图遍历操作

合集下载

图的遍历算法

图的遍历算法

1图的遍历问题在实践中常常遇到这样的问题:给定n个点,从任一点出发对所有的点访问一次并且只访问一次。

如果用图中的顶点表示这些点,图中的边表示可能的连接,那么这个问题就可以表示成图的遍历问题,即从某个顶点出发,沿着某条搜索路径对图中每个顶点各做一次且仅做一次访问。

图的遍历操作和树的遍历操作功能相似,是图的一种基本操作,图的许多其它操作都是建立在遍历操作的基础上。

由于图结构本身的复杂性,所以图的遍历操作也比较复杂,主要表现在以下几个方面:(1) 在图结构中,没有一个确定的首结点,图中任意一个顶点都可以作为第一个被访问的结点。

(2) 在非连通图中,从一个顶点出发,只能够访问它所在的连通分量上的所有顶点,因此,还需要考虑如何选取下一个出发点以访问图中其余的连通分量。

(3) 在图结构中,如果有回路存在,那么一个顶点被访问后,有可能沿回路又回到该顶点。

⑷在图结构中,一个顶点可以和其它多个顶点相连,当这样的顶点访问过后,存在如何选取下一个要访问的顶点的问题。

基于以上分析,图的遍历方法目前有深度优先搜索(DFS)和广度优先搜索(BFS)两种算法。

下面将介绍两种算法的实现思路,分析算法效率并编程实现。

1.1深度优先搜索算法深度优先搜索算法是树的先根遍历的推广,它的实现思想是:从图G的某个顶点V o出发,访问V o,然后选择一个与V o相邻且没被访问过的顶点V i访问,再从V i出发选择一个与V i相邻且未被访问的顶点V j进行访问,依次继续。

如果当前被访问过的顶点的所有邻接顶点都已被访问,贝U退回已被访问的顶点序列中最后一个拥有未被访问的相邻顶点的顶点W,从W出发按同样的方法向前遍历,直到图中所有顶点都被访问。

其递归算法如下:Boolean visited[MAX_VERTEX_NUM]; // 访问标志数组Status (*VisitFunc)(int v); //VisitFunc是访问函数,对图的每个顶点调用该函数void DFSTraverse (Graph G Status(*Visit)(i nt v)){VisitF unc = Visit;for(v=0; vvG.vex num; ++v)visited[v] = FALSE; //访问标志数组初始化for(v=0; v<G .vex num; ++v)if(!visited[v])DFS(G v); //对尚未访问的顶点调用DFS}void DFS(Graph G int v){ //从第v个顶点出发递归地深度优先遍历图Gvisited[v]=TRUE; VisitFunc(v); // 访问第v 个顶点for(w=FirstAdjVex(G ,v); w>=0;w=NextAdjVex(G ,v,w))//FirstAdjVex返回v的第一个邻接顶点,若顶点在G中没有邻接顶点,则返回空(0)。

第15讲图的遍历

第15讲图的遍历

V6
V8
V8
V7
V5 深度优先生成树
V8 V1
V2
V3
V4 V5 V6 V7
V8 广度优先生成树
27
例A
B
CD E
F
GH
I
K
J
L
M
A
D
G
LCF
KI E
H M
JB
深度优先生成森林
28
二、图的连通性问题
▪1、生成树和生成森林
▪ 说明
G
▪ 一个图可以有许多棵不同的生成树
KI
▪ 所有生成树具有以下共同特点:
g.NextAdjVex(v, w))
{
if (g.GetTag(w) == UNVISITED)
{
g.SetTag(w, VISITED);
g.GetElem(w, e);
Visit(e);
q.InQueue(w);
}
}}}
24
一、图的遍历 两种遍历的比较
V0
V1 V4
V0
V1 V4
V3
V2 V5
16
一、图的遍历
广度优先遍历序列?入队序列?出队序列?
V1
V2
V3
V1
V4
V5 V6
V7
V8
遍历序列: V1
17
一、图的遍历
广度优先遍历序列?入队序列?出队序列?
V1
V2
V3
V2 V3
V4
V5 V6
V7
V8
遍历序列: V1 V2 V3
18
一、图的遍历
广度优先遍历序列?入队序列?出队序列?
V1
V2

图的遍历 实验报告

图的遍历  实验报告

图的遍历实验报告一、引言图是一种非线性的数据结构,由一组节点(顶点)和节点之间的连线(边)组成。

图的遍历是指按照某种规则依次访问图中的每个节点,以便获取或处理节点中的信息。

图的遍历在计算机科学领域中有着广泛的应用,例如在社交网络中寻找关系紧密的人员,或者在地图中搜索最短路径等。

本实验旨在通过实际操作,掌握图的遍历算法。

在本实验中,我们将实现两种常见的图的遍历算法:深度优先搜索(DFS)和广度优先搜索(BFS),并比较它们的差异和适用场景。

二、实验目的1. 理解和掌握图的遍历算法的原理与实现;2. 比较深度优先搜索和广度优先搜索的差异;3. 掌握图的遍历算法在实际问题中的应用。

三、实验步骤实验材料1. 计算机;2. 编程环境(例如Python、Java等);3. 支持图操作的相关库(如NetworkX)。

实验流程1. 初始化图数据结构,创建节点和边;2. 实现深度优先搜索算法;3. 实现广度优先搜索算法;4. 比较两种算法的时间复杂度和空间复杂度;5. 比较两种算法的遍历顺序和适用场景;6. 在一个具体问题中应用图的遍历算法。

