请说明理由.定义:如图1,射线OP 与原点为圆心,半径为1的圆交于点P ,记xOP α∠=,则点P 的横坐标叫做角α的余弦值,记作cos α;点P 的纵坐标叫做角α的正弦值,记作sin α;纵坐标与横坐标的比值叫做角α的正切值,记作tan α.如:当ο45=α时, 点P 的横坐标为ο45cos =22, 纵坐标为ο45sin=22,即P (22,22). 又如:在图2中,α-=∠ο90xOQ (α为锐角), PN ⊥y 轴,QM ⊥x 轴,易证OPN OQM ∆≅∆, 则Q 点的纵坐标)90sin(α-ο等于点P 的横坐标cos α,得)90sin(α-ο= cos α. 解决以下四个问题:(1)当60α=o 时,求点P 的坐标;(2)当α是锐角时,则cos α+sin α ▲ 1(用>或<填空),(sin α)2 + (cos α)2= ▲ ;(3)求证:sin(90)cos αα+=o (α为锐角);(4)求证:1cos tan2sin ααα-=(α为锐角).图1 图2已知,把Rt△ABC和Rt△DEF按图1摆放(点C与E重合),点B,C,E,F始终在同一条直线上,∠ACB=∠EDF=90°,DE=DF,AC=8,BC=6,EF=10.如图2,△DEF从图1位置出发,以每秒1个单位的速度沿CB向△ABC匀速运动,同时,点P从点A出发,沿AB以每秒1个单位的速度向点B匀速运动,AC与△DEF 的直角边相交于点Q,当E到达终点B时,△DEF与点P同时停止运动,连接PQ,设移动的时间为t(s).解答下列问题:(1)当D在AC上时,求t的值;(2)在P点运动过程中,是否存在点P,使△APQ为等腰三角形?若存在,求出t的值;若不存在,说明理由.(3)连接PE,设四边形APEQ的面积为y(cm2),求y与t之间的函数关系式,并写出自变量t的取值范围.参考答案1-8 BBDC ABBC9.2 10.-1 11.y(x-1) 12.8×10-8 13.70 14.-1 15.216.204205.0420=--xx 17.24 18.949 19.(1) 1 ; (2)2+a a 20.(1)21; (2)32 21.(1)50; (2)57.6度 (3)29222.(1)证明略; (2)平行,证明略23.21024.(1)证明略;(2)6 25.(1)y=-10x+300 ; (2)设超市每星期销售这种文具可获得利润为w 元,w=y(x-8)=-10(x-19)2+1210, 当x=19时,最高利润为1210元26.(1)-1;(2)①B (2,4)②过点C 作CG ⊥FB 的延长线于点G ,∵∠AOE+∠EAO=90°,∠FBO+∠CBG=90°,∠AOE=∠FBO ,∴∠EAO=∠CBG ,在△AEO 和△BGC 中,,∴△AEO ≌△BGC (AAS ), ∴CG=OE=,BG=AE=.∴x c =2﹣=,y c =4+=,∴点C (,), 设过A (﹣,)、B (2,4)两点的抛物线解析式为y=﹣x 2+bx+c ,由题意得,,解得,∴经过A 、B 两点的抛物线解析式为y=﹣x 2+3x+2,当x=时,y=﹣()2+3×+2=,所以点C 也在此抛物线上,故经过A 、B 、C 三点的抛物线解析式为y=﹣x 2+3x+2=﹣(x ﹣)2+. 平移方案:先将抛物线y=﹣x 2向右平移个单位,再向上平移个单位得到抛物线y=﹣(x。
2013年中考模拟试卷(数学)(含答案)1
2013年中考模拟试卷数学一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上. 1.-5的绝对值是【▲】A .5B .5C .15D .152.计算23x x -⋅的结果是【▲】A .5x B .5x - C .6x D .6x - 3.一个扇形的圆心角为120°,半径为15㎝,则它的弧长为【▲】 A .5π㎝B .10π㎝C .15π㎝D .20π㎝4.如图,△ABC 是等边三角形,D 为AC 的中点,DE ⊥AB ,垂足为E .则图中和△AED 相似的三角形(不包含△AED ) 有【▲】 A .1个 B .2个 C .3个 D .4个 5.不等式组312840x x ->⎧⎨-,≤的解集在数轴上表示为【▲】6.有一组数据如下:3、a 、4、6、7,它们的平均数是5,那么这组数据的方差是【▲】 A .10B .10C .2D .27.从A 、B 、C 、D 四人中用抽签的方式,选取二人打扫卫生,那么能选中A 、B 的概率为【▲】A .14 B .112C .12D .16 8.