图的遍历

合集下载

图的遍历算法

图的遍历算法

1图的遍历问题在实践中常常遇到这样的问题:给定n个点,从任一点出发对所有的点访问一次并且只访问一次。

如果用图中的顶点表示这些点,图中的边表示可能的连接,那么这个问题就可以表示成图的遍历问题,即从某个顶点出发,沿着某条搜索路径对图中每个顶点各做一次且仅做一次访问。

图的遍历操作和树的遍历操作功能相似,是图的一种基本操作,图的许多其它操作都是建立在遍历操作的基础上。

由于图结构本身的复杂性,所以图的遍历操作也比较复杂,主要表现在以下几个方面:(1) 在图结构中,没有一个确定的首结点,图中任意一个顶点都可以作为第一个被访问的结点。

(2) 在非连通图中,从一个顶点出发,只能够访问它所在的连通分量上的所有顶点,因此,还需要考虑如何选取下一个出发点以访问图中其余的连通分量。

(3) 在图结构中,如果有回路存在,那么一个顶点被访问后,有可能沿回路又回到该顶点。

⑷在图结构中,一个顶点可以和其它多个顶点相连,当这样的顶点访问过后,存在如何选取下一个要访问的顶点的问题。

基于以上分析,图的遍历方法目前有深度优先搜索(DFS)和广度优先搜索(BFS)两种算法。

下面将介绍两种算法的实现思路,分析算法效率并编程实现。

1.1深度优先搜索算法深度优先搜索算法是树的先根遍历的推广,它的实现思想是:从图G的某个顶点V o出发,访问V o,然后选择一个与V o相邻且没被访问过的顶点V i访问,再从V i出发选择一个与V i相邻且未被访问的顶点V j进行访问,依次继续。

如果当前被访问过的顶点的所有邻接顶点都已被访问,贝U退回已被访问的顶点序列中最后一个拥有未被访问的相邻顶点的顶点W,从W出发按同样的方法向前遍历,直到图中所有顶点都被访问。

其递归算法如下:Boolean visited[MAX_VERTEX_NUM]; // 访问标志数组Status (*VisitFunc)(int v); //VisitFunc是访问函数,对图的每个顶点调用该函数void DFSTraverse (Graph G Status(*Visit)(i nt v)){VisitF unc = Visit;for(v=0; vvG.vex num; ++v)visited[v] = FALSE; //访问标志数组初始化for(v=0; v<G .vex num; ++v)if(!visited[v])DFS(G v); //对尚未访问的顶点调用DFS}void DFS(Graph G int v){ //从第v个顶点出发递归地深度优先遍历图Gvisited[v]=TRUE; VisitFunc(v); // 访问第v 个顶点for(w=FirstAdjVex(G ,v); w>=0;w=NextAdjVex(G ,v,w))//FirstAdjVex返回v的第一个邻接顶点,若顶点在G中没有邻接顶点,则返回空(0)。

第15讲图的遍历

第15讲图的遍历

V6
V8
V8
V7
V5 深度优先生成树
V8 V1
V2
V3
V4 V5 V6 V7
V8 广度优先生成树
27
例A
B
CD E
F
GH
I
K
J
L
M
A
D
G
LCF
KI E
H M
JB
深度优先生成森林
28
二、图的连通性问题
▪1、生成树和生成森林
▪ 说明
G
▪ 一个图可以有许多棵不同的生成树
KI
▪ 所有生成树具有以下共同特点:
g.NextAdjVex(v, w))
{
if (g.GetTag(w) == UNVISITED)
{
g.SetTag(w, VISITED);
g.GetElem(w, e);
Visit(e);
q.InQueue(w);
}
}}}
24
一、图的遍历 两种遍历的比较
V0
V1 V4
V0
V1 V4
V3
V2 V5
16
一、图的遍历
广度优先遍历序列?入队序列?出队序列?
V1
V2
V3
V1
V4
V5 V6
V7
V8
遍历序列: V1
17
一、图的遍历
广度优先遍历序列?入队序列?出队序列?
V1
V2
V3
V2 V3
V4
V5 V6
V7
V8
遍历序列: V1 V2 V3
18
一、图的遍历
广度优先遍历序列?入队序列?出队序列?
V1
V2

图的遍历及生成树

图的遍历及生成树

• •邻接表的DFS算法
void DFS(ALGraph G, int v) { ArcNode *p;
visited[v] = 1; /*置已访问标记*/ printf("%d ", v); /*输出被访问顶点的编号*/ p = G.vertices[v].firstarc; /*p指向顶点v的第一个邻接点*/ while (p!=NULL) {
•v11
•v1,
•v2
•v3
•v2,
•v4,
•v5
•v8,
•v4
•v6
•v7
•v5,
•v3,
•v8
•v6,
•v7

•图的DFS算法一般描述
•int visited[MAXVEX]; //访问标志数组
•void DFSTraverse(Graph G)
•{ //对图G作深度优先遍历
• for( v=0; v<G.vexnum; ++v ) visited[v]=FALSE;
•} // DFS1
•G.arcs[v][j] =1
•有邻接点
•visited [n]=0
•未访问过