四、实验结果1. 深度优先搜索(DFS)深度优先搜索是一种通过探索图的深度来遍历节点的算法。

具体实现时,我们可以使用递归或栈来实现深度优先搜索。

算法的基本思想是从起始节点开始,选择一个相邻节点进行探索,直到达到最深的节点为止,然后返回上一个节点,再继续探索其他未被访问的节点。

2. 广度优先搜索(BFS)广度优先搜索是一种逐层遍历节点的算法。

具体实现时,我们可以使用队列来实现广度优先搜索。

算法的基本思想是从起始节点开始,依次遍历当前节点的所有相邻节点,并将这些相邻节点加入队列中,然后再依次遍历队列中的节点,直到队列为空。

3. 时间复杂度和空间复杂度深度优先搜索和广度优先搜索的时间复杂度和空间复杂度如下表所示:算法时间复杂度空间复杂度深度优先搜索O(V+E) O(V)广度优先搜索O(V+E) O(V)其中,V表示节点的数量,E表示边的数量。

图的遍历及生成树

图的遍历及生成树

• •邻接表的DFS算法
void DFS(ALGraph G, int v) { ArcNode *p;
visited[v] = 1; /*置已访问标记*/ printf("%d ", v); /*输出被访问顶点的编号*/ p = G.vertices[v].firstarc; /*p指向顶点v的第一个邻接点*/ while (p!=NULL) {
•v11
•v1,
•v2
•v3
•v2,
•v4,
•v5
•v8,
•v4
•v6
•v7
•v5,
•v3,
•v8
•v6,
•v7

•图的DFS算法一般描述
•int visited[MAXVEX]; //访问标志数组
•void DFSTraverse(Graph G)
•{ //对图G作深度优先遍历
• for( v=0; v<G.vexnum; ++v ) visited[v]=FALSE;
•} // DFS1
•G.arcs[v][j] =1
•有邻接点
•visited [n]=0
•未访问过

分析:
在遍历图时,对图中每个顶点至多调用一次DFS函数 ,因为一旦某个顶点被标志成已被访问,就不再从它出发 进行搜索。
因此,遍历图的过程实质上是对每个顶点查找其邻接 点的过程。其耗费的时间则取决于所采用的存储结构。 如果用邻接矩阵来表示图,遍历图中每一个顶点都要从 头扫描该顶点所在行,因此遍历全部顶点所需的时间为 O(n2)。 如果用邻接表来表示图,虽然有 2e 个表结点,但只需扫 描 e 个结点即可完成遍历,加上访问 n个头结点的时间, 因此遍历图的时间复杂度为O(n+e)。

图的遍历的实验报告

图的遍历的实验报告

图的遍历的实验报告图的遍历的实验报告一、引言图是一种常见的数据结构,它由一组节点和连接这些节点的边组成。

图的遍历是指从图中的某个节点出发,按照一定的规则依次访问图中的所有节点。

图的遍历在许多实际问题中都有广泛的应用,例如社交网络分析、路线规划等。

本实验旨在通过实际操作,深入理解图的遍历算法的原理和应用。

二、实验目的1. 掌握图的遍历算法的基本原理;2. 实现图的深度优先搜索(DFS)和广度优先搜索(BFS)算法;3. 比较并分析DFS和BFS算法的时间复杂度和空间复杂度。

三、实验过程1. 实验环境本实验使用Python编程语言进行实验,使用了networkx库来构建和操作图。

2. 实验步骤(1)首先,我们使用networkx库创建一个包含10个节点的无向图,并添加边以建立节点之间的连接关系。

(2)接下来,我们实现深度优先搜索算法。

深度优先搜索从起始节点开始,依次访问与当前节点相邻的未访问过的节点,直到遍历完所有节点或无法继续访问为止。

(3)然后,我们实现广度优先搜索算法。

广度优先搜索从起始节点开始,先访问与当前节点相邻的所有未访问过的节点,然后再访问这些节点的相邻节点,依此类推,直到遍历完所有节点或无法继续访问为止。

(4)最后,我们比较并分析DFS和BFS算法的时间复杂度和空间复杂度。

四、实验结果经过实验,我们得到了如下结果:(1)DFS算法的时间复杂度为O(V+E),空间复杂度为O(V)。

(2)BFS算法的时间复杂度为O(V+E),空间复杂度为O(V)。

其中,V表示图中的节点数,E表示图中的边数。

五、实验分析通过对DFS和BFS算法的实验结果进行分析,我们可以得出以下结论:(1)DFS算法和BFS算法的时间复杂度都是线性的,与图中的节点数和边数呈正比关系。

(2)DFS算法和BFS算法的空间复杂度也都是线性的,与图中的节点数呈正比关系。

但是,DFS算法的空间复杂度比BFS算法小,因为DFS算法只需要保存当前路径上的节点,而BFS算法需要保存所有已访问过的节点。

图的遍历算法实验报告

图的遍历算法实验报告

图的遍历算法实验报告图的遍历算法实验报告一、引言图是一种常用的数据结构,用于描述事物之间的关系。

在计算机科学中,图的遍历是一种重要的算法,用于查找和访问图中的所有节点。

本实验旨在探究图的遍历算法,并通过实验验证其正确性和效率。

二、实验目的1. 理解图的基本概念和遍历算法的原理;2. 实现图的遍历算法,并验证其正确性;3. 比较不同遍历算法的效率。

三、实验方法1. 实验环境:使用Python编程语言进行实验;2. 实验步骤:a. 构建图的数据结构,包括节点和边的定义;b. 实现深度优先搜索(DFS)算法;c. 实现广度优先搜索(BFS)算法;d. 验证算法的正确性,通过给定的图进行遍历;e. 比较DFS和BFS的效率,记录运行时间。

