河南2012年高考理科数学试题(word版)

合集下载

2012年全国高考理科数学试题及答案(全国卷)

2012年全国高考理科数学试题及答案(全国卷)

2012年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页。

考试结束,务必将试卷和答题卡一并上交。

第Ⅰ卷注意事项:全卷满分150分,考试时间120分钟。

考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准该条形码上的准考证号、姓名和科目。

2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

在试题卷上作答无效.........。

3.第I 卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

一、选择题 (1)复数131i i-+=+(A )2i + (B )2i - (C )12i + (D )12i - (2)已知集合{1,A =,{1,}B m =,A B A = ,则m =(A )0(B )0或3 (C )1(D )1或3 (3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612xy+= (B )221128xy+= (C )22184xy+= (D )221124xy+=(4)已知正四棱柱1111ABC D A B C D -中 ,2A B =,1CC =E 为1C C 的中点,则直线1AC 与平面BED 的距离为(A )2 (B) (C(D )1 (5)已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为(A )100101(B )99101(C )99100(D )101100(6)A B C ∆中,A B 边的高为C D ,若CB a = ,C A b = ,0a b ⋅= ,||1a = ,||2b = ,则AD =(A )1133a b - (B )2233a b - (C )3355a b - (D )4455a b -(7)已知α为第二象限角,sin cos 3αα+=,则cos 2α=(A )3- (B )9- (C 9(D 3(8)已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=(A )14(B )35(C )34(D )45(9)已知ln x π=,5log 2y =,12z e-=,则(A )x y z << (B )z x y << (C )z y x << (D )y z x << (10)已知函数33y x x c =-+的图像与x 恰有两个公共点,则c =(A )2-或2 (B )9-或3 (C )1-或1 (D )3-或1(11)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种 (B )18种 (C )24种 (D )36种 (12)正方形A B C D 的边长为1,点E 在边A B 上,点F 在边B C 上,37A EB F ==。

2012年全国高考理科数学试题和答案-全国卷word版

2012年全国高考理科数学试题和答案-全国卷word版

2012年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页。

考试结束,务必将试卷和答题卡一并上交。

第Ⅰ卷注意事项:全卷满分150分,考试时间120分钟。

考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准该条形码上的准考证号、姓名和科目。

2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

在试题卷上作答无效.........。

3.第I 卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

一、选择题(1)复数131i i-+=+ (A )2i + (B )2i - (C )12i + (D )12i -(2)已知集合{A =,{1,}B m =,A B A =,则m =(A )0(B )0或3 (C )1(D )1或3(3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612x y += (B )221128x y += (C )22184x y += (D )221124x y += (4)已知正四棱柱1111ABCD A B C D -中 ,2AB =,1CC =E 为1CC 的中点,则直线1AC 与平面BED 的距离为(A )2 (B(C(D )1(5)已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为 (A )100101 (B )99101(C )99100 (D )101100(6)ABC ∆中,AB 边的高为CD ,若CB a =,CA b =,0a b ⋅=,||1a =,||2b =,则AD =(A )1133a b - (B )2233a b - (C )3355a b - (D )4455a b -(7)已知α为第二象限角,sin cos αα+=cos2α=(A ) (B )- (C (D (8)已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=(A )14 (B )35 (C )34 (D )45(9)已知ln x π=,5log 2y =,12z e -=,则(A )x y z << (B )z x y << (C )z y x << (D )y z x <<(10)已知函数33y x x c =-+的图像与x 恰有两个公共点,则c =(A )2-或2 (B )9-或3 (C )1-或1 (D )3-或1(11)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种 (B )18种 (C )24种 (D )36种(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,37AE BF ==。

2012年全国高考理科数学试题及答案(新课标版)-推荐下载

2012年全国高考理科数学试题及答案(新课标版)-推荐下载
是某几何体的三视图,则此几何体的体积为( )
( A) 6 (B) 9
【解析】选 B 该几何体是三棱锥,底面是俯视图,高为 3
(C)
b

0) 的左、右焦点, P
(C)

PF2
(D)
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

2012年全国高考理科数学试题及答案-全国卷

2012年全国高考理科数学试题及答案-全国卷

2012年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页。

考试结束,务必将试卷和答题卡一并上交。

第Ⅰ卷注意事项:全卷满分150分,考试时间120分钟。

考生注意事项:2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

在试题卷上作答无效.........。

3.第I 卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

一、选择题(1)复数131i i-+=+ (A )2i + (B )2i - (C )12i + (D )12i -(2)已知集合{A =,{1,}B m =,A B A =,则m =(A )0(B )0或3 (C )1(D )1或3(3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612x y += (B )221128x y += (C )22184x y += (D )221124x y += (4)已知正四棱柱1111ABCD A B C D -中 ,2AB =,1CC =E 为1CC 的中点,则直线1AC 与平面BED 的距离为(A )2 (B(C(D )1(5)已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为 (A )100101 (B )99101(C )99100 (D )101100 (6)ABC ∆中,AB 边的高为CD ,若CB a =,CA b =,0a b ⋅=,||1a =,||2b =,则AD =(A )1133a b - (B )2233a b - (C )3355a b - (D )4455a b -(7)已知α为第二象限角,sin cos 3αα+=,则cos2α=(A ) (B )- (C (D (8)已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=(A )14 (B )35 (C )34 (D )45(9)已知ln x π=,5log 2y =,12z e -=,则(A )x y z << (B )z x y << (C )z y x << (D )y z x <<(10)已知函数33y x x c =-+的图像与x 恰有两个公共点,则c =(A )2-或2 (B )9-或3 (C )1-或1 (D )3-或1(11)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种 (B )18种 (C )24种 (D )36种(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,37AE BF ==。

2012年全国高考理科数学试题及答案 新课标

2012年全国高考理科数学试题及答案 新课标

绝密*启用前2012年普通高等学校招生全国统一考试(新课标)理科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.问答第Ⅰ卷时。

选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动.用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效.3.回答第Ⅱ卷时。

将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。

第一卷一.选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。

,B?{(x,y)x?A,y?A,x?y?A}B1,2,3,4,5}?A{中所含元素(则1)已知集合;,的个数为()3???6))D(B)((C(A)D【解析】选x?5,y?1,2,3,4x?4,y?1,2,3x?3,y?1,2x?2,y?1共10 ,,,个242个小组,分别安排到甲、乙两地参加社会实践活动,(2)将名学生分成名教师,12名学生组成,不同的安排方案共有()每个小组由名教师和10?12?)(D(C)(A)(B)种种种种A【解析】选1212CC?12种甲地由名学生:名教师和422?z的四个命题:其中的真命题为(3)下面是关于复数)(?1?i22?p:zp:zzp:?1i1?i2:z?p的虚部为的共轭复数为4312p,pp,pp,p,pp)(C)B)((A)D(21??3??2C【解析】选22(?1?i)???z?1?i?1?i(?1?i)(?1?i)2p:zz:p?1i?1?iz:p?22:p?z,,的共轭复数为,的虚部为432122yx3aE:??1(a?b?0)Px?FF上一点,(4)设的左、右焦点,是椭圆为直线21222abE?FPF30的等腰三角形,则是底角为)的离心率为(1212??)DA)(((B)(C)??23C【解析】选c33?e)?2c?a??PF?FF?2(?c?PFF30的等腰三角形是底角为122124a2??a2??aa?aa?8?aa?)5()已知为等比数列,,则,(74n10165????57)((C)(A)D(B)D【解析】选42,a???2a???a?2a?aa??8?a4,aa?a,或76774475447??1?a?a8,4,a??2?a??a?a?107104117?a?a??4?a??8,a1??a?2,a?101074112)?N(N(6)如果执行右边的程序框图,输入正整数和BA,a,...,a,a)实数,则(,输出n21BA?)(A aa,...,a,为的和n21B?A)B(a,...,a,a为的算术平均数n122BA)C(aa,...,a,分别是中最大的数和最小的数和n21BA)D(a,a,...,a中最小的数和最大的数和分别是n12C【解析】选1)如图,网格纸上小正方形的边长为,粗线画出的(7 )是某几何体的三视图,则此几何体的体积为(??9??6)C)D(A)(B)((B【解析】选3该几何体是三棱锥,底面是俯视图,高为1193??3V????6此几何体的体积为232x CC x16y?B,A轴上,的准线交于(8)等轴双曲线与抛物线的中心在原点,焦点在C3AB?4);则的实轴长为(两点,222??)()D((A)C)(BC【解析】选22224??l:x x(a?0)?ay16C:x??y3)4,2(A?3)24,?B(?于交的准线设2224?2aa?2?4)??(23)4?a??(得:???????sin((,x)?xf())0?,函数上单调递减。

