中考数学微测试系列专题14相交线与平行线、三角形及尺规作图苏教版
苏科版2019-2020初三数学中考专题复习——尺规作图
初三数学专题复习尺规作图【基础训练】1.如图,在△ABC中,AB=AC,∠A=30°,以B为圆心,BC的长为半径圆弧,交AC于点D,连接BD,则∠ABD=.2.如图,在▱ABCD中,CD=8,BC=10,按以下步骤作图:①以点C为圆心,适当长度为半径作弧,分别交BC,CD于M,N两点;②分别以点M,N为圆心,以大于MN的长为半径画弧,两弧在▱ABCD的内部交于点P;③连接CP并延长交AD于点E,交BA的延长线于点F,则AF的长为.3.如图,△ABC中,AB=5,AC=4,以点A为圆心,任意长为半径作弧,分别交AB、AC于D 和E,再分别以点D、E为圆心,大于二分之一DE为半径作弧,两弧交于点F,连接AF并延长交BC于点G,GH⊥AC于H,GH=2,则△ABG的面积为.4.如图,在平面直角坐标系中,四边形ABCD是菱形,点A的坐标为(0,),分别以A,B为圆心,大于AB的长为半径作弧,两弧交于点E,F,直线EF恰好经过点D,则点D的坐标为.5.已知⊙O1,⊙O2,⊙O3是等圆,△ABP内接于⊙O1,点C,E分别在⊙O2,⊙O3上.如图,①以C为圆心,AP长为半径作弧交⊙O2于点D,连接CD;②以E为圆心,BP长为半径作弧交⊙O3于点F,连接EF;下面有四个结论:①CD+EF=AB ②③∠CO2D+∠EO3F=∠AO1B④∠CDO2+∠EFO3=∠P 所有正确结论的序号是.6.下面是小明设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:如图1,直线BC及直线BC外一点P.求作:直线PE,使得PE∥BC.作法:如图2.①在直线BC上取一点A,连接P A;②作∠P AC的平分线AD;③以点P为圆心,P A长为半径画弧,交射线AD于点E;④作直线PE.所以直线PE就是所求作的直线.根据小明设计的尺规作图过程.(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:∵AD平分∠P AC,∴∠P AD=∠CAD.∵P A=PE,∴∠P AD=,∴∠PEA=,∴PE∥BC.()(填推理依据).【典型例题】例1.已知:如图,四边形ABCD是平行四边形.(1)用直尺和圆规在BC、AD上分别求作点E,F使AECF为菱形(不要求写作法,保留作图痕迹);(2)求证:AECF为菱形.例2.如图,∠MAN=90°,B,C分别为射线AM,AN上的两个动点,将线段AC绕点A逆时针旋转30°到AD,连接BD交AC于点E.(1)当∠ACB=30°时,依题意补全图形,并直接写出的值;(2)写出一个∠ACB的度数,使得,并证明.例3.已知,如图,△ABC中,∠C=90°,E为BC边中点.(1)尺规作图:以AC为直径,作⊙O,交AB于点D(保留作图痕迹,不需写作法).(2)连结DE,求证:DE为⊙O的切线;(3)若AC=5,DE=,求BD的长.【巩固练习】1.如图,已知∠MON及其边上一点A.以点A为圆心,AO长为半径画弧,分别交OM,ON于点B和C.再以点C为圆心,AC长为半径画弧,恰好经过点B.错误的结论是()A.S△AOC=S△ABC B.∠OCB=90°C.∠MON=30°D.OC=2BC2.已知直线l及直线l外一点P.如图,(1)在直线l上取一点A,连接PA;(2)作PA的垂直平分线MN,分别交直线l,PA于点B,O;(3)以O为圆心,OB长为半径画弧,交直线MN于另一点Q;(4)作直线PQ.根据以上作图过程及所作图形,下列结论中错误的是()A.△OPQ≌△OAB B.PQ∥AB C.AP=BQ D.若PQ=PA,则∠APQ=60°3.数学课上,老师提出如下问题:△ABC是⊙O的内接三角形,OD⊥BC于点D.请借助直尺,画出△ABC中∠BAC的平分线.晓龙同学的画图步骤如下:(1)延长OD交于点M;(2)连接AM交BC于点N.所以线段AN为所求△ABC中∠BAC的平分线.请回答:晓龙同学画图的依据是.4.已知锐角∠AOB,如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交于点M,N;(3)连接OM,MN,ON.根据以上作图过程及所作图形,若∠AOB=20°,则∠OMN=.5.如图,在菱形ABCD中,按以下步骤作图:①分别以点A和B为圆心,以大于AB的长为半径作弧,两弧相交于点E、F;②作直线EF交BC于点G,连接AG;若AG⊥BC,CG=3,则AD的长为.6.如图是一块直角三角形木板,其中∠C=90°,AC=1.5m,面积为1.5m2.一位木匠想把它加工成一个面积最大且无拼接的正方形桌面,∠C是这个正方形的一个内角.(1)请你用尺规为这位木匠在图中作出符合要求的正方形;(2)求加工出的这个正方形的边长.7.请仅用无刻度的直尺在下列图1和图2中按要求画菱形.(1)图1是矩形ABCD,E,F分别是AB和AD的中点,以EF为边画一个菱形;(2)图2是正方形ABCD,E是对角线BD上任意一点(BE>DE),以AE为边画一个菱形.8.如图,AB为半圆O的直径,C为半圆上一点,AC<BC.(1)请用直尺(不含刻度)与圆规在BC上作一点D,使得直线OD平分ABC的周长;(不要求写作法,但要保留作图痕迹)(2)在(1)的条件下,若AB=10,OD=,求△ABC的面积.9.如图,B是⊙O的半径OA上的一点(不与端点重合),过点B作OA的垂线交⊙O于点C,D,连接OD.E是⊙O上一点,,过点C作⊙O的切线l,连接OE并延长交直线l于点F.(1)①依题意补全图形;②求证:∠OFC=∠ODC;(2)连接FB,若B是OA的中点,⊙O的半径是4,求FB的长.10.已知⊙O及⊙O外一点P.(1)方法证明:如何用直尺和圆规过点P作⊙O的一条切线呢?小明设计了如图①所示的方法:①连接OP,以OP为直径作⊙O′;②⊙O′与⊙O相交于点A,作直线P A.则直线P A即为所作的过点P的⊙O的一条切线.请证明小明作图方法的正确性.(2)方法迁移:如图②,已知线段l,过点P作一条直线与⊙O相交,且该直线被⊙O所截得的弦长等于l.(保留作图痕迹,不要求写作法和证明)。
中考数学相交线与平行线专题训练50题含答案
中考数学相交线与平行线专题训练50题含答案(单选、填空、解答题)一、单选题1.已知P 是直线m 外一点,A 、B 、C 是直线m 上一点,且532PA PB PC ===,,,那么点P 到直线m 的距离为( )A .等于2B .大于2C .小于或等于2D .小于2 2.如图,1120∠=︒,要使//a b ,则2∠的大小是( )A .60︒B .80︒C .100︒D .120︒ 3.P 为直线外一点,点A 、B 、C 在直线l 上,若2cm, 2.3cm,5cm PA PB PC ===,则点P 到直线l 的距离是( )A .2cmB .小于2cmC .不大于2cmD .5cm 4.如图所示,一束光线垂直照射水平地面,在地面上放一个平面镜,欲使这束光线经平面镜反射后成水平光线,则平面镜与地面所成锐角的度数为( )A .45°B .60°C .75°D .80° 5.如图,AB//EF//CD ,点G 在AB 上,GE//BC ,GE 的延长线交DC 的延长线于点H ,则图中与AGE ∠相等的角(不含AGE ∠)共有( )A .7个B .6个C .5个D .4个 6.如图,直线m∥n ,直线AB 分别与直线m ,n 交于A ,B 两点,∥BAD 的平分线交直线n 于点C ,若∥1=56°,则∥2的度数是( )A .108°B .112°C .118°D .124° 7.下列命题中,属于假命题的是( )A .两直线平行,内错角相等B .平行于同一条直线的两条直线平行C .同位角相等,两直线平行D .一个角的补角一定不大于这个角 8.如图,下列条件中不能判定AB CD ∥的是( ).A .180A ADC ∠+∠=︒B .A ADE ∠=∠C .ABD BDC ∠=∠ D .ADB CBD ∠=∠9.如图,五边形ABCDE 中,//AE CD .若110A C ∠=∠=︒,则B ∠的度数为( )A .70︒B .110︒C .140︒D .150︒ 10.如图,直线a ∥b ,直角三角形ABC 的顶点B 在直线a 上,若∥C =90°,∥α=30°,则∥β的度数为( )A .30°B .45°C .60°D .75° 11.如图,已知BD AC ∥,165∠=︒,40A ∠=︒,则2∠的大小是( )A.55︒B.65︒C.75︒D.85︒12.下列说法正确的个数是()∥两点之间,直线最短=,则点B为线段AC的中点;∥若AB BC∥过一点有且只有一条直线与已知直线垂直;∥过直线外一点有且只有一条直线与已知直线平行A.4B.3C.2D.113.如图,DE∥CF,且∥D=120°,∥A=30°,则∥B的度数为()A.120°B.90°C.60°D.30°14.下列事实中,利用“垂线段最短”依据的是()A.把一根木条固定在墙上至少需要两个钉子B.把弯曲的公路改直,就能缩短路程C.体育课上,老师测量同学们脚后跟到起跑线的垂直距离作为跳远成绩D.火车运行的铁轨永远不会相交15.如图,直线AB∥CD,AF交CD于点E,∥CEF=135°,则∥A等于()A.65°B.55°C.45°D.135°16.下列命题是真命题的是()A.两直线平行,同旁内角相等B.直角三角形的两锐角互余C.三角形的外角大于任一内角D.所有边都相等的多边形是正多边形17.如图,OP 平分MON ∠,PA ON ⊥于点A ,点Q 是射线OM 上的一个动点.若4PA =,则PQ 的最小值为( )A .2B .3C .4D .518.下列说法:∥在同一平面内,两条直线的位置关系有相交和平行两种;∥过一点有且只有一条直线与这条直线平行;∥平行于同一条直线的两条直线平行;∥如果两条直线被第三条直线所截,那么内错角相等;∥直线外一点到这条直线的垂线段,叫做点到直线的距离.其中正确的有( )A .2个B .3个C .4个D .5个 19.如图,下列条件不能判定AB∥CD 的是( )A .12∠∠=B .2E ∠∠=C .B E 180∠∠+=D .BAF C ∠∠= 20.甲,乙两位同学用尺规作“过直线l 外一点C 作直线l 的垂线”时,第一步两位同学都以C 为圆心,适当长度为半径画弧,交直线l 于D ,E 两点(如图);第二步甲同学作∥DCE 的平分线所在的直线,乙同学作DE 的中垂线.则下列说法正确的是( )A .只有甲的画法正确B .只有乙的画法正确C .甲,乙的画法都正确D .甲,乙的画法都不正确二、填空题21.已知点A (3,4),B (3,1),C (﹣4,1),D (﹣4,3),则AB 与CD 的位置关系是_____.22.已知∥1与∥2是对顶角,∥1与∥3是邻补角,则∥2+∥3=_________. 23.如图,OC OD ⊥,150∠=︒,则2∠的度数是_______24.如图,点P 在AOB ∠的平分线上,过点P 作PC OA ⊥,交OA 于点C ,且5PC =,D 是OB 上一动点,则PD 的最小值为___________.25.如图,将矩形纸片ABCD 沿EF 折叠后,点D ,C 分别落在点D 1,C 1的位置,ED 1的延长线交BC 于点G ,若∥EFG =62°,则∥EGB 等于______.26.如图,两直线交于点O ,若∥1+∥2=76°,则∥1=________度.27.如图,过直线AB 上一点O 作射线OC ,30BOC ∠=︒,OD 平分AOC ∠,则DOC ∠的度数为__________.28.如图,a //b ,点B 在直线b 上,且AB ∥BC ,∥1=35°,那么∥2=______.29.如图,在直线a 的同侧有P 、Q 、R 三点,若PQ//a ,QR//a ,则P 、Q 、R 三点______(填“在”或“不在”)同一条直线上.30.把一张长方形纸条按图中折叠后,若∥EFB= 65º,则∥AED ’= _______度 .31.如图,BO 平分ABC ∠,OD BC ⊥于点D ,点E 为射线BA 上一动点,若6OD =,则OE 的最小值为______.32.如图,体育课上老师要测量学生的跳远成绩,其测量时主要依据是______.33.如图,AB 、CD 相交于O ,OE AB ⊥,35∠=︒DOE 则BOC ∠=______;34.如图,已知∥A=∥F=40°,∥C=∥D=70°,则∥ABD=____,∥CED=____.35.已知:如图,AB∥CD ,若∥ABE=130°,∥CDE=152°,则∥BED=__度.36.如图,点E 在射线AD 的延长线上,要使AB//CD ,只需要添加一个条件,这个条件可以是________.(填一个你认为正确的条件即可)37.如图∥是长方形纸带,∥CFE =55°,将纸带沿EF 折叠成图∥,再沿GE 折叠成图∥,则图∥中∥DEF 的度数是_________38.如图,AD BC BAD ∠∥,的平分线交CD 于点E ,交BC 的延长线于点F ,且CEF F ∠=∠,求证:180B BCD ∠+∠=︒.请你将下面的证明过程补充完整:证明:AD BC ∥∴__________F =∠,(理由:____________________)AF 平分BAD ∠∴__________=__________(角平分线的定义)BAF F ∴∠=∠(等量代换)CEF F ∠=∠(已知)BAF CEF ∴∠=∠(等量代换)∴__________∥__________(理由:____________________)180B BCD ∴∠+∠=︒,(理由:____________________)39.如图,ABC ∆中,50B ∠=︒,30C ∠=︒,点D 为边BC 上一点,将ADC ∆沿直线AD 折叠后,点C 落到点E 处,若DE AB ∥,则DAC ∠=____________.40.如图,直线l∥m∥n ,等边∥ABC 的顶点B ,C 分别在直线n 和m 上,边BC 与直线n 所夹的角为25°,则∥α的度数为_____度.三、解答题41.如图,直线MN 分别与直线AC 、DG 交于点B 、F ,且12∠=∠,ABF ∠的角平分线BE 交直线DG 于点E ,BFG ∠的角平分线FC 交直线AC 于点C .(1)求证://BE CF ;(2)若35C ∠=︒,求BED ∠的度数.42.已知:如图,A 、F 、C 、D 在同一直线上,AB ∥DE ,AB =DE ,AF =CD ,求证:(1)BC =EF ;(2)BC ∥EF .43.如图,两条射线AM ∥BN ,线段CD 的两个端点C 、D 分别在射线BN 、AM 上,且∥A =∥BCD =108°.E 是线段AD 上一点(不与点A 、D 重合),且BD 平分∥EBC . (1)求∥ABC 的度数.(2)请在图中找出与∥ABC 相等的角,并说明理由.(3)若平行移动CD ,且AD >CD ,则∥ADB 与∥AEB 的度数之比是否随着CD 位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值.44.如图,已知AB 是∥O 的直径,C 、D 是∥O 上的点,OC ∥BD ,交AD 于点E ,连结BC .(1)求证:AE =ED ;(2)若AB =10,∥CBD =36°,求扇形AOC 的面积. 45.如图,三角形ABC 中,点A ,B ,C 都在方格纸的格点(网格线的交点)上,每个小方格的边长为1个单位长度.将三角形ABC 向左平移2格,再向上平移2格,得到三角形111A B C ,点1A ,1B ,1C 的对应点分别是点A ,B ,C .(1)请在图中画出三角形111A B C .(2)画出点C 到直线AB 的垂线段CM ,并回答:点C 到直线AB 的距离等于_____个单位长度.46.如图,AD EF ∥,12180∠+∠=︒.(1)若150∠=︒,求BAD ∠的度数:(2)已知DG 平分ADC ∠,求证:AB DG ∥.47.