四、实验结果1. 图的构建:我们选择了一个简单的无向图作为实验对象,包含6个节点和7条边。

通过邻接矩阵表示图的关系。

```0 1 1 0 0 01 0 1 1 0 01 1 0 0 1 10 1 0 0 0 00 0 1 0 0 00 0 1 0 0 0```2. DFS遍历结果:从节点0开始,遍历结果为0-1-2-4-5-3。

3. BFS遍历结果:从节点0开始,遍历结果为0-1-2-3-4-5。

4. 算法效率比较:我们记录了DFS和BFS算法的运行时间。

经实验发现,在这个图的规模下,DFS算法的运行时间为0.001秒,BFS算法的运行时间为0.002秒。

可以看出,DFS算法相对于BFS算法具有更高的效率。

五、讨论与分析1. 图的遍历算法能够帮助我们了解图中的节点之间的关系,有助于分析和解决实际问题。

2. DFS算法和BFS算法都可以实现图的遍历,但其遍历顺序和效率有所不同。

DFS算法会优先访问深度较大的节点,而BFS算法会优先访问离起始节点最近的节点。

3. 在实验中,我们发现DFS算法相对于BFS算法具有更高的效率。

这是因为DFS算法采用了递归的方式,遍历过程中不需要保存所有节点的信息,而BFS 算法需要使用队列保存节点信息,导致额外的空间开销。

图的遍历实验报告

图的遍历实验报告

图的遍历实验报告图的遍历实验报告一、引言图是一种常见的数据结构,广泛应用于计算机科学和其他领域。

图的遍历是指按照一定规则访问图中的所有节点。

本实验通过实际操作,探索了图的遍历算法的原理和应用。

二、实验目的1. 理解图的遍历算法的原理;2. 掌握深度优先搜索(DFS)和广度优先搜索(BFS)两种常用的图遍历算法;3. 通过实验验证图的遍历算法的正确性和效率。

三、实验过程1. 实验环境准备:在计算机上安装好图的遍历算法的实现环境,如Python编程环境;2. 实验数据准备:选择合适的图数据进行实验,包括图的节点和边的信息;3. 实验步骤:a. 根据实验数据,构建图的数据结构;b. 实现深度优先搜索算法;c. 实现广度优先搜索算法;d. 分别运行深度优先搜索和广度优先搜索算法,并记录遍历的结果;e. 比较两种算法的结果,分析其异同点;f. 对比算法的时间复杂度和空间复杂度,评估其性能。

四、实验结果与分析1. 实验结果:根据实验数据和算法实现,得到了深度优先搜索和广度优先搜索的遍历结果;2. 分析结果:a. 深度优先搜索:从起始节点出发,一直沿着深度方向遍历,直到无法继续深入为止。

该算法在遍历过程中可能产生较长的路径,但可以更快地找到目标节点,适用于解决一些路径搜索问题。

b. 广度优先搜索:从起始节点出发,按照层次顺序逐层遍历,直到遍历完所有节点。

该算法可以保证找到最短路径,但在遍历大规模图时可能需要较大的时间和空间开销。

五、实验总结1. 通过本次实验,我们深入理解了图的遍历算法的原理和应用;2. 掌握了深度优先搜索和广度优先搜索两种常用的图遍历算法;3. 通过实验验证了算法的正确性和效率;4. 在实际应用中,我们需要根据具体问题的需求选择合适的遍历算法,权衡时间复杂度和空间复杂度;5. 进一步研究和优化图的遍历算法,可以提高算法的性能和应用范围。

六、参考文献[1] Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to Algorithms (3rd ed.). MIT Press.[2] Sedgewick, R., & Wayne, K. (2011). Algorithms (4th ed.). Addison-Wesley Professional.。

图的两种遍历

图的两种遍历

输入:
9 10 12 13 17 28 27 34 45 47 56 ram xy; var map:array[1..20,1..20] of integer; visited,q:array[1..100] of integer; //使用辅助队列Q和访问标志数组visited。 n,m,a,b,h,r,i,j:integer; procedure bfs(); //按广度优先非递归遍历图,n个顶点,编号为1..n。 var tmp:integer; begin while h<=r do begin tmp:=q[h]; //队头元素出队并置为tmp h:=h+1; write(tmp,' '); for j:=1 to n do if (map[tmp][j]=1) and (visited[j]=0) then //j为tmp的尚未访问的邻接顶点 begin visited[j]:=1;r:=r+1;q[r]:=j; end;//j入队列 end; end;
保证图中所有 顶点被访问
三、广(宽)度优先遍历
宽度优先遍历的基本思想为:
从图中某个顶点v0出发,访问此顶点。然后依次访问v0的 各个未被访问过的邻接结点,然后分别从这些邻接结点出发 宽度优先遍历图,直到图中所有和顶点v0连通的顶点都被访 问到。 若此时图中尚有顶点未被访问,则另选图中一个未曾被访 问的顶点作起始点,重复上述过程,直到图中所有顶点都被 访问到为止。
begin readln(n,m); for i:=1 to m do begin readln(a,b); map[a][b]:=1; map[b][a]:=1; end; for i:=1 to n do if visited[i]=0 then begin visited[i]:=1;work(i);end; end.

dfs和bfs的遍历方法

dfs和bfs的遍历方法

dfs和bfs的遍历方法DFS和BFS的遍历方法一、引言在计算机科学中,图是一种非常重要的数据结构。

图由节点(顶点)和边组成,节点表示对象,边表示节点之间的关系。

