原核基因表达调控综述
分子生物学第七章原核生物基因表达调控
原核生物基因表达调控的特点
01
原核生物基因表达调控通常由特 定的转录因子、RNA聚合酶以及 其他调控蛋白介导,通过与DNA 的结合或解离来调节基因转录。
02
原核生物基因表达调控具有快速 响应环境变化的特点,能够在短 时间内调整基因表达模式,以适 应外界刺激和压力。
翻译后加工的调控
翻译后加工的调控
在翻译后加工阶段,新合成的蛋白质经过一系列修饰和加工,最终成为具有生物学活性的蛋白质。原 核生物通过控制翻译后加工酶的合成和活性来调控翻译后加工过程。此外,原核生物还可以通过控制 蛋白质的稳定性来影响其功能和表达水平。
总结
翻译后加工是基因表达调控的重要环节,原核生物通过控制翻译后加工酶的合成和活性,以及蛋白质 的稳定性来精细调控基因表达。
翻译延伸的调控
翻译延伸的调控
在翻译延伸阶段,核糖体沿着mRNA移动,将氨基酸组装成蛋白质。原核生物通过控制翻译延伸因子的合成和活 性,以及核糖体的合成和组装来调控翻译延伸。此外,原核生物还可以通过控制mRNA的结构和稳定性来影响翻 译延伸。
总结
翻译延伸是基因表达调控的重要环节,原核生物通过控制翻译延伸因子的合成和活性,以及核糖体的合成和组装, 以及mRNA的结构和稳定性来精细调控基因表达。
翻译起始的调控
原核生物通过控制翻译起始来调控基因表达。在翻译起始阶段, mRNA与核糖体结合,招募翻译所需的起始因子和其他成分。原 核生物通过控制起始因子的合成和活性,以及mRNA与核糖体的 结合来调控翻译起始。
总结
翻译起始是基因表达调控的重要环节,原核生物通过控制翻译起 始因子的合成和活性,以及mRNA与核糖体的结合来精细调控基 因表达。
第六章 原核基因表达调控
第六章 原核基因表达调控模式
-- 乳糖(+)时, 葡萄糖(+)
二.乳糖操纵子调节机制
i基因
有诱导物时
P
O
Lac Z
Lac Y 转录
lac A
阻遏蛋白 阻遏物 蛋白亚基 无活性的 阻遏蛋白
翻译 转录水平低, 没有乳糖酶的合成 β- 半乳糖苷酶 β- 半乳糖苷通透酶 β- 半乳糖苷乙酰转移酶
mRNA
诱导物
第六章 原核基因表达调控模式
一.
概述
根据细菌酶的合成对环境的反应不同,分为:
组成酶 细菌酶 诱导酶
适Байду номын сангаас酶
阻遏酶
第六章 原核基因表达调控模式
3. 原核基因表达的多级调控
四个基本调控点: 基因活化 转录水平上的调控
最有效的调节环节
一.
概述
转录起始--- DNA元件与调控蛋白相互作用调控 mRNA加工成熟水平的调控 转录后水平上的调控 翻译及翻译后水平的调控
调节基因的产物-阻遏蛋白
负控诱导 负控阻遏 正控诱导
调控机制
负转录调控 (为主) 正转录调控
正控阻遏
调节基因的产物-激活蛋白
第六章 原核基因表达调控模式
负调控 Lac O 正调控 Ara O
一.
