七年级上《有理数》章末检测题

合集下载

2022-2023学年浙江七年级上学期数学重难题型精炼第1章 有理数 章末检测卷(含详解)

2022-2023学年浙江七年级上学期数学重难题型精炼第1章 有理数 章末检测卷(含详解)

第1章 有理数 章末检测卷(浙教版)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分120分,考试时间120分钟,试题共26题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022·山西·七年级期中)在世界数学史首次正式引入负数的中国古代数学著作是( ) A .《孙子算经》 B .《九章算术》 C .《算法统宗》 D .《周髀算经》 2.(2022·湖北武汉·中考真题)2022的相反数是( ) A .12022B .12022-C .−2022D .20223.(2022·山东菏泽·三模)中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数,用正、负数来表示只有相反意义的量.一次数学测试,以80分为基准简记,90分记作+10分,那么70分应记作( ) A .+10分B .0分C .-10分D .-20分4.(2022·贵州遵义·七年级期末)一种小吃包装袋上标注着“净含量:50g 1g ±”,则下列小吃净含量合格的是( ) A .52B .48C .50.5D .51.55.(2022·浙江宁波·七年级期末)a b c 、、三个数在数轴上的位置如图所示,则下列各式中正确的个数有( )(1) 0abc >;(2)c a b ->>-;(3) 11b a>;(4)c c =- A .4 个B .3 个C .2 个D .1 个6.(2022·广西贺州·七年级期末)下列说法正确的是( ) A .符号相反的两个数叫做相反数 B .只有正数的绝对值是它本身C .两个数的和一定大于这两个数中的任意一个D .最大的负整数是-17.(2022·广西·靖西市教学研究室七年级期中)下列各组数中,比较大小正确的是( )A .|﹣23|<|﹣12| B .﹣|﹣3411|=﹣(﹣3411) C .﹣|﹣8|>7 D .﹣56<﹣458.(2022·四川遂宁·七年级期末)方程32x -=的解是( ) A .5x = B .1x = C .15x x ==或 D .15x x =-=或 9.(2022·广西南宁·七年级期中)下列说法错误的是( )A .数轴上表示2-的点与表示2+的点的距离是4B .数轴上原点表示的数是0C .所有的有理数都可以用数轴上的点表示出来D .最大的负数是1-10.(2022·浙江·七年级课时练习)如图,数轴上4个点表示的数分别为a 、b 、c 、d .若|a ﹣d |=10,|a ﹣b |=6,|b ﹣d |=2|b ﹣c |,则|c ﹣d |=( )A .1B .1.5C .1.5D .211.(2022·浙江·七年级月考)如图,已知A ,B (B 在A 的左侧)是数轴上的两点,点A 对应的数为8,且AB =12,动点P 从点A 出发,以每秒2个单位长度的速度沿数轴向左运动,在点P 的运动过程中,M ,N 始终为AP ,BP 的中点,设运动时间为t (t >0)秒,则下列结论中正确的有( )①B 对应的数是-4;①点P 到达点B 时,t =6;①BP =2时,t =5;①在点P 的运动过程中,线段MN 的长度不变 A .1个B .2个C .3个D .4个12.(2022·重庆忠县·九年级期中)距离,是数学、天文学、物理学研究的基本问题,唯有对宇宙距离进行测量,人类才能掌握世界的尺度.若点A 、B 在数轴上代表的数为a ﹑b ,则A 、B 两点之间的距离AB a b ,则下列说法:①数轴上表示x 和1-的两点之间的距离是1x -﹔①若3AB =,点B 表示的数是2,则点A 表示的数是1; ①当3x =时,代数式135x x x ++-+-有最小值为6;①当代数式22x x ++-取最小值时,x 的取值范围是22x -≤≤;①点A ,B ,C 在数轴上代表的数分别为a ,b ,c ,若a b c a b c -+-=-﹐则点A 位于B ,C 两点之间. 其中说法正确的是( ) A .①①①B .①①①C .①①D .①①①二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在横线上)13.(2022·河南鹤壁·七年级期末)相反数等于它本身的数是__________,绝对值等于它本身的数是__________.14.(2022·湖南·衡阳市成章实验中学七年级期末)下列各数25,﹣6,25,0,3.14,20%中,其中分数有 个。

最新人教版数学七年级上册 有理数章末练习卷(Word版 含解析)

最新人教版数学七年级上册 有理数章末练习卷(Word版 含解析)