图可以用来解决很多实际问题,例如路线规划、社交网络分析等。

在图的遍历中,DFS(深度优先搜索)和BFS(广度优先搜索)是两种常用的方法。

它们分别从图中的一个节点出发,按照不同的顺序遍历图中的所有节点。

本文将详细介绍DFS和BFS的遍历方法,包括其原理、算法实现和应用场景。

二、DFS的遍历方法DFS是一种先序遍历的方法,其基本原理是从图中的一个节点开始,沿着一条路径尽可能深地遍历,直到无法继续深入为止,然后回溯到上一个节点,选择另一条路径继续遍历,直到所有节点都被访问过为止。

DFS的算法实现可以使用递归或者栈。

下面是使用递归实现DFS的伪代码:```function DFS(node):if node is visited:returnvisit(node)mark node as visitedfor each adjacent node of node:DFS(adjacent node)```在DFS的遍历过程中,需要一个visited数组用于记录节点是否被访问过,避免重复访问。

DFS的时间复杂度为O(V+E),其中V为节点数,E为边数。

DFS的应用场景包括图的连通性判断、拓扑排序等。

例如,在社交网络中,可以使用DFS遍历用户之间的关系,找出两个用户之间的最短路径。

三、BFS的遍历方法BFS是一种层次遍历的方法,其基本原理是从图中的一个节点开始,先访问其所有的邻居节点,然后再依次访问邻居节点的邻居节点,直到所有节点都被访问过为止。

BFS的算法实现可以使用队列。

下面是使用队列实现BFS的伪代码:```function BFS(start_node):create an empty queueenqueue start_node into the queuemark start_node as visitedwhile the queue is not empty:current_node = dequeue from the queuevisit(current_node)for each adjacent node of current_node:if adjacent node is not visited:mark adjacent node as visitedenqueue adjacent node into the queue```在BFS的遍历过程中,同样需要一个visited数组用于记录节点是否被访问过。

哈密顿算法遍历

哈密顿算法遍历

哈密顿算法遍历哈密顿算法是一种常用于图论中的遍历算法,用于寻找图中的哈密顿路径或哈密顿回路。

哈密顿路径是指一个无向图中通过每个顶点一次且仅一次的路径,而哈密顿回路则是指一个无向图中通过每个顶点一次且仅一次的闭合路径。

该算法的实现原理是通过深度优先搜索(DFS)来遍历图中的所有可能路径,在每个顶点上进行回溯,直到找到满足条件的哈密顿路径或回路。

下面将详细介绍哈密顿算法的遍历流程和关键步骤。

1.首先,确定起始顶点。

在哈密顿算法中,起始顶点对结果并不产生影响,因为哈密顿路径或回路可以从任意顶点开始。

因此,选择任意一个顶点作为起点,将其标记为已访问。

2.接下来,进入递归回溯的过程。

从起点开始,选择一个邻接顶点作为下一个访问的节点,并将其标记为已访问。

然后,继续对该邻接顶点进行递归回溯,直到满足下面两个终止条件之一:- 所有的顶点都已经访问过,即构成了一条哈密顿路径或回路。

- 当前深度已经达到图中的总顶点数,但没有形成哈密顿路径或回路。

3.在进行递归回溯时,需要做以下判断:- 判断当前顶点是否为未访问过的顶点,如果是,则选择该顶点作为下一个访问节点,并标记为已访问。

- 判断当前顶点是否与起始顶点相邻,如果是,则判断是否满足哈密顿回路的条件,即所有顶点都已经访问过。

如果是,则输出该路径或回路。

- 判断当前顶点是否与起始顶点不相邻,如果是,则判断是否满足哈密顿路径的条件,即所有顶点都已经访问过。

如果是,则输出该路径。

4.若当前顶点的邻接顶点都已经访问过,或者当前深度已经达到图中的总顶点数,但没有形成哈密顿路径或回路,则进行回溯。

回溯时,将当前顶点重新标记为未访问,并返回上一层递归。

通过以上步骤,可以使用哈密顿算法来遍历图中的所有可能的哈密顿路径或回路。

在实际应用中,哈密顿算法可以用于解决旅行推销员问题、电路布线问题等,具有重要的实际意义。

总结起来,哈密顿算法遍历的核心思想是通过深度优先搜索来枚举图中的所有路径,并进行回溯来寻找满足哈密顿路径或回路的条件。

图的遍历算法实验报告

图的遍历算法实验报告

图的遍历算法实验报告
《图的遍历算法实验报告》
在计算机科学领域,图的遍历算法是一种重要的算法,它用于在图数据结构中
访问每个顶点和边。

图的遍历算法有两种常见的方法:深度优先搜索(DFS)
和广度优先搜索(BFS)。

在本实验中,我们将对这两种算法进行实验,并比较
它们的性能和应用场景。

首先,我们使用深度优先搜索算法对一个简单的无向图进行遍历。

通过实验结
果可以看出,DFS算法会首先访问一个顶点的所有邻居,然后再递归地访问每
个邻居的邻居,直到图中所有的顶点都被访问到。

这种算法在一些应用场景中
非常有效,比如寻找图中的连通分量或者寻找图中的环路。

接下来,我们使用广度优先搜索算法对同样的无向图进行遍历。

通过实验结果
可以看出,BFS算法会首先访问一个顶点的所有邻居,然后再按照距离递增的
顺序访问每个邻居的邻居。

这种算法在一些应用场景中也非常有效,比如寻找
图中的最短路径或者寻找图中的最小生成树。

通过对比实验结果,我们可以发现DFS和BFS算法各自的优势和劣势。

DFS算
法适合用于寻找图中的连通分量和环路,而BFS算法适合用于寻找最短路径和
最小生成树。

因此,在实际应用中,我们需要根据具体的需求来选择合适的算法。

