中考数学一轮复习第5课时二次根式导学案+习题.doc

合集下载

中考数学总复习《二次根式》练习题附带答案

中考数学总复习《二次根式》练习题附带答案

中考数学总复习《二次根式》练习题附带答案一、单选题1.√123÷√213×√125值为()A.1B.3C.√33D.√7 2.若√(a−b)2=b﹣a,则()A.a>b B.a<b C.a≥b D.a≤b 3.与√a3b不是同类次根式的是()A.1√abB.√baC.√ab2D.√ba34.下列运算正确的是()A.√3+3=3√3B.4√2−√2=4C.√2+√3=√5D.3√3−√3=2√35.若代数式1x−1+√x有意义,则实数x的取值范围是()A.x≠1B.x≥0C.x≠0D.x≥0且x≠1 6.a、b在数轴上的位置如图所示,那么化简√(b−a)2的结果是()A.a-b B.a+b C.b-a D.-a-b7.设实数a,b在数轴上对应的位置如图所示,化简√a2+|a+b|的结果是()A.-2a+b B.2a+b C.-b D.b8.若√3−m为二次根式,则m的取值为()A.m≤3B.m<3C.m≥3D.m>39.下列运算正确的是()A.(x−y)2=x2−y2B.|√3−2|=2−√3C.√8−√3=√5D.﹣(﹣a+1)=a+110.已知2<a<4,则化简√1−2a+a2+√a2−8a+16的结果是() A.2a﹣5B.5﹣2a C.﹣3D.311.下列运算中正确的是()A.√2+√3=√5B.(−√5)2=5C.3√2−2√2=1D.√16=±4 12.下列计算正确的是()A.(m−n)2=m2−n2B.(2ab3)2=2a2b6C.√8a3=2a√a D.2xy+3xy=5xy 二、填空题13.计算:√45﹣√25× √50=.14.若√12x是一个整数,则x可取的最小正整数是3.(判断对错)15.计算:√24−√12√3=.16.如果x2﹣3x+1=0,则√x2+1x2−2的值是.17.化简:√75=.18.已知实数a,b,c在数轴上的位置如图所示,化简代数式√a2−|a+c|+√(b−c)2−|−b|三、综合题19.完成下列问题:(1)若n(n≠0)是关于x的方程x2+mx+2n=0的根,求m+n的值;(2)已知x,y为实数,且y= √2x−5+√5−2x﹣3,求2xy的值.20.阅读材料,解答问题:(1)计算下列各式:①√4×9=,√4×√9=;②√16×25=,√16×√25=.通过计算,我们可以发现√a×b=(a>0,b>0)从上面的结果可以得到:√8=√2×√4=2√2,√12=√3×√4=2√3(2)根据上面的运算,完成下列问题①化简:√24②计算:√27+√48③化简:√a2b(a>0,b>0)21.在数学课外学习活动中,小明和他的同学遇到一道题:已知a=12+√3,求2a2−8a+1的值.他是这样解答的:∵a=2+√3=√3(2+√3)(2−√3)=2−√3,∴a−2=−√3∴(a−2)2=3,a2−4a+4=3∴a2−4a=−1∴2a2−8a+1=2(a2−4a)+1=2×(−1)+1=−1.请你根据小明的解析过程,解决如下问题:(1)1√3+√2=;(2)化简 √2+1+√3+√2√4+√3⋯+√256+√255 ; (3)若 a =√10−3,求 a 4−6a 3+a 2−12a +3 的值. 22.已知 x =√3+12 , y =√3−12与 m =xy 和 n =x 2−y 2 . (1)求m ,n 的值;(2)若 √a −√b =m +72, √ab =n 2 求 √a +√b 的值. 23.计算: (1)√135•2 √3 •(﹣ 12 √10 ); (2)√3a 2b •( √b a ÷2 √1b). 24.计算下列各题 (1)计算:( 12 )﹣2﹣6sin30°﹣( √7−√5)0+ √2 +| √2 ﹣ √3 | (2)化简:( x+2x 2−2x ﹣ x−1x 2−4x+4 )÷ x−4x ,然后请自选一个你喜欢的x 值,再求原式的值.参考答案1.【答案】A2.【答案】D3.【答案】C4.【答案】D5.【答案】D6.【答案】A7.【答案】D8.【答案】A9.【答案】B10.【答案】D11.【答案】B12.【答案】D13.【答案】√514.【答案】对15.【答案】2√2−216.【答案】√517.【答案】5√318.【答案】019.【答案】(1)将x=n 代入方程x 2+mx+2n=0得n 2+mn+2n=0,则n(n+m+2)=0 因为n≠0,所以n+m+2=0即m+n=-2.(2)因为y=√2x −5+√5−2x -3有意义,则{2x −5≥05−2x ⩾0解得{x ⩾52x ≤52则x=52 所以y=0+0-3=-3即2xy=2×52×(-3)=-15. 20.【答案】(1)6;6;20;20;√a ×√b(2)解:①√24=√4×6=√4×√6=2√6;②√27+√48=√3×9+√3×16=√3×√9+√3×√16=3√3+4√3=7√3 ;③√a 2b =√a 2⋅√b =a √b (a >0,b >0).21.【答案】(1)√3−√2(2)解:原式 =√2−1+√3−√2+√4−√3+⋯+√256−√255=−1+√2−√2+√3−√3+√4−⋯−√255+√256=√256−1=16−1=15 ;(3)解: ∵ a =√10−3 =√10+3 ∴a −3=√10∴(a −3)2=10即 a 2−6a +9=10 .∴a 2−6a =1 .∴a 4−6a 3=a 2∴a 4−6a 3+a 2−12a +3=2a 2−12a +3=2(a 2−6a)+3=2+3=5 .22.【答案】(1)解:由题意得, m =xy =√3+12×√3−12=12 n =(x +y)(x −y)=(√3+12+√3−12)(√3+12−√3−12)=√3 (2)解:由(1)得, √a −√b =4 √ab =3 ∴(√a +√b)2=(√a −√b)2+4√ab =42+4×3=28∵√a +√b >0∴√a +√b =2√723.【答案】(1)解: √135 •2 √3 •(﹣ 12 √10 ) =2×(﹣ 12 ) √135×3×10 =﹣ √16×3=﹣4 √3(2)解: √3a 2b •( √b a ÷2 √1b)= √3a2b × √ba× 12× √b= √3424.【答案】(1)解:原式=4﹣6× 12﹣1+ √2+ √3﹣√2 = √3;(2)解:原式=[x+2x(x−2)﹣x−1(x−2)2]•xx−4= (x+2)(x−2)−x(x−1)x(x−2)2•xx−4=x−4x(x−2)2•xx−4=1 (x−2)2当x=10时,原式= 1 64.。

中考数学一轮总复习 第5课时 二次根式(无答案) 苏科版

中考数学一轮总复习 第5课时 二次根式(无答案) 苏科版

第5课时:二次根式【课前预习】(一)知识梳理1、平方根与立方根:①平方根定义;②算术平方根定义;③立方根定义.2、二次根式的有关概念:①二次根式定义;②最简二次根式;③同类二次根式;④分母有理化.3、二次根式的性质:①;(a ≥0);② ()=2a (a ≥0);③ =2a ;④ =ab (0,0≥≥b a ); ⑤ =ba (0,0>≥b a ). 4、二次根式的运算:①二次根式的加减;②二次根式的乘除.(注意:计算结果必须是最简二次根式)(二)课前练习1、16的平方根是_ __,-27的立方根是__ _,36的算术平方根是_ _.2、当x ______x ______时,代数式x -21有意义.3、下列根式:①②③④中不是..最简二次根式的是 .4、在下列各组根式中,是同类二次根式的是( )A C 5、已知012=-++b a ,那么2007)(b a +=__________;=-+-x x 22 .6、化简:2)2(-= ,24= ,= ,312= ,321-= .7= ;=÷⨯263_________.8、如图,在数轴上点A 和点B 之间的整数是 .【解题指导】例1 x 是怎样的实数时,下列各式在实数范围内有意义?①()22+x ; ② 53--x x ; ③ xx ---512; ④ 32-+x x ; ⑤ 231--x .例2 计算:(1)24-32+23-2 16 ; (2)⎪⎭⎫ ⎝⎛-⨯÷3232292443.例3 已知b a a b a b ==-求的值.【巩固练习】 1、下列计算正确的是( )=B 4= D 3=-2、设a >0,b >0,则下列运算错误的是( )A ..2=a D3、对于实数a 、b b -a ,则( )A .a >bB .a <bC .a ≥bD .a ≤b4、使2-x 有意义的x 的取值范围是 .5、25的平方根是 ,()24-的算术平方根是 ,16的算术平方根是_______.6、16-= ,412-= ,24)(- .7、若最简根式1+x 和y 3是同类根式,则 x y +=______.834请你将发现的规律用含自然数n (n ≥1)的等式表示出来______________________9、化简或计算:(1) -3018⨯752⨯ (2)【课后作业】 班级 姓名一、必做题:1、函数y =x 的取值范围是( )A .12x -≥B .12x ≥C .12x -≤D .12x ≤22()x y =+,则x -y 的值为( )A .-1B .1C .2D .33、下列根式中,不是..最简二次根式的是( )A B . C D 4、 16的平方根是 ;函数y =自变量x 的取值范围是 .5= ;= ;= .6、当x ≤0时,化简1x -的结果是 .7、有这样一个问题:与下列哪些数相乘,结果是有理数? (只需填字母).A ..2E .08小的整数 .9、对于任意不相等的两个数a 、b ,定义一种运算※如下:a ※b =b a b a -+,如3※2=52323=-+. 那么12※4=10、计算:(1)(2)24616323252⨯⎪⎭⎫ ⎝⎛-÷(3)2;11、先化简再求值:33)225(423-=---÷--a a a a a ,其中.o二、选做题:12的值( )A .在1到2之间B .在2到3之间C .在3到4之间 D .在4到5之间2、若x y=xy 的值是( )A .B .C .m n + D.m n -3、实数,,a b ca -b │.4、若y =3x -6+6-3x +x 3,则10x +2y 的平方根为________;5、已知||6-3m +(n -5)2=3m -6-(m -3)n 2,则m -n =________.6、计算12121...571351131-+++++++++n n .7、已知:a =12+3,求a 2-1a +1-a 2-2a +1a 2-a 的值.。

中考数学总复习第5课 二次根式

中考数学总复习第5课 二次根式

的值为
()
A.-15
B.15
C.-125
D.125
解析:由二次根式的定义,得 2x-5≥0 且 5-2x≥0,∴x
≥5且 2
x≤52,∴x=52,∴y=-3,∴2xy=2×52×(-3)=-
15.
答案:A
【预测演练 1-3】 化简:( 3-x)2- x2-10x+25.
解析:∵3-x≥0,∴x≤3,原式=3-x-|x-5|=3-x- (5-x)=3-x-5+x=-2.
解析:(1)4 1- 8=4× 2-2 2=2 2-2 2=0.
2
2
(2)原式=( 2+1)( 2-1)× 2=(2-1)× 2= 2.
(3)原式=(3 2)2-1-[(2 2)2-4 2+1]
=18-1-8+4 2-1=8+4 2.
(4)原式=( 10-3)2013·( 10+3)2013·( 10+3)
∴a=m 2+2n 2,b=2m n . 这样,小明找到了把部分 a+b 2的式子化为平方式的方法. 请你仿照小明的方法探索并解决问题: (1)当 a,b,m,n 均为正整数时,若 a+b 3=(m+n 3)2,用含 m,n 的
式子分别表示 a,b 得,a=________,b=________; (2)利用所探索的结论,找一组正整数 a,b,m,n 填空: ______+______ 3=(______+______ 3)2; (3)若 a+4 3=(m+n 3)2 且 a,b,m,n 均为正整数,求 a 的值.
解析:x-3≥0, ∴x≥3.
答案:x ≥3
【预测演练 1-1】
等式 2k-1= k-3
数 k 的取值范围是
2k-1成立,则实 k-3
()

