单片机的中断与定时系统
51单片机的内部资源
T1
RX TX
EX0 1 EA 1 IE0
ET0 1 TF0
EX1 1 IE1
ET1 1 TF1
RI TI ≥1
SCON
ES 1
IP
PX0 1 0
PT0 1 0
PX1 1 0
PT1 1 0
PS 1 0
硬件查询
自
高
然
级
1
优
先
级 中断入口
中断源
自
低
0
然
级
优
先
级 中断入口
中断源
三、中断请求源
51单片机的五个中断请求源 : (1)INT0—外部中断请求0,由引脚INT0 (P3.2)输入,中断
中断请求
执行主 程序
断点
继续执行 主程序
中断响应
执行 中断 处理 程序
中断返回
主程序:CPU正常情况下运行的程序称为主程序。
中断源:把向CPU提出中断申请的设备称为中断源。
中断请求:由中断源向CPU所发出的请求中断的信号称中断 请求。
中断响应:CPU在满足条件情况下接受中断申请,终止现行 程序执行转而为申请中断的对象服务称中断响应。
IE0=0,无中断请求。
IE0=1,外部中断0有中断请求。当CPU响应该中断,转向中 断服务程序时,由硬件清“0”IE0。
(3)IT1—外部中断请求1为跳沿触发方式还是电平触发方式, 意义与IT0类似。
(4)IE1—外部中断请求1的中断请求标志位,意义与IE0类似。
(5)TF0—T0溢出中断请求标志位。 T0计数后,溢出时,由硬件置“1”TF0,向CPU申请中断,
串行中断是为串行数据传送的需要而设置的。每当串行 口发送或接收一组串行数据时,就产生一个中断请求。
第05章 MCS-51单片机的中断与定时(1-4)
2
1
TH0
;P1.0输出“0” ;P1.0输出“1”
5.2 MCS-51单片机的中断系统
五、外中断应用举例
1. 中断初始化程序
设置外中断源的触发方式 设置中断允许寄存器IE 设置中断优先级寄存器IP
2. 中断服务程序
保护现场 中断处理 恢复现场
23/65
5.2 MCS-51单片机的中断系统
【例5-3】 设外部中断0为下降沿触发方 式,高优先级,试编写中断初始化程序
5.2 MCS-51单片机的中断系统
【例5-4】 将单脉冲接到外中断0(INT0)引脚,利 用P1.0作为输出,经反相器接发光二极管。编写程 序,每按动一次按钮,产生一个外中断信号,使发 光二极管的状态发生变化,由亮变暗,或反之
P1.0 单脉冲 发生器 INT0
1
+5V
8031
26/65
5.2 MCS-51单片机的中断系统
串口:0023H
20/65
5.2 MCS-51单片机的中断系统
四、中断请求的撤除
1.定时/计数器中断请求标志TF0/TF1会自动撤除 2.串行口中断请求标志TI/RI要用指令撤除
CLR TI ;清TI标志位 CLR RI ;清RI标志位
3.负脉冲触发的外中断请求标志IE0/IE1会自动撤除 4.低电平触发的外中断请求信号需要外加电路撤除
下次课前请预习5.3节
30/65
5.3 51单片机的定时器/计数器
MCS-51单片机内部有两个16位定时/计数器 T0和T1,简称定时器0和定时器1
在特殊功能寄存器TMOD和TCON的控制下, 它们既可以设定成定时器使用,也可以设定 成计数器使用
定时/计数器有4种工作方式,具有中断功能, 可以完成定时、计数、脉冲输出等任务
单片机中断系统
单片机中断系统一、单片机中断系统的概念单片机中断系统是指在程序运行过程中,由于出现特殊情况(如外部设备的输入信号、定时器溢出等),使得单片机暂时停止当前任务的执行,转而执行相应的中断服务程序(ISR),以处理中断事件。
中断处理完毕后,再返回到中断点继续执行原来的任务。
这种特殊的中断机制,使得单片机能够同时处理多个任务,实现了实时性较高的应用程序设计。
二、单片机中断系统的结构单片机中断系统主要由以下几个部分组成:1、中断源:产生中断的外部设备或内部定时器。
2、中断请求寄存器:用于存储各个中断源的中断请求状态。
3、中断优先级寄存器:用于确定多个中断源的优先级。
4、中断服务程序(ISR):用于处理中断事件,执行相应的操作。
5、中断返回:中断处理完毕后,返回原程序继续执行。
三、单片机中断系统的处理过程当单片机检测到某个中断源发出中断请求时,会暂停当前任务的执行,按照优先级顺序执行相应的中断服务程序(ISR)。
在ISR中,程序会读取中断源的中断请求状态,并对相应的中断源进行处理。
处理完毕后,程序会返回原程序继续执行。
如果此时还有其他的中断源发出中断请求,则根据优先级顺序再次执行相应的ISR。
四、单片机中断系统的应用单片机中断系统在实时控制、数据采集、通信等领域有着广泛的应用。
例如,在工业控制中,当某个传感器发出中断请求时,单片机可以暂停当前任务的执行,转而执行相应的中断服务程序(ISR),对传感器数据进行采集和处理。
处理完毕后,再返回原程序继续执行。
这样,单片机可以在不丢失任何数据的情况下,实时地响应外部设备的请求。
五、总结单片机中断系统是实现实时控制和数据处理的重要手段之一。
通过合理的配置和使用中断系统,可以提高单片机的实时性能和数据处理能力。
在实际应用中,需要根据具体的需求和硬件条件选择合适的单片机型号和中断系统配置方案,以满足系统的实时性和稳定性要求。
单片机的中断系统在嵌入式系统设计中,单片机因其体积小、性价比高、可靠性强等特性被广泛应用。
单片机定时器中断原理
单片机定时器中断原理
单片机定时器中断原理是通过设定一个计时器寄存器和一个计数器寄存器来实现的。
当定时器开始计数时,计数器开始递增,当计数器的值达到预设值时,触发定时器中断。
首先,需要设置定时器的计时方式,例如可以选择计数器以固定的时间间隔递增,也可以选择以外部触发信号作为计数器递增的条件。
其次,需要设置计时器的预设值,即计数器需要达到的值,通常是根据所需的时间间隔来确定的。
最后,需要开启定时器中断使能位,使得当计数器达到预设值时,能够触发中断请求。