总的来说,图的遍历算法是计算机科学中非常重要的算法之一,它在许多领域
都有着广泛的应用。

通过本次实验,我们对DFS和BFS算法有了更深入的了解,并且对它们的性能和应用场景有了更清晰的认识。

希望通过这篇实验报告,读
者们也能对图的遍历算法有更深入的理解和认识。

图的遍历算法程序

图的遍历算法程序
}
else{
visited[k]=true;
printf("%c ",G.vexs[k]); //访问第k个顶点
for(i=FirstVex(G,k);i>=0;i=NextVex(G,k,i))
if(!visited[i]) DFS(G,i); //对k的尚未访问的邻接顶点i递归调用DFS
#define MAX_VEX 20 //最大顶点个数
#define QUEUE_SIZE (MAX_VEX+1) //队列长度
using namespace std;
bool *visited; //访问标志数组
//图的邻接矩阵存储结构
typedef struct{
char *vexs; //顶点向量
if(i>=0 && i<G.vexnum && j>=0 && j<G.vexnum){ //i,j合理
for(int k=j+1;k<G.vexnum;k++)
if(G.arcs[i][k]!=INFINITY) return k;
}
return -1;
}
}
//主函数
void main(){
int i;
Graph G;
CreateUDN(G);
visited=(bool *)malloc(G.vexnum*sizeof(bool));
printf("\n广度优先遍历: ");
for(i=0;i<G.vexnum;i++)

图的遍历实验报告

图的遍历实验报告

实验四:图的遍历题目:图及其应用——图的遍历班级:姓名:学号:完成日期:一.需求分析1.问题描述:很多涉及图上操作的算法都是以图的遍历操作为基础的。

试写一个程序,演示在连通的无向图上访问全部结点的操作。

2.基本要求:以邻接表为存储结构,实现连通无向图的深度优先和广度优先遍历。

以用户指定的结点为起点,分别输出每种遍历下的结点访问序列和相应生成树的边集。

3.测试数据:教科书图7.33。

暂时忽略里程,起点为北京。

4.实现提示:设图的结点不超过30个,每个结点用一个编号表示(如果一个图有n个结点,则它们的编号分别为1,2,…,n)。

通过输入图的全部边输入一个图,每个边为一个数对,可以对边的输入顺序作出某种限制,注意,生成树的边是有向边,端点顺序不能颠倒。

5.选作内容:(1).借助于栈类型(自己定义和实现),用非递归算法实现深度优先遍历。

(2).以邻接表为存储结构,建立深度优先生成树和广度优先生成树,再按凹入表或树形打印生成树。

二.概要设计1.为实现上述功能,需要有一个图的抽象数据类型。

该抽象数据类型的定义为:ADT Graph{数据对象V:V是具有相同特性的数据元素的集合,称为顶点集。

数据关系R:R={VR}VR={<v,w> | v,w v且P(v,w),<v,w>表示从v到w得弧,谓词P(v,w)定义了弧<v,w>的意义或信息}} ADT Graph2.此抽象数据类型中的一些常量如下:#define TRUE 1#define FALSE 0#define OK 1#define max_n 20 //最大顶点数typedef char VertexType[20];typedef enum{DG, DN, AG, AN} GraphKind;enum BOOL{False,True};3.树的结构体类型如下所示:typedef struct{ //弧结点与矩阵的类型int adj; //VRType为弧的类型。

实验四 图的遍历算法

实验四   图的遍历算法

实验四图的遍历算法4.1.实验的问题与要求1.如何对给定图的每个顶点各做一次且仅做一次访问?有哪些方法可以实现图的遍历?2.如何用这些算法解决实际问题?3.熟练掌握图的基本存储方法4.熟练掌握图的两种搜索路径的遍历方法5.掌握有关图的操作算法并用高级语言实现4.2.实验的基本思想和基本原理和树的遍历类似,图的遍历也是从某个顶点出发,沿着某条搜索路径对图中每个顶点各做一次且仅做一次访问。

它是许多图的算法的基础。

遍历常用两种方法:深度优先搜索遍历;广度优先搜索遍历4.2.1 深度优先搜索(Depth-First Traversal)深度优先搜索是一种递归的过程,正如算法名称那样,深度优先搜索所遵循的搜索策略是尽可能“深”地搜索图。

在深度优先搜索中,对于最新发现的顶点,如果它还有以此为起点而未探测到的边,就沿此边继续下去。

当结点v的所有边都己被探寻过,搜索将回溯到发现结点v有那条边的始结点。

这一过程一直进行到已发现从源结点可达的所有结点为止。

如果还存在未被发现的结点,则选择其中一个作为源结点并重复以上过程,整个进程反复进行直到所有结点都被发现为止。

1.图的深度优先遍历的递归定义假设给定图G的初态是所有顶点均未曾访问过。

在G中任选一顶点v 为初始出发点(源点),则深度优先遍历可定义如下:首先访问出发点v,并将其标记为已访问过;然后依次从v出发搜索v的每个邻接点w。

若w未曾访问过,则以w为新的出发点继续进行深度优先遍历,直至图中所有和源点v有路径相通的顶点(亦称为从源点可达的顶点)均已被访问为止。

若此时图中仍有未访问的顶点,则另选一个尚未访问的顶点作为新的源点重复上述过程,直至图中所有顶点均已被访问为止。

图的深度优先遍历类似于树的前序遍历。

采用的搜索方法的特点是尽可能先对纵深方向进行搜索。

这种搜索方法称为深度优先搜索(Depth-First Search)。

相应地,用此方法遍历图就很自然地称之为图的深度优先遍历。

图的遍历深度优先遍历和广度优先遍历