如图,∥B=∥C=90°,E 是BC 的中点,AE 平分∥BAD ,求证:AE∥DE.48.如图,由点O 引出6条射线OA ,OB ,OC ,OD ,OE ,OF ,且∥AOB =90°,OF 平分∥BOC , OE 平分∥AOD . 若∥EOF =165°,求∥COD 的度数49.如图,GE 分别与AB ,CD 相交于E ,G 两点,过E 点的直线EH 与CD 相交于点F .若∥1=∥2=∥3=55°.(1)AB 与CD _______平行(填“一定”或“不一定”或“一定不”);(2)求∥4的度数.50.已知:如图,MON ∠.求作:BAD ∠,使BAD MON ∠=∠.下面是小明设计的尺规作图过程.作法:∥在OM 上取一点A ,以A 为圆心,OA 为半径画弧,交射线OA 于点B ;∥在射线ON上任取一点C,连接BC,分别以B,C为圆心,大于12BC为半径画弧,两弧交于点E,F,作直线EF,与BC交于点D;∥作射线AD,BAD∠即为所求.(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下列证明.证明:∥EF垂直平分BC,∥________DC=.∥AO AB=,∥AD OC∥()(填推理依据).∥BAD MON∠=∠.参考答案:1.C【分析】根据“直线外一点到直线上各点的所有线中,垂线段最短”进行解答.【详解】解:∥直线外一点与直线上各点连接的所有线段中,垂线段最短,∥点P到直线m的距离≤PC,即点P到直线m的距离小于或等于2.故选:C.【点睛】本题考查的是点到直线的距离,熟知直线外一点到直线的垂线段的长度,叫做点到直线的距离是解答此题的关键.2.D【分析】根据同位角相等,两直线平行即可求解.∠=∠=︒,那么//a b.【详解】解:如果21120所以要使//∠的大小是120︒.a b,则2故选D.【点睛】本题考查的是平行线的判定定理,掌握同位角相等,两直线平行是解题的关键.3.C【分析】从直线外一点到这条直线上各点所连的线段中,垂线段最短.【详解】解:∥P A=2cm,PB=2.3cm,PC=5cm,∥P A<PB<P C.∥∥当P A∥l时,点P到直线l的距离等于2cm;∥当P A与直线l不垂直时,点P到直线l的距离小于2cm;综上所述,则P到直线l的距离是不大于2cm.故选:C.【点睛】本题主要考查了垂线段最短的性质和点到直线的距离的概念.垂线的两条性质:∥从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.∥从直线外一点到这条直线上各点所连的线段中,垂线段最短.4.A【详解】试题分析:要求平面镜与地面所成锐角的度数,就要利用平行线的性质,和光的反射原理计算.解:∥入射光线垂直于水平光线,∥它们的夹角为90°,虚线为法线,∥1为入射角,∥∥1=0.5×90°=45°,∥∥3=90°﹣45°=45°;∥两水平光线平行,∥∥4=∥3=45°.故选A.【点评】本题用到的知识点为:入射光线与法线的夹角叫入射角;反射光线与法线的夹角叫反射角;入射角等于反射角;两直线平行,内错角相等.5.B【分析】根据平行线性质得出∥AGE=∥GEF=∥EHC=∥BCD=∥EPC=∥BPF=∥GBP,即可得出答案.【详解】∥AB∥EF, ∥∥AGE=∥GEF, ∥GBP=∥BPF∥EF∥CD, ∥∥GEF=∥EHC, ∥PCD=∥EPC=∥BPF,∥GE∥BC, ∥∥EHC=∥BCD,∥∥AGE =∥GEF=∥EHC=∥BCD=∥EPC=∥BPF=∥GBP.共6个角与∥AGE相等.故选:B【点睛】本题考查了平行线性质:两直线平行,同位角相等,内错角相等,以及等量代换等.主要考查学生的推理能力.6.C【分析】根据平行线的性质和角平分线的性质,可以求得∥1+∥3的度数,从而可以得到∥2的度数,本题得以解决.【详解】解:∥m∥n,∥∥1+∥3=∥2,∥∥1=56°,∥∥BAD=124°,∥AC平分∥DAB,∥∥3=62°,∥∥1+∥3=56°+62°=118°,∥∥2=118°,故选:C.【点睛】本题考查平行线的性质和角平分线的定义,熟练掌握基础知识是关键.7.D【分析】利用补角的性质、平行线的性质及判定等知识分别判断后即可确定答案.【详解】解:A、两直线平行,内错角相等,是真命题,不符合题意;B、平行于同一条直线的两条直线平行,是真命题,不符合题意;C、同位角相等,两直线平行,是真命题,不符合题意;D、一个角的补角不一定不大于这个角,原命题是假命题,符合题意;故选:D.【点睛】考查了命题与定理的知识,解题的关键是了解补角的性质、平行线的性质及判定等知识,难度不大.8.D【分析】根据同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,进行判断即可.【详解】解:A、当∥A+∥ADC=180°时,可得:AB∥CD,不合题意;B、当∥A=∥ADE时,可得:AB∥CD,不合题意;C、当∥ABD=∥BDC时,可得:AB∥CD,不合题意;D、当∥ADB=∥CBD时,可得:AD∥BC,符合题意.故选:D.【点睛】本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.9.C-⨯︒=︒,结合两直线平行,同旁内角互补解【分析】根据五边形的内角和为(52)180540题.AE CD【详解】//+=180E D ∴∠∠︒五边形ABCDE 的内角和:++++=(5-2)180=540A B C D E ∠∠∠∠∠⨯︒︒又110A C ∠=∠=︒解得,140B ∠=︒故选:C【点睛】本题考查平行线的性质、多边形的内角和定理,是重要考点,难度较易,掌握相关知识是解题关键.10.C【分析】首先过点C 作CE∥a ,可得CE∥a∥b ,然后根据两直线平行,内错角相等,即可求得答案.【详解】解:过点C 作CE∥a ,∥a∥b ,∥CE∥a∥b ,∥∥BCE=∥α=30°,∥ACE=∥β,∥∥ACB=90°,∥∥β=∥ACE=∥ACB-∥BCE=60°.故选C .【点睛】此题考查了平行线的性质和判定,注意掌握辅助线的作法,两直线平行,内错角相等定理的应用是解题的关键.11.C【分析】先根据平行线的性质可得40ABD A ==︒∠∠,再根据平角的定义即可得.【详解】解:BD AC ∥,40A ∠=︒,40ABD A ∴∠=∠=︒,165︒∠=,2180175ABD ∴∠=︒-∠-∠=︒,故选:C .【点睛】本题主要考查了平行线的性质,熟练掌握平行线的性质是解题关键.12.D【分析】根据线段的性质,平行公理及推理,垂线的性质等知识点分析判断,即可求解.【详解】解:∥两点之间,线段最短,该说法错误;,则点B为线段AC的中点,该说法错误;∥当点B在线段AC上时,若AB BC∥在同一平面内,过一点有且只有一条直线与已知直线垂直,该说法错误;∥过直线外一点有且只有一条直线与已知直线平行,该说法正确;所以说法正确的有∥,共1个.故选:D【点睛】本题主要考查了平行公理及推论,线段的性质,两点间的距离以及垂线,熟记基础知识,掌握相关概念是解题的关键.13.B【分析】由平行线的性质得到∠ACF,利用三角形的一个外角等于与它不相邻的两个内角之和,即可求解.【详解】解:∵DE∥CF,∠D=120°,∴∠ACF=∠D=120°,∵∠ACF=∠A+∠B,∠A=30°,∴∠B=∠ACF﹣∠A=120°﹣30°=90°,故选:B.【点睛】此题主要考查了平行线的性质和三角形的外角性质,正确把握“两直线平行,同位角相等”和“三角形的一个外角等于与它不相邻的两个内角之和”是解题关键.14.C【分析】根据“垂线段最短”进行判定即可.【详解】解:A、用两个钉子就可以把木条固定在墙上,利用的是两点确定一条直线,故此选项不符合题意;B、把弯曲的公路改直,就能缩短路程,利用的是“两点之间,线段最短”,故此选项不符合题意;C、体育课上,老师测量同学们脚后跟到起跑线的垂直距离作为跳远成绩,利用的是“垂线段最短”,故此选项符合题意;D、火车运行的铁轨永远不会相交,利用的是两直线平行,没有交点,故此选项不符合题意;故选:C.【点睛】此题主要考查了点到直线的距离的定义,两点确定一条直线,“两点之间,线段最短”,正确把握定义及性质是解题关键.15.C【分析】先根据邻补角的定义得出∥CEA=45°,再根据两直线平行,内错角相等得出∥A=∥CEA,即可得出答案【详解】解:∥AB∥CD,∥∥A=∥CEA,∥∥CEF=135°,∥∥CEA=45°,∥∥A=45°.故选C.【点睛】本题考查了平行线的性质,是基础题,熟记性质并准确识图是解题的关键.16.B【分析】利用平行线的性质,直角三角形的两锐角性质,三角形的外角性质及正多边形的概念分别判断,即可确定正确的选项.【详解】A.两直线平行,同旁内角相等,说法错误,正确为:两直线平行,同旁内角互补,因此不符合题意;B.直角三角形的两锐角互余,说法正确,符合题意;C.三角形的外角大于任一内角,说法错误,正确为:三角形的外角大于任意一个与它不相邻的内角,因此不符合题意;D.所有边都相等的多边形是正多边形,说法错误,比如菱形四条边相等,却不是正多边形,因此不符合题意.故选:B.【点睛】此题考查了命题与定理的知识,解题关键是熟练掌握相关内容及会举出反例来判断一个命题是不是假命题.17.C⊥时,PQ的值最小,根据角平分线性质得出【分析】根据垂线段最短得出当PQ OM=,求出即可.PQ PA【详解】解:当PQ OM ⊥时,PQ 的值最小, OP 平分MON ∠,PA ON ⊥,4PA =,4PQ PA ∴==,故选:C .【点睛】本题考查了角平分线性质,垂线段最短的应用,解题的关键是能得出要使PQ 最小时Q 的位置.18.A【分析】根据平行线的判定与性质、平行线的定义、平行公理及推论、点到直线的距离求解判断即可.【详解】解:∥在同一平面内,两条直线的位置关系有:相交、平行,故此答案正确,符合题意;∥在同一平面内,过直线外一点有且只有一条直线与这条直线平行,故此答案错误,不符合题意;∥行于同一条直线的两条直线平行,故此答案正确,符合题意;∥如果两条平行线被第三条直线所截,那么内错角相等,故此答案错误,不符合题意; ∥直线外一点到这条直线的垂线段的长度,叫做这个点到直线的距离,故此答案错误,不符合题意,故选: A .【点睛】此题考查了平行线的判定与性质、平行线的定义、平行公理及推论、点到直线的距离等知识,解题的关键是熟记平行线的判定与性质、平行线的定义、平行公理及推论、点到直线的距离.19.B【分析】结合图形,根据平行线的判定方法对选项逐一进行分析即可得.【详解】A. ∥l=∥2,根据内错角相等,两直线平行,可得AB//CD ,故不符合题意;B. ∥2=∥E ,根据同位角相等,两直线平行,可得AD//BE ,故符合题意;C. ∥B+∥E= 180°,根据同旁内角互补,两直线平行,可得AB//CD ,故不符合题意;D. ∥BAF=∥C ,根据同位角相等,两直线平行,可得AB//CD ,故不符合题意, 故选B.【点睛】本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键. 20.C【分析】利用等腰三角形的三线合一可判断甲乙的画法都正确.【详解】∥CD=CE,∥∥DCE的平分线垂直DE,DE的垂直平分线过点C,∥甲,乙的画法都正确.故选C.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.21.平行.【分析】观察发现点A与点B的横坐标相同、点C与点D的横坐标相同,故AB与CD均垂直于x轴,从而可得AB与CD的位置关系.【详解】解:∥A(3,4),B(3,1),二者横坐标相同,∥AB∥x轴,∥C(﹣4,1),D(﹣4,3),二者横坐标相同,∥CD∥x轴,∥AB∥CD,故答案为:平行.【点睛】本题考查了平面直角坐标系中坐标与图形的性质,明确坐标特点与图形性质的关系是解题的关键.22.180°【详解】解:∥∥1与∥3是邻补角,∥∥1+∥3=180°.∥∥1与∥2是对顶角,∥∥1=∥2,∥∥2+∥3=180°(等量代换).故答案为180°.23.40︒##40度【分析】由垂直的定义得到∥COD=90°,再由平角的定义来求解.【详解】解:∥OC∥OD,∥∥COD=90°,∥∥1+∥2=180°-90°=90°,∥∥2=90°-∥1=90°-50°=40°.故答案为:40︒.【点睛】本题主要考查了垂直的定义,平角的定义,理解相关知识是解答关键.【分析】根据垂线段最短可知,当PD OB ⊥时最短,再根据角平分线上的点到角的两边的距离相等可得PD PC =,从而得解.【详解】解:如下图,作PD OB ⊥交OB 与点D ,垂线段最短,∴当PD OB ⊥时,PD 最短, OP 是AOB ∠的平分线,PC OA ⊥,PD PC ∴=,5PC =,5PD ∴=,即PD 长度最小为5,故答案为:5.【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,垂线段最短的性质,确定出PD 最小时的位置是解题的关键.25.124°##124度【分析】在矩形ABCD 中,AD ∥BC ,则∥DEF =∥EFG =62°,∥EGB =∥DEG ,又由折叠可知,∥GEF =∥DEF ,可求出∥DEG 的度数,进而得到∥EGB 的度数.【详解】解:在矩形ABCD 中,AD ∥BC ,∥∥DEF =∥EFG =62°,∥EGB =∥DEG ,由折叠可知∥GEF =∥DEF =62°,∥∥DEG =124°,∥∥EGB =∥DEG =124°.故答案为:124°.【点睛】本题主要考查平行线的性质,折叠的性质等,掌握折叠前后角度之间的关系是解题的基础.【分析】直接利用对顶角的性质结合已知得出答案.【详解】解:∥两直线交于点O ,∥∥1=∥2,∥∥1+∥2=76°,∥∥1=38°.故答案为:38.【点睛】此题主要考查了对顶角,正确把握对顶角的定义是解题关键.27.75︒##75度【分析】先根据30BOC ∠=︒,求出150AOC ∠=︒,再根据OD 平分AOC ∠,即可得出答案.【详解】解:∥30BOC ∠=︒,∥180********AOC BOC ∠=︒-∠=︒-︒=︒,∥OD 平分AOC ∠, ∥111507522DOC AOC ∠=∠=⨯︒=︒. 故答案为:75︒.【点睛】本题主要考查了角平分线的有关计算,领补角的计算,解题的关键是根据邻补角求出150AOC ∠=︒.28.55°##55度【分析】先根据∥1=35°,由垂直的定义,可得到∥3的度数,再由a ∥b 即可求出∥2的度数.【详解】解:∥AB ∥BC ,∥∥3=90°﹣∥1=55°.∥a ∥b ,∥∥2=∥3=55°.故答案为55°.【点睛】本题考查的是平行线的性质、垂线的性质,熟练掌握垂线的性质和平行线的性质是解决问题的关键.29.在【分析】根据平行公理的内容进行解答即可.【详解】∥PQ//a ,QR//a ,∥P 、Q 、R 三点在同一条直线上,故答案为在.【点睛】本题考查了平行公理,熟知“过直线外一点有且只有一条直线与已知直线平行”是解题的关键.30.50︒【详解】试题分析:根据两直线平行内错角相等可得:∥DEF=∥EFB=65°,根据折叠图形的性质可得:∥D′EF=∥DEF=65°,根据补角的定义可知:∥AE D′=180°-65°×2=50°.点睛:本题主要考查的就是折叠图形的性质以及平行线的性质问题.在解决折叠问题时,我们首先必须要明白折叠之后有哪些线段和哪些角是相等的,然后根据平行线的性质定理得出未知角的度数.在解决折叠问题的时候,我们很多时候也需要转化为直角三角形的问题来求某一条线段的长度(特别是矩形或正方形的折叠).31.6【分析】过O 点作OH BA ⊥于H 点,如图,先根据角平分线的性质得到6OH OD ==,然后根据垂线段最短解决问题.【详解】解:过O 点作OH BA ⊥于H 点,如图, BO 平分ABC ∠,OD BC ⊥,OH BA ⊥,6OH OD ∴==,点E 为射线BA 上一动点,OE ∴的最小值为OH 的长,即OE 的最小值为6.