可变气门正时技术解析
VVT技术介绍

VVT技术介绍VVT技术,全称为可变气门正时技术,是指在发动机工作过程中,通过调整气门的开启和关闭时间,以适应不同工况下的要求,并提高发动机的效率和动力输出。
VVT技术现已被广泛应用于汽车发动机,成为提高车辆性能和燃油经济性的重要手段。
传统的发动机气门正时系统以固定的机械方式工作,无法适应不同工况下的要求。
而采用VVT技术后,可以根据需求动态调整气门正时,以提供更好的燃烧效果和动力输出。
VVT技术的核心是通过调整凸轮轴相对于曲轴的相位,改变气门的开启和关闭时间。
常见的VVT技术包括可变凸轮轴正时(VCT)和连续可变气门正时(CVVT)。
可变凸轮轴正时(VCT)技术通过改变凸轮轴的相对位置,实现气门正时的调整。
传统的凸轮轴上存在多个凸轮,分别用于不同工况下的气门控制。
通过改变凸轮轴的相位,可以选择不同的凸轮,从而改变气门的开启和关闭时间。
VCT技术适用于低负荷和高负荷工况下的发动机控制,可以提供更好的动力输出和燃油经济性。
连续可变气门正时(CVVT)技术采用了更先进的控制方式,通过液压或电控系统实现对气门正时的调整。
CVVT技术可以根据发动机负荷、转速和温度等多个因素,实时调整气门正时,以提供最优的燃烧效果和动力输出。
CVVT技术还可以通过调整进气和排气气门的相位差,实现更高效的气缸充气和排气过程,提高燃烧效率和燃油经济性。
VVT技术的应用可以提高发动机的动力输出和燃油经济性。
在低负荷工况下,VVT技术可以实现更早的进气门关闭,减少进气阻力,提高燃油经济性。
在高负荷工况下,VVT技术可以实现更晚的进气门关闭,延长混合气体的进气时间,提高动力输出。
此外,VVT技术还可以改变气门的重叠角度,增加进排气门的相位重叠,提高发动机的燃烧稳定性,减少污染物排放。
总之,VVT技术通过动态调整气门正时,可以提高发动机的效率和动力输出。
在当前汽车工业的发展中,VVT技术已成为重要的发动机控制技术之一,将继续不断地进行改进和应用,为汽车提供更好的性能和经济性。
可变气门正时工作原理

可变气门正时工作原理引言:可变气门正时技术是现代发动机技术的重要组成部分,它通过调整气门的开启和关闭时间,使发动机在不同工况下达到最佳的燃烧效率和动力输出。
本文将介绍可变气门正时的工作原理及其优势。
一、可变气门正时的概念可变气门正时(Variable Valve Timing,简称VVT)是一种通过控制气门开启和关闭时间来调整气门正时的技术。
传统发动机的气门正时是固定的,无法根据不同工况的要求进行调整。
而VVT技术则可以根据发动机负荷、转速等参数实时调整气门正时,使发动机能够在不同工况下实现最佳性能。
二、可变气门正时的工作原理VVT技术主要通过改变凸轮轴的相对位置或改变气门的开启时间来实现可变气门正时。
常见的可变气门正时系统有可变凸轮轴正时系统和可变气门升程系统。
1. 可变凸轮轴正时系统可变凸轮轴正时系统通过改变凸轮轴的相对位置来调整气门正时。
它通常由一个可变凸轮轴齿轮和一个控制机构组成。
控制机构通过控制凸轮轴齿轮的相对位置,来改变气门的开启和关闭时间。
当发动机负荷较低时,控制机构会将凸轮轴齿轮向提前方向移动,使气门提前关闭,提高压缩比,提高燃烧效率。
当发动机负荷较高时,控制机构会将凸轮轴齿轮向滞后方向移动,使气门滞后关闭,延长进气时间,提高动力输出。
2. 可变气门升程系统可变气门升程系统通过改变气门的开启时间来调整气门正时。
它通常由一个可变气门升程机构和一个控制单元组成。
控制单元通过控制气门升程机构的工作状态,来改变气门的开启时间。
当发动机负荷较低时,控制单元会使气门升程机构工作在低升程状态,减小气门的开启量,提高压缩比,提高燃烧效率。
当发动机负荷较高时,控制单元会使气门升程机构工作在高升程状态,增大气门的开启量,提高动力输出。
三、可变气门正时的优势可变气门正时技术具有以下优势:1. 提高燃烧效率:可变气门正时技术可以根据不同工况的要求,调整气门正时,使发动机在不同转速和负荷下实现最佳燃烧效率,减少燃料消耗。
可变气门正时技术

可变气门正时技术第一篇:可变气门正时技术概述可变气门正时技术是一种在发动机运行过程中,通过调整气门开启和关闭的时机,以达到更好的燃烧效果,提高燃油效率并减少尾气排放的技术。
该技术的应用范围广泛,可以用于汽车、摩托车等各种类型的发动机中。
传统的气门正时是通过固定的凸轮轴来控制气门的开启和关闭时机,而可变气门正时解决了传统气门正时的制约,实现了更加灵活、精确的气门控制。
目前主流的可变气门正时技术主要有:可变气门升程技术、可变气门正时角技术、可变气门开闭技术、可变气门升程与正时角同时调节技术等。
可变气门正时的工作原理非常简单,通过电子控制系统控制气门抬升高度、气门开启时刻以及总时间,让气门的开启时机根据发动机不同运行状态进行相应的调整。
比如,在高速行驶时,气门的开启时间可以适当提前,以提高发动机输出功率;在低速行驶时,气门的开启时间可以适当延后,以提高燃油经济性和降低噪音。
值得一提的是,可变气门正时技术具有一些非常显著的优势。
首先,它可以避免气门的过度开启或关闭,从而降低燃油消耗和排放污染。
其次,与传统气门正时相比,可变气门正时可以使发动机产生更多的动力和扭矩,从而提高加速性。
最后,该技术具有一定的智能性,可以根据驾驶员的需求和路况实时调整气门的开启时机,提供更加舒适的驾驶体验。
总之,可变气门正时技术是一种非常有前途的技术,已经在各大汽车品牌的发动机中广泛应用。
未来,随着科技的不断发展,它将会不断创新,为汽车行业带来更加精彩的未来。
第二篇:可变气门正时技术的应用可变气门正时技术在现代汽车工业中的应用已经非常广泛。
下面我们来看一下目前主流汽车品牌中的可变气门正时技术应用情况:1.奥迪奥迪一直以来都是汽车技术的领先者,其采用了一种称为"可变气门升程和气门正时系统"的技术,可以根据发动机转速和负载要求实时调整气门升程以及开启时机,进一步提高燃油经济性和输出性能。
2.丰田丰田近年来也在推进可变气门正时技术的应用,旗下多款车型都采用了这一技术。
发动机可变气门正时技术