2012年新课标数学高考试题(理科数学理科数学高考试题,word教师版【免费下载】)

2012年新课标数学高考试题(理科数学理科数学高考试题,word教师版【免费下载】)

2012年普通高等学校招生全国统一考试(新课标) 理科数学第一卷一. 选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。

(1)已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素的个数为( )()A 3()B 6 ()C 8 ()D 10【解析】选D5,1,2,3,x y ==,4,1,2,3x y ==,3,1,2x y ==,2,1x y ==共10个 (2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )()A 12种()B 10种 ()C 9种()D 8种【解析】选A甲地由1名教师和2名学生:122412C C =种 (3)下面是关于复数21z i=-+的四个命题:其中的真命题为( )1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-()A 23,p p ()B 12,p p ()C ,p p 24 ()D ,p p 34【解析】选C 22(1)11(1)(1)iz i ii i --===---+-+--1:p z =22:2p z i =,3:p z 的共轭复数为1i -+,4:p z 的虚部为1-(4)设12F F 是椭圆2222:1(0)x y E a b ab+=>>的左、右焦点,P 为直线32a x =上一点,∆21F P F 是底角为30 的等腰三角形,则E 的离心率为( )()A 12()B23()C 34()D 45【解析】选C ∆21F P F 是底角为30的等腰三角形221332()224c P F F F a c c e a ⇒==-=⇔==(5)已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( )()A 7()B 5 ()C -5()D -7【解析】选D472a a +=,56474784,2a a a a a a ==-⇒==-或472,4a a =-= 471101104,28,17a a a a a a ==-⇒=-=⇔+=- 471011102,48,17a a a a a a =-=⇒=-=⇔+=-(6)如果执行右边的程序框图,输入正整数(2)N N ≥和实数12,,...,n a a a ,输出,A B ,则( )()A A B +为12,,...,n a a a 的和()B 2A B +为12,,...,n a a a 的算术平均数()C A 和B 分别是12,,...,n a a a 中最大的数和最小的数 ()D A和B 分别是12,,...,n a a a 中最小的数和最大的数【解析】选C(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )()A 6()B 9 ()C 12 ()D 18【解析】选B该几何体是三棱锥,底面是俯视图,高为3 此几何体的体积为11633932V =⨯⨯⨯⨯=(8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B两点,AB =C 的实轴长为( )()A ()B ()C 4 ()D 8【解析】选C设222:(0)C x y a a -=>交x y 162=的准线:4l x =-于(4,A -(4,B --得:222(4)4224a a a =--=⇔=⇔=(9)已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减。

2012年高考理科数学(全国卷)含答案及解析

2012年高考理科数学(全国卷)含答案及解析

2012年普通高等学校招生全国统一考试理科数学(必修+选修II )一、 选择题(1)、复数131i i-++= A. 2 B. 2 C. 12 D. 12i i i i +-+- 【考点】复数的计算【难度】容易【答案】C 【解析】13(13)(1)24121(1)(1)2i i i i i i i i -+-+-+===+++-. 【点评】本题考查复数的计算。

在高二数学(理)强化提高班下学期,第四章《复数》中有详细讲解,其中第02节中有完全相同类型题目的计算。

在高考精品班数学(理)强化提高班中有对复数相关知识的总结讲解。

(2)、已知集合A ={1.3. m },B ={1,m } ,A B =A , 则m =A. 0或3B. 0或3C. 1或3D. 1或3【考点】集合【难度】容易【答案】B【解析】(1,3,),(1,)30,1()3A B A B A A m B m m A m m m m m m ⋃=∴⊆==∴∈∴==∴===或舍去.【点评】本题考查集合之间的运算关系,及集合元素的性质。

在高一数学强化提高班下学期课程讲座1,第一章《集合》中有详细讲解,其中第02讲中有完全相同类型题目的计算。

在高考精品班数学(理)强化提高班中有对集合相关知识及综合题目的总结讲解。

(3) 椭圆的中心在原点,焦距为4, 一条准线为x =﹣4 ,则该椭圆的方程为 A. 216x +212y =1 B. 212x +28y =1 C. 28x +24y =1 D. 212x +24y =1 【考点】椭圆的基本方程【难度】容易【答案】C【解析】椭圆的一条准线为x =﹣4,∴2a =4c 且焦点在x 轴上,∵2c =4∴c =2,a =22∴椭圆的方程为22=184x y + 【点评】本题考查椭圆的基本方程,根据准线方程及焦距推出椭圆的方程。

在高二数学(理)强化提高班,第六章《圆锥曲线与方程》中有详细讲解,其中在第02讲有相似题目的详细讲解。

2012年高考真题——理科数学(全国卷)Word版(附答案)

2012年高考真题——理科数学(全国卷)Word版(附答案)

2012年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页。

考试结束,务必将试卷和答题卡一并上交。

第Ⅰ卷注意事项:全卷满分150分,考试时间120分钟。

考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准该条形码上的准考证号、姓名和科目。

2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

在试题卷上作答无效.........。

3.第I 卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

一、选择题(1)复数131i i-+=+ (A )2i + (B )2i - (C )12i + (D )12i -(2)已知集合{A =,{1,}B m =,A B A =U ,则m =(A )0(B )0或3 (C )1(D )1或3(3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612x y += (B )221128x y += (C )22184x y += (D )221124x y += (4)已知正四棱柱1111ABCD A B C D -中 ,2AB =,1CC =E 为1CC 的中点,则直线1AC 与平面BED 的距离为(A )2 (B(C(D )1(5)已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为(A )100101 (B )99101(C )99100 (D )101100(6)ABC ∆中,AB 边的高为CD ,若CB a =u u u r r ,CA b =u u u r r ,0a b ⋅=r r ,||1a =r ,||2b =r ,则AD =u u u r(A )1133a b -r r (B )2233a b -r r (C )3355a b -r r (D )4455a b -r r(7)已知α为第二象限角,sin cos αα+=,则cos2α=(A ) (B ) (C (D (8)已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=(A )14 (B )35 (C )34 (D )45(9)已知ln x π=,5log 2y =,12z e -=,则(A )x y z << (B )z x y << (C )z y x << (D )y z x <<(10)已知函数33y x x c =-+的图像与x 恰有两个公共点,则c =(A )2-或2 (B )9-或3 (C )1-或1 (D )3-或1(11)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种 (B )18种 (C )24种 (D )36种(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,37AE BF ==。