在平面直角坐标系中,平行四边形OABC 的顶点为O (0,0)、A (1,2)、B (4,0),则顶点C 的坐标是【▲】A .(-3,2)B .(5,2)C .(-4,2)D .(3,-2) 9.已知关于x 的一次函数y=mx+2m-7在15x -≤≤上的函数值总是正的,则m 的取值范围是【▲】A .7m >B .1m >C .17m ≤≤D .以上都不对第3题A .B .C .D .10.如图,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C 在反比例函数221k k y x++=的图象上.若点A 的坐标为(-2,-2),则k 的值为【▲】 A .1B .-3C .4D .1或-3二、填空题:本大题共8小题,每小题3分,共24分.不需 写出解答过程,请把答案直接填写在答题卡相应位置.......上. 11.某市计划2013年新增林地面积253000亩,用科学 记数法表示为 ▲ 亩.12.如图,有一块边长为4的正方形塑料摸板ABCD ,将一块足够大的直角三角板的直角顶点落在A 点, 两条直角边分别与CD 交于点F ,与CB 延长线交 于点E .则四边形AECF 的面积是 ▲ . 13.如果关于x 的方程032=+-k kx x 有两个相等的实数根,那么k 的值为 ▲ .14.将点M 向左平移3个单位,再向下平移2个单位得到M ′(—2,—3),则点M 的坐标是 ▲ . 15.如图,正方形ABCD 各顶点均在正方形EFGH 的各边上(GB <BF ),且两正方形面积分别为25和 49,则tan ∠ABF= ▲ .16.如图,是二次函数2y ax bx c =++图象的一部分,其对称轴为直线x =1,若其与x 轴一交点为 A (3,0),则由图象可知,不等式2ax bx c ++<0 的解集是 ▲ . 17.如图,∠BAC =45°,AB =6,当BC 的长度x 满足 ▲ 时,△ABC 惟一确定. 18.如图,直线AB 经过圆O 的圆心,与圆O 交于A 、B 两点,点C 在圆O 上,且∠AOC =300,点P 是 直线AB 上的一个动点(与点O 不重合),直线 PC 与圆O 相交于点Q .如果QP =QO ,则∠OCP 的度数是 ▲ .三、解答题:本大题共10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.(第10题)(第18题)(第16题)AF BG CH DE(第15题)A CB45°(第17题)19.(本小题满分10分) (1)计算:201001(3)2sin 3016π-+--+;(2)计算:2211xyx y x y x y⎛⎫+÷⎪-+-⎝⎭. 20.(本小题满分6分)解方程:2111=-+-xx x . 21.(本小题满分8分)如图,△ABC 中,以BC 为直径的圆交AB 于点D ,∠ACD =∠ABC . (1)求证:CA 是圆的切线;(2)若点E 是BC 上一点,已知BE =6,tan ∠ABC =32,tan ∠AEC =35,求圆的直径.22.(本小题满分8分)“一方有难,八方支援”.雅安地震牵动着全国人民的心,我市某医院准备从甲、乙、丙三位医生和A 、B 两名护士中选取一位医生和一名护士支援雅安.(1)若随机选一位医生和一名护士,用树状图(或列表法)表示所有可能出现的结果; (2)求恰好选中甲医生和护士A 的概率. 23.(本小题满分8分)已知关于x 的方程x 2-2(k -1)x +k 2=0有两个实数根x 1,x 2. (1)求k 的取值范围;(2)若12121x x x x +=-,求k 的值.24.(本小题满分10分)为迎接“五一”节的到来,某食品连锁店对某种商品进行了跟踪的函数关系是一次函数:(1)求y 与x 之间的函数解析式;(2)若该种商品成本价是15元/千克,为使“五一”节这天该商品的销售总利润是200元,那么这一天每千克的销售价应定为多少元?(第21题)25.(本小题满分10分)随着科学发展观的深入贯彻落实和环境保护、节能减排以及生态文明建设的全面推进,公众环境意识有了普遍提高.3月的某一天,小明和小刚在本市的A 、B 、C 三个小区,对“低碳生活、节能减排”的态度,进行了一次随机调查.结果如下面的图表:(1)请将图表..补充完整; (2)此次共调查了多少人?(3)用你所学过的统计知识来说明哪个小区的调查结果更能反映老百姓的态度?并请写出一句关于倡导“节能减排”的宣传语. 26.