高考数学试题分类汇编 平面向量
高考数学试题分类汇编——平面向量
高考数学试题分类汇编平面向量一. 选择题:1.(全国一5)在ABC △中,AB c =,AC b =.若点D 满足2BD DC =,则AD =( A )A .2133b c +B .5233c b -C .2133b c -D .1233b c + 2.(安徽卷2)若(2,4)AB =,(1,3)AC =, 则BC =( B )A . (1,1)B .(-1,-1)C .(3,7)D .(-3,-7)3.(安徽卷5)在三角形ABC 中,5,3,7AB AC BC ===,则BAC ∠的大小为( A )A .23πB .56πC .34πD .3π 4.(北京卷4)已知ABC △中,2a =3b =60B =,那么角A 等于( C )A .135B .90C .45D .305.(福建卷8)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若a 2+c 2-b 3ac ,则角B 的值为A A.6π B.3π C.6π或56π D.3π或23π 6.(广东卷3)已知平面向量(1,2)a =,(2,)b m =-,且a //b ,则23a b +=( B )A 、(5,10)--B 、(4,8)--C 、(3,6)--D 、(2,4)--7.(海南卷5)已知平面向量a =(1,-3),b =(4,-2),a b λ+与a 垂直,则λ是( A )A. -1B. 1C. -2D. 28.(海南卷9)平面向量a ,b 共线的充要条件是( D )A. a ,b 方向相同B. a ,b 两向量中至少有一个为零向量 C. R λ∃∈, b a λ= D. 存在不全为零的实数1λ,2λ,120a b λλ+=9.(湖北卷设1))2,1(-=a ,)4,3(-=b ,则=•+c b a )2( CA.(15,12)-B.0C.3-D.11-10.(湖南卷7)在ABC ∆中,AB=3,AC=2,BC=10,则AB AC ⋅= ( D )A .23-B .32-C .32D .23 11.(辽宁卷5)已知四边形ABCD 的三个顶点(02)A ,,(12)B --,,(31)C ,,且2BC AD =,则顶点D 的坐标为( A )A .722⎛⎫ ⎪⎝⎭,B .122⎛⎫- ⎪⎝⎭,C .(32),D .(13),12.(山东卷8)已知a b c ,,为ABC △的三个内角A B C ,,的对边,向量31)(cos sin )A A =-=,,,m n .若⊥m n ,且cos cos sin a B b A c C +=,则角A B ,的大小分别为( C )A .ππ63,B .2ππ36,C .ππ36,D .ππ33, 13.(四川卷3)设平面向量()()3,5,2,1a b ==-,则2a b -=( A )(A)()7,3 (B)()7,7 (C)()1,7 (D)()1,314.(四川卷7)ABC ∆的三内角,,A B C 的对边边长分别为,,a b c ,若5,22a b A B ==,则cos B =( B ) 5 5 5 515.(重庆卷4)若点P 分有向线段AB 所成的比为-13,则点B 分有向线段PA 所成的比是A (A)-32 (B)-12 (C) 12(D)3 二. 填空题:1.(全国二13)设向量(12)(23)==,,,a b ,若向量λ+a b 与向量(47)=--,c 共线,则=λ .22.(北京卷11)已知向量a 与b 的夹角为120,且4==a b ,那么b a •的值为 .8-3.(湖北卷12)在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,已知3,3,30,a b c ===︒则A = . 6π 4.(湖南卷11)已知向量)3,1(=a ,)0,2(-=b ,则b a +=_____________________.25.(江苏卷5)a ,b 的夹角为120︒,1a =,3b = 则5a b -= .76.(江苏卷13)若2BC ,则ABC S ∆的最大值 .227.(江西卷16)如图,正六边形ABCDEF 中,有下列四个命题:A .2AC AF BC +=B .22AD AB AF =+C .AC AD AD AB ⋅=⋅D .()()AD AF EF AD AF EF ⋅=⋅ 其中真命题的代号是 (写出所有真命题的代号).A 、B 、D8.(陕西卷15)关于平面向量,,a b c .有下列三个命题: ①若c a b a ⋅=⋅,则=b c .②若(1)(26)k ==-,,,a b ,∥a b ,则3k =-. ③非零向量a 和b 满足||||||==-a b a b ,则a 与+a b 的夹角为60.其中真命题的序号为 ② .(写出所有真命题的序号)A B D E CF9.(上海卷5)若向量a ,b 满足12a b ==,且a 与b 的夹角为3π,则a b += .710.(天津卷14)已知平面向量(24)=,a ,(12)=-,b ,若()=-c a a b b ,则=c .211.(浙江卷14)在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若()C a A c b cos cos 3=-,则=A cos 312.(浙江卷16)已知a 是平面内的单位向量,若向量b 满足()0b a b -=,则||b 的取值范围是 。
高考数学专题复习题:平面向量
高考数学专题复习题:平面向量一、单项选择题(共8小题)1.已知向量(1,)x =a ,(1,3)=−b .若向量2+a b 与向量b 垂直,则x 的值为( ) 33||||4AC CB =.若AB BC λ=,则λ34 C.74 3.已知向量a ,b 不共线,设k =+u a b ,2=−v a b ,若//u v ,则实数k 的值为( )A.4.如图所示,等腰梯形ABCD 中,3AB BC CD AD ===,点E 为线段CD 上靠近点C 的三等分点,点F 为线段BC 的中点,则FE =( )A.1151818AB AC −+B.1111189AB AC −+C.114189AB AC −+D.1526AB AC −+第4题图 第5题图 第6题图5.如图,在等边三角形ABC 中,如果3BD DC =,那么向量AB 在向量AD 上的投影向量为( )AD AD AD AD 6.如图,在ABC △中,D 是线段BC 上的一点,且4BC BD =,过点D 的直线分别交直线AB ,AC 于点M ,N ,如果AM AB λ=,(0,0)AN AC μλμ=>>,那么μ值是( )7−7.单位向量a ,b ,c 满足22−+=0a b c ,则cos ,2〈−〉=a b c ( )8.若AB AC ⊥,||AB t =,1||AC =,ABC 平面内一点,2||||AB AC AP AB AC =+,则的最大值为( )A.13B.二、多项选择题(共2小题)9.已知向量,,其中,则下列说法中正确的是( )A.若,则B.若a 与b 的夹角为锐角,则C.若1x =,则a 在b 上的投影向量为bD.若,则10.在ABC △中,90A ∠=︒,3AB =,4AC =,点D 为线段AB 上靠近A 点的三等分点,E 为CD 的中点,则下列结论正确的是( )A.16AE AB AC = AE 与EB 的夹角的余弦值为 C.AE CD ⋅=三、填空题(共5小题)11.图1是某晶体的阴阳离子单层排列的平面示意图,其阴离子排列如图2所示,图2中圆的半径均为1,且相邻的圆都相切,如果A ,B ,C ,D 是其中四个圆的圆心,那么AB CD ⋅=________.12.已知向量(2,5)=a ,(,4)λ=b ,若//a b ,则λ=________.13.平面向量(1,2)=a ,(4,2)=b ,()m m =+∈R c a b ,且c 与a 的夹角等于c 与b 的夹PB PC ⋅5−−+(1,3)=a (2,2)x x =−b x ∈R ⊥a b 6x =6x <||||||+=+a b a b 27x =角,则m =________.14.在ABC △中,2AB =,3AC =,A =3255AD AB AC =+,则AB 与AD 夹角的大小为________.15.如图,在平行四边形ABCD 中,已知M 是BC 中点,DE AM ⊥于E ,2AB AD =,cos DAB ∠=AB =a ,,以,为基底表示EC ,则EC =________.AD =b a b。
平面向量-高考真题文科数学分项汇编(原卷版)
专题 11平面向量1.【2020年高考全国Ⅱ卷文数】已知单位向量a ,b 的夹角为60°,则在下列向量中,与b 垂直的是A .a+2bB .2a+bC .a –2bD .2a – b2.【2020年高考全国Ⅲ卷文数】在平面内,A ,B 是两个定点,C 是动点,若 AC BC=1,则点 C 的轨迹为A .圆B .椭圆C .抛物线D .直线3.【2020年新高考全国Ⅰ卷】已知 P 是边长为 2的正六边形 ABCDEF 内的一点,则 AP AB 的取值范围是A .(2,6) C .(2,4)B .(6,2) D .(4,6)4.【2019年高考全国 I 卷文数】已知非零向量 a ,b 满足|a | 2|b|,且(a b) b ,则 a 与 b 的夹角为πB . πA .C . 6 2π 3 5πD .365.【2019年高考全国 II 卷文数】已知向量 a=(2,3),b=(3,2),则|a-b|= A . 2 B .2 C .5 2D .506.【2018年高考全国 I 卷文数】在△ABC 中, AD 为 BC 边上的中线, E 为 AD 的中点,则 EB1A . AB1 AC3 B . AB3 AC4 3 44 1 4C .AB 1 AC D .AB 3 AC 4 44 47.【2018年高考全国 II 卷文数】已知向量 a ,b 满足|a | 1, a b 1,则 a (2a b)A .4 C .2B .3 D .08.【2018年高考浙江卷】已知 a ,b ,e 是平面向量,e 是单位向量.若非零向量 a 与 e 的夹角为 π3,向量 b 满足 b −4e·b+3=0,则|a −b|的最小值是2A . 3 −1 C .2B . 3 +1 D .2− 39.【 2018年高考天津卷文数】在如图的平面图形中,已知BC·OM的值为OM 1,ON 2,MON 120,BM 2MA,CN 2NA,则A .15C . 6B .9D.010.【2020年高考全国Ⅰ卷文数】设向量a (1,1),b (m 1,2m 4),若a b,则m11.【2020年高考天津】如图,在四边形ABCD 中, B 60, AB 3,BC 6,且.AD BC, AD AB 3,则实数的值为_________,若M,N是线段BC上的动点,且| MN2则DM DN的最小值为_________.12.【2020年高考北京】已知正方形ABCD的边长为2,点P满足AP 1 (AB AC),则| PD |_________;2PB PD _________.13.【2020年高考浙江】已知平面单位向量e1,e2满足| 2e 1 e2 | 2.设a e 1 e2,b 3e 1 e2,向量a,b 的夹角为,则cos的最小值是_______.14.【2020年高考江苏】在△ABC中,AB 4,AC 3,∠BAC=90,D在边BC上,延长AD到P,使得AP 2若PA mPB (3 m)PC(m为常数),则CD的长度是▲.215.【2019年高考北京卷文数】已知向量=(–4,3),=(6,m),且a b,则m=__________.a b16.【2019年高考全国III卷文数】已知向量a (2,2),b (8,6),则cos a,b___________.17.【2019年高考天津卷文数】在四边形ABCD中,AD∥BC, AB 2 3, AD 5, A 30,点E 在线段CB 的延长线上,且 AEBE ,则 BD AE _____________.18.【2019年高考江苏卷】如图,在△ABC 中,D 是 BC 的中点,E 在边 AB 上,BE=2EA ,AD 与 CE 交于点O .若 AB AC6AO EC ,则ABAC 的值是_____. 19.【2019年高考浙江卷】已知正方形 ABCD 的边长为 1,当每个i(i 1,2,3,4,5,6)取遍时,|1AB 2BC 3CD 4DA 5AC 6BD|的最小值是________;最大值是_______.20.【2018年高考全国 III 卷文数】已知向量a=1,2,b=2,2,c=1,λ.若c ∥2a + b ,则________.21.【2018年高考北京卷文数】设向量 a=(1,0),b=(−1,m ),若 a (mab),则 m=_________.22.【2018年高考上海卷】在平面直角坐标系中,已知点 A 1,0、 B2,0, E 、 F 是 y 轴上的两个动点,且|EF| 2 ,则 AE BF 的最小值为___________.23.【2018年高考江苏卷】在平面直角坐标系 xOy 中, A 为直线l : y 2x 上在第一象限内的点,B 5,0,以 AB 为直径的圆C 与直线l 交于另一点 D .若 AB CD0,则点 A 的横坐标为___________.。
高考数学真题汇编---平面向量(有解析)
高考数学真题汇编---平面向量学校:___________姓名:___________班级:___________考号:___________一.选择题(共10小题)1.(2017•新课标Ⅱ)设非零向量,满足|+|=|﹣|则()A.⊥B.||=||C.∥D.||>||2.(2017•新课标Ⅲ)在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若=λ+μ,则λ+μ的最大值为()A.3 B.2C.D.23.(2017•新课标Ⅱ)已知△ABC是边长为2的等边三角形,P为平面ABC内一点,则•(+)的最小值是()A.﹣2 B.﹣C.﹣D.﹣14.(2017•浙江)如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O,记I1=•,I2=•,I3=•,则()A.I1<I2<I3B.I1<I3<I2C.I3<I1<I2D.I2<I1<I35.(2016•新课标Ⅲ)已知向量=(,),=(,),则∠ABC=()A.30°B.45°C.60°D.120°6.(2016•新课标Ⅱ)已知向量=(1,m),=(3,﹣2),且(+)⊥,则m=()A.﹣8 B.﹣6 C .6 D.87.(2016•天津)已知△ABC是边长为1的等边三角形,点D、E分别是边AB、BC的中点,连接DE并延长到点F,使得DE=2EF,则•的值为()A.﹣B.C.D.8.(2016•山东)已知非零向量,满足4||=3||,cos<,>=.若⊥(t+),则实数t的值为()A.4 B.﹣4 C.D.﹣9.(2016•四川)在平面内,定点A,B,C,D满足==,•=•=•=﹣2,动点P,M满足=1,=,则||2的最大值是()A.B.C.D.10.(2016•四川)已知正三角形ABC的边长为2,平面ABC内的动点P,M 满足||=1,=,则||2的最大值是()A.B.C.D.二.填空题(共20小题)11.(2017•山东)已知向量=(2,6),=(﹣1,λ),若,则λ=.12.(2017•新课标Ⅲ)已知向量=(﹣2,3),=(3,m),且,则m=.13.(2017•新课标Ⅰ)已知向量=(﹣1,2),=(m,1),若向量+与垂直,则m=.14.(2017•新课标Ⅰ)已知向量,的夹角为60°,||=2,||=1,则|+2|=.15.(2017•山东)已知,是互相垂直的单位向量,若﹣与+λ的夹角为60°,则实数λ的值是.16.(2017•江苏)在平面直角坐标系xOy中,A(﹣12,0),B(0,6),点P在圆O:x2+y2=50上.若≤20,则点P的横坐标的取值范围是.17.(2017•北京)已知点P在圆x2+y2=1上,点A的坐标为(﹣2,0),O为原点,则•的最大值为.18.(2017•江苏)如图,在同一个平面内,向量,,的模分别为1,1,,与的夹角为α,且tanα=7,与的夹角为45°.若=m+n(m,n∈R),则m+n=.19.(2017•天津)在△ABC中,∠A=60°,AB=3,AC=2.若=2,=λ﹣(λ∈R),且=﹣4,则λ的值为.20.(2016•新课标Ⅱ)已知向量=(m,4),=(3,﹣2),且∥,则m=.21.(2016•上海)在平面直角坐标系中,已知A(1,0),B(0,﹣1),P是曲线y=上一个动点,则•的取值范围是.22.(2016•新课标Ⅰ)设向量=(m,1),=(1,2),且|+|2=||2+||2,则m=.23.(2016•山东)已知向量=(1,﹣1),=(6,﹣4),若⊥(t+),则实数t的值为.24.(2016•新课标Ⅰ)设向量=(x,x+1),=(1,2),且⊥,则x=.25.(2016•浙江)已知平面向量,,||=1,||=2,=1,若为平面单位向量,则||+||的最大值是.26.(2016•上海)如图,已知点O(0,0),A(1,0),B(0,﹣1),P是曲线y=上一个动点,则•的取值范围是.27.(2016•江苏)如图,在△ABC中,D是BC的中点,E,F是AD上的两个三等分点,•=4,•=﹣1,则•的值是.28.(2016•北京)已知向量=(1,),=(,1),则与夹角的大小为.29.(2016•上海)如图,在平面直角坐标系xOy中,O为正八边形A1A2…A8的中心,A1(1,0)任取不同的两点A i,A j,点P满足++=,则点P落在第一象限的概率是.30.(2016•浙江)已知向量,,||=1,||=2,若对任意单位向量,均有|•|+|•|≤,则•的最大值是.三.解答题(共1小题)31.(2017•山东)在△ABC中,角A,B,C的对边分别为a,b,c,已知b=3,= =3,求A和a.﹣6,S△ABC高考数学真题汇编---平面向量参考答案与试题解析一.选择题(共10小题)1.【分析】由已知得,从而=0,由此得到.