图的遍历深度优先遍历和广度优先遍历
visited
4
5
f
^
对应的邻接表
终点2作为下次的始点, 由于1点已访问过,跳过, 找到4,记标识,送输出, 4有作为新的始点重复上 述过程
1 2 4
5
输出数组 resu
3.邻接表深度优先遍历的实现
template <class TElem, class TEdgeElem>long DFS2(TGraphNodeAL<TElem, TEdgeElem> *nodes,long n,long v0, char *visited, long *resu,long &top) {//深度优先遍历用邻接表表示的图。nodes是邻接表的头数组,n 为结点个数(编号为0~n)。 //v0为遍历的起点。返回实际遍历到的结点的数目。 //visited是访问标志数组,调用本函数前,应为其分配空间并初 始化为全0(未访问) //resu为一维数组,用于存放所遍历到的结点的编号,调用本函 数前,应为其分配空间 long nNodes, i; TGraphEdgeAL<TEdgeElem> *p; nNodes=1;
1 2
4
图 20-1有向图
5
3
1 2 3 4 5
1 0 1 0 1 0
2 1 0 0 0 0
3 0 0 0 0 0
4 0 1 0 0 0
5 1 0 1 0 0
1 2 3 4 5
1 1 0 1 1
1 2 4 5
所示图的邻接矩阵g
访问标识数组 visited
输出数组 resu
例如从1点深度优先遍历,先把1设置访问标志,并置入输出数组resu,然后从邻接 矩阵的第一行,扫描各列,找到最近的邻接点2,将其设置访问标志,并进入输出数 组,接着从邻接矩阵的2行扫描,找到第一个构成边的点是1,检查访问标识数组, 发现1已经访问过,跳过,找第二个构成边 的点4,设置访问标识,进入输出数组, 再从邻接矩阵的第4行扫描,寻找构成边的点,除1外在无其他点,返回2行,继续 寻找,也无新点,返回1,找到5,将5置访问标志,进入输出数组,1行再无其他新 点,遍历结束,返回遍历元素个数为4 。

图算法表示及遍历方法详解

图算法表示及遍历方法详解

图算法表示及遍历方法详解图是计算机科学中常用的数据结构之一,用于表示和解决各种实际问题。

本文将详细介绍图的算法表示以及遍历方法,帮助读者更深入了解和应用图算法。

一、图的定义和表示方法图是由节点(顶点)和边构成的一种数据结构。

常见的图表示方法有两种:邻接矩阵和邻接表。

1. 邻接矩阵表示法邻接矩阵是一个二维矩阵,其中的元素表示图中各个节点之间的连接关系。

对于一个有n个节点的图,邻接矩阵是一个n x n的矩阵,用0和1表示节点之间是否有边相连。

例如,对于一个有4个节点的图,邻接矩阵可以表示为:1 2 3 41[0, 1, 1, 0]2[1, 0, 0, 1]3[1, 0, 0, 0]4[0, 1, 0, 0]邻接矩阵表示法简单直观,适用于节点数量相对较小、边的数量相对较大时。

2. 邻接表表示法邻接表是通过链表的形式,将每个节点的邻接顶点存储起来,用于表示图的连接关系。

对于一个有n个节点的图,可以使用一个长度为n 的数组,数组中的每个元素都是一个链表,链表中存储了与该节点相连的其他节点。

例如,对于一个有4个节点的图,邻接表可以表示为:1->2->32->1->43->14->2邻接表表示法相对节省存储空间,适用于节点数量较大、边的数量相对较小的情况。

二、图的遍历方法图的遍历是指按一定规则依次访问图中的每个节点,以达到查找、搜索或其他操作的目的。

常见的图遍历方法有深度优先搜索(DFS)和广度优先搜索(BFS)。

1. 深度优先搜索(DFS)深度优先搜索从某个节点开始,沿着一条路径一直访问到最后一个节点,然后回溯到上一个节点,再选择另一条未访问过的路径,重复上述过程,直到遍历完整个图。

DFS可以使用递归或栈来实现。

以下是使用递归实现DFS的示例代码:```pythondef dfs(graph, start, visited):visited[start] = Trueprint(start)for neighbor in graph[start]:if not visited[neighbor]:dfs(graph, neighbor, visited)```2. 广度优先搜索(BFS)广度优先搜索从某个节点开始,先访问其所有邻接节点,然后再访问邻接节点的邻接节点,依次类推,直到遍历完整个图。

图的遍历的概念

图的遍历的概念

图的遍历的概念图的遍历是指通过遍历图中的所有节点,访问图中的每个节点一次且仅一次的过程。

在图的遍历过程中,我们会将节点标记为已访问,以确保不重复访问节点。

图的遍历是解决许多图相关问题的基础,如查找路径、遍历连通图、检测图的连通性等。

常用的图遍历算法有深度优先搜索(Depth-First Search,DFS)和广度优先搜索(Breadth-First Search,BFS)。

深度优先搜索(DFS):DFS是一种先访问节点的深层节点,再回溯访问较浅层节点的遍历方式。

DFS通过递归或者使用栈来实现。

从图的某个起始节点开始,沿着一条路径访问到尽头,再回溯返回上一个节点,继续向另一条路径遍历。

DFS的过程可以看作是沿着树的深度进行遍历的过程。

DFS的一个经典应用是在迷宫中找到一条路径。

广度优先搜索(BFS):BFS是一种先访问离起始节点最近的节点,再逐渐扩展访问离起始节点更远节点的遍历方式。

BFS通过使用队列实现。

从图的某个起始节点开始,先将该节点加入队列中,然后逐个访问队列中的节点,把与当前节点相邻且未访问过的节点加入队列。

BFS的过程可以看作是树的层次遍历的过程。

BFS的一个经典应用是在社交网络中寻找两个人之间的最短路径。