(本小题满分10分)已知二次函数12+++=c bx x y 的图象过点P (2,1). (1)求证:42--=b c ; (2)求bc 的最大值;(3)若二次函数的图象与x 轴交于点A (x 1,0),B (x 2,0),△ABP的面积是34,求b 的值.27.(本小题满分12分)如图,已知在Rt △ABC 中,∠BAC =90°,AB =4,点D 在边AC上,△ABD 沿BD 翻折,点A 与BC 边上的点E 重合,过点B 作BG ∥AC 交AE 的延长线于点G ,交DE 的延长线于点F . (1)当∠ABC =60°时,求CD 的长;(2)如果AC=x ,AD=y ,求y 关于x 的函数解析式,并写出x 的取值范围; (3)连接CG ,如果∠ACB=∠CGB ,求AC 的长.EA D GFBC (第27题)A 、B 、C 三个小区共计28.(本小题满分14分)如图,在平面直角坐标系中,四边形OABC是平行四边形.直线l经过O、C两点.点A的坐标为(8,0),点B的坐标为(11,4),动点P在线段OA上从点O出发以每秒1个单位的速度向点A运动,同时动点Q从点A出发以每秒2个单位的速度沿A→B→C的方向向点C运动,过点P作PM垂直于x轴,与折线O 一C一B相交于点M.当Q、M两点相遇时,P、Q两点停止运动,设点P、Q运动的时间为t秒(t>0).△MPQ的面积为S.(1)点C的坐标为▲,直线l的解析式为▲;(2)试求点Q与点M相遇前S与t的函数关系式,并写出相应的t的取值范围,并求当t为何值时,S的值最大,及S的最大值;(3)随着P、Q两点的运动,当点M在线段CB上运动时,设PM的延长线与直线l 相交于点N.试探究:当t为何值时,△QMN为等腰三角形?请直接写出t的值.(第28题)(备用图)2013年中考模拟试卷(数学)参考答案一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上. 1.A 2.B 3.B 4.C 5.A 6.C 7.D 8.D 9.A 10.D 二、填空题:本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上. 11.2.53×105 12.16 13.0或12 14.(1,-1)15.4316.-1<x <3 17.23 或6x ≥ 18.20o 、40 o 或100o 三、解答题:本大题共10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 19.(本小题满分10分) (1)解:原式=111242-+-⨯+……………………4分 =3……………………5分(2)解:原式=xy y x yx x 22222-•-…………………3分(改乘法后去括号也得3分) =y2……………………………………………5分 20.(本小题满分6分) 解:去分母,得)1(21-=-x x ……………………………………………………………………3分 解得 1=x ………………………………………………………………………4分 检验:当1=x 时,0111=-=-x ……………………………………………5分∴1=x 不是原方程的解∴原方程无解.……………………………………………………………………6分 21.(本小题满分8分) (1)证明:∵BC 是直径,∴∠BDC =90°,∴∠ABC +∠DCB=90°,……2分∵∠ACD =∠ABC ,∴∠ACD +∠DCB=90°,∴BC ⊥CA ,……3分 ∴CA 是圆的切线.……………………4分(2)解:在Rt △AEC 中,tan ∠AEC=53,∴53AC EC =,35EC AC =;……5分 在Rt △ABC 中,tan ∠ABC=23,∴23AC BC =,32BC AC =;……6分 ∵BC -EC=BE ,BE =6,∴33625AC AC -=,解得AC =203,……7分∴BC=3201023⨯=,即圆的直径为10.………………………………8分 22.(本小题满分8分) 解:(1)∴共有6种可能出现的结果:甲A 、甲B 、乙A 、乙B 、丙A 、丙B …5分 (2)P=61 ∴恰好选中甲医生和护士A 的概率是61…………………………………8分 23.(本小题满分8分)解:(1)依题意,得0≥即22[2(1)]40k k ---≥,解得12k ≤.…………3分 (2)依题意可知122(1)x x k +=-.