故答案为:6.【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了垂线段最短.32.垂线段最短.【详解】试题分析:点到线上的任意点之间的长度中,垂线段最短.考点:点到线的距离.33.125︒【分析】根据余角和补角的关系计算即可;【详解】∥OE AB ⊥,∥90AOE BOE ∠=∠=︒,∥35∠=︒DOE ,∥903555BOD ∠=︒-︒=︒,又∥180BOC BOD ∠+∠=︒,∥18055125BOC ∠=︒-︒=︒.故答案是125︒.【点睛】本题主要考查了余角和补角的性质,准确计算是解题的关键.34. 70° 110°【详解】试题解析:∥∥A=∥F=40°,∥DF∥AC ,∥∥D=70°,∥∥D=∥ABD=70°,∥DF∥AC ,∥∥CED+∥C=180°,∥∥C=70°,∥∥CED=110°.点睛:平行线的性质有:∥两直线平行,同位角相等,∥两直线平行,内错角相等,∥两直线平行,同旁内角互补.35.78【详解】试题分析:首先做一条辅助线,平行于两直线,再利用平行线的性质即可求出. 解:过点E 作直线EF∥AB ,∥AB∥CD ,∥EF∥CD,∥AB∥EF,∥∥1=180°﹣∥ABE=180°﹣130°=50°;∥EF∥CD,∥∥2=180°﹣∥CDE=180°﹣152°=28°;∥∥BED=∥1+∥2=50°+28°=78°.故填78.点评:解答此题的关键是过点E作直线EF∥AB,利用平行线的性质可求∥BED的度数.36.∥l=∥2或∥A=∥CDE 或∥C+∥ABC= 180°等【分析】找到相等的同位角、内错角或互补的同旁内角即可.【详解】若∥1=∥2,则AB∥CD;若∥A=∥CDE,则AB∥CD;若∥C+∥ABC= 180°,则AB∥CD,故答案为∥l=∥2或∥A=∥CDE 或∥C+∥ABC= 180°(答案不唯一).【点睛】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.37.15 ##15度【分析】根据两条直线平行,内错角相等,则∥AEF=∥CFE=55°,根据平角定义,则图∥中的∥DEG=70°,进一步求得图∥中∥GEF=55°,进而求得图∥中的∥DEF的度数.【详解】解:∥AD∥BC,∥CFE=55°,∥∥AEF=∥CFE=55°,∥DEF=125°,∥图∥中的∥GEF=55°,∥DEG=180°-2×55°=70°,∥图∥中∥GEF=55°,∥DEF=70°-55°=15°.故答案为:15°【点睛】此题主要考查了平行线的性质,折叠的性质,解答的关键是结合图形分析清楚角与角之间的关系.38.见解析【分析】根据平行线的性质和角平分线的性质可得∥BAF =∥CEF ,因此AB ∥DC ,结论可证.【详解】证明:AD BC ∥DAF F ∴∠=∠,(理由:两直线平行,内错角相等) AF 平分BAD ∠BAF DAF ∴∠=∠(角平分线的定义)BAF F ∴∠=∠(等量代换)CEF F ∠=∠,(已知)BAF CEF ∴∠=∠(等量代换)AB DC ∴∥(理由:同位角相等,两直线平行)180B BCD ∴∠+∠=︒.(理由:两直线平行,同旁内角互补)【点睛】本题主要考查了平行线的性质和判定,熟练掌握平行线的性质和判定方法是解题的关键.39.35︒【分析】先根据三角形的内角和定理可得100BAC ∠=︒,再根据折叠的性质可得30,E C DAE DAC ∠=∠=︒∠=∠,然后根据平行线的性质可得30BAE E ∠=∠=︒,最后根据角的和差即可得.【详解】50,30C B ∠=︒=∠︒180100BAC B C ∴∠=︒-∠-∠=︒由折叠的性质可知,30,E C DAE DAC ∠=∠=︒∠=∠//DE AB30BAE E ∴∠=∠=︒又2BAC BAE DAE DAC BAE DAC ∠=∠+∠+∠=∠+∠100302DAC ∴︒=︒+∠解得35DAC ∠=︒故答案为:35︒.【点睛】本题考查了三角形的内角和定理、折叠的性质、平行线的性质等知识点,掌握折叠的性质是解题关键.40.35.【详解】试题分析:本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.先根据m∥n求出∥BCD的度数,再由∥ABC是等边三角形求出∥ACB的度数,根据l∥m即可得出结论.∥m∥n,边BC与直线n所夹的角为25°,∥∥BCD=25°.∥∥ABC 是等边三角形,∥∥ACB=60°,∥∥ACD=60°﹣25°=35°.∥l∥m,∥∥α=∥ACD=35°.故答案为35.考点:平行线的性质;等边三角形的性质.41.(1)见解析;(2)145°【分析】(1)求出∥1=∥BFG,根据平行线的判定得出AC∥DG,求出∥EBF=∥BFC,根据平行线的判定得出即可;(2)根据平行线的性质得出∥C=∥CFG=∥BEF=35°,再求出答案即可.【详解】解:(1)证明:∥∥1=∥2,∥2=∥BFG,∥∥1=∥BFG,∥AC∥DG,∥∥ABF=∥BFG,∥∥ABF的角平分线BE交直线DG于点E,∥BFG的角平分线FC交直线AC于点C,∥∥EBF=12∥ABF,∥CFB=12∥BFG,∥∥EBF=∥CFB,∥BE∥CF;(2)∥AC∥DG,BE∥CF,∥C=35°,∥∥C=∥CFG=35°,∥∥CFG=∥BEG=35°,∥∥BED=180°-∥BEG=145°.【点睛】本题考查了平行线的性质和判定,能灵活运用定理进行推理是解此题的关键.42.(1)证明见解析(2)证明见解析【分析】(1)根据平行线的性质和全等三角形的判定和性质解答即可.(2)根据全等三角形的性质和平行线的判定解答即可.【详解】(1)证明:(1)//AB DE,A D∴∠∠=,AF CD =,AC DF ∴=,在ABC 与DEF 中AB DE A D AC DF =⎧⎪∠=∠⎨⎪=⎩,ABC DEF SAS ∴≅(), BC EF ∴=.(2)(2)ABC DEF ≅,BCA EFD ∴∠∠= ,//BC EF ∴ .【点睛】考查了全等三角形的判定与性质、平行线的判定与性质等知识,证明三角形全等是解决问题的关键.43.(1)∥ABC =72°;(2)与∥ABC 相等的角是∥ADC 、∥DCN ;(3)不发生变化.比值为12.【分析】(1)由平行线的性质可求得∥A +∥ABC =180°,即可求得答案;(2)利用平行线的性质可求得∥ADC =∥DCN ,∥ADC +∥BCD =180°,则可求得答案; (3)利用平行线的性质,可求得∥AEB =∥EBC ,∥ADB =∥DBC ,再结合角平分线的定义可求得答案.【详解】(1)∥AM ∥BN ,∥∥A +∥ABC =180°,∥∥ABC =180°﹣∥A =180°﹣108°=72°.(2)与∥ABC 相等的角是∥ADC 、∥DCN .∥AM ∥BN ,∥∥ADC =∥DCN ,∥ADC +∥BCD =180°,∥∥ADC =180°﹣∥BCD =180°﹣108°=72°,∥∥DCN =72°,∥∥ADC =∥DCN =∥ABC .(3)不发生变化.∥AM ∥BN ,∥∥AEB=∥EBC,∥ADB=∥DBC.∥BD平分∥EBC,∥∥DBC12=∥EBC,∥∥ADB12=∥AEB,∥12 ADBAEB∠∠=.【点睛】本题考查了平行线的性质,掌握平行线的性质是解题的关键.44.(1)见解析;(2)5π【分析】(1)利用垂径定理即可证明;(2)利用弧长公式,扇形的面积公式计算即可.【详解】(1)证明:∥AB是∥O的直径,∥∥ADB=90°,∥OC∥BD,∥∥AEO=∥ADB=90°,即OC∥AD,∥AE=ED(2)解:∥OC∥AD,∥AC CD=,∥∥ABC=∥CBD=36°,∥∥AOC=2∥ABC=2×36°=72°,∥AC=7252 180ππ⨯=,S=2725360π⋅=5π.【点睛】本题考查扇形的面积,弧长公式等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.45.(1)见解析(2)见解析;4【分析】(1)利用平移变换的性质分别作出A,B,C的对应点1A,1B,1C即可(2)根据垂线段的定义画出图形即可(1)如图,三角形111A B C 即为所求;(2)如(1)图,线段CM 即为所求,点C 到直线AB 的距离等于4个单位长度. 故答案为:4.【点睛】本题考查作图—平移交换,垂线段,解题的关键是掌握平移交换的性质. 46.(1)50︒;(2)见解析.【分析】(1)根据平行线的性质,求解即可;(2)由(1)可得到1BAD ∠=∠,利用三角形外角的性质,可得1ADC BAD ∠=∠+∠,从而得到BAD ADG ∠=∠,即可求证.(1)解:∥AD EF ∥∥2180BAD ∠+∠=︒又∥12180∠+∠=︒∥150BAD ∠=∠=︒;(2)由(1)得1BAD ∠=∠,利用三角形外角的性质,可得12ADC BAD BAD ∠=∠+∠=∠,∥DG 平分ADC ∠,∥2ADC ADG ∠=,∥BAD ADG ∠=∠,。
中考数学 微测试系列专题14 相交线与平行线、三角形及尺规作图(含解析)新人教版
专题14 相交线与平行线、三角形及尺规作图学校:___________姓名:___________班级:___________1.【辽宁沈阳2015年中考数学试卷】如图,在△ABC中,点D是边AB上一点,点E是边AC上一点,且DE∥BC,∠B=40°,∠AED=60°,则∠A的度数是()A.100° B.90° C.80° D.70°【答案】C.【解析】考点:1.平行线的性质;2.三角形内角和定理.2.【湖北荆门2015年中考数学试卷】如图,点A,B,C在一条直线上,△ABD,△BCE均为等边三角形,连接AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q,连接PQ,BM,下面结论:①△ABE≌△DBC;②∠DMA=60°;③△BPQ为等边三角形;④MB平分∠AMC,其中结论正确的有()A.1个 B.2个 C.3个 D.4个【答案】D.【解析】在△ABP 和△DBQ 中,∵∠BAP =∠BDQ ,AB =DB ,∠ABP =∠ADBQ =60°,∴△ABP ≌△DBQ (ASA ),∴BP =BQ ,∴△BPQ 为等边三角形,∴③正确;∵∠DMA =60°,∴∠AMC =120°,∴∠AMC +∠PBQ =180°,∴P 、B 、Q 、M 四点共圆,∵BP =BQ ,∴BP BQ =,∴∠BMP =∠BMQ ,即MB 平分∠AMC ,∴④正确;综上所述:正确的结论有4个,故选D .考点:1.全等三角形的判定与性质;2.等边三角形的判定与性质.3.【2015届湖北省黄冈市启黄中学中考模拟】如图,已知∠MON=60°,OP 是∠MON 的角平分线,点A 是OP 上一点,过点A 作ON 的平行线交OM 于点B ,AB=4.则直线AB 与ON 之间的距离是( )A .B .2C .D .4【答案】C .【解析】试题分析:过A 作AC ⊥OM ,AD ⊥ON ,∵OP 平分∠MON ,∠MON=60°,∴AC=AD ,∠MOP=∠NOP=30°, ∵BA ∥ON ,∴∠BAO=∠PON=30°,∵∠ABC 为△AOB 的外角,∴∠ABC=60°,在Rt △ABC 中,∠BAC=30°,AB=4,∴BC=2,根据勾股定理得:AC=2224-=23, ∴AD=AC=23,则直线AB 与ON 之间的距离为23,故选C .考点:1.勾股定理;2.等腰三角形的判定与性质;3.含30度角的直角三角形.4.【2015届河北省中考模拟二】已知∠BOP与OP上点C,点A(在点C的右边),李玲现进行如下操作:①以点O为圆心,OC长为半径画弧,交OB于点D,连接CD;②以点A为圆心,OC长为半径画弧MN,交OA于点M;③以点M为圆心,CD长为半径画弧,交弧MN于点E,连接ME,操作结果如图所示,下列结论不能由上述操作结果得出的是()A.CD∥ME B.OB∥AE C.∠ODC=∠AEM D.∠ACD=∠EAP【答案】D.【解析】考点:作图—复杂作图.5.【辽宁本溪2015年中考数学试题】如图,直线a∥b,三角板的直角顶点A落在直线a上,两条直线分别交直线b于B、C两点.若∠1=42°,则∠2的度数是.【答案】48°.【解析】试题分析:∵∠BAC=90°,∠1=42°,∴∠3=90°﹣∠1=90°﹣42°=48°.∵直线a∥b,∴∠2=∠3=48°.故答案为:48°.考点:平行线的性质.6.【黑龙江省黑河市、齐齐哈尔市、大兴安岭2015年中考数学试题】如图,点B、A、D、E 在同一直线上,BD=AE,BC∥EF,要使△ABC≌△DEF,则只需添加一个适当的条件是.(只填一个即可)【答案】BC=EF或∠BAC=∠EDF.【解析】考点:1.全等三角形的判定;2.开放型.7.【2015届河北省邯郸市魏县中考二模】四边形ABCD中,AD=3,AB=4,BC=12,CD=13,∠BAD=90°,则△BDC为三角形.【答案】直角.【解析】试题分析:如图,连接BD.考点:1.勾股定理的逆定理;2.勾股定理.8.【2015届江苏省南京市高淳县中考一模】如图,在△ABC中,∠C=90°,D 是AB的中点,点E、F分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,下列结论:①△DFE是等腰直角三角形;②四边形CEDF的周长不变;③点C到线段EF的最大距离为1.其中正确的结论有.(填写所有正确结论的序号)【答案】①③.【解析】试题分析:①连接CD;∵△ABC是等腰直角三角形,∴∠DCB=∠A=45°,CD=AD=DB;∵AE=CF,∴△ADE≌△CDF(SAS);∴ED=DF,∠CDF=∠EDA;∵∠ADE+∠EDC=90°,∴∠EDC+∠CDF=∠EDF=90°,∴△DFE是等腰直角三角形.∴①正确;考点:1.全等三角形的判定与性质;2.等腰直角三角形.9.【湖北武汉2015年中考数学试题】如图,点B、C、E、F在同一直线上,BC=EF,AC⊥BC 于点C,DF⊥EF于点F,AC=DF求证:(1) △ABC≌△DEF (2) AB∥DE【答案】(1)证明见解析;(2)证明见解析.【解析】试题分析:根据垂直得出∠ACB=∠DFE=90°,结合BC=EF,AC=DF得出三角形全等;根据三角形全等得出∠B=∠DEF,根据同位角相等,两直线平行得到答案.试题解析:(1)、∵AC⊥BC,DF⊥EF ,∴∠ACB=∠DFE=90°,又∵BC=EF,AC=DF,∴△ABC ≌△DEF;(2)、∵△ABC≌△DEF,∴∠B=∠DEF ,∴AB∥DE(同位角相等,两直线平行)考点:1.三角形全等的性质与应用;2.平行线的判定.10.【2015届山东省东营市实验中学中考一模】探究:如图①,在△ABC中,AB=AC,∠ABC=60°,延长BA至点D,延长CB至点E,使BE=AD,连结CD,AE,求证:△ACE≌△CBD.应用:如图②,在菱形ABCF中,∠ABC=60°,延长BA至点D,延长CB至点E,使BE=AD,连结CD,EA,延长EA交CD于点G,求∠CGE的度数.【答案】探究:证明见解析;应用:∠CGE=60°.【解析】试题解析:探究:∵AB=AC,∠ABC=60°,∴△ABC是等边三角形,∴BC=AC,∠ACB=∠ABC,∵BE=AD,∴BE+BC=AD+AB,即CE=BD,在△ACE和△CBD中,∵CE=BD,∠ACB=∠ABC,BC=AC,∴△ACE≌△CBD(SAS);应用:如图,连接AC,易知△ABC是等边三角形,由探究可知△ACE≌△CBD,∴∠E=∠D,∵∠BAE=∠DAG,∴∠E+∠BAE=∠D+∠DAG,∴∠CGE=∠ABC,∵∠ABC=60°,∴∠CGE=60°.考点:1.全等三角形的判定与性质;2.等边三角形的判定与性质;3.菱形的性质;4.几何图形问题;5.综合题;6.压轴题.。
2020年苏科版数学中考专题复习课件:相交线和平行线(共20张PPT)
(3)研究过程中运用了哪些方法?
