塑性力学第一章(1)-简单应力状态下的弹塑性问题
(完整)弹塑性力学简答题
弹塑性力学简答题第一章 应力1、 什么是偏应力状态?什么是静水压力状态?举例说明?静水压力状态时指微六面体的每个面只有正应力作用,偏应力状态是从应力状态中扣除静水压力后剩下的部分。
2、应力边界条件所描述的物理本质是什么?物体边界点的平衡条件。
3、对照应力张量ij δ与偏应力张量ij S ,试问:两者之间的关系?两者主方向之间的关系?相同。
110220330S S S σσσσσσ=+=+=+.4、为什么定义物体内部应力状态的时候要采取在一点的领域取极限的方法?不规则,内部受力不一样。
5、解释应力空间中为什么应力状态不能位于加载面之外?保证位移单值连续。
连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。
6、Pie 平面上的点所代表的应力状态有何特点?该平面上任意一点的所代表值的应力状态1+2+3=0,为偏应力状态,且该平面上任一法线所代表的应力状态其应力解不唯一。
固体力学解答必须满足的三个条件是什么?可否忽略其中一个?第二章 应变1、从数学和物理的不同角度,阐述相容方程的意义。
从数学角度看,由于几何方程是6个,而待求的位移分量是3个,方程数目多于未知函数的数目,求解出的位移不单值.从物理角度看,物体各点可以想象成微小六面体,微单元体之间就会出现“裂缝”或者相互“嵌入",即产生不连续.2、两个材料不同、但几何形状、边界条件及体积力(且体积力为常数)等都完全相同的线弹性平面问题,它们的应力分布是否相同?为什么?相同。
应力分布受到平衡方程、变形协调方程及力边界条件,未涉及本构方程,与材料性质无关.3、应力状态是否可以位于加载面外?为什么?不可以.保证位移单值连续。
连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续.4、给定单值连续的位移函数,通过几何方程可求出应变分量,问这些应变分量是否满足变形协调方程?为什么?满足。
塑性力学(一)
(四)学习塑性力学的基本方法 塑性力学是连续介质力学的一个分支,故研 究时仍采用连续介质力学中的假设和基本方法。 (1) 受力分析及静力平衡条件(力的分析) 对一点单元体的受力进行分析。若物体受力作用 ,处于平衡状态,则应当满足的条件是什么?(静力 平衡条件)
(2) 变形分析及几何相容条件(几何分析) 材料是连续的,物体在受力变形后仍应是连续 的。固体内既不产生“裂隙”,也不产生“重叠”。则 材料变形时,对一点单元体的变形进行分析,应满 足的条件是什么?(几何相容条件) (3)力与变形间的本构关系 (物理分析) 固体材料受力作用必然产生相应的变形。不同的 材料,不同的变形,就有相应不同的物理关系。则对 一点单元体的受力与变形间的关系进行分析,应满足 的条件是什么?(物理条件,也即本构方程。)
(一)σ-ε曲线的简化 (二)σ-ε的关系式(分为三个不同的状态)
鉴于学习塑性力学问题的复杂性,通常在塑性理 论中要采用简化措施。为此得到基本上能反映材料的 力学性质,又便于数学计算的简化模型。 (一)σ-ε曲线的简化 理想弹塑性模型(软钢) 分段模型 大致分为两类: 连续模型 线性强化弹塑性模型 幂次强化模型 R-O模型
(6)包氏效应
卸载后,如果进行反向加载 (拉伸改为压缩)首先出现压缩 的弹性变形,后产生塑性变形, 但这时新的屈服极限将有所降 低,即压缩应力应变曲线比通常 的压缩试验曲线屈服得更早了。 这种由于拉伸时的强化影响到压 缩时的弱化现象称为包辛格 (Bauschinger)效应 (一般塑性理 论中都忽略它的影响) 。