当定时器开始计数时,计数器开始递增。
一旦计数器的值等于预设值,定时器中断请求被触发,中断标志位被置位。
此时,单片机会检查中断使能位是否被设置,如果被设置,则响应中断请求,暂停当前正在执行的程序,跳转到中断服务程序中执行相应的操作。
中断服务程序可以根据需要做一些数据处理、状态更新等操作,然后再返回到主程序继续执行。
在中断服务程序中,通常会清除中断标志位,以便下次再次触发中断时能够正常响应。
同时,也可以根据需要重新设置定时器的预设值,实现周期性的定时中断。
通过定时器中断,可以实现定时任务的调度和实时操作的需求。
单片机中的中断与定时器的原理与应用
单片机中的中断与定时器的原理与应用在单片机(Microcontroller)中,中断(Interrupt)和定时器(Timer)是重要的功能模块,广泛应用于各种嵌入式系统和电子设备中。
本文将介绍中断和定时器的基本原理,并探讨它们在单片机中的应用。
一、中断的原理与应用中断是指在程序执行过程中,当发生某个特定事件时,暂停当前任务的执行,转而执行与该事件相关的任务。
这样可以提高系统的响应能力和实时性。
单片机中的中断通常有外部中断和定时中断两种类型。
1. 外部中断外部中断是通过外部触发器(如按钮、传感器等)来触发的中断事件。
当外部触发器发生状态变化时,单片机会响应中断请求,并执行相应的中断服务程序。
外部中断通常用于处理实时性要求较高的事件,如按键检测、紧急报警等。
2. 定时中断定时中断是通过定时器来触发的中断事件。
定时器是一种特殊的计时设备,可以按照设定的时间周期产生中断信号。
当定时器倒计时完成时,单片机会响应中断请求,并执行相应的中断服务程序。
定时中断常用于处理需要精确计时和时序控制的任务,如脉冲计数、PWM波形生成等。
中断的应用具体取决于具体的工程需求,例如在电梯控制系统中,可以使用外部中断来响应紧急停车按钮;在家电控制系统中,可以利用定时中断来实现定时开关机功能。
二、定时器的原理与应用定时器是单片机中的一个重要模块,可以用于计时、延时、频率测量等多种应用。
下面将介绍定时器的工作原理和几种常见的应用场景。
1. 定时器的工作原理定时器是通过内部时钟源来进行计时的。
它通常由一个计数器和若干个控制寄存器组成。
计数器可以递增或递减,当计数值达到设定值时,会产生中断信号或触发其他相关操作。
2. 延时应用延时是定时器最常见的应用之一。
通过设定一个合适的计时器参数,实现程序的精确延时。
例如,在蜂鸣器控制中,可以使用定时器来生成特定频率和持续时间的方波信号,从而产生不同的声音效果。
3. 频率测量应用定时器还可以用于频率测量。
单片机中断、定时器的应用
80C51中断的控制 80C51中断的控制
一,中断允许控制
CPU对中断系统所有中断以及某个中断源的开放和屏 CPU对中断系统所有中断以及某个中断源的开放和屏 蔽是由中断允许寄存器IE控制的 控制的. 蔽是由中断允许寄存器IE控制的.
EX0(IE.0),外部中断0允许位; EX0(IE.0),外部中断0允许位; ET0(IE.1),定时/计数器T0中断允许位; ET0(IE.1),定时/计数器T0中断允许位 中断允许位; EX1(IE.2),外部中断0允许位; EX1(IE.2),外部中断0允许位; ET1(IE.3),定时/计数器T1中断允许位; ET1(IE.3),定时/计数器T1中断允许位 中断允许位; ES(IE.4),串行口中断允许位; ES(IE.4),串行口中断允许位; EA (IE.7), CPU中断允许(总允许)位. (IE.7), CPU中断允许 总允许) 中断允许(
80C51单片机中断处理过程 80C51单片机中断处理过程
3.2.1 中断响应条件和时间
中断响应条件
中断源有中断请求; 中断源有中断请求; 此中断源的中断允许位为1; 此中断源的中断允许位为1 CPU开中断(即EA=1). CPU开中断 开中断( EA=1).
随着计算机技术的应用, 随着计算机技术的应用,人们发现中断技 术不仅解决了快速主机与慢速I/O设备的数 术不仅解决了快速主机与慢速I/O设备的数 据传送问题,而且还具有如下优点: 据传送问题,而且还具有如下优点: 分时操作.CPU可以分时为多个I/O设备 分时操作.CPU可以分时为多个 可以分时为多个I/O设备 服务,提高了计算机的利用率; 服务,提高了计算机的利用率;
2,SCON的中断标志 SCON的中断标志
RI(SCON.0),串行口接收中断标志位.当允 RI(SCON.0),串行口接收中断标志位. ),串行口接收中断标志位
《单片机应用技术》000-9(周君芝)课件 项目三 中断系统与定时计数器的应用
3.1.3 中断系统的结构
IE0: 外部中断 INT0 的请求标志位。当CPU检测到外部中断请求时,该标志位置“1”;当
CPU转向中断服务程序时,由硬件自动置“0”(只适用于边沿触发方式)。 IT1和IE1:
外部中断 INT1 的触发方式控制位和请求标志位,其含义与IT0和IE0相同。
3.1.3 中断系统的结构
在电平触发方式中,当CPU转向中断服务程序时,不能自 动清除IE标志位,也不能由软件进行清除。因此应在中断返回 前撤销引脚上的低电平,否则就会产生CPU多次响应一次中断 的错误。
3.1.2 中断的特点
中断的特点主要 有分时操作、实 时处理、故障处
理等。
分时操作 实时处理
故障处理
只有当服务对象向CPU发出中断请求时,CPU才去 为它服务,无中断请求时CPU正常工作,这样单片机可 以为多个对象服务,从而大大地提高了CPU的工作效率。
利用中断技术,各个服务对象可以根据需要随时 向CPU发出中断请求,CPU可及时发现和处理中断请 求并为之服务,以满足实时控制的要求。
位地址 8FH 8EH 8DH 8CH 8BH 8AH 89H 88H
功能
用于定时/计数器