由(1)可知12k ≤∴2(1)0k -<,即120x x +<…………5分 ∴22(1)1k k --=-解得121,3k k ==-……………………7分 ∵12k ≤,∴ 3.k =-…………………8分 24.(本小题满分10分) 解:(1)设y =kx +b (k ≠0),将(25,30)(24,32)代入得:⎩⎨⎧=+=+32243025b k b k …………………………………2分 医生 护士 甲 A B乙AB丙AB解得: ⎩⎨⎧=-=802b k …………………………………4分∴y =-2x +80. …………………………………5分(2)设这一天每千克的销售价应定为x 元,根据题意得:(x -15)(-2x +80)=200,………………………………7分 x 2-55x +700=0, ∴x 1=20,x 2=35.(其中,x =35不合题意,舍去)……………………………9分 答:这一天每千克的销售价应定为20元.……………10分25.(本小题满分10分) 解:(1)5, 45, 35, 图略…………………………………………………5分 (2)150÷50%=300(人)……………………………………………6分(3)C 小区 ……………………………………………………………7分可以从平均数或中位数等方面说明,说理合理就行.………………9分 宣传语通顺,有环保之意即可.……………………………………10分26.(本小题满分10分) 解:(1)∵12+++=c bx x y 的图象过点P (2,1)∴1241+++=c b∴42--=b c …………3分(2))42(--=b b bc 2)1(2)2(222++-=+-=b b b …………5分当1-=b 时,2-=c此时,=∆)1(42+-c b 0541)12(4)1(2>=+=+---= ∴当1-=b 时,bc 有最大值,最大值为2.…………6分 (3)由根与系数关系可知:b x x -=+21,121+=⋅c x x21x x AB -=212214)(x x x x -+= )1(42+-=c b )142(42+---=b b1282++=b bP ABP y AB S ⋅=∆21431128212=⋅++⋅=b b …………8分 0393242=++b b0)132)(32(=++b b231-=b ,2132-=b ………………………………9分当23-=b 或213-=b 时,0>∆∴ABP ∆的面积是43时,23-=b 或213-=b …………10分27.(本小题满分12分)解:(1)在Rt △ABC 中,∠BAC =90°, ∠ABC =60°,∵AB =4,∴34=AC ……………………………………………………………1分由翻折得∠ABD =30°,得334=AD …………………………………2分 ∴CD =338…………………………………………3分 (2)由翻折得∠BED =∠BAD =90°,∴∠CED =90°,∴∠CED=∠CAB又∵∠DCE =∠DCE ,∴△CED ∽△CAB ………………………………4分∴CBCDAB DE =,∵y AD x AC ==,,∴y x DC -=,∵4=AB 216x BC +=………………………………………………………6分∵DE =AD =y ,2164xyx y +-=…………………………………………7分 ∴)0(161642>-+=x xx y …………………………8分(3)过点C 作CH ⊥BG ,垂足为H∵BG ∥AC ,∴ ∠ACB =∠CBG ,∵∠ACB =∠CGB ,∴∠CBG =∠CGB , ∴CB =CG∴BH =HG=AC=x ,∴BG =2x ,∵AE ⊥BD ,∴∠ADB +∠DAE =∠DAE +∠BAG =90°, ∴∠ADB =∠BAG又∵∠BAC =∠ABG =90°,△ABD ∽△BGA ∴BGABAB AD =………………………………………………………10分∴x y 244=,∴xy 8=……………………………………………11分 ∵xx y 161642-+=,∴xx x 1616482-+=,解得52=x (负值已舍) 即AC=52……………………………………………………12分28.(本小题满分14分)解:(1)(3,4),y = 43x ;………4分(2)根据题意,得OP=t ,AQ=2t .分三种情况讨论:①当0<t≤52 时,如图1,M 点的坐标是(t ,43 t ).