研究思路: 平面上两条直线
特殊
相交 (定义—性质)
垂直(定义—性质)
的位置关系
平行(定义—判定—性质)
思想方法:一般到特殊,熟悉基本知识、基本构图;
构建模型,转化思想,数形结合,类比推理,用字母表示数.
课后作业
课后作业
课后作业
的距离为3,求AC的长.
一线三等角
A
作垂直,构造“K型” 证△ABP≌△BCQ .
特殊(直角)
C
平行线的相关性质
K型
33
8
4
2
l1
全等的性质 BQ=AP=3,PB=CQ=5
数学方法:熟知基本知识 熟练基本构图
P
2
5
1
B
H
3
l2
3 Q l3
勾股定理
AC= 82 22 2 17
数 解助
形
数学思想:数形结合
知识应用
例题5.如图,已知AB∥CD,直线FG分别与AB、CD交于点F、点G. (1)如图,点E在线段FG上,若∠A=40°,∠D=30°,则∠AED= 70 °.
D
G
30° 1
?
E
40°
AF
HC B
延长AE交CD于点H
AB∥CD 平行线 性质
∠1=∠A
∠AED为△DEH的外角 外角
性质 ∠AED=∠1+∠D
· A C
P DB
M 作法:
1.以点P为圆心画弧,交直线AB
于点C、D.
2.以点C、D为圆心,大于
1
2 CD
的长为半径画弧,两弧交于M.
3.作直线PM.
则PM⊥AB.
《用尺规作角》平行线与相交线
相交线的性质
相交线有两个重要的性质,即垂直和平行。垂直是指两条直线相交成90度的角,平行是指两条直线在同一平面上 且不相交。
相交线的尺规作图方法
使用直尺和圆规,先确定两个点,然 后连接这两个点,得到一条直线。
VS
如果需要作另一条与这条直线相交的 直线,只需要在直线上任取一点,然 后使用圆规和直尺分别在这两条直线 上找出距离相等的两个点,连接这两 个点,即可得到与原直线相交的直线 。
电路设计
在电路设计中,平行线和相交线是描述电路 元件和信号传输的基础。例如,导线和元件 之间通常是平行线连接,而信号的传输则是 在导线和元件之间按照特定的时序进行相交
线连接。
05
总结与展望
Chapter
总结平行线和相交线的尺规作图方法及其应用
平行线的尺规作图方法 准备工具:直尺、圆规、铅笔、橡皮 确定已知直线和任意一点,作为画平行线的基准
对于平行线和相交线的判定方法和技巧,也需要不断探索 和创新,以解决更为复杂和实际的几何问题。
随着科技的不断进步和创新,平行线和相交线的应用前景 也越来越广阔。
在人工智能、机器学习、图像处理等领域中,平行线和相 交线也扮演着重要的角色,对于提高算法的精度和效率具 有重要作用。
THANKS
感谢观看
平行线的性质
平行线具有传递性、同位角相等、内错角相等、同旁内角互补等性质。
平行线的尺规作图方法
确定已知直线
首先确定一条已知直线,作为基 础直线。
01
02
确定距离
在垂线上确定与已知直线距离相 等的两点,这个距离就是平行线 的宽度。
03 04
找到已知直线的垂线
苏科版2019-2020初三数学中考专题复习——尺规作图
初三数学专题复习尺规作图【基础训练】1.如图,在△ABC中,AB=AC,∠A=30°,以B为圆心,BC的长为半径圆弧,交AC于点D,连接BD,则∠ABD=.2.如图,在▱ABCD中,CD=8,BC=10,按以下步骤作图:①以点C为圆心,适当长度为半径作弧,分别交BC,CD于M,N两点;②分别以点M,N为圆心,以大于MN的长为半径画弧,两弧在▱ABCD的内部交于点P;③连接CP并延长交AD于点E,交BA的延长线于点F,则AF的长为.3.如图,△ABC中,AB=5,AC=4,以点A为圆心,任意长为半径作弧,分别交AB、AC于D 和E,再分别以点D、E为圆心,大于二分之一DE为半径作弧,两弧交于点F,连接AF并延长交BC于点G,GH⊥AC于H,GH=2,则△ABG的面积为.4.如图,在平面直角坐标系中,四边形ABCD是菱形,点A的坐标为(0,),分别以A,B为圆心,大于AB的长为半径作弧,两弧交于点E,F,直线EF恰好经过点D,则点D的坐标为.5.已知⊙O1,⊙O2,⊙O3是等圆,△ABP内接于⊙O1,点C,E分别在⊙O2,⊙O3上.如图,①以C为圆心,AP长为半径作弧交⊙O2于点D,连接CD;②以E为圆心,BP长为半径作弧交⊙O3于点F,连接EF;下面有四个结论:①CD+EF=AB ②③∠CO2D+∠EO3F=∠AO1B④∠CDO2+∠EFO3=∠P 所有正确结论的序号是.6.下面是小明设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:如图1,直线BC及直线BC外一点P.求作:直线PE,使得PE∥BC.作法:如图2.①在直线BC上取一点A,连接P A;②作∠P AC的平分线AD;③以点P为圆心,P A长为半径画弧,交射线AD于点E;④作直线PE.所以直线PE就是所求作的直线.根据小明设计的尺规作图过程.(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:∵AD平分∠P AC,∴∠P AD=∠CAD.∵P A=PE,∴∠P AD=,∴∠PEA=,∴PE∥BC.()(填推理依据).【典型例题】例1.已知:如图,四边形ABCD是平行四边形.(1)用直尺和圆规在BC、AD上分别求作点E,F使AECF为菱形(不要求写作法,保留作图痕迹);(2)求证:AECF为菱形.例2.如图,∠MAN=90°,B,C分别为射线AM,AN上的两个动点,将线段AC绕点A逆时针旋转30°到AD,连接BD交AC于点E.(1)当∠ACB=30°时,依题意补全图形,并直接写出的值;(2)写出一个∠ACB的度数,使得,并证明.例3.已知,如图,△ABC中,∠C=90°,E为BC边中点.(1)尺规作图:以AC为直径,作⊙O,交AB于点D(保留作图痕迹,不需写作法).(2)连结DE,求证:DE为⊙O的切线;(3)若AC=5,DE=,求BD的长.【巩固练习】1.如图,已知∠MON及其边上一点A.以点A为圆心,AO长为半径画弧,分别交OM,ON于点B和C.再以点C为圆心,AC长为半径画弧,恰好经过点B.错误的结论是()A.S△AOC=S△ABC B.∠OCB=90°C.∠MON=30°D.OC=2BC2.已知直线l及直线l外一点P.如图,(1)在直线l上取一点A,连接PA;(2)作PA的垂直平分线MN,分别交直线l,PA于点B,O;(3)以O为圆心,OB长为半径画弧,交直线MN于另一点Q;(4)作直线PQ.根据以上作图过程及所作图形,下列结论中错误的是()A.△OPQ≌△OAB B.PQ∥AB C.AP=BQ D.若PQ=PA,则∠APQ=60°3.数学课上,老师提出如下问题:△ABC是⊙O的内接三角形,OD⊥BC于点D.请借助直尺,画出△ABC中∠BAC的平分线.晓龙同学的画图步骤如下:(1)延长OD交于点M;(2)连接AM交BC于点N.所以线段AN为所求△ABC中∠BAC的平分线.请回答:晓龙同学画图的依据是.4.已知锐角∠AOB,如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交于点M,N;(3)连接OM,MN,ON.根据以上作图过程及所作图形,若∠AOB=20°,则∠OMN=.5.如图,在菱形ABCD中,按以下步骤作图:①分别以点A和B为圆心,以大于AB的长为半径作弧,两弧相交于点E、F;②作直线EF交BC于点G,连接AG;若AG⊥BC,CG=3,则AD的长为.6.如图是一块直角三角形木板,其中∠C=90°,AC=1.5m,面积为1.5m2.一位木匠想把它加工成一个面积最大且无拼接的正方形桌面,∠C是这个正方形的一个内角.(1)请你用尺规为这位木匠在图中作出符合要求的正方形;(2)求加工出的这个正方形的边长.7.请仅用无刻度的直尺在下列图1和图2中按要求画菱形.(1)图1是矩形ABCD,E,F分别是AB和AD的中点,以EF为边画一个菱形;(2)图2是正方形ABCD,E是对角线BD上任意一点(BE>DE),以AE为边画一个菱形.8.如图,AB为半圆O的直径,C为半圆上一点,AC<BC.(1)请用直尺(不含刻度)与圆规在BC上作一点D,使得直线OD平分ABC的周长;(不要求写作法,但要保留作图痕迹)(2)在(1)的条件下,若AB=10,OD=,求△ABC的面积.9.如图,B是⊙O的半径OA上的一点(不与端点重合),过点B作OA的垂线交⊙O于点C,D,连接OD.E是⊙O上一点,,过点C作⊙O的切线l,连接OE并延长交直线l于点F.(1)①依题意补全图形;②求证:∠OFC=∠ODC;(2)连接FB,若B是OA的中点,⊙O的半径是4,求FB的长.10.已知⊙O及⊙O外一点P.(1)方法证明:如何用直尺和圆规过点P作⊙O的一条切线呢?小明设计了如图①所示的方法:①连接OP,以OP为直径作⊙O′;②⊙O′与⊙O相交于点A,作直线P A.则直线P A即为所作的过点P的⊙O的一条切线.请证明小明作图方法的正确性.(2)方法迁移:如图②,已知线段l,过点P作一条直线与⊙O相交,且该直线被⊙O所截得的弦长等于l.(保留作图痕迹,不要求写作法和证明)。
初中数学_《相交线与平行线》教学设计学情分析教材分析课后反思
相交线与平行线回顾与反思知识与技能目标:1.经历对本章所学知识回顾与思考的过程,将本章内容条理化,系统化。
2.在丰富的情景中,抽象出平行线、相交线等基本几何模型,从而进一步熟悉和掌握几何语言,能用语言说明几何图形。
过程与方法目标:1.经历把现实物体抽象成几何对象(点、线、面等)的数学化过程.2.在探究说理过程中,锻炼学生的语言表达能力以及逻辑思维能力。
3.通过多个角度去思考问题,既提高学生的识图能力,又可以开阔思维,提高分析问题、解决问题的能力。
情感态度价值观:1. 感受数学来源于生活又服务于生活,激发学习数学的乐趣.2.通过一题多变,一题多解,多解归一的练习,让学生学会挖掘题目资源,用发展的眼光看问题,观察运动中的异同,揭示知识间内在联系。
一、教学过程分析本节课设计了六个教学环节:第一环节:创设情境;第二环节:归纳总结;第三环节:知识应用;第四环节:拓展升华;第五环节:纵向延伸;第六小节:查缺补漏。
第一环节:创设情境活动内容:教师提出问题:同学们认识这个标志么?生:(反应异常激烈)认识,是大众汽车的标志。
师:你们知道它的含义么?(同学陷入了思考。
)一个同学举手,有些迟疑地说:“我看它象由三个V组成,是不是表示他们这个品牌必胜、必胜、必胜?老师高兴地赞扬:你真棒,跟设计师想的一样!(另一名同学小声说):真的假的?我还觉得上面是V,下面是W呢!老师:哎呀,你也很厉害。
V和W是当时德国大众汽车公司名称的字母缩写。
是BD EBC 标志的另一重含义。
歪打正着的同学得意地笑了。
其他同学也跟着笑了。
老师乘胜追击:看到这个标志还想到什么?同学有些不知所云,老师再问:你们不觉得这个设计师几何学得特别棒么?他用几何中最简单、最基本的图形,就完成了汽车史上赫赫有名的设计。
同学恍然大悟,频频点头。
活动目的:兴趣是最好的老师,而复习课却往往比较枯燥无味。
在这里,以同学们几乎天天见的大众标志为数学情境引入,是为了让同学感受到数学就在我们身边,她不神秘,却应用广泛。
中考数学专题训练第4讲几何初步、相交线、平行线(知识点梳理)
几何初步、相交线、平行线知识点梳理考点01 几何图形一、几何图形(一)几何图形的概念和分类1.定义:把从实物中抽象出的各种图形统称为几何图形.2.几何图形的分类:立体图形和平面图形。
(1)立体图形:图形的各部分不都在同一平面内,这样的图形就是立体图形,例如:长方体、圆柱、圆锥、球等。
立体图形按形状可分为:球、柱体(圆柱、棱柱)、椎体(圆锥、棱锥)、台体(圆台、棱台).按围成立体图形的面是平面或曲面可以分为:多面体(有平面围成的立体图形)、曲面体(围成立体图形中的面中有曲面)。
(2)平面图形:有些几何图形(如线段、角、三角形、圆、四边形等)的各部分都在同一平面内,称为平面图形.常见的平面图形有圆和多边形(三角形、四边形、五边形、六边形等)。
(二)从不同方向看立体图形:从正面看:正视图.从左面看:侧视图.从上面看:俯视图。
(三)立体图形的展开图:1.有些立体图形是由一些平面图形围成,把他们的表面沿着边剪开,可以展开形成平面图形。
2.立体图形的展开图的注意事项:(1)不是所有的立体图形都可以展开形成平面图形,例如:球不能展开形成平面图形. (2)不同的立体图形可展开形成不同的平面图形,同一个立体图形,沿不同的棱剪开,也可得到不同的平面图形。
(四)正方体的平面展开图正方体的展开图由6个小正方形组成,把正方体各种展开图分类如下:二、点、线、面、体1.体:长方体、正方体、圆柱体、圆锥体、球、棱锥、棱柱等都是几何体,几何体也简称体。
2.面:包围着体的是面,面有平的面和曲的面两种.3.线:面和面相交的地方形成线,线也分为直线和曲线两种.4.点:线和线相交的地方形成点。
5.所有的几何图形都是由点、线、面、体组成的,从运动的角度来看,点动成线,线动成面,面动成体。
考点02 直线、射线、线段一、直线1.直线的表示方法:(1)可以用直线上表示两个点的大写英文字母表示,可表示为直线AB或直线BA.(2)也可以用一个小写英文字母表示,例如直线m等.2.直线的基本性质:经过两点有一条直线,并且只有1条直线.简称:两点确定一条直线。
江苏省中考数学 第一部分 考点研究复习 第四章 三角形 第17课时 几何图形初步、相交线与平行线真题