2012年新课标高考理科数学试题含答案

2012年新课标高考理科数学试题含答案

2012年新课标高考理科数学试题含答案2012年全国统一考试(新课标)理科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.问答第Ⅰ卷时。

选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动.用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效.3.回答第Ⅱ卷时。

将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。

第一卷一. 选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。

(1)已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素的个数为( )()A 3 ()B 6()C 8 ()D 10【解析】选D5,1,2,3,4x y ==,4,1,2,3x y ==,3,1,2x y ==,2,1x y ==共10个 (2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )()A 12种 ()B 10种()C 9种 ()D 8种【解析】选A甲地由1名教师和2名学生:122412C C =种(3)下面是关于复数21z i=-+的四个命题:其中的真命题为( ) 1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-()A 23,p p ()B 12,p p ()C ,p p 24()D ,p p 34【解析】选C22(1)11(1)(1)i z i i i i --===---+-+--1:p z =22:2p z i =,3:p z 的共轭复数为1i -+,4:p z 的虚部为1-(4)设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 为直线32ax =上一点, ∆21F PF 是底角为30的等腰三角形,则E 的离心率为( )()A 12 ()B 23 ()C 34 ()D 45【解析】选C∆21F PF 是底角为30的等腰三角形221332()224c PF F F a c c e a ⇒==-=⇔==(5)已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( )()A 7 ()B 5 ()C -5 ()D -7【解析】选D472a a +=,56474784,2a a a a a a ==-⇒==-或472,4a a =-= 471101104,28,17a a a a a a ==-⇒=-=⇔+=- 471011102,48,17a a a a a a =-=⇒=-=⇔+=-(6)如果执行右边的程序框图,输入正整数(2)N N ≥和实数12,,...,n a a a ,输出,A B ,则( )()A A B +为12,,...,n a a a 的和 ()B 2A B+为12,,...,n a a a 的算术平均数 ()C A 和B 分别是12,,...,n a a a 中最大的数和最小的数()D A 和B 分别是12,,...,n a a a 中最小的数和最大的数【解析】选C(10) 已知函数1()ln(1)f x x x=+-;则()y f x =的图像大致为( )【解析】选B()ln(1)()1()010,()00()(0)0xg x x x g x xg x x g x x g x g '=+-⇒=-+''⇒>⇔-<<<⇔>⇒<= 得:0x >或10x -<<均有()0f x < 排除,,A C D(11)已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =;则此棱锥的体积为( )()A 26 ()B 3 ()C 23 ()D 22【解析】选AABC ∆的外接圆的半径33r=O 到面ABC 的距离2263d R r =-= SC 为球O 的直径⇒点S 到面ABC 的距离为2623d= 此棱锥的体积为1132622336ABC VS d ∆=⨯== 另:1323ABC VS R ∆<⨯=排除,,B C D(12)设点P 在曲线12xy e =上,点Q 在曲线ln(2)y x =上,则PQ 最小值为( )()A 1ln 2- ()Bln 2)- ()C 1ln 2+ ()D ln 2)+【解析】选A函数12xy e =与函数ln(2)y x =互为反函数,图象关于y x =对称 函数12x y e =上的点1(,)2x P x e 到直线y x =的距离为d =设函数min min 11()()1()1ln 222x x g x e x g x e g x d '=-⇒=-⇒=-⇒= 由图象关于y x =对称得:PQ最小值为min 2ln 2)d =-第Ⅱ卷本卷包括必考题和选考题两部分。

2012年全国高考理科数学试题及答案-新课标

2012年全国高考理科数学试题及答案-新课标

绝密*启用前2012年普通高等学校招生全国统一考试(新课标)理科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.问答第Ⅰ卷时。

选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动.用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效.3.回答第Ⅱ卷时。

将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。

第一卷一. 选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。

(1)已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素的个数为( )()A 3 ()B 6()C 8 ()D 10(2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )()A 12种 ()B 10种()C 9种 ()D 8种(3)下面是关于复数21z i=-+的四个命题:其中的真命题为( )1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-()A 23,p p ()B 12,p p ()C ,p p 24 ()D ,p p 34 (4)设12F F 是椭圆2222:1(0)x y E a b ab+=>>的左、右焦点,P 为直线32a x =上一点,∆21F P F 是底角为30的等腰三角形,则E 的离心率为( )()A 12()B23()C 34()D 45(5)已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( )()A 7 ()B 5 ()C -5 ()D -7(6)如果执行右边的程序框图,输入正整数(2)N N ≥和实数12,,...,n a a a ,输出,A B ,则( )()A A B +为12,,...,n a a a 的和 ()B 2A B +为12,,...,n a a a 的算术平均数()C A 和B 分别是12,,...,n a a a 中最大的数和最小的数 ()D A 和B 分别是12,,...,n a a a 中最小的数和最大的数(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )()A 6 ()B 9 ()C 12 ()D 18(8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B两点,AB =C 的实轴长为( )()A ()B ()C 4 ()D 8(9)已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减。

2012年高考理科数学试题参考答案新课标全国卷

2012年高考理科数学试题参考答案新课标全国卷

2012年普通高等学校招生全国统一考试(新课标全国卷)理科数学试题参考答案第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。