小结: 由两个实验我们得到了四个结论: 1)应力-应变关系不再一一对应,且一般是非线性 的。 2)应力-应变的多值性。(出现卸载时) 3)在静水压力作用下,体积的改变都是弹性变形, 没有塑性变形。 4)在静水压力作用下,材料的塑性行为不受影响。
弹塑性力学第一章 PPT资料共54页
16.11.2019
10
§1-2 基本假设和基本规律
2.1基本假设
假设1:固体材料是连续的介质,即固体体积 内处处充满介质,没有任何间隙。
从材料的微观看此假设不正确。因为粒子 间有空隙,但从宏观上看作为整体进行力学分 析时,假设1是成立的。假设1的目的:变形体 的各物理量为连续函数(坐标函数)。
16.11.2019
11
§1-2 基本假设和基本规律
假设2:物体的材料是均匀的。认为物体内 各点的材料性质相同(力学特性相同),所 以从物体内任一部分中取出微元体进行研究, 它的力学性质代表了整个物体的力学性质。
16.11.2019
12
§1-2 基本假设和基本规律
假设3:小变形假设。物体在外因作用下,物 体产生的变形与其本身几何尺寸相比很小。
哑标如:
3
rr1e1r2e2r3e3 riei riei r j e j 3 i1
uu1e1u2e2u3e3 uiei uiei u j e j
i1
33
1e 1 1 e 11e 1 2 e 2 .. ..3.e 3 3 e .3 ie jie jie jie j
排列符号的作用可以简化公式书写,如: 1. 三阶行列式:
A11 A12 A13 AA21 A22 A23eijkAi1Aj2Ak3eijkA1iA2jA3k
A31 A32 A33
(共六项,三项为正,三项为负)。
16.11.2019
32
§1-5 笛卡尔坐标系下的矢量、 张量基本知识
2. 基向量的叉积:右手系
16.11.2019
弹塑性力学
授课教师:龙志飞 目录
弹塑性力学第一章
1.4 弹塑性力学发展史
1.弹性力学发展史 古代弓箭的例子 共分四个时期: 第一时期(初期):1678年,虎克定律; 第二时期: 十七世纪末,只要研究梁; 1822年-1828年,法国柯西提出了应力、应变概念 ,建立了弹性力学三大方程;
1.4 弹塑性力学发展史
第三时期:广泛用于解决工程问题 1855年,法国圣维南发表了关于柱体扭转和弯曲 的论文; 1881年,德国赫兹解决了两弹性体局部接触问题 ; 1898年,德国基尔施发现了圆孔处的应力集中问 题; ……………………………………. 建立了能量原理,发展了许多实用的计算方法。
1.4 弹塑性力学发展史
二十世纪二十年代起,发展了一些边缘学 科:
非线性板壳理论 热弹性力学 力学 气动弹性力学、水弹性 磁弹性力学
1.4 弹塑性力学发展史
2.塑性力学发展史 1864年,Tresca提出了最大剪应力屈服准则, 二十世纪初,证实了此准则; 1904年及1913年,Huber和Mises提出了Mises屈 服准则; 1923年,Nadai研究了柱体扭转; 1950年,开始研究塑性本构关系;
1.6 下标记号法和求和约定
2.求和约定 在一项中,有一个下标出现两次,则对 此下标从1至3求和,并限定同一项中不能有 同一下标出现三次或三次以上。
ai bi ai bi a1b1 a2b2 a3b3
i 1
3
aii aii a11 a22 a33
i 1
3
继续研究塑性本构关系 之后,分为两大分支: 数值计算方法的研究
1.5 简化模型
简化模型的特点: (1)比较真实地反映材料的真实特性; (2)便于计算及理论研究。 根据有无明显的屈服阶段,分为两大类: 理想塑性模型 强化模型
弹塑性力学第一章弹塑性力学绪论资料
1、弹塑性本构关系