第四章三角形第17课时几何图形初步、相交线与平行线某某近4年中考真题精选命题点1 角及其性质(2014年某某11题,2013年2次)1. (2013某某12题3分)若∠a=50°,则它的余角是________°.2. (2013某某14题3分)如图,三角板的直角顶点在直线l上,若∠1=40°,则∠2的度数是________.第2题图第3题图命题点2 相交线及其性质(2016年某某12题,2015年宿迁4题,2014年2次,2013年某某12题)3. (2015宿迁4题3分)如图所示,直线a,B被直线c所截,∠1与∠2是( )A. 同位角B. 内错角C. 同旁内角D. 邻补角4. (2016某某12题3分)已知,如图,直线AB与CD相交于点O,OE⊥AB,∠COE=60°,则∠BOD 等于________度.第4题图第5题图(2013~2016)命题点3 (2016年10次,2015年7次,2014年7次,2013年4次)5. (2016宿迁5题3分)如图,已知直线a、B被直线c所截,若a∥B,∠1=120°,则∠2的度数为( )A. 50°B. 60°C. 120°D. 130°6. (2014某某7题3分)如图,直角三角板的直角顶点落在直尺边上,若∠1=56°,则∠2的度数为( )A. 56°B. 44°C.34°D. 28°第6题图第7题图7. (2013某某7题3分)如图,直线a∥B,∠1=120°,∠2=40°,则∠3等于( )A. 60°B. 70°C. 80°D. 90°8. (2013某某5题3分)下列图形中,由AB∥CD能得到∠1=∠2的是( )9. (2014某某7题3分)如图,AB∥CD,则根据图中标注的角,下列关系中成立的是( )A. ∠1=∠3B. ∠2+∠3=180°C. ∠2+∠4<180°D. ∠3+∠5=180°第9题图第10题图10. (2016某某6题3分)如图,已知a、B、c、d四条直线,a∥B,c∥d,∠1=110°,则∠2等于( )A. 50°B. 70°C. 90°D. 110°11. (2014某某15题3分)如图,点D、E分别在AB、BC上,DE∥AC,AF∥BC,∠1=70°,则∠2=________.第11题图第12题图12. (2015某某16题3分)如图,已知矩形纸片的一条边经过直角三角形纸片的直角顶点,若矩形纸片的一组对边与直角三角形纸片的两条直角边相交成∠1、∠2,则∠2-∠1=________.13. (2015某某17题3分)将一副三角尺按如图所示的方式放置,使含30°角的三角尺的短直角边和含45°角的三角尺的一条直角边重合,则∠1的度数是________.第13题图14. (2014某某14题3分)如图,AB∥CD,∠1=62°,FG平分∠EFD,则∠2=________°.第14题图第15题图15. (2016某某12题3分)如图,已知直线l1∥l2,将等边三角形如图放置,若∠a=40°,则∠β等于________°.16. (2016某某12题3分)如图,直线AB∥CD,BC平分∠ABD.若∠1=54°,则∠2=______°.第16题图第17题图17. (2014某某6题2分)如图,直线m∥n,Rt△ABC的顶点A在直线n上,∠C=90°.若∠1=25°,∠2=70°,则∠B=________.命题点4 平行线的判定(2016年某某21(1)题,2015年2次)18. (2015某某10题3分)如图,直线l1∥l2,∠a=∠β,∠1=40°,则∠2=______.第18题图19. (2016某某21(1)题5分)如图,△ABC中,AB=AC,E在BA的延长线上,AD平分∠CAE.求证:AD∥BC.第19题图命题点5 命题(2016年某某15题,2015年某某15题,2013年2次)20. (2016某某15题2分)写出命题“如果a=B,那么3a=3B”的逆命题...:______________________.21. (2013某某10题3分)命题“相等的角是对顶角”是________命题(填“真”或“假”).22. (2015某某15题2分)命题“全等三角形的面积相等”的逆命题是________命题.(填“真”或“假”)23. (2013某某24题10分)如图,四边形ABCD中,对角线AC与BD相交于点O,在①AB∥CD;②AO =CO;③AD=BC中任意选取两个作为条件,“四边形 ABCD是平行四边形”为结论构造命题.(1)以①②作为条件构成的命题是真命题吗?若是,请证明;若不是,请举出反例;(2)写出按题意构成的所有命题中的假命题,并举出反例加以说明.(命题请写成“如果…,那么….”的形式)第23题图答案1. 40【解析】∵∠a=50°,∴它的余角是90°-50°=40°.2. 50°【解析】三角板的直角顶点在直线l上,则∠1+∠2=180°-90°=90°,∵∠1=40°,∴∠2=50°.3. A 【解析】由于∠1与∠2有一条边在同一条直线上,都在这一直线的一侧,又在另两直线的上方,∴这两个角是同位角.4. 30 【解析】∵OE⊥AB,∴∠AOE=90°,∵∠COE=60°,∴∠AOC=30°,∵AB与CD相交于点O,∴∠BOD=∠AOC=30°.5. B 【解析】如解图,∵a∥B,∴∠2+∠3=180°,又∵∠3=∠1=120°,∴∠2=180°-120°=60°.第5题解图第6题解图6. C 【解析】如解图,依题意知∠1+∠3=90°.∵∠1=56°,∴∠3=34°.∵直尺的两边互相平行,∴∠2=∠3=34°.7. C 【解析】如解图,∵a∥B,∴∠1=∠4=120°.∵∠4=∠2+∠3,而∠2=40°,∴120°=40°+∠3,∴∠3=80°.第7题解图第8题解图8. B 【解析】A、∵AB∥CD,∴∠1+∠2=180°,故A选项错误;B、如解图所示,∵AB∥CD,∴∠1=∠3,∵∠2=∠3,∴∠1=∠2,故B选项正确;C、∵AB∥CD,∴∠BAD=∠CDA,若AC∥BD,可得∠1=∠2,故C选项错误;D、若四边形ABDC是矩形,可得∠1=∠2,故D选项错误.9. D 【解析】A、∵OC与OD不平行,∴∠1=∠3不成立,故本选项错误;B、∵OC与OD不平行,∴∠2+∠3=180°不成立,故本选项错误;C、∵AB∥CD,∴∠2+∠4=180°,故本选项错误;D、∵AB∥CD,∴∠3+∠5=180°,故本选项正确.10. B 【解析】如解图,∵a∥B,∴∠3+∠4=180°,∵∠1与∠3互为对顶角,∴∠1=∠3,∵c∥d,∴∠2=∠4,∴∠2=∠4=180°-∠3=180°-∠1=70°.第10题解图11. 70°【解析】∵DE ∥AC ,∴∠C =∠1=70°,∵AF ∥BC ,∴∠2=∠C =70°.12. 90°【解析】从图中可以看出∠2的对顶角与∠1的余角互补,也就是∠2+90°-∠1=180°,即∠2-∠1=90°.13. 75°【解析】如解图,由平行线性质可知∠3=∠4=45°,又由三角形的外角等于不相邻的两个内角和得∠1=∠2+∠3=45°+30°=75°.第13题解图14. 31【解析】∵AB ∥CD ,∠1=62°,∴∠1=∠EFD =62°,又∵FG 平分∠EFD ,∴∠2=12∠EFD =12∠1=31°. 15. 20【解析】延长等边三角形的一边交于直线l 2,如解图①,∵l 1∥l 2,则有∠a =∠1=40°,∴由三角形的内外角关系知,∠β=60 °-∠1= 20°.第15题解图【一题多解】过等边三角形的一个角作l∥l2,如解图②,则有l1∥l∥l2,∴∠a=∠2=40°,∠β=∠3,又∵∠2+∠3=60°,∴∠β=∠3=60 °-∠2=20°.16. 72【解析】∵CD∥AB,∴∠CBA=∠1=54°,∠ABD+∠CDB=180°,∠2=∠CDB,∵CB平分∠ABD,∴∠ABD=108°,∴∠2=∠CDB=180°-108°=72°.17. 45°【解析】∵直线m∥n,∠2=70°,∴∠BAC+∠1=∠2=70°,∵∠1=25°,∴∠BAC =70°-25°=45°,∵∠C=90°,∴∠BAC+∠B=90°,∴∠B=90°-45°=45°.18. 140°【解析】如解图,作延长线,使AB交l2于B点、CD交l1于D点,∵∠a=∠β,∴AB∥CD,∴∠3+∠2=180°,又∵l1∥l2,∴∠1=∠3,∴∠1+∠2=180°,∵∠1=40°,∴∠2=140°.第18题解图19. 证明:∵AB =AC ,AD 平分∠CAE ,∴∠B =∠ACB ,∠CAD =∠DAE =12∠CAE ,(2分) 又∵∠CAE =∠B +∠ACB ,∴∠B =∠DAE ,∴AD ∥BC .20. 如果3a =3B ,那么a =B 【解析】命题由条件和结论构成,其逆命题只需将原来命题的条件和结论互换即可,与命题的真假无关. ∵命题“如果a =B ,那么3a =3B ”中条件为“如果a =B ”,结论为“那么3a =3B ”,∴其逆命题为“如果3a =3B ,那么a =B ”.21. 假 【解析】对顶角相等,但相等的角不一定是对顶角,从而可得命题“相等的角是对顶角”是假命题.22. 假 【解析】“全等三角形的面积相等”的条件是:如果两个三角形是全等三角形,结论是:这两个三角形面积相等.因此该命题的逆命题就是“面积相等的两个三角形是全等三角形”,这个命题显然是假命题.23. 解:(1)以①②作为条件构成的命题是真命题,第23题解图证明:∵AB ∥CD ,∴∠OAB =∠OCD ,在△AOB 和△COD 中,⎩⎪⎨⎪⎧∠OAB=∠OCD AO =CO∠AOB=∠COD, ∴△AOB ≌△COD (ASA ),∴AB =CD ,∴四边形ABCD 是平行四边形.(2)解:根据①③作为条件构成的命题是假命题,即“如果有一组对边平行,另一组对边相等,那么四边形是平行四边形”是假命题,反例如等腰梯形符合,但不是平行四边形;根据②③作为条件构成的命题是假命题,即“如果一个四边形ABCD 的对角线交于点O ,且OA =OC ,AD =BC ,那么这个四边形是平行四边形”是假命题,如解图,根据已知不能推出OB =OD 或AD ∥BC 或AB =DC ,即四边形不是平行四边形.。
2019-2020年中考数学微测试系列专题14 相交线与平行线、三角形及尺规作图 苏教版
2019-2020年中考数学微测试系列专题14 相交线与平行线、三角形及尺规作图 苏教版1.【江苏省宿迁市2015年中考数学试题】如图所示,直线b a 、被直线c 所截,1∠与2∠是( )A 、同位角B 、内错角C 、同旁内角D 、邻补角【答案】A故选A.【考点定位】三线八角.2. 【江苏省苏州市吴中、相城、吴江区2015届九年级中考一模数学试题】如图,已知AB ∥CD ,BC 平分∠ABE ,∠C=34°,则∠BED 的度数是( )A .17°B .34°C .56°D .68°【答案】D .【解析】首先由AB ∥CD ,求得∠ABC 的度数,又由BC 平分∠ABE ,求得∠CBE 的度数,然后根据三角形外角的性质求得∠BED 的度数.∵AB ∥CD ,∴∠ABC=∠C=34°,∵BC 平分∠ABE ,∴∠CBE=∠ABC=34°,∴∠BED=∠C+∠CBE=68°.故选D .【考点定位】平行线的性质.3.【江苏省常州市2015年中考数学试题】如图,BC ⊥AE 于点C ,CD ∥AB ,∠B =40°,则∠EC D 的度数是( )A.70° B.60° C.50° D.40°【答案】C .【考点定位】1.平行线的性质;2.垂线.4.【江苏省苏州市吴中、相城、吴江区2015届九年级中考一模数学试题】在△ABC 中,∠C=90°,∠A=60°,AC=1,D 在BC 上,E 在AB 上,使得△ADE 为等腰直角三角形,∠ADE=90°,则BE 的长为( )A ...12【答案】A.【解析】过点EF 作∥AC ,交BC 于点F ,证明△ADC 和△DEF 全等,得出DF=AC=1,设CD=x ,利用平行线分线段成比例定理,列出比例式,列方程解答.过点E 作EF 作∥AC ,交BC 于点F ,∴∠BFC=∠C=90°,∵∠C=90°,∠BAC=60°,∴∠B=30°∴AB=2AC=2,在Rt △ABC 中,由勾股定理得:=∵△ADE 是等腰直角三角形,∴DE=DA ,∵∠DAC+∠ADC=90°,∠EDF+∠ADC=90°,∴∠DAC=∠EDF在△ADC 和△DEF 中,90DAC EDF C EFD DA DE ∠=∠∠=∠=︒=⎧⎪⎨⎪⎩,∴△ADC ≌△DEF (AAS ),∴DF=AC=1,设CD=x ,所以EF=x ,∵EF ∥AC,∴EF BF AC BC =,即1x =, 解得:A.【考点定位】1.全等三角形的判定与性质;2.含30度角的直角三角形;3.等腰直角三角形.5.【江苏省苏州市吴中、相城、吴江区2015届九年级中考一模数学试题】 “两直线平行,内错角相等”的逆命题是 .【答案】两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.【考点定位】命题与定理.6.【江苏省宿迁市2015年中考数学试题】若等腰三角形中有两边长分别为2和5,则这个三角形的周长为【答案】12.【解析】根据等腰三角形有两边相等,可知三角形的三边可以为2,2,5;2,5,5.然后根据三角形的三边关系可知,2,5,5,符合条件。
2023年江苏省中考数学模拟题知识点分类汇编:相交线与平行线(附答案解析)
一.选择题(共29小题)
1.(2022•宜兴市二模)如图,直线AB,CD相交于点O,OE⊥AB,∠BOD=20°,则∠COE等于( )
A.70°B.60°C.40°D.20°
2.(2022•泰兴市一模)如图所示,已知a∥b,∠α=70°,∠γ=150°,则∠β为( )
A.20°B.26°C.30°D.35°
11.(2021•清江浦区二模)如图,已知直线a∥b,把三角尺的直角顶点放在直线b上.若∠1=36°,则∠2的度数为( )
A.116°B.124°C.144°D.126°
12.(2021•金坛区模拟)如图,AB∥CD,EF分别与AB,CD交于点B,F.若∠E=30°,∠EFC=130°,则∠A的度数是( )
A.15°B.20°C.25°D.30°
13.(2021•淮阴区校级模拟)如图,AB∥CD,AF交CD于点E,且BE⊥AF,∠AEC=40°,则∠B为( )°.