1、已知集合{}43,2,1,=A ,(){}A y x A y A x y x B ∈-∈∈=,,,|,则B 中所含元素的个数为( )A 、3B 、6C 、8D 、10 解析:选D5=x ,1=y ,2,3,4;4=x ,1=y ,2,3;2=x ,1=y 共10个2、将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )A 、12种B 、10种C 、9种D 、8种解析:选A甲地由1名教师和2名学生:122412=C C 种 3、下面是关于复数iz +-=12的四个命题:其中的真命题为( ) 2|:|1=z p ;i z p 2:22=;z p :3的共轭复数为i +1;z p :4的虚部为1-A 、2p ,3pB 、 1p ,2pC 、2p ,4pD 、3p ,4p 解析:选C ()()()i i i i i z --=--+---=+-=1111212 2|:|1=z p ;i z p 2:22=;z p :3的共轭复数为i +-1;z p :4的虚部为1-4、设F 1、F 2是椭圆()01:2222>>=+b a by a x E 的左、右焦点,P 为直线23ax =上一点,12PF F ∆是底角为︒30的等腰三角形,则E 的离心率为( )A 、21 B 、 32 C 、43D 、54解析:选C12PF F ∆是底角为︒30的等腰三角形432232122==⇔=⎪⎭⎫⎝⎛-==⇒a c e c c a F F PF5、已知{}n a 为等比数列,274=+a a ,865-=a a ,则=+101a a ( ) A 、7 B 、 5 C 、-5 D 、-7 解析:选D274=+a a ,4847465=⇒-==a a a a a ,27-=a 或24-=a ,47=a 44=a ,8217-=⇒-=a a ,7110110-=+⇒=a a a 24-=a ,1417=⇒=a a ,7810110-=+⇒-=a a a6、如果执行右边的程序框图,输入正整数()2≥N N 和实数1a ,2a ,…,n a ,输出A ,B ,则( )A 、B A +为1a ,2a ,…,n a 的和 B 、2BA +为1a ,2a ,…,n a 的算术平均数 C 、A 和B 分别是1a ,2a ,…,n aD 、A 和B 分别是1a ,2a ,…,n a 解析:选C7、如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A 、6B 、9C 、12D 、18 解析:选B该几何体是三棱锥,底面是俯视图,高为3 此几何体的体积为93362131=⨯⨯⨯⨯=V8、等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于A ,B 两点,34||=AB ,则C 的实轴长为( )A 、2B 、22C 、4D 、8 解析:选C设()0:222 a a y x C =-交x y 162=的准线4:-=x 于()324,-A ,()324--,B 得:42242=⇔=⇔=a a a9、已知0 ω,函数()⎪⎭⎫ ⎝⎛+=4sin πωx x f 在⎪⎭⎫⎝⎛ππ,2上单调递减,则ω的取值范围是( )A 、⎥⎦⎤⎢⎣⎡4521,B 、⎥⎦⎤⎢⎣⎡4321,C 、 ⎥⎦⎤⎝⎛210, D 、(]20,解析:选A⎥⎦⎤⎢⎣⎡∈⎪⎭⎫ ⎝⎛+⇒=494542πππωω,x 不合题意 排除D⎥⎦⎤⎢⎣⎡∈⎪⎭⎫ ⎝⎛+⇒=454341πππωω,x 合题意 排除B 、C另:22-≤⇔≤⎪⎭⎫ ⎝⎛ωπππω,⎥⎦⎤⎢⎣⎡⊂⎥⎦⎤⎢⎣⎡++∈⎪⎭⎫ ⎝⎛+2324424ππππωπωππω,,x得:242ππωπ≥+,4521234≤≤⇔≤+ωπππω10、 已知函数()()xx x f -+=1ln 1,则()x f y =的图像大致为( )ADCB解析:选B()()()xx x g x x x g +-='⇒-+=11ln ()010 x x g -⇔'⇒,()()()000=⇔'g x g x g得:0 x 或01 x -均有()0 x f ,排除A 、C 、D11、已知三棱锥ABC S -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2=SC ,则此棱锥的体积为( )A 、62 B 、63 C 、 32 D 、22 解析:选AABC ∆的外接圆的半径33=r ,点O 到面ABC 的距离3622=-=r R d SC 为球O 的直径⇒点S 到面ABC 的距离为3622=d 此棱锥的体积为623624331231=⨯⨯=⨯=∆d S V ABC 另:63231=⨯∆R S V ABC排除B 、C 、D 12、设点P 在曲线x e y 21=上,点Q 在曲线()x y 2ln =上,则||PQ 最小值为( )A 、2ln 1-B 、()2ln 12-C 、2ln 1+D 、()2ln 12+ 解析:选A 函数xe y 21=与函数()x y 2ln =互为反函数,图象关于x y =对称 函数x e y 21=上的点⎪⎭⎫⎝⎛x e x P 21,到直线x y =的距离为221x e d x-=设函数()()()22ln 12ln 112121min min -=⇒-=⇒-='⇒-=d x ge x g x e x g x x 由图象关于x y =对称得:||PQ 最小值为()2ln 122min -=d第Ⅱ卷本卷包括必考题和选考题两部分。

2012年全国高考理科数学试题及答案-全国卷

2012年全国高考理科数学试题及答案-全国卷

2012年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页。

考试结束,务必将试卷和答题卡一并上交。

第Ⅰ卷注意事项:全卷满分150分,考试时间120分钟。

考生注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准该条形码上的准考证号、姓名和科目。

2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

在试题卷上作答无效.........。

3.第I 卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

一、选择题 (1)复数131ii-+=+ (A )2i + (B )2i - (C )12i + (D )12i - (2)已知集合{A =,{1,}B m =,A B A =U ,则m =(A )0(B )0或3 (C )1(D )1或3 (3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612x y += (B )221128x y += (C )22184x y += (D )221124x y +=(4)已知正四棱柱1111ABCD A B C D -中 ,2AB =,1CC =,E 为1CC 的中点,则直线1AC 与平面BED 的距离为(A )2 (B(C(D )1 (5)已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为 (A )100101 (B )99101 (C )99100 (D )101100(6)ABC D 中,AB 边的高为CD ,若CB a =uuu r r ,CA b =uuu r r ,0a b ×=r r ,||1a =r ,||2b =r ,则AD =uuu r(A )1133a b -r r (B )2233a b -r r (C )3355a b -r r (D )4455a b -r r(7)已知a 为第二象限角,sin cos 3a a +=,则cos 2a =(A )3-(B )9- (C )9 (D )3(8)已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF Ð=(A )14 (B )35 (C )34 (D )45(9)已知ln x p =,5log 2y =,12z e-=,则(A )x y z << (B )z x y << (C )z y x << (D )y z x << (10)已知函数33y x x c =-+的图像与x 恰有两个公共点,则c =(A )2-或2 (B )9-或3 (C )1-或1 (D )3-或1(11)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种 (B )18种 (C )24种 (D )36种 (12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,37AE BF ==。

2012年全国高考理科数学试题及答案-全国卷

2012年全国高考理科数学试题及答案-全国卷

绝密*启用前2012年普通高等学校招生全国统一考试(全国卷)理科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.问答第Ⅰ卷时。

选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动.用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效.3.回答第Ⅱ卷时。

将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。

第一卷一. 选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。

(1)已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素的个数为( )()A 3 ()B 6 ()C 8 ()D 10【解析】选D5,1,2,3,4x y ==,4,1,2,3x y ==,3,1,2x y ==,2,1x y ==共10个 (2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )()A 12种 ()B 10种 ()C 9种 ()D 8种【解析】选A甲地由1名教师和2名学生:122412C C =种(3)下面是关于复数21z i=-+的四个命题:其中的真命题为( ) 1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-()A 23,p p ()B 12,p p ()C ,p p 24 ()D ,p p 34【解析】选C 22(1)11(1)(1)i z i i i i --===---+-+--1:p z =22:2p z i =,3:p z 的共轭复数为1i -+,4:p z 的虚部为1-(4)设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 为直线32ax =上一点,∆21F PF 是底角为30的等腰三角形,则E 的离心率为( )()A 12 ()B 23 ()C 34()D 45【解析】选C∆21F PF 是底角为30的等腰三角形221332()224c PF F F a c c e a ⇒==-=⇔== (5)已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( )()A 7 ()B 5 ()C -5 ()D -7【解析】选D472a a +=,56474784,2a a a a a a ==-⇒==-或472,4a a =-= 471101104,28,17a a a a a a ==-⇒=-=⇔+=- 471011102,48,17a a a a a a =-=⇒=-=⇔+=-(6)如果执行右边的程序框图,输入正整数(2)N N ≥和实数12,,...,n a a a ,输出,A B ,则( )()A A B +为12,,...,n a a a 的和()B 2A B+为12,,...,n a a a 的算术平均数 ()C A 和B 分别是12,,...,n a a a 中最大的数和最小的数 ()D A 和B 分别是12,,...,n a a a 中最小的数和最大的数【解析】选C(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )()A 6 ()B 9 ()C 12 ()D 18【解析】选B该几何体是三棱锥,底面是俯视图,高为3 此几何体的体积为11633932V =⨯⨯⨯⨯=(8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B两点,AB =;则C 的实轴长为( )()A ()B ()C 4 ()D 8【解析】选C设222:(0)C x y a a -=>交x y 162=的准线:4l x =-于(A -(4,B --得:222(4)4224a a a =--=⇔=⇔=(9)已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减。