【解答】解:∵非零向量,满足|+|=|﹣|,∴,解得=0,∴.故选:A.2.【分析】如图:以A为原点,以AB,AD所在的直线为x,y轴建立如图所示的坐标系,先求出圆的标准方程,再设点P的坐标为(cosθ+1,sinθ+2),根据=λ+μ,求出λ,μ,根据三角函数的性质即可求出最值.【解答】解:如图:以A为原点,以AB,AD所在的直线为x,y轴建立如图所示的坐标系,则A(0,0),B(1,0),D(0,2),C(1,2),∵动点P在以点C为圆心且与BD相切的圆上,设圆的半径为r,∵BC=2,CD=1,∴BD==∴BC•CD=BD•r,∴r=,∴圆的方程为(x﹣1)2+(y﹣2)2=,设点P的坐标为(cosθ+1,sinθ+2),∵=λ+μ,∴(cosθ+1,sinθ+2)=λ(1,0)+μ(0,2)=(λ,2μ),∴cosθ+1=λ,sinθ+2=2μ,∴λ+μ=cosθ+sinθ+2=sin(θ+φ)+2,其中tanφ=2,∵﹣1≤sin(θ+φ)≤1,∴1≤λ+μ≤3,故λ+μ的最大值为3,故选:A.3.【分析】根据条件建立坐标系,求出点的坐标,利用坐标法结合向量数量积的公式进行计算即可.【解答】解:建立如图所示的坐标系,以BC中点为坐标原点,则A(0,),B(﹣1,0),C(1,0),设P(x,y),则=(﹣x,﹣y),=(﹣1﹣x,﹣y),=(1﹣x,﹣y),则•(+)=2x2﹣2y+2y2=2[x2+(y﹣)2﹣]∴当x=0,y=时,取得最小值2×(﹣)=﹣,故选:B.4.【分析】根据向量数量积的定义结合图象边角关系进行判断即可.【解答】解:∵AB⊥BC,AB=BC=AD=2,CD=3,∴AC=2,∴∠AOB=∠COD>90°,由图象知OA<OC,OB<OD,∴0>•>•,•>0,即I3<I1<I2,故选:C.5.【分析】根据向量的坐标便可求出,及的值,从而根据向量夹角余弦公式即可求出cos∠ABC的值,根据∠ABC的范围便可得出∠ABC 的值.【解答】解:,;∴;又0°≤∠ABC≤180°;∴∠ABC=30°.故选:A.【分析】求出向量+的坐标,根据向量垂直的充要条件,构造关于m的方程,解得答案.【解答】解:∵向量=(1,m),=(3,﹣2),∴+=(4,m﹣2),又∵(+)⊥,∴12﹣2(m﹣2)=0,解得:m=8,故选:D.7.【分析】由题意画出图形,把、都用表示,然后代入数量积公式得答案.【解答】解:如图,∵D、E分别是边AB、BC的中点,且DE=2EF,∴•========.故选:C.【分析】若⊥(t+),则•(t+)=0,进而可得实数t的值.【解答】解:∵4||=3||,cos<,>=,⊥(t+),∴•(t+)=t•+2=t||•||•+||2=()||2=0,解得:t=﹣4,故选:B.9.【分析】由==,可得D为△ABC的外心,又•=•=•,可得可得D为△ABC的垂心,则D为△ABC的中心,即△ABC为正三角形.运用向量的数量积定义可得△ABC的边长,以A为坐标原点,AD所在直线为x轴建立直角坐标系xOy,求得B,C的坐标,再设P(cosθ,sinθ),(0≤θ<2π),由中点坐标公式可得M的坐标,运用两点的距离公式可得BM的长,运用三角函数的恒等变换公式,结合正弦函数的值域,即可得到最大值.【解答】解:由==,可得D为△ABC的外心,又•=•=•,可得•(﹣)=0,•(﹣)=0,即•=•=0,即有⊥,⊥,可得D为△ABC的垂心,则D为△ABC的中心,即△ABC为正三角形.由•=﹣2,即有||•||cos120°=﹣2,解得||=2,△ABC的边长为4cos30°=2,以A为坐标原点,AD所在直线为x轴建立直角坐标系xOy,可得B(3,﹣),C(3,),D(2,0),由=1,可设P(cosθ,sinθ),(0≤θ<2π),由=,可得M为PC的中点,即有M(,),则||2=(3﹣)2+(+)2=+==,当sin(θ﹣)=1,即θ=时,取得最大值,且为.故选:B.10.【分析】如图所示,建立直角坐标系.B(0,0),C.A.点P的轨迹方程为:=1,令x=+cosθ,y=3+sinθ,θ∈[0,2π).又=,可得M,代入||2=+3sin,即可得出.【解答】解:如图所示,建立直角坐标系.B(0,0),C.A.∵M满足||=1,∴点P的轨迹方程为:=1,令x=+cosθ,y=3+sinθ,θ∈[0,2π).又=,则M,∴||2=+=+3sin≤.∴||2的最大值是.也可以以点A为坐标原点建立坐标系.解法二:取AC中点N,MN=,从而M轨迹为以N为圆心,为半径的圆,B,N,M三点共线时,BM为最大值.所以BM最大值为3+=.故选:B.二.填空题(共20小题)11.【分析】利用向量共线定理即可得出.【解答】解:∵,∴﹣6﹣2λ=0,解得λ=﹣3.故答案为:﹣3.12.【分析】利用平面向量数量积坐标运算法则和向量垂直的性质求解.【解答】解:∵向量=(﹣2,3),=(3,m),且,∴=﹣6+3m=0,解得m=2.故答案为:2.13.【分析】利用平面向量坐标运算法则先求出,再由向量+与垂直,利用向量垂直的条件能求出m的值.【解答】解:∵向量=(﹣1,2),=(m,1),∴=(﹣1+m,3),∵向量+与垂直,∴()•=(﹣1+m)×(﹣1)+3×2=0,解得m=7.故答案为:7.14.【分析】根据平面向量的数量积求出模长即可.【解答】解:【解法一】向量,的夹角为60°,且||=2,||=1,∴=+4•+4=22+4×2×1×cos60°+4×12=12,∴|+2|=2.【解法二】根据题意画出图形,如图所示;结合图形=+=+2;在△OAC中,由余弦定理得||==2,即|+2|=2.故答案为:2.15.【分析】根据平面向量的数量积运算与单位向量的定义,列出方程解方程即可求出λ的值.【解答】解:【方法一】由题意,设=(1,0),=(0,1),则﹣=(,﹣1),+λ=(1,λ);又夹角为60°,∴(﹣)•(+λ)=﹣λ=2××cos60°,即﹣λ=,解得λ=.【方法二】,是互相垂直的单位向量,∴||=||=1,且•=0;又﹣与+λ的夹角为60°,∴(﹣)•(+λ)=|﹣|×|+λ|×cos60°,即+(﹣1)•﹣λ=××,化简得﹣λ=××,即﹣λ=,解得λ=.故答案为:.16.【分析】根据题意,设P(x0,y0),由数量积的坐标计算公式化简变形可得2x0+y0+5≤0,分析可得其表示表示直线2x+y+5≤0以及直线下方的区域,联立直线与圆的方程可得交点的横坐标,结合图形分析可得答案.【解答】解:根据题意,设P(x0,y0),则有x02+y02=50,=(﹣12﹣x0,﹣y0)•(﹣x0,6﹣y0)=(12+x0)x0﹣y0(6﹣y0)=12x0+6y+x02+y02≤20,化为:12x0﹣6y0+30≤0,即2x0﹣y0+5≤0,表示直线2x﹣y+5=0以及直线上方的区域,联立,解可得x0=﹣5或x0=1,结合图形分析可得:点P的横坐标x0的取值范围是[﹣5,1],故答案为:[﹣5,1].17.【分析】设P(cosα,sinα).可得=(2,0),=(cosα+2,sinα).利用数量积运算性质、三角函数的单调性与值域即可得出.【解答】解:设P(cosα,sinα).=(2,0),=(cosα+2,sinα).则•=2(cosα+2)≤6,当且仅当cosα=1时取等号.故答案为:6.18.【分析】如图所示,建立直角坐标系.A(1,0).由与的夹角为α,且tanα=7.可得cosα=,sinα=.C.可得cos(α+45°)=.sin(α+45°)=.B.利用=m+n(m,n∈R),即可得出.【解答】解:如图所示,建立直角坐标系.A(1,0).由与的夹角为α,且tanα=7.∴cosα=,sinα=.∴C.cos(α+45°)=(cosα﹣sinα)=.sin(α+45°)=(sinα+cosα)=.∴B.∵=m+n(m,n∈R),∴=m﹣n,=0+n,解得n=,m=.则m+n=3.故答案为:3.19.【分析】根据题意画出图形,结合图形,利用、表示出,再根据平面向量的数量积列出方程求出λ的值.【解答】解:如图所示,△ABC中,∠A=60°,AB=3,AC=2,=2,∴=+=+=+(﹣)=+,又=λ﹣(λ∈R),∴=(+)•(λ﹣)=(λ﹣)•﹣+λ=(λ﹣)×3×2×cos60°﹣×32+λ×22=﹣4,∴λ=1,解得λ=.故答案为:.20.【分析】直接利用向量共线的充要条件列出方程求解即可.【解答】解:向量=(m,4),=(3,﹣2),且∥,可得12=﹣2m,解得m=﹣6.故答案为:﹣6.21.【分析】设P(cosα,sinα),α∈[0,π],则=(1,1),=(cosα,sinα+1),由此能求出•的取值范围.【解答】解:∵在平面直角坐标系中,A(1,0),B(0,﹣1),P是曲线y=上一个动点,∴设P(cosα,sinα),α∈[0,π],∴=(1,1),=(cosα,sinα+1),=cosα+sinα+1=,∴•的取值范围是[0,1+].故答案为:[0,1+].22.【分析】利用已知条件,通过数量积判断两个向量垂直,然后列出方程求解即可.【解答】解:|+|2=||2+||2,可得•=0.向量=(m,1),=(1,2),可得m+2=0,解得m=﹣2.故答案为:﹣2.23.【分析】根据向量的坐标运算和向量的数量积计算即可.【解答】解:∵向量=(1,﹣1),=(6,﹣4),∴t+=(t+6,﹣t﹣4),∵⊥(t+),∴•(t+)=t+6+t+4=0,解得t=﹣5,故答案为:﹣5.24.【分析】根据向量垂直的充要条件便可得出,进行向量数量积的坐标运算即可得出关于x的方程,解方程便可得出x的值.【解答】解:∵;∴;即x+2(x+1)=0;∴.故答案为:.25.【分析】由题意可知,||+||为在上的投影的绝对值与在上投影的绝对值的和,由此可知,当与共线时,||+||取得最大值,即.【解答】解:||+||=,其几何意义为在上的投影的绝对值与在上投影的绝对值的和,当与共线时,取得最大值.∴=.故答案为:.26.【分析】设出=(x,y),得到•=x+,令x=cosθ,根据三角函数的性质得到•=sinθ+cosθ=sin(θ+),从而求出•的范围即可.【解答】解:设=(x,y),则=(x,),由A(1,0),B(0,﹣1),得:=(1,1),∴•=x+,令x=cosθ,θ∈[0,π],则•=sinθ+cosθ=sin(θ+),θ∈[0,π],故•的范围是[﹣,1,],故答案为:[﹣1,].27.【分析】由已知可得=+,=﹣+,=+3,=﹣+3,=+2,=﹣+2,结合已知求出2=,2=,可得答案.【解答】解:∵D是BC的中点,E,F是AD上的两个三等分点,∴=+,=﹣+,=+3,=﹣+3,∴•=2﹣2=﹣1,•=92﹣2=4,∴2=,2=,又∵=+2,=﹣+2,∴•=42﹣2=,故答案为:28.【分析】根据已知中向量的坐标,代入向量夹角公式,可得答案.【解答】解:∵向量=(1,),=(,1),∴与夹角θ满足:cosθ===,又∵θ∈[0,π],∴θ=,故答案为:.29.【分析】利用组合数公式求出从正八边形A1A2…A8的八个顶点中任取两个的事件总数,满足++=,且点P落在第一象限,则需向量+的终点落在第三象限,列出事件数,再利用古典概型概率计算公式求得答案.【解答】解:从正八边形A1A2…A8的八个顶点中任取两个,基本事件总数为.满足++=,且点P落在第一象限,对应的A i,A j,为:(A4,A7),(A5,A8),(A5,A6),(A6,A7),(A5,A7)共5种取法.∴点P落在第一象限的概率是,故答案为:.30.【分析】根据向量三角形不等式的关系以及向量数量积的应用进行计算即可得到结论.【解答】解:由绝对值不等式得≥|•|+|•|≥|•+•|=|(+)•|,于是对任意的单位向量,均有|(+)•|≤,∵|(+)|2=||2+||2+2•=5+2•,∴|(+)|=,因此|(+)•|的最大值≤,则•≤,下面证明:•可以取得,(1)若|•|+|•|=|•+•|,则显然满足条件.(2)若|•|+|•|=|•﹣•|,此时|﹣|2=||2+||2﹣2•=5﹣1=4,此时|﹣|=2于是|•|+|•|=|•﹣•|≤2,符合题意,综上•的最大值是,法2:由于任意单位向量,可设=,则|•|+|•|=||+||≥||+|=||=|+|,∵|•|+|•|≤,∴|+|≤,即(+)2≤6,即||2+||2+2•≤6,∵||=1,||=2,∴•≤,即•的最大值是.法三:设=,=,=,则=+,=﹣,|•|+|•|=||+||=||≤||,由题设当且仅当与同向时,等号成立,此时(+)2取得最大值6,第21页(共22页)由于|+|2+|﹣|)2=2(||2+||2)=10,于是(﹣)2取得最小值4,则•=,•的最大值是.故答案为:.三.解答题(共1小题)31.【分析】根据向量的数量积和三角形的面积公式可得tanA=﹣1,求出A和c的值,再根据余弦定理即可求出a.【解答】解:由=﹣6可得bccosA=﹣6,①,由三角形的面积公式可得S△ABC=bcsinA=3,②∴tanA=﹣1,∵0<A<180°,∴A=135°,∴c==2,由余弦定理可得a2=b2+c2﹣2bccosA=9+8+12=29∴a=第22页(共22页)。
高考理科数学 试题分类汇编5:平面向量
高考理科数学试题分类汇编5:平面向量一、选择题1 .(2013年高考上海卷(理))在边长为1的正六边形ABCDEF 中,记以A 为起点,其余顶点为终点的向量分别为12345,,,,a a a a a ;以D 为起点,其余顶点为终点的向量分别为12345,,,,d d d d d.若,m M 分别为()()i j k r s t a a a d d d ++⋅++的最小值、最大值,其中{,,}{1,2,3,4,5}i j k ⊆,{,,}{1,2,3,4,5}r s t ⊆,则,m M 满足( )A .0,0m M =>B .0,0m M <>C .0,0m M <=D .0,0m M <<【答案】D .2 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD 版))已知点()()1,3,4,1,A B AB -则与向量同方向的单位向量为( )A .3455⎛⎫ ⎪⎝⎭,-B .4355⎛⎫ ⎪⎝⎭,-C .3455⎛⎫- ⎪⎝⎭,D .4355⎛⎫- ⎪⎝⎭,【答案】A [来源:12999数学网]3 .(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))设0,P ABC ∆是边AB 上一定点,满足AB B P 410=,且对于边AB 上任一点P ,恒有C P B P 00∙≥∙.则 ( )A .090=∠ABCB .090=∠BAC C .AC AB =D .BC AC =【答案】D4 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))在四边形ABCD中,(1,2)AC = ,(4,2)BD =-,则四边形的面积为( )A B .C .5D .10【答案】C5 .(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))在平面直角坐标系中,O 是坐标原点,两定点,A B满足2,OA OB OA OB ===则点集{}|,1,,P O PO A O B R λμλμλμ=++≤∈所表示的区域的面积是( )A .B .C .D .【答案】D6 .(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))在平面上,12AB AB ⊥ ,121OB OB == ,12AP AB AB =+ .若12OP < ,则OA 的取值范围是 ( )A .0,2⎛ ⎝⎦B .,22⎛ ⎝⎦C .2⎛ ⎝D .2⎛ ⎝【答案】D7 .(2013年高考湖南卷(理))已知,a b 是单位向量,0a b = .若向量c 满足1,c a b c --=则的取值范围是 ( )A .⎤⎦B .⎤⎦C .1⎡⎤⎣⎦D .1⎡⎤⎣⎦【答案】A8 .(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知向量()()1,1,2,2m n λλ=+=+ ,若()()m n m n +⊥-,则=λ( )A .4-B .3-C .2-D .-1[来源:]【答案】B9 .(2013年高考湖北卷(理))已知点()1,1A -.()1,2B .()2,1C --.()3,4D ,则向量AB 在CD方向上的投影为 ( )A B C .D . 【答案】A [来源:12999数学网] 二、填空题10.(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD =_______.【答案】211.(2013年上海市春季高考数学试卷(含答案))已知向量(1 )a k =,,(9 6)b k =- ,.若//a b ,则实数 k = __________【答案】34-12.(2013年普通高等学校招生统一考试山东数学(理)试题(含答案))已知向量AB与AC的夹角为120°,且3AB = ,2AC = ,若AP AB AC λ=+ ,且AP BC ⊥,则实数λ的值为__________.【答案】71213.(2013年高考新课标1(理))已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t)b ,若b ·c =0,则t =_____.【答案】t =2.14.(2013年高考北京卷(理))向量a ,b ,c 在正方形网格中的位置如图所示.若c =λa +μb (λ,μ∈R),则λμ=_________.【答案】4 [来源:]15.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))设21,e e 为单位向量,非零向量R y x e y e x ∈+=,,21,若21,e e 的夹角为6π,的最大值等于________. 【答案】216.(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))设E D ,分别是ABC ∆的边BC AB ,上的点,AB AD 21=,BC BE 32=,若AC AB DE 21λλ+= (21λλ,为实数),则21λλ+的值为__________.【答案】1217.(2013年高考四川卷(理))在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AB AD AO λ+=,则λ=_________.【答案】218.(2013年高考江西卷(理))设1e ,2e 为单位向量.且1e ,2e 的夹角为3π,若123a e e =+,12b e =,则向量a 在b 方向上的射影为 ___________【答案】5219.(2013年普通高等学校招生统一考试天津数学(理)试题(含答案))在平行四边形ABCD 中, AD = 1,60BAD ︒∠=, E 为CD 的中点. 若·1AD BE =, 则AB 的长为______.【答案】12。