2020年春数学中考一轮复习5.重庆数学 第5讲数的开方与二次根式

2020年春数学中考一轮复习5.重庆数学 第5讲数的开方与二次根式

=0”时,每个部分
3.二次根式运算时,一定要先化简,再运算.步骤是先乘方开方,再乘除, 最后加减;有括号的由内到外、由小到大进行计算. 4.重要技巧:y= x-a+ a-x+1. 解:∵x-a≥0,a-x≥0(保证二次根式有意义,才能运算), ∴x≥a,且x≤a,即x=a, ∴y=1.
03 考场 ·笑傲全国题
10.(2019·梧州)计算:3 8=____2_.
11.(2019·内江)若|1001-a|+ a−1002=a,则a-10012=__1_0_0_2__. 1
12.(2019·重庆模拟)已知y= x−3+ 3−x-2,则xy的值为__9___.
13.(2019·扬州)计算:( 5-2)2018( 5+2)2019的结果是____5_+_2__.
第一单元 数与式
第5讲 数的开方与二次根式
01 考点 ·梳理知识点
考标点击
1.了解平方根、算术平方根、立方根的概念,会表示数的平方根、算术平 方根、立方根. 2.了解乘方与开方互为逆运算,会用平方运算求百以内整数的平方根,会 用立方运算求百以内整数(对应的负整数)的立方根. 3.能用有理数估计一个无理数的大致范围. 4.了解二次根式、最简二次根式的概念,了解二次根式(根号下仅限于数) 加、减、乘、除运算法则,会用它数的开方
样题1 (2019·重庆A)估计(2 3+6 2)× 13的值应在( C )
A.4和5之间 B.5和6之间 C.6和7之间 D.7和8之间
[解析]先根据二次根式的乘法进行计算,再进行估算.
(2
3+6
2)×
1 3
=2+6
23=2+
36×

【最新】2013年中考数学总复习学案:第5课时 二次根式

【最新】2013年中考数学总复习学案:第5课时  二次根式

N M Q P 第5课时二次根式一、选择题:1. 估算2的值() A .在1到2之间B .在2到3之间C .在3到4之间D.在4到5之间)A.BC.2- D .23. 下列运算正确的是( )A .3=B .0(π 3.14)1-=C .1122-⎛⎫=-⎪⎝⎭ D .3=± 4. 若b a y b a x +=-=,,则xy 的值为 ( ) A .a 2 B .b 2 C .b a + D .b a - 5.下列计算正确的是( )A .22-=-=325a a a ⋅= D.22xx x -=6.如图,在数轴上表示实数 )A .点PB .点QC .点MD .点N7.下列根式中属最简二次根式的是( )8.+y)2,则x -y 的值为( )A.-1B.1C.2D.39. 一个正方体的水晶砖,体积为100cm 3,它的棱长大约在( )A. 4cm~5cm 之间B. 5cm~6cm 之间C. 6cm~7cm 之间D. 7cm~8cm 之间10. 若3a =-,则a 与3的大小关系是( )A . 3a <B .3a ≤ C.3a > D .3a ≥11.下列说法中正确的是( )A .B .8的立方根是±2C .函数的自变量x 的取值范围是x >1D .若点P(2,a)和点Q(b ,-3)关于x 轴对称,则a+b 的值为-5二、填空题:1.化简.2.计算的结果是 .3. 若|1|0a +=,则a b -= .4= . 5.函数y =x 的取值范围是________.6. 对于任意不相等的两个数a ,b ,定义一种运算※如下:a ※b =b a ba -+, 如3※2=52323=-+.那么12※4= .7.已知等边三角形ABC 的边长为33+,则ΔABC 的周长是________8.计算:tan60°-2-2 + 20080_________ 三、解答题 :1.计算: (1)103130tan 3)14.3(27-+︒---)(π(2)101(1)52-⎛⎫π-+-+-- ⎪⎝⎭(3)0112sin 602-⎛⎫+-- ⎪⎝⎭(4)01)41.12(45tan 32)31(-++---2.先化简,再求值:33)225(423-=---÷--a a a a a ,其中。