过点C 作CD ⊥x 轴于D ,过点Q 作QE ⊥x 轴于E ,可得△AEQ ∽△ODC ,∴ AQ OC = AE OD = QE CD ,∴ 2t 5 = AE 3 = QE4,∴AE =6t 5 ,EQ= 85 t ,∴Q 点的坐标是(8+ 65 t ,85 t ),∴PE=8+65 t -t= 8+15 t ,∴S= 12·MP·PE= 12 ·43 t·(8+15 t )= 215 t 2+ 163t ;………5分②当52<t≤3时,如图2,过点Q 作QF ⊥x 轴于F ,∵BQ=2t ﹣5,∴OF=11﹣(2t ﹣5)=16﹣2t ,∴Q 点的坐标是(16﹣2t ,4),∴PF=16﹣2t ﹣t=16﹣3t ,∴S= 12 ·MP·PF= 12 ·43 t·(16-3t)= -2t 2+323t, ………6分 ③当点Q 与点M 相遇时,16﹣2t=t ,解得t = 163 .当3<t <163时,如图3,MQ=16﹣2t ﹣t=16﹣3t ,MP=4.S= 12 ·MP·PF = 12·4·(16-3t )=﹣6t+32;………7分 ① 当502t <≤时,222162160(20)153153S t t t =+=+-,∵2015a =>,抛物线开口向上,对称轴为直线20t =-, ∴ 当502t <≤时,S 随t 的增大而增大. ∴ 当52t =时,S 有最大值,最大值为856.………8分 ②当532t <≤时,2232812822()339S t t t =-+=--+。
2013年初三年级学业水平模拟考试数学试题
2013年初三年级学业水平模拟考试数学试题本试题分第I卷(选择题)和第Ⅱ卷(非选择题)两部分。
本试题共12页,满分120分,考试时间为120分钟。
答卷前,请考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号填写在试卷规定的位置。
考试结束后,应将本试卷和答题卡一并交回。
第Ⅰ卷(选择题共45分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号,答案写在试卷上无效。
一、选择题:本大题共15小题,每小题3分,共45分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.34-的倒数是A.34-B.43 C.43-D.342.如图,AD∥BC,点E在BD的延长线上,若∠ADE=155°,则∠DBC的度数为A.155°B.50°C.45°D.25°第2题3.嫦娥三号,是嫦娥绕月探月工程计划中嫦娥系列的第三颗人造绕月探月卫星。
将于2013年下半年择机发射。
奔向距地球1500000km的深空。
用科学记数法表示1500000为A.1.5×106B.0.15×107C.1.5×107D.15×1064.下列各式计算正确的是A.10a6÷5a2=2a4B.32+23=5 5C.2(a2)3=6a6D.(a-2)2=a2-45.如图,一个正在绘制的扇形统计图,整个圆表示某班参加体育活动的总人数,那么表示参加实心球训练的人数占总人数的35%的扇形是AB CD EF A .E B .FC .GD .H 第5题6.如果函数y =ax +b (a <0,b >0)和y =kx (k >0)的图象交于点P ,那么点P 应该位于A .第一象限B .第二象限C .第三象限D .第四象限7.如图,甲、乙两图是分别由五个棱长为“1”的立方块组成的两个几何体,它们的三视图中完全一致的是 A .三视图都一致B .主视图C .俯视图D .左视图78.化简:2()n nm m m-÷+的结果是A .mn m -+B .1m -+C .1m --D .mn n --9.若关于x ,y 的方程组⎩⎨⎧=+=-n my x m y x 2的解是⎩⎨⎧==12y x ,则n m -为A .1B .3C .5D .210.下列正方形的性质中,菱形(非正方形)不具有的性质是A .四边相等;B .对角线相等;C .对角线平分一组对角;D .对角线互相平分且垂直.11.如图,在矩形ABCD 中,E 在AD 上,EF BE ⊥,交CD 于F ,连结BF ,则图中与ABE △ 一定相似的三角形是 A .EFB △B .DEF △ 甲图乙图DCBAD.D.EFB△和DEF△第11题12.如图,⊙O的半径为5,弦AB的长为8,点M在线段AB(包括端点A B,)上移动,则OM的取值范围是A.35OM≤≤B.35OM<≤C.45OM≤≤D.45OM<≤第12题13.