分析:
在遍历图时,对图中每个顶点至多调用一次DFS函数 ,因为一旦某个顶点被标志成已被访问,就不再从它出发 进行搜索。
因此,遍历图的过程实质上是对每个顶点查找其邻接 点的过程。其耗费的时间则取决于所采用的存储结构。 如果用邻接矩阵来表示图,遍历图中每一个顶点都要从 头扫描该顶点所在行,因此遍历全部顶点所需的时间为 O(n2)。 如果用邻接表来表示图,虽然有 2e 个表结点,但只需扫 描 e 个结点即可完成遍历,加上访问 n个头结点的时间, 因此遍历图的时间复杂度为O(n+e)。

图的遍历的实验报告

图的遍历的实验报告

图的遍历的实验报告图的遍历的实验报告一、引言图是一种常见的数据结构,它由一组节点和连接这些节点的边组成。

图的遍历是指从图中的某个节点出发,按照一定的规则依次访问图中的所有节点。

图的遍历在许多实际问题中都有广泛的应用,例如社交网络分析、路线规划等。

本实验旨在通过实际操作,深入理解图的遍历算法的原理和应用。

二、实验目的1. 掌握图的遍历算法的基本原理;2. 实现图的深度优先搜索(DFS)和广度优先搜索(BFS)算法;3. 比较并分析DFS和BFS算法的时间复杂度和空间复杂度。

三、实验过程1. 实验环境本实验使用Python编程语言进行实验,使用了networkx库来构建和操作图。

2. 实验步骤(1)首先,我们使用networkx库创建一个包含10个节点的无向图,并添加边以建立节点之间的连接关系。

(2)接下来,我们实现深度优先搜索算法。

深度优先搜索从起始节点开始,依次访问与当前节点相邻的未访问过的节点,直到遍历完所有节点或无法继续访问为止。

(3)然后,我们实现广度优先搜索算法。

广度优先搜索从起始节点开始,先访问与当前节点相邻的所有未访问过的节点,然后再访问这些节点的相邻节点,依此类推,直到遍历完所有节点或无法继续访问为止。

(4)最后,我们比较并分析DFS和BFS算法的时间复杂度和空间复杂度。

四、实验结果经过实验,我们得到了如下结果:(1)DFS算法的时间复杂度为O(V+E),空间复杂度为O(V)。

(2)BFS算法的时间复杂度为O(V+E),空间复杂度为O(V)。

其中,V表示图中的节点数,E表示图中的边数。

五、实验分析通过对DFS和BFS算法的实验结果进行分析,我们可以得出以下结论:(1)DFS算法和BFS算法的时间复杂度都是线性的,与图中的节点数和边数呈正比关系。

(2)DFS算法和BFS算法的空间复杂度也都是线性的,与图中的节点数呈正比关系。

但是,DFS算法的空间复杂度比BFS算法小,因为DFS算法只需要保存当前路径上的节点,而BFS算法需要保存所有已访问过的节点。

计算机中图的名词解释

计算机中图的名词解释

计算机中图的名词解释在计算机领域中,图(Graph)是一种常见的数据结构,用于描述对象之间的关系和相互作用。

图的概念最早由数学家欧拉提出,并且在计算机科学中得到广泛运用。

本文将从图的基本概念和操作开始,逐步介绍计算机中图的相关术语和应用。

1. 图的基本概念图由节点(Node)和边(Edge)组成。

节点表示对象或实体,边表示节点之间的连接关系。

图可以分为有向图(Directed Graph)和无向图(Undirected Graph)。

在有向图中,边具有方向性,表示从一个节点流向另一个节点;而在无向图中,边没有方向性,表示两个节点之间的相互关系。

2. 图的存储方式为了在计算机中表示和处理图,常见的存储方式有邻接矩阵(Adjacency Matrix)和邻接表(Adjacency List)。

邻接矩阵是一个二维数组,其中行和列表示节点,矩阵的值表示节点之间是否有边相连。

邻接表则使用链表的形式来表示节点之间的连接关系,每个节点对应一个链表,链表中存储了与该节点相连的其他节点。

3. 图的遍历图的遍历是指沿着图中的路径,依次访问所有节点的过程。

常见的图遍历算法有深度优先搜索(Depth-First Search)和广度优先搜索(Breadth-First Search)。

深度优先搜索先选择一个起始节点,沿着路径一直深入直到无法继续,然后回溯到其他未访问的节点,继续深入;而广度优先搜索则是从起始节点开始,并逐层扩展,逐层访问。

4. 最短路径算法最短路径算法用于计算两个节点之间的最短路径,即路径上边的权值之和最小。

其中,最常用的最短路径算法是狄克斯特拉算法(Dijkstra Algorithm)。

该算法通过逐步更新节点到其他节点的距离,找到起始节点到目标节点的最短路径。

5. 拓扑排序拓扑排序(Topological Sorting)是一种对有向无环图进行排序的算法。

在有向图中,如果节点 A 的边指向节点 B,那么 B 必须在 A 之后才能出现在排序结果中。

图的遍历算法实验报告

图的遍历算法实验报告

图的遍历算法实验报告图的遍历算法实验报告一、引言图是一种常用的数据结构,用于描述事物之间的关系。

在计算机科学中,图的遍历是一种重要的算法,用于查找和访问图中的所有节点。

本实验旨在探究图的遍历算法,并通过实验验证其正确性和效率。

二、实验目的1. 理解图的基本概念和遍历算法的原理;2. 实现图的遍历算法,并验证其正确性;3. 比较不同遍历算法的效率。

三、实验方法1. 实验环境:使用Python编程语言进行实验;2. 实验步骤:a. 构建图的数据结构,包括节点和边的定义;b. 实现深度优先搜索(DFS)算法;c. 实现广度优先搜索(BFS)算法;d. 验证算法的正确性,通过给定的图进行遍历;e. 比较DFS和BFS的效率,记录运行时间。