中考数学一轮复习数学二次根式的专项培优练习题(及解析

中考数学一轮复习数学二次根式的专项培优练习题(及解析

一、选择题1.5﹣x ,则x 的取值范围是( ) A .为任意实数 B .0≤x≤5 C .x≥5 D .x≤5 2.下列式子中,是二次根式的是( )A B CD .x3.下列各式计算正确的是( )A .6232126()b a b a b a---⋅=B .(3xy )2÷(xy )=3xyC =D .2x •3x 5=6x 64.有意义,则x 的取值范围是( ) A .x≠2B .x >-2C .x <-2D .x≠-25.已知226a b ab +=,且a>b>0,则a ba b+-的值为( )A B C .2D .±26. )A .30 B .C .30D .7.化简二次根式 )A B C D 8.若化简1682+-x x -1x -的结果为5-2x ,则x 的取值范围是( ) A .为任意实数 B .1≤x≤4C .x≥1D .x≤49.下列各式计算正确的是( )A B .C .D10.230x -=成立的x 的值为( )A .-2B .3C .-2或3D .以上都不对二、填空题11.使函数212y x x=+有意义的自变量x 的取值范围为_____________12.已知112a b +=,求535a ab b a ab b++=-+_____.13.化简并计算:...+=________.(结果中分母不含根式)14.2==________.15.甲容器中装有浓度为a ,乙容器中装有浓度为b ,两个容器都倒出m kg ,把甲容器倒出的果汁混入乙容器,把乙容器倒出的果汁混入甲容器,混合后,两容器内的果汁浓度相同,则m 的值为_________.16.已知函数1x f xx,那么1f _____.17.10=,则222516x y +=______.18.若实数x ,y ,m 满足等式()223x y m +-=m+4的算术平方根为________. 19.若实数a =,则代数式244a a -+的值为___.20. (a ≥0)的结果是_________.三、解答题21.先阅读材料,再回答问题:因为)111=1=;因为1=,所以=1== (1= ,= ; (2⋅⋅⋅+的值.【答案】(12)9 【分析】(1)仿照例子,由1+=的值;由1+=的值;(2)根据(1)中的规律可将每个二次根式分母有理化,可转化为实数的加减法运算,再寻求规律可得答案.【详解】 解:(1)因为1-=;因为1=1(2⋅⋅⋅+1=+⋅⋅⋅1=1019=-=.【点睛】本题考查了分母有理化,分子分母都乘以分母这两个数的差进行分母有理化是解题关键.22.阅读材料,回答问题:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式a =,)111=11互为有理化因式.(1)1的有理化因式是 ;(2)这样,化简一个分母含有二次根式的式子时,采用分子、分母同乘以分母的有理化因式的方法就可以了,例如:==25384532++====-进行分母有理化. (3)利用所需知识判断:若a =,2b =a b,的关系是 . (4)直接写结果:)1=.【答案】(1)1;(2)7-;(3)互为相反数;(4)2019 【分析】(1)根据互为有理化因式的定义利用平方差公式即可得出;(2)原式分子分母同时乘以分母的有理化因式(2,化简即可;(3)将a=(4)化简第一个括号内的式子,里面的每一项进行分母有理化,然后利用平方差公式计算即可.【详解】解:(1)∵()()1111=,∴1的有理化因式是1;(22243743--==--(3)∵2a===,2b=-,∴a和b互为相反数;(4))1 ++⨯=)11⨯=)11=20201-=2019,故原式的值为2019.【点睛】本题考查了互为有理化因式的定义及分母有理化的方法,并考查了利用分母有理化进行计算及探究相关式子的规律,本题属于中档题.23.已知m,n满足m4n=3+.【答案】12015【解析】【分析】由43m n+=2﹣2)﹣3=0,将,代入计算即可.【详解】解:∵4m n+=3,)22﹣2)﹣3=0,)2﹣23=0,+13)=0,=﹣13,∴原式=3-23+2012=12015.【点睛】本题主要考查二次根式的混合运算,解题的关键是熟练掌握完全平方公式的运用及二次根式性质.24.小明在解决问题:已知2a2﹣8a+1的值,他是这样分析与解的:∵=2∴a﹣2=∴(a﹣2)2=3,a2﹣4a+4=3∴a2﹣4a=﹣1∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1请你根据小明的分析过程,解决如下问题:(1(2)若,求4a2﹣8a+1的值.【答案】(1)9;(2)5.【解析】试题分析:(1)此式必须在把分母有理化后才能实现化简,即各分式分子分母同乘以一个因式,使得1===.(2)先对a1,若就接着代入求解,计算量偏大.模仿小明做法,可先计算2(1)a-的值,就能较为简单地算出结果;也可对这个二次三项式进行配方,再代入求值.后两种方法都比直接代入计算量小很多.解:(1)原式=1)+++⋯(2)∵1a===,解法一:∵22(1)11)2a -=-= , ∴2212a a -+= ,即221a a -=∴原式=24(2)14115a a -+=⨯+= 解法二∴ 原式=24(211)1a a -+-+24(1)3a =--211)3=--4235=⨯-=点睛:(1得22=-=-a b ,去掉根号,实现分母有理化.(2)当已知量为根式时,求这类二次三项式的值,直接代入求值,计算量偏大,若能巧妙利用完全平方公式或者配方法,计算要简便得多.25.先化简,再求值:a ,其中【答案】2a-1,【分析】先根据二次根式的性质进行化简,再代入求值即可. 【详解】解:1a =-∴原式=1a a --=21a -当1a =-∴原式=(211-=1-【点睛】此题主要考查化简求值,正确理解二次根式的性质是解题关键.26.先化简,再求值:2443(1)11m m m m m -+÷----,其中2m =.【答案】22mm-+ 1. 【解析】分析:先根据分式的混合运算顺序和运算法则化简原式,再将m 的值代入计算可得.详解:原式=221m m --()÷(31m -﹣211m m --)=221m m --()÷241m m --=221m m --()•122m m m --+-()() =﹣22m m -+=22m m-+当m ﹣2时,原式===﹣1+=1.点睛:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.27.先化简,再求值:221()a ba b a b b a-÷-+-,其中a =2b =- 【答案】1a b -+,12-. 【分析】先把分式进行化简,得到最简分式,然后把a 、b 的值代入计算,即可得到答案. 【详解】 解:原式1()()a b a b aa b a b b a b b--=⨯-⨯+-+()()a b a b a b b a b -=--++()b bb a =-+1a b=-+,当a =2b =原式12==-.【点睛】本题考查了二次根式的混合运算,分式的化简求值,分式的混合运算,解题的关键是熟练掌握运算法则进行解题.28.计算:(1)-(2)【答案】(1)21【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)先利用二次根式的乘除法则运算,再合并即可.【详解】解:(1)原式==(2)原式3+21==.【点睛】本题考查二次根式的混合运算:在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据二次根式的性质得出5-x≥0,求出即可.【详解】==-=-,|5|5x x∴5-x≥0,解得:x≤5,故选D.【点睛】本题考查了二次根式的性质的应用,注意:当a≥0,当a≤0.2.A解析:A【分析】a≥0)的式子叫做二次根式,据此可得结论.【详解】解:A 是二次根式,符合题意; B是三次根式,不合题意;C 、当x <0D 、x 属于整式,不合题意; 故选:A . 【点睛】此题考查二次根式的定义,关键是根据二次根式的定义理解被开方数是非负数.3.D解析:D 【分析】依据单项式乘以单项式、单项式除以单项式以及二次根式的加法法则对各项分别计算出结果,再进行判断即可得到结果. 【详解】A. 2321526()b a b a b a---⋅=,故选项A 错误;B. (3xy )2÷(xy )=9xy ,故选项B 错误;C 错误; D. 2x •3x 5=6x 6,正确. 故选:D . 【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4.B解析:B 【分析】根据二次根式的被开方数是非负数,且分母不能为零,可得答案. 【详解】有意义,得: 20x +>,解得:2x >-. 故选:B . 【点睛】本题考查了二次根式有意义的条件,利用被开方数是非负数,分母不能为零得出不等式是解题关键.5.A解析:A【解析】【分析】已知a 2+b 2=6ab ,变形可得(a+b )2=8ab ,(a-b )2=4ab ,可以得出(a+b )和(a-b )的值,即可得出答案. 【详解】∵a 2+b 2=6ab , ∴(a+b )2=8ab ,(a-b )2=4ab , ∵a >b >0,∴∴a b a b +-= 故选A.【点睛】本题考查了分式的化简求值问题,观察式子可以得出应该运用完全平方式来求解,要注意a 、b 的大小关系以及本身的正负关系.6.C解析:C 【解析】故选C .点睛:此题主要考查了二次根式的化简,解题关键是利用分数的通分求和,然后把其分母有理化即可求解,比较简单,但是易出错,是常考题.7.B解析:B 【分析】首先根据二次根式有意义的条件求得a 、b 的取值范围,然后再利用二次根式的性质进行化简即可 【详解】2202a a aa a +-∴+<∴<-a a ∴==•=-故选B【点睛】本题考查了二次根式的性质及化简,解题的关键是根据二次根式有意义的条件判断字母的取值范围.本题需要重点注意字母和式子的符号.8.B解析:B【解析】【分析】先把多项式化简为|x-4|-|1-x|,然后根据x的取值范围分别讨论,求出符合题意的x的值即可.【详解】-=|x-4|-|1-x|,解:原式1x当x≤1时,此时1-x≥0,x-4<0,∴(4-x)-(1-x)=3,不符合题意,当1≤x≤4时,此时1-x≤0,x-4≤0,∴(4-x)-(x-1)=5-2x,符合题意,当x≥4时,此时x-4≥0,1-x<0,∴(x-4)-(x-1)=-3,不符合题意,∴x的取值范围为:1≤x≤4故选B.【点睛】本题主要考查绝对值及二次根式的化简,要注意正负号的变化,分类讨论.9.D解析:D【解析】不是同类二次根式,因此不能计算,故不正确.根据同类二次根式,可知,故不正确;根据二次根式的性质,可知,故不正确;==,故正确.3故选D.10.B解析:B【分析】根据二次根式有意义的条件以及二次根式的乘法进行分析即可得答案.【详解】-=,x30=,=0∴x=-2或x=3,又∵2030x x +≥⎧⎨-≥⎩, ∴x=3,故选B.【点睛】本题考查了二次根式的乘法以及二次根式有意义的条件,熟练掌握相关知识是解题的关键.二、填空题11.【分析】利用二次根式有意义的条件和分式中分母不为零,即可完成.【详解】根据题意,解得:①当时,解得:即:①当时,解得:即:故自变量x 的取值范围为【点睛】 解析:11,022x x -≤≤≠ 【分析】利用二次根式有意义的条件和分式中分母不为零,即可完成.【详解】根据题意,220x x +≠解得:0,2x x ≠≠-12||0x -≥①当0x >时,120x -≥ 解得:12x ≤ 即:102x <≤①当0x <时,120x +≥解得:21x ≥-即:102x -≤< 故自变量x 的取值范围为11,022x x -≤≤≠ 【点睛】 本题考查二次根式以及分式有意义的条件,熟练掌握分类讨论和解不等式组是解题关键. 12.13【解析】【分析】由得a+b=2ab ,然后再变形,最后代入求解即可.【详解】解:∵∴a+b=2ab∴故答案为13.【点睛】本题考查了已知等式求代数式的值,解答的关键是通过变形找解析:13【解析】【分析】 由112a b +=得a+b=2ab ,然后再变形535a ab b a ab b++-+,最后代入求解即可. 【详解】 解:∵112a b+= ∴a+b=2ab ∴()5353510ab 3===132ab a b ab a ab b ab a ab b a b ab ab+++++-++-- 故答案为13.【点睛】 本题考查了已知等式求代数式的值,解答的关键是通过变形找到等式和代数式的联系. 13.【分析】根据=,将原式进行拆分,然后合并可得出答案.【详解】解:原式==.故答案为.【点睛】此题考查了二次根式的混合运算,解答本题的关键是将原式进行拆分,有一定的技巧性,注意仔细观【分析】-,将原式进行拆分,然后合并可得出答案.【详解】解:原式===【点睛】此题考查了二次根式的混合运算,解答本题的关键是将原式进行拆分,有一定的技巧性,注意仔细观察.14.【解析】【分析】用换元法代替两个带根号的式子,得出m、n的关系式,解方程组求m、n的值即可.【详解】设m=,n=,那么m−n=2①,m2+n2=()2+()2=34②.由①得,m=2解析:13【解析】【分析】用换元法代替两个带根号的式子,得出m、n的关系式,解方程组求m、n的值即可.【详解】设m n那么m−n =2①,m 2+n 2=2+2=34②.由①得,m =2+n ③,将③代入②得:n 2+2n−15=0,解得:n =−5(舍去)或n =3,因此可得出,m =5,n =3(m≥0,n≥0).n +2m =13.【点睛】此题考查二次根式的减法,本题通过观察,根号里面未知数的系数为相反数,可通过换元法求解.15.【分析】分别求出甲,乙容器中原溶液中纯果汁的含量,再求出mkg 溶液中纯果汁的含量,最后利用混合后果汁的浓度相等列出关系式,求出m 即可.【详解】解:根据题意,甲容器中纯果汁含量为akg ,乙容器【分析】分别求出甲,乙容器中原溶液中纯果汁的含量,再求出mkg 溶液中纯果汁的含量,最后利=,求出m 即可.【详解】, 甲容器倒出mkg 果汁中含有纯果汁makg ,乙容器倒出mkg 果汁中含有纯果汁mbkg ,,=,整理得,-6b =5ma -5mb ,∴(a -b )=5m (a -b ),∴m =5.故答案为:5【点睛】本题考查二次根式的应用,能够正确理解题意,化简二次根式是解题的关键.16.【分析】根据题意可知,代入原函数即可解答.【详解】因为函数,所以当时,.【点睛】本题主要考查了代数式求值问题,熟练掌握相关知识点以及二次根式的运算是解题关键.解析:2+【分析】根据题意可知1x=,代入原函数即可解答.【详解】因为函数1xf xx,所以当1x=时,211()2221f x.【点睛】本题主要考查了代数式求值问题,熟练掌握相关知识点以及二次根式的运算是解题关键. 17.【解析】【分析】把带根号的一项移项后平方,整理后再平方,然后整理即可得解.【详解】移项得,两边平方得,整理得,两边平方得,所以,两边除以400得,1.故答案为1.【点睛】解析:【解析】把带根号的一项移项后平方,整理后再平方,然后整理即可得解.【详解】10=-两边平方得,()()22223=1003x y x y ++--+整理得,253x =- 两边平方得,22225150225256251509x x y x x -++=-+ 所以,221625400x y +=两边除以400得,222516x y +=1. 故答案为1.【点睛】本题考查了非负数的性质,此类题目难点在于把两个算术平方根通过移项分到等式左右两边.18.3【解析】【分析】先根据二次根式有意义的条件得出x+y 的值,再根据非负数的性质列出关于x ,y ,m 的方程组,求出m 的值,进而可得出结论.【详解】依题意得:,解得:x=1,y=1,m =5,∴3解析:3【解析】【分析】先根据二次根式有意义的条件得出x +y 的值,再根据非负数的性质列出关于x ,y ,m 的方程组,求出m 的值,进而可得出结论.【详解】依题意得:35302302x y m x y m x y +--=⎧⎪+-=⎨⎪+=⎩,解得:x =1,y =1,m =5,∴==3.故答案为3.【点睛】 本题考查了二次根式有意义得条件及非负数的性质,熟知二次根式具有非负性是解答此题的关键.19.3∵ =,∴=(a-2)2==3,故答案为3.解析:3【解析】∵a =∴244a a -+=(a-2)2=()222+=3, 故答案为3.20.4a【解析】【分析】根据二次根式乘法法则进行计算即可得.【详解】===4a ,故答案为4a.【点睛】本题考查了二次根式的乘法,熟练掌握二次根式乘法法则是解题的关键.解析:4a【解析】【分析】根据二次根式乘法法则进行计算即可得.)0a ≥===4a ,故答案为4a.【点睛】本题考查了二次根式的乘法,熟练掌握二次根式乘法法则是解题的关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。

2022年中考数学一轮复习:二次根式 专项练习题中考试题汇编(Word版,含答案)

2022年中考数学一轮复习:二次根式 专项练习题中考试题汇编(Word版,含答案)