2012年高考理科数学(全国卷)含答案及解析

2012年高考理科数学(全国卷)含答案及解析

2012年高考理科数学(全国卷)含答案及解析2012年普通高等学校招生全国统一考试理科数学(必修+选修II )一、 选择题(1)、复数131i i-++= A. 2 B. 2 C. 12 D. 12i i i i+-+- 【考点】复数的计算 【难度】容易 【答案】C 【解析】13(13)(1)24121(1)(1)2i i i ii i i i -+-+-+===+++-.【点评】本题考查复数的计算。

在高二数学(理)强化提高班下学期,第四章《复数》中有详细讲解,其中第02节中有完全相同类型题目的计算。

在高考精品班数学(理)强化提高班中有对复数相关知识的总结讲解。

(2)、已知集合A ={1.3.},B ={1,m } ,A B =A , 则m =A. 0或B. 0或 3C. 1或D. 1或3 【考点】集合【点评】本题考查椭圆的基本方程,根据准线方程及焦距推出椭圆的方程。

在高二数学(理)强化提高班,第六章《圆锥曲线与方程》中有详细讲解,其中在第02讲有相似题目的详细讲解。

在高考精品班数学(文)强化提高班中有对圆锥曲线相关知识的总结讲解。

(4)已知正四棱柱ABCD- A1B1C1D1中,AB=2,=E为CC1的中点,则直线AC1与平面BED的CC距离为C. D. 1A. 2B.【考点】立体几何【难度】容易【答案】CAC,BD, 得【解析】因为底面的边长为2,高为到了交点为O,连接EO,EO∥AC,则点1C到平面BDE的距离等于C到平面BDE的距离,过C作CH⊥OE,则:CH.即为所求在三角形OCE中,利用等面积法,可得CH(5)已知等差数列{}na 的前n 项和为nS ,555,15a S==,则数列11}n n a a +{的前100项和为 A.100101B. 99101C.99100D.101100【考点】数列 【难度】中等 【答案】A【解析】因为已知等差数列{ na }中,5a =5,515()5152a a S +⨯==∴1a =1 ∴d=111111=(1)(1)n n n a n a a n n n n +==-++∴∴100111111100=(1-)(-)...()1223100101101101S +++-=-=∴.【点评】本题考查数列的前n 项和求解方法。

2012年全国高考理科数学试题及答案-全国卷

2012年全国高考理科数学试题及答案-全国卷

2012年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至2页,第Ⅱ卷第3至第4页。

考试结束,务必将试卷和答题卡一并上交。

第Ⅰ卷注意事项:全卷满分150分,考试时间120分钟。

考生注意事项:2.没小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

在试题卷上作答无效.........。

3.第I 卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

一、选择题(1)复数131i i-+=+ (A )2i + (B )2i - (C )12i + (D )12i -(2)已知集合{A =,{1,}B m =,A B A =,则m =(A )0(B )0或3 (C )1(D )1或3(3)椭圆的中心在原点,焦距为4,一条准线为4x =-,则该椭圆的方程为(A )2211612x y += (B )221128x y += (C )22184x y += (D )221124x y += (4)已知正四棱柱1111ABCD A B C D -中 ,2AB =,1CC =E 为1CC 的中点,则直线1AC 与平面BED 的距离为(A )2 (B(C(D )1(5)已知等差数列{}n a 的前n 项和为n S ,55a =,515S =,则数列11{}n n a a +的前100项和为 (A )100101 (B )99101(C )99100 (D )101100 (6)ABC ∆中,AB 边的高为CD ,若CB a =,CA b =,0a b ⋅=,||1a =,||2b =,则AD =(A )1133a b - (B )2233a b - (C )3355a b - (D )4455a b -(7)已知α为第二象限角,sin cos 3αα+=,则cos2α=(A ) (B )- (C (D (8)已知1F 、2F 为双曲线22:2C x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠=(A )14 (B )35 (C )34 (D )45(9)已知ln x π=,5log 2y =,12z e -=,则(A )x y z << (B )z x y << (C )z y x << (D )y z x <<(10)已知函数33y x x c =-+的图像与x 恰有两个公共点,则c =(A )2-或2 (B )9-或3 (C )1-或1 (D )3-或1(11)将字母,,,,,a a b b c c 排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有(A )12种 (B )18种 (C )24种 (D )36种(12)正方形ABCD 的边长为1,点E 在边AB 上,点F 在边BC 上,37AE BF ==。

2012年全国高考理科数学试题及答案-新课标

2012年全国高考理科数学试题及答案-新课标

绝密*启用前2012年普通高等学校招生全国统一考试(新课标)理科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.问答第Ⅰ卷时。

选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动.用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效.3.回答第Ⅱ卷时。

将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。

第一卷一. 选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。

(1)已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素的个数为( )()A 3 ()B 6 ()C 8 ()D 10【解析】选D5,1,2,3,4x y ==,4,1,2,3x y ==,3,1,2x y ==,2,1x y ==共10个 (2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )()A 12种 ()B 10种 ()C 9种 ()D 8种【解析】选A甲地由1名教师和2名学生:122412C C =种(3)下面是关于复数21z i=-+的四个命题:其中的真命题为( ) 1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-()A 23,p p ()B 12,p p ()C ,p p 24 ()D ,p p 34【解析】选C 22(1)11(1)(1)i z i i i i --===---+-+--1:p z =22:2p z i =,3:p z 的共轭复数为1i -+,4:p z 的虚部为1-(4)设12F F 是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,P 为直线32ax =上一点,∆21F PF 是底角为30的等腰三角形,则E 的离心率为( )()A 12 ()B 23 ()C 34()D 45【解析】选C∆21F PF 是底角为30的等腰三角形221332()224c PF F F a c c e a ⇒==-=⇔== (5)已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( )()A 7 ()B 5 ()C -5 ()D -7【解析】选D472a a +=,56474784,2a a a a a a ==-⇒==-或472,4a a =-= 471101104,28,17a a a a a a ==-⇒=-=⇔+=- 471011102,48,17a a a a a a =-=⇒=-=⇔+=-(6)如果执行右边的程序框图,输入正整数(2)N N ≥和实数12,,...,n a a a ,输出,A B ,则( )()A A B +为12,,...,n a a a 的和 ()B 2A B+为12,,...,n a a a 的算术平均数 ()C A 和B 分别是12,,...,n a a a 中最大的数和最小的数 ()D A 和B 分别是12,,...,n a a a 中最小的数和最大的数【解析】选C(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )()A 6 ()B 9 ()C 12 ()D 18【解析】选B该几何体是三棱锥,底面是俯视图,高为3 此几何体的体积为11633932V =⨯⨯⨯⨯=(8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B两点,AB =;则C 的实轴长为( )()A ()B ()C 4 ()D 8【解析】选C设222:(0)C x y a a -=>交x y 162=的准线:4l x =-于(A -(4,B --得:222(4)4224a a a =--=⇔=⇔=(9)已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减。

2012年全国高考理科数学试题及答案-新课标

2012年全国高考理科数学试题及答案-新课标

绝密*启用前2012年普通高等学校招生全国统一考试(新课标)理科数学及参考答案注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.问答第Ⅰ卷时。

选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动.用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效.3.回答第Ⅱ卷时。