四、实验结果1. 图的构建:我们选择了一个简单的无向图作为实验对象,包含6个节点和7条边。

通过邻接矩阵表示图的关系。

```0 1 1 0 0 01 0 1 1 0 01 1 0 0 1 10 1 0 0 0 00 0 1 0 0 00 0 1 0 0 0```2. DFS遍历结果:从节点0开始,遍历结果为0-1-2-4-5-3。

3. BFS遍历结果:从节点0开始,遍历结果为0-1-2-3-4-5。

4. 算法效率比较:我们记录了DFS和BFS算法的运行时间。

经实验发现,在这个图的规模下,DFS算法的运行时间为0.001秒,BFS算法的运行时间为0.002秒。

可以看出,DFS算法相对于BFS算法具有更高的效率。

五、讨论与分析1. 图的遍历算法能够帮助我们了解图中的节点之间的关系,有助于分析和解决实际问题。

2. DFS算法和BFS算法都可以实现图的遍历,但其遍历顺序和效率有所不同。

DFS算法会优先访问深度较大的节点,而BFS算法会优先访问离起始节点最近的节点。

3. 在实验中,我们发现DFS算法相对于BFS算法具有更高的效率。

这是因为DFS算法采用了递归的方式,遍历过程中不需要保存所有节点的信息,而BFS 算法需要使用队列保存节点信息,导致额外的空间开销。

图的遍历实验报告

图的遍历实验报告

图的遍历实验报告图的遍历实验报告一、引言图是一种常见的数据结构,广泛应用于计算机科学和其他领域。

图的遍历是指按照一定规则访问图中的所有节点。

本实验通过实际操作,探索了图的遍历算法的原理和应用。

二、实验目的1. 理解图的遍历算法的原理;2. 掌握深度优先搜索(DFS)和广度优先搜索(BFS)两种常用的图遍历算法;3. 通过实验验证图的遍历算法的正确性和效率。

三、实验过程1. 实验环境准备:在计算机上安装好图的遍历算法的实现环境,如Python编程环境;2. 实验数据准备:选择合适的图数据进行实验,包括图的节点和边的信息;3. 实验步骤:a. 根据实验数据,构建图的数据结构;b. 实现深度优先搜索算法;c. 实现广度优先搜索算法;d. 分别运行深度优先搜索和广度优先搜索算法,并记录遍历的结果;e. 比较两种算法的结果,分析其异同点;f. 对比算法的时间复杂度和空间复杂度,评估其性能。

四、实验结果与分析1. 实验结果:根据实验数据和算法实现,得到了深度优先搜索和广度优先搜索的遍历结果;2. 分析结果:a. 深度优先搜索:从起始节点出发,一直沿着深度方向遍历,直到无法继续深入为止。

该算法在遍历过程中可能产生较长的路径,但可以更快地找到目标节点,适用于解决一些路径搜索问题。

b. 广度优先搜索:从起始节点出发,按照层次顺序逐层遍历,直到遍历完所有节点。

该算法可以保证找到最短路径,但在遍历大规模图时可能需要较大的时间和空间开销。

五、实验总结1. 通过本次实验,我们深入理解了图的遍历算法的原理和应用;2. 掌握了深度优先搜索和广度优先搜索两种常用的图遍历算法;3. 通过实验验证了算法的正确性和效率;4. 在实际应用中,我们需要根据具体问题的需求选择合适的遍历算法,权衡时间复杂度和空间复杂度;5. 进一步研究和优化图的遍历算法,可以提高算法的性能和应用范围。

六、参考文献[1] Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to Algorithms (3rd ed.). MIT Press.[2] Sedgewick, R., & Wayne, K. (2011). Algorithms (4th ed.). Addison-Wesley Professional.。

图的两种遍历

图的两种遍历

输入:
9 10 12 13 17 28 27 34 45 47 56 ram xy; var map:array[1..20,1..20] of integer; visited,q:array[1..100] of integer; //使用辅助队列Q和访问标志数组visited。 n,m,a,b,h,r,i,j:integer; procedure bfs(); //按广度优先非递归遍历图,n个顶点,编号为1..n。 var tmp:integer; begin while h<=r do begin tmp:=q[h]; //队头元素出队并置为tmp h:=h+1; write(tmp,' '); for j:=1 to n do if (map[tmp][j]=1) and (visited[j]=0) then //j为tmp的尚未访问的邻接顶点 begin visited[j]:=1;r:=r+1;q[r]:=j; end;//j入队列 end; end;
保证图中所有 顶点被访问
三、广(宽)度优先遍历
宽度优先遍历的基本思想为:
从图中某个顶点v0出发,访问此顶点。然后依次访问v0的 各个未被访问过的邻接结点,然后分别从这些邻接结点出发 宽度优先遍历图,直到图中所有和顶点v0连通的顶点都被访 问到。 若此时图中尚有顶点未被访问,则另选图中一个未曾被访 问的顶点作起始点,重复上述过程,直到图中所有顶点都被 访问到为止。
begin readln(n,m); for i:=1 to m do begin readln(a,b); map[a][b]:=1; map[b][a]:=1; end; for i:=1 to n do if visited[i]=0 then begin visited[i]:=1;work(i);end; end.