A.40B.50C.130D.140
14.(2021•梁溪区校级二模)将一把直尺和一块含30°角的三角板ABC按如图所示的位置放置,如果∠CED=45°,那么∠BAF的度数为( )
A.36°B.46°C.56°D.66°
7.(2022•建湖县二模)如图,直线a∥b,Rt△ABC的直角顶点C在直线b上,若∠1=40°,则∠2的度数为( )
A.60°B.50°C.40°D.45°
8.(2022•扬州一模)如图,过点A作直线l的垂线,可作垂线的条数有( )
A.0条B.1条C.2条D.无数条
A.20°B.30°C.50°D.80°
25.(2020•宿迁模拟)如图,直线AD∥BC,若∠1=40°,∠BAC=80°,则∠2的度数为( )
《用尺规作角》相交线与平行线
相交线
使用圆规,从另一个点出发, 画一条与第一条射线相交的射
线。
标角度
在两条射线的相交处,标出角 的度数。
用尺规作角的应用
确定位置
使用尺规作角可以确定点的位置 。例如,在地图上,可以使用尺 规作角来确定城市或山脉的位置
。
建筑设计
在建筑设计中,使用尺规作角可 以确定窗户、门和其他建筑元素
的位置和大小。
交通运输
在道路和铁路的设计中,平行线的概念是必不可少的。它们可以确保车 辆按照预定的方向行驶,避免与对面的车辆发生碰撞。
03
计算机科学
在计算机图形学中,平行线的概念被广泛应用于绘制直线和几何形状。
例如,在绘制一个正方形或长方形时,需要使用平行线来确保各个边和
角的角度是准确的。
03
CATALOGUE
《用尺规作角》相交线与 平行线
汇报人:
日期:
CATALOGUE
目 录
• 相交线的性质 • 平行线的性质 • 用尺规作角 • 尺规作图的基本规则
01
CATALOGUE
相交线的性质
相交线的定义
相交线定义
两条直线在同一平面内,且不重 合,如果有公共点,则称这两条 直线相交。
垂直相交
两条直线相交成90度角,这种情 况称为垂直相交。
性质2
两直线平行,内错角相等。
描述
如果两条直线是平行的,那么它们对应的内错角是相等 的。
性质3
两直线平行,同旁内角互补。
描述
如果两条直线是平行的,那么它们对应的同旁内角之和 是180度。
平行线的应用
01 02
建筑学
在建筑设计中,平行线的概念被广泛应用于确定物体的形状和尺寸。例 如,在绘制一个长方形的建筑平面图时,需要使用平行线来标示出各个 边的长度和角度。
2016年中考数学 微测试系列专题14 相交线与平行线、三角形及尺规作图(含解析)
专题14 相交线与平行线、三角形及尺规作图学校:___________姓名:___________班级:___________一、选择题:(共4个小题)1.【2015凉山州】如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=()A.52° B.38° C.42° D.60°【答案】A.【解析】试题分析:如图:∵∠3=∠2=38°(两直线平行同位角相等),∴∠1=90°﹣∠3=52°,故选A.【考点定位】平行线的性质.2.【2015德阳】如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠EAB=120°,则∠D CB=()A.150° B.160° C.130° D.60°【答案】A.【解析】【考点定位】1.等腰三角形的性质;2.平行线的性质;3.多边形内角与外角.3.【2015德阳】如图,在Rt △ABC 中,∠ACB =90°,CD 为AB 边上的高,若点A 关于CD 所在直线的对称点E 恰好为AB 的中点,则∠B 的度数是( )A.60° B.45° C.30° D.75°【答案】C.【解析】试题分析:∵在Rt △ABC 中,∠ACB =90°,CD 为AB 边上的高,点A 关于CD 所在直线的对称点E 恰好为AB 的中点,∴∠CED =∠A ,CE =BE =AE ,∴∠ECA =∠A ,∠B =∠BCE ,∴△ACE 是等边三角形,∴∠CED =60°,∴∠B =12∠CED =30°.故选C. 【考点定位】1.直角三角形斜边上的中线;2.轴对称的性质. 4.【2015眉山】如图,在Rt △ABC 中,∠B =900,∠A =300,DE 垂直平分斜边AC ,交AB 于D ,E 是垂足,连接CD .若BD =l ,则AC 的长是( )A .32B .2C .34D .4【答案】A.【解析】【考点定位】1.含30度角的直角三角形;2.线段垂直平分线的性质;3.勾股定理.二、填空题:(共4个小题)5.【2015绵阳】如图,AB∥CD,∠CDE=119°,GF交∠DEB的平分线EF于点F,∠AGF=130°,则∠F= .【答案】9.5°.【解析】试题分析:∵AB∥CD,∠CDE=119°,∴∠AED=180°﹣119°=61°,∠DEB=119°.∵GF交∠DEB的平分线EF于点F,∴∠GEF=12×119°=59.5°,∴∠GEF=61°+59.5°=120.5°.∵∠AGF=130°,∴∠F=∠AGF﹣∠GEF=130°﹣120.5°=9.5°.故答案为:9.5°.【考点定位】平行线的性质.6.【2015乐山】如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,则∠DBC= °.【答案】15.【解析】试题分析:∵DE垂直平分AB,∴AD=BD,∠AED=90°,∴∠A=∠ABD,∵∠ADE=40°,∴∠A=90°﹣40°=50°,∴∠ABD=∠A=50°,∵AB=AC,∴∠ABC=∠C=12(180°﹣∠A)=65°,∴∠DBC=∠ABC﹣∠ABD=65°﹣50°=15°,故答案为:15.【考点定位】1.线段垂直平分线的性质;2.等腰三角形的性质.7.【2015巴中】如图,在△ABC中,AB=5,AC=3,AD、AE分别为△ABC的中线和角平分线,过点C作CH⊥AE于点H,并延长交AB于点F,连结DH,则线段DH的长为.【答案】1.【解析】【考点定位】1.三角形中位线定理;2.等腰三角形的判定与性质.8.【2015攀枝花】如图,在边长为2的等边△ABC中,D为BC的中点,E是AC边上一点,则BE +DE的最小值为.7.【解析】试题分析:作B关于AC的对称点B′,连接BB′、B′D,交AC于E,此时BE+ED=B′E+ED=B′D ,根据两点之间线段最短可知B′D就是BE+ED的最小值,∵B、B′关于AC的对称,∴AC、BB ′互相垂直平分,∴四边形ABCB′是平行四边形,∵三角形ABC是边长为2,∵D为BC的中点,∴AD ⊥BC ,∴AD =3,BD =CD =1,BB ′=2AD =23,作B ′G ⊥BC 的延长线于G ,∴B ′G =AD =3,在Rt △B ′BG 中,BG =22''BB B G -=22(23)(3)-=3,∴DG =BG ﹣BD =3﹣1=2,在Rt △B ′DG 中,BD =22'DG B G +=222(3)+=7.故BE +ED 的最小值为7.【考点定位】1.轴对称-最短路线问题;2.等边三角形的性质;3.最值问题;4.综合题.三、解答题:(共2个小题)9.【2015广安】手工课上,老师要求同学们将边长为4cm 的正方形纸片恰好剪成六个等腰直角三角形,聪明的你请在下列四个正方形中画出不同的剪裁线,并直接写出每种不同分割后得到的最小等腰直角三角形面积(注:不同的分法,面积可以相等)【答案】答案见试题解析.【解析】(2)正方形A BCD 中,E 、F 分别是AB 、BC 的中点,O 是AC 、BD 的交点,连接OE 、OF ,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可;(3)正方形ABCD中,F、H分别是BC、DA的中点,O是AC、BD的交点,连接HF,即可把正方形纸片恰好剪成六个等腰直角三角形;然后根据三角形的面积公式,求出分割后得到的最小等腰直角三角形面积即可;试题解析:根据分析,可得:.(1)第一种情况下,分割后得到的最小等腰直角三角形是△AEH、△BEF、△CFG、△DHG,每个最小的等腰直角三角形的面积是:(4÷2)×(4÷2)÷2=2×2÷2=2(cm2);(2)第二种情况下,分割后得到的最小等腰直角三角形是△AEO、△BEO、△BFO、△CFO,每个最小的等腰直角三角形的面积是:(4÷2)×(4÷2)÷2=2×2÷2=2(cm2);(3)第三种情况下,分割后得到的最小等腰直角三角形是△AHO、△DHO、△BFO、△CFO ,每个最小的等腰直角三角形的面积是:(4÷2)×(4÷2)÷2=2×2÷2=2(cm2);(4)第四种情况下,分割后得到的最小等腰直角三角形是△AEI、△OEI,每个最小的等腰直角三角形的面积是:(4÷2)×(4÷2)÷2÷2=2×2÷2÷2=1(cm2).【考点定位】1.作图—应用与设计作图;2.操作型.10.【2015重庆市】如图1,在△ABC中,∠ACB=90°,∠BAC=60°,点E是∠BAC角平分线上一点,过点E作AE的垂线,过点A作AB的垂线,两垂线交于点D,连接DB,点F是BD的中点,DH⊥AC,垂足为H,连接EF,HF.(1)如图1,若点H是AC的中点,AC=23,求AB,BD的长;(2)如图1,求证:HF=EF;(3)如图2,连接CF,CE.猜想:△CEF是否是等边三角形?若是,请证明;若不是,说明理由.【答案】(1)AB=43,BD=213;(2)证明见试题解析;(3)是.【解析】试题解析:(1)∵∠ACB=90°,∠BAC=60°,∴∠ABC=30°,∴AB=2AC=2×23=43,∵AD⊥AB,∠CAB=60°,∴∠DAC=30°,∵AH=12AC=3,∴AD=cos30AHo=2,∴BD=22AB AD=213;(2)如图1,连接AF,∵AE是∠BAC角平分线,∴∠HAE=30°,∴∠ADE=∠DAH=30°,在△DAE与△ADH中,∵∠AHD=∠DEA=90°,∠ADE=∠DAH,AD=A D,∴△DAE≌△ADH,∴DH=AE ,∵点F是BD的中点,∴DF=AF,∵∠EAF=∠EAB﹣∠FAB=30°﹣∠FAB,∠FDH=∠FDA﹣∠HD A=∠FDA﹣60°=(90°﹣∠FBA)﹣60°=30°﹣∠FBA,∴∠EAF=∠FDH,在△DHF与△AEF 中,∵DH=AE,∠HDF=∠EAH,DF=AF,∴△DHF≌△AEF,∴HF=EF;(3)如图2,取AB的中点M,连接CM,FM,在R t△ADE中,AD=2AE,∵DF=BF,AM=BM,∴AD=2FM,∴FM=AE,∵∠ABC=30°,∴AC=CM=12AB=AM,∵∠CAE=12∠CAB=30°∠CMF=∠AMF﹣∠AMC=30°,在△ACE与△MCF中,∵AC=CM,∠CAE=∠CMF,AE=MF,∴△ACE≌△MCF,∴CE =CF,∠ACE=∠MCF,∵∠ACM=60°,∴∠ECF=60°,∴△CEF是等边三角形.【考点定位】1.全等三角形的判定与性质;2.等边三角形的判定与性质;3.三角形中位线定理;4.探究型.。
江苏中考数学复习资料专题平行线与三角形
平行线与三角形复习材料一、相关知识点复习:(一)平行线1. 定义:在同一平面内,不相交的两条直线叫做平行线。
2. 判定:(1)同位角相等,两直线平行。
(2)内错角相等,两直线平行。
(3)同旁内角相等,两直线平行。
(4)垂直于同一直线的两直线平行。
3•性质:(1) 经过直线外一点,有且只有一条直线与这条直线平行。
(2) 如果两条直线都与第三条直线平行,那么这两条直线平行(3) 两直线平行,同位角相等。
(4) 两直线平行,内错角相等。
(5) 两直线平行,同旁内角互补。
(二)三角形4. 一般三角形的性质(1) 角与角的关系:三个内角的和等于180°一个外角等于和它不相邻的两个内角之和,并且大于任何一个和它不相邻的内角。
(2) 边与边的关系:三角形中任两边之和大于第三边,任两边之差小于第三边。
(3) 边与角的大小对应关系:在一个三角形中,等边对等角;等角对等边。
(4) 三角形的主要线段的性质(见下表):5. 几种特殊三角形的特殊性质 (1) 等腰三角形的特殊性质:① 等腰三角形的两个底角相等;② 等腰三角形顶角的平分线、底边上的中线和底边上的高是同一条线段,这 条线段所在的直线是等腰三角形的对称轴。
(2) 等边三角形的特殊性质:① 等边三角形每个内角都等于60° ° ② 等边三角形外心、内心合一。
(3) 直角三角形的特殊性质:① 直角三角形的两个锐角互为余角; ② 直角三角形斜边上的中线等于斜边的一半;③ 勾股定理:直角三角形斜边的平方等于两直角边的平方和(其逆命题也成立);④ 直角三角形中,30°的角所对的直角边等于斜边的一半;⑤ 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。
1S △ = a h ( h 是a 边上的咼)2 1 1 S △ = a b = c h(a 、b 是直角边, 2 2a 是边长)(4) 等底等高的三角形面积相等;等底的三角形面积的比等于它们的相应的高的 比;等高的三角形的面积的比等于它们的相应的底的比。
中考数学复习:相交线与平行线
中考数学复习:相交线与平行线中考数学温习:相交线与平行线一、知识框架二、知识概念1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
2.对顶角:一个角的两边区分是另一个叫的两边的反向延伸线,像这样的两个角互为对顶角。
3.垂线:两条直线相交成直角时,叫做相互垂直,其中一条叫做另一条的垂线。
4.平行线:在同一平面内,不相交的两条直线叫做平行线。
5.同位角、内错角、同旁内角:同位角:∠1与∠5像这样具有相反位置关系的一对角叫做同位角。
内错角:∠2与∠6像这样的一对角叫做内错角。
同旁内角:∠2与∠5像这样的一对角叫做同旁内角。
6.命题:判别一件事情的语句叫命题。
7.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
8.对应点:平移后失掉的新图形中每一点,都是由原图形中的某一点移动后失掉的,这样的两个点叫做对应点。
9.定理与性质对顶角的性质:对顶角相等。
10垂线的性质:性质1:过一点有且只要一条直线与直线垂直。
性质2:衔接直线外一点与直线上各点的一切线段中,垂线段最短。
11.平行公理:经过直线外一点有且只要一条直线与直线平行。
平行公理的推论:假设两条直线都与第三条直线平行,那么这两条直线也相互平行。
12.平行线的性质:性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
13.平行线的判定:判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角相等,两直线平行。
本章使先生了解在平面内不重合的两条直线相交与平行的两种位置关系,研讨了两条直线相交时的构成的角的特征,两条直线相互垂直所具有的特性,两条直线平行的临时共存条件和它一切的特征以及有关图形平移变换的性质,应用平移设计一些优美的图案.?重点:垂线和它的性质,平行线的判定方法和它的性质,平移和它的性质,以及这些的组织运用.?难点:探求平行线的条件和特征,平行线条件与特征的区别,运用平移性质探求图形之间的平移关系,以及停止图案设计。
中考数学复习 《平行线和三角形》课件 苏教版
A
由于AB//x轴,易得点B的纵坐
标与点A的纵坐标相等,
同时BC//y轴,点C的横坐标和
点B的横坐标相同, x
A、B、C三点的坐标通过平行
关系紧密的联系起来!