发动机可变气门正时技术-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII发动机可变气门正时技术发动机可变气门正时技术的英文缩写就是“VVT”(Variable Valve Timing),其实这种称谓是“可变气门正时”的通称,而在汽车领域被普遍应用的可变气门正时技术又因为各个厂商的自行创新或者叫法不同而多种多样。
简单来说,可变气门正时的原理就是根据发动机的运行情况,调整进气、排气的量,控制气门开合的时间和角度,使进入的空气量达到最佳,从而提高燃烧效率。
我们通俗点来说,四冲程汽油机分为吸气、压缩、做功、排气这四步流程,由于发动机工作时的转速很高,四冲程发动机的一个工作行程仅需千分之几秒,这么短促的时间往往会引起发动机进气不足,排气不净,造成功率下降。
因此,就需要利用气流的进气惯性,气门要早开晚关,以满足进气充足,排气干净的要求。
发动机气门是由曲轴通过凸轮轴带动的,气门的配气正时则是由凸轮决定的。
对于没有可变气门正时技术的普通发动机而言,进排气们开闭时间都是固定的,但是这种固定不变的气门正时却很难顾及到发动机在不同转速工况时的工作需要。
所以,为了让发动机根据不同的负载情况能够自由调整“呼吸”,气门正时的可变性就发挥出了应有的作用,这样以来就会提升发动机的动力表现,使燃烧更有效率。
在控制进气与排气的工作中,必然会出现一个进气门和排气门同时开启的时刻,配气相位上称为“重叠阶段”。
在低转下表现出色的设计在高转下就未必有效,而重叠较多的发动机设计则在低转时的扭矩输出方面表现欠佳,重叠少的发动机则是在牺牲了动力性能的前提下换来了发动机的平顺性和高扭矩。
因此,就需要在设计时,充分考虑到凸轮形状和正时的设计,从而优化发动机的表现。
因此为了解决这个问题,就要求这个“重叠阶段”的夹角大小可以根据转速和负载的不同进行调节,高低转速下都可以获得理想的进气量从而提升发动机燃烧效率,这就是可变气门正时技术开发的初衷。
汽车构造-可变气门正时技术

气门正时提 前
相位器的提前室,延迟室的油压通过VVT控制阀泄压,VVT相位器 的内转子在液压油的推动下带动进气凸轮轴顺时针旋转。
• 发动机ECU控制VVT控制阀打开时,液压油由VVT控制阀进入VVT
气门正时延 迟
相位器的延迟室,提前室的油压通过VVT控制阀泄压,VVT相位器 的内转子在液压油的推动下带动进气凸轮轴逆时针旋转。
可变气门正时技术
11.4 可变气门正时技术
1.VTEC
VTEC系统全称是可变气门正时和升程电子控制系统(Variable Valve
Timing and Valve Lift Electronic Control System,VTEC)。VTEC是在一
根凸轮轴上设计两种不同定时和升程的凸轮,并用油压进行切换的装置。主要
• 当气门正时达到发动机的工作要求时,VVT控制阀处于中间位置, 气门正时保 关闭提前室和延迟室的油道,保持油压,从而保持气门正时状态。
持
感 谢 聆听
VVT相位器有两个液压室,一个气门正时提前室(图中蓝色腔室)和 一个气门正时延迟室(图中红色腔室)。
VVT控制阀是一个三位五通阀,VVT控制阀关闭时,主油道与相位器 延迟室接通,相位器提前室和提前室泄油道接通;
VVT控制阀打开时,主油道与相位器提前室接通,相位器延迟室和延 迟室泄油道接通;
VVT控制阀处于中间位置时,相位器提前室和延迟室处于保压状态, 如图所示。
2.VVT
VVT系统全称是发动机可变气门正 时技术(Variable Valve Timing, VVT)。VVT系统工作原理是根据 发动机的运行情况,调整进、排 气量、气门开合时间和角度,使 进入的空气量达到最佳值,提高 燃烧效率。
可变气门正时

凸轮相位延迟后, 能够减少重叠量,从 而将EGR 量降至最低, 并稳定燃烧。该功能 还能够实现更低的怠 速点。 凸轮相位提前后, 能够增大重叠量,从 而使EGR 效率得以提 高。结果是,EGR 效 率提高能够降低泵送 损失,减少排放
控制重叠量,能够 优化入口惯量,从而 最大化输出性能。
1、VTC系统
合理选择配气正时,保证最好的充气效率,是改善发
动机性能极为重要的技术问题。
在进、排气门开闭的四个时期中,进气门迟闭角的改
变对充气效率影响最大。
加大进气门迟闭角,高转速时充气效率增加有利于最
大功率的提高,但对低速和中速性能则不利。
低了最大功率。
现有的VTEC(可变气门正时和气门升程电子控制)系统,能够
最新设计的VTC(可变正时控制)连续不断地控制气门正时
(凸轮相位)。i-VTEC 是VTEC 和VTC 系统的组合,它能够控 制气门升程、正时并连续不断地控制凸轮相位,以便优化低速、 中速和高速时的燃烧。该系统还能提高燃油经济性,并达到低 排放。
5段工作凸轮 1-凸轮轴 2、6-排气凸轮 3-主进气凸轮 4-中间进气凸轮 5-辅助进气凸轮
摇臂组件 1-正时活塞 2-正时活塞弹簧 3-同步活塞A 4-同步活塞B 5-辅助摇臂 6-中间摇臂 7-主摇臂
VTEC机构中的凸轮有三个, 它们的线型不相同。高速凸 轮位于中央叫做中间凸轮, 它的升程最大;另两个低速 凸轮,较高的一个叫主凸轮, 较低的叫做次凸轮。与这三 个凸轮相对应的中间摇臂、 主摇臂和次摇臂,两个气门 分别安装在主、次摇臂上。 在三个摇臂内有一孔道,内 1-凸轮轴 装有正时活塞、A、B、同 2-主凸轮 步活塞、定位活塞,每个气 3-中间凸轮 4-辅助凸轮 缸的两个进气门上都安装有 5-主摇臂 6-中间摇臂 这样一套VTEC机构。
可变气门正时技术