第7章-2-(7.3图的遍历)

第7章-2-(7.3图的遍历)

v2 v3
2 v2
v1 v4
v5
3 V3
v1 v6
v7
4 V4 v2 v8
5 v5 6 v6 7 v7 8 v8
v2 v8 v3 v7 v3 v6 v4 v5
v,1
v,2
v1 v,4
v5
v1
v2
v,8
v4
v,5
v2
v8
v,3
v,6
v7
0
1 v1
v2 v3
2 v2
v1 v4
v5
3 V3
v1 v6
v7
v,6
v7
v2
v,8
v3
v,7
v4
v,5
v2
v8
v3
v6
0
1 v1
v2 v3
2 v2
v1 v4
v5
3 V3
v1 v6
v7
4 V4 v2 v8
5 v5 6 v6 7 v7 8 v8
v2 v8 v3 v7 v3 v6 v4 v5
v,1
v,2
v,3
v1 v,4
v5
v1
v,6
v7
v2
v,8
v3
v,7
v4
v,5
v3
3 V3
v1 v6
v7
4 V4 v2 v8
5 v5
v2 v8
v1 v,4
v5
v2
v,8
6 v6 7 v7 8 v8
v3 v7 v3 v6 v4 v5
v4
v,5
v2
v8
0
v,1
1 v1
v2 v3
2 v2
v1 v4

图的知识点总结归纳

图的知识点总结归纳

图的知识点总结归纳图是离散数学中的一个重要概念,它可以用于描述各种实际问题,并在计算机科学、网络理论、算法设计等领域具有广泛的应用。

本文将对图的基本概念、表示方法、图的遍历算法和最短路径算法等进行总结归纳,并讨论其应用。

一、图的基本概念图由节点(顶点)和连接节点的边组成。

顶点之间的连接关系可以是有向的,也可以是无向的。

图的基本概念如下:1. 无向图:无向图中的边没有方向,节点之间的连接是双向的。

例如,社交网络中的朋友关系可以用无向图表示。

2. 有向图:有向图中的边有方向,表示节点之间的单向连接关系。

例如,网页之间的超链接可以用有向图表示。

3. 加权图:加权图中的每条边都有一个权重值,表示边上的距离或者耗费。

例如,地图中的道路可以用加权图表示。

二、图的表示方法图有多种表示方法,常用的有邻接矩阵和邻接表。

1. 邻接矩阵:邻接矩阵是一个二维数组,其中行和列表示图的顶点,矩阵中的元素表示顶点之间的连接关系。

对于无向图,邻接矩阵是对称的;对于有向图,邻接矩阵不一定对称。

2. 邻接表:邻接表是一种链表的集合,其中每个顶点对应一个链表,链表中存储与该顶点相连的其他顶点。

三、图的遍历算法图的遍历算法用于访问图中的所有节点,常用的算法有深度优先搜索(DFS)和广度优先搜索(BFS)。

1. 深度优先搜索(DFS):从一个顶点开始,沿着一条路径一直遍历到最后一个顶点,然后回溯到前一个顶点,再遍历其他路径。

DFS可以使用递归或者栈来实现。

2. 广度优先搜索(BFS):从一个顶点开始,先访问它的所有邻居顶点,然后再依次访问它们的邻居顶点,直到遍历完所有节点。

BFS可以使用队列来实现。

四、最短路径算法最短路径算法用于计算图中两个节点之间的最短路径。

常用的算法有迪杰斯特拉算法和弗洛伊德算法。

1. 迪杰斯特拉算法:迪杰斯特拉算法用于计算从一个顶点到其他所有顶点的最短路径。

算法使用一个距离数组来存储从起点到每个顶点的当前最短距离,并使用一个优先队列来选择下一个访问的顶点。

第7章 图3图的遍历PPT课件

第7章 图3图的遍历PPT课件

123
1
AB
E
A
7D C5 G4
7D
23
B
E
C5 G4
6F H
I
89
前进 回退
深度优先搜索过程
6F H
I
89
深度优先搜索树
7
LOGO
•由以上图示过程可知,深度遍历是一个递归的过程
8
voLidOGTOraverseGraph(AdjMatrix *g)/*算法7.3
{ int vi; for(vi=0;vi<g->vexnum;vi++) visited[vi]=False; //访问标志数组初始 for(vi=0;vi<g->vexnum;vi++) //循环调用深度遍历连通子图的操作 if (!visited[vi]) DepthFirstSearch74(g,vi); //若图g是连通图,则此循环 调用函数只执行一次 //DepthFirstSearch75(g,vi); //DepthFirstSearch77(g,vi); //BreadthFirstSearch(g,vi)9; }
w=NextAdjVertex(g,v0,w);
/*找下一个邻接点*/
}}
12
12
B
E
C4 G3
w=3
H
6
void DepthFirstSearch74(AdjMatrix *g, int v0)/*算法7.4, 未具LO体GO展开邻接矩阵(邻接表)的深度优先遍历算法*/
{ int w;
v0=‘A’ v0=‘B’ v0=‘E’ v0=‘G’
visited[v0]=True;

离散数学中的图论基础知识讲解

离散数学中的图论基础知识讲解

离散数学中的图论基础知识讲解图论是离散数学中的一个重要分支,研究的是图的性质和图中的关系。

图论在计算机科学、网络科学、运筹学等领域有着广泛的应用。

本文将从图的基本概念、图的表示方法、图的遍历算法以及一些常见的图论问题等方面进行讲解。

一、图的基本概念图是由顶点和边组成的一种数学结构。

顶点表示图中的元素,边表示元素之间的关系。

图可以分为有向图和无向图两种类型。

1. 无向图:无向图中的边没有方向,表示的是两个顶点之间的无序关系。

如果两个顶点之间存在一条边,那么它们之间是相邻的。