全国卷高考—平面向量试题带答案资料讲解
5.平面向量(含解析)一、选择题【2015,2】2.已知点A (0,1),B (3,2),向量(4,3)AC =--u u u r ,则向量BC =u u u r ( )A .(-7,-4)B .(7,4)C .(-1,4)D .(1,4)【2014,6】设D ,E ,F 分别为ΔABC 的三边BC ,CA ,AB 的中点,则=+( )A .B .21 C .21 D . 二、填空题 【2017,13】已知向量()1,2a =-r ,(),1b m =r ,若向量a b +r r 与a r 垂直,则m = .【2016,13】设向量()1x x +,a =,()12,b =,且⊥a b ,则x = .【2013,13】已知两个单位向量a ,b 的夹角为60°,c =ta +(1-t )b .若b ·c =0,则t =______.【2012,15】15.已知向量a r ,b r 夹角为45°,且||1a =r ,|2|a b -=r r ,则||b =r _________.【2011,13】 已知a 与b 为两个不共线的单位向量,k 为实数,若向量+a b 与向量k -a b 垂直,则k = . 2011—2017年新课标全国卷2文科数学试题分类汇编4.平面向量一、选择题(2017·4)设非零向量,a b ,满足+=-a b a b 则( )A .a ⊥b B. =a b C. a ∥b D. >a b(2015·4)向量a = (1,-1),b = (-1,2),则(2a +b )·a =( )A. -1B. 0C. 1D. 2(2014·4)设向量b a ρρ,满足10||=+b a ρρ,6||=-b a ρρ,则=⋅b a ρρ( )A .1B .2C .3D .5二、填空题(2016·13)已知向量a =(m ,4),b =(3,-2),且a ∥b ,则m =___________.(2013·14)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD ⋅=uu u r uu u r _______.(2012·15)已知向量a ,b 夹角为45º,且|a |=1,|2-a b |b |= .(2011·13)已知a 与b 为两个不共线的单位向量,k 为实数,若向量a +b 与向量k a -b 垂直,则k = .5.平面向量(解析版)一、选择题【2015,2】解:(3,1),u u u r u u u r u u u r u u u r Q AB BC AC AB =∴=-=(-7,-4),故选A【2014,6】解:+EB FC EC CB FB BC +=++u u u r u u u r u u u r u u u r u u u r u u u r =111()222AC AB AB AC AD +=+=u u u r u u u r u u u r u u u r u u u r ,故选A 二、填空题【2017,13】已知向量()1,2a =-r ,(),1b m =r ,若向量a b +r r 与a r 垂直,则m = .【解析】由题得(1,3)a b m +=-r r ,因为()0a b a +⋅=r r r ,所以(1)230m --+⨯=,解得7m =;【2016,13】设向量()1x x +,a =,()12,b =,且⊥a b ,则x = . 解析:23-.由题意()210x x ⋅=++=a b ,解得23x =-.故填23-. 【2013,13】已知两个单位向量a ,b 的夹角为60°,c =ta +(1-t )b .若b ·c =0,则t =______. 解析:2. ∵b ·c =0,|a |=|b |=1,〈a ,b 〉=60°,∴a ·b =111122⨯⨯=. ∴b ·c =[ta +(1-t )b ]·b =0,即ta ·b +(1-t )b 2=0.∴12t +1-t =0. ∴t =2.【2012,15】15.已知向量a r ,b r 夹角为45°,且||1a =r ,|2|a b -=r r ,则||b =r _________. 【解析】23. 由已知||2245cos ||||=︒⋅⋅=⋅.因为|2|a b -=r r 10||4||422=+⋅-,即06||22||2=--, 解得23||=. 【2011,13】 已知a 与b 为两个不共线的单位向量,k 为实数,若向量+a b 与向量k -a b 垂直,则k = . 【解析】因为a 与b 为两个不共线的单位向量,所以1==a b .又k -a b 与+a b 垂直,所以()()0k +⋅-=a b a b ,即220k k +⋅-⋅-=a a b a b b ,所以10k k -+⋅-⋅=a b a b ,即1cos cos 0k k θθ-+-=.(θ为a 与b 的夹角)所以()()11cos 0k θ-+=,又a 与b 不共线,所以cos 1θ≠-,所以1k =.故答案为1.2011—2017年新课标全国卷2文科数学试题分类汇编4.平面向量(解析版)一、选择题此文档仅供收集于网络,如有侵权请联系网站删除 (2017·4)A 解析:由||||+=-a b a b r r r r 平方得2222()2()()2()++=-+a ab b a ab b r r r r r r r r ,即0=ab r r ,则⊥a b r r ,故选A.(2015·4)C 解析:由题意可得a 2=2,a ·b =-3,所以(2a +b )·a =2a 2+a ·b =4-3=1.(2014·4)A 解析:2222||210.||2 6.a b a b ab a b a b ab +=++=-=∴+-=r r r r r r r r r r r r Q Q Q 两式相减,则 1.ab =r r二、填空题(2016·13)-6解析:因为a ∥b ,所以2430m --⨯=,解得6m =-.(2013·14)2解析:在正方形中,12AE AD DC =+uu u r uuu r uuu r ,BD BA AD AD DC =+=-uu u r uu r uuu r uuu r uuu r ,所以2222111()()222222AE BD AD DC AD DC AD DC ⋅=+⋅-=-=-⨯=uu u r uu u r uuu r uuu r uuu r uuu r uuu r uuu r .(2012·15)∵|2-a b |=224410-⋅=a a b +b ,即260--=|b |b |,解得|b |=(舍)(2011·13)k = 1解析: (a +b )·(k a -b )=0展开易得k =1.。
专题09 平面向量【2023高考必备】2013-2022十年全国高考数学真题分类汇编(解析版)
2013-2022十年全国高考数学真题分类汇编专题09平面向量一、选择题1.(2022年全国乙卷理科·第3题)已知向量,a b 满足||1,||3,|2|3a b a b ==-=,则a b ⋅= ()A .2-B .1-C .1D .2【答案】C 解析:∵222|2|||44-=-⋅+a b a a b b ,又∵||1,||3,|2|3,==-=a b a b∴91443134=-⋅+⨯=-⋅a b a b , ∴1a b ⋅= 故选:C .【题目栏目】平面向量\平面向量的概念与线性运算\向量的线性运算 【题目来源】2022年全国乙卷理科·第3题2.(2022新高考全国II 卷·第4题)已知向量(3,4),(1,0),t ===+a b c a b ,若,,<>=<>a c b c ,则t =( )A .6-B .5-C .5D .6【答案】C解析:()3,4c t =+,cos ,cos ,a c b c =,即931635t tc c+++=,解得5t =. 故选C .【题目栏目】平面向量\平面向量的综合应用 【题目来源】2022新高考全国II 卷·第4题3.(2022新高考全国I 卷·第3题)在ABC 中,点D 在边AB 上,2BD DA =.记CA m CD n ==,,则CB =( )A .32m n -B .23m n -+C .32m n +D .23m n +【答案】B 解析:因点D 在边AB 上,2BD DA =,所以2BD DA =,即()2CD CB CA CD -=-,所以CB =3232CD CA n m -=-23m n =-+. 故选:B . 【题目栏目】平面向量\平面向量的基本定理【题目来源】2022新高考全国I 卷·第3题4.(2020年新高考I 卷(山东卷)·第7题)已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅的取值范用是 ( )A .()2,6-B .(6,2)-C .(2,4)-D .(4,6)-【答案】A解析:AB 的模为2,根据正六边形的特征,可以得到AP 在AB 方向上的投影的取值范围是(1,3)-, 结合向量数量积的定义式,可知AP AB ⋅等于AB 的模与AP 在AB 方向上的投影的乘积, 所以AP AB ⋅的取值范围是()2,6-,故选:A . 【题目栏目】平面向量\平面向量的综合应用 【题目来源】2020年新高考I 卷(山东卷)·第7题5.(2020新高考II 卷(海南卷)·第3题)在ABC 中,D 是AB 边上的中点,则CB =( )A .2CD CA +B .2CD CA -C .2CD CA - D .2CD CA +【答案】C解析:()222CB CA AB CA AD CA CD CA CD CA -=+=+=+-= 【题目栏目】平面向量\平面向量的概念与线性运算\向量的线性运算 【题目来源】2020新高考II 卷(海南卷)·第3题6.(2020年高考数学课标Ⅲ卷理科·第6题)已知向量a ,b 满足||5a =,||6b =,6a b ⋅=-,则cos ,=+a a b ( )A .3135-B .1935-C .1735D .1935【答案】D 解析:5a =,6b =,6a b ⋅=-,()225619a a b a a b ∴⋅+=+⋅=-=.()22222526367a b a ba ab b +=+=+⋅+=-⨯+=,因此,()1919cos ,5735a a ba ab a a b⋅+<+>===⨯⋅+. 故选:D .【点睛】本题考查平面向量夹角余弦值的计算,同时也考查了平面向量数量积的计算以及向量模的计算,考查计算能力,属于中等题.【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2020年高考数学课标Ⅲ卷理科·第6题7.(2019年高考数学课标全国Ⅲ卷理科·第3题)已知()2,3AB =,()3,AC t =,1BC =,则AB BC ⋅=( )【答案】C【解析】∵()2,3AB =,()3,AC t =,∴()1,3BC AC AB t =-=-,∴()22131BC t =+-=,解得3t =,即()1,0BC =,则AB BC ⋅=()()2,31,021302⋅=⨯+⨯=.【点评】本题考查平面向量数量积的坐标运算,渗透了直观想象和数学运算素养.采取公式法,利用转化与化归思想解题.本题考点为平面向量的数量积,侧重基础知识和基本技能,难度不大.学生易在处理向量的法则运算和坐标运算处出错,借助向量的模的公式得到向量的坐标,然后计算向量数量积.【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2019年高考数学课标全国Ⅲ卷理科·第3题8.(2019年高考数学课标全国Ⅲ卷理科·第7题)已知非零向量a ,b 满足2a b =,且()a b b -⊥,则a 与b 的夹角为( )A .6π B .3π C .23π D .56π【答案】B 解析:()()222,0,a b b a b b a b b a b b b-⊥∴-⋅=⋅-=∴⋅==,所以221cos ,22ba b a b a bb⋅===⋅,所以,3a b π=.【题目栏目】平面向量\平面向量的数量积\平面向量的垂直问题【题目来源】2019年高考数学课标全国Ⅲ卷理科·第7题9.(2019年高考数学课标全国Ⅲ卷理科·第4题)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比为512510.618-≈,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美 人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512.若某人满足上述两个黄金 分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是( )A .165cmB .175cmC .185cmD .190cm【答案】 答案:B解析:如图,0.618,0.618,0.618c aa b c d d b==∴==,26c <,则42.070.618c d =<,68.07a c d =+<,110.150.618ab =<,所以身高178.22h a b =+<,又105b >,所以0.61864.89a b =>,身高64.89105169.89h a b =+>+=,故(169.89,178.22)h ∈,故选B .【题目栏目】平面向量\线段的定比分点问题【题目来源】2019年高考数学课标全国Ⅲ卷理科·第4题10.(2018年高考数学课标Ⅲ卷(理)·第4题)已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b( )A .4B .3C .2D .0【答案】B解析:2(2)2||213⋅-=-⋅=+=a a b a a b ,故选B .【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2018年高考数学课标Ⅲ卷(理)·第4题11.(2018年高考数学课标卷Ⅲ(理)·第6题)在ABC ∆中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( )A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC + c d ab 头顶咽喉肚脐足底【答案】A解析:在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,()11312244EB AB AE AB AD AB AB AC AB AC =-=-=-+=-,故选A . 【题目栏目】平面向量\平面向量的基本定理 【题目来源】2018年高考数学课标卷Ⅲ(理)·第6题12.(2017年高考数学课标Ⅲ卷理科·第12题)在矩形中,,,动点在以点为圆心且与相切的圆上,若,则的最大值为 ( )A .B .CD .【答案】A【解析】法一:以为坐标原点,所在直线为轴,所在直线为轴建立平面直角坐标系,如下图则,,,,连结,过点作于点 在中,有即所以圆的方程为 可设由可得 ABCD 1AB =2AD =P C BD AP AB AD λμ=+λμ+3252A AB x AD y ()0,0A ()1,0B ()0,2D ()1,2C BD C CE BD ⊥E Rt BDC ∆225BD AB AD =+=1122ACD S BC CD BD CE =⨯⨯=⨯⨯△1125125225CE CE ⨯⨯=⇒=C ()()224125x y -+-=25251,2P θθ⎛⎫ ⎪ ⎪⎝⎭AP AB AD λμ=+()25251,2sin ,255θθλμ⎛⎫++= ⎪ ⎪⎝⎭所以,所以 其中, 所以的最大值为,故选A .法二:通过点作于点,由,,可求得又由,可求得由等和线定理可知,当点的切线(即)与平行时,取得最大值又点到的距离与点到直线的距离相等,均为而此时点到直线251551sin 5λθμθ⎧=+⎪⎪⎨⎪=+⎪⎩2552cos 55λμθθ+=++()2sin θϕ=++25sin ϕ=5cos ϕ=λμ+3C CE BD ⊥E 1AB =2AD =22125BD =+1122ACD S CD CB BD CE =⨯⨯=⨯⨯△55CE =P FH DB λμ+A BD C BD 55A FH 2525256522r +=+=所以,所以的最大值为,故选A . 另一种表达:如图,由“等和线”相关知识知,当点在如图所示位置时,最大,且此时若,则有,由三角形全等可得,知,所以选A .法三:如图,建立平面直角坐标系设,即圆的方程是,若满足即 , ,所以,设 ,即,655325AFAB ==λμ+3P λμ+AG x AB y AD =+x y λμ+=+2AD DF FG ===3,0x y ==()()()()0,1,0,0,2,1,,A B D P x y 5()22425x y -+=()()(),1,0,1,2,0AP x y AB AD =-=-=AP AB AD λμ=+21x y μλ=⎧⎨-=-⎩,12x y μλ==-12x y λμ+=-+12x z y =-+102x y z -+-=点在圆上,所以圆心到直线的距离, ,解得,所以的最大值是,即的最大值是,故选A . 