将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。

第一卷一. 选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。

(1)已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素的个数为( )()A 3 ()B 6 ()C 8 ()D 10【解析】选D5,1,2,3,4x y ==,4,1,2,3x y ==,3,1,2x y ==,2,1x y ==共10个 (2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )()A 12种 ()B 10种 ()C 9种 ()D 8种【解析】选A甲地由1名教师和2名学生:122412C C =种(3)下面是关于复数21z i=-+的四个命题:其中的真命题为( ) 1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-()A 23,p p ()B 12,p p ()C ,p p 24 ()D ,p p 34【解析】选C 22(1)11(1)(1)i z i i i i --===---+-+--1:p z =22:2p z i =,3:p z 的共轭复数为1i -+,4:p z 的虚部为1-(4)设12F F 是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,P 为直线32ax =上一点,∆21F PF 是底角为30的等腰三角形,则E 的离心率为( )()A 12 ()B 23 ()C 34()D 45【解析】选C∆21F PF 是底角为30的等腰三角形221332()224c PF F F a c c e a ⇒==-=⇔== (5)已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( )()A 7 ()B 5 ()C -5 ()D -7【解析】选D472a a +=,56474784,2a a a a a a ==-⇒==-或472,4a a =-= 471101104,28,17a a a a a a ==-⇒=-=⇔+=- 471011102,48,17a a a a a a =-=⇒=-=⇔+=-(6)如果执行右边的程序框图,输入正整数(2)N N ≥和实数12,,...,n a a a ,输出,A B ,则( )()A A B +为12,,...,n a a a 的和 ()B 2A B+为12,,...,n a a a 的算术平均数 ()C A 和B 分别是12,,...,n a a a 中最大的数和最小的数 ()D A 和B 分别是12,,...,n a a a 中最小的数和最大的数【解析】选C(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )()A 6 ()B 9 ()C 12 ()D 18【解析】选B该几何体是三棱锥,底面是俯视图,高为3 此几何体的体积为11633932V =⨯⨯⨯⨯=(8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B两点,AB =;则C 的实轴长为( )()A ()B ()C 4 ()D 8【解析】选C设222:(0)C x y a a -=>交x y 162=的准线:4l x =-于(A -(4,B --得:222(4)4224a a a =--=⇔=⇔=(9)已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减。