一、初一数学有理数解答题压轴题精选(难)1.【新知理解】如图①,点C在线段AB上,若BC=πAC,则称点C是线段AB的圆周率点,线段AC、BC 称作互为圆周率伴侣线段.(1)若AC=3,则AB=________;(2)若点D也是图①中线段AB的圆周率点(不同于点C),则AC________BD;(填“=”或“≠”)(3)【解决问题】如图②,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动地滚动1周,该点到达点C的位置.若点M、N是线段OC的圆周率点,求MN的长;(4)图②中,若点D在射线OC上,且线段CD与以O、C、D中某两个点为端点的线段互为圆周率伴侣线段,请直接写出点D所表示的数.【答案】(1)3+3(2)=(3)解:∵d=1,∴c=d=,∴C点表示的数为:+1,∵M、N都是线段OC的圆周率点,设点M离O点近,且OM=x,则CM=x,∵OC=OM+ MC,∴+1=x+x,解得:x=1,∴OM=CN=1,∴MN=OC-OM-CN=+1-1-1=-1.(4)解:设点D表示的数为x,则OD=x,①若CD=OD,如图1,∵OC=OD+CD,∴+1=x+x,解得:x=1,∴点D表示的数为1;②若OD=CD,如图2,∵OC=OD+CD,∴+1=x+,解得:x=,∴点D表示的数为;③若OC=CD,如图3,∵CD=OD-OC=x--1,∴+1=(x--1),解得:x=++1,∴点D表示的数为++1;④若CD=OC,如图4,∵CD=OD-OC=x--1,∴x--1=(+1),解得:x=2+2+1,∴点D表示的数为2+2+1;综上所述:点D表示的数为:1、、++1、2+2+1.【解析】【解答】解:(1)∵AC=3,BC=AC,∴BC=3∴AB=AC+CB=3+3.故答案为:3+3.(2)∵点D、C都是线段AB的圆周率点且不重合,∴BC=AC,AD=BD,设AC=x,BD=y,则BC=x,AD=y,∵AB=AC+CB=AD+DB,∴x+x=y+y,∴x=y,∴AC=BD.故答案为:=.【分析】(1)由已知条件求得BC长,再由AB=AC+CB即可求得答案.(2)根据题意可得BC=AC,AD=BD,由此设AC=x,BD=y,则BC=x,AD=y,由AB=AC+CB=AD+DB即可得AC=BD.(3)根据题意可得C点表示的数为+1,根据M、N都是线段OC的圆周率点,设点M 离O点近,且OM=x,则CM=x,由OC=OM+ MC列出方程+1=x+x,解之可得OM=CN=1,由MN=OC-OM-CN即可求得.(4)设点D表示的数为x,则OD=x,根据题意分情况讨论:①若CD=OD,②若OD=CD,③若OC=CD,④若CD=OC,根据题中定义分别列出方程,解之即可得出答案.2.已知数轴上顺次有A、B、C三点分别表示数a、b、c,并且满足(a+12)2+|b+5|=0,b与c互为相反数。

《有理数》章末检测1

《有理数》章末检测1

第一单元测试卷一、单选题(每小题3分,共39分)1、计算:(﹣12)×(﹣2)的结果等于( ) A 、1 B 、-1 C 、4 D 、-142、下列各式中,计算结果为正的是( )A 、(﹣50)+(+4)B 、2.7+(﹣4.5)C 、(﹣13)+D 、0+(﹣13) 3、下列意义叙述不正确的是( )A 、若上升3米记作+3米,则0米指不升不降B 、鱼在水中高度为﹣2米的意义指鱼在水下2米C 、温度上升﹣10℃是指下降10℃D 、盈利﹣10元是指赚了10元4.若0 ab ,则ba 的值( ) A .是正数 B .是负数C .是非正数D .是非负数5、中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为( )A 、44×108B 、4.4×109C 、4.4×108D 、4.4×10106、下列各数﹣2,3,﹣(﹣0.75),﹣5,4,|﹣9|,﹣3,0,4中,属于整数的有m 个,属于正数的有n 个,则m ,n 的值为( )A 、6,4B 、8,5C 、4,3D 、3,67、下列计算结果为负数的是( )A 、﹣1+3B 、5﹣2C 、﹣1×(﹣2)D 、﹣4÷28、2011年8月12日,第26届世界大学生夏季运动会将在深圳开幕.本届大运会的开幕式举办场地和主要分会场深圳湾体育中心总建筑面积达256520m 2 . 数据256520m 2用科学记数法(精确到千位)表示为( )A 、2.565×105m 2B 、0.257×106m 2C 、2.57×105m 2D 、25.7×104m 29.若a 是负数,则下列各式不正确的是( )A .22)(a a -=B .22a a =C .33)(a a -=D .)(33a a --=10、若有理数a ,b 满足a+b <0,ab <0,则( )A 、a ,b 都是正数B 、a ,b 都是负数C 、a ,b 中一个正数,一个负数,且正数的绝对值大于负数的绝对值D 、a ,b 中一个正数,一个负数,且负数的绝对值大于正数的绝对值11、若a =-2×32 , b =(-2×3)2 ,c =-(2×3)2而下列大小关系正确的是( ).A 、a >b >cB 、b >c >aC 、b >a >cD 、c >a >b .12、已知|x|=3,|y|=8,且xy <0,则x+y 的值等于( )A 、±5B 、±11C 、﹣5或11D 、﹣5或﹣1113、如图,数轴上一点A 向左移动2个单位长度到达点B ,再向右移动5个单位长度到达点C ,若点C 表示的数为1,则点A 表示的数( )A 、﹣3B 、﹣2C 、3D 、7二、填空题(每小题3分,共30分)1.某蓄水池的标准水位记为0m ,如果水面高于标水位0.23m 表示为0.23m ,那么,水面低于标准水位0.1m 表示为 ;2、已知一个数的绝对值是4,则这个数是________.3、在有理数、﹣5、3.14中,属于分数的个数共有________ 个.4、绝对值大于1而小于5的整数的和是________ .5、把(+5)﹣(﹣7)+(﹣23)﹣(+6)写成省略括号的和的形式为________ .6、|x ﹣3|+(y+2)2=0,则y x 为________.7、数轴上离开原点3个单位长的点所表示的数是________.8.一个点从数轴的原点开始,向右移动5个单位长度,再向左移动8个单位长度, 到达的终点表示的数是 。