2022年中考数学一轮复习:二次根式 专项练习题中考试题汇编一、选择题1. (2021•甘肃省定西市)下列运算正确的是( ) A .+=3B .4﹣=4C .×=D .÷=42. (2021•湖南省常德市)计算:5151122⎛⎫++-⋅=⎪⎝⎭( ) A. 0B. 1C. D.512- 3. (2021•湖南省衡阳市)下列计算正确的是( ) A .=±4B .(﹣2)0=1C .+=D .=34. (2021•株洲市) 计算:142-⨯=( ) A. 22-B. -2C. 2-D. 225. (2021•江苏省苏州市)计算()2的结果是( )A .B .3C .2D .96. (2021•河北省)与结果相同的是( )A .3﹣2+1B .3+2﹣1C .3+2+1D .3﹣2﹣17. (2021•广东省)若22391240a a ab b -+-+=,则ab =() A .3B .92C .43D .98. (2021•广东省)设610-的整数部分为a ,小数部分为b ,则()210a b +的值是()A .6B .210C .12D .9109(2021•湖北省恩施州)从,﹣,﹣这三个实数中任选两数相乘,所有积中小于2的有( )个. A .0B .1C .2D .310. (2021•青海省)已知a ,b 是等腰三角形的两边长,且a ,b 满足+(2a +3b﹣13)2=0,则此等腰三角形的周长为( )A .8B .6或8C .7D .7或811. (2021•浙江省杭州)下列计算正确的是( ) A .=2B .=﹣2C .=±2D .=±212. (2021•浙江省湖州市)化简8的正确结果是.A .4B .±4C .22D .22±13. (2021•浙江省嘉兴市)能说明命题“若x 为无理数,则x 2也是无理数”是假命题的反例是( ) A .x =﹣1B .x =+1C .x =3D .x =﹣14. (2021•湖北省荆门市)下列运算正确的是( ) A .(﹣x 3)2=x 5 B .=xC .(﹣x )2+x =x 3D .(﹣1+x )2=x 2﹣2x +115. (2021•重庆市B )下列计算中,正确的是( ) A .5﹣2=21 B .2+=2C .×=3D .÷=316. (2021•重庆市A )1472 ) A. 7B. 62C. 72D. 2717. (2021•襄阳市)3x +x 的取值范围是( ) A. 3x ≥-B. 3x ≥C. 3x ≤-D. 3x >-18. (2021•绥化市)01x +x 的取值范围是( )A. –1x >B. 1x ≥-且0x ≠C. 1x >-且0x ≠D. 0x ≠19. (2021•湖南省娄底市)2,5,m 22(3)(7)m m --( ) A. 210m - B. 102m -C. 10D. 4二.填空题1.(2021·安徽省)埃及胡夫金字塔是古代世界建筑奇迹之一,其底面是正方形,侧面是全等51,它介于整数n 和1n +之间,则n 的值是______. 2. (2021•湖北省黄冈市)式子在实数范围内有意义,则a 的取值范围是 a ≥﹣2 .3. (2021•江苏省连云港) 计算()25-=__________.4. (2021•江苏省南京市) 计算982-的结果是________. 5. (2021•宿迁市)若代数式22x +有意义,则x 的取值范围是____________. 6. (2021•山东省聊城市)计算:121882⎛⎫-⎪⎝⎭=_______. 7. (2021•上海市)已知43x +=,则x =___________.8. (2021•湖北省随州市)2021年5月7日,《科学》杂志发布了我国成功研制出可编程超导量子计算机“祖冲之”号的相关研究成果.祖冲之是我国南北朝时期杰出的数学家,他是第一个将圆周率π精确到小数点后第七位的人,他给出π的两个分数形式:227(约率)和355113(密率).同时期数学家何承天发明的“调日法”是程序化寻求精确分数来表示数值的算法,其理论依据是:设实数x 的不足近似值和过剩近似值分别为b a 和d c (即有b dx a c<<,其中a ,b ,c ,d 为正整数),则b d a c ++是x 的更为精确的近似值.例如:已知15722507π<<,则利用一次“调日法”后可得到π的一个更为精确的近似分数为:1572217950757+=+;由于179 3.140457π≈<,再由17922577π<<,可以再次使用“调日法”得到π的更为精确的近似分数……现已知73252<<,则使用两次“调日法”可得到2的近似分数为______.9. (2021•四川省达州市)已知a ,b 满足等式a 2+6a +9+=0,则a 2021b 2020= .10. (2021•四川省眉山市)观察下列等式:x 1===1+;x 2===1+;x 3===1+;…根据以上规律,计算x 1+x 2+x 3+…+x 2020﹣2021= . 11. (2021•遂宁市)若20a a b -++=,则b a =_____. 12. (2021•天津市)计算(101)(101)+-的结果等于_____. 13. (2021•青海省)观察下列各等式: ①; ②; ③;…根据以上规律,请写出第5个等式: . 14. (2021•山东省威海市)计算624455-⨯的结果是____________________. 15. (2021•贵州省铜仁市)计算()()271832+-=______________;三、解答题1. (2021•湖北省江汉油田)计算:03(32)4(236)812-⨯--+-+2. (2021•海南省)计算:23+|﹣3|÷3﹣×5﹣1;3. (2021•内蒙古通辽市)计算:()﹣1+(π﹣3)0﹣2cos30°+|3﹣|.答案一、选择题1.(2021•甘肃省定西市)下列运算正确的是()A.+=3B.4﹣=4C.×=D.÷=4【分析】根据二次根式的加减法对A、B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断.【解答】解:A、原式=2,所以A选项的计算错误;B、原式=3,所以B选项的计算错误;C、原式==,所以C选项的计算正确;D、原式===2,所以D选项的计算错误.故选:C.2.(2021•湖南省常德市)计算:5151122⎛⎫++-⋅=⎪⎝⎭()A. 0B. 1C.D. 51 2 -【答案】C【解析】【分析】先将括号内的式子进行通分计算,最后再进行乘法运算即可得到答案.【详解】解:5151122⎛⎫++-⋅⎪⎪⎝⎭=5151 22 -+⋅=51 2 -=2.故选:C.3.(2021•湖南省衡阳市)下列计算正确的是()A.=±4B.(﹣2)0=1C.+=D.=3【分析】根据相关概念和公式求解,选出正确答案即可.【解答】解:16的算术平方根为4,即,故A不符合题意;根据公式a0=1(a≠0)可得(﹣2)0=1,故B符合题意;、无法运用加法运算化简,故,故C 不符合题意;,故D 不符合题意;故选:B .4. (2021•株洲市) 计算:142-⨯=( ) A. 22- B. -2C. 2-D. 22【答案】A5. (2021•江苏省苏州市)计算()2的结果是( )A .B .3C .2D .9【分析】按照二次根式的乘法法则求解. 【解答】解:()2=4.故选:B . 6. (2021•河北省)与结果相同的是( )A .3﹣2+1B .3+2﹣1C .3+2+1D .3﹣2﹣1【分析】化简===2,再逐个选项判断即可. 【解答】解:===2,∵3﹣2+1=2,故A 符合题意; ∵3+2﹣1=4,故B 不符合题意; ∵3+2+1=6,故C 不符合题意; ∵3﹣2﹣1=0,故D 不符合题意. 故选:A .7. (2021•广东省)若22391240a a ab b -+,则ab =() A 3B .92C .43D .9【答案】B【解析】因为22391240a a ab b -+,且30a 2291240a ab b -+ 所以3=0a ()222912432320a ab b a b a b -+--=所以3a 3332a b ==33932ab ==,考查绝对值、二次根式的非负性。

中考数学一轮复习:二次根式的概念

中考数学一轮复习:二次根式的概念

中考复习之二次根式的概念知识考点:数的开方是学习二次根式、一元二次方程的准备知识,二次根式是初中代数的重要基础,应熟练掌握平方根的有关概念、求法以及二次根式的性质。

精典例题:【例1】填空题:(1)()23-的平方根是 ;16的算术平方根是 ;25-的算术平方根是 ;38的立方根是 。

(2)若22-是a 的立方根,则a = ;若b 的平方根是±6,则b = 。

(3)若x 21-有意义,则x ;若321-x 有意义,则x 。

(4)若02=+m m ,则m ;若()13312-=-a a ,则a ;若12-=aa ,则a ;若()111--+x 有意义,则x 的取值范围是 ; (5)若x -2有意义,则()22x -= 。

(6)若a <0,则a a -2= ;若b <0,化简b a b ab a 32+= 。

答案:(1)3±,2,51,32;(2)42-,6;(3)x ≤21,x ≠2; (4)m ≤0,a ≥31,a <0,x ≥-1且x ≠0;(5)x -2; (6)a 2-,ab ab 2-【例2】选择题: 1、式子1313--=--x x x x 成立的条件是( ) A 、x ≥3 B 、x ≤1 C 、1≤x ≤3 D 、1<x ≤32、下列等式不成立的是( )A 、()a a =2B 、a a =2C 、33a a -=-D 、a aa -=-1 3、若x <2,化简()x x -+-322的正确结果是( )A 、-1B 、1C 、52-xD 、x 25-4、式子3ax --(a >0)化简的结果是( )A 、ax x -B 、ax x --C 、ax xD 、ax x -答案:DDDA【例3】解答题:(1)已知51=-a a ,求aa 1-的值。

(2)设m 、n 都是实数,且满足224422-+-+-=m m m n ,求mn 的值。

分析:解决题(1)的问题,一般不需要将a 的值求出,可将51=-a a 等式两边同时平方,可求得31=+a a ,再求41122-⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛-a a a a 的值,开方即得所求代数式的值;题(2)中,由被开方数是非负数得2±=m ,但分母02≠-m ,故2-=m ,代入原等式求得n 的值。

中考数学总复习《二次根式》练习题附有答案

中考数学总复习《二次根式》练习题附有答案

中考数学总复习《二次根式》练习题附有答案一、单选题(共12题;共24分)1.若最简二次根式√a+2与√2a−3是可以合并的二次根式,则a的值为()A.5B.13C.-2D.322.使式子√x+1x−1有意义的x的取值范围是()A.x>1B.x≠1C.x≥1且x≠1D.x≥−1且x≠13.若等式√m2−4=√m+2⋅√m−2成立,则m的取值范围是()A.m≥−2B.m≥2C.−2≤m≤2D.m≥44.在函数y=1√x+3中,自变量x的取值范围是()A.x≥−3B.x≥−3且x≠0 C.x≠0D.x>−35.下列计算正确的一项是()A.√36=±6B.√0.49=0.7C.√919=313D.√(3−23)2=3−1136.计算正确的是()A.√114=112B.7a-5a=2C.(-3a)3=-9a3D.2a(a-1)=2a2-2a7.下列运算正确的是()A.2√2-√2=2B.a3·a2=a5C.a8÷a2=a4D.(﹣2a2)3=﹣6a68.下面是二次根式的是()A.12B.−3C.√3D.0 9.若式子√x−3有意义,则x的取值范围是()A.x≥3B.x≤3C.x>3D.x=3 10.有下列说法:①一元二次方程x2+px-1=0不论p为何值必定有两个不相同的实数根;②若b=2a+12c,则一元二次方程ax2+bx+c=0必有一根为-2;③代数式x2+√x+1+1有最小值1;④有两边和第三边上的高对应相等的两个三角形全等;其中正确的是()A.①④B.①②C.①②③D.①②③④运算结果在哪两个整数之间()11.估计(√24−√12)⋅√13A.0和1B.1和2C.2和3D.3和4 12.下列运算正确的是()A.√3+√4=√7B.(−√3)2=−3C.2√3−√3=2D.√3×√2=√6二、填空题(共6题;共7分)13.式子√x−1中x的取值范围是14.计算:(√3−√2)2012(√3+√2)2013=.15.若√x−5不是二次根式,则x的取值范围是16.若|a-b+1|与√a+2b+4互为相反数,则a=,b=.17.若x,y为实数,且y=2022+√x−4+√4−x,则x+y=.18.已知√24n是整数,则正整数n的最小值是.三、综合题(共6题;共86分)19.如图,在平面直角坐标系中,A(a,0),B(b,0),C(﹣1,2),且(a+2)2+ =0,(1)求a,b的值;(2)在坐标轴上存在一点M,使△COM的面积是△ABC的面积的一半,求出点M 的坐标.(3)如图2,过点C做CD△y轴交y轴于点D,点P为线段CD延长线上一动点,连接OP,OE平分角△AOP,OF△OE,当点P运动时,的值是否会改变?若不变,求其值;若改变,说明理由.20.有这样一类题目:将√a±2√b化简,如果你能找到两个数m、n,使m2+n2=a 且mn=√b,a±2√b将变成m2+n2±2mn,即变成(m±n)2,从而使√a±2√b得以化简.(1)例如,∵5+2√6=3+2+2√6=(√3)2+(√2)2+2√2×√3=(√3+√2)2 ∴√5+2√6=√(√3+√2)2= ,请完成填空. (2)仿照上面的例子,请化简√4−2√3;(3)利用上面的方法,设A =√6+4√2,B =√3−√5,求A +B 的值.21.计算:(1)(√12−3)0+√24−(−12)−1 ; (2)已知 y =√2−x +√x −2−3 ,求 (x +y)2021 的立方根;(3)如图,一次函数 y =kx +b 的图像分别与x 轴、y 轴交于点A 、B ,且经过点 (−1,32) ,求 △AOB 的面积.22.阅读下列计算过程:√2+1=√2(√2+1)(√2−1)=√2−1√3+√2=√3√2)(√3+√2)(√3−√2)=√3−√2√5+2=√5(√5+2)(√5−2)=√5−2试求: (1)1√11+√10的值;(2)1√n+√n−1的值;(3)求1+√2√2+√3√3+√4+⋅⋅⋅√199+√200 的值.23.计算:(1)√8+2 √3﹣(√27+ √2)(2)√23÷ √223× √25(3)(7+4 √3)(7﹣4 √3)24.(1)一个正数的平方根是a+3与2a﹣15,求a的值.(2)已知√a−16+(b+2)2=0,求ab的立方根.(3)已知x、y为实数,且y=√x−9−√9−x+√4.求√x+√y的值.参考答案1.【答案】A2.【答案】D3.【答案】B4.【答案】D5.【答案】B6.【答案】D7.【答案】B8.【答案】C9.【答案】A10.【答案】B11.【答案】A12.【答案】D13.【答案】x≥114.【答案】√3+√215.【答案】x<516.【答案】-2;-117.【答案】202618.【答案】619.【答案】(1)解:∵(a+2)2+ =0∴a+2=0,b-3=0∴a=﹣2,b=3;(2)解:如图1,过点C作CT△x轴,CS△y轴,垂足分别为T、S.∵A(﹣2,0),B(3,0)∴AB=5∵C(﹣1,2)∴CT=2,CS=1∴△ABC的面积=AB•CT=5∵△COM的面积=△ABC的面积∴△COM的面积=若点M在x轴上,即OM•CT=∴OM=2.5.∴M的坐标为(2.5,0)(﹣2.5,0)若点M在y轴上,即OM•CS=∴OM=5∴点M坐标(0,5)或(0,﹣5)综上所述:点M的坐标为(0,5)或(﹣2.5,0)或(0,﹣5)或(2.5,0);(3)解:如图2,的值不变,理由如下:∵CD△y轴,AB△y轴∴△CDO=△DOB=90°∴AB△CD∴△OPD=△POB.∵OF△OE∴△POF+△POE=90°,△BOF+△AOE=90°∵OE平分△AOP∴△POE=△AOE∴△POF=△BOF∴△OPD=△POB=2△BOF.∵△DOE+△DOF=△BOF+△DOF=90°∴△DOE=△BOF∴△OPD=2△BOF=2△DOE∴=2.20.【答案】(1)√3+√2(2)解:∵4−2√3=3+1−2√3=(√3)2+1−2√3=(√3−1)2∴√4−2√3=√(√3−1)2=√3−1.(3)解:∵A=6+4√2=4+2+4√2=(√4)2+(√2)2+2×√4×√2=(2+√2)2∴A=√6+4√2=2+√2∵B=3−√5=6−2√52=5+1−2√52=(√5)2+12−2×1×√52=(√5−1)22∴B=√3−√5=√(√5−1)22=√5−1√2=√10−√22=12√10−12√2∴把A式和B式的值代入A+B中,得:A+B=2+√2+12√10−12√2=2+12√10+√2221.【答案】(1)解: 原式= 1+2√6+2=3+2√6;(2)解: ∵y=√2−x+√x−2−3∴2−x≥0,x−2≥0∴x≤2∴x=2∴y=−3∴(x+y)2021=(2−3)2021=−1;∴(x+y)2021的立方根为−1;(3)解: 由图像可得点B的坐标为(0,3),然后把点B(0,3)和点(−1,32)代入一次函数y=kx+b得:{b=3−k+b=32,解得:{k=32b=3∴一次函数的解析式为y=32x+3令y=0时,则有0=32x+3,解得:x=−2∴OA=2,OB=3∴S△AOB=12×2×3=3.22.【答案】(1)解:√11+√10=√11−√10(√11+√10)(√11−√10)=√11−√10(2)解:1√n+√n−1=√n−√n−1(√n+√n+1)(√n−√n−1)=√n−√n−1n−(n−1)=√n−√n−1(3)解:11+√21√2+√3+1√3+√41√199+√200=√2−1+√3−√2+√4−√3+···+√199−√198+√200−√199=√200−1=10√2−1. 23.【答案】(1)解:原式=2 √2+2 √3﹣3 √3﹣√2 = √2﹣√3(2)解:原式= √23×38×25= √1010(3)解:原式=49﹣48=124.【答案】(1)解:∵一个正数的平方根是a+3与2a﹣15∴(a+3)+(2a﹣15)=0∴a=4;(2)解:∵√a−16+(b+2)2=0∴a﹣16=0,b+2=0∴a=16,b=﹣2∴√a b3=√16−23=﹣2;(3)解:∵y=√x−9−√9−x+√4∴x=9,y=2∴√x+√y=√9+√2=3+√2。