2012河南高考数学答案

2012河南高考数学答案

2012年全国卷新课标——数学理科答案(1)【解析】选D.法一:按x y -的值为1,2,3,4计数,共432110+++=个;法二:其实就是要在1,2,3,4,5中选出两个,大的是x ,小的是y ,共2510C =种选法.(2)【解析】选A.只需选定安排到甲地的1名教师2名学生即可,共1224C C 种安排方案.(3)【解析】选C.经计算, 221,21 z i z i i ==--=-+.(4)【解析】选C.画图易得,21F PF △是底角为30的等腰三角形可得212PF F F =,即3222a c c ⎛⎫-= ⎪⎝⎭, 所以34c e a ==. (5)【解析】选D.472a a +=,56478a a a a ==-,474,2a a ∴==-或472,4a a =-=,14710,,,a a a a 成等比数列,1107a a ∴+=-.(6)【解析】选C. (7) 【解析】选B.由三视图可知,此几何体是底面为俯视图三角形,高为3的三棱锥,1132323932V =⨯⨯⨯⨯=.(8) 【解析】选C.易知点()4,23-在222x y a -=上,得24a =,24a =. (9)【解析】选A. 由322,22442Z k k k ππππππωπωπ+≤+<+≤+∈得,1542,24Z k k k ω+≤≤+∈, 15024ωω>∴≤≤ .(10) 【解析】选B.易知ln(1)0y x x =+-≤对()1,x ∈-+∞恒成立,当且仅当0x =时,取等号. (11) 【解析】选A.易知点S 到平面ABC 的距离是点O 到平面ABC 的距离的2倍.显然O ABC -是棱长为1的正四面体,其高为63,故136234312O ABC V -=⨯⨯=,226S ABC O ABC V V --== (12) 【解析】选B.12x y e =与ln(2)y x =互为反函数,曲线12x y e =与曲线ln(2)y x =关于直线y x =对称,只需求曲线12x y e =上的点P 到直线y x =距离的最小值的2倍即可.设点1,2x P x e ⎛⎫⎪⎝⎭,点P 到直线y x =距离122xx e d -=. 令()12x f x e x=-,则()112xf x e '=-.由()0f x '>得ln 2x >;由()0f x '<得ln 2x <,故当ln 2x =时,()f x 取最小值1l n 2-.所以122x x e d -=122x e x -=,min 1ln 22d -=. 所以()min min ||221ln 2PQ d ==-.(13) 【 解析】32.由已知得,()22222244||-=-=-a b a b a a b +b 2244cos 45=- a a b +b 242210=-=b +b ,解得=b 32.(14) 【解析】[]3,3-.画出可行域,易知当直线2Z x y =-经过点()1,2时,Z 取最小值3-;当直线2Z x y =-经过点()3,0时,Z 取最大值3.故2Z x y =-的取值范围为[]3,3-.(15) 【解析】38. 由已知可得,三个电子元件使用寿命超过1000小时的概率均为12,所以该部件的使用寿命超过1000小时的概率为211311228⎡⎤⎛⎫--⨯=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.(16) 【解析】1830.由1(1)21n n n a a n ++-=-得,22143k k a a k --=-……① 21241k k a a k +-=-……②,再由②-①得,21212k k a a +-+=……③由①得, ()()()214365S S a a a a a a -=-+-+-+奇偶…()6059a a +-159=+++…117+()11173017702+⨯==由③得, ()()()3175119S a a a a a a =++++++奇…()5959a a ++21530=⨯=所以, ()217702301830S S S S S S =+=-+=+⨯=60奇奇奇偶偶.(17) 解:(Ⅰ)法一:由cos 3sin 0a C a C b c +--=及正弦定理可得sin cos 3sin sin sin sin 0A C A C B C +--=,()sin cos 3sin sin sin sin 0A C A C A C C +-+-=,3sin sin cos sin sin 0A C A C C --=,sin 0C > ,3sin cos 10A A ∴--=,2sin 106A π⎛⎫∴--= ⎪⎝⎭,1sin 62A π⎛⎫-= ⎪⎝⎭,0A π<< ,5666A πππ∴-<-<,66A ππ∴-=3A π∴=法二:由正弦定理可得sin sin a C c A =,由余弦定理可得 222cos 2a b c C ab +-=.再由cos 3sin 0a C a C b c +--=可得,2223sin 02a b c a c A b c ab+-⋅+--=,即222223sin 220a b c bc A b bc +-+--=,222223sin 220a b c bc A b bc +-+--=2223sin 12b c a A bc +--+=,即3sin cos 1A A -=,2sin 16A π⎛⎫-= ⎪⎝⎭,1sin 62A π⎛⎫-= ⎪⎝⎭, 0A π<< ,5666A πππ∴-<-<, 66A ππ∴-=3A π∴=(Ⅱ)3ABC S = △,13sin 324bc A bc ∴==,4bc ∴=, 2,3a A π==, 222222cos 4a b c bc A b c bc ∴=+-=+-=, 228b c ∴+=.解得2b c ==.(18) 解:(Ⅰ) ()()1080,1580,16 n n y n -≤⎧⎪=⎨≥⎪⎩(n N ∈); (Ⅱ) (ⅰ)若花店一天购进16枝玫瑰花,X 的分布列为X 60 70 80 P0.10.20.7X 的数学期望()E X =60×0.1+70×0.2+80×0.7=76,X 的方差()D X =(60-762)×0.1+(70-762)×0.2+(80-762)×0.7=44.(ⅱ)若花店计划一天购进17枝玫瑰花,X 的分布列为X 55 65 75 85 P0.10.20.160.54X 的数学期望()E X =55×0.1+65×0.2+75×0.16+85×0.54=76.4,因为76.4>76,所以应购进17枝玫瑰花.(19) (Ⅰ) 证明:设112AC BC AA a ===, 直三棱柱111C B A ABC -, 12DC DC a ∴==, 12CC a =,22211DC DC CC ∴+=,1DC DC ∴⊥.又1DC BD ⊥ ,1DC DC D = ,1DC ∴⊥平面BDC .BC ⊂ 平面BDC ,1DC BC ∴⊥.(Ⅱ)由 (Ⅰ)知,12DC a =,15BC a =,又已知BD DC ⊥1,3BD a ∴=. 在Rt ABD △中,3,,90BD a AD a DAB ==∠= , 2AB a ∴=.222AC BC AB ∴+=,AC BC ∴⊥.法一:取11A B 的中点E ,则易证1C E ⊥平面1BDA ,连结DE ,则1C E ⊥BD , 已知BD DC ⊥1,BD ∴⊥平面1DC E ,BD ∴⊥DE ,1C DE ∴∠是二面角11C BD A --平面角.在1Rt C DE △中,111212sin 22aC EC DE C Da ∠===,130C DE ∴∠= .即二面角11C BD A --的大小为30.法二:以点C 为坐标原点,为x 轴,CB 为y 轴,1CC 为z 轴,建立空间直角坐标系C xyz -.则()()()()11,0,2,0,,0,,0,,0,0,2A a a B aD a a C a .()()1,,,,0,DB a a a DC a a =--=- ,设平面1DBC 的法向量为()1111,,n x y z =,则1111110n DB ax ay az n DC ax az ⎧=-+-=⎪⎨=-+=⎪⎩,不妨令11x =,得112,1y z ==,故可取()11,2,1n = . 同理,可求得平面1DBA 的一个法向量()21,1,0n =.设1n 与2n 的夹角为θ,则 121233cos 262n n n n θ⋅===⨯, 30θ∴=. 由图可知, 二面角的大小为锐角,故二面角11C BD A --的大小为30.(20) 解: (Ⅰ)由对称性可知,BFD △为等腰直角三角形,斜边上的高为p ,斜边长2BD p =.点A 到准线l 的距离2d FB FD p ===.由42ABD S =△得,11224222BD d p p ⨯⨯=⨯⨯=, 2p ∴=.圆F 的方程为()2218x y +-=.(Ⅱ)由对称性,不妨设点(),A A A x y 在第一象限,由已知得线段AB 是圆F 的在直径,90o ADB ∠=,2BD p ∴=,32A y p ∴=,代入抛物线:C py x 22=得3A x p =. 直线m 的斜率为333AF p k p ==.直线m 的方程为3302p x y -+=. 由py x 22= 得22x y p=,x y p '=.由33x y p '==得, 33x p =.故直线n 与抛物线C 的切点坐标为3,36p p ⎛⎫ ⎪ ⎪⎝⎭, 直线n 的方程为3306px y --=. 所以坐标原点到m ,n 的距离的比值为343312pp =.(21) 解: (Ⅰ) 1()(1)(0)x f x f e f x -''=-+,令1x =得,(0)1f =,再由121()(1)(0)2x f x f ef x x -'=-+,令0x =得()1f e '=. 所以)(x f 的解析式为21()2xf x e x x =-+.()1x f x e x '=-+,易知()1x f x e x '=-+是R 上的增函数,且(0)0f '=.所以()00,()00,f x x f x x ''>⇔><⇔< 所以函数)(x f 的增区间为()0,+∞,减区间为(),0-∞.(Ⅱ) 若b ax x x f ++≥221)(恒成立, 即()()21()102xh x f x x ax b e a x b =---=-+-≥恒成立,()()1x h x e a '=-+ ,(1)当10a +<时,()0h x '>恒成立, ()h x 为R 上的增函数,且当x →-∞时, ()h x →-∞,不合题意;(2)当10a +=时,()0h x >恒成立, 则0b ≤,(1)0a b +=;(3)当10a +>时, ()()1x h x e a '=-+为增函数,由()0h x '=得()ln 1x a =+, 故()()()0ln 1,()0ln 1,f x x a f x x a ''>⇔>+<⇔<+当()ln 1x a =+时, ()h x 取最小值()()()()ln 111ln 1h a a a a b +=+-++-. 依题意有()()()()ln 111ln 10h a a a a b +=+-++-≥, 即()()11ln 1b a a a ≤+-++,10a +> ,()()()()22111ln 1a b a a a ∴+≤+-++,令()()22ln 0 u x x x x x =->,则()()22ln 12ln u x x x x x x x '=--=-,()00,()0u x x e u x x e ''>⇔<<<⇔>,所以当x e =时, ()u x 取最大值()2e ue =. 故当1,2ea eb +==时, ()1a b +取最大值2e .综上, 若b ax x x f ++≥221)(,则 b a )1(+的最大值为2e . (22) 证明:(Ⅰ) ∵D ,E 分别为ABC △边AB ,AC 的中点, ∴//DE BC .//CF AB ,//DF BC ,CF BD ∴ 且 =CF BD ,又∵D 为AB 的中点,CF AD ∴ 且 =CF AD ,CD AF ∴=.//CF AB ,BC AF ∴=.CD BC ∴=.(Ⅱ)由(Ⅰ)知,BC GF ,GB CF BD ∴==, BGD BDG DBC BDC ∠=∠=∠=∠BCD GBD ∴△∽△.(23) 解:(Ⅰ)依题意,点A ,B ,C ,D 的极坐标分别为.所以点A ,B ,C ,D 的直角坐标分别为(1,3)、(3,1)-、(1,3)--、(3,1)-; (Ⅱ) 设()2cos ,3sin P ϕϕ,则 2222||||||||PD PC PB PA +++()()2212cos 33sin ϕϕ=-+-()()2232cos 13sin ϕϕ+--+-()()2212cos 33sin ϕϕ+--+--()()2232cos 13sin ϕϕ+-+--2216cos 36sin 16ϕϕ=++[]23220sin 32,52ϕ=+∈.所以2222||||||||PD PC PB PA +++的取值范围为[]32,52.(24) 解:(Ⅰ) 当3a =-时,不等式3)(≥x f ⇔ |3||2|3x x -+-≥⇔ ()()2323x x x ≤⎧⎪⎨----≥⎪⎩或()()23323x x x <<⎧⎪⎨-++-≥⎪⎩或()()3323x x x ≥⎧⎪⎨-+-≥⎪⎩ ⇔或4x ≥.所以当3a =-时,不等式3)(≥x f 的解集为{1x x ≤或}4x ≥. (Ⅱ) ()|4|f x x ≤-的解集包含]2,1[,即|||2||4|x a x x ++-≤-对[]1,2x ∈恒成立, 即||2x a +≤对[]1,2x ∈恒成立, 即22a x a --≤≤-对[]1,2x ∈恒成立, 所以2122a a --≤⎧⎨-≥⎩,即30a -≤≤.所以a 的取值范围为[]3,0-.。

2012河南高考数学试卷

2012河南高考数学试卷

2012年普通高等学校招生全国统一考试(理科)第I卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个是符合题目要求的。