发动机可变气门正时技术发动机可变气门正时:简称VVT(Variable Valve Timing);随着发动机转速的提高,短促的进排气时间往往会引起发动机进气不足,排气不净等现象,因此可变气门正时系统出现,它就是根据轿车的运行状况,随时改变配气相位,改变气门升程和气门开启的持续时间(气门升程就像门开启的角度,气门正时就像门开启的时间,进气歧管就像各个闸道的栏杆)。
发动机上的气门可变驱动机构可以通过两种形式实现,一种是通过凸轮轴或者凸轮的变换来改变配气相位和气门升程;另一种就是工作时凸轮轴和凸轮不变动,而气门挺杆(摇臂或拉杆)依靠机械力或者液压力的作用而改变,从而改变配气相位和气门升程。
发动机进排气过程中,会出现一个进气门和排气门同时开启的时刻,在配气相位上称为“重叠阶段或气门重叠角”。
在高转速下,为了达到更好的进气量,提高发动机的功率,就要求气门重叠角更大(进气门提前打开、或者排气门晚关);但在低转速或者怠工时,过大的重叠角则会导致废气过多的进入进气歧管,使缸内气流混乱,从而导致低速扭矩较低,因此低速时需要减小重叠角(进气门延时打开),此时燃烧会更充分更稳定。
因此孕育出可变气门正时技术。
从原理上可以看出,可变气门正时只是增加或减少了气门的开启时间,并没有改变单位时间的进气量,因此对于发动机的动力性的帮助并不显著,但是气门开启角度大小(气门升程)可以随时间改变的话,就可以显著提升发动机在各个转速的动力性能。
可变气门升程:可以使发动机在不同的转速提供不同的气门升程,低转速时使用较小的气门升程,有利于缸内气流的合理混合,增加发动机的低速输出扭矩;在高速时使用较大的升程,可以提高发动机的进气量,从而提高功率输出。
本田公司的i-VTEC是目前使用最广泛的可变气门升程系统(i-VTEC拥有连续可变气门正时、分段可调气门升程技术)。
本田VTEC:分级可变气门升程+分级可变气门正时i-VTEC:分级可变气门升程+连续可变气门正时(进、排气)丰田VVT-i:连续可变气门正时(进气门)Dual VVT-i:智能连续可变气门正时(进、排气门分别独立控制,有2个气门开启时刻)VVTL-i:分级可变气门升程+连续可变气门正时(进、排气门)宝马Valvetronic连续可变气门升程(省去“节气门”部件)Double V ANOS:连续可变气门正时(进、排气门分别独立控制)现代CVVT:连续可变气门正时(进气门)日产C-VTC:连续可变气门正时(日产的“VQ”发动机上使用,技术类似丰田)标致VTCS:可变涡流控制阀1、VVT-i原理:当发动机由低速向高速转换时,电子计算机(ECU)通过分析就自动地将机油压向进气凸轮轴驱动齿轮内的小涡轮,在压力的作用下,小涡轮就相对于齿轮壳旋转一定的角度,从而使凸轮轴在60度的范围内向前或向后旋转,从而改变进气门开启的时刻,达到连续调节气门正时的目的。
发动机的可变气门正时技术

发动机的可变气门正时技术发动机是现代交通工具的核心部件之一,对汽车性能的影响至关重要。
而发动机的可变气门正时技术正是一种能够提高发动机性能和燃油经济性的关键技术。
本文将对发动机的可变气门正时技术进行详细介绍。
一、可变气门正时技术的概述可变气门正时技术是指通过调整发动机进排气门的开启和关闭时间,使得气门的开闭与活塞的运动同步,以达到更好的进排气效果。
这项技术的出现,使得发动机可以根据不同工况的需求灵活调整气门的开启时间,从而提高发动机的动力输出、燃烧效率和燃油经济性。
二、主要的可变气门正时技术1. 可变气门正时技术——连续可变气门正时系统连续可变气门正时系统通过电子控制单元(ECU)和液压执行机构实现气门正时的连续调节。
传感器会监测发动机的工况参数,如转速、负荷和速度等,然后通过ECU对气门正时进行精确的控制。
这一技术最大的优势就是可以根据不同工况实时调整气门正时,以获取最佳的气门开度。
2. 可变气门正时技术——阶段可变气门正时系统阶段可变气门正时系统是通过调整气门凸轮轴的相位,以实现不同工作阶段的气门正时控制。
这一技术通常由液压或电动控制单元操控,通过改变凸轮轴齿轮的位置,改变气门的开闭时间。
相比于连续可变气门正时系统,阶段可变气门正时系统在调整范围上稍显局限,但实施起来更加简单可靠。
三、可变气门正时技术的优势1. 提高发动机的动力输出通过可变气门正时技术,可以根据发动机的工作状态实时调整气门的开闭时间,进一步优化气门开度和气门提前角度,从而提高发动机的进气效率。
这样可以增加每缸气体的流量和容积效率,使得燃烧更加充分,输出更大的动力。
2. 提高燃烧效率和燃油经济性可变气门正时技术还可以通过调整进排气门的开闭时间和气门提前或滞后角度来改变气缸内的活塞行程,优化燃烧室的容积和爆发时机,从而实现更高的燃烧效率。
通过提高燃烧效率,车辆可以在相同燃料条件下产生更多的动力,从而提高燃油经济性,减少排放。
3. 降低排放和噪音发动机的可变气门正时技术可以帮助实现更好的进气和排气效果,减少气门过早或过晚开启的问题,有效降低废气排放和噪音。
VVT(可变气门正时技术)是一种怎样的技术?原理是什么?