法四:由题意,画出右图.设与切于点,连接.以为原点,为轴正半轴,为轴正半轴建立直角坐标系则点坐标为.∵,.∴.切于点.∴⊥.∴是中斜边上的高. 即在上.∴点的轨迹方程为.设点坐标,可以设出点坐标满足的参数方程如下:而,,. ∵ ∴,. 两式相加得:(),P x y ()22425x y -+=d r ≤21514z -≤+13z ≤≤z 3λμ+3BD C E CE A AD x AB y C (2,1)||1CD =||2BC =22125BD +=BD C E CEBDCERt BCD△BD12||||222||5||||55BCD BC CD S EC BD BD ⋅⋅⋅====△C 255P C P 224(2)(1)5x y -+-=P 00(,)x y P 0022552155x y θθ⎧=+⎪⎪⎨⎪=+⎪⎩00(,)AP x y =(0,1)AB =(2,0)AD =(0,1)(2,0)(2,)AP AB AD λμλμμλ=+=+=0151cos 25x μθ==+02155y λθ==(其中,) 当且仅当,时,取得最大值3. 【考点】平面向量的坐标运算;平面向量基本定理【点评】(1)应用平面向量基本定理表示向量是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.【题目栏目】平面向量\平面向量的基本定理 【题目来源】2017年高考数学课标Ⅲ卷理科·第12题13.(2017年高考数学课标Ⅲ卷理科·第12题)已知是边长为2的等边三角形,为平面内一点,则的最小值是 ( )A .B .C .D .【答案】B【命题意图】本题主要考查等边三角形的性质及平面向量的线性运算﹑数量积,意在考查考生 转化与化归思想和运算求解能力 【解析】解法一:建系法连接,,,.,∴∴ ∴,∴ ∴最小值为 解法二:均值法2225151552552()())552sin()3λμθθθϕθϕ+=++=+++=++≤5sin 5ϕ=25cos 5ϕ=π2π2k θϕ=+-k ∈Z λμ+ABC ∆P ABC ()PA PB PC ⋅+2-32-43-1-OP ()0,3OA =()1,0OB =-()1,0OC =2PC PB PO +=()(),,3PO PA x y x y⋅=--⋅--222233324PO PA x y y x y ⎛⎫⋅=+-=+-- ⎪ ⎪⎝⎭34PO PA ⋅≥-()322PA PC PB PO PA ⋅+=⋅≥-32-∵,∴由上图可知:;两边平方可得∵ ,∴ ∴ ,∴最小值为解法三:配凑法 ∵∴∴最小值为【知识拓展】三角形与向量结合的题属于高考经典题,一般在压轴题出现,解决此类问题的通 法就是建系法,比较直接,易想,但有时计算量偏大. 【考点】 平面向量的坐标运算,函数的最值【点评】平面向量中有关最值问题的求解通常有两种思路:一是“形化”,即利用平面向量的几何意义将问题转化为平面几何中的最值或范围问题,然后根据平面图形的特征直接进行判断;二是“数化”,即利用平面向量的坐标运算,把问题转化为代数中的函数最值与值域、不等式我解集,方程有解等问题,然后利用函数、不等式、方程的有关知识来解决.【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2017年高考数学课标Ⅲ卷理科·第12题 14.(2016高考数学课标Ⅲ卷理科·第3题)已知向量13(,22BA =,31()22BC =,则ABC ∠= ( ) A .30︒ B .45︒C .60︒D .120︒【答案】A【解析】由题意,得133132222cos 112BA BC ABC BA BC⨯⋅∠===⨯⋅,所以30ABC ∠=︒,故选A. 【题目栏目】平面向量\平面向量的坐标运算 【题目来源】2016高考数学课标Ⅲ卷理科·第3题15.(2016高考数学课标Ⅲ卷理科·第3题)已知向量(1,)(3,2)a m b =-,=,且()a b b ⊥+,则m = ( )A .8-B .6-C .6D .82PC PB PO +=()2PA PC PB PO PA ⋅+=⋅OA PA PO =-()()2232PA PO PA PO =+-⋅()()222PA POPA PO +≥-⋅322PO PA ⋅≥-()322PA PC PB PO PA ⋅+=⋅≥-32-2PC PB PO +=()()()()()222232222PO PA PO PAPO PA AOPA PC PB PO PA +--+-⋅+=⋅==≥-32-【答案】D【解析】由()a b b ⊥+可得:()0a b b +=,所以20a bb,又(1,)(3,2)a m b =-,= 所以2232+(3(2))0m -+-=,所以8m ,故选D .【题目栏目】平面向量\平面向量的坐标运算 【题目来源】2016高考数学课标Ⅲ卷理科·第3题16.(2015高考数学新课标1理科·第7题)设D 为ABC 所在平面内一点3BC CD =,则( )A .1433AD AB AC =-+ B .1433AD AB AC =- C .4133AD AB AC =+ D .4133AD AB AC =- 【答案】A解析:由题知11()33AD AC CD AC BC AC AC AB =+=+=+-==1433AB AC -+,故选A . 考点:平面向量的线性运算【题目栏目】平面向量\平面向量的基本定理 【题目来源】2015高考数学新课标1理科·第7题17.(2014高考数学课标2理科·第3题)设向量a,b 满足,|a -,则a b=( )A .1B .2C .3D .5【答案】A解析:因为222||()210,a b a b a b a b +=+=++⋅=222||()26,a b a b a b a b -=-=+-⋅= 两式相加得:228,a b +=所以1a b ⋅=,故选A . 考点:(1)平面向量的模;(2)平面向量的数量积 难度:B备注:常考题【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2014高考数学课标2理科·第3题 二、多选题18.(2021年新高考Ⅲ卷·第10题)已知O 为坐标原点,点()1cos ,sin P αα,()2cos ,sin P ββ-,()()()3cos ,sin P αβαβ++,1,0A ,则 ( )A .12OP OP =B .12AP AP =C .312OA OP OP OP ⋅=⋅D .123OA OP OP OP ⋅=⋅ 【答案】AC106⋅解析:A :1(cos ,sin )OP αα=,2(cos ,sin )OP ββ=-,所以221||cos sin 1OP αα=+,222||(cos )(sin )1OP ββ=+-,故12||||OP OP =,正确; B :1(cos 1,sin )AP αα=-,2(cos 1,sin )AP ββ=--,所以222221||(cos 1)sin cos 2cos 1sin 2(1cos )4sin 2|sin|22AP αααααααα=-+-++-==,同理222||(cos 1)sin 2|sin|2AP βββ=-+,故12||,||AP AP 不一定相等,错误;C :由题意得:31cos()0sin()cos()OA OP αβαβαβ⋅=⨯++⨯+=+,12cos cos sin (sin )cos()OP OP αβαβαβ⋅=⋅+⋅-=+,正确;D :由题意得:11cos 0sin cos OA OP ααα⋅=⨯+⨯=,23cos cos()(sin )sin()OP OP βαββαβ⋅=⨯++-⨯+22cos cos sin sin cos sin sin cos cos sin αβαββαββαβ=--- cos cos2sin sin 2cos(2)αβαβαβ=-=+,错误;故选AC .【题目栏目】平面向量\平面向量的综合应用 【题目来源】2021年新高考Ⅲ卷·第10题 三、填空题19.(2022年全国甲卷理科·第13题)设向量a ,b 的夹角的余弦值为13,且1a =,3b =,则()2a b b +⋅=_________. 【答案】11解析:设a 与b 的夹角为θ,因为a 与b 的夹角的余弦值为13,即1cos 3θ=,又1a =,3b =,所以1cos 1313a b a b θ⋅=⋅=⨯⨯=,所以()22222221311a b b a b b a b b +⋅=⋅+=⋅+=⨯+=. 故答案为:11.【题目栏目】平面向量\平面向量的数量积\平面向量的夹角问题 【题目来源】2022年全国甲卷理科·第13题20.(2021年新高考全国Ⅲ卷·第15题)已知向量0a b c ++=,1a =,2b c ==,a b b c c a ⋅+⋅+⋅=_______.【答案】92-解析:由已知可得()()()22222920a b ca b c a b b c c a a b b c c a ++=+++⋅+⋅+⋅=+⋅+⋅+⋅=,因此,92a b b c c a ⋅+⋅+⋅=-.故答案为:92-.【题目栏目】平面向量\平面向量的综合应用【题目来源】2021年新高考全国Ⅲ卷·第15题21.(2021年高考全国乙卷理科·第14题)已知向量()()1,3,3,4a b ==,若()a b b λ-⊥,则λ=__________.【答案】35解析:因为()()()1,33,413,34a b λλλλ-=-=--,所以由()a b b λ-⊥可得,()()3134340λλ-+-=,解得35λ=.故答案为:35.【点睛】本题解题关键是熟记平面向量数量积的坐标表示,设()()1122,,,a x y b x y ==,121200a b a b x x y y ⊥⇔⋅=⇔+=,注意与平面向量平行的坐标表示区分.【题目栏目】平面向量\平面向量的坐标运算 【题目来源】2021年高考全国乙卷理科·第14题22.(2021年高考全国甲卷理科·第14题)已知向量()()3,1,1,0,a b c a kb ===+.若a c ⊥,则k =________.【答案】103-. 解析:()()()3,1,1,0,3,1a b c a kb k ==∴=+=+,(),33110a c a c k ⊥∴⋅=++⨯=,解得103k =-, 故答案为:103-. 【点睛】本题考查平面向量的坐标运算,平面向量垂直的条件,属基础题,利用平面向量()()1122,,,p x y q x y ==垂直的充分必要条件是其数量积12120x x y y +=.【题目栏目】平面向量\平面向量的综合应用 【题目来源】2021年高考全国甲卷理科·第14题23.(2020年高考数学课标Ⅲ卷理科·第14题)设,a b 为单位向量,且||1a b +=,则||a b -=______________.3【解析】因为,a b 为单位向量,所以1a b ==所以()2222221a b a b a a b b a b +=+=+⋅+=+⋅=解得:21a b ⋅=- 所以()22223a b a b a a b b -=-=-⋅+=3【点睛】本题主要考查了向量模的计算公式及转化能力,属于中档题. 【题目栏目】平面向量\平面向量的综合应用 【题目来源】2020年高考数学课标Ⅲ卷理科·第14题24.(2020年高考数学课标Ⅲ卷理科·第13题)已知单位向量a →,b →的夹角为45°,k a b →→-与a →垂直,则k =__________. 【答案】22解析:由题意可得:211cos 452a b →→⋅=⨯⨯=, 由向量垂直的充分必要条件可得:0k a b a →→→⎛⎫-⋅= ⎪⎝⎭,即:2202k a a b k →→→⨯-⋅=-=,解得:22k =. 2. 【点睛】本题主要考查平面向量的数量积定义与运算法则,向量垂直的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2020年高考数学课标Ⅲ卷理科·第13题25.(2019年高考数学课标Ⅲ卷理科·第13题)已知a ,b 为单位向量,且·=0a b ,若25c a b =-,则cos ,a c 〈〉=___________.【答案】23. 【解析】因为25c a b =-,·=0a b ,所以225=2a c a a b ⋅=-⋅,222||4||455||9c a a b b =-⋅+=,所以||3c =,所以cos ,a c 〈〉=22133a c a c ⋅==⨯⋅. 【点评】本题主要考查平面向量的数量积、向量的夹角.渗透了数学运算、直观想象素养.使用转化思想得出答案.【题目栏目】平面向量\平面向量的数量积\平面向量的夹角问题 【题目来源】2019年高考数学课标Ⅲ卷理科·第13题26.(2018年高考数学课标Ⅲ卷(理)·第13题)已知向量()1,2a =,()2,2b =-,()1,c λ=,若()//2c a b +,则λ= . 【答案】12解析:依题意可得()()()22,42,24,2a b +=+-=,又()1,c λ=,()//2c a b + 所以4210λ⨯-⨯=,解得12λ=. 【题目栏目】平面向量\平面向量的坐标运算【题目来源】2018年高考数学课标Ⅲ卷(理)·第13题27.(2017年高考数学新课标Ⅲ卷理科·第13题)已知向量,的夹角为,,,则__________. 【答案】【解析】法一:所以.法二(秒杀解法):利用如下图形,可以判断出的模长是以为边长的菱形对角线的长度,则为法三:坐标法依题意,可设,,所以 所以.【考点】平面向量的运算【点评】平面向量中涉及到有关模长的问题,用到的通法是将模长进行平方,利用向量数量积的知识进行a b 60︒2a =1b =2a b +=23222|2|||44||4421cos 60412a b a a b b +=+⋅+=+⨯⨯⨯+=|2|23a b +=2a b +23()2,0a =13,22b ⎛= ⎝⎭()((22,033a b +=+=()2223323a b +=+=解答,很快就能得出答案;另外,向量是一个工具型的知识,具备代数和几何特征,在做这类问题时可以使用数形结合的思想,会加快解题速度.【题目栏目】平面向量\平面向量的数量积\平面向量的模长问题 【题目来源】2017年高考数学新课标Ⅲ卷理科·第13题28.(2016高考数学课标Ⅲ卷理科·第13题)设向量(),1a m =,()1,2b =,且222a b a b +=+,则m = .【答案】2m =-【解析】由已知得:()1,3a b m +=+∴()22222222213112a b a b m m +=+⇔++=+++,解得2m =-.【题目栏目】平面向量\平面向量的坐标运算 【题目来源】2016高考数学课标Ⅲ卷理科·第13题29.(2015高考数学新课标2理科·第13题)设向量a ,b 不平行,向量a b λ+与2a b +平行,则实数λ=_________. 【答案】12解析:因为向量a b λ+与2a b +平行,所以2a b k a b λ+=+(),则12,k k λ=⎧⎨=⎩,所以12λ=.考点:向量共线.【题目栏目】平面向量\平面向量的概念与线性运算\平面向量的共线问题【题目来源】2015高考数学新课标2理科·第13题30.(2014高考数学课标1理科·第15题)已知A,B,C 是圆O 上的三点,若,则与的夹角为______. 【答案】 解析:∵,∴O 为线段BC 中点,故BC 为的直径, ∴,∴与的夹角为.考点:(1)平面向量在几何中的应用(2)向量的夹角(3)化归与转化思想 难度:B备注:高频考点【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2014高考数学课标1理科·第15题31.(2013高考数学新课标2理科·第13题)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD⋅=________.1()2AO AB AC =+AB AC 0901()2AO AB AC =+O 090BAC ∠=AB AC 090【答案】2解析:由题意知:2211402222AE BD AD AD AB AB ⋅=-⋅-=--= 考点:(1)5.1.2向量的线性运算;(2)5.3.1平面向量的数量积运算 难度: A备注:高频考点【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2013高考数学新课标2理科·第13题32.(2013高考数学新课标1理科·第13题)已知两个单位向量,a b 的夹角为60°,(1)c ta t b =+-,若0b c •=,则t =_____. 【答案】 2解析:•b c =[(1)]t t •+-b a b =2(1)t t •+-a b b =112t t +-=112t -=0,解得t =2. 考点: (1)5.3.1平面向量的数量积运算.难度:A备注:高频考点【题目栏目】平面向量\平面向量的数量积\平面向量的数量积运算 【题目来源】2013高考数学新课标1理科·第13题。
十年高考数学真题分类汇编 专题15 平面向量的概念、线性运算、平面向量基本定理(解析版)