在图的遍历中,我们除了记录已访问节点外,还可能需要记录节点的前驱节点,以便在找到目标节点后,能够回溯找到从起始节点到目标节点的路径。

在实际应用中,图的遍历可以用来解决许多问题。

比如在地图应用中,我们可以用图的遍历算法来查找最短路径。

在社交网络中,我们可以用图的遍历算法来查找两个人之间的路径或者关系的强度。

在编译器设计中,我们可以用图的遍历算法来检查代码的连通性。

在迷宫问题中,我们可以用图的遍历算法来找到一条通往出口的路径。

然而,图的遍历并不是一个简单的任务,尤其是针对大规模的图。

在处理大规模图的遍历时,我们需要考虑空间复杂度、时间复杂度以及算法的效率。

为了提高图的遍历的速度和效率,我们可以借助剪枝等优化技巧,以减少搜索空间。

图的遍历操作实验报告

图的遍历操作实验报告

图的遍历操作实验报告一、实验目的本次实验的主要目的是深入理解图的遍历操作的基本原理和方法,并通过实际编程实现,掌握图的深度优先遍历(DepthFirst Search,DFS)和广度优先遍历(BreadthFirst Search,BFS)算法,比较它们在不同类型图中的性能和应用场景。

二、实验环境本次实验使用的编程语言为 Python,开发环境为 PyCharm。

实验中使用的数据结构为邻接表来表示图。

三、实验原理(一)深度优先遍历深度优先遍历是一种递归的图遍历算法。

它从起始节点开始,沿着一条路径尽可能深地访问节点,直到无法继续,然后回溯到上一个未完全探索的节点,继续探索其他分支。

(二)广度优先遍历广度优先遍历则是一种逐层访问的算法。

它从起始节点开始,先访问起始节点的所有相邻节点,然后再依次访问这些相邻节点的相邻节点,以此类推,逐层展开。

四、实验步骤(一)数据准备首先,定义一个图的邻接表表示。

例如,对于一个简单的有向图,可以使用以下方式创建邻接表:```pythongraph ={'A':'B','C','B':'D','E','C':'F','D':,'E':,'F':}```(二)深度优先遍历算法实现```pythondef dfs(graph, start, visited=None):if visited is None:visited = set()visitedadd(start)print(start)for next_node in graphstart:if next_node not in visited:dfs(graph, next_node, visited)```(三)广度优先遍历算法实现```pythonfrom collections import deque def bfs(graph, start):visited ={start}queue = deque(start)while queue:node = queuepopleft()print(node)for next_node in graphnode:if next_node not in visited:visitedadd(next_node)queueappend(next_node)```(四)测试与分析分别使用深度优先遍历和广度优先遍历算法对上述示例图进行遍历,并记录遍历的顺序和时间开销。

7图的遍历

7图的遍历
6
数据结构
广度优先搜索算法
void BFSTraverse(Graph G, Status (* visit)(int v)) { for(v=0; v<G.vexnum; ++v) visited[v] = FALSE; IntiQueque(Q); for(v=0; v<G.vexnum; ++v) if(!visited[v]) { visited[v] = TRUE; Visit (v); EnQueue(Q,v); while(!QueueEmpty(Q)){ DeQueue(Q,u); for(w=FirstAdjVex(G, u);w;w = NextAdjVex(G,u,w)) if(!visited[w]) {visited[w]=TRUE; visited(w); EnQueue(G,w); } } } 7 数据结构 }
void DFSTree(Graph G,int v ,CSTree &T) { //从第 个顶点出发深度优先遍历图G 建立以T //从第v个顶点出发深度优先遍历图G,建立以T为根的生成 从第v 树 visited[v]=TRUE; first=TRUE; for(w=FirstAdjVex(G,v);w>=0; w=NextAdjVex(G,v,w)) if(!visited[w]) p=(CSTree)malloc(sizeof)CSNode));//分配孩子结点 { p=(CSTree)malloc(sizeof)CSNode));//分配孩子结点 *p={GetVex(G,w),NULL,NULL}; //w 的第一个未被访问的邻接顶点, if (first) //w是v的第一个未被访问的邻接顶点,作 为 根的左孩子结点 T{ T->lchild=p; first=FALSE; } //w 的其它未被访问的邻接顶点, else { //w是v的其它未被访问的邻接顶点,作为上一 邻 接顶点的右兄弟 q->nextsibling=p; } q=p; D 从第w //从第 DFSTree(G,w,q); //从第w个顶点出发深度优先遍历 A 图 G,建立生成子树q 建立生成子树q 12 数据结构 B C E }
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Print Graph BFS:37401256
实验结果:
无向图G1的遍历结果:
有向图G2的遍历结果:
心得体会:
本次实验中对于图的存储问题可以使用两种不同的方法,有邻接矩阵存储和邻接表存储。这两种方法各有优缺点,可以根据程序的具体要求选择者两种方法的其中一种。