VVT(可变气门正时技术)是一种怎样的技术?原理是什么?VVT(可变气门正时)从字面意思来看就是通过某种特有技术让发动机气门的开关时间达到可变调节的正时效果。
正时:让发动机在正确的时间做正确的事因为发动机的配气机构就是用来调节发动机进排气效果以保证发动机在某些工况的效率。
但是发动机的工况是不断变化的,因此固定时间下气门的开闭肯定不能满足发动机全工况下对进气效率的需求。
所以,可以通过硬件机构实现气门的提前和延迟改变时间并配合电控系统的精准控制可以实现气门调节在一定幅度每的智能可变。
这种技术就是我们平时所说的VVT可变气门正时,如果加上电控系统就是电子可变气门正时。
比如本田的ivtec、丰田的vvt-i等。
它们相对没有可变气门正时的发动机主要有以下优点:提高燃油经济性提高低速稳定性和扭矩输出有助于提高功率降低排放污染与未搭载VVT的发动机相比燃油经济性差不多会提高10%-20%,功率提升5%-10%。
下面用浅显易懂的话来分享下它是怎样一种技术?为何要用它?四冲程发动机一个完整的循环包括:吸气、压缩、做功、排气,由于每个冲程都需要活塞由上止点移动到下止点完成180度,所以整个循环曲轴实际上要旋转720度。
凸轮轴是发动机完成配气的主体,凸轮轴由曲轴通过正时皮带驱动,但是一个完整的冲程进气门和排气门只需打开一次所以它们之间齿比固定为2:1。
也就是曲轴转两圈,凸轮轴只需要转一圈。
按道理说气门的开关不是要严格按照每180度一个冲程开闭一次?比如吸气冲程活塞开始下行就打开气门,当活塞到达下止点准备上行前气门关闭;排气冲程在做功结束前一刻打开排气门,活塞上行排除废气。
理论上这种配气不是挺合适的?但现实往往不允许,因为发动机的运行是极其复杂和多变的,无论是阻力、摩擦力、进气效率、温度、压强、废气循环等等各种因素都会影响发动机的性能综合性。
相对于配气系统来说发动机的进气效率其运行有着极其重要的作用而配气系统却和气门的正时有着直接关系。
可变气门正时技术

可变气门正时技术可变气门正时技术的引入和发展随着汽车工业的快速发展和对动力系统性能的不断追求,可变气门正时技术应运而生。
通过对发动机气门的开闭时间和幅度进行控制,可变气门正时技术可以在不同工况下优化气门的进、排气效果,提高发动机的燃烧效率和动力性能。
本文将从可变气门正时技术的发展历程、工作原理、优势和应用前景等方面进行探讨。
一、可变气门正时技术的发展历程可变气门正时技术最早出现在上世纪70年代,当时主要采用的是机械或液压控制方式。
随着电子技术的发展,电控可变气门正时技术逐渐替代了传统的机械和液压控制方式,成为主流。
同时,随着对环境保护和燃油经济性要求的提高,可变气门正时技术也不断创新,出现了多种不同的控制方式,如电磁控制、液压机械控制、连杆机械控制等,以满足不同发动机和车辆的需求。
二、可变气门正时技术的工作原理可变气门正时技术的工作原理主要是通过控制发动机的气门开闭时间和幅度来调节气门事件。
一般来说,气门的开启时间应与活塞的位置相吻合,以确保气门的开启和关闭不会对活塞造成损害。
传统的固定气门正时技术无法满足动力系统在不同转速和负荷下的要求,而可变气门正时技术可以根据不同工况自动调节气门的开闭时间和幅度,以优化燃烧效率和动力输出。
三、可变气门正时技术的优势可变气门正时技术具有以下几个优势:1.提高燃烧效率:可变气门正时技术可以根据不同负荷工况自动调节气门的开闭时间和幅度,使得燃气进出气缸的流动更加顺畅,从而提高燃烧效率,减少排放物的产生。
2.增加动力输出:通过控制气门的开启和关闭时间,可变气门正时技术可以使发动机在高转速下更有效地吸入和排出气体,提高动力输出,提升车辆的加速性能。
3.降低能耗和排放:与固定气门正时相比,可变气门正时技术可以在发动机负荷较低时减少气门的开启时间,降低发动机泵功耗,从而减少燃油消耗和排放物的产生,提高燃油经济性。
4.增加发动机的灵活性:可变气门正时技术可以根据不同工况自动调节气门的开闭时间和幅度,使得发动机具备更大的调节范围,适应不同的道路条件和驾驶需求。
可变气门正时技术(VVT)

可变气门正时技术(VVT)是近些年来被逐渐应用于现代轿车上的新技术中的一种,发动机采用可变气门正时技术可以提高进气充量,使充量系数增加,发动机的扭矩和功率可以得到进一步的提高。
现代的cvvt也是源自VVT的发动机控制技术。
发动机的气门正时是指气门打开的时间,也就是气门应该在活塞运行到哪个位置的时候打开。
一般我们会感觉,进气门应该在活塞从上止点开始向下运动,进行进气行程的时候打开,在活塞到达下止点完成进气行程的时候关闭;相应的排气门应该是活塞从下止点开始向上运动开始排气行程的时候打开,活塞运行到上止点完成排气行程的时候关闭。
但是,因为空气是有惯性的,它需要一定的反应时间,为了更多的进气和排气,进气门会在活塞向下运动之前打开,并且到达下止点之后才关闭;排气门也是一样,会在活塞向上运动之前打开,到达上止点之后才关闭。
那么我们会发现在活塞到达上止点完成排气行程的时候,也就是进气行程开始之前,会出现进气门和排气门同时打开的现象。
这就是所谓的气门叠加,这个叠加时曲轴转过的角度就气门叠加角。
发动机在其不同的转速范围段,对气门叠加角的需求是不同的,低转速需要较小的气门叠加角,高转速的时候反之,需要较大的气门叠加角。
普遍不带气门正时可变的发动机,是无法同时满足这两个需求的,一般只能采用一个折衷值,那么发动机在高速或者低速的时候运转都不会很舒服。
传统的发动机气门工作状态如下:当发动机处于低转速时,凸轮轴的运转速度较慢,进气速度也相对较慢,气门则保持相对较长的开启时间和较小的开度。
而当车辆在高速路上以120km/h的速度行驶时,发动机的转速则会维持在3000~4000rpm,甚至更高。
这一状态下,气门开闭频率加快,进气速度也加快,虽然进气量大,但气门的开启时间短,使进氧量较少,造成燃烧不完全。
如果在这一传统的发动机配气机构上引入电子控制系统——气门正时控制,那么发动机的工作效率将得到大幅改善。
通过对凸轮轴的改造以及对传感器信号的收集,在低转速时,正时系统可控制凸轮轴使进气门提前开启或延时关闭,以保证气缸在低转速下的进气通畅;高转速时,还可对气门的开度实现适时调整,确保气缸内的燃烧更充分。
发动机的可变气门正时系统与工作原理