y B
C O
略解:
A
∵点A(t,t-1)在直线上 ∴ 1 t 1 t 1
y 1 x 1 2
∴
2
t=4
∴ A(4,3)
∵ AB//x轴
x ∴ yA=yB=3, ∵ 点B在双曲线
b
考点分析:本题考查了平行线的性质
1
54
32
两直线平行
同位角相等 内错角相等 同旁内角互补
2.如图,下列条件中,不能判断a∥b的是( B)
A.∠1=∠3
B.∠2=∠3
C.∠4=∠5
D.∠2+∠4=180°
考点分析:本题考查了平行线的判定
5
12
a
A、C、D选项得到a//b
同位角相等的理由是(C什) 么呢? 4 3
C
6.如图,直线上 y 1 x 1 有一点A(t,t-1),
2
过点A作AB∥x轴,交双曲线
y 6 于点B,
作BC∥y轴交直线于点C。
. y x
B
A
(1)求点A、B、C的坐标。
C
O
x
分析:因为A(t,t-1)在直线 y 1 x 1上, 将点A代入直线解析式即可求出点2A的坐标
y B
C O
分析:
A
D
B
AB=CD , ,
CE
F
△ABC与 ≌△DEF
• 以平行线的性质与判定为考点设计填空、 选择题,属于容易题
• 以全等性质与判定为考点设计证明题,属 于容易题
【中考复习】苏教版2023学年中考数学专题复习 尺规作图
尺规作图一.选择题(共10小题)1.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC 于点M和N,再分别以M、N为圆心,大于的长为半径画弧,两弧交于点P.连接AP 并延长交BC于点D,则下列说法中:①AD平分∠BAC;②∠ADC=60°;③点D在AB 的垂直平分线上;④S△ABD=2S△ACD.其中正确的个数是()A.1B.2C.3D.42.如图,以∠CAB顶点A为圆心,适当长为半径画弧,分别交AB,AC于点E、F,再分别以点E、F为圆心,大于长为半径画弧,两弧交于点D,作射线AD,则说明∠CAD=∠DAB的依据是()A.SSS B.SAS C.ASA D.AAS3.用三角尺可以画角平分线:如图所示,在已知∠AOB的两边上分别取点M,N,使OM=ON,再过点M画OA的垂线,过点N画OB的垂线,两垂线交于点P,画射线OP.可以得到△OMP ≌△ONP,所以∠AOP=∠BOP.那么射线OP就是∠AOB的平分线.△OMP≌△ONP的依据是()A.SAS B.ASA C.HL D.SSS4.过△ABC的顶点A,作BC边上的高,下列作法正确的是()A.B.C.D.5.如图所示,利用尺规作∠AOB的平分线,做法如下:①在OA、OB上分别截取OD、OC,使OD=OC;②分别以D、C为圆心,大于DC的长为半径画弧,两弧在∠AOB内交于一点E;③画射线OE,射线OE就是∠AOB的角平分线.在用尺规作角平分线时,用到的三角形全等的判定方法是()A.SSS B.ASA C.AAS D.SAS6.如图,在Rt△ABC中,∠B=90°,以点A为圆心,适当长为半径画弧,分别交AB,AC于点D,E,再分别以点D、E为圆心,大于DE为半径画弧,两弧交于点F,作射线AF交边BC于点G,BG=1,AC=3,则△ACG的面积是()A.1B.C.2D.7.在△ABC的BC边上找一点P,使得P A+PC=BC.下面找法正确的是()A.B.C.D.8.小华利用已学知识用尺规作一个角等于已知角,具体情况如图所示,则小华得到△OCD与△O'C'D'全等的依据是()A.AAS B.ASA C.SAS D.SSS9.如图,在△ABC中,∠C=90°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC 于点D.若BD=3,BC=5,则点D到AB边的距离是()A.1B.2C.3D.410.如图,在长方形中,∠ACB=72°,依据尺规作图的痕迹,则∠α的度数是().A.126°B.72°C.63°D.54°二.填空题(共5小题)11.如图,长方形OABC中,OC=12,OA=5.以原点O为圆心,对角线OB长为半径画弧交数轴于点D,则数轴上点D表示的数是.12.如图,∠AOB=30°,以点O为圆心,任意长为半径作弧分别交OB,OA于点C,D,分别以点C,D为圆心,大于CD的长为半径作弧,两弧交于点E,过E点作EF∥OB,EG⊥OB于点G,若OF=2,则EG的长为.13.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC 于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则S△DAC:S△ABC=.14.如图,用直尺和圆规作一个角等于已知角的过程中,依据全等三角形的性质可得∠O=∠O',这里判断△C'O'D'≌△COD的依据是.15.如图,在Rt△ABC中,∠C=90°,按以下步骤作图:①以B为圆心,以任意长为半径作弧,分别交AB,BC于点M,N;②分别以M,N为圆心,以大于的长为半径作弧,两弧在∠ABC 内交于点P;③作射线BP,交AC于点D.若S△ABD=16,AB=8,则线段CD的长为.三.解答题(共6小题)16.尺规作图.在三角形ABC中,以点A为顶点作菱形ADEF,使点D、E、F分别在边AC、BC和AB上.17.如图,正方形网格中的每个小正方形的边长都是1,每个小方格的顶点叫做格点,以格点为顶点分别按下列要求画三角形:(1)在图1中画一个直角三角形,使它的三边长都是有理数;(2)在图2中画一个直角三角形,使它的三边长都是无理数;(3)在图3中画一个等腰三角形,使它的三边长都是无理数(和图2画的三角形不全等).18.小明在做浙教版七上课本第75页第6题:“利用如图4×4方格(每个方格边长为1),作出面积为8的正方形”时,发现利用分割正方形的方法,可以作出面积为8的正方形(如图1阴影部分),进一步开展探究活动:[探究1]图1中正方形边长为.[探究2]仿照上述作法,小明又作出一个正方形(如图2阴影部分),则该正方形面积为,边长为.[探究3]如图3,是5×5方格(每个方格边长为1),仿照上述作法,请你画出一个面积为13的正方形.19.岳池县体育馆今夏外围绿化施工,有一块三角形空地,要在上面栽种四种不同的花草,需将该空地分成面积相等的四块,请你设计出三种不同的划分方案.20.如图,在△ABC中,∠BAC的角平分线交BC于点D.(1)用尺规完成以下基本作图:作AD的垂直平分线分别与AB、AC、AD交于点E、点F、点H.(保留作图痕迹,不写作法)(2)在(1)所作的图形中,连接DE、DF,完成下面证明HE=HF的过程.证明:∵∠BAC的角平分线交BC于点D,∴∠BAD=①.∵EF垂直平分AD,∴∠AHF=∠DHE=90°,AH=②,③,∴∠BAD=∠ADE,∴∠CAD=∠ADE,∴△AHF≌④(ASA).∴HE=HF.21.如图,在直角坐标系中A(﹣3,4)、B(2,1)、C(3,3).(1)在平面直角坐标系中画出△ABC;(2)三角形ABC的面积为;(3)P是x轴上的动点,则P A+PB的最小值为.2023年中考数学专题复习--尺规作图参考答案与试题解析一.选择题(共10小题)1.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC 于点M和N,再分别以M、N为圆心,大于的长为半径画弧,两弧交于点P.连接AP 并延长交BC于点D,则下列说法中:①AD平分∠BAC;②∠ADC=60°;③点D在AB 的垂直平分线上;④S△ABD=2S△ACD.其中正确的个数是()A.1B.2C.3D.4【分析】由题意得AD是∠BAC的平分线,可判断说法①;由已知条件可得∠BAC=60°,则∠CAD=∠BAD=∠BAC=30°,根据∠ADC=∠B+∠BAD可判断说法②;过点D作DE⊥AB于点E,易知△ABD为等腰三角形,则DE为△ABD的中线,即点D在AB的垂直平分线上,可判断说法③;证明△ACD≌△AED,△ADE≌△BDE,可得S△ACD=S△ADE=S△BDE,即可判断说法④.【解答】解:由题意可得,AD是∠BAC的平分线,故说法①正确;∵∠C=90°,∠B=30°,∴∠BAC=180°﹣90°﹣30°=60°,∴∠CAD=∠BAD=∠BAC=30°,∴∠ADC=∠B+∠BAD=60°,故说法②正确;过点D作DE⊥AB于点E,∵∠B=∠BAD=30°,∴△ABD为等腰三角形,∴DE为△ABD的中线,∴点D在AB的垂直平分线上,故说法③正确;∵AD是∠BAC的平分线,∠C=∠AED=90°,∴CD=DE,∵∠CAD=∠BAD,∴△ACD≌△AED(AAS),∴S△ACD=S△ADE,∵∠AED=∠BED=90°,AE=BE,DE=DE,∴△ADE≌△BDE(SAS),∴S△ADE=S△BDE,∴S△ACD=S△ADE=S△BDE,∴S△DAC:S△ABC=1:3,∴S△ABD=2S△ACD.故说法④正确.∴正确的说法有4个,故选:D.【点评】本题考查作图﹣基本作图,尺规作图、角平分线的性质、等腰三角形的性质、全等三角形的判定与性质,熟练掌握相关知识点是解答本题的关键.2.如图,以∠CAB顶点A为圆心,适当长为半径画弧,分别交AB,AC于点E、F,再分别以点E、F为圆心,大于长为半径画弧,两弧交于点D,作射线AD,则说明∠CAD=∠DAB的依据是()A.SSS B.SAS C.ASA D.AAS【分析】根据作图过程可得,AF=AE,DF=DE,又AD=AD,可以证明△F AD≌△EAD,即可得结论.【解答】解:根据作图过程可知:AF=AE,DF=DE,又AD=AD,∴△F AD≌△EAD(SSS),∴∠CAD=∠BAD.故选:A.【点评】本题考查了作图﹣基本作图、全等三角形的判定与性质、角平分线的性质,解决本题的关键是掌握基本作图方法.3.用三角尺可以画角平分线:如图所示,在已知∠AOB的两边上分别取点M,N,使OM=ON,再过点M画OA的垂线,过点N画OB的垂线,两垂线交于点P,画射线OP.可以得到△OMP ≌△ONP,所以∠AOP=∠BOP.那么射线OP就是∠AOB的平分线.△OMP≌△ONP的依据是()A.SAS B.ASA C.HL D.SSS【分析】根据作图过程可以证明Rt△OMP≌Rt△ONP(HL),进而可得结论.【解答】解:∵∠OMP=∠ONP=90°,在Rt△OMP和Rt△ONP中,,∴Rt△OMP≌Rt△ONP(HL),∴∠POM=∠PON,∴射线OP就是∠AOB的平分线.故选:C.【点评】本题考查全等三角形的判定和性质,作图﹣复杂作图,角平分线的判定等知识,解题的关键是正确寻找全等三角形解决问题.4.过△ABC的顶点A,作BC边上的高,下列作法正确的是()A.B.C.D.【分析】根据三角形高线的定义:过三角形的顶点向对边引垂线,顶点和垂足之间的线段叫做三角形的高线解答.【解答】解:△ABC中BC边上的高的是D选项.故选:D.【点评】本题考查了三角形的角平分线、中线、高线,熟记高线的定义是解题的关键.5.如图所示,利用尺规作∠AOB的平分线,做法如下:①在OA、OB上分别截取OD、OC,使OD=OC;②分别以D、C为圆心,大于DC的长为半径画弧,两弧在∠AOB内交于一点E;③画射线OE,射线OE就是∠AOB的角平分线.在用尺规作角平分线时,用到的三角形全等的判定方法是()A.SSS B.ASA C.AAS D.SAS【分析】利用基本作图得到OC=OD,CE=DE,加上OE为公共边,则利用“SSS”可判断△OCE≌△ODE,从而得到∠EOC=∠EOD.【解答】解:由作法得OC=OD,CE=DE,而OE=OE,所以△OCE≌△ODE(SSS),所以∠EOC=∠EOD,即射线OE就是∠AOB的角平分线.故选:A.【点评】本题考查了作图﹣复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了全等三角形的判定.6.如图,在Rt△ABC中,∠B=90°,以点A为圆心,适当长为半径画弧,分别交AB,AC于点D,E,再分别以点D、E为圆心,大于DE为半径画弧,两弧交于点F,作射线AF交边BC于点G,BG=1,AC=3,则△ACG的面积是()A.1B.C.2D.【分析】利用基本作图得到AG平分∠BAC,利用角平分线的性质得到G点到AC的距离为1,然后根据三角形面积公式计算△ACG的面积.【解答】解:由作法得AG平分∠BAC,∴G点到AC的距离等于BG的长,即G点到AC的距离为1,所以△ACG的面积=×3×1=.故选:B.【点评】本题考查了作图﹣基本作图:熟练掌握5种基本作图是解决问题的关键.也考查了角平分线的性质.7.在△ABC的BC边上找一点P,使得P A+PC=BC.下面找法正确的是()A.B.C.D.【分析】先利用已知条件证明P A=PB,根据线段垂直平分线的性质得到P点为AB的垂直平分线与BC的交点,然后利用基本作图对各选项进行判断.【解答】解:∵P A+PC=BC,而BC=BP+PC,∴P A=PB,∴P点为AB的垂直平分线与BC的交点.故选:D.【点评】本题考查了作图﹣复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了线段垂直平分线的性质.8.小华利用已学知识用尺规作一个角等于已知角,具体情况如图所示,则小华得到△OCD与△O'C'D'全等的依据是()A.AAS B.ASA C.SAS D.SSS【分析】利用作图痕迹得到OC=OD=OC′=OD′,CD=C′D′,则根据全等三角形的判定方法得到△OCD≌△O'C'D',所以有∠O=∠O′,【解答】解:由作图痕迹得OC=OD=OC′=OD′,CD=C′D′,所以△OCD≌△O'C'D'(SSS),所以∠O=∠O′.故选:D.