无向图可以用一个集合V表示顶点的集合,用一个集合E表示边的集合。

2. 有向图:有向图中的边有方向,表示的是两个顶点之间的有序关系。

如果从顶点A到顶点B存在一条有向边,那么A指向B。

有向图可以用一个集合V表示顶点的集合,用一个集合E表示有向边的集合。

二、图的表示方法图可以用多种方式进行表示,常见的有邻接矩阵和邻接表两种方法。

1. 邻接矩阵:邻接矩阵是一个二维数组,其中的元素表示两个顶点之间是否存在边。

如果顶点i和顶点j之间存在边,那么矩阵的第i行第j列的元素为1;否则为0。

邻接矩阵适用于表示稠密图,但对于稀疏图来说,会造成空间浪费。

2. 邻接表:邻接表是一种链表的数据结构,用来表示图中的顶点和边。

每个顶点对应一个链表,链表中存储与该顶点相邻的顶点。

邻接表适用于表示稀疏图,节省了存储空间。

三、图的遍历算法图的遍历是指按照某一规则访问图中的所有顶点。

常见的图的遍历算法有深度优先搜索(DFS)和广度优先搜索(BFS)。

1. 深度优先搜索:深度优先搜索是一种递归的搜索算法。

从某个顶点出发,首先访问该顶点,然后递归地访问与它相邻的未访问过的顶点,直到所有的顶点都被访问过。

2. 广度优先搜索:广度优先搜索是一种迭代的搜索算法。

从某个顶点出发,首先访问该顶点,然后依次访问与它相邻的所有未访问过的顶点,再依次访问与这些顶点相邻的未访问过的顶点,直到所有的顶点都被访问过。

图的遍历算法实验报告

图的遍历算法实验报告

图的遍历算法实验报告
《图的遍历算法实验报告》
在计算机科学领域,图的遍历算法是一种重要的算法,它用于在图数据结构中
访问每个顶点和边。

图的遍历算法有两种常见的方法:深度优先搜索(DFS)
和广度优先搜索(BFS)。

在本实验中,我们将对这两种算法进行实验,并比较
它们的性能和应用场景。

首先,我们使用深度优先搜索算法对一个简单的无向图进行遍历。

通过实验结
果可以看出,DFS算法会首先访问一个顶点的所有邻居,然后再递归地访问每
个邻居的邻居,直到图中所有的顶点都被访问到。

这种算法在一些应用场景中
非常有效,比如寻找图中的连通分量或者寻找图中的环路。

接下来,我们使用广度优先搜索算法对同样的无向图进行遍历。

通过实验结果
可以看出,BFS算法会首先访问一个顶点的所有邻居,然后再按照距离递增的
顺序访问每个邻居的邻居。

这种算法在一些应用场景中也非常有效,比如寻找
图中的最短路径或者寻找图中的最小生成树。

通过对比实验结果,我们可以发现DFS和BFS算法各自的优势和劣势。

DFS算
法适合用于寻找图中的连通分量和环路,而BFS算法适合用于寻找最短路径和
最小生成树。

因此,在实际应用中,我们需要根据具体的需求来选择合适的算法。

总的来说,图的遍历算法是计算机科学中非常重要的算法之一,它在许多领域
都有着广泛的应用。

通过本次实验,我们对DFS和BFS算法有了更深入的了解,并且对它们的性能和应用场景有了更清晰的认识。

希望通过这篇实验报告,读
者们也能对图的遍历算法有更深入的理解和认识。

图论及应用习题答案

图论及应用习题答案

图论及应用习题答案图论及应用习题答案图论是数学中的一个分支,研究的是图的性质和图之间的关系。

图论在现实生活中有着广泛的应用,涵盖了许多领域,如计算机科学、通信网络、社交网络等。

本文将为读者提供一些关于图论及应用的习题答案,帮助读者更好地理解和应用图论知识。

1. 图的基本概念题目:下面哪个不是图的基本概念?A. 顶点B. 边C. 路径D. 线段答案:D. 线段。

图的基本概念包括顶点、边和路径。

线段是指两个点之间的连线,而在图论中,我们使用边来表示两个顶点之间的关系。

2. 图的表示方法题目:以下哪个不是图的表示方法?A. 邻接矩阵B. 邻接表C. 边列表D. 二叉树答案:D. 二叉树。

图的表示方法包括邻接矩阵、邻接表和边列表。

二叉树是一种特殊的树结构,与图的表示方法无关。

3. 图的遍历算法题目:以下哪个不是图的遍历算法?A. 深度优先搜索B. 广度优先搜索C. 迪杰斯特拉算法D. 克鲁斯卡尔算法答案:D. 克鲁斯卡尔算法。

图的遍历算法包括深度优先搜索和广度优先搜索,用于遍历图中的所有顶点。

迪杰斯特拉算法是用于求解最短路径的算法,与图的遍历算法有所不同。

4. 最小生成树题目:以下哪个算法不是用于求解最小生成树?A. 克鲁斯卡尔算法B. 普里姆算法C. 弗洛伊德算法D. 公交车换乘算法答案:D. 公交车换乘算法。

最小生成树是指包含图中所有顶点的一棵树,使得树的边的权重之和最小。

克鲁斯卡尔算法和普里姆算法是常用的求解最小生成树的算法,而弗洛伊德算法是用于求解最短路径的算法,与最小生成树问题有所不同。

5. 图的应用题目:以下哪个不是图的应用?A. 社交网络分析B. 路径规划C. 图像处理D. 数字逻辑电路设计答案:D. 数字逻辑电路设计。

图的应用广泛存在于社交网络分析、路径规划和图像处理等领域。

数字逻辑电路设计虽然也涉及到图的概念,但与图的应用有所不同。

总结:图论是一门重要的数学分支,具有广泛的应用价值。

通过本文提供的习题答案,读者可以更好地理解和应用图论知识。

图的遍历实验报告

图的遍历实验报告

实验四:图的遍历题目:图及其应用——图的遍历班级:姓名:学号:完成日期:一.需求分析1.问题描述:很多涉及图上操作的算法都是以图的遍历操作为基础的。

试写一个程序,演示在连通的无向图上访问全部结点的操作。

2.基本要求:以邻接表为存储结构,实现连通无向图的深度优先和广度优先遍历。