概述
诱
导 阻遏物 阻遏 诱导物 诱导
失活的阻遏物 失活的活性蛋白 阻遏
活化的激活蛋白 诱导物 诱导
Trp O
(1) 葡萄糖(+), 乳糖(–)时,
- 乳糖(–)时, 无别乳糖存在,阻遏蛋白与操纵子上的 O序列结合, 使操纵子处于关闭状态,三个结构基因 不表达。 - 葡萄糖(+)及cAMP浓度低时,CAP 活性低, 无 cAMP- CAP复合物形成。
第十章原核生物基因表达的调控
表 16-4 E.coliσ 因子识别不同保守序列的启动子 基因 分子量 70KD 32KD 24KD 54KD 28KD 功能 普遍 热休克 热休克 氮饥饿 产生鞭毛 -35 序列 TTGACA CCCTTGAA ? CTGGNA CTAAA 间隔(bp) 16~18 13~15 ? 6 15 -10 序列 TATAAT CCCGATNT ? TTGCA GCCGATAA
基本概念
1.操纵子(operon)
很多功能上相关的结构基因在染色体上串连排列,由 一个共同的控制区来操纵这些基因的转录。包含这些结构 基因和控制区的整个核苷酸序列就称为操纵子(operon)。
一个完整的操纵子主要包括启动子、操纵基因、结构 基因和终止子。
2. 阻遏物和激活物(reperssor and activator)
2. 基因表达的极性效应
•在正常情况下原核基因表达时,其转录出来的mRNA随 即进行翻译,这时整个mRNA都覆盖着核糖体, ρ因子 无法接近mRNA,而RNA聚合酶早已越过前面的基因的 依赖ρ因子的终止子,所以转录实际上并不停止,而是继 续转录后续基因。如果在某一基因的依赖于ρ的终止子之 前发生无义突变,核糖体便从无义密码子上解离下来,翻 译停止,于是ρ就可以自由进入RNA并移动,直到赶上停 留在终止子上的RNA聚合酶,结果使RNA聚合酶释放, 不能再转录下游基因。
第十章 原核生物基因 表达的调控
生物的遗传信息是以基因的形式储藏在细 胞内的DNA(或RNA)分子中的。随着个体 的发育,DNA有序地将遗传信息,通过转 录和翻译的过程转变成蛋白质,执行各种 生理生化功能,完成生命的全过程。从 DNA到蛋白质的过程,叫做基因表达 (gene expression),对这个过程的调节 就称为基因表达调控(gene regulation或 gene control)。
原核基因表达及其调控概要
质粒pKN402的复制起始位点是耐温型的,在42C时仍然 有很强的复制起始的功能。
电泳后回收片段c
电泳后回收片段1和3 连接
温度对3种表达载体质粒拷贝数的影响
由于pKN402和pCP3的复制子在42C时仍然具有很强的起 始复制能力,因此当培养温度升高到42C时,细胞中的 pKN402和pCP3的拷贝数要比pPLc2833高5~10倍。
Ptac 启动子:
是来自于lac和trp的一组杂合启动子,但是比lac和trp都强 得多,是一组强启动子。包括:
(1) PtacI:PlacUV5的-10区 + Ptrp的-35区; (2) PtacII:Ptrp的-35区(一段合成的包括Pribnow框在
内的46bp的DNA) + Plac的操纵基因; (3) Ptac12:Plac的-10区 +Ptrp的-35区
trp promoter色氨酸启动子 由色氨酸阻遏蛋白进行调控:正调控作用。可 形成启动子-阻遏蛋白复合物。
trp 启动子的脱阻遏可通过:
(1)移除色氨酸; (2)加入色氨酸结构类似物,如吲哚丙烯酸( 3indoleacrylic acid). 3’--吲哚丙烯酸
trpR 阻遏蛋白 Trp
色氨酸操纵子(trp operon)
第二章 原核微生物的基因表达与操作
2.1 原核微生物的基因表达及其调控 2.2 原核微生物的基因表达产物的分离纯 化
第一节 原核生物的基因表达与调控因素
(1)转录因素; (2)翻译因素; (3)蛋白质的稳定性; (4)胞外分泌的特性
一、原核生物的基因表达
(一)、转录对基因表达的影响
新生RNA序列与模板链 互补;与编码链相同。
(1)为pBR322衍生质粒,插入 了强启动子PlacUV5并在其下 游加入了-半乳糖苷酶的 编码序列( -gal)21 bp 片断和一个EcoRI位点;
第14章 原核生物基因表达调控
第14章原核生物基因的表达调控重点:操纵子的结构特点和功能;乳糖操纵子的正负调控;色氨酸操纵子的衰减作用。
难点:色氨酸操纵子的衰减作用。