【点评】本题考查了作图﹣基本作图:熟练掌握5种基本作图是解决问题的关键.也考查了全等三角形的判定.9.如图,在△ABC中,∠C=90°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC 于点D.若BD=3,BC=5,则点D到AB边的距离是()A.1B.2C.3D.4【分析】由作法得AD平分∠BAC,过D点作DH⊥AB于H,根据角平分线的性质得到DH =DC.【解答】解:∵BD=3,BC=5,∴DC=BC﹣BD=2,由作法得AD平分∠BAC,过D点作DH⊥AB于H,如图,∵AD平分∠BAD,∠C=90°,DH⊥AB,∴DH=DC=2,.故选:B.【点评】本题主要考查作图﹣基本作图,解题的关键是熟练掌握角平分线的尺规作图和角平分线的性质.10.如图,在长方形中,∠ACB=72°,依据尺规作图的痕迹,则∠α的度数是().A.126°B.72°C.63°D.54°【分析】依据作图痕迹可得,EF是AC的垂直平分线,BE是∠BAD的角平分线.根据对顶角相等、平行线的性质以及三角形内角和定理,即可得到∠α的度数.【解答】解:∵AD∥BC,∴∠DAC=∠ACB=72°,又∵AE平分∠DAC,∴∠EAC=∠DAC=36°,又∵EF垂直平分AC,∴∠AFE=90°,∴∠AEF=54°,∴∠α=54°,故选:D.【点评】本题主要考查了基本作图,线段垂直平分线以及角平分线的定义,掌握对顶角相等、平行线的性质以及三角形内角和定理是解决问题的关键.二.填空题(共5小题)11.如图,长方形OABC中,OC=12,OA=5.以原点O为圆心,对角线OB长为半径画弧交数轴于点D,则数轴上点D表示的数是﹣13.【分析】利用作法得到OD=OB,再利用勾股定理得到OB=13,则OD=13,然后利用数轴表示数的方法得到点D表示的数.【解答】解:由作法得OD=OB,∵四边形ABCO为矩形,∴∠BCO=90°,∵OC=12,OA=5,∴OB==13,∴OD=13,∴数轴上点D表示的数是﹣13.故答案为:﹣13.【点评】本题考查了作图﹣复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了数轴和勾股定理.12.如图,∠AOB=30°,以点O为圆心,任意长为半径作弧分别交OB,OA于点C,D,分别以点C,D为圆心,大于CD的长为半径作弧,两弧交于点E,过E点作EF∥OB,EG⊥OB于点G,若OF=2,则EG的长为1.【分析】过E点作EH⊥OA于H,如图,利用基本作图得到OE平分∠AOB,根据角平分线的性质得到∠HOE=∠EOG,EG=EH,再根据平行线的性质得到∠EFH=30°,∠FEO=∠EOG,接着证明FE=FO=2,然后利用含30度角的直角三角形三边的关系得到EH的长,从而得到EG的长.【解答】解:过E点作EH⊥OA于H,如图,由作法得OE平分∠AOB,则∠HOE=∠EOG,∵EG⊥OB,EH⊥OA,∴EG=EH,∵EF∥OB,∴∠EFH=∠AOB=30°,∠FEO=∠EOG,∴∠HOE=∠FEO,∴FE=FO=2,在Rt△EFH中,∵∠EFH=30°,∴EH=EF=1.故答案为:1.【点评】本题考查了作图﹣基本作图:熟练掌握5种基本作图是解决问题的关键.也考查了平行线的性质和角平分线的性质.13.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC 于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则S△DAC:S△ABC=1:3.【分析】利用基本作图得AD平分∠BAC,利用角平分线的定义计算出∠BAD=∠CAD=30°,由∠BAD=∠B得到DA=DB,利用含30度的直角三角形三边的关系得到AD=2CD,则BD=2CD,所以BC=3CD,然后根据三角形面积公式可得结论.【解答】解:由作法可知:AD平分∠BAC,∵∠C=90°,∠B=30°,∴∠BAC=60°,∵∠BAD=∠CAD=30°,∵∠BAD=∠B,∴DA=DB,∵AD=2CD,∴BD=2CD,∴BC=3CD,∴S△DAC:S△ABC=1:3,故答案为:1:3.【点评】本题考查了作图﹣基本作图,角平分线的性质,含30度角的直角三角形,熟练掌握基本作图方法是解决问题的关键.14.如图,用直尺和圆规作一个角等于已知角的过程中,依据全等三角形的性质可得∠O=∠O',这里判断△C'O'D'≌△COD的依据是SSS.【分析】利用作图痕迹得OC=OD=OC′=OD′,CD=C′D′,则根据“SSS”可判断△C'O'D'≌△COD,从而得到∠O=∠O′.【解答】解:由作图痕迹得OC=OD=OC′=OD′,CD=C′D′,∴△C'O'D'≌△COD(SSS),∴∠O=∠O′.故答案为:SSS.【点评】本题考查了作图﹣复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了全等三角形的判定与性质.15.如图,在Rt△ABC中,∠C=90°,按以下步骤作图:①以B为圆心,以任意长为半径作弧,分别交AB,BC于点M,N;②分别以M,N为圆心,以大于的长为半径作弧,两弧在∠ABC 内交于点P;③作射线BP,交AC于点D.若S△ABD=16,AB=8,则线段CD的长为4.【分析】过D点作DH⊥AB于H,如图,利用基本作图得到BD平分∠ABC,则根据角平分线的性质得到DH=DC,再利用三角形面积公式计算出DH,从而得到DC的长.【解答】解:过D点作DH⊥AB于H,如图,由作法得BD平分∠ABC,∴DH=DC,∵S△ABD=16,∴AB•DH=16,∴DH==4,∴DC=4.故答案为:4.【点评】本题考查了作图﹣复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了角平分线的性质.三.解答题(共6小题)16.尺规作图.在三角形ABC中,以点A为顶点作菱形ADEF,使点D、E、F分别在边AC、BC和AB上.【分析】作△ABC的角平分线AE,作线段AE的垂直平分线交AB于D,交AC于F,连接DE,EF,四边形ADEF即为所求【解答】解:先作∠BAC的平分线交BC边于点E,再作线段AE的垂直平分线交AC于点D,交AB于点F,连接DE、EF,则四边形ADEF即为所求.证明:△EAD≌△EAF(SAS),则F A=DA,而由线段的垂直平分线的性质可得DA=DE、F A=FE,∴F A=DA=DE=FE,∴四边形ADEF为菱形,则菱形ADEF即为所求作的菱形.【点评】本题考查了菱形的判定和线段的垂直平分线的性质在几何作图中的应用,熟练掌握相关性质及定理是解题的关键.17.如图,正方形网格中的每个小正方形的边长都是1,每个小方格的顶点叫做格点,以格点为顶点分别按下列要求画三角形:(1)在图1中画一个直角三角形,使它的三边长都是有理数;(2)在图2中画一个直角三角形,使它的三边长都是无理数;(3)在图3中画一个等腰三角形,使它的三边长都是无理数(和图2画的三角形不全等).【分析】(1)画一个边长3,4,5的三角形即可;(2)利用勾股定理,找长为、2、的线段,画三角形即可.(3)利用勾股定理作一个边长为的正方形即可得.【解答】解:(1)如图1所示,Rt△ABC即为所求;(2)如图所示,Rt△DEF即为所求;(3)如图所示,OPQ即为所求.【点评】此题主要考查了作图与应用作图.本题需仔细分析题意,结合图形,利用勾股定理即可解决.18.小明在做浙教版七上课本第75页第6题:“利用如图4×4方格(每个方格边长为1),作出面积为8的正方形”时,发现利用分割正方形的方法,可以作出面积为8的正方形(如图1阴影部分),进一步开展探究活动:[探究1]图1中正方形边长为2.[探究2]仿照上述作法,小明又作出一个正方形(如图2阴影部分),则该正方形面积为10,边长为.[探究3]如图3,是5×5方格(每个方格边长为1),仿照上述作法,请你画出一个面积为13的正方形.【分析】[探究1]利用勾股定理求解;[探究2]利用勾股定理求出正方形的边长即可;[探究3]利用数形结合的思想解决问题即可.【解答】解:[探究1]图1中,正方形的边长==2.故答案为:2.[探究2]如图2中,正方形的边长==10,面积为10.故答案为:10,;[探究3]如图3中,正方形ABCD即为所求.【点评】本题考查作图﹣应用与设计作图,正方形的性质等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.19.岳池县体育馆今夏外围绿化施工,有一块三角形空地,要在上面栽种四种不同的花草,需将该空地分成面积相等的四块,请你设计出三种不同的划分方案.【分析】图(1)中取AB,BC,AC的中点E,D,F,连接AD,DE,DF即可;图(2)中取AB,BC,AC的中点E,D,F,连接EF,DE,DF即可;图(3)中取线段BC的三等分点D,E,F,连接AD,AE,AF即可.【解答】解:图形如图所示:【点评】本题考查作图﹣应用与设计作图,三角形的面积等知识,解题的关键是理解题意,灵活运用所学知识解决问题.20.如图,在△ABC中,∠BAC的角平分线交BC于点D.(1)用尺规完成以下基本作图:作AD的垂直平分线分别与AB、AC、AD交于点E、点F、点H.(保留作图痕迹,不写作法)(2)在(1)所作的图形中,连接DE、DF,完成下面证明HE=HF的过程.证明:∵∠BAC的角平分线交BC于点D,∴∠BAD=①∠CAD.∵EF垂直平分AD,∴∠AHF=∠DHE=90°,AH=②DH,③AE=DE,∴∠BAD=∠ADE,∴∠CAD=∠ADE,∴△AHF≌④△DHE(ASA).∴HE=HF.【分析】(1)根据题意作出图形即可;(2)根据角平分线定义得到∠BAD=①∠CAD.根据线段垂直平分线的性质得到∠AHF =∠DHE=90°,AH=②DH,③AE=DE,根据全等三角形的判定和性质是解题的关键.【解答】解:(1)直线EF即为所求;(2)证明:∵∠BAC的角平分线交BC于点D,∴∠BAD=①∠CAD.∵EF垂直平分AD,∴∠AHF=∠DHE=90°,AH=②DH,③AE=DE,∴∠BAD=∠ADE,∴∠CAD=∠ADE,∴△AHF≌④△DHE(ASA).∴HE=HF.故答案为:∠CAD,DH,AE=DE,△DHE.【点评】本题考查了作图﹣基本作图,角平分线定义,全等三角形的判定和性质,线段垂直平分线的性质,正确都作出图形是解题的关键.21.如图,在直角坐标系中A(﹣3,4)、B(2,1)、C(3,3).(1)在平面直角坐标系中画出△ABC;(2)三角形ABC的面积为;(3)P是x轴上的动点,则P A+PB的最小值为5.【分析】(1)根据A(﹣3,4)、B(2,1)、C(3,3),即可在平面直角坐标系中画出△ABC;(2)根据割补法即可求出三角形ABC的面积;(3)找点B关于x轴的对称点B′,连接AB′交x轴于点P,可得P A+PB的最小值为AB′的长即可.【解答】解:(1)如图,△ABC即为所求;(2)三角形ABC的面积=4×6﹣×3×5﹣×1×2﹣×1×6=;故答案为:;(3)如图,点B关于x轴的对称点B′,连接AB′交x轴于点P,∴PB=PB′,∴P A+PB的最小值=AB′==5.故答案为:5.【点评】本题考查了作图﹣复杂作图,坐标与图形性质,三角形的面积,轴对称﹣最短路线问题,解决本题的关键是掌握轴对称的性质.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题14 相交线与平行线、三角形及尺规作图
学
校:___________姓名:___________班级:___________
1.【江苏省宿迁市2015年中考数学试题】如图所示,直线被直线所截,与是()
A、同位角
B、内错角
C、同旁内角
D、邻补角
【答案】A
故选A.
【考点定位】三线八角.
2. 【江苏省苏州市吴中、相城、吴江区2015届九年级中考一模数学试题】如图,已知AB∥CD,BC平分∠ABE,∠C=34°,则∠BED的度数是()
A.17° B.34° C.56° D.68°
【答案】D.
【解析】首先由AB∥CD,求得∠ABC的度数,又由BC平分∠ABE,求得∠CBE的度数,然后根据三角形外角的性质求得∠BED的度数.∵AB∥CD,∴∠ABC=∠C=34°,∵BC平分∠ABE,∴∠CBE=∠ABC=34°,∴∠BED=∠C+∠CBE=68°.故选D.
【考点定位】平行线的性质.
3.【江苏省常州市2015年中考数学试题】如图,BC⊥AE于点C,CD∥AB,∠B=40°,则∠ECD的度数是()
A.70° B.60° C.50° D.40°
【答案】C.
【考点定位】1.平行线的性质;2.垂线.
4.【江苏省苏州市吴中、相城、吴江区2015届九年级中考一模数学试题】在△ABC中,∠C=90°,∠A=60°,AC=1,D在BC上,E在AB上,使得△ADE为等腰直角三角形,∠ADE=90°,则BE的长为()
A.4-2B.2-C.-1D.(-1)
【答案】A.
【解析】过点EF作∥AC,交BC于点F,证明△ADC和△DEF全等,得出DF=AC=1,设CD=x,利用平行线分线段成比例定理,列出比例式,列方程解答.过点E作EF作∥AC,交BC于点F,
∴∠BFC=∠C=90°,∵∠C=90°,∠BAC=60°,∴∠B=30°∴AB=2AC=2,
在Rt△ABC中,由勾股定理得:CB=,
∵△ADE是等腰直角三角形,∴DE=DA,
∵∠DAC+∠ADC=90°,∠EDF+∠ADC=90°,∴∠DAC=∠EDF
在△ADC和△DEF中,,∴△ADC≌△DEF(AAS),∴DF=AC=1,
设CD=x,所以EF=x,BF=-1-x,∵EF∥AC,∴,即,。