如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是A→D→C→B→A,设P点经过的路程为x,以点A、P、D为顶点的三角形的面积是y.则下列图象能大致反映y与x的函数关系的是14.图中各图是在同一直角坐标系内,二次函数cxcaaxy+++=)(2与一次函数caxy+=的大致图象,有且只有一个是正确的,正确的是15.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1,A2,A3,A4,…表示,则顶点A55的坐标是PDCBAC第15题A .(13,13)B .(﹣13,﹣13)C .(14,14)D .(﹣14,﹣14)2013年初三年级学业水平模拟考试数 学 试 题第Ⅱ卷(非选择题 共75分)注意事项:1.第Ⅱ卷为非选择题,请考生用蓝、黑色钢笔(签字笔)或圆珠笔直接在试卷上作答。
2013年历年全国名校初三数学中考模拟试卷分类汇编数量和位置变化及答案
数量和位置变化,平面直角坐标系
一、选择题
1、(2013·湖州市中考模拟试卷1)对任意实数x,点P(x,x2-2x)一定不在
..()A.第一象限B.第二象限C.第三象限D.第四象限
答案:C
2、(2013安徽芜湖一模)若点P(a,a-3)在第四象限,则a的取值范围是
().
A.-3<a<0 B.0<a<3 C.a>3 D.a<0 A.第一象限 B.第二象限 C.第三象限 D.第四象限
答案:B
7、(2013·吉林中考模拟)在函数y=错误!未找到引用源。
中,自变量x的取值范围是.答案:x≠5
8、(2013·温州市中考模拟)在平面直角坐标系中,点(-3,2)到x轴的距离是_____.
答案:2
三、解答题
1、(2013吉林镇赉县一模)每个小方格是边长为1个单位长度的小正方形,菱形OABC在平面直角坐标系中的位置如图所示.
(1)以O点为位似中心,在第一象限内将菱形OABC放大为原来的2倍得到菱形OA1B1C1,请画出菱形OA1B1C1,并直接写出点B1的坐标;
(2)将菱形OABC绕原点O顺时针旋转90°,得到菱形OA2B2C2,请画出菱形OA2B2C2,
并求出点B旋转到B2的路径长. 答案:
1题图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新概念型问题
一、选择题
1、如图所示为一个污水净化塔内部,污水从上方入口进入后流经形如等腰直角三角形的净化材枓表面,流向如图中箭头所示,每一次水流流经三角形两腰的机会相同,经过四层净化后流入底部的5个出口中的一个.下列判断:①5个出口的出水量相同;②2号出口的出水量与4号出口的出水量相同;③1,2,3号出水口的出水量之比约为1:4:6;④若净化材枓损耗的速度与流经其表面水的数量成正比,则更换最慢的一个三角形材枓使用的时间约为更换最快的一个三角形材枓使用时间的6倍.其中正确的判断有( )个. A .1个B .2个C .3个D .4个 答案:B
二、填空题
1、(2013年上海市)一个函数的图像关于y 轴成
轴对称图形时,我们称该函数为“偶函数”.如果二次函数24y x bx =+-是“偶函数”,该函数的图像与x 轴交于点A 和点B ,顶点为P ,那么△ABP 的面积是 ▲ . 答案:8;
2、对任意两实数a 、b ,定义运算“*”如下:⎪⎩⎪⎨⎧<+≥=*)
()
(b a b b b a b b a a a
. 根据这个规则,则
方程x *2=9的解为________________________. 答案:-3或
2
1
37- 3、定义:a 是不为1的有理数,我们把
11a -称为a 的差倒数....如:2的差倒数是1
112
=--,1-的差倒数是
111(1)2
=--.已知11
3a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4
a 是3a 的差倒数,……,依此类推,则2012a = . 答案:
4
3
4、现定义运算“★”,对于任意实数a 、b ,都有a ★b =a 2-3a +b ,如:3★5=32-3×3+5,
若x ★2=6,则实数x 的值是__ __. 答案: —1或4
5、数学家们在研究15、12、10这三个数的倒数时发现:1111
12151012-=-.因此就将具有
这样性质的三个数称之为调和数,若x 、y 、2 (x >y >2
且均为正整数)也是一组调和数.则x 、y 的值分别为 ▲ .