中考备考数学一轮复习 二次根式 练习题

中考备考数学一轮复习 二次根式 练习题

中考备考数学一轮复习 二次根式 练习题一、单选题1.(2022·湖北武汉·统考中考真题)下列各式计算正确的是( ) A 235B .3331=C 236=D 1226=2.(2021·湖北荆门·统考中考真题)下列运算正确的是( ) A .235x xB 2()x x -=C .23()x x x -+=D .22(1)21x x x -+=-+3.(2021·湖北襄阳·3x +x 的取值范围是( ) A .3x ≥-B .3x ≥C .3x ≤-D .3x >-4.(2021·湖北恩施·232-这三个实数中任选两数相乘,所有积中小于2的有( )个. A .0B .1C .2D .3二、填空题5.(2022·湖北武汉·统考中考真题)计算()22-的结果是_________.6.(2022·湖北荆州·统考中考真题)若32的整数部分为a ,小数部分为b ,则代数式()22a b ⋅的值是______.7.(2021·湖北黄冈·51-这个数叫做黄金分割数,著名数学家华罗庚优选法中的0.618法就应用了黄金分割数.设51a -=51b +=则1ab =,记11111S a b =+++,2221111S a b =+++,…,1010101111S a b=+++.则1210S S S +++=____.8.(2021·湖北荆州·统考中考真题)已知:(10132a -⎛⎫=+ ⎪⎝⎭,)(3232b =a b +_____________.9.(2021·湖北黄冈·2x +x 的取值范围是______. 10.(2022·湖北武汉·2(-4)_______________11.(2022·湖北黄冈·统考二模)若y =xy =_____.12.(2022·湖北随州·x 的取值范围是______.13.(2022·湖北孝感·统考模拟预测)那么x 的值可以是_________(只需写出一个)三、解答题14.(2022·湖北十堰·统考中考真题)计算:1202212(1)3-⎛⎫+- ⎪⎝⎭.15.(2022·湖北襄阳·统考中考真题)先化简,再求值:(a +2b )2+(a +2b )(a -2b )+2a (b -a ),其中a,b16.(2022·湖北恩施·统考中考真题)先化简,再求值:22111x x x x --÷-,其中x =17.(2021·湖北荆门·统考中考真题)先化简,再求值:22214244x x x x x x x x +-⎛⎫⋅- ⎪---+⎝⎭,其中3x = 18.(2021·湖北恩施·统考中考真题)先化简,再求值:222414816a a a a a ---÷+++,其中2a =.19.(2021·湖北荆州·统考中考真题)先化简,再求值:2221211a a a a a ++⎛⎫÷+ ⎪--⎝⎭,其中a =20.(2021·湖北黄石·统考中考真题)先化简,再求值:2111a a a -⎛⎫÷ ⎪⎝⎭-,其中31a.21.(2021·湖北襄阳·统考中考真题)先化简,再求值:2211x x x x x ++⎛⎫÷- ⎪⎝⎭,其中1x =.22.(2022·湖北咸宁·统考一模)计算:21|3|()2---23.(2022·湖北襄阳·统考二模)先化简,再求值:2(2)()()5()x y x y x y x x y ++-+--,其中1,1x y ==.24.(2022·湖北襄阳·统考一模)先化简,再求值:24211326x x x x -+⎛⎫-÷⎪++⎝⎭,其中1x =.25.(2022·湖北随州·统考一模)先化简,再求值:2269111a a a a ++⎛⎫+÷⎪++⎝⎭,其中3=a .26.(2022·湖北恩施·统考一模)先化简,再求值:22491369x x x x ⎛⎫÷--++ ⎝⎭+⎪,其中3x =.27.(2022·湖北十堰·统考一模)计算:1122-⎛⎫⎪⎝⎭.28.(2022·湖北宜昌·统考一模)计算:01282⎛⎫- ⎪⎝⎭参考答案:1.C【分析】由合并同类二次根式判断A ,B ,由二次根式的乘除法判断C ,D .【详解】解:A ≠B 、原计算错误,该选项不符合题意;C =D 22= 故选:C .【点睛】本题考查合并同类二次根式,二次根式的乘法,二次根式的乘方运算,掌握以上知识是解题关键. 2.D【分析】根据相应运算的基本法则逐一计算判断即可 【详解】∵()236x x -=,∵A 计算错误;||x =, ∵B 计算错误; ∵2()x -+x 无法运算, ∵C 计算错误; ∵22(1)21x x x -+=-+, ∵D 计算正确; 故选D .【点睛】本题考查了幂的乘方,二次根式的化简,完全平方公式,熟练掌握各类公式的计算法则是解题的关键. 3.A【分析】根据二次根式有意义的条件,列出不等式,即可求解.【详解】∵ ∵x +3≥0,即:3x ≥-, 故选A .【点睛】本题主要考查二次根式有意义的条件,掌握二次根式的被开方式是非负数,是解题的关键. 4.C【分析】根据题意分别求出这三个实数中任意两数的积,进而问题可求解. 【详解】解:由题意得:(326,222,326-=-=---=∵所有积中小于2的有6,2--两个; 故选C .【点睛】本题主要考查二次根式的乘法运算,熟练掌握二次根式的乘法运算是解题的关键. 5.2【分析】根据二次根式的性质进行化简即可. 2(2)2-. 故答案为:2.()()2(0000a a a a a a a ⎧⎪==⎨⎪-⎩>)<.6.2【分析】先由122<得到1322<,进而得出a 和b ,代入()22a b ⋅求解即可. 【详解】解:∵ 122<, ∵1322<<,∵ 32的整数部分为a ,小数部分为b , ∵1a =,32122b ==∵()((222222242a b ⋅=⨯=-=, 故答案为:2.【点睛】本题主要考查无理数及代数式化简求值,解决本题的关键是要熟练掌握无理数估算方法和无理数整数和小数部分的求解方法. 7.10【分析】先根据1ab =求出1111n n nS a b =+++(n 为正整数)的值,从而可得1210,,,S S S 的值,再求和即可得. 【详解】解:1ab =,111111()1n n n n n n n a S a b a a b ∴=+=+++++(n 为正整数),11()n n n n a a a ab =+++, 111n n n a a a =+++, 1=,12101S S S ===∴=, 则121010S S S +++=,故答案为:10.【点睛】本题考查了二次根式的运算、分式的运算,正确发现一般规律是解题关键. 8.2【分析】利用负整数指数幂和零指数幂求出a 的值,利用平方差公式,求出b 的值,进而即可求解.【详解】解:∵(112213a -⎛⎫=+ =⎪+⎝=⎭,221b ==-=,2, 故答案是:2.【点睛】本题主要考查二次根式求值,熟练掌握负整数指数幂和零指数幂以及平方差公式,是解题的关键. 9.x ≥-2【分析】根据二次根式有意义的条件:被开方数为非负数,列不等式求解即可. 【详解】由题意可知x +2≥0, ∵x ≥-2.故答案为:x ≥-2.【点睛】此题主要考查了二次根式有意义的条件,明确被开方数为非负数是解题关键. 10.4【分析】根据二次根式的性质进行求解即可.44-=,故答案为:4.a =是解题的关键. 11.【分析】根据二次根式有意义的条件得到x 和y 的值后可以得到解答. 【详解】解:由题意可得:x -2=2-x=0, ∵x=2,=∵xy=故答案为【点睛】本题考查二次根式的应用,熟练掌握二次根式有意义的条件是解题关键. 12.2x ≤且1x ≠【分析】根据二次根式和分式有意义的条件即可得出答案.【详解】解:根据题意得:2-x≥0,且x+1≠0,∵x≤2且x≠1,故答案为:x≤2且x≠1.【点睛】本题考查了二次根式和分式有意义的条件,掌握二次根式中的被开方数是非负数和分母≠0是解题的关键.13.3-(答案不唯一)5x+2x+5=2,解得x即可.5x+25x+x+5=2,解得,x=-3,故答案为:-3(答案不唯一).【点睛】本题考查了同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式,此题是开放题,只要满足题意即可.145【分析】根据负整数指数幂、乘方、绝对值的性质化简后计算即可.【详解】解:12022 125(1)3-⎛⎫+--⎪⎝⎭3521=-5【点睛】本题考查实数的混合运算,解题的关键是根据负整数指数幂、绝对值的性质化简.15.6,6ab【分析】直接利用完全平方公式、平方差公式化简,进而合并同类项,再把已知数据代入得出答案.【详解】解:原式=2222244422a b ab a b ab a+++-+-6ab=;a32b32,∵原式63232=6=【点睛】此题主要考查了二次根式的混合运算与整式的混合运算——化简求值,正确掌握整式的混合运算法则是解题关键.16.1x 【分析】先将除法转化为乘法,根据分式的性质约分,然后根据分式的减法进行化简,最后代入字母的值即可求解. 【详解】解:原式=()()21111x x xx x +-⋅-- 11x x=+- 1x xx +-= 1x=;当x ===. 【点睛】本题考查了分式的化简求值,分母有理化,正确的计算是解题的关键.17.21(2)x -;3+【分析】根据分式的减法和乘法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题. 【详解】2221()4244x x x x x x x x +-⋅----+ 22221(2)(2)(1)4(2)(2)4(2)(2)x x x x x x x x x x x x x x x x x ⎡⎤⎡⎤+-+--=⋅-=-⎢⎥⎢⎥------⎣⎦⎣⎦22414(2)(2)x x x x x x -=⋅=---将3x =3===+ 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.18.22-+a , 【分析】先对分式进行化简,然后再代入进行求解即可.【详解】解:原式=()()()242421142222a a a a a a a a +-+-+-⨯=-=-+++;把2a 代入得:原式==【点睛】本题主要考查二次根式的运算及分式的化简求值,熟练掌握分式的运算及二次根式的运算是解题的关键. 19.1a a +6+3【分析】先计算括号内的加法,然后化除法为乘法进行化简,继而把23a =【详解】解:原式=()()21111a a a a a ++⎛⎫÷ ⎪--⎝⎭ ()()211=1+1a a a a a +-⎛⎫ ⎪-⎝⎭1=a a+ 当3a =232316+3+【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则. 20.11a +3【分析】先算括号内的减法,再把除法化为乘法,然后因式分解,约分化简,代入求值,再将结果化为最简二次根式即可. 【详解】解:原式=1(1)(1)()aa a a a a1(1)(1)a aa a a1=1a +, 将31a 代入,原式33113==-+【点睛】本题主要考查分式的化简求值,掌握因式分解,分式的通分,约分,二次根式的化简是解题的关键. 21.11x x +-;12【分析】将被除数中分子因式分解,括号里先通分并利用同分母分式的减法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,然后约分,得到最简结果,代入x 的值计算即可. 【详解】解:原式()2211x x xx x +⎛⎫=÷- ⎪⎝⎭, ()2211x x xx+-=÷,()()()2111x xx x x +=⋅+-,11x x +=-.当1x =时,原式1===【点睛】此题主要考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时,分式的分子分母出现多项式,应先将多项式因式分解后再约分. 22.1-【分析】由21|3|3)2-=--==【详解】解:21|3|()2---34=-+1=-【点睛】本题考查实数的混合运算,涉及绝对值、负整指数幂、算术平方根等知识,是重要考点,掌握相关知识是解题关键. 23.9xy ,9.【分析】先按照完全平方公式、平方差公式、多项式乘以多项式计算整式的乘法,再合并同类项即可.【详解】解:2(2)()()5()x y x y x y x x y ++-+-- 222224455x xy y x y x xy =+++--+9.xy =当1,1x y ==上式)9119.==【点睛】本题考查的是整式的化简求值,同时考查了二次根式的混合运算,掌握完全平方公式与平方差公式进行简便运算是解题的关键.24【分析】根据分式的运算法则进行化简,再代入求解.【详解】解:原式=21(1)32(3)x x x x --⎛⎫÷⎪++⎝⎭212(3)3(1)x x x x -+⎛⎫=⋅ ⎪+-⎝⎭21x =- 将21x =22=. 【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.25.13a +3【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值. 【详解】解:2269111a a a a ++⎛⎫+÷ ⎪++⎝⎭ 212(3)111a a a a a ++⎛⎫=+÷ ⎪+++⎝⎭ 2311(3)a a a a ++=⋅++ 13a =+, 当33=a 时,原式33333==-+ 【点睛】本题主要考查了分式的化简求值,二次根式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.26323+【分析】先通分,再约分化简成最简形式,然后代入已知数值计算即可.【详解】(1﹣43x +)÷22969x x x -++ =234(3)3(3)(3)x x x x x +-+⋅++- =13x x -- 当33x =331323233333+-++=+- 【点睛】本题主要考查了分式化简求值,将分式化简成最简形式是解题的关键. 27.3【分析】先计算负整数指数幂、化最简二次根式、去绝对值,再进行加减计算即可. 【详解】解:原式=22323-=3-【点睛】本题考查二次根式的混合运算,涉及负整数指数幂、化最简二次根式和去绝对值.掌握二次根式的混合运算法则是解题关键.28.1-【分析】根据零指数幂,二次根式以及绝对值的性质,求解即可.【详解】解:1 22⎛⎫- ⎪⎝⎭21=-1=-【点睛】此题考查了实数的有关运算,涉及了零指数幂,二次根式的化简以及绝对值的性质,解题的关键是熟练掌握相关运算法则.。