发动机的可变气门正时系统与工作原理发动机的可变气门正时系统是现代汽车发动机中的一项重要技术,它通过调整气门的开启和关闭时间,以实现更高效的燃烧和更大的动力输出。
本文将介绍可变气门正时系统的原理和工作方式。
一、可变气门正时系统的原理可变气门正时系统主要由气门机构、控制单元和传感器组成。
其原理是通过控制单元接收传感器反馈的信息,自动调整气门的开启和关闭时间,以适应不同工况下的发动机运行需求。
传统的固定气门正时系统在设计时会根据特定工况下的理论数值来决定气门的开启和关闭时间。
然而,不同工况下的发动机运行条件存在很大的差异,固定的气门正时设置无法充分利用燃油的能量,造成动力损失和燃油浪费。
可变气门正时系统通过实时监测发动机转速、负荷、温度等参数,计算出当前最佳的气门正时设置,并通过控制单元发送指令给气门机构,调整气门的开启和关闭时间。
这样就可以在不同工况下实现更精确的气门控制,提高燃烧效率和动力输出。
二、可变气门正时系统的工作方式可变气门正时系统根据具体设计和制造厂商的不同,工作方式有所差异。
下面将介绍两种常见的可变气门正时系统工作原理。
1. 可变气门正时系统采用可变气门升程技术这种系统通过改变气门的升程来调整气门的开启和关闭时间。
当发动机运行在低负荷或低转速时,气门升程较短,减少进气量和排气阻力,提高燃烧效率。
当发动机需要更大动力输出时,气门升程相应增加,增加进气量和排气能力。
可变气门升程技术通常通过液压系统实现。
控制单元根据传感器反馈的信息计算出最佳气门升程值,并通过液压控制单元调节气门升程。
这种系统具有响应速度快、精度高的特点,可以根据发动机负荷和转速的变化实时调整气门升程。
2. 可变气门正时系统采用可变气门正时角技术这种系统通过改变气门的开启和关闭时间,即气门正时角,来调整气门的工作时间。
当发动机运行在低负荷或低转速时,气门提前开启和延迟关闭,延长气门开启时间,提高进气效率。
当发动机需要更大的动力输出时,气门提前关闭和延迟开启,缩短气门开启时间,增加压缩比和爆发力。
可变气门正时技术

• 低速:新鲜充量重回进 气管
• 高速:提高气流量,充 气量;
• 低速:节流损失
可变气门正时技术的作用机理
总结:
• 高速时,进气门早开晚关,气门升 程大;
• 低速时,进气门晚开早关,气门升 程小。
•排气门迟闭:为了利用 废气的惯性多排气,排气 门要迟闭,迟闭角为 10~30度曲轴转角.
配气相位
4、配门正时
说明:
同一台发动机只有一固 定的配气相位。
可变气门正时技术的作用机理
• 进气门开启相位提前 • 进气门关闭相位推迟 • 气门升程增大
• 高速:进气过程时间延 长,提高充气量
• 低速:废气再循环,怠 速不稳,工作粗暴
一、配气机构 二、配气相位 三、可变气门正时技术
配气机构
1、作用
按照发动机做功的顺序,定时 开启进、排气门。
2、组成
❖气门组:气门、气门导管、 气门弹簧、气门弹簧座、和 气门锁片、气门油封。
❖气门传动组:凸轮轴、凸 轮轴正时齿轮、液力挺柱、 摇臂、摇臂轴等。
配气相位
1、什么是配气相位?
用曲轴来表示进排气门早开、 迟闭的持续时间。Байду номын сангаас
2、进气门的配气相位?
•进气门早开:为了减小进气 阻力,当活塞从上止点下行时, 气门已经有了大的进气通道。 进气门早开10~30度曲轴转角。
•进气门迟闭:为了利用进气 气流的惯性多进气,增加进气 量,气门迟后关闭40~80度曲 轴转角。
配气相位
3、排气门的配气相位
•排气门早开:为了使排 气冲程开始时气门有较 大开度,减少排气阻力,排 气门要早开,早开40~80 度曲轴转角.
汽车可变气门正时

谢谢
THANKS
可变气门正时系统的执行器,如 电磁阀、油压调节器等,可能出 现故障,导致系统无法正确调节
气门正时。
故障诊断方法
01
02
03
观察法
通过观察可变气门正时系 统的外观和仪表板上的故 障指示灯,初步判断是否 存在故障。
听诊法
使用听诊器听可变气门正 时系统的工作声音,判断 是否存在异常响声。
测试法
使用专业的诊断工具进行 测试,读取可变气门正时 系统的数据流,分析是否 存在异常。
汽车可变气门正时
目录
CONTENTS
• 汽车可变气门正时技术概述 • 可变气门正时系统的类型 • 可变气门正时系统的组成部件 • 可变气门正时系统的控制策略 • 可变气门正时系统的故障诊断与维修 • 可变气门正时技术的发展趋势与未来展望
01 汽车可变气门正时技术概述
CHAPTER
定义与工作原理
06 可变气门正时技术的发展趋势与未来展望
CHAPTER
更高压力的机油系统
总结词
详细描述
随着汽车技术的不断发展,机油系统的压力 也在逐步提高。更高压力的机油系统能够提 供更好的润滑效果,减少发动机的摩擦损失, 提高燃油经济性和动力性能。
在可变气门正时技术中,机油系统的作用是 提供润滑和冷却效果,以确保气门机构的正 常运行。随着发动机转速和负荷的变化,机 油系统的压力也需要相应调整以适应不同的 工况。因此,更高压力的机油系统成为了可 变气门正时技术的一个重要发展趋势。
智能可变气门正时(iCVT)
总结词
智能可变气门正时系统能够根ห้องสมุดไป่ตู้发动机工况和驾驶需求,自 动调节气门开度和正时,以实现最佳的动力输出和燃油经济 性。
简析可变气门正时技术VVT