用于中断
TCON的位名称、位地址及功能
IT0: 外部中断 INT0 的触发方式控制位,由软件进行置“1”和置“0”。当IT0=1时,为
边沿触发方式(即当引脚P3.2出现下降沿脉冲信号时,中断请求有效);当IT0=0时, 为电平触发方式(即当引脚P3.2为低电平信号时,中断请求有效)。
1.中断源
向CPU发出中断请求的信号称为中断源。51系列单片机中有5个中断源,其中2个外部中 断源,3个内部中断源,具体如下。
INT0 外部中断,由引脚
中断及定时器实验报告
一、实验目的1. 理解中断和定时器的基本概念及工作原理。
2. 掌握51单片机中断系统和定时器的配置方法。
3. 学会使用中断和定时器实现特定功能,如延时、计数等。
4. 培养动手实践能力和问题解决能力。
二、实验原理中断是计算机系统中的一种机制,允许CPU在执行程序过程中,暂停当前程序,转去执行另一个具有更高优先级的程序。
51单片机具有5个中断源,包括两个外部中断(INT0、INT1)、两个定时器中断(定时器0、定时器1)和一个串行口中断。
定时器是51单片机内部的一种计数器,可以用于产生定时中断或实现定时功能。
51单片机有两个定时器,即定时器0和定时器1。
定时器可以工作在模式0、模式1、模式2和模式3。
三、实验内容及步骤1. 实验内容一:外部中断实验(1)实验目的:掌握外部中断的使用方法,实现按键控制LED灯的亮灭。
(2)实验步骤:- 使用Keil for 8051编译器创建项目。
- 根据电路原理图连接电路。
- 编写程序,配置外部中断,实现按键控制LED灯的亮灭。
2. 实验内容二:定时器中断实验(1)实验目的:掌握定时器中断的使用方法,实现LED灯闪烁。
(2)实验步骤:- 使用Keil for 8051编译器创建项目。
- 根据电路原理图连接电路。
- 编写程序,配置定时器中断,实现LED灯闪烁。
3. 实验内容三:定时器与外部中断结合实验(1)实验目的:掌握定时器与外部中断结合使用的方法,实现按键控制LED灯闪烁频率。
(2)实验步骤:- 使用Keil for 8051编译器创建项目。
- 根据电路原理图连接电路。
- 编写程序,配置定时器中断和外部中断,实现按键控制LED灯闪烁频率。
四、实验结果与分析1. 外部中断实验:成功实现了按键控制LED灯的亮灭。
当按下按键时,LED灯亮;松开按键时,LED灯灭。
2. 定时器中断实验:成功实现了LED灯闪烁。
LED灯每隔一定时间闪烁一次,闪烁频率可调。
3. 定时器与外部中断结合实验:成功实现了按键控制LED灯闪烁频率。
c51单片机的定时器和中断
二、方式1 方式
方式1结构 图6-5 T0 (或T1) 方式 结构 或
三、方式2 方式
TMOD 申请 TCON 中断 D7 TF1 TR1 TF0 TR0 T1引脚 溢出 TL1 重装初值控制 TH1 8位 &
≥1
0 1
M0 M1 C/T
D4
1
1 0
机器周期
GATE D7
1 INT1引脚
D0
方式2结构 图6-6 T0 (或T1) 方式 结构 或
图6-3 方波硬件设计和仿真波形
(2)源程序 ) //中断方式 中断方式 #include "reg51.h" #include "stdio.h" Uart_Init(); sbit P1_1=P1^1; void main() { TMOD=0X01; // T0工作在方式 工作在方式1 工作在方式 TL0=0xB0; //给TL0置初值 给 置初值 TH0=0x3c; //给TH0置初值 给 置初值 ET0=1; //开串行口中断 开串行口中断 EA=1; TF0=0; TR0=1; //启动 启动T0 启动 while(1) ; //设置断点处 设置断点处 } void Int_T0() interrupt 1 using 2 { TL0=0xB0; TH0=0x3c; //重赋初值 重赋初值 P1_1=!P1_1; //定时时间到 定时时间到P1_1取反 定时时间到 取反 printf("Timer1 overflow in Mode 1\n");/* 定时 溢出后, 器0溢出后,输出提示信息 */ 溢出后 }
计数器控制寄存器TCON 三、定时/计数器控制寄存器 定时 计数器控制寄存器
定时器控制字TCON的格式如下。 位地址 位符号 8FH TF1 8EH TR1 8DH TF0 8CH TR0 8BH IE1 8AH IT1 89H IE0 88H IT0
8051单片机的中断系统
8051单片机的中断系统在单片机的世界里,8051 单片机的中断系统就像是一个有条不紊的交通指挥中心,能够让单片机在应对各种复杂任务时做到有条不紊、高效快捷。
什么是中断呢?打个比方,你正在家里专心致志地看书,突然门铃响了,这时候你就得放下手中的书去开门,处理完开门这件事之后再回来继续看书。
对于单片机来说,中断就像是这个突然响起的门铃,它会打断单片机正在进行的主程序,让单片机先去处理更紧急、更重要的任务,处理完后再回到原来的主程序继续执行。
8051 单片机的中断系统有 5 个中断源,分别是外部中断 0(INT0)、外部中断 1(INT1)、定时/计数器 0 溢出中断(TF0)、定时/计数器1 溢出中断(TF1)和串行口中断(RI 或 TI)。
外部中断 0 和 1 通常是由外部信号触发的。
比如说,连接一个传感器,当传感器检测到特定的条件时,就会产生一个信号触发外部中断,让单片机去处理相应的操作。
定时/计数器 0 和 1 溢出中断则是在定时/计数器计满溢出时产生中断。
这就好比你设定了一个闹钟,时间到了闹钟就响,单片机就知道该去执行相应的任务了。
串行口中断是在串行通信过程中,当接收或发送完一帧数据时产生的中断。
每个中断源都有自己的中断标志位。
当相应的中断事件发生时,中断标志位就会被置位。
单片机通过查询这些中断标志位来判断是否有中断请求。