中考数学一轮复习《二次根式》知识梳理及典型例题讲解课件

中考数学一轮复习《二次根式》知识梳理及典型例题讲解课件

1
10,则a- 的值为

±
.
6. (2022·
南通海门模拟)如图,四边形ABCD和CEFG是两个相邻的正
方形,其中B,C,E三点在同一条直线上,点D在CG上,它们的面积分
7
别为27平方米和48平方米,则BE的长为
1
2
3
4
5
6
7
米.
8
7. 计算:
(1) 48÷ 3+
1
×
2
解:原式= ÷ +
典例7 (2023·
南通二模)如图,从一个大正方形中恰好可以裁去面积为
2cm2和8cm2的两个小正方形,余下两个全等的矩形(图中涂色部分),
则大正方形的边长为
3
cm.
典例8 (2023·
海安模拟)先化简,再求值:
4+4


+2
÷ 2 ,其中m

= 2-2.
++ + (+)
C )
1
的结果是(
3
4. (2022·
青岛)计算( 27- 12)×
A.
3
3
C. 5
B. 1
B )
D. 3
5. 已知2,5,m是某三角形三边的长,则 ( − 3)2 + ( − 7)2 的
值为(
D )
A. 2m-10

B. 10-2m
C. 10
D. 4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
6. (2022·
呼伦贝尔)实数a在数轴上的对应点的位置如图所示,则化简

中考数学一轮复习二次根式知识点及练习题及答案

中考数学一轮复习二次根式知识点及练习题及答案

一、选择题1.下列计算正确的是( ) A .()25-=﹣5 B .4y =2y C .822aaa=D .235+=2.二次根式1x -中字母x 的取值可以是( ) A .2B .0C .12-D .-13.若实数m 、n 满足等式402n m -+=-,且m 、n 恰好是等腰ABC 的两条边的边长,则ABC 的周长( ) A .12B .10C .8D .6 4.下列计算正确的是( )A .325+=B .2222+=C .2651-=D .822-=5.计算:()555+=( )A .55+B .555+C .525+D .105 6.式子2x -在实数范围内有意义,则x 的取值范围是( ) A .0x <B .0xC .2xD .2x7.“分母有理化”是我们常用的一种化简的方法,如:23(23)(23)74323(23)(23)+++==+--+,除此之外,我们也可以用平方之后再开方的方式来化简一些有特点的无理数,如:对于3535+--,设3535x =+--,易知3535+>-,故0x >,由22(3535)35352(35)(35)2x =+--=++--+-=,解得2x =,即35352+--=.根据以上方法,化简3263363332-+--++后的结果为( ) A .536+ B .56+ C .56- D .536- 8.若实数a ,b 满足+=3,﹣=3k ,则k 的取值范围是( )A .﹣3≤k ≤2B .﹣3≤k ≤3C .﹣1≤k ≤1D .k ≥﹣19.下列二次根式中,最简二次根式是( ) A 23a B 13C 2.5D 22a b -10.使式子2124x x ++-成立的x 的取值范围是( ) A .x≥﹣2B .x >﹣2C .x >﹣2,且x ≠2D .x≥﹣2,且x ≠2二、填空题11.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a ﹣b |+2()a b +的结果是_____.12.已知a 73+a 3+5a 2﹣4a ﹣6的值为_____. 13.下面是一个按某种规律排列的数阵:11第行325 62第行7223 10 11 233第行 13154 1732 19254第行根据数阵排列的规律,第 5 行从左向右数第 3 个数是 ,第 n (n 3≥ 且 n 是整数)行从左向右数第 n 2- 个数是 (用含 n 的代数式表示). 14.若实数x ,y ,m 满足等式()23532322x y m x y m x y x y +--+-=+---m+4的算术平方根为________.15.已知|a ﹣20072008a -=a ,则a ﹣20072的值是_____. 16.11882. 17.若a 、b 为实数,且b 2211a a -+-+4,则a+b =_____. 18.3a ,小数部分是b 3a b -=______. 191262_____.20.12a 1-能合并成一项,则a =______.三、解答题21.1123124231372831-+-1【分析】先根据二次根式的乘除法法则计算乘除法,同时分别化简各加数中的二次根式,最后计算加减法.【详解】22-+=1)2(3+⨯=121.【点睛】此题考查二次根式的混合运算,二次根式的化简,正确掌握二次根式的化简法则是解题的关键.22.若x,y为实数,且y12.求xyyx++2-xyyx+-2的值.【分析】根据二次根式的性质,被开方数大于等于0可知:1﹣4x≥0且4x﹣1≥0,解得x=14,此时y=12.即可代入求解.【详解】解:要使y有意义,必须140410xx-≥⎧⎨-≤⎩,即1414xx⎧≤⎪⎪⎨⎪≥⎪⎩∴x=14.当x=14时,y=12.又∵xyyx++2-xyyx+-2=-|∵x=14,y=12,∴xy<yx.∴+当x=14,y=12时,原式=.【点睛】(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.23.计算:21)3)(3--【答案】.【解析】【分析】先运用完全平方公式、平方差公式进行化简,然后进行计算.【详解】解:原式2222]-4【点睛】本题主要考查了二次根式的化简;特别是灵活运用全平方公式、平方差公式是解答本题的关键.24.阅读下面的解答过程,然后作答:m和n,使m2+n2=a 且,则a可变为m2+n2+2mn,即变成(m+n)2例如:∵=)2+)2=)2∴请你仿照上例将下列各式化简(12【答案】(1)2-【分析】参照范例中的方法进行解答即可. 【详解】解:(1)∵22241(1+=+=,1=(2)∵2227-=-=,∴==25.先化简再求值:4y x ⎛- ⎝,其中30x -=.【答案】(2x - 【分析】先根据二次根式的混合运算顺序和运算法则化简原式,再利用非负数的性质得出x ,y 的值,继而将x 、y 的值代入计算可得答案. 【详解】解:4y x ⎛- ⎝ ((=-(2x =-∵ 30x - ∴ 3,4x y == 当3,4x y ==时原式(23=-==【点睛】本题主要考查了二次根式的化简求值,解题的关键是掌握非负数的性质和二次根式的混合运算顺序和法则.26.先化简,再求值:(()69x x x x --+,其中1x =.【答案】化简得6x+6,代入得 【分析】根据整式的运算公式进行化简即可求解. 【详解】(()69x x x x +--+=22369x x x --++ =6x+6把1x=代入原式=61)【点睛】此题主要考查实数的运算,解题的关键熟知整式的运算法则.27.一样的式子,其实我==3==,1===;以上这种化简的步骤叫做分母有理化还可以用以下方法化简:221111===-=(12)化简:2n+++【答案】(1-2.【解析】试题分析:(12看出5-3,根据平方差公式分解因式,最后进进约分即可.(2)先每一个二次根式分母有理化,再分母不变,分子相加,最后合并即可.试题解析:(1)=====(2)原式2n+++=12.考点:分母有理化.28.计算(1))(12112-⨯--⎝⎭(2)已知:11,22x y ==,求22x xy y ++的值.【答案】(1)28-;(2)17. 【分析】(1)先利用完全平方公式和平方差公式计算二次根式的乘法、负指数幂运算,再计算二次根式的加减法即可得;(2)先求出x y +和xy 的值,再利用完全平方公式进行化简求值即可得. 【详解】(1)原式()((221312⎡⎤=⨯+--⎢⎥⎣⎦,(()1475452=⨯+---230=+28=-;(2)(1119,22x y==,1122x y ∴+=+=,()11119112224xy =⨯=⨯-=,则()222x xy y x y xy ++=+-,22=-,192=-, 17=. 【点睛】本题考查了二次根式的混合运算、完全平方公式和平方差公式等知识点,熟练掌握二次根式的运算法则是解题关键.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C解析:C 【分析】根据二次根式的性质对A 、B 进行判断;利用分母有理化对C 进行判断;利用二次根式的加减法对D 进行判断. 【详解】解:A 、原式=5,所以A 选项错误;B 、原式=,所以B 选项错误;Ca =,所以C 选项正确;D D 选项错误. 故选:C . 【点睛】本题主要考查了二次根式的性质以及合并同类项法则,正确化简各式是解题的关键.2.A解析:A 【分析】根据二次根式有意义,被开方数非负列出不等式,求解,再依此选择合适的选项. 【详解】 解:由题意得: x-1≥0 解之:x≥1.1>. 故选:A . 【点睛】本题考查二次根式有意义的条件.理解二次根式有意义,被开方数非负是解题关键.3.B解析:B 【分析】先根据绝对值的非负性、二次根式的非负性求出m 、n 的值,再根据三角形的三边关系、等腰三角形的定义求出第三边长,然后根据三角形的周长公式即可得. 【详解】由题意得:20,40m n -=-=, 解得2,4m n ==,设等腰ABC 的第三边长为a ,,m n 恰好是等腰ABC 的两条边的边长,n m a n m ∴-<<+,即26a <<,又ABC 是等腰三角形, 4a n ∴==,++=,则ABC的周长为24410故选:B.【点睛】本题考查了绝对值的非负性、二次根式的非负性、三角形的三边关系、等腰三角形的定义等知识点,根据三角形的三边关系和等腰三角形的定义求出第三边长是解题关键.4.D解析:D【分析】直接利用二次根式的加减运算法则计算得出答案.