专题15 平面向量的概念、线性运算、平面向量基本定理十年大数据*全景展示平面向量的坐标运算及向量共线的充要条件主要考查平面向量的线性运算及向量共线的充要条件平面向量的坐标运算及向量共线的充要条件考点47平面向量的概念与线性运算1.(2014新课标I ,文6)设F E D ,,分别为ABC ∆的三边AB CA BC ,,的中点,则=+FC EBA. BC B . 12AD C . AD D . 12BC 【答案】C【解析】=+FC EB 11()()22CB AB BC AC +++=1()2AB AC +=AD ,故选C . 2.(2014福建)在下列向量组中,可以把向量()3,2=a 表示出来的是A .12(0,0),(1,2)==e eB .12(1,2),(5,2)=-=-e eC .12(3,5),(6,10)==e eD .12(2,3),(2,3)=-=-e e【答案】B【解析】对于A ,C ,D ,都有1e ∥2e ,所以只有B 成立.考点48平面向量基本定理及其应用1.(2020江苏13)在ABC ∆中,4AB =,3AC =,90BAC ∠=︒,D 在边BC 上,延长AD 到P ,使得9AP =,若3()2PA mPB m PC =+-(m 为常数),则CD 的长度是 .【答案】185【解析】由向量系数33()22m m +-=为常数,结合等和线性质可知321PAPD =,故263PD PA ==,3AD PA PD AC =-==,故C CDA ∠=∠,故2CAD C π∠=-. 在ABC ∆中,3cos 5AC C BC ==;在ADC ∆中,由正弦定理得sin sin CD ADCAD C=∠, 即sin(2)sin 23182cos 23sin sin 55C C CD AD AD C AD C C π-=⋅=⋅=⋅=⨯⨯=.2.(2018•新课标Ⅰ,理6文7)在ABC ∆中,AD 为BC 边上的中线,E 为AD 的中点,则(EB = ) A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC + 【答案】A【解析】在ABC ∆中,AD 为BC 边上的中线,E 为AD 的中点,∴12EB AB AE AB AD =-=- 11()22AB AB AC =-⨯+3144AB AC =-,故选A .3.(2015新课标Ⅰ,理7)设D 为?ABC 所在平面内一点3BC CD =,则( ) (A )1433AD AB AC =-+ (B)1433AD AB AC =- (C )4133AD AB AC =+ (D)4133AD AB AC =- 【答案】A【解析】由题知11()33AD AC CD AC BC AC AC AB =+=+=+-==1433AB AC -+,故选A . 4.(2013广东)设a 是已知的平面向量且0≠a ,关于向量a 的分解,有如下四个命题:①给定向量b ,总存在向量c ,使=+a b c ;②给定向量b 和c ,总存在实数和,使λμ=+a b c ;③给定单位向量b 和正数,总存在单位向量c 和实数,使λμ=+a b c ; ④给定正数和,总存在单位向量b 和单位向量c ,使λμ=+a b c ; 上述命题中的向量b ,c 和a 在同一平面内且两两不共线,则真命题的个数是 A .1 B .2 C .3 D .4【答案】B【解析】利用向量加法的三角形法则,易的①是对的;利用平面向量的基本定理,易的②是对的;以的终点作长度为的圆,这个圆必须和向量有交点,这个不一定能满足,③是错的;利用向量加法的三角形法则,结合三角形两边的和大于第三边,即必须,所以④是假命题.综上,本题选B .5.(2017江苏)如图,在同一个平面内,向量OA ,OB ,OC 的模分别为1,1,2,OA 与OC 的夹角为α,且tan 7α=,OB 与OC 的夹角为45.若OC =m OA +n OB (m ,n ∈R ),则m n += .λμμλλμa μλb =+λμλμ+≥b c a【答案】3【解析】由可得72sin 10α=,,由OC =m OA +n OB 得22OC OA mOA nOB OA OC OB mOB OA nOB⎧⋅=+⋅⎪⎨⎪⋅=⋅+⎩,即2cos cos(45)2cos 45cos(45)m n m n ααα⎧=++⎪⎨=++⎪⎩,两式相加得,2(cos cos 45)()(1cos(45))m n αα+=+++,所以22222cos 2cos 4510231cos(45)227221102102m n αα⨯+⨯++===+++⨯-⨯,所以. 6.(2013北京)向量a ,b ,c 在正方形网格中的位置如图所示,若λμ=+c a b (λ,μ∈R ),则= .【答案】4【解析】 如图建立坐标系,则()1,1a =-,()6,2b =,()1,3c =-.由c a b λμ=+,可得12,2λμ=-=-,∴4λμ=7.(2015北京)在ABC △中,点M ,N 满足2AM MC =,BN NC =,若MN x AB y AC =+,则x =tan 7α=2cos 10α=3m n +=λμ;y = .【答案】12 16【解析】由1111()3232MN MC CN AC CB AC AB AC =+=+=+-1126AB AC =- =x AB y AC +.所以12x,16y . 考点49平面向量的坐标运算及平面向量共线的充要条件1.(2019•新课标Ⅱ,文3)已知向量(2,3)a =,(3,2)b =,则||(a b -= ) AB .2C .D .50【答案】A【解析】(2,3)a =,(3,2)b =,∴(2a b -=,3)(3-,2)(1=-,1),2||(1)a b ∴-=-故选A . 2.(2013辽宁)已知点(1,3)A ,(4,1)B -,则与向量AB 同方向的单位向量为A .B .C .D . 【答案】A【解析】,所以,这样同方向的单位向量是. 3.(2011广东)已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数, ()λ+∥a b c ,则λ=A .14B .12C .1D .2【答案】B【解析】(1,2)λλ+=+a b ,由()λ+a b ∥c ,得64(1)0λ-+=,解得λ=124.(2018•新课标Ⅲ,理13)已知向量(1,2)a =,(2,2)b =-,(1,)c λ=.若//(2)c a b +,则λ= . 【答案】12【解析】向量(1,2)a =,(2,2)b =-,∴2(4,2)a b +=,(1,)c λ=,//(2)c a b +,∴142λ=,解得12λ=.5.(2016新课标,文13) 已知向量a =(m ,4),b =(3,−2),且a ∥b ,则m =___________.【答案】6-3455⎛⎫ ⎪⎝⎭,-4355⎛⎫ ⎪⎝⎭,-3455⎛⎫- ⎪⎝⎭,4355⎛⎫- ⎪⎝⎭,(3,4)AB =-||5AB =134(,)555AB =-【解析】因为a ∥b ,所以2430m --⨯=,解得6m =-.6.(2015•新课标Ⅱ,理13)设向量a ,b 不平行,向量a b λ+与2a b +平行,则实数λ= . 【答案】12【解析】向量a ,b 不平行,向量a b λ+与2a b +平行,(2)2a b t a b ta tb λ∴+=+=+, ∴12t tλ=⎧⎨=⎩,解得实数12λ=.7.(2015江苏)已知向量(2,1)=a ,(1,2)=-b ,若(9,8)m n +=-a b (,m n ∈R ),则m n - 的值为___. 【答案】-3【解析】由题意得:29,282,5, 3.m n m n m n m n +=-=-⇒==-=-8.(2014北京)已知向量a 、b 满足1=a ,(2,1)=b ,且0λ+=a b (R λ∈),则λ=__.【解析】∵||1=a ,∴可令(cos ,sin )θθ=a ,∵0λ+=a b ,∴cos 20sin 10λθλθ+=⎧⎨+=⎩,即2cos 1sin θλθλ⎧=-⎪⎪⎨⎪=-⎪⎩,解得25λ=得||λ=9.(2014陕西)设20πθ<<,向量()sin 2cos θθ=,a ,()cos 1θ,b ,若∥a b ,则=θtan _______.【答案】12【解析】∵∥a b ,∴2sin 2cosθθ=,∴22sin cos cos θθθ=,∵(0,)2πθ∈,∴1tan 2θ=.。
专题07 平面向量-2022年高考真题和模拟题数学分类汇编(解析版)
专题07 平面向量1.【2022年全国乙卷】已知向量a ⃑=(2,1),b ⃑⃑=(−2,4),则|a ⃑−b ⃑⃑|( ) A .2 B .3 C .4 D .5【答案】D 【解析】 【分析】先求得a ⃑−b ⃑⃑,然后求得|a ⃑−b ⃑⃑|. 【详解】因为a ⃑−b ⃑⃑=(2,1)−(−2,4)=(4,−3),所以|a ⃑−b ⃑⃑|=√42+(−3)2=5. 故选:D2.【2022年全国乙卷】已知向量a ⃑,b ⃑⃑满足|a ⃑|=1,|b ⃑⃑|=√3,|a ⃑−2b ⃑⃑|=3,则a ⃑⋅b ⃑⃑=( ) A .−2 B .−1 C .1 D .2【答案】C 【解析】 【分析】根据给定模长,利用向量的数量积运算求解即可. 【详解】解:∵|a ⃗−2b ⃑⃗|2=|a ⃗|2−4a ⃗⋅b ⃑⃗+4|b ⃑⃗|2, 又∵|a ⃗|=1,|b ⃑⃗|=√3,|a ⃗−2b ⃑⃗|=3, ∴9=1−4a ⃗⋅b ⃑⃗+4×3=13−4a ⃗⋅b ⃑⃗, ∴a ⃗⋅b ⃑⃗=1 故选:C.3.【2022年新高考1卷】在△ABC 中,点D 在边AB 上,BD =2DA .记CA ⃑⃑⃑⃑⃑⃑=m ⃑⃑⃗,CD ⃑⃑⃑⃑⃑⃑=n ⃑⃗,则CB ⃑⃑⃑⃑⃑⃑=( ) A .3m ⃑⃑⃗−2n ⃑⃗ B .−2m ⃑⃑⃗+3n ⃑⃗C .3m ⃑⃑⃗+2n ⃑⃗D .2m ⃑⃑⃗+3n ⃑⃗【答案】B 【解析】【分析】根据几何条件以及平面向量的线性运算即可解出. 【详解】因为点D 在边AB 上,BD =2DA ,所以BD ⃑⃑⃑⃑⃑⃑⃑=2DA ⃑⃑⃑⃑⃑⃑,即CD ⃑⃑⃑⃑⃑⃑−CB ⃑⃑⃑⃑⃑⃑=2(CA ⃑⃑⃑⃑⃑⃑−CD ⃑⃑⃑⃑⃑⃑), 所以CB ⃑⃑⃑⃑⃑⃑= 3CD ⃑⃑⃑⃑⃑⃑−2CA ⃑⃑⃑⃑⃑⃑=3n ⃑⃑−2m ⃑⃑⃑ =−2m ⃑⃑⃗+3n ⃑⃗. 故选:B .4.【2022年新高考2卷】已知向量a ⃑=(3,4),b ⃑⃑=(1,0),c ⃑=a ⃑+tb ⃑⃑,若<a ⃑,c ⃑>=<b ⃑⃑,c ⃑>,则t =( ) A .−6 B .−5 C .5 D .6【答案】C 【解析】 【分析】利用向量的运算和向量的夹角的余弦公式的坐标形式化简即可求得 【详解】解:c ⃗=(3+t,4),cos 〈a ⃗,c ⃗〉=cos 〈b,c ⃗〉,即9+3t+165|c⃗|=3+t|c ⃗|,解得t =5,故选:C5.【2022年北京】在△ABC 中,AC =3,BC =4,∠C =90°.P 为△ABC 所在平面内的动点,且PC =1,则PA ⃑⃑⃑⃑⃑⃑⋅PB ⃑⃑⃑⃑⃑⃑的取值范围是( ) A .[−5,3] B .[−3,5]C .[−6,4]D .[−4,6]【答案】D 【解析】 【分析】依题意建立平面直角坐标系,设P (cosθ,sinθ),表示出PA ⃑⃑⃑⃑⃑⃑,PB ⃑⃑⃑⃑⃑⃑,根据数量积的坐标表示、辅助角公式及正弦函数的性质计算可得; 【详解】解:依题意如图建立平面直角坐标系,则C (0,0),A (3,0),B (0,4),因为PC =1,所以P 在以C 为圆心,1为半径的圆上运动, 设P (cosθ,sinθ),θ∈[0,2π],所以PA⃑⃑⃑⃑⃑⃑=(3−cosθ,−sinθ),PB ⃑⃑⃑⃑⃑⃑=(−cosθ,4−sinθ), 所以PA⃑⃑⃑⃑⃑⃑⋅PB ⃑⃑⃑⃑⃑⃑=(−cosθ)×(3−cosθ)+(4−sinθ)×(−sinθ) =cos 2θ−3cosθ−4sinθ+sin 2θ=1−3cosθ−4sinθ=1−5sin (θ+φ),其中sinφ=35,cosφ=45,因为−1≤sin (θ+φ)≤1,所以−4≤1−5sin (θ+φ)≤6,即PA ⃑⃑⃑⃑⃑⃑⋅PB ⃑⃑⃑⃑⃑⃑∈[−4,6]; 故选:D6.【2022年全国甲卷】已知向量a ⃑=(m,3),b ⃑⃑=(1,m +1).若a ⃑⊥b ⃑⃑,则m =______________.【答案】−34##−0.75 【解析】 【分析】直接由向量垂直的坐标表示求解即可. 【详解】由题意知:a ⃑⋅b ⃑⃑=m +3(m +1)=0,解得m =−34.故答案为:−34.7.【2022年全国甲卷】设向量a ⃑,b ⃑⃑的夹角的余弦值为13,且|a ⃑|=1,|b ⃑⃑|=3,则(2a ⃑+b ⃑⃑)⋅b ⃑⃑=_________. 【答案】11 【解析】 【分析】设a ⃑与b ⃑⃑的夹角为θ,依题意可得cosθ=13,再根据数量积的定义求出a ⃑⋅b ⃑⃑,最后根据数量积的运算律计算可得. 【详解】解:设a ⃑与b ⃑⃑的夹角为θ,因为a ⃑与b ⃑⃑的夹角的余弦值为13,即cosθ=13, 又|a ⃑|=1,|b ⃑⃑|=3,所以a ⃑⋅b ⃑⃑=|a ⃑|⋅|b ⃑⃑|cosθ=1×3×13=1, 所以(2a ⃑+b ⃑⃑)⋅b ⃑⃑=2a ⃑⋅b ⃑⃑+b ⃑⃑2=2a ⃑⋅b ⃑⃑+|b ⃑⃑|2=2×1+32=11. 故答案为:11.8.【2022年浙江】设点P 在单位圆的内接正八边形A 1A 2⋯A 8的边A 1A 2上,则PA ⃑⃑⃑⃑⃑⃑12+PA 2⃑⃑⃑⃑⃑⃑⃑⃑2+⋯+PA ⃑⃑⃑⃑⃑⃑82的取值范围是_______. 【答案】[12+2√2,16] 【解析】 【分析】根据正八边形的结构特征,分别以圆心为原点,A 7A 3所在直线为x 轴,A 5A 1所在直线为y 轴建立平面直角坐标系,即可求出各顶点的坐标,设P(x,y),再根据平面向量模的坐标计算公式即可得到PA ⃑⃑⃑⃑⃑⃗12+PA ⃑⃑⃑⃑⃑⃗22+⋯+PA ⃑⃑⃑⃑⃑⃗82=8(x 2+y 2)+8,然后利用cos22.5∘≤|OP|≤1即可解出. 【详解】以圆心为原点,A 7A 3所在直线为x 轴,A 5A 1所在直线为y 轴建立平面直角坐标系,如图所示:则A 1(0,1),A 2(√22,√22),A 3(1,0),A 4(√22,−√22),A 5(0,−1),A 6(−√22,−√22),A 7(−1,0),A 8(−√22,√22),设P(x,y),于是PA ⃑⃑⃑⃑⃑⃗12+PA ⃑⃑⃑⃑⃑⃗22+⋯+PA ⃑⃑⃑⃑⃑⃗82=8(x 2+y 2)+8,因为cos22.5∘≤|OP|≤1,所以1+cos45∘2≤x 2+y 2≤1,故PA ⃑⃑⃑⃑⃑⃗12+PA ⃑⃑⃑⃑⃑⃗22+⋯+PA ⃑⃑⃑⃑⃑⃗82的取值范围是[12+2√2,16].故答案为:[12+2√2,16].1.(2022·陕西·西北工业大学附属中学模拟预测(理))在直角坐标系xOy 中的三点(),3M m ,()4,N n ,()2,2E -,若向量OM 与ON 在向量OE 方向上的投影相等,则m 与n 的关系为( )A .7m n +=B .3m n -=C .m n =D .m n =-【答案】A 【解析】 【分析】根据向量在向量上的投影的定义列式可求出结果. 【详解】(),3OM m =,(4,)ON n =,(2,2)OE =-,向量OM 在向量OE 方向上的投影为||OM OE OE ⋅==向量ON 在向量OE 方向上的投影为8||ON OE OE ⋅=,=7m n +=. 故选:A.2.(2022·山东潍坊·三模)已知a ,b 是平面内两个不共线的向量,AB a b λ=+,AC a b μ=+,λ,μ∈R ,则A ,B ,C 三点共线的充要条件是( )A .1λμ-=B .2λμ+=C .1λμ=D .1λμ= 【答案】C 【解析】 【分析】利用向量共线的充要条件有AB mAC =且R m ∈,即可得答案. 【详解】由A ,B ,C 三点共线的充要条件是AB mAC =且R m ∈,所以1m mμλ=⎧⎨=⎩,故1λμ=.故选:C3.(2022·江苏苏州·模拟预测)在ABC 中,π3A =,点D 在线段AB 上,点E 在线段AC 上,且满足22,2AD DB AE EC ====,CD 交BE 于F ,设AB a =,AC b =,则AF BC ⋅=( )A .65B .175C .295D .325【答案】B 【解析】 【分析】根据平面共线向量的性质,结合平面向量数量积的运算性质、平面向量数量积的定义、平面向量的加法的几何意义进行求解即可. 【详解】设DF DC λ=,EF EB μ=,因为11111()(),33333AF AD DF AB DC AB DA AC AB AB AC AB AC λλλλλ-=+=+=++=+-+=+11111()(),22222AF AE EF AC EB AC EA AB AC AC AB AC AB μμμμμ-=+=+=++=+-+=+所以有21531152λλμμμλ-⎧⎧==⎪⎪⎪⎪⇒⎨⎨-⎪⎪==⎪⎪⎩⎩,因此AF BC ⋅=2212121()()55555+-+=-+-⋅AB AC AB AC AB AC AC AB ,因为π3A =,3AB =,4AC =,所以AF BC ⋅=1211179163455525⋅=-⨯+⨯-⨯⨯⨯=AF BC ,故选:B4.(2022·内蒙古·满洲里市教研培训中心三模(文))若(2,3a =-,(2sin ,2cos)66b ππ=,下列正确的是( ) A .//()b a b -B .()b a b ⊥-C .a 在b 方向上的投影是12-D .()a b a b +⊥-()【答案】C 【解析】 【分析】根据向量平行的坐标表示判断A ,根据向量垂直的坐标表示判断BC ,根据向量的投影的定义判断C. 【详解】由已知(2,3a =-,(1,3)b =,所以(((2,3=1,a b -=---,((()2,3=3,0a b+=-+, 因为1(10⨯-≠,所以b ab -,不平行,A 错, 因为(10⨯-≠,所以b a b -,不垂直,B 错,因为a 在b 方向上的投影为2211cos ,=21a b a a b b ⋅⨯-==-+,C 对,因为(13+00⨯-⨯≠,所以a b a b +-,不垂直,D 错, 故选:C.5.(2022·内蒙古赤峰·模拟预测(理))若向量a ,b 满足1a =,2b =,()235a a b ⋅+=,则a 与b 的夹角为( )A .6πB .3π C .23π D .56π 【答案】B 【解析】 【分析】根据数量积的运算律得到a b ⋅,再根据cos a b a bθ⋅=⋅计算可得;【详解】解:因为1a =,2b =,()235a a b ⋅+=,所以2235a a b +⋅=,即2235a a b +⋅=,所以1a b ⋅=,设a 与b 的夹角为θ, 则1cos 2a b a bθ⋅==⋅,因为[]0,θπ∈,所以3πθ=; 故选:B6.