为了有效地管理这些中断,8051 单片机设置了中断允许寄存器 IE和中断优先级寄存器 IP。
中断允许寄存器 IE 就像是一个总开关,决定了哪些中断源可以被响应。
如果某个中断源对应的位被设置为 1,那么它就是被允许的;如果是 0,就会被禁止。
中断优先级寄存器 IP 则决定了多个中断同时请求时的响应顺序。
就像在一个拥挤的路口,警车、救护车等具有更高优先级的车辆会先通过。
在 8051 单片机中,默认的中断优先级顺序是:外部中断 0 >定时/计数器 0 溢出中断>外部中断 1 >定时/计数器 1 溢出中断>串行口中断。
单片机的延时与中断问题及解决方法
单片机的延时与中断问题及解决方法单片机作为嵌入式系统中非常重要的组成部分,在许多应用中都需要进行延时和中断处理。
延时和中断是单片机中常见的问题,它们直接关系到系统的稳定性和性能。
本文将重点介绍单片机中延时和中断的问题,并提出解决方法。
一、延时问题延时是指在程序执行过程中需要暂停一段时间,以便等待某些条件满足或者执行某些特定的操作。
在单片机中,延时通常需要通过软件实现,也就是在程序中加入延时函数。
常见的延时函数包括循环延时和定时器延时。
1. 循环延时循环延时是指通过循环来实现延时的方式。
具体做法是在程序中使用一个循环来反复执行空操作,从而消耗一定的时间。
下面是一个简单的循环延时函数:```cvoid delay(unsigned int ms){unsigned int i, j;for(i = 0; i < ms; i++)for(j = 0; j < 1000; j++);}```这个函数中,外层循环控制延时的毫秒数,内层循环则是用来消耗时间的。
通过这样的方式可以实现一定量级的延时。
循环延时的精度和稳定性都不够理想,特别是在频繁调用的情况下,容易导致系统性能下降。
2. 定时器延时定时器是单片机中常见的外设之一,它可以生成精确的时间延时。
通过设置定时器的时钟源和计数值,可以实现微秒级甚至更小单位的延时。
在单片机中,通常会使用定时器来实现较为精确的延时操作。
下面是一个使用定时器来实现延时的示例:```cvoid delay_us(unsigned int us){TMOD = 0x01; // 设置定时器为工作方式1TH0 = 0xFF - us / 256; // 设置定时器初值TL0 = 0xFF - us % 256; // 设置定时器初值TR0 = 1; // 启动定时器while(!TF0); // 等待定时器溢出TR0 = 0; // 停止定时器TF0 = 0; // 清除溢出标志}```这段代码中,我们使用定时器0来实现微秒级的延时操作。
STM32系列单片机原理及应用-C语言案例教程 第4章 STM32单片机的中断系统及定时器
STM32中断相关的概念
3.中断屏蔽
中断屏蔽是中断系统中的一个重要功能。 在嵌入式系统中,通过设置相应的中断屏蔽位,禁止CPU响应 某个中断,从而实现中断屏蔽。 中断屏蔽的目的:是保证在执行一些关键程序时不响应中断。 对于一些重要的中断请求是不能屏蔽的,如重新启动、电源故障、 内存出错、总线出错等影响整个系统工作的中断请求。 因此,根据中断是否可以被屏蔽划分,中断可分为可屏蔽中断 和不可屏蔽中断两类。
第4章 STM32单片机的 中断系统及定时器
第4章 STM32单片机中断系统及定时器
内容提要:
介绍了STM32单片机的中断系统、中断基本的概念、 嵌套向量中断控制器NVIC、外部中断及中断使用步骤,还 描述定时器/计数器,定时器的分类及相关寄存器的使用 方法,介绍了中断控制向量NVIC和外中断EXTI,并在例题 提供相应的中断程序,演示了外部中断控制LED。
名称
地址
优先级类 型
说明
—
0X00—0000 —
保留
复位
NMI
0X00—0008 固定
不可屏蔽中断,RCC 时钟安全系 统(CSS)连接到 NMI 向量
HardFault MemManage BusFault UsageFault
SVCall DebugMonitor — PendSV SysTick WWDG
内容安排
中 中断 断控 系制 统器
外 部 中 断
定 时 器
计 数 器
NVIC
第4章 中断系统及定时器
STM32单片机的中断系统:
本章学习要求:
1.了解STM32中断相关的概念 2.了解STM32嵌套向量中断控制器NVIC 3.了解STM32外部中断/事件控制器
定时计数器和中断系统的综合应用实验报告收获与体会
定时计数器和中断系统的综合应用实验报告收获与体会这是一个比较开放性的问题,我尝试给出一个比较全面的回答,希望能够帮到你。
一、实验目的通过对定时计数器和中断系统的综合应用实验,掌握以下技能:1. 掌握定时计数器和中断系统的原理及其在嵌入式系统中的应用。
2. 熟悉51单片机中定时器的使用方法。
3. 熟悉51单片机中中断系统的使用方法。
4. 熟悉C语言中的定时器和中断编程。
二、实验内容1. 实验原理定时计数器是嵌入式系统中非常重要的一个部分,它可以周期性的计时,通过计数值的比较输出指定的脉冲信号。
51单片机中的定时器有4个,分别为Timer0、Timer1、Timer2、Timer3。
不同的定时器有不同的计数器位数和工作模式,可以根据应用场景进行选择。
中断系统是嵌入式系统中另一个非常重要的部分,可以在特定的条件下自动触发,优先处理中断事件。
在51单片机中,中断分为外部中断和定时器中断。
通过中断系统,可以高效地实现对各种外部事件的实时响应。
2. 实验步骤本实验分为两个阶段,第一阶段设计一个定时计数器程序,通过P1口的LED灯输出定时器的计数值,第二阶段在第一阶段的基础上,结合中断系统,设计一个定时器中断程序,通过P0口的LED灯输出中断事件的计数值。
第一阶段:(1)配置定时器,设置定时器的工作模式和计数器初值。