本构关系是指材料内任意一点的应力-应变之间的关 系,是材料本身的物理特性所决定的。弹性本构关系 是广义胡克定律,而塑性本构关系远比弹性本构关系 复杂。在不同的加载条件下要服从不同的塑性本构关 系。塑性本构关系有增量理论和全量理论。
6
2.研究荷载作用下物体内任意一点的应力和变形 在荷载作用下,物体内会产生内力,因此通常
广泛地探讨了许多复杂的问题,出现了许多边缘分支:
各向异性和非均匀体的理论,非线性板壳理论和非线性
弹性力学,考虑温度影响的热弹性力学,研究固体同气
体和液体相互作用的气动弹性力学和水弹性理论以及粘
弹性理论等。磁弹性和微结构弹性理论也开始建立起来。
此外,还建立了弹性力学广义变分原理。这些新领域的
发展,丰富了弹性力学的内容,促进了有关工程技术的
弹塑性力学
1
第一章 绪 论
§1-1 弹塑性力学基本概念和主要任务 §1-2 弹塑性力学的发展史
§1-3 基本假设及试验资料 §1-4 简化模型
2
1.1 弹塑性力学基本概念和主要任务
一、弹性(塑性)变形,弹性(塑性)阶段
可变形固体在外力作用下将发生变形。根据变形 的特点,固体在受力过程中的力学行为可分为两个明 显不同的阶段:当外力小于某一极限值(通常称为弹 性极限荷载)时,在引起变形的外力卸除后,固体能 完全恢复原来的形状,这种能恢复的变形称为弹性变 形,固体只产生弹性变形的阶段称为弹性阶段;外力 超过弹性极限荷载,这时再卸除荷载,固体将不能恢 复原状,其中有一部分不能消失的变形被保留下来, 这种保留下来的永久变形就称为塑性变形,这一阶段 称为塑性阶段。
10
在这个时期,弹性力学的一般理论也有很大的发展。
弹塑性力学第1,2章
2.2 张量的计算
①张量的下标记号法: A点坐标x,y,z : F矢量力 Fx,Fy,Fz:
xi
i 1,2,3
fi
i 1,2,3
二阶张量应力可以表示为: ij ( i , j 1,2,3 ) x xy xz 11 12 13 yx y yz 22 23 21 31 32 33 zx zy z 二阶张量应变可以表示为:
ij ij i1 i1 i2 i2 i3 i3
11 11 21 21 31 31
12 12 22 22 32 32 13 13 23 23 33 33
ai, i
a1 a2 a3 ai x1 x2 x3 xi
张量的内积
A ai i i 张量A与张量B内积:
1 2 m
B bj1 j2 jn
A B
从张量A中和张量B中各取1个下标,约定求和一次成
为一个(m+N-2)阶的张量的运算称之为张量内积。 两个一阶张量的内积
A ai B bi
A B= A B cos A B
A B=ai bi a1b1 a2b2 a3b3
弹塑性力学的分析方法和体系
求解的基本方程: ①力的平衡方程式 ②几何方程或称之为变形协调方程 ③物理方程 弹塑性力学问题最后归结为在给定边界条件下求解这 三大基本方程的问题。 弹性力学与塑性力学的最大区别,本构关系不同。
弹塑性力学的主要内容
1.弹塑性本构关系 本构关系是材料本身固有的一种物理关系,指材 料内任一点的应力和应变之间的关系 弹性本构关系 塑性本构关系 广义虎克定律 增量理论和全量理论
工程弹塑性力学题库及答案
(2)如将该曲线表示成
解:(1)由 在
处连续,有
形式,试给出 的表达式。
(a)
由在
处连续,有
(a)、(b)两式相除,有
由(a)式,有
(2)取
形式时,
当
:
即
当
:应力相等,有
解出得,
(代入 值)
(b) (c) (d)
(代入 值) 5.6已知简单拉伸时的应力-应变曲线
如图5-1所示,并表示如下:
问当采用刚塑性模型是,应力-应变曲线应如何表 示?