以用户指定的结点为起点,分别输出每种遍历下的结点访问序列和相应生成树的边集。

3.测试数据:教科书图7.33。

暂时忽略里程,起点为北京。

4.实现提示:设图的结点不超过30个,每个结点用一个编号表示(如果一个图有n个结点,则它们的编号分别为1,2,…,n)。

通过输入图的全部边输入一个图,每个边为一个数对,可以对边的输入顺序作出某种限制,注意,生成树的边是有向边,端点顺序不能颠倒。

5.选作内容:(1).借助于栈类型(自己定义和实现),用非递归算法实现深度优先遍历。

(2).以邻接表为存储结构,建立深度优先生成树和广度优先生成树,再按凹入表或树形打印生成树。

二.概要设计1.为实现上述功能,需要有一个图的抽象数据类型。

该抽象数据类型的定义为:ADT Graph{数据对象V:V是具有相同特性的数据元素的集合,称为顶点集。

数据关系R:R={VR}VR={<v,w> | v,w v且P(v,w),<v,w>表示从v到w得弧,谓词P(v,w)定义了弧<v,w>的意义或信息}} ADT Graph2.此抽象数据类型中的一些常量如下:#define TRUE 1#define FALSE 0#define OK 1#define max_n 20 //最大顶点数typedef char VertexType[20];typedef enum{DG, DN, AG, AN} GraphKind;enum BOOL{False,True};3.树的结构体类型如下所示:typedef struct{ //弧结点与矩阵的类型int adj; //VRType为弧的类型。

图的遍历的概念

图的遍历的概念

图的遍历的概念图的遍历是指通过遍历图中的所有节点,访问图中的每个节点一次且仅一次的过程。

在图的遍历过程中,我们会将节点标记为已访问,以确保不重复访问节点。

图的遍历是解决许多图相关问题的基础,如查找路径、遍历连通图、检测图的连通性等。

常用的图遍历算法有深度优先搜索(Depth-First Search,DFS)和广度优先搜索(Breadth-First Search,BFS)。

深度优先搜索(DFS):DFS是一种先访问节点的深层节点,再回溯访问较浅层节点的遍历方式。

DFS通过递归或者使用栈来实现。

从图的某个起始节点开始,沿着一条路径访问到尽头,再回溯返回上一个节点,继续向另一条路径遍历。

DFS的过程可以看作是沿着树的深度进行遍历的过程。

DFS的一个经典应用是在迷宫中找到一条路径。

广度优先搜索(BFS):BFS是一种先访问离起始节点最近的节点,再逐渐扩展访问离起始节点更远节点的遍历方式。

BFS通过使用队列实现。

从图的某个起始节点开始,先将该节点加入队列中,然后逐个访问队列中的节点,把与当前节点相邻且未访问过的节点加入队列。

BFS的过程可以看作是树的层次遍历的过程。

BFS的一个经典应用是在社交网络中寻找两个人之间的最短路径。

在图的遍历中,我们除了记录已访问节点外,还可能需要记录节点的前驱节点,以便在找到目标节点后,能够回溯找到从起始节点到目标节点的路径。

在实际应用中,图的遍历可以用来解决许多问题。

比如在地图应用中,我们可以用图的遍历算法来查找最短路径。

在社交网络中,我们可以用图的遍历算法来查找两个人之间的路径或者关系的强度。

在编译器设计中,我们可以用图的遍历算法来检查代码的连通性。

在迷宫问题中,我们可以用图的遍历算法来找到一条通往出口的路径。

然而,图的遍历并不是一个简单的任务,尤其是针对大规模的图。

在处理大规模图的遍历时,我们需要考虑空间复杂度、时间复杂度以及算法的效率。

为了提高图的遍历的速度和效率,我们可以借助剪枝等优化技巧,以减少搜索空间。

第8章图第3讲-图的遍历 - 副本

第8章图第3讲-图的遍历 - 副本

19/21
图搜索算法设计一般方法 图搜索算法设计
转化
DFS或BFS算法求解 提示:两个遍历算法是图搜索算法的基础,必须熟练掌sited[i]
10/21
采用邻接表的BFS算法:
void BFS(AdjGraph *G,int v) { int w, i; ArcNode *p; SqQueue *qu; InitQueue(qu); int visited[MAXV]; for (i=0;i<G->n;i++) visited[i]=0; printf("%2d",v); visited[v]=1; enQueue(qu,v);
1 初始点 2 3
4
0
DFS:1→2 →4 …
2 1
用栈保存访问过的顶点

如何确定一个顶点是否访问过? 设置一个visited[] 全局数组, visited[i]=0表示顶点i没有访问; visited[i]=1表示顶点i已经访 问过。
i visited[i]
5/21
采用邻接表的DFS算法:
void DFS(AdjGraph *G,int v) { ArcNode *p; int w; visited[v]=1; //置已访问标记
} }
该算法的时间复杂度为O(n+e)。
6/21
深度优先遍历过程演示
0 1 2 3 4
v0
v1 v2 v3 v4
1 2 3 4
1 0 1 0 0
3 2 3 1 2
4 3 4 2 3
∧ ∧ ∧
4


0
v=2的DFS序列: 2 1 0 遍历过程结束
3

7图的遍历

7图的遍历
6
数据结构
广度优先搜索算法