(2022·北京·潞河中学三模)已知菱形ABCD 的边长为,60a ABC ∠=,则DB CD ⋅=( ) A .232a -B .234a -C .234aD .232a【答案】A 【解析】 【分析】将,DB CD 分别用,BA BC 表示,再根据数量积的运算律即可得出答案. 【详解】解:,DB DA AB BC BA CD BA =+=--=,则()22221322DB CD BC BA BA BC BA BA a a a ⋅=--⋅=-⋅-=--=-.故选:A.7.(2022·湖北·华中师大一附中模拟预测)已知向量(,3)a m =,(1,)b m =,若a 与b 反向共线,则3a b -的值为( )A .0B .48C .D .【答案】C 【解析】 【分析】由向量反向共线求得m =3a b -. 【详解】由题意23m =,得m =又a 与b 反向共线,故m =3(23,6)a b -=-, 故3=43a b -. 故选:C.8.(2022·山东淄博·三模)如图在ABC 中,90ABC ∠=︒,F 为AB 中点,3CE =,8CB =,12AB =,则EA EB ⋅=( )A .15-B .13-C .13D .15【答案】C 【解析】 【分析】建立平面直角坐标系,利用坐标法求出平面向量的数量积; 【详解】解:建立如图所示的平面直角坐标系, 则(12,0)A ,(0,0)B ,(0,8)C ,(6,0)F , 又3CE =,8CB =,12AB =,则10CF , 即310CE FC =,即710FE FC =, 则()()9286,67710100,8,55BE BF FC ⎛⎫=+=+-= ⎪⎝⎭, 则,552851EA ⎛⎫=-⎪⎝⎭,928,55EB ⎛⎫=-- ⎪⎝⎭, 则25281355951EA EB ⎛⎫⎛⎫⋅=⨯-+-= ⎪ ⎪⎝⎭⎝⎭;故选:C .9.(2022·河北·石家庄二中模拟预测)数学家欧拉于1765年在他的著作《三角形的几何学》中首次提出定理:三角形的外心、重心、垂心依次位于同一条直线上,且重心到外心的距离是重心到垂心距离的一半,该直线被称为三角形的欧拉线,设点,,O G H 分别为任意ABC 的外心、重心、垂心,则下列各式一定正确的是( )A .12OG OH =B .23OH GH =C .23AO AHAG +=D .23BO BHBG +=【答案】D 【解析】 【分析】根据三点共线和长度关系可知AB 正误;利用向量的线性运算可表示出,AG BG ,知CD 正误. 【详解】,,O G H 依次位于同一条直线上,且重心到外心的距离是重心到垂心距离的一半,12OG GH ∴=,13OG OH ∴=,32OH GH =,A 错误,B 错误;()112333AO AHAG AO OG AO OH AO AH AO +=+=+=+-=,C 错误; ()112333BO BHBG BO OG BO OH BO BH BO +=+=+=+-=,D 正确. 故选:D.10.(2022·江苏·南京外国语学校模拟预测)已知,,OA OB OC 均为单位向量,且满足102OA OB OC ++=,则AB AC ⋅的值为( ) A .38B .58C .78D .198【答案】B 【解析】 【分析】通过向量的线性运算进行化简求值即可. 【详解】()2,32AO OB OC AB OB OC =+=+,同理23AC OB OC =+()()2274(),,32238AO OB OC OB OC AB AC OB OC OB OC =+∴⋅=-⋅=++2291566136688OB OC OB OC =++⋅=+-=. 故选:B.11.(2022·辽宁沈阳·三模)已知椭圆()22:40C x y m m +=>的两个焦点分别为12,F F ,点P是椭圆上一点,若12PF PF ⋅的最小值为1-,则12PF PF ⋅的最大值为( ) A .4 B .2C .14D .12【答案】D 【解析】 【分析】设00(,)P x y ,求出焦点坐标,利用向量的坐标运算得出12PF PF ⋅,再根据椭圆的范围利用二次函数求最值即可得解. 【详解】设00(,)P x y ,由()22:40C x y m m +=>可知1(F ,2F ,100(,)PF x y ∴=---,0023(,)2PF x y =--, 22222012000033311(4)44442x m m PF PF x y x m x m ∴⋅=-++=-++-=-,0m x -≤≤00x ∴=时,12PF PF ⋅的最小值为112m -=-,解得2m =.当0x =12PF PF ⋅的最大值为312142⨯-=.故选:D12.(2022·安徽师范大学附属中学模拟预测(理))非零向量,a b 满足2a b a b a +=-=,则a b -与a 的夹角为( ) A .6π B .3π C .23π D .56π 【答案】B 【解析】 【分析】根据给定条件,求出a b ⋅,再利用向量夹角公式计算作答. 【详解】由a b a b +=-得:22()()a b a b +=-,即222222a a b b a a b b +⋅+=-⋅+,解得0a b ⋅=,因此,22()1cos ,2||||2||a b a a a b a b a a b a a -⋅-⋅〈-〉===-,而,[0,π]a b a 〈-〉∈,解得π,3a b a 〈-〉=,所以a b -与a 的夹角为3π. 故选:B13.(2022·浙江省江山中学模拟预测)在ABC 中,E ,F 分别为,AC BC 的中点,点D 是线段AF (不含端点)内的任意一点,AD mAB nAE =+,则( ) A .(0,1)m ∈ B .(0,2)n ∈ C .2n m = D .1m n +=【答案】C 【解析】 【分析】根据向量的线性运算的定义和平面向量基本定理确定,m n 的关系和范围. 【详解】因为点D 是线段AF (不含端点)内的任意一点, 所以可设(01)AD AF λλ=<<, 因为E ,F 分别为,AC BC 的中点,所以11112222AF AB BF AB BC AB AC AB AE =+=+=+=+,所以2AD AB AE λλ=+,又AD mAB nAE =+,所以10,22m λ⎛⎫=∈ ⎪⎝⎭,()0,1n λ=∈,2n m =,32m n λ+=, 所以A ,B ,D 错误,C 正确, 故选:C.14.(2022·安徽·合肥一中模拟预测(文))已知向量(1,0)a =,(1,1)b =,向量a b 与a 垂直,则实数λ的值为( ) A .2- B .2 C .1- D .1【答案】C 【解析】 【分析】由题得()0λ+⋅=a b a 化简即得解. 【详解】 因为ab 与a 垂直,所以()20,0λλ+⋅=∴+⋅=a b a a a b , 所以1+(10)0,1λλ⨯+=∴=-. 故选:C.15.(2022·海南华侨中学模拟预测)已知不共线的平面向量,,a b c 两两所成的角相等,且1,4,7a b a b c ==++=,则c =( )A B .2 C .3 D .2或3【答案】D 【解析】 【分析】 先求出23πθ=,转化2()7a b c a b c ++=++=,列方程即可求出. 【详解】由不共线的平面向量a ,b ,c 两两所成的角相等,可设为θ,则23πθ=.设|c |=m. 因为147a b a b c ==++=,,,所以27a b c ++=, 即2222227a a b b b c a c c +⋅++⋅+⋅+=,所以2222221214cos424cos 21cos 7333m m m πππ+⨯⨯++⨯⨯+⨯⨯+= 即2560m m -+=,解得:2m =或3. 所以|c |=2或3 故选:D16.(2022·贵州贵阳·模拟预测(理))已知()1,2a =,()2,1b =-,()1,c λ=,且()c a b ⊥+,则λ=______. 【答案】3- 【解析】 【分析】由向量垂直的坐标表示计算可得. 【详解】由题意()()3,1a b +=,又()c a b ⊥+,则()()()1,3,130c a b λλ⋅+=⋅=+=,故3λ=-. 故答案为:3-.17.(2022·河北·沧县中学模拟预测)已知向量,a b 的夹角为23π,4a =,3b =,则a b +=___________.【解析】 【分析】根据2222a b a a b b +=+⋅+求解即可. 【详解】 21cos43632a b a b π⎛⎫⋅==⨯⨯-=- ⎪⎝⎭, 则()222222426313a b a a b b +=+⋅+=+⨯-+=, 则13a b +=.18.(2022·安徽·合肥一六八中学模拟预测(文))已知向量||1b =,向量(1,3)a =,且|2|6a b -=,则向量,a b 的夹角为___________.【答案】2π##90 【解析】 【分析】由|2|6a b -=两边平方,结合数量积的定义和性质化简可求向量,a b 的夹角 【详解】因为(1,3)a =,所以(21+a =因为|2|6a b -=,所以2222+26a ab b -=,又||1b =,所以426b -⋅+=,所以0a b ⋅=, 向量,a b 的夹角为θ,则cos 0a b θ⋅= 所以cos 0θ=,则2πθ=.故答案为:2π. 19.(2022·陕西·交大附中模拟预测(理))已知在平行四边形ABCD 中,11,,2,622DE EC BF FC AE AF ====AC DB ⋅值为__________. 【答案】94##2.25【解析】 【分析】由向量加法的几何意义及数量积运算律有22D AC DB C CB ⋅=-,再由1313AE BC DC AF DC BC⎧=+⎪⎪⎨⎪=+⎪⎩结合数量积运算律,即可得结果. 【详解】由题设可得如下图:,AC AD DC DB DC CB =+=+,而AD CB =-,所以22D AC DB C CB ⋅=-, 又11,,2,622DE EC BF FC AE AF ==== 所以1313AE AD DE BC DC AF AB BF DC BC ⎧=+=+⎪⎪⎨⎪=+=+⎪⎩,则22222143921639BC BC DC DC DC BC DC BC ⎧+⋅+=⎪⎪⎨⎪+⋅+=⎪⎩,故228()29DC BC -=,可得2294DC BC -=,即94AC DB =⋅. 故答案为:9420.(2022·浙江·镇海中学模拟预测)设,a b 为不共线的向量,满足,342(,R)c a b λμλμλμ=++=∈,且c a c b c --==,若3a b -=,则()22()⋅⋅-a ba b 的最大值为________. 【答案】324【解析】 【分析】采用建系法,令,,a OA b OB c OC ===,将各个点用坐标表示,然后表达出OAB 面积的最大值,进而求得()22()⋅⋅-a b a b 的最大值;【详解】令,,a OA b OB c OC ===,又因为c a c b c --==, 即==OC CA CB ,则点C 为OAB 的外心,因为3-==a b AB , 设33,0,,0,(0,)22⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭B AC m ,不妨取0m >则点()00,O x y 在圆2229:()4+-=+C x y m m 上, 由OC OA OB λμ=+,代入坐标,()00000033,,,22λμ⎛⎫⎛⎫---=--+--- ⎪ ⎪⎝⎭⎝⎭x m y x y x y ,解得003(),211-+=⋅-=----mx y m μλμλλμλμ,联立342+=u λ和2229:()4+-=+C x y m m ,解得12λ⎫<⎪⎭m,故0()1μλλμ+=+--m y m622λ=≤-+ ⎪⎝⎭,1λ=-时取“=”. 故01||92=⋅≤OABSAB y ,于是 ()22222max max(||||)()||||1cos a b a b OA OB AOB ⎡⎤⎡⎤⋅-⋅=⋅⋅-∠⎣⎦⎣⎦ ()2222maxmax||||sin 4324OAB OA OB AOB S ⎡⎤=⋅⋅∠==⎣⎦△.故答案为:324 【点睛】求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.。
2022届全国高考数学真题分类(平面向量)汇编(附答案)
2022届全国高考数学真题分类(平面向量)汇编一、选择题 1.(2022∙全国乙(文)T3) 已知向量(2,1)(2,4)a b ==- ,,则a b -r r ( )A. 2B. 3C. 4D. 52.(2022∙全国乙(理)T3) 已知向量,a b 满足||1,||2|3a b a b ==-= ,则a b ⋅= ( ) A. 2- B. 1- C. 1 D. 2 3.(2022∙新高考Ⅰ卷T3) 在ABC 中,点D 在边AB 上,2BD DA =.记CA m CD n == ,,则CB =( )A. 32m n -B. 23m n -+C. 32m n +D. 23m n +4.(2022∙新高考Ⅱ卷T4) 已知(3,4),(1,0),t ===+ a b c a b ,若,,<>=<> a c b c ,则t =( )A. 6-B. 5-C. 5D. 6二、填空题 1.(2022∙全国甲(文)T13) 已知向量(,3),(1,1)a m b m ==+ .若a b ⊥ ,则m =______________.2.(2022∙全国甲(理)T13) 设向量a ,b 的夹角的余弦值为13,且1a = ,3b =r ,则()2a b b +⋅= _________.参考答案一、选择题1.【答案】D【答案解析】【名师分析】先求得a b - ,然后求得a b -r r .【答案详解】因为()()()2,12,44,3a b -=--=- ,所以5-== a b .故选:D2.【答案】C【答案解析】【名师分析】根据给定模长,利用向量的数量积运算求解即可. 【答案详解】解:∵222|2|||44-=-⋅+ a b a a b b ,又∵||1,||2|3,==-= a b a b ∴91443134=-⋅+⨯=-⋅ a b a b , ∴1a b ⋅= 故选:C.3. 【答案】B【答案解析】【名师分析】根据几何条件以及平面向量的线性运算即可解出.【答案详解】因为点D 在边AB 上,2BD DA =,所以2BD DA = ,即()2CD CB CA CD -=- , 所以CB =3232CD CA n m -=- 23m n =-+.故选:B .4.【答案】C【答案解析】【名师分析】利用向量的运算和向量的夹角的余弦公式的坐标形式化简即可求得 【答案详解】解:()3,4c t =+ ,cos ,cos ,a c b c = ,即931635t t c c+++= ,解得5t =, 故选:C二、填空题1. 【答案】34-或0.75- 【答案解析】 【名师分析】直接由向量垂直的坐标表示求解即可.【答案详解】由题意知:3(1)0a b m m ⋅=++= ,解得34m =-. 故答案为:34-. 2. 【答案】11【答案解析】【名师分析】设a 与b 的夹角为θ,依题意可得1cos 3θ=,再根据数量积的定义求出a b ⋅ ,最后根据数量积的运算律计算可得.【答案详解】解:设a 与b 的夹角为θ,因为a 与b 的夹角的余弦值为13,即1cos 3θ=, 又1a = ,3b =r ,所以1cos 1313a b a b θ⋅=⋅=⨯⨯= , 所以()22222221311a b b a b b a b b +⋅=⋅+=⋅+=⨯+= . 故答案为:11.。
高考数学真题专题分类汇编专题七 平面向量(教师版)