可变气门正时VVT标识
发动机可变气门正时技术
四冲程汽油机分为吸气、压缩、做功、排气这四步流程,由于发动机工 作时的转速很高,四冲程发动机的一个工作行程仅需千分之几秒,这么短促 的时间往往会引起发动机进气不足,排气不净,造成功率下降。
因此,就需要利用气流的进气惯性,气门要早开晚关,以满足进气充足, 排气干净的要求。
但是气门正时只能增加或者缩小气门开启时 间,并不能有效改善汽缸内单位时间的进气量, 因此对于发动机动力性的帮助并不大。
可变气门升程技术与VVT相辅相承 简单来讲,如果气门开启大小(气门升程)也可以时间可变调节的话, 那么就可以针对不同的转速使用合适的气门升程,从而提升发动机在各个转 速内的动力性能,这就是和VVT技术相辅相承的可变气门升程技术。
阿尔法· 罗密欧Spider阿尔法· 罗密欧Spider发动机
最先配备这种系统的车型就是阿尔法罗密欧Spider。 当这款车在欧洲销售的时候,该公司进一步增大了重叠角 度以获得更好的燃油经济性。后来在配备了Bosch公司的 Motronic发动机管理系统之后,发动机的正时技术便越来 越依赖于ECU的作用了。
在重叠阶段应用气门正时调节可以通过废气 来降低温度,从而减少NOx(NOx气体是一种危害 大且较难处理的大气污染物)的排放。
应用废气外循环(EGR)技术的发动机
可 变 气 门 正 时 系 统 结 构 图
最先将气门正时技术应用在量产车中的公司是意大利的阿尔法罗密欧。 作为第一个开发出了双凸轮轴量产发动机的厂商,他们用两根不同的凸轮轴 来控制进气气门和排气气门的开闭时间,从而达到了比单凸轮轴更为有效的 效果。
传统的VVT技术通过合理的分配气门开启的时间确实 可以有效提高发动机效率和经济性,但是对发动机性能的 提升却作用不大。 因此可变可以弥补这个不足的 气门升程技术则孕育而 生。
可变气门正时技术详解

可变气门正时技术详解引擎配气机构图为什么要“可变气门行程”?活塞式四冲程引擎都由进气、压缩、做功、排气4个冲程完成,相信这一章的内容不需废话,我们关注的是气门开启程度对引擎进气的问题。
气缸进气的基本原理是“负压”,也就是气缸内外的气体压强差。
在引擎低速运转时,气门的开启程度切不可过大,这样容易造成气缸内外压力均衡,负压减小,从而进气不够充分,对于气门的工作而言,这个“小程度开启”需要短行程的方式加以控制;而高速恰恰相反,转速动辄5000rpm,倘若气门依然羞羞答答不肯打开,引擎的进气必然受阻,所以,我们需要长行程的气门升程。
往往,工程师们既要兼顾引擎在低速区的扭矩特性,有想榨取高速区的功率特性,只能采取一条“折中”的思路,到头来引擎高速没功率,低速缺扭矩……所以在这样的情况下,就需要一种对气门升程进行调节的装置,也就是我们今天要说的“可变气门正时技术”。
该技术既能保证低速高扭矩,又能获得高速高功率,对引擎而言是一个极大的突破。
80年代,诸多企业开始投入了可变气门正时的研究,1989年本田首次发布了“可变气门配气相位和气门升程电子控制系统”,英文全称“Variable Valve Timing and Valve Life Electronic Control System,也就是我们常见的VTEC。
此后,各家企业不断发展该技术,到今天已经非常成熟,丰田也开发了VVT-i,保时捷开发了Variocam,现代开发了DVVT……几乎每家企业都有了自己的可变气门正时技术。
一系列可变气门技术虽然商品名各异,但其设计思想却极为相似。
可变气门正时技术之一:保时捷Variocam保时捷911跑车引擎采用的可变气门正时技术Variocam通过气门我们可以发现其两个位置,图中每个进气门分别有2种最大行程,绿色位置显然是高速时气门能够达到的最大行程。
控制气门行程变化的,是两组凸轮控制,一组是高速凸轮,既红色部分的凸轮;另一组是低速凸轮,既高速凸轮之间的凸轮。
VVT工作原理

VVT工作原理引言:可变气门正时技术(Variable Valve Timing,简称VVT)是一种用于内燃机的先进技术,通过控制气门的开启和关闭时间,以优化燃烧过程,提高发动机性能和燃油经济性。
本文将详细介绍VVT的工作原理及其优势。
一、VVT的定义和分类可变气门正时技术是指通过调整气门的开启和关闭时间,以适应不同工况下发动机的需求。
根据实现方式的不同,VVT可分为机械式VVT、液压式VVT和电子式VVT三种。
1. 机械式VVT:机械式VVT通过机械装置来改变气门正时,常见的机械式VVT包括可变气门升程系统和可变气门升程与正时系统。
2. 液压式VVT:液压式VVT利用液压力来控制气门正时,常见的液压式VVT包括连续可变气门正时系统和离散可变气门正时系统。
3. 电子式VVT:电子式VVT通过电子控制单元(ECU)来调整气门正时,常见的电子式VVT 包括连续可变气门正时系统和离散可变气门正时系统。
二、VVT的工作原理VVT的工作原理主要包括气门正时调整、气门升程调整和气门重叠调整三个方面。
1. 气门正时调整:VVT通过改变气门的开启和关闭时间来调整气门正时。
在低转速下,VVT可以提前气门的开启时间,延迟气门的关闭时间,以增加进气量,提高低转速扭矩输出。
在高转速下,VVT可以延迟气门的开启时间,提前气门的关闭时间,以减少进气量,提高高转速功率输出。
2. 气门升程调整:VVT可以通过改变气门升程来调整进气和排气量。
在低转速下,VVT可以增加气门升程,增加进气量和排气量,提高低转速扭矩输出。
在高转速下,VVT可以减小气门升程,减少进气量和排气量,提高高转速功率输出。
3. 气门重叠调整:VVT可以调整进气和排气气门的重叠时间。
在低转速下,VVT可以增加进气和排气气门的重叠时间,增加气缸内混合气的动量,提高低转速扭矩输出。
在高转速下,VVT可以减小进气和排气气门的重叠时间,减少废气回流,提高高转速功率输出。
发动机的可变气门正时与功率输出