解:1) OD 边:
GD 边:
沿
线,
,
2)
沿 OB 线,
,
8.7 Mises 线性等强化材料,在平面应变( 试导出用表示的强化规律和本构关系。
解:当 时,在弹性阶段有
)和泊松比 条件下,
得
平均应力 因此在弹性阶段有
,进入塑性后有
对平均应变
刚进入塑性时
。由上式导出
。因此进入塑性
后还满足
(2)当 = 时,继续加载,使 解:1)开始屈服时
,求此时的 、 、 。 ,代入 Mises 屈服准则
得
;
2)屈服后对应的塑性应变增量为
由 及屈服条件的微分形式
, 式子得到答案结果。
7.9 在如下两种情况下,试求塑性应变增量的比。
(1)单向拉伸应力状态,
;
,联列可得 ,代入
(2)纯剪力状态,
。
解:(1)单向拉伸应力状态
在
中:
沿
线,
中: ,
中:
,
,
,
, 情况二见图(1),与①一样
所以
8.6 已知具有尖角为 的楔体,在外力 P 的作用下,插入具有相同角度的 V 形缺口 内,试分别按如下两中情况画出滑移线场并求出两种情况的极限荷载。 1)、楔体与 V 形缺口之间完全光滑;2)、楔体与 V 形缺口接触处因摩擦作用其剪应 力为 k。
弹塑性力学第一章
当i 当i
jj时时(i,
j
1,2,3)
2019/9/9
27
§1-5 笛卡尔坐标系下的矢量、张 量基本知识
由 ij 定义9个
元素组成矩 阵为单位阵:
11 21 31
12 22 32
13 1
23
0
33 0
一个下标。
x3
3
u u1e1 u2e2 u3e3 ui ei
i 1
r
e3 x2
x1 e1 e2
2019/9/9
21
§1-5 笛卡尔坐标系下的矢量、 张量基本知识
3. 张量:有大小,并具有多重方向性的量
如应力 、应变 ,张量的符号记法。
3 3
同样位移矢量u,用ui表示位移,ij 表示 应力 张量。
2019/9/9
25
§1-5 笛卡尔坐标系下的矢量、 张量基本知识
x a y i
ij
j
x1 x2
a11 y1 a21 y1
a12 y2 a22 y2
a13 y3 a23 y3
x3
a31 y1
2019/9/9
7
§1-1 弹塑性力学的任务和对象
如果当外因去掉,变形体未能恢复原状并 存在永久变形,变形固体在外因作用时已进
入塑性阶段, 曲线不是单值函数。
当然变形体常遇到在物 体某一局部处于弹性、而另 一区域处于塑性状态,弹塑
性交织在一起 。
2019/9/9
塑性力学-第一章
二、静水压力(各向均匀受压)试验
(2)、静水压力对屈服极限的影响 Bridgman对镍、铌的拉伸试验表明,静水压力增大,塑性强 化效应增加不明显,但颈缩和破坏时的塑性变形增加了。 静水压力对屈服极限的影响常可忽略。
1.2 应力应变简化模型
选取模型的标准:
1、必须符合材料的实际性质 2、数学上必须是足够地简单
E O
⎧ Eε σ =⎨ ⎩σ s
ε ≤ εs ε > εs
符号函数:
ε εs
| σ |< σ s ,
ε =σ / E
⎧+1, σ > 0 ⎪ sign σ = ⎨ 0, σ = 0 ⎪−1, σ < 0 ⎩
1. 理想弹塑性模型
缺点: 公式只包括了材料常数E 和σ,故不能描述应力应 变曲线的全部特征; 在ε=εs处解析式有变化, 给具体计算带来困难; 卸载:
用简单拉伸试验代替简单压缩试 验进行塑性分析是偏于安全的。
σ
压 拉
O
一般金属的拉伸与压缩曲线比较
ε
一、应力--应变曲线