专题七平面向量与解三角形真题卷题号考点考向2023新课标1卷3 向量的数量积向量数量积的坐标运算17 解三角形正、余弦定理解三角形2023新课标2卷13 向量的数量积利用向量数量积求模长17 解三角形解三角形的综合应用2022新高考1卷3 平面向量的线性运算向量的加减及数乘运算18 解三角形正弦定理变形、三角恒等变形2022新高考2卷4 向量的数量积向量数量积的坐标运算18 解三角形正余弦定理解三角形2021新高考1卷10 向量的坐标运算求向量的模、向量数量积的坐标运算19 解三角形正、余弦定理解三角形2021新高考2卷15 向量的数量积向量数量积的运算18 解三角形正弦定理解三角形、余弦定理判断三角形的形状2020新高考1卷7 向量的数量积求向量数量积的取值范围17 解三角形正、余弦定理解三角形2020新高考2卷3 向量的线性运算向量的加、减法运算17 解三角形正、余弦定理解三角形【2023年真题】1.(2023·新课标I 卷 第3题)已知向量(1,1)a = ,(1,1).b=− 若()()a b a b λµ+⊥+,则( ) A. 1λµ+=B.1λµ+=− C. 1λµ= D. 1λµ=−【答案】D 【解析】 【分析】本题考查向量的数量积运算,结合向量垂直,向量的数量积为0,为较易题. 【解答】解:22()()()()2(1)0a b a b a a b b λµλµλµλµ+⋅+=++⋅+=+=,所以1;λµ=−故选.D2. (2023·新课标II 卷 第13题)已知向量a ,b 满足||a b − |||2|a b a b +=− ,则||b = __________【答案】【解析】 【分析】本题考查向量模及向量数量积的运算,属于基础题. 将两等式分别平方,然后化简计算即可. 【解答】 解:将原式平方:化简可得:即23b =,故||b =3. (2023·新课标I 卷 第17题)已知在ABC 中,3A B C +=,2sin()sin .A C B −=(1)求sin A ;(2)设5AB =,求AB 边上的高.【答案】解:(1)3A B C +=,3C C π∴−=,解得.4C π=2sin()sin A C B ∴−=可化为2sin()sin()44A A πππ−=−−,即32sin()sin()44A A ππ−=−,A A A A=,整理得sin3cosA A=,将1cos sin3A A=代入22sin cos1A A+=,得210sin19A=,29sin10A∴=,sin A=(2)由(1)知sin A=,1cos sin3A A==4Cπ=,又sin sinAC ABB C=,sinsinAB BACC∴==AB∴边上的高sin 6.h AC A===【解析】本题考查了三角恒等变换与解三角形的相关知识,属于中等题.(1)根据题意,结合A B Cπ++=可直接求出C,再将C代入2sin()sinA C B−=进行恒等变换得sin3cosA A=,最后再结合同角三角函数的基本关系即可求解;(2)结合三角恒等变换、正弦定理,分别求出sin B和AC,即可得AB边上的高sinAC A的值.4.(2023·新课标II卷第17题)记ABC的内角A,B,C的对边分别为a,b,c,已知ABC,D为BC的中点,且 1.AD=(1)若3ADCπ∠=,求tan B;(2)若228b c+=,求b,.c【答案】解:(1)ABCS=,D为BC的中点,ADCS∴11sin122AD CD ADC CD⋅⋅∠=××=,解得2CD=,则 2.BD=过点A作AE CD⊥于点E,则在ADE中,AE=12DE=,∴在Rt AEB中,52BE BD DE=+=,tanAEBBE==(2) 在ABC 中,1()2AD AB AC =+,222222111||()(||||2)(2cos )444AD AB AC AB AC AB AC c b bc A ∴=+=++⋅=++ ,11(82cos )4bc A ∴=+,即cos 2bc A =−,又1sin 2ABC S bc A == ,sin bc A ∴,sintancos bc A Abc A ∴==23A π∴=,sin A =, 4.bc =再将4b c=代入228b c +=,即可解得 2.b c == 【解析】本题考查了解三角形的综合应用,属于中等题.(1)结合三角形面积和中点关系进行求解;(2)观察题目所给条件,结合中线的向量表示和三角形面积进行求解.【2022年真题】5.(2022·新高考I 卷 第3题)在ABC 中,点D 在边AB 上,2.BD DA =记CA m = ,CD n = ,则CB =( ) A. 32m n −B. 23m n −+C. 32m n +D. 23m n +【答案】B 【解析】 【分析】本题主要考查向量的加减及数乘运算,属于基础题. 【解答】解:2133CD CA CB =+ ,3223.CB CD CA m n =−=−+6.(2022·新高考II 卷 第4题)已知向量(3,4)a = ,(1,0)b = ,c a tb =+ ,若,,a c b c <>=<> ,则实数t =( ) A. 6− B. 5−C. 5D. 6【答案】C 【解析】 【分析】本题考查了向量的坐标运算和夹角运算,属于基础题。
2024年全国高考数学真题分类( 复数和平面向量)汇编(附答案)
2024年全国高考数学真题分类(复数和平面向量)汇编一、单选题 1.(2024ꞏ全国)若1i 1zz =+-,则z =( ) A .1i --B .1i -+C .1i -D .1i +2.(2024ꞏ全国)已知向量(0,1),(2,)a b x == ,若(4)b b a ⊥-,则x =( )A .2-B .1-C .1D .23.(2024ꞏ全国)已知1i z =--,则z =( )A .0B .1C D .24.(2024ꞏ全国)已知向量,a b满足1,22a a b =+= ,且()2b a b -⊥ ,则b = ( )A .12B .2C .2D .15.(2024ꞏ全国)设z =,则z z ⋅=( ) A .-iB .1C .-1D .26.(2024ꞏ全国)设5i z =+,则()i z z +=( ) A .10iB .2iC .10D .2-7.(2024ꞏ全国)已知向量()()1,,,2a x x b x =+= ,则( )A .“3x =-”是“a b ⊥”的必要条件 B .“3x =-”是“//a b”的必要条件C .“0x =”是“a b ⊥”的充分条件 D .“1x =-”是“//a b”的充分条件8.(2024ꞏ北京)已知i 1iz=-,则z =( ). A .1i -B .i -C .1i --D .19.(2024ꞏ北京)已知向量a ,b ,则“()()ꞏ0a b a b +-=”是“a b = 或a b =- ”的( )条件.A .必要而不充分条件B .充分而不必要条件C .充分且必要条件D .既不充分也不必要条件二、填空题10.(2024ꞏ天津)已知i 是虚数单位,复数))i 2i ⋅-= .11.(2024ꞏ天津)在边长为1的正方形ABCD 中,点E 为线段CD 的三等分点,1,2CE DE BE BA BC ==+uur uu r uu u r λμ,则λμ+= ;若F 为线段BE 上的动点,G 为AF 中点,则AF DG ⋅的最小值为 .12.(2024ꞏ上海)已知()(),2,5,6,k a b k ∈==R ,且//a b ,则k 的值为 .13.(2024ꞏ上海)已知虚数z ,其实部为1,且()2z m m z+=∈R ,则实数m 为 .参考答案1.C【详细分析】由复数四则运算法则直接运算即可求解. 【答案解析】因为11111i 111z z z z z -+==+=+---,所以111i i z =+=-.故选:C. 2.D【详细分析】根据向量垂直的坐标运算可求x 的值. 【答案解析】因为()4b b a ⊥- ,所以()40b b a ⋅-=,所以240b a b -⋅=即2440x x +-=,故2x =,故选:D. 3.C【详细分析】由复数模的计算公式直接计算即可.【答案解析】若1i z =--,则z ==故选:C. 4.B【详细分析】由()2b a b -⊥ 得22b a b =⋅,结合1,22a a b =+= ,得22144164a b b b +⋅+=+= ,由此即可得解.【答案解析】因为()2b a b -⊥ ,所以()20b a b -⋅= ,即22b a b =⋅,又因为1,22a a b =+=,所以22144164a b b b +⋅+=+= ,从而= b 故选:B. 5.D【详细分析】先根据共轭复数的定义写出z ,然后根据复数的乘法计算.【答案解析】依题意得,z =,故22i 2zz =-=. 故选:D 6.A【详细分析】结合共轭复数与复数的基本运算直接求解. 【答案解析】由5i 5i,10z z z z =+⇒=-+=,则()i 10i z z +=. 故选:A 7.C【详细分析】根据向量垂直和平行的坐标表示即可得到方程,解出即可.【答案解析】对A ,当a b ⊥ 时,则0a b ⋅=,所以(1)20x x x ⋅++=,解得0x =或3-,即必要性不成立,故A 错误;对C ,当0x =时,()()1,0,0,2a b == ,故0a b ⋅=,所以a b ⊥,即充分性成立,故C 正确;对B ,当//a b 时,则22(1)x x +=,解得1x =,即必要性不成立,故B 错误;对D ,当1x =-时,不满足22(1)x x +=,所以//a b不成立,即充分性不立,故D 错误. 故选:C.8.C【详细分析】直接根据复数乘法即可得到答案. 【答案解析】由题意得()i i 11i z =-=--, 故选:C.9.A【详细分析】根据向量数量积详细分析可知()()0a b a b +⋅-= 等价于a b = ,结合充分、必要条件详细分析判断.【答案解析】因为()()220a b a b a b +⋅-=-= ,可得22a b = ,即a b = ,可知()()0a b a b +⋅-= 等价于a b = , 若a b = 或a b =- ,可得a b = ,即()()0a b a b +⋅-=,可知必要性成立;若()()0a b a b +⋅-= ,即a b =,无法得出a b = 或a b =- ,例如()()1,0,0,1a b ==,满足a b = ,但a b ≠ 且a b ≠- ,可知充分性不成立;综上所述,“()()0a b a b +⋅-=”是“a b ≠ 且a b ≠- ”的必要不充分条件.故选:A.10.7【详细分析】借助复数的乘法运算法则计算即可得.【答案解析】))i 2i 527⋅=-+=.故答案为:7.11.43518-【详细分析】解法一:以{},BA BC 为基底向量,根据向量的线性运算求BE,即可得λμ+,设BF BE k =uu u r uur ,求,AF DG uu u r uuu r ,结合数量积的运算律求AF DG ⋅的最小值;解法二:建系标点,根据向量的坐标运算求BE,即可得λμ+,设()1,3,,03F a a a ⎡⎤-∈-⎢⎥⎣⎦,求,AF DG uu u r uuu r ,结合数量积的坐标运算求AF DG ⋅的最小值.【答案解析】解法一:因为12CE DE =,即23CE BA =uur uu r ,则13BE BC CE BA BC =+=+uu u r uur u uu ur r uu u r ,可得1,13λμ==,所以43λμ+=; 由题意可知:1,0BC BA BA BC ==⋅= , 因为F 为线段BE 上的动点,设[]1,0,13BF k BE k BA k BC k ==+∈,则113AF AB BF AB k BE k BA k BC ⎛⎫=+=+=-+ ⎪⎝⎭,又因为G 为AF 中点,则1111112232DG DA AG BC AF k BA k BC ⎛⎫⎛⎫=+=-+=-+- ⎪ ⎪⎝⎭⎝⎭, 可得11111113232AF DG k BA k BC k BA k BC ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⋅=-+⋅-+- ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦22111563112329510k k k k ⎛⎫⎛⎫⎛⎫=-+-=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 又因为[]0,1k ∈,可知:当1k =时,AF DG ⋅取到最小值518-; 解法二:以B 为坐标原点建立平面直角坐标系,如图所示,则()()()()11,0,0,0,0,1,1,1,,13A B C D E ⎛⎫--- ⎪⎝⎭,可得()()11,0,0,1,,13BA BC BE ⎛⎫=-==- ⎪⎝⎭,因为(),BE BA BC λμλμ=+=- ,则131λμ⎧-=-⎪⎨⎪=⎩,所以43λμ+=; 因为点F 在线段1:3,,03BE y x x ⎡⎤=-∈-⎢⎥⎣⎦上,设()1,3,,03F a a a ⎡⎤-∈-⎢⎥⎣⎦,且G 为AF 中点,则13,22a G a -⎛⎫-⎪⎝⎭, 可得()131,3,,122a AF a a DG a +⎛⎫=+-=-- ⎪⎝⎭, 则()()22132331522510a AF DG a a a +⎛⎫⎛⎫⋅=+---=+- ⎪ ⎪⎝⎭⎝⎭ ,且1,03a ⎡⎤∈-⎢⎥⎣⎦,所以当13a =-时,AF DG ⋅ 取到最小值为518-;故答案为:43;518-.12.15【详细分析】根据向量平行的坐标表示得到方程,解出即可. 【答案解析】//a b,256k ∴=⨯,解得15k =. 故答案为:15. 13.2【详细分析】设1i z b =+,直接根据复数的除法运算,再根据复数分类即可得到答案. 【答案解析】设1i z b =+,b ∈R 且0b ≠.则23222231i i 1i 11b b b z b m z b b b ⎛⎫⎛⎫+-+=++=+= ⎪ ⎪+++⎝⎭⎝⎭,m∈R ,2232311bmbb bb⎧+=⎪⎪+∴⎨-⎪=⎪+⎩,解得2m=,故答案为:2.。
十年高考真题分类汇编(2010-2019) 数学 专题06 平面向量 考试版
十年高考真题分类汇编(2010—2019)数学专题06 平面向量1.(2019·全国2·文T3)已知向量a=(2,3),b=(3,2),则|a-b|=( )A.√2B.2C.5√2D.502.(2019·全国1·理T7文T8)已知非零向量a,b满足|a|=2|b|,且(a-b)⊥b,则a与b的夹角为( )A.π6B.π3C.2π3D.5π63.(2018·全国1·理T6文T7)在△ABC中,AD为BC边上的中线,E为AD的中点,则EB⃗⃗⃗⃗⃗ =( )A.34AB⃗⃗⃗⃗⃗ −14AC⃗⃗⃗⃗⃗ B.14AB⃗⃗⃗⃗⃗ −34AC⃗⃗⃗⃗⃗C.34AB⃗⃗⃗⃗⃗ +14AC⃗⃗⃗⃗⃗ D.14AB⃗⃗⃗⃗⃗ +34AC⃗⃗⃗⃗⃗4.(2018·全国2·T4)已知向量a,b满足|a|=1,a·b=-1,则a·(2a-b)=( )A.4B.3C.2D.05.(2018·北京·理T6)设a,b均为单位向量,则“|a-3b|=|3a+b|”是“a⊥b”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件6.(2018·浙江·T9)已知a,b,e是平面向量,e是单位向量.若非零向量a与e的夹角为π,向量b满足b2-4e·b+3=0,则|a-b|的最小值是( )A.√3-1B.√3+1C.2D.2-√37.(2018·天津·理T8)如图,在平面四边形ABCD中,AB⊥BC,AD⊥CD,∠BAD=120°,AB=AD=1.若点E为边CD 上的动点,则( )A.2116B.32C.2516D.38.(2018·天津·文T8)在如图的平面图形中,已知OM=1,ON=2,∠MON=120°,BM ⃗⃗⃗⃗⃗⃗ =2MA ⃗⃗⃗⃗⃗⃗ ,CN ⃗⃗⃗⃗⃗ =2NA ⃗⃗⃗⃗⃗ ,则BC ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ 的值为( ) A.-15 B.-9 C.-6D.09.(2017·全国2·理T12)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则PA ⃗⃗⃗⃗ ·(PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗ )的最小值是( ) A.-2 B.-3C.-43D.-110.(2017·全国3·理T12)在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μAD ⃗⃗⃗⃗⃗ ,则λ+μ的最大值为( ) A.3B.2√2C.√5D.211.(2017·全国2·文T4)设非零向量a,b 满足|a+b|=|a-b|,则( ) A.a ⊥b B.|a|=|b| C.a ∥b D.|a|>|b|12.(2016·四川·文T9)已知正三角形ABC 的边长为2√3,平面ABC 内的动点P,M 满足|AP ⃗⃗⃗⃗⃗ |=1,PM ⃗⃗⃗⃗⃗⃗ =MC ⃗⃗⃗⃗⃗⃗ ,则|BM⃗⃗⃗⃗⃗⃗ |2的最大值是( ) A.434B.494C.37+6√34D.37+2√33413.(2016·天津·文T7)已知△ABC 是边长为1的等边三角形,点D,E 分别是边AB,BC 的中点,连接DE 并延长到点F,使得DE=2EF,则AF ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ 的值为 ( ) A.-58B.18C.14D.11814.(2016·全国2·理T3)已知向量a=(1,m),b=(3,-2),且(a+b)⊥b,则m=( ) A.-8B.-6C.6D.815.(2015·全国2·文T4)向量a=(1,-1),b=(-1,2),则(2a+b )·a=( ) A.-1B.0C.1D.216.(2015·福建·文T7)设a=(1,2),b=(1,1),c=a+kb.若b ⊥c,则实数k 的值等于( ) A.-32B.-53C.53D.3217.(2015·广东·文T9)在平面直角坐标系xOy 中,已知四边形ABCD 是平行四边形,AB ⃗⃗⃗⃗⃗ =(1,-2),AD⃗⃗⃗⃗⃗ =(2,1),则AD ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =( ) A.5 B.4 C.3 D.218.(2015·山东·理T4)已知菱形ABCD 的边长为a,∠ABC=60°,则BD ⃗⃗⃗⃗⃗ ·CD ⃗⃗⃗⃗⃗ =( ) A.-32a 2B.-34a 2C.34a 2D.32a 219.(2015·四川·理T7)设四边形ABCD 为平行四边形,|AB ⃗⃗⃗⃗⃗ |=6,|AD ⃗⃗⃗⃗⃗ |=4.若点M,N 满足BM ⃗⃗⃗⃗⃗⃗ =3MC ⃗⃗⃗⃗⃗⃗ ,DN ⃗⃗⃗⃗⃗ =2NC ⃗⃗⃗⃗⃗ ,则AM ⃗⃗⃗⃗⃗⃗ ·NM ⃗⃗⃗⃗⃗⃗ =( ) A.20B.15C.9D.620.(2015·福建·理T9)已知AB ⃗⃗⃗⃗⃗ ⊥AC ⃗⃗⃗⃗⃗ ,|AB ⃗⃗⃗⃗⃗ |=1,|AC ⃗⃗⃗⃗⃗ |=t.若点P 是△ABC 所在平面内的一点,且AP ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗⃗ |+4AC ⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |,则PB⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗ 的最大值等于( )A.13B.15C.19D.2121.(2015·全国1·文T2)已知点A(0,1),B(3,2),向量AC ⃗⃗⃗⃗⃗ =(-4,-3),则向量BC ⃗⃗⃗⃗⃗ =( ) A.(-7,-4) B.(7,4) C.(-1,4)D.(1,4)22.(2015·重庆·理T6)若非零向量a,b 满足|a|=2√2|b|,且(a-b)⊥(3a+2b),则a 与b 的夹角为 ( )A.π4B.π2C.3π4D .π23.(2015·重庆·文T7)已知非零向量a,b 满足|b|=4|a|,且a ⊥(2a+b),则a 与b 的夹角为( ) A.π3B.π2C.2π3D.5π624.