第一节基因调控的基本定律一、基因调控水平二、基因和调控元件三、DNA结合蛋白一、基因调控水平基因表达的调控可以发生在DNA到蛋白质的任意节点上,如基因结构、转录、mRNA 加工、RNA的稳定性、翻译和翻译后修饰。
二、基因和调控元件基因:是指能转录成RNA的DNA序列。
结构基因:编码代谢、生物合成和细胞结构的蛋白质。
调节基因:产物是RNA或蛋白质,控制结构基因的表达。
其产物通常是DNA结合蛋白。
调控元件:不能转录但是能够调控基因表达的DNA序列。
三、DNA结合蛋白调控蛋白通常含有与DNA结合的结构域,一般由60-90个氨基酸组成。
在一个结构域中,只有少数氨基酸与DNA接触。
这些氨基酸(包括天冬氨酸、谷氨酸、甘氨酸、赖氨酸和精氨酸)常与碱基形成氢键,或者与磷酸核糖骨架结合。
根据DNA结合结构域内的模体,可以将DNA结合分成几种类型(图16.2)。
第二节大肠杆菌的乳糖操纵子一、操纵子结构二、正负调控三、乳糖操纵子四、lac突变五、正控制一、操纵子结构原核和真核生物基因调控的主要差异在于功能相关的基因的组成。
细菌的功能相关的基因常常排列在一起,并且由同一启动子控制。
一群一起转录的细菌的结构基因(包括其启动子和控制转录的额外序列)称为操纵子。
二、正负调控转录水平上的调控主要有两种类型:负调控:gene ON 阻遏蛋白 OFF正调控:gene OFF 激活蛋白 ON诱导:活性阻遏蛋白 失活诱导因子+非活性激活蛋白 活性阻遏:失活阻遏蛋白 活性共阻遏蛋白+活性激活蛋白 失活三、乳糖操纵子乳糖操纵子是诱导型操纵子,当诱导物不存在时,阻遏蛋白结合到操纵序列上并阻止转录;当诱导物存在时,阻遏蛋白与诱导物结合后失去活性,转录才得以进行。
四、lac突变为了鉴定乳糖操纵子各个成分的功能,Jacob和Monod做了细菌的接合实验,其中供体菌的F’因子上也带有乳糖操纵子。
原核生物基因表达调控
Repressor
cAMP
CAP
葡萄糖不存在,乳糖存在,阻遏蛋白失活,cAMP+CAP与CAP位点结合结合,促进基因转录
The Lac Operon: III. 葡萄糖和乳糖都存在
Repressor
RNA Pol.
CAP Bindin
g
Promoter
Operator X
LacZ
Repressor负调节与正调节协调合作
• 阻遏蛋白封闭转录时,CAP不发挥作用 • 如没有CAP加强转录,即使阻遏蛋白从操作基因上解聚仍无转录活性
3)正调控和负调控
正调控(positive control)
在没有调节蛋白质存在时基因是关闭的,加入某种调节蛋白后基因活性就被开启,这样的调控为正转录 调控。
调节基因
操纵基因
结构基因
调节蛋白
mRNA 酶蛋白
负调控(negative control)
在没有调节蛋白质存在时基因是表达的,加入这种调节蛋白质后基因表达活性便被关闭,这样的调 控负转录调控。
2)结构基因和调节基因
➢ 组成基因/管家基因(constitutive gene, housekeeping gene)是指不大受环境变动而持 续表达的一类基因。如DNA聚合酶,RNA聚合酶等代谢过程中十分必需的酶或蛋白质的基因 。 ➢调节基因(regulated gene)指环境的变化容易使其表达水平变动的一类基因。如:不同生 长发育时期表达的一些基因。
• 别乳糖是lac操纵子转录的活性诱导物 • 异丙基硫代半乳糖苷(isopropyl thiogalactoside:IPTG)结构上类似于别乳糖,是乳糖操纵
子非常有效的诱导物。可诱导lac操纵子表达,但不能被β-半乳糖苷酶水解。 • 这种能诱导酶合成,但不能被酶分解的分子称为安慰诱导物(gratuitous inducer)。安慰诱导
第九章:原核生物基因表达调控
抗σ因子与抗抗σ因子
9.1.1.3 双组分调节系统
双 组 分 调 节 系 统 的 组 成
感应激酶 应答调节子
周质结构 域、 胞质结构 域
PhoR和PhoB构成的双组分调节系统
天冬氨酸残基
9.1.2 转录终止阶段的调控
9.1.2.1 弱化子
研究表明色氨酸操纵子两种机制的调控。如果trp操纵子只受 trpR编码的阻遏物调控,那么在缺乏或存在色氨酸时,trpR 突变使trp操纵子表达的酶量应该是相同的。可是,在trpR缺
❖热激蛋白的表达调控主要发生在转录水平上。热激蛋白基 因的启动子被σ32而不是通常的σ70识别。σ32也不能识别σ70启 动子,因为这两种σ因子识别的启动子序列不一样