(3)反向加载 卸载后反向加载,σs’’< σs’——Bauschinger效应
σ
B A
拉伸塑性变形后使 压缩屈服极限降低 的现象。即正向强 化时反向弱化。
σs
O
O’
ε
σs’
B’ B’’
二、静水压力(各向均匀受压)试验
(1)、体积变化 体积应变与压力的关系 (bridgman实验公式)
ΔV 1 1 εm = = p (1 − p) V0 K K1
体积压缩模量 派生模量
ΔV 或 = ap − bp 2 V0
铜:当p=1000MPa时,ap=
工程塑性力学(第一章)
σ′
σ′
σs
σs
O
εp ε
εe
ε
O
εp ε
εe
ε
图 1-2
卸载和再加载
σ ′′
图 1-3 卸载后反向加载到屈服
1.2.2 没有明显屈服阶段的拉伸曲线(铝合金类)
屈服极限(应力)规定:0.2%塑性应变对应的应力, σ 0.2
σ σb σ0.2
σ′
O
0.2%
ε
σ ′′
图 1-4 没有明显屈服平台的应力应变曲线
1.5.2 卸载
从介于 Ps 和 Pe 之间的某一值 P * 卸载 ΔP ,服从弹性规律。应力应变的改变 量为
Δσ 1 = Δσ 3 =
Δε 1 = Δε 3 =
σ s ⎛ ΔP ⎞
⎛ ΔP ⎞ ⎜ ⎟ , Δσ 2 = σ s ⎜ ⎜ ⎟ ⎜ P ⎟ ⎟ 2 ⎝ Pe ⎠ ⎝ e ⎠
(1-20) (1-21)
σ
σs
E’
E
εs
图 1-7
ε
幂强化模型
σ = Aε n , 0 ≤ n ≤ 1
(1-3)
σ
n =1
A
n = 1/ 2 n = 1/ 3 n=0
1
ε
图 1-8
Ramberg-Osgood 模型
σ /σ0
ε / ε 0 = σ / σ 0 + (σ / σ 0 ) n
3 7
(1-4)
1
n = 0 n =1 n=2 n=5 n=∞
位移:
(1-18)
δ y = ε 2 ⋅ l = 2ε1l =
或
2σ 1 l E
δy P = (1 + 2 ) − 2 δe Pe
塑性力学-简单应力状态下的弹塑性力学问题
随动强化模型
( p ) s ,
( ( p ) 是塑性应变 p的单调递增函数)
M M1 C S A
上式在线性强化情形下也可写为
O
h p s ,
N M'
A'
(h =
d d p
是一个常数 )
M ''
图2(a)
该模型对应图2(a)中的 NM 和 NM''。
适用:考虑包氏效应,认为拉伸屈服应力和压缩屈服应力的代数 值之差,即弹性响应的范围始终是不变的。
塑性力学
第一章 简单应力状态下的
弹塑性力学问题
§1.1 引言 §1.2 材料在简单拉压时的实验结果 §1.3 应力-应变关系 简化模型 §1.4 轴向拉伸时的塑性失稳 §1.5 简单桁架的弹塑性分析 §1.6 强化效应的影响 §1.7 几何非线性的影响 §1.8 弹性极限曲线 §1.9 加载路径的影响 §1.10 极限载荷曲线(面) §1.11 安定问题
0
(其中B>0,0<m<1)
注:这种模型在 =0处的斜率为
无穷大,近似性较差,但在数学 O 上比较容易处理。
n 1 n2 n5 n
10 7
E 0
图6
5.Ramberg-Osgood模型
其加载规律可写为:
/0
/0
3 7
(
/ 0 )n. (9)
如取 就0有
10
70
10 7
0
E
,
说明:这对应于割线余率为0.7E的应力和应变,上式 中有三个参数可用来刻画实际材料的拉伸特性,而在 数学表达式上也较为简单。
(1
).