void BFSTraverse(Graph G, Status (* visit)(int v)) { for(v=0; v<G.vexnum; ++v) visited[v] = FALSE; IntiQueque(Q); for(v=0; v<G.vexnum; ++v) if(!visited[v]) { visited[v] = TRUE; Visit (v); EnQueue(Q,v); while(!QueueEmpty(Q)){ DeQueue(Q,u); for(w=FirstAdjVex(G, u);w;w = NextAdjVex(G,u,w)) if(!visited[w]) {visited[w]=TRUE; visited(w); EnQueue(G,w); } } } 7 数据结构 }
void DFSTree(Graph G,int v ,CSTree &T) { //从第 个顶点出发深度优先遍历图G 建立以T //从第v个顶点出发深度优先遍历图G,建立以T为根的生成 从第v 树 visited[v]=TRUE; first=TRUE; for(w=FirstAdjVex(G,v);w>=0; w=NextAdjVex(G,v,w)) if(!visited[w]) p=(CSTree)malloc(sizeof)CSNode));//分配孩子结点 { p=(CSTree)malloc(sizeof)CSNode));//分配孩子结点 *p={GetVex(G,w),NULL,NULL}; //w 的第一个未被访问的邻接顶点, if (first) //w是v的第一个未被访问的邻接顶点,作 为 根的左孩子结点 T{ T->lchild=p; first=FALSE; } //w 的其它未被访问的邻接顶点, else { //w是v的其它未被访问的邻接顶点,作为上一 邻 接顶点的右兄弟 q->nextsibling=p; } q=p; D 从第w //从第 DFSTree(G,w,q); //从第w个顶点出发深度优先遍历 A 图 G,建立生成子树q 建立生成子树q 12 数据结构 B C E }

离散数学中的图的遍历与最短路径

离散数学中的图的遍历与最短路径

离散数学是数学的一个重要分支,研究离散结构与离散量的关系。

在离散数学当中,图是一个重要的概念,它用来描述事物之间的关系。

图的遍历与最短路径是图论中的两个重要问题,它们在计算机科学和网络通信等领域有广泛的应用。

图的遍历是指通过某种策略,按某个顺序访问图的所有节点。

在图的遍历过程中,我们需要使用一种数据结构来记录已经访问过的节点,并按照某种规则来选择下一个要访问的节点。

常用的图的遍历算法有深度优先搜索(DFS)和广度优先搜索(BFS)。

深度优先搜索是一种递归的搜索算法,它会首先访问一个节点的所有邻接节点,然后再依次递归访问这些节点的邻接节点,以此类推,直到没有未访问的邻接节点。

深度优先搜索能够完整地遍历图中的每个节点,并且可以用来解决一些需要遍历整个图的问题,例如判断图的连通性或寻找图的割点。

广度优先搜索是一种非递归的搜索算法,它从图的某个起始节点开始,先访问该节点的所有邻接节点,然后再依次访问这些邻接节点的邻接节点,以此类推,直到遍历完整个图。

广度优先搜索能够找到最短路径,因为它首先访问的是距离起始节点最近的节点,然后再访问离起始节点更远的节点。

因此,广度优先搜索常用于寻找最短路径或解决一些需要在有限步数内找到目标节点的问题。

最短路径是图论中的一个常见问题,它用于寻找两个节点之间最短的路径。

在有向图中,最短路径可以使用Dijkstra算法或Bellman-Ford算法来求解。

Dijkstra算法通过维护一个距离数组来记录起始节点到其他节点的距离,并通过选择路径距离最短的节点来更新距离数组,直到找到最短路径。

Bellman-Ford算法则利用动态规划的思想,通过多次循环来更新距离数组,直到没有更新为止。

在无向图或有向无环图中,最短路径可以使用广度优先搜索来求解。

广度优先搜索能够找到距离起始节点最近的节点,并且同时能够记录节点之间的路径。

因此,在广度优先搜索过程中,我们可以使用一个数组来记录节点之间的路径,并根据起始节点到目标节点的路径来回溯,从而找到最短路径。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

#define N 10
#define INFINITY 32768
#define True 1
#define False 0
#define Error -1
#define Ok 1
#include "stdlib.h"
#include "stdio.h"
typedef enum{DG,DN,UDG,UDN}GraphKind;
typedef char VertexData;
typedef struct ArcNode1
{
int adj;
} ArcNode1;
typedef struct
{
VertexData vexs[N];
ArcNode1 arcs[N][N];
int vexnum1,arcnum1;
GraphKind kind1;
}AdjMatrix;
typedef struct Node
{
int data;
struct Node *next;
}LinkQueueNode;
typedef struct
{
LinkQueueNode *front;
LinkQueueNode *rear;
}LinkQueue;
int InitQueue(LinkQueue *Q)
{