(2015·全国1·理T7)设D 为△ABC 所在平面内一点,BC ⃗⃗⃗⃗⃗ =3CD ⃗⃗⃗⃗⃗ ,则( ) A.AD ⃗⃗⃗⃗⃗ =-13AB⃗⃗⃗⃗⃗ +43AC ⃗⃗⃗⃗⃗ B.AD⃗⃗⃗⃗⃗ =13AB ⃗⃗⃗⃗⃗ −43AC ⃗⃗⃗⃗⃗ C.AD ⃗⃗⃗⃗⃗ =43AB ⃗⃗⃗⃗⃗ +13AC ⃗⃗⃗⃗⃗ D.AD ⃗⃗⃗⃗⃗ =43AB ⃗⃗⃗⃗⃗ −13AC⃗⃗⃗⃗⃗ 25.(2014·全国1·文T6)设D,E,F 分别为△ABC 的三边BC,CA,AB 的中点,则EB ⃗⃗⃗⃗⃗ +FC ⃗⃗⃗⃗ =( ) A.AD⃗⃗⃗⃗⃗ B.12AD⃗⃗⃗⃗⃗C.BC⃗⃗⃗⃗⃗ D.12BC⃗⃗⃗⃗⃗ 26.(2014·山东·文T7)已知向量a=(1,√3),b=(3,m),若向量a,b 的夹角为π6,则实数m=( ) A.2√3B.√3C.0D.-√327.(2014·北京·文T3)已知向量a=(2,4),b=(-1,1),则2a-b=( ) A.(5,7) B.(5,9) C.(3,7) D.(3,9)28.(2014·广东·文T3)已知向量a=(1,2),b=(3,1),则b-a=( ) A.(-2,1)B.(2,-1)C.(2,0)D.(4,3)29.(2014·福建·理T8)在下列向量组中,可以把向量a=(3,2)表示出来的是( ) A.e 1=(0,0),e 2=(1,2) B.e 1=(-1,2),e 2=(5,-2) C.e 1=(3,5),e 2=(6,10) D.e 1=(2,-3),e 2=(-2,3)30.(2014·全国2·理T3文T4)设向量a,b 满足|a+b|=√10,|a-b|=√6,则a ·b=( ) A.1 B.2 C.3 D.531.(2014·大纲全国·文T6)已知a,b 为单位向量,其夹角为60°,则(2a-b )·b=( ) A.-1B.0C.1D.232.(2014·大纲全国·理T4)若向量a,b 满足:|a|=1,(a+b)⊥a,(2a+b)⊥b,则|b|=( ) A.2B.√2C.1D.√233.(2014·重庆·理T4)已知向量a=(k,3),b=(1,4),c=(2,1),且(2a-3b)⊥c,则实数k=( ) A.-92B.0C.3D.15234.(2012·陕西·文T7)设向量a=(1,cos θ)与b=(-1,2cos θ)垂直,则cos 2θ等于( ) A.√22B.12C.0D.-135.(2012·重庆·理T6)设x,y ∈R,向量a=(x,1),b=(1,y),c=(2,-4),且a ⊥c,b ∥c,则|a+b|= ( ) A.√5B.√10C.2√5D.1036.(2010·全国·文T2)a,b 为平面向量,已知a=(4,3),2a+b=(3,18),则a,b 夹角的余弦值等于( ) A.865B.-865C.1665D.-166537.(2019·全国3·文T13)已知向量a=(2,2),b=(-8,6),则cos<a,b>= .38.(2019·北京·文T9)已知向量a=(-4,3),b=(6,m),且a ⊥b,则m= .39.(2019·天津·T14)在四边形ABCD 中,AD ∥BC,AB=2√3,AD=5,∠A=30°,点E 在线段CB 的延长线上,且AE=BE,则BD⃗⃗⃗⃗⃗ ·AE ⃗⃗⃗⃗⃗ = . 40.(2019·全国3·理T13)已知a,b 为单位向量,且a ·b=0,若c=2a-√5b,则cos<a,c>= . 41.(2019·浙江·T17)已知正方形ABCD 的边长为 1.当每个λi (i=1,2,3,4,5,6)取遍±1时,|λ1AB ⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗ |的最小值是,最大值是 . 42.(2019·江苏·T12)如图,在△ABC 中,D 是BC 的中点,E 在边AB 上,BE=2EA,AD 与CE 交于点O.若AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =6AO⃗⃗⃗⃗⃗ ·EC ⃗⃗⃗⃗ ,则AB AC的值是 .43.(2018·北京·文T9)设向量a=(1,0),b=(-1,m).若a ⊥(ma-b),则m= .44.(2018·上海·T8)在平面直角坐标系中,已知点A(-1,0),B(2,0),E,F 是y 轴上的两个动点,且|EF ⃗⃗⃗⃗ |=2,则AE ⃗⃗⃗⃗⃗ ·BF ⃗⃗⃗⃗ 的最小值为 .45.(2018·江苏·T2)在平面直角坐标系xOy 中,A 为直线l:y=2x 上在第一象限内的点,B(5,0),以AB 为直径的圆C 与直线l 交于另一点D.若AB⃗⃗⃗⃗⃗ ·CD ⃗⃗⃗⃗⃗ =0,则点A 的横坐标为 . 46.(2018·全国3·T13)已知向量a=(1,2),b=(2,-2),c=(1,λ).若c ∥(2a+b),则λ= . 47.(2017·全国1·文T13)已知向量a=(-1,2),b=(m,1),若向量a+b 与a 垂直,则m= . 48.(2017·山东·文T11)已知向量a=(2,6),b=(-1,λ).若a ∥b,则λ= . 49.(2017·全国1·理T13)已知向量a,b 的夹角为60°,|a|=2,|b|=1,则|a+2b|= .50.(2017·天津,理13文14)在△ABC 中,∠A=60°,AB=3,AC=2.若BD ⃗⃗⃗⃗⃗ =2DC ⃗⃗⃗⃗⃗ ,AE ⃗⃗⃗⃗⃗ =λAC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ (λ∈R),且AD ⃗⃗⃗⃗⃗ ·AE⃗⃗⃗⃗⃗ =-4,则λ的值为 . 51.(2017·江苏·T12)如图,在同一个平面内,向量OA ⃗⃗⃗⃗⃗ ,OB ⃗⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ 的模分别为1,1,√2,OA ⃗⃗⃗⃗⃗ 与OC ⃗⃗⃗⃗⃗ 的夹角为α,且tan α=7,OB ⃗⃗⃗⃗⃗ 与OC⃗⃗⃗⃗⃗ 的夹角为45°.若OC ⃗⃗⃗⃗⃗ =m OA ⃗⃗⃗⃗⃗ +n OB ⃗⃗⃗⃗⃗ (m,n ∈R),则m+n=. 52.(2017·山东·理T12)已知e 1,e 2是互相垂直的单位向量,若√3 e 1-e 2与e 1+λe 2的夹角为60°,则实数λ的值是 .53.(2017·江苏·理T13)在平面直角坐标系xOy 中,A(-12,0),B(0,6),点P 在圆O:x 2+y 2=50上.若PA ⃗⃗⃗⃗ ·PB⃗⃗⃗⃗⃗ ≤20,则点P 的横坐标的取值范围是 .54.(2017·北京·文T12)已知点P 在圆x 2+y 2=1上,点A 的坐标为(-2,0),O 为原点,则AO ⃗⃗⃗⃗⃗ ·AP⃗⃗⃗⃗⃗ 的最大值为 .。
高考数学平面向量试题汇编.doc
高考数学平面向量试题汇编已知O 是ABC △所在平面内一点,D 为BC 边中点,且2OA OB OC ++=0,那么( A ) A.AO OD = B.2AO OD =C.3AO OD =D.2AO OD =(辽宁3)若向量a 与b 不共线,0≠a b ,且⎛⎫ ⎪⎝⎭a a c =a -b a b ,则向量a 与c 的夹角为( D )A .0B .π6C .π3D .π2(辽宁6)若函数()y f x =的图象按向量a 平移后,得到函数(1)2y f x =+-的图象,则向量a =( A ) A .(12)--,B .(12)-,C .(12)-, D .(12),(宁夏,海南4)已知平面向量(11)(11)==-,,,a b ,则向量1322-=a b ( D ) A.(21)--,B.(21)-,C.(10)-,D.(12),(福建4)对于向量,,a b c 和实数λ,下列命题中真命题是( B ) A .若=0a b ,则0a =或0b =B .若λ0a =,则0λ=或=0aC .若22=a b ,则=a b 或-a =bD .若a b =a c ,则b =c (湖北2)将π2cos 36x y ⎛⎫=+ ⎪⎝⎭的图象按向量π24⎛⎫=-- ⎪⎝⎭,a 平移,则平移后所得图象的解析式为( A )A.π2cos 234x y ⎛⎫=+- ⎪⎝⎭B.π2cos 234x y ⎛⎫=-+ ⎪⎝⎭C.π2cos 2312x y ⎛⎫=-- ⎪⎝⎭D.π2cos 2312x y ⎛⎫=++ ⎪⎝⎭(湖北文9)设(43)=,a ,a 在b 上的投影为2,b 在x 轴上的投影为2,且||14≤b ,则b 为( B )A .(214),B .227⎛⎫- ⎪⎝⎭,C .227⎛⎫- ⎪⎝⎭, D .(28),(湖南4)设,a b 是非零向量,若函数()()()f x x x =+-a b a b 的图象是一条直线,则必有( A ) A .⊥a bB .∥a bC .||||=a bD .||||≠a b(湖南文2)若O E F ,,是不共线的任意三点,则以下各式中成立的是( B ) A .EF OF OE =+ B .EF OF OE =- C .EF OF OE =-+D .EF OF OE =--(四川7)设A {a ,1},B {2,b },C {4,5},为坐标平面上三点,O 为坐标原点,若方向在与→→→OC OB OA 上的投影相同,则a 与b 满足的关系式为 ( A ) (A)354=-b a(B)345=-b a (C)1454=+b a(D)1445=+b a(天津10)设两个向量22(2cos )λλα=+-,a 和sin 2m m α⎛⎫=+ ⎪⎝⎭,b ,其中mλα,,为实数.若2=a b ,则mλ的取值范围是( A ) A.[-6,1] B.[48],C.(-6,1] D.[-1,6] (浙江7)若非零向量,a b 满足+=a b b ,则( C ) A.2>2+a a b B.22<+a a b C.2>+2b a bD. 22<+b a b(浙江文9)若非零向量a 、b 满足|a 一b |=|b |,则(A) (A) |2b |>|a 一2b | (B) |2b |<|a 一2b | (C) |2a |>|2a 一b | (D) |2a |<|2a 一b |(山东11)在直角ABC ∆中,CD 是斜边AB 上的高,则下列等式不成立的是( C ) (A )2AC AC AB =⋅ (B ) 2BC BA BC =⋅ (C )2AB AC CD =⋅ (D ) 22()()AC AB BA BC CD AB⋅⨯⋅=(山东文5)已知向量(1)(1)n n ==-,,,a b ,若2-a b 与b 垂直,则=a (C ) A .1BC.2D .4(重庆5)在ABC △中,AB =45A =,75C =,则BC =( A) A.3C.2D.3+(重庆10)如题(10)图,在四边形ABCD 中,4AB BD DC ++=,4AB BD BD DC +=,0AB BD BD DC ==,则()AB DCAC +的值为( C ) A.2B.C.4D.(上海14)DCAB题(10)图直角坐标系xOy 中,i j ,分别是与x y ,轴正方向同向的单位向量.在直角三角形ABC 中,若j k i AC j i AB+=+=3,2,则k 的可能值个数是( B )A.1 B.2 C.3 D.4 (全国Ⅰ3)已知向量(56)=-,a ,(65)=,b ,则a 与b ( A ) A .垂直 B .不垂直也不平行C .平行且同向D .平行且反向(全国Ⅱ5)在ABC △中,已知D 是AB 边上一点,若123AD DB CD CA CB λ==+,,则λ=( A ) A .23B .13C .13-D .23-二、填空题 (安徽13)在四面体O ABC -中,OA OB OC D ===,,,a b c 为BC 的中点,E 为AD 的中点,则OE = 111244++a b c(用,,a b c 表示).(北京11.)已知向量2411()(),,,a =b =.若向量()λ⊥b a +b ,则实数λ的值是3-(北京12.)在ABC △中,若1tan 3A =,150C =,1BC =,则AB =2(广东10. )若向量a 、b 满足b a b a 与,1==的夹角为120°,则b a b a ··+= 21.(湖南12.)在ABC △中,角A B C ,,所对的边分别为a b c ,,,若1a =,b,c =则B =5π6 .(湖南文12.)在ABC △中,角A B C ,,所对的边分别为a b c ,,,若1a =,c =π3C =,则A = π6 .(江西15.)如图,在ABC △中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M N ,,若AB mAM =,AC nAN =,则m n +的值为2.(江西文13.)在平面直角坐标系中,正方形OABC 的对角线OB 的两端点分别为(00)O ,,(11)B ,,则AB AC =1.(陕西15. )如图,平面内有三个向量OA 、、,其中与OA 与的夹角为120°,OA 与的夹角为30°,且|OA |=||=1,||=32,若=λOA +μ(λ,μ∈R ),则λ+μ的值为 6 . (天津15.)如图,在ABC △中,12021BAC AB AC ∠===,,°,D 是边BC 上一点,2DC BD =,则ADBC =· 83-.(天津文15)在ABC △中,2AB =,3AC =,D 是边BC 的中点,则AD BC =52.(重庆文(13))在△ABC 中,AB =1,B C =2,B =60°,则AC = 3 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学试题分类汇编 平面向量
一、选择题
1.(四川理4)如图,正六边形ABCDEF 中,BA CD EF ++= A .0 B .BE
C .AD
D .CF
【答案】D
【解析】BA CD EF BA AF EF BF EF CE EF CF ++=++=+=+= 2.(山东理12)设
1A ,2A ,3A ,4A 是平面直角坐标系中两两不同的四点,若1312
A A A A λ=(λ∈R ),1412A A A A μ=(μ∈R ),且1
1
2
λ
μ
+
=,则称
3A ,4A 调和分割1A ,2A ,已知
平面上的点C ,D 调和分割点A ,B 则下面说法正确的是 A .C 可能是线段AB 的中点 B .D 可能是线段AB 的中点
C .C ,
D 可能同时在线段AB 上
D .C ,D 不可能同时在线段AB 的延长线上 【答案】D
3.(全国新课标理10)已知a ,b 均为单位向量,其夹角为θ,有下列四个命题
12:||1[0,
)3p a b πθ+>⇔∈ 22:||1(,]3p a b πθπ+>⇔∈
13:||1[0,)3p a b πθ->⇔∈ 4:||1(,]3p a b π
θπ->⇔∈
其中真命题是 (A ) 14,p p (B ) 13,p p (C ) 23,p p (D ) 24,p p
【答案】A
4.(全国大纲理12)设向量a ,b ,c 满足a =b =1,a b =1
2-
,,a c b c --=0
60,则c 的
最大值等于 A .2 B .3
C .2
D .1
【答案】A
5.(辽宁理10)若a ,b ,c 均为单位向量,且0=⋅b a ,0)()(≤-⋅-c b c a ,则||c b a -+的
最大值为
(A )12- (B )1 (C )2
(D )2
【答案】B
6.(湖北理8)已知向量a=(x +z,3),b=(2,y-z ),且a ⊥ b .若x ,y 满足不等式
1
x y +≤,
则z 的取值范围为 A .[-2,2] B .[-2,3] C .[-3,2]
D .[-3,3] 【答案】D
7.(广东理3)若向量a,b,c满足a∥b且a⊥b,则(2)c a b •+= A .4 B .3 C .2 D .0 【答案】D
8.(广东理5)已知在平面直角坐标系xOy 上的区域D
由不等式组02x y x ⎧≤≤⎪
≤⎨⎪
≤⎩
给定。
若(,)M x y 为D 上的动点,点A
的坐标为,则z OM OA =⋅的最大值为C
A
. B
.
C .4
D .3
【答案】
9.(福建理8)已知O 是坐标原点,点A (-1,1)若点M (x,y )为平面区域21y 2x y x +≥⎧⎪≤⎨⎪≤⎩
,上的
一个动点,则OA ·OM 的取值范围是 A .[-1.0] B .[0.1] C .[0.2] D .[-1.2]
【答案】C 二、填空题
10.(重庆理12)已知单位向量
1e ,2e 的夹角为60°,则122e e -=__________
11.(浙江理14)若平面向量α,β满足|α|=1,|β|≤1,且以向量α,β为邻边的
平行四边形的面积为1
2,则α与β的夹角θ的取值范围是 。
【答案】5[,]
66ππ
12.(天津理14)已知直角梯形ABCD 中,AD //BC ,0
90ADC ∠=,2,1AD BC ==,P 是
腰DC 上的动点,则3PA PB
+的最小值为____________.
【答案】5
13.(上海理11)在正三角形ABC 中,D 是BC 上的点,3,1AB BD ==,则
AB AD ⋅= 。
【答案】15
2
14.(江苏10)已知→
→
21,e e 是夹角为π
32的两个单位向量,,,22121→→→→→→+=-=e e k b e e a 若
0=⋅→
→b a ,则k 的值为 .
【答案】45
15.(安徽理13)已知向量,a b 满足()()a b a b +2⋅-=-6,且1
a =,
2
b =,
则a 与b 的夹角为 .
【答案】3π
16.(北京理10)
已知向量a =1),b =(0,-1),c =(k )。
若a -2b 与c 共线,则
k=__________。
【答案】1
17.(湖南理14)在边长为1的正三角形ABC中, 设
2,3, BC BD CA CE
==则
AD BE
⋅=__________________.
【答案】
1 4 -
18.(江西理11)已知
2
a b
==
,
(2)
a b
+·a b
-
()=-2,则a与b的夹角为
【答案】3
π。