(2)在定时器的中断处理函数中,实现计数器值的输出。
(3)通过P1口连接LED灯,输出计数器值。
第二阶段:(1)配置定时器和中断系统,设置定时器的工作模式和计数器初值,以及中断的优先级和中断处理函数。
(2)在中断处理函数中,实现计数器值的输出和中断事件计数值的计算。
(3)通过P0口连接LED灯,输出中断事件的计数值。
三、实验结果通过实验,我掌握了51单片机中定时计数器和中断系统的使用方法,熟悉了C语言中的定时器和中断编程。
在第一阶段的实验中,我成功地输出了定时器的计数值,通过LED灯显示在P1口。
实验4:定时与中断系统实验
实验四:定时与中断系统实验一、实训目的1.利用单片机的定时与中断方式,实现对信号灯的复杂控制。
2.通过定时器程序调试,学会定时器方式1的使用。
3.通过中断程序调试,熟悉中断的基本概念。
二、实验仪器、材料1.微型计算机(PⅣ以上)2.编程、汇编与模拟平台软件Keil uVision33.电子技术专业仿真软件protues运行平台4.单片机实训开发电路板三、实验内容和步骤1.定时器查询方式1)要求:信号灯循环显示,时间间隔为1秒。
2)方法:用定时器方式1编制1秒的延时程序,实现信号灯的控制。
系统采用12M晶振,采用定时器T1方式1定时50ms,用R3做50ms计数单元,其源程序可设计如下:ORG 0000HCONT:MOV R2,#07HMOV A,#0FEHNEXT:MOV P2,AACALL DELAYRL ADJNZ R2,NEXTMOV R2,#07HNEXT1:MOV P2,ARR AACALL DELAYDJNZ R2,NEXT1SJMP CONTDELAY:MOV R3,#14H ;置50ms计数循环初值MOV TMOD,#10H ;设定时器1为方式1MOV TH1,#3CH ;置定时器初值MOV TL1,#0B0HSETB TR1 ;启动T1LP1:JBC TF1,LP2 ;查询计数溢出SJMP LP1 ;未到50ms继续计数LP2:MOV TH1,#3CH ;重新置定时器初值MOV TL1,#0B0HDJNZ R3,LP1 ;未到1s继续循环RET ;返回主程序END2.定时器中断方式1)要求:信号灯循环显示,时间间隔为1秒。
2)方法:用定时器中断方式编制1秒的延时程序,实现信号灯的控制。
采用定时器T1中断定时50ms,用R3做50ms计数单元,在此基础上再用08H位作1s 计数溢出标志,主程序从0100H开始,中断服务程序名为CONT。
可设计源程序如下:ORG 0000H ;程序入口AJMP 0100H ;指向主程序ORG 001BH ;定时器T1中断入口AJMP CONT ;指向中断服务程序ORG 0100HMAIN:MOV TMOD,#10H ;置T1为工作方式1MOV TH1,#3CH ;置50ms定时初值MOV TL1,#0B0HSETB EA ;CPU开中断SETB ET1 ;定时器T1开中断SETB TR1 ;启动T1CLR 08H ;清1s计满标志位MOV R3,#14H ;置50ms循环初值DISP:MOV R2,#07HMOV A,#0FEHNEXT:MOV P2,AJNB 08H,$ ;查询1s时间到否CLR 08H ;清标志位RL ADJNZ R2,NEXTMOV R2,#07HNEXT1:MOV P2,AJNB 08H,$CLR 08HRR ADJNZ R2,NEXT1SJMP DISPCONT:MOV TH1,#3CH ;重置50ms定时初值MOV TL1,#0B0HDJNZ R3,EXIT ;判1s定时到否MOV R3,#14H ;重置50ms循环初值SETB 08H ;标志位置1EXIT:RETIEND四、实训总结与分析1.定时器查询方式和前面的实验相比,硬件电路一致,效果一样,但二者软件的编制方法不同。
51单片机串口中断与定时器中断共存同时使用
51单片机串口中断与定时器中断共存同时使用单片机中的串口中断和定时器中断在许多应用中都是非常常见的功能,由于它们常常需要同时使用,所以如何使它们共存成为了一个非常重要的问题。
在51单片机中,串口中断和定时器中断共存的具体实现可分为两个方面来考虑:硬件和软件。
1.硬件方面:首先,需要选择合适的串口和定时器资源。
在51单片机中,一般有多个串口和定时器可供选择,需要根据具体的需求来选择合适的资源。
通常情况下,UART片内串口是一个常见的选择,而定时器0是最常用的定时器。
其次,需要配置串口和定时器的中断优先级。
在8051单片机中,中断的优先级是通过EA(全局中断使能)与各个中断源的IE(中断使能位)来实现的。
当EBIT中的各位都清零时,所有中断都被禁止。
对于串口和定时器中断的优先级,一般情况下,定时器中断的优先级要高于串口中断的优先级,所以在配置中断优先级时,需要将定时器中断的中断使能比串口中断的中断使能位设置为高。
2.软件方面:对于串口和定时器中断共存的软件实现,一般需要考虑以下几个关键点:-中断服务函数(ISR)的实现:需要根据中断源的不同,编写相应的中断服务函数。
在编写中断服务函数时,需要注意避免冲突和竞争条件。
可以使用标志位来进行互斥操作,以确保在一些中断服务函数执行期间,其他中断服务函数不会被执行。
-数据的缓冲和处理:在串口中断中,接收到的数据需要进行缓冲和处理。
对于定时器中断,需要考虑定时中断的频率和数据处理的时序。
在这个过程中,需要合理地设计缓冲区和数据处理算法,以确保数据的正确性和完整性。
-时间片的分配和利用:在同时使用串口中断和定时器中断时,需要合理分配时间片,以提高系统的性能。
可以使用优先级和时间片轮转算法,确保各个任务之间的执行顺序和时序要求。
以上是关于51单片机中串口中断和定时器中断共存同时使用的一些思路和实现方法。
在具体应用中,还需要结合具体需求和硬件资源来做相应的设计和调整。
单片机 串口中断和定时器0中断