答案:6、3
6、定义运算“※”的运算法则为: a ※
b=
,则(2※3) ※3 = .
答案:2
7、现定义运算“★”,对于任意实数a 、b ,都有a ★b =a 2-3a +b ,如:3★5=32-3×3+5,
若x ★2=6,则实数x 的值是__ __. 答案: —1或4
三、解答题
1、 (2013年上海市)(本题满分12分,其中第(1)小题3分,第(2)小题4分,第(3)小题5分)已知点A 、B 分别是x 轴、y 轴上的动点,点C 、D 是某个函数图像上的点,当四边形ABCD (A 、B 、C 、D 各点依次排列)为正方形时,我们称这个正方形为此函数图像的“伴侣正方形”.
例如:在图1中,正方形ABCD 是一次函数1y x =+图像的其中一个“伴侣正方形”. (1)如图1,若某函数是一次函数1y x =+,求它的图像的所有“伴侣正方形”的边长; (2)如图2,若某函数是反比例函数k
y x
=
(0)k >,它的图像的“伴侣正方形”为ABCD ,点(2,)D m (2)m <在反比例函数图像上,求m 的值及反比例函数的解析式; (3)如图3,若某函数是二次函数2y ax c =+(0)a ≠,它的图像的“伴侣正方形”为ABCD ,
C 、
D 中的一个点坐标为(3,4),请你直接写出该二次函数的解析式.
答案:解:
(1)(I )如图1,当点A 在x 轴正半轴、点B 在y 轴负半轴上时:
正方形ABCD .………………………………………………(1分) (II )当点A 在x 轴负半轴、点B 在y 轴正半轴上时:
设正方形边长为a ,易得3a =,………………………………………(1分) 解得a =
1分) ∴所求“伴侣正方形
(第24题图3)
(第24题图1)
(第24题图2)
(2)如图2,作DE ⊥x 轴,CF ⊥y 轴,垂足分别为点E 、F ,
易证△ADE ≌△BAO ≌△CBF .
∵点D 的坐标为(2,)m ,2m <,∴DE = OA = BF = m , ∴OB = AE = CF = 2 - m .
∴OF = BF + OB = 2,∴点C 的坐标为(2,2)m -.………………………(1分) ∴22(2)m m =-,…………………………………………………………(1分) 解得1m =.…………………………………………………………………(1分)
∴反比例函数的解析式为2
y x
=
.…………………………………………(1分) (3)212388y x =+或272234040y x =-+或23177y x =+或2355
77
y x =-+.…(5分)
注:第(3)小题写对一个函数解析式得2分,之后每写对一个得1分
2、(本题满分10分) 在一个三角形中,如果一个角是另一个角的2倍,我们称这种三角形
为倍角三角形.如图28-1,倍角△ABC 中,∠A=2∠B ,∠A 、∠B 、∠C 的对边分别记为a,b,c ,倍角三角形的三边a,b,c
(图28-1) (图28-2)
(图28-3) (图28-4) (1)我们先从特殊的倍角三角形入手研究.请你结合图形填空: (2)如图28-4,
对于一般的倍角△ABC ,若∠CAB=2∠CBA ,∠CAB 、∠CBA 、
∠C 的对边分别记为a 、b 、c ,a 、b 、c 三边有什么关系呢?请你作出猜测,并结合图28-4
a
给出的辅助线提示加以证明. 解:(1)
每空1分共4分 (2)
c
b a a b +=,(2分) 证明正确(4分)
3、如图,台风中心位于点P ,并沿东北方向PA 移动,已知台风移动的速度为30千米/时,受影响区域的半径为200千米,B 市位于点P 的北偏东︒75方向上,与P 点相距320千米.