❖HSP的诱导合成是由于细胞内的σ32合成发 生在翻译水平。 ▪另一方面,在热激条件下σ32的稳定性也增加了。
严谨反应的分子机制
(p)ppGpp与RNA聚合酶β亚基结合,改变了RNA聚合酶对 一系列启动子的亲和力,导致细胞基因表达的整体变化,使细 胞适应新的环境。这些变化包括rRNA和tRNA的合成被抑制, 一系列参与氨基酸合成与运转的基因被激活。
人们在对大肠杆菌relA突变体进行研究时认识到是(p) ppGpp的积累引发了严紧反应。relA突变体即使在氨基酸饥饿
Fur能够感应细胞 内铁的水平。当 细胞内有充足的 铁时,Fur关闭反 义bfr基因,细胞 产生细菌铁蛋白。 在低铁条件下, 反义bfr基因被转 录,产生反义 RNA,阻止细菌 铁蛋白的合成。
原核生物的基因表达与调控
非编码RN的作用
参与基因表达调 控:非编码RN 可以调控基因的 表达影响蛋白质 的合成
参与转录后调控: 非编码RN可以 参与转录后的调 控影响mRN的 稳定性和翻译效 率
参与翻译调控: 非编码RN可以 参与翻译调控影 响蛋白质的合成 和翻译后修饰
参与表观遗传调 控:非编码RN 可以参与表观遗 传调控影响基因 的表达和功能
别
翻译起始调控: 包括正调控和 负调控影响翻
译效率
正调控:包括 启动子、增强 子等促进翻译
起始
负调控:包括 沉默子、终止 子等抑制翻译
起始
翻译延伸的调控
核糖体:蛋白质合成的场 所
起始密码子:蛋白质合成 的起始点
终止密码子:蛋白质合成 的终止点
延伸因子:参与蛋白质合 成的延伸过程
释放因子:参与蛋白质合 成的释放过程
时序调控机制的研究进展
发现基因表达调控的时序性
研究基因表达调控的调控网络
研究基因表达调控的机制 发现基因表达调控的调控因子
研究基因表达调控的调控机制在原核生物 中的作用
研究基因表达调控的调控机制在原核生物 中的调控机制
07
原核生物基因表达调控的应用前景
基因工程与合成生物学中的应用
基因工程:通过基因重组 技术将外源基因导入原核 生物实现基因表达调控
合成生物学:通过设计、 构建和优化基因回路实现 原核生物的基因表达调控
生物制药:利用原核生物 基因表达调控技术生产药 物、疫苗等
生物能源:利用原核生物 基因表达调控技术生产生 物燃料如乙醇、生物柴油 等
环境保护:利用原核生物 基因表达调控技术降解污 染物实现环境修复
农业:利用原核生物基因 表达调控技术改良作物品 种提高作物抗病、抗虫、 抗逆能力
原核生物基因表达调控概述
原核生物基因表达调控概述基因表达调控是生物体内基因表达调节控制机制,使细胞中基因表达的过程在时间,空间上处于有序状态,并对环境条件的变化做出适当的反应复杂过程。
1.基因表达调控意义在生命活动中并不是所有的基因都同时表达,代谢过程中所需各种酶和蛋白质基因以及构成细胞化学成分的各种编码基因,正常情况下是经常表达的,而与生物发育过程有关的基因则需在特定的时空才表达,还有许多基因被暂时的或永久的关闭而不来表达。
2.原核基因表达调控特点原核生物基因表达调控存在于转录和翻译的起始、延伸和终止的每一步骤中。
这种调控多以操纵子为单位进行,将功能相关的基因组织在一起,同时开启或关闭基因表达即经济又有效,保证其生命活动的需要。
调控主要发生在转录水平,有正、负调控两种机制在转录水平上对基因表达的调控决定于DNA的结构,RNA 聚合酶的功能、蛋白质因子及其他小分子配基的相互作用。
细菌的转录和翻译过程几乎在同一时间内相互偶联。
细胞要控制各种蛋白质在不同时期的表达水平,有两条途径:(1)细胞控制从其DNA模板上转录其特异的mRNA的速度,这是一条经济的途径,可减少从mRNA合成蛋白质的小分子物质消耗,这是生物长期进化过程中自然选择的结果,这种控制称为转录水平调控。
(2)在mRNA合成后,控制从mRNA翻译肽链速度,包括一些与翻译有关的酶及其复合体分子缔合的装配速度等过程。
这种蛋白质合成及其基因表达的控制称为翻译水平的调控。
二.原核生物表达调控的概念(1)细菌细胞对营养的适应细菌必须能够广泛适应变化的环境条件。
这些条件包括营养、水分、溶液浓度、温度,pH等。
而这些条件须通过细胞内的各种生化反应途径,为细胞生长的繁荣提供能量和构建细胞组分所需的小分子化合物。
(2)顺式作用元件和反式作用元件基因活性的调节主要通过反式作用因子与顺式作用元件的相互作用而实现。