单片机串口中断和定时器0中断1.引言1.1 概述概述部分内容:单片机是一种集成了处理器、存储器和输入输出功能的微型计算机系统。
它广泛应用于各种电子设备中,具有体积小、功耗低、成本低等特点。
在单片机的开发过程中,串口中断和定时器0中断是两个重要的功能模块。
串口中断是指在串口进行数据传输时,当接收到一个完整的数据帧或发送完成一个数据帧时,触发相应的中断。
通过使用串口中断,单片机可以实现与外部设备的高效通信。
串口中断的实现方法一般通过配置和使用相应的串口寄存器和中断向量表来完成。
定时器0中断是单片机中的一个特殊功能模块,它可以在指定的时间间隔内生成中断信号。
通过设置定时器的计数值和工作模式,单片机可以实现各种定时、延时、计数和脉冲生成等功能。
定时器0中断的实现方法一般是通过设置定时器的相关寄存器、中断使能控制和中断服务程序来实现。
本文将深入探讨串口中断和定时器0中断的定义、作用及其实现方法。
通过对这两个功能模块的详细介绍和分析,将帮助读者更好地理解和应用单片机中的串口中断和定时器0中断功能。
同时,本文还将讨论串口中断和定时器0中断在各种应用领域的重要性,并展望其未来的发展前景。
1.2 文章结构文章结构是指文章的整体架构和组织方式。
一个良好的文章结构可以使读者更清晰地理解文章的内容,并且能够更高效地获取所需要的信息。
本文将围绕单片机串口中断和定时器0中断展开讨论,包括引言、正文和结论三个部分。
2. 正文部分主要包括了串口中断和定时器0中断的内容。
首先,在2.1节中我们将深入探讨串口中断,介绍其定义和作用。
我们将解释为什么需要串口中断以及其在单片机应用中的重要性。
然后,我们将详细介绍串口中断的实现方法,包括相关的寄存器设置和中断服务程序的编写。
通过这些内容,读者将能够全面了解串口中断的原理和实际应用。
接下来,在2.2节,我们将转向定时器0中断的讨论。
我们将先介绍定时器0中断的定义和作用,解释其在单片机开发中的重要性。
单片机 实验三中断及定时器实验
实验三:中断及定时器实验一、实验目的:1、弄清中断的概念、基本原理,掌握中断技术的应用2、了解中断初始化的方法,中断向量安装和中断服务子程序的设计方法。
3、了解定时/计数器的工作原理及MCS51单片机的定时器内部结构4、掌握时间常数计算方法5、掌握定时器初始化方法和定时中断程序设计方法二、实验内容:定时器实验1、这个是一个电子钟走时程序,利用定时器T0产生50ms中断,中断计数器中断20次为1秒,利用秒信号进行电子钟计时。
先读懂下面程序段,然后编辑、编译程序,并在伟福仿真器上模拟调试该程序。
程序清单如下:COUNT EQU 7FHCOUNT1 EQU 7EHS_MEM EQU 73HM_MEM EQU 72HH_MEM EQU 71HORG 0000HLJMP MAINORG 000BHLJMP INT_T0 ;“*1”MAIN: MOV SP,#2FHMOV TMOD,#BMOV TH0,#03CH ;50毫秒中断时间常数MOV TL0,#0BHMOV IE,#B ;开放T0MOV IP,#0MOV S_MEM,#0MOV M_MEM,#0MOV H_MEM,#0MOV COUNT,#20SETB TR0;______________________________________________________ W AIT:NOPSJMP W AITINT_T0: MOV TL0,#0BHMOV TH0,#3CHDJNZ COUNT,EXT_T0MOV COUNT,#20 ;恢复中断计数器INC S_MEM ;“*2”MOV A,S_MEMCJNE A,60,EXT_T0MOV S_MEM,#0INC M_MEMMOV A,M_MEMCJNE A,#60,EXT_T0MOV M_MEM,#0INC H_MEMMOV A,H_MEMCJNE A,#13,EXT_T0MOV H_MEM,#0EXT_T0: RETI2、按下列要求修改程序或回答问题。
第六章 AT89C51中断系统与定时
1 0 1 0
T1 TX RX
PS ES EA
1 0
自 然 优 先 级
中断 矢量地址 硬件查询 源允许
低 级 中 断 请 求
各中断 总允许 源允许
优先级
PC
1.中断源(5个) 向CPU发出中断请求的来源,或引起中断的原因称为中断源。 (1). 外部中断类 外部中断是由外部原因(如打印机、键盘、控制开关、外部故障)引起的, 可以通过两个固定引脚来输入到单片机内的信号,即外部中0(INT0)和外 部中断1(INT1)。 外部中断0(INT0)请求信号输入引脚为P3.2。当CPU检测到P3.2引脚上 出现有效的中断信号时,向CPU申请中断。 外部中断1(INT1)请求信号输入引脚为P3.3 。当CPU 检测到P3.3 引脚上出现有效的中断信号时,向CPU申请中断。 (2). 定时中断类 定时中断是由内部定时(或计数)溢出或外部定时(或计数)溢出引起的, 即定时器0(T0)中断和定时器1(T1)中断。 当定时器对单片机内部定时脉冲进行计数而发生计数溢出时,即表明定 时时间到,申请中断;或者当定时器对单片机外部计数脉冲进行计数而 发生计数溢出时,即表明计数次数到,申请中断。 片内定时/计数器T0溢出中断(TF0):当定时/计数器T0发生溢出时, 置位TF0,并向CPU申请中断。 片内定时/计数器T1溢出中断(TF1):当定时/计数器T1发生溢出时, 置位TF1,并向CPU申请中断。 (3). 串行口中断类 串行口中断是为接收或发送串行数据而设置的。 串行接口中断,包括RI 或TI。当发送或接收完一帧数据时,向CPU 申请中断。
D7 EA
D6 -
D5 -
D4 ES
D3 ET1
D2 EX1
D1 D0 ET0 EX0
单片机的延时与中断问题及解决方法
单片机的延时与中断问题及解决方法单片机的延时和中断是在单片机程序设计中经常会遇到的问题,延时和中断的处理直接影响着单片机程序的实时性和稳定性。