发动机的可变气门正时与功率输出发动机是汽车的心脏,它的工作原理和性能直接影响着车辆的动力和燃油效率。
而发动机的可变气门正时技术正是一项能够在不同工况下优化气门开闭时间的技术,可以显著提升发动机的功率输出效果。
本文将探讨发动机的可变气门正时技术对功率输出的影响。
1. 可变气门正时技术的基本原理可变气门正时技术是一种能够根据发动机负荷和转速的变化,实时调整气门开闭时间的系统。
它通过改变气门的开启和关闭时机,以最优化的形式将燃气进入和排出气缸,实现高效燃烧和提高发动机的功率输出。
2. 可变气门正时技术的分类可变气门正时技术主要有凸轮轴可变正时和可变气门升程两种类型。
2.1 凸轮轴可变正时技术凸轮轴可变正时技术通过改变凸轮轴上凸轮的位置,实现气门开闭时间的调整。
当发动机负荷和转速较低时,凸轮轴会将气门的开启时间延后,延长进气阀的开启时间,以增加气缸内燃气的进入时间。
当负荷和转速较高时,凸轮轴会将气门的开启时间提前,以提高气缸的气流速度和进气效率。
2.2 可变气门升程技术可变气门升程技术则通过改变气门升程的长度,来调整气门的开闭时间。
在低负荷和转速时,可变气门升程技术会选择较小的升程长度,以减小进气阻力和提高发动机的燃烧效率。
而在高负荷和转速时,可变气门升程技术会选择较大的升程长度,以增加气门的开放时间,提高气缸的充气效果。
3. 可变气门正时技术对功率输出的影响可变气门正时技术的引入使得发动机在不同工况下能够实现气门的最佳开闭时间,从而提高功率输出的效率。
3.1 提高低转速扭矩在低转速工况下,由于气缸内的负荷较小,传统固定气门正时会导致进气阻力增加,燃烧效率低下。
而可变气门正时技术能够将气门的开闭时间调整到合适的位置,增加气缸内燃气的进入时间,从而提高在低转速下的扭矩输出。
3.2 增加高转速功率在高转速工况下,气流速度的提升对于进气和排气均非常重要。
凸轮轴可变正时技术和可变气门升程技术的引入,都能够使气门的开启时间更早,气门的开放时间更长,从而增加气缸内的气流速度,提高高转速下的功率输出。
一篇文章看懂VVT技术【图】