(1)请你说明本次台风会影响B 市; (2)求这次台风影响B 市的时间.
答案:解:作AP BC ⊥,垂足为C ,︒=∠30APB ,200160<=BC (5分);设D 到
E 对B 市有影响,则240160200222=-=DE ,
830
240
= (10分) 4、如图①,P 为△ABC 内一点,连接PA 、PB 、PC ,在△PAB 、△PBC 和△PAC 中,如果存在一个三角形与△ABC 相似,那么就称P 为△ABC 的自相似点. ⑴如图②,已知Rt △ABC 中,∠ACB =90°,∠ACB >∠A ,CD 是AB 上的中线,过点B 作BE ⊥CD ,垂足为E ,试说明...E 是△ABC 的自相似点. ⑵在△ABC 中,∠A <∠B <∠C . ①如图③,利用尺规作出△ABC 的自相似点P (写出作法并保留作图痕迹); ②若△ABC 的内心P 恰是该三角形的自相似点,求该三角形三个内角的度数.
北
B
答案:解⑴在Rt △ABC 中,∠ACB =90°,CD 是AB 上的中线,∴1
2
CD AB =
,∴CD =BD . ∴∠BCE =∠ABC .∵BE ⊥CD ,∴∠BEC =90°,∴∠BEC =∠ACB .∴△BCE ∽△ABC . ∴E 是△ABC 的自相似点. ⑵①作图略.
作法如下:(i )在∠ABC 内,作∠CBD =∠A ;
(ii )在∠ACB 内,作∠BCE =∠ABC ;BD 交CE 于点P .
则P 为△ABC 的自相似点. ②连接PB 、PC . ∵P 为△ABC 的内心 ∴12PBC ABC ∠=
∠,1
2
PCB ACB ∠=∠. ∵P 为△ABC 的自相似点
∴△BCP ∽△ABC . ∴∠PBC =∠A ,∠BCP =∠ABC=2∠PBC =2∠A , ∠ACB =2∠BCP=4∠A ∵∠A +∠ABC+∠ACB =180°. ∴∠A +2∠A+4∠A =180°.
∴1807A ∠= .∴该三角形三个内角的度数分别为1807 、3607 、7207
.
5、定义[]p q ,为一次函数y px q =+的特征数.
(1)若特征数是[]21m +,的一次函数为正比例函数,求m 的值;
(2)已知抛物线()(2)y x n x =+-与x 轴交于点A B 、,其中0n >,点A 在点B 的左侧,与y 轴交于点C ,且OAC △的面积为4,O 为原点,求图象过A C 、两点的一次函数的特征数.
(本小题满分5分) 解:(1) 由题意得 10m +=.
∴ 1m =-. -------1分
(2)由题意得 点A 的坐标为(-n ,0),点C 的坐标为(0,-2n ). ………………2分
∵ OAC △的面积为4,
∴
1
242
n n ⨯= ∴ 2n =.
∴ 点A 的坐标为(-2,0),点C 的坐标为(0,-4). …………………………3分 设直线AC 的解析式为 y kx b =+.
∴ 02,
4.
k b b =-+⎧⎨
-=⎩
∴ 2,
4.
k b =-⎧⎨
=-⎩ …………………………4分
∴ 直线AC 的解析式为 24y x =--.
∴ 图象过A C 、两点的一次函数的特征数为[]
24--,. ………………………5分。