反式作用因子的编码基因与其识别或结合的靶核苷酸序列在同一个DNA分子上。
RNA聚合酶是典型的反式作用因子。
分子第五章原核基因表达调控
CAP正调控 + + + + 转录
DNA
CAP P O Z Y A
CAP CAP CAP CAP 无葡萄糖,cAMP浓度高时 促进转录
CAP
有葡萄糖,cAMP浓度低时
2、影响因子
(5)cAMP与代谢物激活蛋白 ◇ cAMP的浓度受到葡萄糖代谢的调节。 ◇由Crp基因编码的代谢物激活蛋白(CAP)能与cAMP形成复合物。 ◇ cAMP—CAP复合物是激活lac的重要组成部分,这与阻遏体系无 关,细菌对它的需要是独立的。转录必须有cAMP—CAP复合物结合 在启动子区。
Abstract
◇基因表达调控主要表现在以下两个方面: 1、转录水平上的调控(transcriptional regulation)。 2、转录后水平上的调控(post-transcriptional regulation): mRNA加工成熟水平上的调控、翻译水平上的调控 。
一、基本概念
1、组成蛋白和调节蛋白 ◇组成蛋白:细胞内有许多种蛋白质的数量几乎不受外界环境 的影响,这些蛋白质称为组成蛋白。 ◇调节蛋白:是一类特殊的蛋白质,它们可以影响一种或多种 基因的表达。调节蛋白包括:正调节蛋白和负调节蛋白。前者 是激活蛋白,后者是阻遏蛋白。
激活蛋白
启动子 操纵子
负调控
阻遏蛋白
启动子 操纵子
正调控和负调控
一、基本概念
5、操纵基因和操纵子 ◇操纵基因(operator):也叫操作子,是操纵子中的控制基因,在 操纵子上一般与启动子相邻,通常处于开放状态,使RNA聚合酶 通过并作用于启动子启动转录。 ◇操纵子(operon):由操纵基因以及相邻的若干结构基因所组成 的功能单位,其中结构基因转录受操纵基因控制。
原核生物基因表达调控
-
23
3)乳糖操纵子可诱导的负调节机制 • 无乳糖: lac操纵子处于阻遏状态(repression) • 有乳糖: lac操纵子即可被诱导
诱导剂(inducer): 别乳糖、半乳糖、IPTG (异丙基硫代半乳糖苷)
-
24
当阻遏物与操纵基因结合时,la- c mRNA的转录起始受到抑制25 。
-
3)基因调控的模式可分成两大类,正调控和负调
控,原核生物以负调控为主。
-
3
3.原核基因表达调控的几个概念
1)顺式作用元件和反式作用因子
➢基因表达的产物(蛋白质或RNA)从合成的场所扩散到 目标场所而发挥作用的过程称为反式作用(transacting),此基因表达产物被称为反式作用因子( trans-acting factor) 。反式作用因子通常为的蛋白 质或RNA。
在转录起始阶段,σ因子识别特异启动序列;不同的
σ因子决定特异编码基因的转录激活,也决定不同
RNA(mRNA、rRNA和tRNA)基因的转录。σ亚
基在转录延长时脱落。
-
12
• 在E.coli,不同类型的启动子需要不同类型的σ
因子
σ32 调控热休克基因 (heat shock genes) σ54/60 调控氮代谢基因 σF 调控鞭毛基因 σ43 调控噬菌体基因枯草杆菌 (B.subtilis)
一. 原核生物基因表达调控概述
随着生物个体的发育,DNA分子能有序地将 其所承载的遗传信息,通过密码子-反密码子系 统转变成蛋白质,执行各种生理生化功能。科 学家把从DNA到蛋白质的过程称为基因表达( gene expression),对这个过程的调节就称 为基因表达调控(gene regulation或gene control)。
第11章 原核生物基因表达的调控
Ø 葡萄糖代谢导致cAMP浓度下降; Ø cAMP可以活化乳糖操纵子的激活蛋白:
CRP: cAMP receptor protein(cAMP受体蛋白) CAP: catabolite gene activator protein
(代谢降解物活化蛋白)
Ø cAMP-CRP/CAP
乳糖操纵子的正调控
Ø 每个阻遏蛋白四聚体与两个 operator 结合; Ø 阻遏蛋白与Operator结合导 致DNA弯折,干扰mRNA的 合成。
p.286 图11-7
乳糖操纵子的正调控
当细菌在含有葡萄糖和乳 糖的培养基中生长时,通常 总是优先利用葡萄糖,而不 利用乳糖;只有当葡萄糖耗 尽后,细菌经过一段停滞期, 才能在乳糖的诱导下,合成 β-半乳糖苷酶等分解利用 乳糖的酶类,细菌才能利用 乳糖。