一篇文章看懂VVT技术【图】车云按:VVT一直以来都是主机厂宣传发动机技术水平的重要零部件。
日系在当年更是凭借这一技术,独领市场风骚多年。
那么,大家经常能够听到的VVT技术,其原理到底如何,各家主机厂背后的VVT技术之优劣又如何区分,目前和未来的发展将会怎样?本文作者为就职于VVT零部件企业的高级研发工程师。
可变气门技术可以带来非常具有吸引力的发动机性能改善效果,因此自从发动机开发之初,工程师们就梦寐以求地渴望实现发动机气门的可变控制。
可变气门技术发展至今主要有两大分支:1.其一:VVT(Variable Valve Timing)可变气门正时技术,以丰田的VVT-i以及BMW公司的Vanos为代表;2.其二:VVL(Variable Valve lift)可变气门升程技术,以本田的VTEC,Mitsubishi公司的MIVEC以及Porsche公司的Vario-Cam为代表。
本文将重点讲述的VVT可变气门正时技术,就是在特定的发动机工况下,通过控制进气门开启角度提前和延迟来调节进排气量和时刻和改变气门重叠角的大小,来实现增大进气充量和效率,更好的组织进气涡流,调节气缸爆发压力与残余废气量,来获得发动机功率,扭矩,排放,燃油经济性,舒适性等综合性能的改善,从而解决传统固定配气相位发动机的各项性能指标之间相互制约的技术矛盾。
1960年起,汽车工程师们开始致力于这项技术的研究。
1982年,AlfaRomeo的spider2.0是最早采用VVT技术的量产车型。
1993年,丰田公司开始将该技术在行业内大面积推广。
VVT系统可分为分段式调节和连续调节,而连续调节式VVT又可分为如下四类:1.(1)单进气VVT,简称IPS2.(2)单排气VVT, 简称EPS3.(3)进、排气独立调节VVT,简称DIPS4.(4)进、排气等相位调节VVT, 简称DEPS目前,市面上不同汽车厂商命名的如VVT,VCT,VVT-i, CVVT, DVVT,VCP,CVCP等,其实都是上述技术中的一种,名字不同而已。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、概述
近几十年来,基于提高汽车发动机动力性、经济性和降低排污的要求,许多国家和发动机厂商、科研机构投入了大量的人力、物力进行新技术的研究与开发。
目前,这些新技术和新方法,有的已在内燃机上得到应用,有些正处于发展和完善阶段,有可能成为未来内燃机技术的发展方向。
发动机可变气门正时技术(VVT, Variable Valve Timing)是近些年来被逐渐应用于现代轿车上的新技术中的一种,发动机采用可变气门正时技术可以提高进气充量,使充量系数增加,发动机的扭矩和功率可以得到进一步的提高。
2、可变气门正时理论
合理选择配气正时,保证最好的充气效率hv,是改善发动机性能极为重要的技术问题。
分析内燃机的工作原理,不难得出这样的结论:在进、排气门开闭的四个时期中,进气门迟闭角的改变对充气效率hv影响最大。
进气门迟闭角改变对充气效率hv和发动机功率的影响关系可以通过图1进一步给以说明。
图1中每条充气效率hv曲线体现了在一定的配气正时下,充气效率hv随转速变化的关系。
如迟闭角为40°时,充气效率hv是在约1800r/min的转速下达到最高值,说明在这个转速下工作能最好地利用气流的惯性充气。
当转速高于此转速时,气流惯性增加,就使一部分本来可以利用气流惯性进入汽缸的气体被关在汽缸之外,加之转速上升,流动阻力增加,所以使充气效率hv下降。
当转速低于此转速时,气流惯性减小,压缩行程初始时就可能使一部分新鲜气体被推回进气管,充气效率hv也下降。
图中不同充气效率hv曲线之间,体现了在不同的配气正时下,充气效率hv随转速变化的关系。
不同的进气迟闭角与充气效率hv曲线最大值相当的转速不同,一般迟闭角增大,与充气效率hv曲线最大值相当的转速也增加。
迟闭角为40°与迟闭角为60°的充气效率hv曲线相比,曲线最大值相当的转速分别为1800r/min和2200r/min 。
由于转速增加,气流速度加大,大的迟闭角可充分利用高速的气流惯性来增加充气。
改变进气迟闭角可以改变充气效率hv曲线随转速变化的趋向,以调整发动机扭矩曲线,满足不同的使用要求。
不过,更确切地说,加大进气门迟闭角,高转速时充气效率hv增加有利于最大功率的提高,但对低速和中速性能则不利。
减小进气迟闭角,能防止气体被推回进气管,有利于提高最大扭矩,但降低了最大功率。
因此,理想的气门正时应当是根据发动机的工作情况及时做出调整,应具有一定程度的灵活性。
显然,对于传统的凸轮挺杆气门机构来说,由于在工作中无法做出相应的调整,也就难于达到上述要求,因而限制了发动机性能的进一步提高。
3、在Passat B5轿车上的应用
3.1 可变气门正时的结构与传动
Passat B5轿车最新选用2.8升V6发动机,该发动机对可变气门正时进行了特别设计。
从俯视观察,其传动方式以及进排气凸轮轴分布如图2所示,排气凸轮轴安装在外侧,进气凸轮轴安装在内侧。
曲轴通过齿形皮带首先驱动排气凸轮轴,排气凸轮轴通过链条驱动进气凸轮轴。
3.2 可变气门正时调节器
如图3所示,(a)图为发动机在高速状态下,为了充分利用气体进入汽缸的流动惯性,提高最大功率,进气门迟闭角增大后的位置(轿车发动机通常工作在高速状态下,所以这一位置为一般工作位置)。
(b)图为发动机
在低速状态下,为了提高最大扭矩,进气门迟闭角减少的位置。
进气凸轮轴由排气凸轮轴通过链条驱动,两轴之间设置一个可变气门正时调节器,在内部液压缸的作用下,调节器可以上升和下降。
当发动机转速下降时,可变气门正时调节器下降,上部链条被放松,下部链条作用着排气凸轮旋转拉力和调节器向下的推力。
由于排气凸轮轴在曲轴正时皮带的作用下不可能逆时针反旋,所以进气凸轮轴受到两个力的共同作用:一是在排气凸轮轴正常旋转带动下链条的拉力;二是调节器推动链条,传递给排气凸轮的拉力。
进气凸轮轴顺时针额外转过θ角,加快了进气门的关闭,亦即进气门迟闭角减少θ度。
当转速提高时,调节器上升,下部链条被放松。
排气凸轮轴顺时针旋转,首先要拉紧下部链条成为紧边,进气凸轮轴才能被排气凸轮轴带动旋转。
就在下部链条由松变紧的过程中,排气凸轮轴已转过θ角,进气凸轮才开始动作,进气门关闭变慢了,亦即进气门迟闭角增大θ度。
3.3 两种工作状态
从图2和图3不难看出,该发动机左侧和右侧的可变气门正时调节器操作方向始终要求相反。
当发动机的左侧可变气门正时调节器向下运动时,右侧可变气门正时调节器向上运动,左侧链条紧边在下边,右侧链条紧边在上边。
调节器向下移动时,紧边链条都是由短变长。
当Passat B5轿车发动机转速高于1000r/min时,要求进气门关闭得较早,如图4(a)所示。
左列缸对应的可变气门正时调节器向下运动,上部链条由长变短,下部链条由短变长。
右列缸对应的可变气门正时调节器向上运动,上部链条由短变长,下部链条由长变短。
左右列缸对应的进气凸轮轴在两个力的共同作用下都顺时针额外转过θ角,加快了进气门的关闭,满足了低速进气门关闭较早,可提高最大扭矩的要求。
当Passat B5轿车发动机转速为3700r/min时,要求进气门关闭得较迟,如图4(b)所示。
左列缸对应的可变气门正时调节器向上运动,上部链条由短变长,下部链条由长变短。
右列缸对应的可变气门正时调节器向下运动,上部链条由长变短,下部链条由短变长。
在左列缸的下部链条,右列缸的上部链条同时由长变短的过程中,排气凸轮轴已转过θ角,进气凸轮才开始动作,进气门关闭变慢了,满足了高速,进气门关闭较迟,可提高最大功率的要求。
4、可变气门正时的微机控制
Passat B5轿车2.8升V6发动机的可变气门正时系统由Motronic M3.8.2发动机控制单元进行控制。
微机控制关系如图5所示。
左右列缸对应的可变气门正时机构均设置了一个可变气门正时电磁阀,如图6所示。
发动机在获得转速传感器的信息后,对左右列缸对应的可变气门正时电磁阀的控制方式做出正确选择并控制阀体动作。
当获得不同阀体位置时,通往可变气门正时调节器内的液压缸油路变换,使得可变气门正时调节器上升或下降,以至于左右列缸对应的进气门获得不同的迟闭角。
5、结束语
以上所述发动机可变气门正时系统,是通过微机控制可变气门调节器上升和下降获得齿形皮带轮与进气凸轮(进气门)的相对位置变化,这种结构属于凸轮轴配气相位可变结构,一般可调整20。
~30。
曲轴转角。
由于这种机构的凸轮轴、凸轮形线及进气持续角均不变,虽然高速时可以加大进气迟闭角,但是气门叠开角却减小,这是它的缺点。
总体来看,发动机可变气门正时技术已相对成熟,将来会有越来越多的高性能汽油发动机采用这一技术。