~ C ~ ~( )
塑性力学-简单弹塑性问题
h2
理想弹塑性材料、矩形截面 b × h −σ s −
σ = Φ (ε ) = σ s
ys ys
其中:
⎤ ⎡ I (A ) M = σs ⎢ z e + Sp⎥ ⎦ ⎣ ys
2 3 I z ( Ae ) = b ⋅ y s 3
h2 2 S p = b( − y s ) 4
6
σs
+
M 3 1 y = − ( s )2 Me 2 2 h 2
+
ε=
y
+
σ
−
+
σs
σ
ρ
σ*
卸载前的应力、应变:σ 残余应力: σ * = σ − σ
ε
卸载过程应力改变量: σ = M y
I
10
2. 等截面梁的横向弯曲
•弯矩是变化的 M = M (x) •存在剪应力 忽略剪应力对屈服的影响
y ⎧ σs ⎪ σ ( x, y ) = ⎨ y s ( x ) ⎪Φ ( ε ) ⎩ 在 y ≤ ys ( x )时 在 y ≥ ys ( x )时
中性层曲率:
ρ
=
σs
Ey s
5
M = 2 ∫ σ ⋅ dA ⋅ y = 2 ∫ σ ⋅ dA ⋅ y + 2 ∫ σ ⋅ dA ⋅ y
0
h2
ys
h2
0
ys
= =
E
ρ σs
ys
I z ( Ae ) + 2 ∫ Φ (ε ) ⋅ dA ⋅ y
ys
h2
I z ( Ae ) + 2 ∫ Φ (ε ) ⋅ dA ⋅ y
z
该问题是球对称的。采用 球坐标 不为零的应力分量 σ θ σ ϕ σ r
塑性力学(一)
弹性变形 非弹性变形
塑性变形
粘性变形
粘性变形随时间而改变, 例蠕变、应力松弛等。
塑性变形、塑性变形特征、 塑性极限分析 构件受外荷载而变形,当外荷载卸除而 恢复的那部分变形称为弹性变形; 构件受外荷载而变形,当外载卸除而不 能恢复的那部分变形称为塑性变形。
塑性变形的特征: (1)变形的不可恢复性是塑性的基本特征。 (2)应力超过弹性范围后,应力-应变呈非线性关 系,叠加原理不再适用。 (3)塑性变形与加载历程有关,应力与应变之间不再 是单值关系。 (4)通常所指的塑性变形,忽略了时间因素的影响(常 温、低应变率)。
线性强化弹塑性模型,用于有显著强化性质 的材料。
线性强化刚塑性体模型
σ
σs
E1
o
σ = σ s + E 1ε
ε
线性强化刚塑性模型,用于弹性应变比塑性 应变小得多且强化性质明显的材料。
3、幂次强化模型
m=1 m=0.5 m=0.25 m=0
σ = B ε signε
m叫强化系数
其中,材料 常数B和 m 满足 B>0,0<m<1 。
(五)学习塑性力学的目的 塑性力学比弹性力学复杂得多,但为更好地了解 固体材料在外力作用下的性质,塑性理论的研究是十 分必要的,对于工程结构的设计来说,如不进行弹塑 性分析,则有可能导致浪费或不安全。学习塑性力学 的目的主要为: 1)研究在哪些条件下可以允许结构中某些部位的应力 超过弹性极限的范围,以充分发挥材料的强度潜力。 2)研究物体在不可避免地产生某些塑性变形后,对 承载能力和(或)抵抗变形能力的影响。 3)研究如何利用材料的塑性性质以达到加工成形的目 的。
当m=0时,代表理想 塑性体模型,当m=1时, 则为理想弹性体模型。
塑性力学01_绪论_简单应力状态下的弹塑性问题
塑性力学的基本方程
3 基本方程与基本解法
根据基本方程求解 精确解法 即能满足塑性力学中全部方程的解。 即能满足塑性力学中全部方程的解。 近似解法 即根据问题的性质, 即根据问题的性质,采用合理的简化假 设,从而获得近似结果。 从而获得近似结果。 有限元数值分析方法 它不受物体或构件几何形状的限制, 它不受物体或构件几何形状的限制,对于各种复 杂的物理关系都能算出正确的结果。 确的结果。
s s
J.Bauschinger(
德国)