ttrrppRR
OOPPtrptrEpE trptDrpDtrpCtrpCtrpBtrpBtrpAtrpA
ttrrppRR
OOPPtrptrEpE trptDrpDtrpCtrpCtrpBtrpBtrpAtrpA
色氨酸操纵子的衰减作用
trpR
OP trpL trpE trpD trpC trpB trpA
5’
(1) 新合成的正链 RNA可以翻译A蛋白;
3’ (-) A
5’(+)
5’
但是很快形成二级结构,阻止A蛋白 的继续合成;
所以 A蛋白与C蛋白的量为1:180
Ø Rep的合成依赖于C蛋白的表达, 证据:C基因的codon6发生无义突 变:核糖体停留在该处,导致rep基 因RBS附近的二级结构无法打开, 则rep基因无法表达。
AraC既是阻遏蛋白, 又是激活蛋白;
分子生物学第七章原核生物基因表达调控
(三)、阻遏物 lac I 基因产物及功能
Lac 操纵子阻遏物 mRNA 是由弱启动子控制下组 成型合成的,该阻遏蛋白具有4个相同的亚基,每个亚 基均含347个氨基酸残基。
lacI 基因为组成型,通过启动子的上升突变体可获 得较多的阻遏蛋白;
阻遏物 2022/10/18
β-半乳糖苷酶 透过酶 转乙酰3酶2
2022/10/18
16
调节机理:
细胞中某一氨基酸或嘧啶的浓度发生改变
氨酰 – tRNA的浓度变化
核糖体在转录产物RNA上的结合位置不 同,使得RNA形成特定的二级结构 由RNA的二级结构判断基因能否继续转录
2022/10/18
17
3、降解物对基因活性的调节P252
葡萄糖效应或降解物抑制作用:细菌培养基中在 葡萄糖存在的情况下,即使加入乳糖、半乳糖等 诱导物,与其对应的操纵子也不会启动,这种现 象称为葡萄糖效应或降解物抑制作用。
这是通过阻止乳糖操纵子表达来完成的,这种 效应称为降解物抑制(catabolite repression)。
2022/10/18
35
(五)、cAMP与代谢物激活蛋白
葡萄糖
葡萄糖-6-磷酸
甘油 某些代谢产物抑制活性
腺苷酸环化酶
ATP
cAMP
编码
cAMP-CAP
Crp基因
代谢物激活蛋白 CAP
葡萄糖对其它糖的代谢抑制,是通过对 cAMP的抑制完成的。
2022/10/18
22
一、酶的诱导 ——
lac 体系受调控的证据
两种含硫的乳糖类似物:
异丙基巯基半乳糖苷
(IPTG)
巯甲基半乳糖苷(TMG)
E. coli 在不含乳糖的培养基生 长时,β-半乳糖苷酶含量极低;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
细菌能随环境的变化,迅速改变某些基因表达的状态,这就是很好的基因表达调控的实验型。
人们就是从研究这种现象开始,打开认识基因表达调控分子机理的窗口的。
一、操纵元的提出大肠杆菌可以利用葡萄糖、乳糖、麦芽糖、阿拉伯糖等作为碳源而生长繁殖。
当培养基中有葡萄糖和乳糖时,细菌优先使用葡萄糖,当葡萄糖耗尽,细菌停止生长,经过短时间的适应,就能利用乳糖,细菌继续呈指数式繁殖增长(见下图)。
大肠杆菌利用乳糖至少需要两个酶:促使乳糖进入细菌的乳糖透催化乳(lactose permease)过酶半乳糖苷酶-糖分解第一步的β。
见下图)(β-galactosidase)(-β在环境中没有乳糖或其他β-半乳糖苷时,大肠杆菌合成细菌大量合成分钟后,2-3半乳糖苷酶量极少,加入乳糖半乳糖苷酶,其量可提高千倍以上,在以乳糖作为唯一β-半乳糖苷酶量可占到细菌总蛋白量的碳源时,菌体内的β-。
在上述二阶段生长细菌利用乳糖再次繁殖前,也能测3%半乳糖苷酶活性显著增高的过程。
这种典型的β-出细菌中诱导现象,是研究基因表达调控的极好模型。
和Jacob针对大肠杆菌利用乳糖的适应现象,法国的1961于Monod等人做了一系列遗传学和生化学研究实验,学说,如下图所示。
下图中年提出乳糖操纵元(lac operon)是转录是大肠杆菌编码利用乳糖所需酶类的基因,P、za开始的P结合而阻碍从O能与R,R编码合成调控蛋白i所需要的启动子,调控基因a、z基因转录,所以O就是调节基因开放的操纵序列,乳糖能改变R结构使其不能与P结合,因而乳糖浓度增高时基因就开放,转录合成所编码的酶类,这样大肠杆菌就能适应外界乳糖供应的变化而改变利用乳糖的状况,这个模型是人们在科学实验的基础上第一次开始认识基因表达调控的分子机理。