正确的处理延时和中断问题对于单片机应用的稳定性和可靠性非常重要。
本文通过详细介绍延时和中断的概念、产生原因以及解决方法,希望能够帮助读者更好地理解和处理单片机程序中的延时和中断问题。
一、延时的概念和产生原因延时在单片机程序设计中是一种常见的操作,通常用来控制某一操作的执行时间。
延时的产生通常有两种情况:一种是为了完成某种特定的操作所需要的时间,例如LED灯闪烁、蜂鸣器鸣叫等;另一种是为了防止快速的外部信号输入导致单片机不能正常处理的情况。
在单片机程序中,常用的延时方法有软件延时和硬件延时两种。
软件延时是通过循环等待的方式来实现一定时间的延时,而硬件延时则是通过单片机内部的定时器来实现。
软件延时的实现简单,但占用了大量的CPU时间,同时由于单片机的工作频率和其他任务的影响,软件延时的精确度往往难以保证。
硬件延时则可以通过单片机的定时器来实现,其精确度和稳定性更高,但需要一定的硬件支持。
在进行延时设计时,还需要考虑到单片机的工作频率和其他任务的影响。
为了提高单片机的实时性和稳定性,我们可以采用中断的方式来实现延时。
通过设置定时器中断,可以在定时器计时达到预设值时触发中断,从而实现精确的延时。
在处理中断时,只需要简单地将延时的操作放在中断服务程序中即可,不会占用过多的CPU时间,从而提高了单片机的实时性。
三、中断的概念和产生原因中断是一种在单片机程序执行过程中,由硬件或软件引起的突发事件,可以打断当前程序的正常执行流程,转去执行中断服务程序。
中断通常由外部设备的输入、定时器溢出等硬件事件引起,也可以由软件通过程序指令触发。
中断的产生是为了及时响应外部事件,保证单片机的实时性和稳定性。
在单片机程序设计中,常见的中断包括外部中断、定时器中断、串口中断等。
外部中断是由外部设备的输入引起的中断,通常用来处理按键、传感器等外部设备的输入。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第6章
单片机的中断与定时系统
第6章
单片机的中断与定时系统
(2)中断响应过程
中断响应过程包括保护断点和将程序转向中断 服务程序的入口地址。首先,中断系统通过硬件自 动生成长调用指令(LACLL),该指令将自动把断 点地址压入堆栈保护,然后,将对应的中断入口地 址装入程序计数器PC(由硬件自动执行),使程序 转向该中断入口地址,执行中断服务程序。MCS51系列单片机各中断源的入口地址由硬件事先设定 ,分配如下:
第6章
单片机的中断与定时系统
其中: PX0:外部中断0优先级控制位。 PT0:定时器0中断优先级控制位。 PX1:外部中断1优先级控制位。 PT1:定时器1中断优先级控制位。 PS:串行口中断优先级控制位。 上面优先级控制位规定1为高优先级,0为低优先级。
第6章
单片机的中断与定时系统
6.1.3 中断处理过程
中断处理过程分为三个阶段: (1)中断响应; (2)中断处理; (3)中断返回。
第6章
单片机的中断与定时系统
1. 中断响应
中断响应是CPU对中断源中断请求的响应,包 括保护断点和将程序转向中断服务程序的入口地址 (通常称矢量地址)。CPU并非任何时刻都响应中 断请求,而是在中断响应条件满足之后才会响应。
第6章
单片机的中断与定时系统
3. 中断需要解决的两个问题
一是如何从主程序转到中断服务程序; 二是如何从中断服务程序返回主程序。
调用中断服务程序的过程类似于调用子程 序,其区别在于调用子程序在程序中是事先安 排好的,而何时调用中断服务程序事先却无法 确定,因为“中断”的发生是由外部因素决定 的,程序中无法事先安排调用指令,因此,调 用中断服务程序的过程是由硬件自动完成的。
第6章
单片机的中断与定时系统
(2)定时中断类
定时中断是为满足定时或计数溢出处理的需要而设置的, 当定时器/计数器的计数结构发生计数溢出时,即表明定时 时间到或计数值已满,这时溢出标志 TF0 或 TF1 被置“1”, 请求中断处理。 TF0 —— 定时器 T0 的溢出中断请求。 TF1 —— 定时器 T1 的溢出中断请求。
第6章
单片机的中断与定时系统
4. 引入中断的好处
(1)实现了分时操作 中断可以解决快速的CPU与慢速的外设之间的矛盾,使 CPU和外设同时工作。CPU在启动外设工作后继续执行主程 序,同时外设也在工作。每当外设做完一件事就发出中断申 请,请求CPU中断它正在执行的程序,转去执行中断服务程 序(一般情况是处理输入/输出数据),中断处理完之后, CPU恢复执行主程序,外设也继续工作。这样,CPU可启动 多个外设同时工作,大大地提高了CPU的效率。
第6章
单片机的中断与定时系统
MCS-51单片机的中断系统只规定了两个中断优先级,对 于每一个中断源均可编程为高优先级中断或低优先级中断。 在同1个优先级中,对5个中断源的优先次序安排如下: ① 外部中断0(IE0)
最高优先级
② 定时器/计数器T0溢出中断(TF0) ③ 外部中断1(IE1)
最低优先级
第6章
单片机的中断与定时系统
(3)能实现中断嵌套。 ① 主程序 ① ② ③ ④ ⑤ ⑥
RETI RETI
② 响应低级中断请求 ③ 低级中断服务程序 ④ 响应高级中断请求 ⑤ 高级中断服务程序 ⑥ 返回低级中断程序 ⑦ 继续执行低级中断程序 ⑧ 返回主程序
断点
断点
⑦ ⑨ ⑧
图6-1 中断嵌套过程图
⑨ 继续主程序的执行
第6章
单片机的中断与定时系统
3. 中断允许控制
MCS-51通过中断允许寄存器IE中的中断允许总控制位EA 和各中断源的中断允许控制位,对中断请求的开放和关闭进行 控制。只有EA=1,且相应中断源的中断允许控制位都被置 “1”, 该中断源的请求才会被CPU响应。 EA ES ET1 EA —— 0:关所有中断 ES —— 0:关串口中断 EX1 ET0 EX0