【详解】解:AB、无法计算,故此选项错误;C、D,正确.故选:D.【点睛】此题主要考查了二次根式的加减运算,正确掌握相关运算法则是解题关键.5.B解析:B【分析】根据乘法分配律可以解答本题.【详解】)5=5+故选:B.【点睛】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.6.D解析:D【分析】根据二次根式有意义的条件(被开方数≥0),列出不等式求解即可得到答案;【详解】x-≥,即:20x,解得:2故选:D;【点睛】本题主要考查了二次根式有意义的条件,掌握二次根式有意义即被开方数≥0是解题的关键.7.D解析:D 【分析】根据题中给的方法分别对633633--+和3232-+进行化简,然后再进行合并即可. 【详解】设633633x =--+,且633633-<+, ∴0x <,∴26332(633)(633)633x =---+++, ∴212236x =-⨯=, ∴6x =-, ∵3252632-=-+, ∴原式5266=--536=-, 故选D . 【点睛】本题考查了二次根式的混合运算,涉及了分母有理化等方法,弄清题意,理解和掌握题中介绍的方法是解题的关键.8.C解析:C 【解析】依据二次根式有意义的条件即可求得k 的范围. 解:若实数a ,b 满足+=3,又有≥0,≥0,故有0≤≤3 ①,0≤≤3,则﹣3≤-≤0 ②+②可得﹣3≤﹣≤3,又有﹣=3k ,即﹣3≤3k ≤3,化简可得﹣1≤k ≤1.故选C .点睛:本题主要考查了二次根式的意义和性质.解题的关键在于二次根式具有双非负性,即≥0(a ≥0),利用其非负性即可得到0≤≤3,0≤≤3,并对0≤≤3变形得到﹣3≤-≤0,进而即可转化为关于k 的不等式组,求出k 的取值范围.9.A解析:A 【解析】试题分析:最简二次根式是指不能继续化简的二次根式,A 、原式=;B 、是最简二次根式,不能化简;C 、原式=;D 、原式=. 考点:最简二次根式 10.C解析:C【分析】根据分式和二次根式有意义的条件(分式的分母不为零,二次根式的被开方数为非负数)即可得到结果.【详解】解:由题意得:2x -40≠,2x ∴≠±,又∵20x +≥,∴x ≥-2.∴x 的取值范围是:x>-2且2x ≠.故选C.【点睛】本题考查了分式和二次根式有意义的条件,解不等式,是基础题.二、填空题11.﹣2b【解析】由题意得:b <a <0,然后可知a-b >0,a+b <0,因此可得|a ﹣b|+=a ﹣b+[﹣(a+b )]=a ﹣b ﹣a ﹣b=﹣2b . 故答案为﹣2b .点睛:本题主要考查了二次根式和绝对解析:﹣2b【解析】由题意得:b <a <0,然后可知a-b >0,a+b <0,因此可得|a ﹣()2a b +=a ﹣b+[﹣(a+b )]=a ﹣b ﹣a ﹣b=﹣2b .故答案为﹣2b .点睛:本题主要考查了二次根式和绝对值的性质与化简.特别因为a .b 都是数轴上的实数,注意符号的变换. 12.-4【分析】先将a 进行化简,然后再进一步分组分解代数式,最后代入求得答案即可.【详解】解:当a=-=-=-3时,原式=a3+6a2+9a-(a2+6a+9)-7a+3=a(a+3)2-(解析:-4【分析】先将a进行化简,然后再进一步分组分解代数式,最后代入求得答案即可.【详解】-3时,解:当a原式=a3+6a2+9a-(a2+6a+9)-7a+3=a(a+3)2-(a+3)2-7a+3=7a-7-7a+3=-4.故答案为:-4.【点睛】本题综合运用了二次根式的化简,提公因式及完全平方公式法分解因式,熟练掌握分母有理化的方法及因式分解的方法是解题的关键.13.;.【分析】根据被开方数是连续的自然数写出即可;根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数写出第(n-1)行的最后一个数,然后被开方数加上(n-2)即可求解.【详解】观察表【分析】根据被开方数是连续的自然数写出即可;根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数写出第(n-1)行的最后一个数,然后被开方数加上(n-2)即可求解.【详解】观察表格中的数据可得,第5行从左向右数第3=∵第(n-1,∴第n(n≥3且n是整数)行从左向右数第n-2个数是..【点睛】本题是对数字变化规律的考查,观察出被开方数是连续自然数并且每一行的最后一个数的被开方数是所在的行数乘比行数大1的数是解题的关键.14.3【解析】【分析】先根据二次根式有意义的条件得出x+y的值,再根据非负数的性质列出关于x,y,m的方程组,求出m的值,进而可得出结论.【详解】依题意得:,解得:x=1,y=1,m=5,∴3解析:3【解析】【分析】先根据二次根式有意义的条件得出x+y的值,再根据非负数的性质列出关于x,y,m的方程组,求出m的值,进而可得出结论.【详解】依题意得:35302302x y mx y mx y+--=⎧⎪+-=⎨⎪+=⎩,解得:x=1,y=1,m=5,∴==3.故答案为3.【点睛】本题考查了二次根式有意义得条件及非负数的性质,熟知二次根式具有非负性是解答此题的关键.15.2008【解析】分析:本题首先能够根据二次根式的被开方数为非负数的条件,得到a的取值范围;再根据a的取值范围,化简去掉绝对值;最后进行整理变形.详解:∵|a﹣2007|+=a,∴a≥2008,解析:2008【解析】分析:本题首先能够根据二次根式的被开方数为非负数的条件,得到a的取值范围;再根据a的取值范围,化简去掉绝对值;最后进行整理变形.详解:∵|a﹣2007=a,∴a≥2008,∴a﹣2007=a,=2007,两边同平方,得:a﹣2008=20072,∴a﹣20072=2008.故答案为:2008.点睛:解决此题的关键是能够得到a的取值范围,从而化简绝对值并变形.16.【解析】【详解】根据二次根式的性质和二次根式的化简,可知==.故答案为.【点睛】此题主要考查了二次根式的运算,解题关键是明确最简二次根式,利用二次根式的性质化简即可.【解析】【详解】22.故答案为2. 【点睛】 此题主要考查了二次根式的运算,解题关键是明确最简二次根式,利用二次根式的性质化简即可.17.5或3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案.【详解】由被开方数是非负数,得,解得a =1,或a =﹣解析:5或3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案.【详解】由被开方数是非负数,得221010a a ⎧-≥⎨-≥⎩, 解得a =1,或a =﹣1,b =4,当a =1时,a +b =1+4=5,当a =﹣1时,a +b =﹣1+4=3,故答案为5或3.【点睛】本题考查了函数表达式有意义的条件,当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.18.【详解】若的整数部分为a,小数部分为b,∴a=1,b=,∴a-b==1.故答案为1.解析:【详解】a,小数部分为b,∴a=1,b1,∴-b1)=1.故答案为1.19.6【分析】利用二次根式乘除法法则进行计算即可.【详解】===6,故答案为6.【点睛】本题考查了二次根式的乘除法,熟练运用二次根式的乘除法法则是解题的关键.解析:6【分析】==进行计算即可.【详解】=6,故答案为6.【点睛】本题考查了二次根式的乘除法,熟练运用二次根式的乘除法法则是解题的关键.20.4【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a的方程,根据解方程,可得答案.【详解】解:=2,由最简二次根式与能合并成一项,得a-1=3.解解析:4【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a的方程,根据解方程,可得答案.【详解】能合并成一项,得a-1=3.解得a=4.故答案为:4.【点睛】本题考查同类二次根式和最简二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。

中考数学总复习 第05讲 二次根式及其运算课件(考点精

中考数学总复习 第05讲 二次根式及其运算课件(考点精

考点2 二次根式的运算
【例2】 (1)(2012·黔东南州)下列等式一定成 立的是( B )
A. 9 4 5
B. 5 3 15
C. 9 3
D. 92 9
考点2 二次根式的运算
(2)计算: 24- 23+ 23-2
1 6
解 原式=2 6-12 6+13 6-13 6=32 6.
(3)(2012·南通) 计算: 48÷ 3- 21× 12+ 24 解 原式= 16- 6+2 6=4+ 6.
求值问题“五招”
(1)巧用乘法公式;(2)巧用平方;(3)巧用配方; (4)巧用换元;(5)巧用倒数.
1.(2013·嘉兴)二次根式中 x 3 ,x的取值范围是 x≥3
2.(2011·杭州)下列各式中,正确的是( B )
A. 32 3
B. 32 3
C. 32 3
D. 32 3
3.(2012·金华)一个正方形的面积为15,估计它的边
(2)若几个非负数的和为零,则每一个非负数都等于零;
两个防范
(1)求 a2时,一定要注意确定 a 的大小,应注意利用等式 a2=|a|,当问题中已知条件不能直接判定 a 的大小时就要分 类讨论;
(2)一般情况下,我们解题时,总会习惯地把重点放在探 求思路和计算结果上,而忽视了一些不太重要、不直接影响求 解过程的附加条件.要特别注意,问题中的条件没有主次之分, 都必须认真对待.
请完成考点跟踪突破
(3)(2012·安顺)计算 12 3 3 3 .
考点3 二次根式混合运算
【例 3】 计算:(1)(3 2-1)(1+3 2)-(2 2-1)2; 解 原式=(3 2)2-1-[(2 2)2-4 2+1] =18-1-8+4 2-1=8+4 2.