二、操纵元(operon)的基本组成乳糖操纵元模型被以后的许多研究实验所证实,对其有了更深入的认识,并且发现其他原核生物基因调控也有类似的操纵元组织(见下图),操纵元是原核基因表达调控的一种重要的组织形式,大肠杆菌的基因多数以操纵元的形式组成基因表达调控的单元。
下面就以半乳糖操纵元为例子说明操纵元的最基本的组成元件(elements)。
(一)结构基因群操纵元中被调控的编码蛋白质的基因可称为结构基因(structural gene, SG)。
一个操纵元中含有2个以上的结构基因,多的可达十几个。
每个结构基因是一个连续的开放读框(open reading frame),5'端有翻译起始码(DNA存储链上是ATG,转录成mRNA就是AUG),3'端有翻译终止码(DNA存储链上是TAA、TGA或TAG,转录成mRNA就是UAA、UGA或UAG)。
各结构基因头尾衔接、串连排列,组成结构基因群。
至少在第一个结构基因5'侧具有核糖体结合位点(ribosome binding site, RBS),因而当这段含多个结构基因的DNA被转录成多顺反子mRNA,就能被核糖体所识别结合、并起始翻译。
核糖体沿mRNA移动;在合成完第一个编码的多肽后,核糖体可以不脱离mRNA而继续翻译合成下一个基因编码的多肽,直至合成完这条多顺反子mRNA所编码的全部多肽。
乳糖操纵元含有z、y和a三个结构基因。
z基因长3510bp,编码含1170个氨基酸、分子量为135,000的多肽,以四聚体形式组成有活性的β-半乳糖苷酶,催化乳糖转变为别乳糖(allolactose),再分解为半乳糖和葡萄糖;y基因长780bp,编码由260个氨基酸组成、分子量30000的半乳糖透过酶,促使环境中的乳糖进入细菌;a基因长825bp,编码含275氨基酸、分子量为32,000的转乙酰基酶,以二聚体活性形式催化半乳糖的乙酰化。
z基因5'侧具有大肠杆菌核糖体识别结合位点(ribosome binding site,RBS)特征的Shine Dalgarno(SD)序列,因而当乳糖操纵元开放时,核糖体能结合在转录产生的mRNA上。
由于z、y、a三个基因头尾相接,上一个基因的翻译终止码靠近下一个基因的翻译起始码,因而同一个核糖体能沿此转录生成的多顺反子(polycistron) mRNA移动,在翻译合成了上一个基因编码的蛋白质后,不从mRNA上掉下来而继续沿mRNA 移动合成下一个基因编码的蛋白质,一气依次合成基因群所编码的所有蛋白质。
(二)启动子序列。
聚合酶识别、结合并启动基因转录的一段DNA(promoter,P)是指能被RNA启动子侧上游,控制整个结构基因群的转录。
操纵元至少有一个启动子,一般在第一个结构基因5′,结果只有DNARNA聚合酶与分离的一段DNA双链混合,再加入外切核酸酶去水解用不被水解,由此可以测出启动子的范围及其DNA被RNA聚合酶识别结合而被保护的那段但比较已经研究过的上百种原核生物的启动子的序虽然不同的启动子序列有所不同,序列。
桾碱基对较多,某些段落是很相60bp,含A列,发现有一些共同的规律,它们一般长40-。
如下图所示,启动似的,这些相似的保守性段落称为共有性序列(consensus sequences)转录起始三个区段。
(I, initiation)(R,recognition)、结合(B, binding)和起始子一般可分为识别因TATAAT一组共有序列,附近有A(第一个碱基通常标记位置为+1)最常见的是;在-10bp处又有(Pribnow box);在-35bp盒首先发现的,称为为这段共有序列是PribnowPribnow 一组共有序列TTGACA 。
不同的启动子序列不同,与RNA聚合酶的亲和力不同,启动转录的频率高低不同,即不同的启动子起动基因转录的强弱不同。
(三)操纵子操纵子(operator)是指能被调控蛋白特异性结合的一段DNA序列,常与启动子邻近或与启动子序列重叠,当调控蛋白结合在操纵子序列上,会影响其下游基因转录的强弱。
以前许多书中将操纵子称为操纵基因(operator gene)。
但现在基因定义是为蛋白质编码的核酸序列,而操纵序列并不是编码蛋白质的基因,却是起着调控基因表达强弱的作用,正如启动序列不叫启动基因而称为启动子一样,操纵序列就可称为操纵子。
以前将operon译为操纵子则可改译为操纵元,即基因表达操纵的单元之意。