在对无向图和有向图进行深度优先遍历和广度优先遍历的时候,深刻的理解了程序的实现过程,,对G1图,G2图进行不同遍历方法,它们的深度优先遍历相同,但是广度优先遍历有所不同,那是因为有向图是单向指向的,二个顶点间一般不会相互到达。
for(j=0;j<G->n;j++) //依次搜索Vi的邻接点
if(G->edges[i][j]==1 && ! visited[j])
DFSM(G,j); //(Vi,Vj)∈E,且Vj未访问过,故Vj为新出发点
}
void DFS(MGraph *G)
{
int i;
for(i=0;i<G->n;i++)
BFS(G,3); //以序号为3的顶点开始广度优先遍历
int n,e; //图中的顶点数n和边数e
}MGraph; //用邻接矩阵表示的图的类型
//=========建立邻接矩阵=======
void CreatMGraph(MGraph *G)
{
int i,j,Input VertexNum(n) and EdgesNum(e): ");
{
int i;
MGraph *G;
G=(MGraph *)malloc(sizeof(MGraph)); //为图G申请内存空间
CreatMGraph(G); //建立邻接矩阵
printf("Print Graph DFS: ");
DFS(G); //深度优先遍历
printf("\n");
printf("Print Graph BFS: ");
for(j=0;j<G->n;j++)
G->edges[i][j]=0; //初始化邻接矩阵
printf("Input edges,Creat Adjacency Matrix\n");
for(k=0;k<G->e;k++) { //读入e条边,建立邻接矩阵
scanf("%d%d",&i,&j); //输入边(Vi,Vj)的顶点序号
{ //以Vk为源点对用邻接矩阵表示的图G进行广度优先搜索
int i,j,f=0,r=0;
int cq[MaxVertexNum]; //定义队列
for(i=0;i<G->n;i++)
visited[i]=FALSE;//标志向量初始化
for(i=0;i<G->n;i++)
cq[i]=-1; //队列初始化
1分析、理解程序
2编译和调试程序,以邻接矩阵作为存储结构
3输入顶点数,和边数,建立无向图G1
4输入顶点数,边数,建立有向图G2
5无向图G1遍历结果:
Print Graph DFS:01374256
Print Graph BFS:31704256
6有向图G2遍历结果:
Print Graph DFS:01374256
if(G->edges[i][j]==1 && !visited[j]) { //Vj未访问
printf("%c",G->vexs[j]); //访问Vj
visited[j]=TRUE;r=r+1; cq[r]=j; //访问过Vj入队
}
}
}
//==========main=====
void main()
printf("%c",G->vexs[k]); //访问源点Vk
visited[k]=TRUE;
cq[r]=k; //Vk已访问,将其入队。注意,实际上是将其序号入队
while(cq[f]!=-1) { //队非空则执行
i=cq[f]; f=f+1; //Vf出队
for(j=0;j<G->n;j++) //依次Vi的邻接点Vj
scanf("%d,%d",&G->n,&G->e); //输入顶点数和边数
scanf("%c",&a);
printf("Input Vertex string:");
for(i=0;i<G->n;i++)
{
scanf("%c",&a);
G->vexs[i]=a; //读入顶点信息,建立顶点表
}
for(i=0;i<G->n;i++)
//========DFS:深度优先遍历的递归算法======
void DFSM(MGraph *G,int i)
{ //以Vi为出发点对邻接矩阵表示的图G进行DFS搜索,邻接矩阵是0,1矩阵
int j;
printf("%c",G->vexs[i]); //访问顶点Vi
visited[i]=TRUE; //置已访问标志
图的遍历操作实验日志
实验题目:
图的遍历操作
实验目的:
掌握有向图和无向图的概念;掌握邻接矩阵和邻接链表建立图的存储结构;掌握DFS及BFS对图的遍历操作;了解图结构在人工智能、工程等领域的广泛应用。
实验要求:
采用邻接矩阵和邻接链表作为图的存储结构,完成有向图和无向图的DFS和BFS操作。
实验主要步骤:
实验程序:
#include"stdio.h"
#include"stdlib.h"
#define MaxVertexNum 100 //定义最大顶点数
typedef struct{
char vexs[MaxVertexNum]; //顶点表
int edges[MaxVertexNum][MaxVertexNum]; //邻接矩阵,可看作边表
G->edges[i][j]=1;
G->edges[j][i]=1; //若为无向图,矩阵为对称矩阵;若建立有向图,去掉该条语句
}
}
//=========定义标志向量,为全局变量=======
typedef enum{FALSE,TRUE} Boolean;
Boolean visited[MaxVertexNum];
visited[i]=FALSE; //标志向量初始化
for(i=0;i<G->n;i++)
if(!visited[i]) //Vi未访问过
DFSM(G,i); //以Vi为源点开始DFS搜索
}
//===========BFS:广度优先遍历=======
void BFS(MGraph *G,int k)
相关文档
最新文档