塑性变形较大时, σ-ε曲线不能真正 反映加载和变形的 状态。 状态。 例如颈缩阶段, 阶段, σ-ε曲线上试件的 应变增加而应力反 而减小,与实际情 况不符。 颈缩后,由于局部的实际横截面积的减小,局部的 拉应力仍在增加。 拉伸失稳状态
真实应力和真实应变
4 基本概念
4 基本概念
③理想刚塑性模型
σ =σs
韧性 材料
②线性强化弹塑性模型
Eε
σ =
塑性成形阶段, 塑性成形阶段, 忽略弹性应变 σ = σ ② ①
ε σ
④线性强化刚塑性模型
s
(ε ≤ ε s ) ′ σ E ε ε ε > εs) + ( − ) ( s s
+ E ′ε
σ
E′
E′
σs
E
σs
o
④ ③
实验表明, 实验表明,直到1500MPa,体积变形仍然是弹性的, 体积变形仍然是弹性的,并且 这种弹性体积变化是很小的。 这种弹性体积变化是很小的。钢在1000MPa下体积仅缩小0.6% 因此, 因此,对于金属材料, 对于金属材料,可忽略弹性的体积变化, 可忽略弹性的体积变化,认为材料 不可压缩。 不可压缩。 对于金属材料, 对于金属材料,静水压力对初始屈服应力的 影响很小, 影响很小,可以忽略不计。 可以忽略不计。
弹塑性力学 第一章 绪论
σ
o
ε
1
3. 塑性力学与弹性力学的关联和区别: 密切性——弹性力学中的一些基本假设、应力应变分析、与 材料物理性质无关的基本概念、连续介质力学的宏观方法等 与塑性力学一致; 区别性——(A)应力应变关系,即本构关系:弹性力学有 广义胡克定律统一的应力应变关系,而塑性力学没有;(B) 与弹性力学不同,塑性力学的方程是非线性的,变形与加载 历程有关,数学求解更加困难。 4. 塑性力学所研究的问题: (1) 以试验观察所得结果为出发点,建立塑性状态下变形的基本
11
应用弹塑性力学
APPLIED ELASTO-PLASTICITY OF SOLIDS
强化阶段: 此阶段材料抵抗变形的能力有所增强。 如要增加应变,必须增大应力。 材料的强化 强度极限b —对应点G (拉伸强度), 最大名义应力。 强化阶段的卸载再加载规律: 若在强化阶段卸载,则卸载过程 - 关系为直线。 立即再加载时,-关系起初基本上 沿卸载直线上升直至当初卸载的荷载, 然后沿卸载前的曲线断裂—冷作硬化 现象。
松木顺纹拉伸、压缩和横纹压缩时的s —e 曲线 特点: a、顺纹拉伸强度很高,但受木节等缺 陷的影响波动; b、顺纹压缩强度稍低于顺纹拉伸强度, 但受木节等缺陷的影响小。 c、横纹压缩时可以比例极限作为其强 度指标。 d、横纹拉伸强度很低,工程中应避免 木材横纹受拉。 许用应力 [] 和弹性模量 E 均 应随应力方向与木纹方向倾角 不同而取不同数值。
p0.2
对应于p=0.2% 时的应力值
14
应用弹塑性力学
APPLIED ELASTO-PLASTICITY OF SOLIDS
塑性力学-绪论与第一章N
比例极限、弹性极限;线性弹性、弹性
§1.2
一种没有 明显的屈 服阶段, 例如一些 铝材的拉 伸试验曲 线。
一种有明显 的屈服阶段, 例如低碳钢 的拉伸试验 曲线。在这 种情形下, 在“屈服平 台”上应力 保持不变, 应变可以有 很大增长。
2. 如果应力超过弹性极限还继续加载,则完全卸载后应 变仍不为零,残留的应变称为塑性应变。记为 P 。 因此,弹性极限是产生不产生塑性应变的分界应力。
地震时混凝土构件中钢筋的塑性变形
切削中的塑性变形
图片引自周增文主编:《机械加工工艺基础》
材料的破坏伴随着塑性变形
(金属)材 料破坏区域 在破坏前经 历了明显的 (有时是非 常剧烈的) 塑性变形
材料的破坏伴随着塑性变形
(金属)材 料破坏区域 在破坏前经 历了明显的 (有时是非 常剧烈的) 塑性变形
尽管已取得很大成就,未解决的问题依然很多。特别是各种材料 的本构描述及小尺度下的材料塑性性质等方面。