举乳糖操纵元中的操纵子为例,如下图所示,其操纵子(o)序列位于启动子(p)与被调控的基因之间,部分序列与启动子序列重叠。
仔细分析该操纵子序列,可见这段双链DNA具有回文(palindrome)样的对称性一级结构,能形成十字形的茎环(stem loop)构造。
不少操纵子都具有类似的对称性序列,可能与特定蛋白质的结合相关。
阻遏蛋白与操纵子结合,就妨碍了RNA聚合酶与启动子的结合及其后β-半乳糖苷酶等基因的转录起始,从而阻遏了这群基因的表达。
最早只把与阻遏蛋白结合、起阻遏作用的序列称为操纵子,但其后发现有的操纵元中同一操纵序列与不同构像的蛋白质结合,可以分别起阻遏或激活基因表达的作用,阿拉伯糖操纵元中的序列就是典型的例子。
因而凡能与调控蛋白特异性结合、从而影响基因转录强弱的序列,不论其对基因转录的作用是减弱、阻止或增强、开放,都可称为操纵子。
(四)调控基因调控基因(regulatory gene)是编码能与操纵序列结合的调控蛋白的基因。
与操纵子结合后能减弱或阻止其调控基因转录的调控蛋白称为阻遏蛋白(repressive protein),其介导的调控方式称为负性调控(negative regulation);与操纵子结合后能增强或起动调控基因转录的调控蛋白称为激活蛋白(activating protein),所介导的调控方式称为正性调控(positive regulation)。
某些特定的物质能与调控蛋白结合,使调控蛋白的空间构像发生变化,从而改变其对基因录的影响,这些特定物质可称为效应物(effector),其中凡能引起诱导发生的分子称为诱导剂(inducer),能导致阻遏发生的分子称为阻遏剂或辅助阻遏剂(corepressor)。
因此,正负调控又有以下几种形式,如下图:例如在乳糖操纵元中,调控基因1ac I位于P1ac邻近,有其自身的启动子和终止子,转录方向和结构基因群的转录方向一致,编码产生由347个氨基酸组成的调控蛋白R,在环境没有乳糖存在的情况下,R形成分子量为152000的活性四聚体,能特异地与操纵子o紧密结合,从而阻止利用乳糖的酶类基因的转录,所以R是乳糖操纵元的阻遏蛋白;当环境中有足够的乳糖时,乳糖受β-半乳糖苷酶作用转变为别乳糖,别乳糖与R结合,使R的空间构像变化,四聚体解聚成单体,失去与操纵子特异性紧密结合的能力,从而解除了阻遏蛋实际起作用的是(白的作用,使其后的基因得以转录合成利用乳糖的酶类。
在这过程中乳糖.别乳糖)就是诱导剂,与R结合起到去阻遏作用(derepression),诱导了利用乳糖的酶类基因转录开放。
许多调控蛋白都是变构蛋白(allosteric protein),通过与上述类似的方式与效应物结合变空间构像,从而改变活性,起到调节基因转录表达的作用。
(五)终止子终止子(terminator T)是给予RNA聚合酶转录终止信号的DNA序列。
在一个操纵元中至少在构基因群最后一个基因的后面有一个终止子。
终止子按其作用是否需蛋白因子的协助至少可以分为两类:一类是不依赖ρ因子(蛋白性终止因子)的终止子,这类终止子在序列上有一些共通的特点,即有一段富含GC的反向重复序列(inverted repeat sequence),其后跟随一段富含AT的序列(见下图),因而转录生成的mRNA的序列中能形成发夹式结构,后继一连串U,正是RNA聚合酶转录生成的这段mRNA的结构阻止RNA聚合酶继续沿DNA移动,并使聚合酶从DNA链上脱落下来,终止转录。
另一类是依赖ρ因子的终止子,即其终止转录的作用需要ρ因子的协同,或至少是受ρ因子的影响。
不同的终止子的作用也有强弱之分,有的终止子几乎能完全停止转录;有的则只是部分终止转录,一部分RNA聚合酶能越过这类终止序列继续沿DNA移动并转录。
如果一串结构基因群中间有这种弱终止子的存在,则前后转录产物的量会有所不同,这也是终止子调节基因群中不同基因表达产物比例的一种方式。
有的蛋白因子能作用于终止序列,减弱或取消终止子的作用,称为抗终止作用(antitermination),这种蛋白因子就称为抗终止因子(antiterminator)。
以上5种元件是每一个操纵元必定含有的。
其中启动子、操纵子位于紧邻结构基因群的上游,终止子在结构基因群之后,它们都在结构基因的附近,只能对同一条DNA链上的基因表达起调控作用,这种作用在遗传学实验上称为顺式作用(cisaction),启动子、操纵子和终止子就属于顺式作用元件(cisactingelement)。