第6章
单片机的中断与定时系统
2. 几个相关概念
“中断”之后所执行的相应的处理程序通常称之 为中断服务程序或中断处理子程序。 原来正常运行的程序称为主程序。 主程序被断开的位置(或地址)称为“断点”。 引起中断的原因,或能发出中断申请的来源, 称为“中断源”。 中断源要求服务的请求称为“中断请求”(或中 断申请)。
第6章
单片机的中断与定时系统
6.1.1 中断概述
中断技术是计算机中的重要技术之一,它既和硬件 有关,也和软件有关。 在计算机与外部设备交换信息时,存在着高速的CPU 和低速的外设之间的矛盾。若采用软查询方式,则会占用 大量的CPU的时间,另外,也无法对一些紧急事件进行及 时处理。为了解决这些问题,在计算机中引入了“中断”技 术。
第6章
单片机的中断与定时系统
(3)串行口中断类
串行口中断是为串行数据的传送需求而设置的。串行中 断请求也是在单片机芯片内部发生的,但当串行口作为接收 端时,必须有一完整的串行帧数据从 RI 端引入芯片才可能 引发中断。 TI 或 RI —— 串行中断请求。当接收或发送完一串行帧 数据时,使内部串行口中断请求标志 RI 或 TI 置“1”,并请 求中断。
第6章
单片机的中断与定时系统
6.1.2 MCS-51的中断系统
所谓中断源就是引起中断的原因或事件。中断请求可以 来自单片机外部,也可以来自内部或程序。
★ 1. MCS-51的中断源
MCS-51单片机只提供了5个中断源: ① 2个外部中断源:INT0 和 INT1; ② 2个片内定时器/计数器T0和T1的溢出中断源: TF0 和 TF1; ③ 1个片内串行口发送/接收中断源:TI 或 RI(合为 一个中断源)。
第6章
单片机的中断与定时系统
(2)SCON中的中断标志
SCON是串行口控制寄存器,其低2位 T1 和 R1 琐存串 行口的接收中断和发送中断请求,如下表所示。
表6-2 SCON锁存的中断源
第6章
单片机的中断与定时系统
TI —— 串行发送中断标志。CPU将一个字节数据写入发送缓 冲器SBUF后,启动发送,每发完一个串行帧,硬件 将 TI 置“1”。但CPU相应中断后,并不能自动使 TI 清零,必须由软件清零。 RI —— 串行接收中断标志。在串行后允许接收时,每接收完 一个串行帧,硬件将 RI 置“1”。同样,CPU相应中 断后,需要由软件给 RI 清零。
第6章
单片机的中断与定时系统
(1)外部中断类
外部中断是指由外部原因引起的,可以通过两个固定引 脚来输入信号,即外部中断 INT0 和 INT1。 INT0 —— 外部中断0请求信号,由 P3.2 引脚输入。由IT0 (TCON.0)决定中断请求信号是低电平有效还是下跳变有 效。一旦输入信号有效,即向CPU申请中断,并且置IE0=1。 INT1 —— 外部中断0请求信号,由 P3.3 引脚输入。由IT1 (TCON.2)决定中断请求信号是低电平有效还是下跳变有 效。一旦输入信号有效,即向CPU申请中断,并且置IE1=1。
第6章
单片机的中断与定时系统
在一般情况下,首先把各个中断源分成若干个优先级, 然后再按如下原则进行处理: (1) 不同级的中断源同时申请中断时——先高后低; (2) 同级的中断源同时申请中断时——事先规定; (3) 处理低级中断又收到高级中断请求时——停低转高; (4) 处理高级中断又收到低级中断请求时——高不理低。
第6章
单片机的中断与定时系统
5. 中断系统的功能
(1)能实现中断及返回。CPU相应中断后,通过堆栈保护 断点和现场,然后进入中断服务程序,执行完中断服务程序 后,执行返回指令 RETI,弹出堆栈中的断点信息和现场信 息,继续主程序的执行。 (2)能实现优先权排队。当多个中断源同时提出中断请 求时,CPU会根据各个中断请求的优先级,先处理优先级高的 请求,再处理优先级低的请求。
第6章
单片机的中断与定时系统1.中断的定义中断是通过硬件来改变CPU的运行方向的。计 算机在执行程序的过程中,当出现CPU以外的某种 情况时,由服务对象向CPU发出中断请求信号,要 求CPU暂时中断当前程序的执行而转去执行相应的 处理程序,待处理程序执行完毕后,再继续执行原 来被中断的程序。这种程序在执行过程中由于外界 的原因而被中间打断的情况称为“中断”。
第6章
单片机的中断与定时系统
(2)实现了实时处理 在实时控制中,现场的各种参数、信息均随时间和现场 而变化。这些外界变量可根据要求随时向CPU发出中断申 请, 请求CPU及时处理中断请求。如中断条件满足,CPU马上就 会响应,进行相应的处理,从而实现实时处理。 (3)使系统具备了处理故障的能力 即在计算机运行过程中,一些事先无法预料的故障是难 免的,如掉电、存储出错、运算溢出等,可通过中断系统由 故障源向CPU发出中断请求,再由CPU转到相应的故障处理 程序进行处理。
④ 定时器/计数器T1溢出中断(TF1) ⑤ 串行口中断(RI+TI)
第6章
单片机的中断与定时系统
MCS-51单片机中有1个中断优先级寄存器IP,字节地 址为B8H。对于每1个中断源,均可通过对IP的设置来确定 其优先等级,置1为高优先级,清0为低优先级。 IP寄存器的格式如表6-3所示。
表6-3 中断优先级寄存器IP的格式
第6章
单片机的中断与定时系统
若存在上述任何一种情况,中断查询结果即被 取消,CPU不响应中断请求而在下一机器周期继续 查询,否则,CPU在下一机器周期响应中断。 CPU在每个机器周期的S5P2期间查询每个中 断源,并设置相应的标志位,在下一机器周期S6期 间按优先级顺序查询每个中断标志,如查询到某个 中断标志为1,将在再下一个机器周期S1期间按优 先级进行中断处理。
第6章
单片机的中断与定时系统
2. 中断请求标志
在中断请求被响应前,中断请求是由CPU琐存在特殊功 能寄存器 TCON 和 SCON 中的相应中断标志位。