1.已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x-y∈A},则B中所含元素的个数为A.3B.6C.8D.102.将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组有1名教师和2名学生组成,不同的安排方案共有A.12种B.10种C.9种D.8种(3)下面是关于复数z=21i-+的四个命题P1:z=2 p2: 2z=2iP3:z的共轭复数为1+I P4 :z的虚部为-1其中真命题为A P2 ,P3B P1 ,P2C P2,P4D P3 P4更多免费资源下载绿色圃中小学教育网 课件|教案|试卷|无需注册(4)设F1,F2是椭圆E:22xa+22yb=1 (a>b>0)的左、右焦点,P为直线x=23a上的一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为A 12B23C34D45(5)已知{a n}为等比数列,a4+a1=2 a5a6=-8 则a1+a10 =A.7B.5 C-5 D.-7(6)如果执行右边的程序图,输入正整数N(N≥2)和实数a1.a2,…a n,输入A,B,则第1/6页更多免费资源下载绿色圃中小学教育网 课件|教案|试卷|无需注册(A)A+B为a1a2,…,a n的和(B)2A B为a1a2.…,a n的算式平均数(C)A和B分别是a1a2,…a n 中最大的数和最小的数(D)A和B分别是a1a2,…a n中最小的数和最大的数(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A)6 (B)9 (C)12 (D)18(8)等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y²=16x的准线交于A,B两点,,则C的实轴长为第2/6页第3/6页(A)2(B )22(C )4(D )8(9)已知w >0,函数在2ππ⎛⎫ ⎪⎝⎭,单调递减,则w 的取值范围是 (A )(B )(C )(D )(0,2](10)已知函数,则y=f (x )的图像大致为(11)已知三棱锥S-ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为O 的直径,且SC=2,则此棱锥的体积为(A )26(B )36(C )23(D )22(12)设点P 在曲线上,点Q 在曲线y=ln (2x )上,则|PQ|的最小值为(A )1-ln2(B )(C )1+ln2(D )第Ⅱ卷本卷包括必考题和选考题两部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密*启用前
2012年普通高等学校招生全国统一考试
理科数学
注息事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.问答第Ⅰ卷时。

选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动.用橡皮擦干净后,再选涂其它答案标号。

写在本试卷上无效.
3.回答第Ⅱ卷时。

将答案写在答题卡上.写在本试卷上无效·
4.考试结束后.将本试卷和答且卡一并交回。

第一卷
一. 选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项
是符合题目要求的。

(1) 已知集合
个数为
(A )3 (B )6 (C) 8 (D )10
(2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,
每个小组由1名教师和2名学生组成,不同的安排方案共有
(A )12种 (B )10种 (C) 9种 (D )8种
(3)下面是关于复数
的四个命题为:
P 1:|z|=2, P 2:z 2=2i,
P 3:z 的共轭复数为1+I, p 4:z 的虚部为-1, 期中的真命题为
(A )p 2,p 3 (B)P 1,P 2 (C)P 2,P 4 (D)P 3,P 4
(4)设12F F 是椭圆E :22
22(0)x y a b a b
+=>>的左、右焦点,P 为直线32a x =上一点,
21F PF 是底角为30 的等腰三角形,则E 的离心率为()
(A )
12 (B )23 (C )34 (D )4
5
(5)已知{}
n a 为等比数列,332a a +=,568a a =-,则110a a +=() (A )7 (B )5 (C )-5 (D )-7
(6)如果执行右边的程序框图,输入正整数(2)N N ≥和市属12,,...,n a a a ,输出A,B,则
(A )A+B 为12,,...,n a a a 的和 (B )
2
A B
为12,,...,n a a a 的算术平均数 (C )A 和B 分别是12,,...,n a a a 中最大的数和最小的数 (D )A 和B 分别是12,,...,n a a a 中最小的数和最大的数 (7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为 (A )6 (B )9 (C )12 (D )18
(8)等轴双曲线 C 的中心在原点,检点在X 轴上,C 与抛物线的准线交于A ,B 两点,,则C 的实轴长为
(A )
(B )
(C )4 (D )8
(9)已知w>0,函数f(x)=sin(wx+)在(,π)单调递减。

则△t的取值范围是
(10) 已知函数f(x)= ,则y=f(x)的图像大致为
(11)已知三棱锥S-ABC的所有顶点都在球O的求面上,△ABC是边长为1的正三角形,SC 为球O的直径,且SC=2,则此棱锥的体积为
(12)设点P在曲线y=e x 上,点Q在曲线y=ln(2x)上,则|pQ|最小值为
(A)1-ln2 (B)(C)1+ln2 (D)(1+ln2)
第Ⅱ卷
本卷包括必考题和选考题两部分。

第13题-第21题为必考题,每个试题考生都必须作答,第22-24题为选考题,考生根据要求作答。

二.填空题:本大题共4小题,每小题5分。

(13)已知向量a,b夹角为450 ,且|a|=1.|2a-b|=,则|b|=
(14) 设x,y满足约束条件则z=x-2y的取值范围为
(15)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N(100,,5),且各个部件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为
(16)数列满足=2n-1,则的前60项和为
三、解答题:解答应写出文字说明,证明过程或演算步骤。

(17)(本小题满分12分)
已知a.b.c分别为△ABC三个内角A,B,C的对边
(1)求A
(2)若a=2,△ABC的面积为求b,c
18.(本小题满分12分)
某花店每天以每枝5元的价格从农场购进若干只玫瑰花,然后以每枝10元的价格出售,乳沟当天卖不完,剩下的玫瑰花做垃圾处理。

(I)看花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,)的函数解析式。

(II)花点记录了100天玫瑰花的日需求量(单位:枝),整理得下表:
以100天记录的各需求量的频率作为各需求量发生的概率。

(i)若花店一天购进16枝玫瑰花,x表示当天的利润(单位:元),求x的分布列,数学期望及方差;
(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?
(19)(本小题满分12分)
如图,之三棱柱D是棱的中点,
(I)证明:
(II)求二面角的大小。

(20)(本小题满分12分)
设抛物线的交点为F,准线为L,A为C上的一点,已知以F为圆心,FA为半径的圆F交L于B,D两点。

(I)若,的面积为求P的值及圆F的方程;
(II)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点m,n距离的比值。

(21)(本小题满分12分)
已知函数满足
(I)求的解析式及单调区间;
(II)若求的最大值
请考生在第22,23,24题中任选一题做答,如果多做,则按所做的第一题计分,做答时请写清楚题号。

(22)(本小题满分10分)选修4-1:几何证明选讲
如图,D,E分别为△ABC边AB,AC的中点,直线DE交于△ABC的外接圆于F,G
两点,若,证明:
(I)CD=BC;
(II)△BCD∽△GBD
(23)(本小题满分10分)选修4—4;坐标系与参数方程
已知曲线C1的参数方程是以坐标原点为极点,x 轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是,正方形ABCD的顶点都在
C2上,且A、B、C、D以逆时针次序排列,点A的极坐标为
(I)求点A、B、C、D 的直角坐标;
(II)设P为C1上任意一点,求|PA| 2+ |PB|2 + |PC| 2+ |PD|2的取值范围。

(24)(本小题满分10分)选修4—5:不等式选讲
已知函数f(x) = |x + a| + |x - 2|.
(I)当a = -3时,求不等式f(x) ≥3的解集;
(II)若f(x)≤|x - 4|的解集包含[1,2],求a的取值范围。

相关文档
最新文档