塑性力学的应用
估计(或预测)工程结构的强度和寿命(塑 性力学通常会被用到)
寻找充分发挥材料的强度潜力的方法(例如 研究在哪些条件下可以允许结构中某些部 位进入塑性变形,以充分发挥材料的强度 潜力,减少用料,减轻结构自重 )
线性强化
§1.3
2 线性强化弹塑性模型 (材料的强化率较高且强化率在一 定范围内变化不大)
为分析简便,将材料
E'
的应变强化假定为线性强
化、并假定拉伸和压缩的 s
屈服应力绝对值相同、强 E 化模量也相同。
s E'
s E
于是单调载荷下(即 不考虑卸载时)的应力应 变关系可以写为:
o
塑性力学第一章
1.5 S a 3.5 Sa Sa E 3E 3E
' C
4、Bauschinger效应 材料在强化后反向屈服应力改变的现象 (随动强化)。但有些材料由于拉伸而提高 了屈服应力时,反向加载后,压缩的屈服应 力也得到了同样的提高(各向同性强化)。 二、静水压力试验——Bridgman试验 (1)静水压力与材料体积改变近似地服从 线弹性规律。对于一般应力状态下的金属材 料,当发生较大的塑性变形时,可以忽略弹 性的体积改变,而认为材料在塑性状态时体 积是不可压缩的。 (2)材料的塑性变形与静水压力无关。
第一节 塑性力学的任务 第二节 金属材料的试验结果 第三节 简化模型 第四节 结构的弹塑性问题
§1- 1
塑性力学的任务
一、材料的塑性 二、塑性力学的任务 塑性力学的主要任务是研究变形固体在 塑性阶段的应力分布和应变分布规律。主要 研究下面两方面的问题: 1、根据试验结果,建立塑性本构关系及有 关基本理论; 2、寻求数学计算方法来求解给定的边值问 题。这些问题大致分为两类:
当P Pe时, 进入塑性
此时,a段杆已屈服,但变形仍受到处于弹性状 态的b段杆的限制,变形协调方程仍成立。
N1 s A
1 1 a b
C截面的位移取决于b段杆的变形。
( P Pe N a ( P s A)b c b 2 EA EA )b Pa P Pe b a 1 EA b
变形显著增加,使结构达到自由塑性变形阶
段的荷载——极限荷载。 N1 N 2 P 例:
N1
a b 0
a
C
N1a N 2b 0 1、弹性解: EA EA
P
b2a
y
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ε =εe+ε
σ ε = ε− Ε
e
加载、卸载的判定
σdσ ≥ 0, σdσ < 0,
应力应变关系
加载 卸载
dσ = Et dε dσ = Edε
加载 卸载
二、 拉伸-----卸载 反向压 拉伸 卸载----反向压 卸载 鲍辛格效应
后继屈服应力
hα 与塑性变形的历史有关
应力-应变关系 • • 非线性 不存在单值对应
塑性功 • • 不可逆 耗散性
静水压力实验
1、塑性变形与静水压力 、
2、体积改变是弹性的; 、体积改变是弹性的; 塑性变形阶段,材料不可压缩。 塑性变形阶段,材料不可压缩。
材料塑性行为的基本假设
应力应变曲线的理想化
理想弹性 理想刚塑性 理想弹塑性 刚-线性强化 弹-线性强化
应力应变曲线
机械性态的模型
强化模型
后继屈服应力的变化规律
一、等向强化模型 若材料在任一方向上强化,则在相反的 方向上也得到同等的强化
二、随动强化模型
总的弹性范围大小保持不变。 在一方向上强化,则在相反 的方向上有同等的软化。
三、组合强化模型
塑性力学教案
第一章 简单应力状态下的弹塑性问题
固态材料的性质及固体力学
弹性 塑性 粘性
拉伸实验
一、 拉伸-----卸载 再拉伸 卸载----再拉伸 拉伸 卸载
比例极限 弹性极限 屈服应力 强化
屈服应力 条件屈服应力 强化、切线模量 强化、
σ 0 .2
拉伸(压缩)问题中的应变关系
ε
e
=σ /E