Q->front=(LinkQueueNode*)malloc(sizeof(LinkQueueNode));
if(Q->front!=NULL)
{
Q->rear=Q->front;
Q->front->next=NULL;
return(True);
}
else
return(False);
}
int EnterQueue(LinkQueue *Q,int x)
{
LinkQueueNode *NewNode;
NewNode=(LinkQueueNode*)malloc(sizeof(LinkQueueNode));
if(NewNode!=NULL)
{
NewNode->data=x;
NewNode->next=NULL;
Q->rear->next=NewNode;
Q->rear=NewNode;
return(True);
}
else
return(False);
}
int DeleteQueue(LinkQueue *Q,int *x)
{
LinkQueueNode *p;
if(Q->front==Q->rear)
return(False);
p=Q->front->next;
Q->front->next=p->next;
if(Q->rear==p)
Q->rear=Q->front;
*x=p->data;
free(p);
return(True);
}
int IsEmpty(LinkQueue *Q)
{
if(Q->front==Q->rear)
return(True);
else
return(False);
}
int visited[N];
int LocateVertex1(AdjMatrix *G1,VertexData v)
{
int k,j=Error;
for(k=0;k<G1->vexnum1;k++)
if(G1->vexs[k]==v)
{
j=k;
break;
}
return(j);
}
int CreateUDG1(AdjMatrix *G1)
{
int i,j,k;
VertexData v1,v2;
printf("\ninput G->vexnum,G->arcnum\n");
scanf("%d,%d",&(G1->vexnum1),&(G1->arcnum1));
getchar();
for(i=0;i<G1->vexnum1;i++)
for(j=0;j<G1->vexnum1;j++)
G1->arcs[i][j].adj=0;
printf("input G->vexs\n");
for(i=0;i<G1->vexnum1;i++)
{
scanf("%c",&(G1->vexs[i]));
}
getchar( );
printf("input G v1,v2\n");
for(k=0;k<G1->arcnum1;k++)
{
scanf("%c",&v1);
scanf("%c",&v2);
getchar( );
i=LocateVertex1(G1,v1);
j=LocateVertex1(G1,v2);
G1->arcs[i][j].adj=1;
G1->arcs[j][i].adj=1;
}
return(Ok);
}
/*........................*/
int showUDG1(AdjMatrix G1)
{
int i,j;
printf("\n Graph AdjMatrix:");
for(i=0;i<G1->vexnum1;i++)
for(j=0;j<G1->vexnum1;j++)
{ printf("%d",G1->arcs[i][j].adj);
printf("\n")
}
}
void Depth1(AdjMatrix g1,int vo)
{
}
void Breadth1(AdjMatrix g1,int vo)
{
int vi,vj;
LinkQueue Q;
InitQueue(&Q);
visited[vo]=True;
EnterQueue(&Q,vo);
while(!IsEmpty(&Q))
{
DeleteQueue(&Q,&vi);
printf("%c",g1.vexs[vi]);
for(vj=0;vj<g1.vexnum1;vj++)
if((!visited[vj])&&(g1.arcs[vi][vj].adj==1))
{
visited[vj]=True;
EnterQueue(&Q,vj);
}
}
}
void Traverse1(AdjMatrix g1)
{
int vi;
for(vi=0;vi<g1.vexnum1;vi++)
visited[vi]=False;
printf("\nThe order of G1 Depth\n");
for(vi=0;vi<g1.vexnum1;vi++)
{
if(!visited[vi])
{
Depth1(g1,vi);
printf("\n");
}
}
for(vi=0;vi<g1.vexnum1;vi++)
visited[vi]=False;
printf("\nThe order of G1 Breadth\n");
for(vi=0;vi<g1.vexnum1;vi++)
{
if(!visited[vi])
{
Breadth1(g1,vi);
printf("\n");
}
}
}
main( )
{
AdjMatrix g1;
CreateUDG1(&g1);
showUDG1(g1);
Traverse1(g1);
}。

相关文档
最新文档