第05讲 实数与二次根式(知识点梳理)(记诵版)-【学霸计划】【2022年】中考数学大复习(知识点·

第05讲 实数与二次根式(知识点梳理)(记诵版)-【学霸计划】【2022年】中考数学大复习(知识点·

第05讲 实数与二次根式知识点梳理考点01 平方根一、平方根1.平方根的概念:如果一个数x 的平方等于a ,即a x =2,那么这个数x 就叫作a 的平方根(或二次方根)。

2.平方根的表示方法:正数a 的平方根可记作a ±,读作:正负根号a ,读作根号,a 是被开方数。

3.平方根的性质:若a x =2,那么a x =-2)(,则也是a 的平方根,所以正数a 的平方根有两个,它们互为相反数,0的平方根是0;因为相同的两个数的乘积为正,所以任何数的平方都不是负数,所以负数没有平方根(即0≥±a a ,)。

二、算数平方根1.算术平方根的概念:一般地,如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 就叫作a 的算术平方根。

2.算术平方根的表示方法:正数a 的算术平方根可记作,读作:根号a 。

3.算术平方根的性质:正数有一个正的算术平方根;0的算术平方根是0,负数没有算术平方根。

一个正数a 的正的平方根就是它的算术平方根。

三、开平方1.求一个数a (0≥a )的平方根的运算叫作开平方,其中a 叫作被开方数。

开平方运算是已知指数和幂求底数。

2.因为平方与开平方互为逆运算,所以可以通过平方来寻找一个数的平方根。

3.正数、负数、0都可以进行平方运算,且平方的结果只有一个;但开平方只有正数和0可以,负数不能开平方。

考点02 立方根1.立方根的概念:一般地,如果一个数x 的立方等于a ,即a x =3,那么这个数x 就叫作a 的立方根(或三次方根)。

2.立方根的表示方法:a 的立方根可记作3a ,读作:三次根号a ,其中“3”是根指数,a 是被开方数,注意根指数“3”不能省略。

3.立方根的性质:(1)一个正数有一个正的立方根;(2)一个负数有一个负的立方根;(3)0的立方根是0;4.开立方:求一个数a 的立方根的运算叫作开立方。

5.立方根中被开方数可以是正数、负数和0,;开立方运算与立方运算互为逆运算;求一个带分数的立方根时,必须把带分数化成假分数,再求它的立方根。

2023年中考数学一轮复习满分突破专题05 二次根式-【题型方法解密】

2023年中考数学一轮复习满分突破专题05 二次根式-【题型方法解密】

专题05 二次根式【热考题型】【知识要点】知识点一二次根式相关概念和性质二次根式的概念:一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号。

【注意】1)二次根式中,被开方数a可以是具体的数或代数式。

2)二次根式中a是一个非负数。

二次根式有意义的条件:当a≧0时,即被开方数大于或等于0,有意义。

考查题型一二次根式有意义的条件题型1.(2022·贵州贵阳·中考真题)若式子√x−3在实数范围内有意义,则x的取值范围是A.x≥3B.x≤3C.x>3D.x<3有意义时,x应满足的条件为()题型1-1.(2022·广东广州·中考真题)代数式√x+1A.x≠−1B.x>−1C.x<−1D.x≤-1题型1-2.(2022·黑龙江绥化·中考真题)若式子√x+1+x−2在实数范围内有意义,则x的取值范围是()A.x>−1B.x⩾−1C.x⩾−1且x≠0D.x⩽−1且x≠0题型1-3.(2022·四川雅安·中考真题)使√x−2有意义的x的取值范围在数轴上表示为()A .B .C .D .题型1-4.(2022·湖北黄石·中考真题)函数y =√x+31x−1的自变量x 的取值范围是( )A .x ≠−3且x ≠1B .x >−3且x ≠1C .x >−3D .x ≥−3且x ≠1题型1-5.(2022·内蒙古内蒙古·中考真题)已知x ,y 是实数,且满足y=√x −2+√2−x +18,则√x ⋅√y 的值是______. 易错点总结:二次根式的性质:1)2)⎪⎩⎪⎨⎧<-=>==),(),(),(00002a a a a a a a ,即任意一个数的平方的算术平方根等于它本身的绝对值。

【扩展】与的区别于联系区别:联系:1)两者都需要进行平方和开方。

第5课时__二次根式

第5课时__二次根式
������ ������
C.(������)-1=2;
������
D. ������=±3
N
;C. ������;D. ������������.
8.若|x-2y|+ ������ + ������=0,则 xy 的值为 A.8; B.2; C.5; D.-6. 9. 一个正方体的水晶砖,体积为 100cm3,它 的棱长大约在( ) A. 4cm 到 5cm 之间;B.5cm 到 6cm 之间 C.6cm 到 7cm 之间 ;D.7cm 到 8cm 之间
-2-
������
������
������
(3)2× ������ +(������)-1- ( ������ − ������)������ ÷(������− ������)0 (4)(������)-1-|-2+ ������ × ������|+( ������ − ������. ������������)0
三、解答题 : 1.计算:
������+������
如 3※2= ������−������ = ������.那 12※4= .
������
������+������
(1) ������������-(3.14-π)0-3× ������+(������)-1 (2)(π-1)0+(-������)-1+|5- ������������|-2 ������
1 a 1 a 1 2 , 其中 a 2 . a 1 a 2a 1 a 1
������
������
������
������
2. 先化简,再求值:
-3-
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学校班级姓名
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】 第5课时 二次根式 姓名 班级 学习目标: 1.掌握二次根式有意义的条件,理解同类二次根式、最简二次根式的概念。

2.掌握二次根式的主要性质,会灵活进行二次根式的化简和运算。

学习重难点:二次根式的概念及化简运算
学习方法:
学习过程: 【复习指导】
1. 一般地,式子 叫做二次根式.特别地,被开方数不小于 .
2. 二次根式的性质:
⑴a (a ); ⑵
()2a = (a );⑶2a =__ ___. 3. 二次根式乘法法则:
⑴a b = (00a b ≥≥,);⑵ab = (00a b ≥≥,).
4. 二次根式除法法则:
⑴a b
= (00a b ≥>,); ⑵a b = (00a b ≥>,. 5. 化简二次根式实际上就是使二次根式满足:
⑴ ;
⑵ ;
⑶ .
6. 经过化简后, 的二次根式,称为同类二次根式.
7. 一般地,二次根式相加减,先化简每个二次根式,然后 .
8. 实数中的运算律、乘法公式同样适用于二次根式的混合运算
二、精典题例
例1 如果代数式1
x x -有意义,那么x 的取值范围是( ) A .0x ≥
B .1x ≠
C .0x >
D .01x x ≥≠且 例2 设n 为正整数,且651n n +<<,则n 的值为( )
A . 5
B . 6
C . 7
D . 8
例3 计算:()()2033327323
π+++---
例4 已知:12x =-,12y =+,求2222x y xy x y +--+的值.
例5(自我评估12)小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:()232212+=+,善于思考的小明进行了以下探索:设()2
22a b m n +=+(其中a b m n 、、、均为整数),则22222a b m mn n +=++, ∴2222a m n b mn =+=,,这样小明就找到了一种把部分2a b +的式子化为平方式的方法。


我仿照小明的方法探索并解决下列问题:
(1)当a b m n 、、、均为正整数时,若()2
33a b m n +=+,用含m n 、的式子分别表示a b 、,得a =____,b =______;
(2)利用所探索的结论,找一组正整数a b m n 、、、,填空:2____3____3+=+(); (3)若()2433
a m n +=+,且a m n 、、均为正整数,求a 的值。

四、课堂练习
1.函数2y x =
-中,自变量x 的取值范围是( ). A .2x ≠ B .2x ≤ C .2x ≥ D .2x >
2.下列二次根式中,是最简二次根式的是( ).
A. 12
B. 4
C. 3
D. 8
3.下列运算中,错误的是( ).
2
35+= 2 36⨯=8 22÷= D .2
-33()= 4.已知25523y x x --=+-,则2xy 的值为 .
5.计算:(12(3)-= ;(22(0)a a >= ;(32(0)a a <= ;
6.化简:(1)112= ; (2)2715⨯= . 7.若m n ,分别表示57-的整数部分和小数部分,则m = ,n = .
8.已知一个正数的两个平方根分别是224a a -和-,则a 的值是____.
9.实数a 在数轴上的位置如下图示,
化简2(1)a -= ;2(2)a += .
10.若x 为正整数,且二次根式6x -的值也是整数,则x =___________.
11.计算:
(1)(3542)(3542)-+ (2)2(3243)+;
(3)13122482 3.3⎛⎫-+÷ ⎪ ⎪⎝ (4)1111(25)(25).+-中考数学知识点代数式 一、 重要概念
分类:
1.代数式与有理式
用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

单独
的一个数或字母也是代数式。

整式和分式统称为有理式。

2.整式和分式
含有加、减、乘、除、乘方运算的代数式叫做有理式。

没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。

有除法运算并且除式中含有字母的有理式叫做分式。

3.单项式与多项式
没有加减运算的整式叫做单项式。

(数字与字母的积—包括单独的一个数或字母)
几个单项式的和,叫做多项式。

说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多
项式区分开。

②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。

划分代数式类别时,是从外形来看。

如,
=x, =│x│等。

4.系数与指数
区别与联系:①从位置上看;②从表示的意义上看
5.同类项及其合并
条件:①字母相同;②相同字母的指数相同
合并依据:乘法分配律
6.根式
表示方根的代数式叫做根式。

含有关于字母开方运算的代数式叫做无理式。

注意:①从外形上判断;②区别:、是根式,但不是无理式(是无理数)。

7.算术平方根
⑴正数a的正的平方根( [a≥0—与“平方根”的区别]);
⑵算术平方根与绝对值
①联系:都是非负数,=│a│
②区别:│a│中,a为一切实数; 中,a为非负数。

8.同类二次根式、最简二次根式、分母有理化
化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。

满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。

把分母中的根号划去叫做分母有理化。

9.指数
⑴( —幂,乘方运算)
①a>0时,>0;②a0(n是偶数),⑵零指数:=1(a≠0)
负整指数:=1/ (a≠0,p是正整数)
二、运算定律、性质、法则
1.分式的加、减、乘、除、乘方、开方法则
2.分式的性质
⑴基本性质:= (m≠0)
⑵符号法则:
⑶繁分式:①定义;②化简方法(两种)
3.整式运算法则(去括号、添括号法则)
4.幂的运算性质:①· = ;②÷ = ;③= ;④= ;⑤
技巧:
5.乘法法则:⑴单×单;⑵单×多;⑶多×多。

6.乘法公式:(正、逆用)
(a+b)(a-b)=
(a±b) =
7.除法法则:⑴单÷单;⑵多÷单。

8.因式分解:⑴定义;⑵方法:a.提公因式法;b.公式法;c.十字相乘法;d.分组分解法;e.求根公式法。

9.算术根的性质:= ; ; (a≥0,b≥0); (a≥0,b>0)(正用、逆用)
10.根式运算法则:⑴加法法则(合并同类二次根式);⑵乘、除法法则;⑶分母有理化:a. ;b. ;c. .
11.科学记数法:(1≤a<10,n是整数。

相关文档
最新文档