七年级数学上册 第二章有理数章末测试二 试题

七年级数学上册 第二章有理数章末测试二  试题

第二章有理数章末测试〔二〕创作人:历恰面日期:2020年1月1日总分120分合隆中学徐亚惠一.选择题〔一共8小题每一小题3分〕1.算式4﹣|﹣3+5|,计算结果是〔〕A.6 B.﹣4 C.12 D.22.一位“粗心〞的同学在做加减运算时,将“﹣5”错写成“+5”进展运算,这样他得到的结果比正确答案〔〕A.少5 B.少10 C.多5 D.多103.大堡地区某一天早晨的气温是﹣7℃,中午的时候上升了11℃,至午夜又降了9℃,那么午夜的气温是〔〕A.﹣4℃B.﹣5℃C.﹣6℃D.﹣7℃4.去年7月份小明到银行开户,存入1500元,以后每月根据收支情况存入一笔钱,下表为该人从8月份到12月份的存款情况:那么截止到去年12月份,存折上一共有〔〕元钱.A.9750 B.8050 C.1750 D.95505.某商店在某一时间是以每件100元的价格卖出两件衣服,其中一件盈利25%,另一件亏损20%,那么该商店卖出这两件衣服的盈亏情况为〔〕A.不盈也不亏B.盈利5元C.亏损5元D.盈利10元6.计算|﹣1﹣〔﹣〕|﹣|﹣﹣|之值为何〔〕A.﹣B.﹣C.D.7.有理数a、b在数轴上的位置如下图,那么a+b的值〔〕A.大于0 B.小于0 C.小于a D.大于b8.假设|x﹣3|=x﹣3,那么以下不等式成立的是〔〕A.x﹣3>0 B.x﹣3<0 C.x﹣3≥0D.x﹣3≤0二.填空题〔一共6小题每一小题3分〕9.假设|x﹣3|+|y+2|=0,那么x+y的值是_________.10.假设m、n互为相反数,那么5m+5n﹣5=_________.11.计算:1﹣3+5﹣7+9﹣11+…+97﹣99=_________.12.计算或者化简:〔1〕|﹣7|+5=_________.〔2〕〔﹣25〕×〔﹣2〕=_________.〔3〕〔﹣2〕÷=_________.13.有理数a、b、c在数轴上的位置如下图,且|a|=1,|b|=2,|c|=4,那么a﹣b+c=_________.14.计算|﹣|+||+||+…+||=_________三.解答题〔一共12小题〕15.计算题〔每一小题3分一共12分〕〔1〕〔2〕23﹣17﹣〔﹣7〕+〔﹣16〕〔3〕﹣23+〔+58〕﹣〔﹣5〕〔4〕.16.〔5分〕有理数a、b、c在数轴上的位置如图,〔1〕判断正负,用“>〞或者“<〞填空b﹣c_________0,a﹣b_________0,a+c_________0;〔2〕化简:|b﹣c|+|a﹣b|﹣|a+c|.17.〔5分〕〔1〕请你在数轴上表示以下有理数:﹣,|﹣2.5|,0,﹣22,﹣〔﹣4〕;〔2〕将上列各数用“<〞号连接起来:_________.18.〔5分〕某书店举行图书促销会,每位促销人员以销售50本为基准,超过记为正,缺乏的记为负,其中10名促销人员的销售结果如下〔单位:本〕:4,2,3,﹣7,﹣3,﹣8,3,4,8,﹣1.〔1〕这组促销人员的总销售量超过还是缺乏总销售基准?相差多少?〔2〕如销售图书每本的利润为2.7元,此次促销会所得总利润为多少元?〔结果保存整数〕19.〔5分〕退休的钱教师去年用12000元购置了某种基金14775份.该基金上周末的价格是:每份0.63元,本周内与前一天相比的涨跌情况如下表〔单位:元〕.〔1〕本周内哪一天把该基金赎回比拟合算?为什么?〔2〕赎回时须交纳当时总值0.5%的费用.假如钱教师在本周星期五收盘前将全部基金赎回,他的收益情况如何?20.〔6分〕一位病人上午8时的体温是39.4℃,下表表示该病人一天中的体温变化:时间是11时14时17时20时23时凌晨2时凌晨5时上午8时〔1〕这位病人的最高体温出如今几时?最高体温和最低体温相差多少度?〔2〕从这位病人的病情变化看,请你分析他的病情在恶化还是好转?21.〔6分〕某仓库6天内粮食进、出库的吨数如下〔“+〞表示进库,“﹣〞表示出库〕:+26,﹣30,﹣18,+34,﹣20,﹣15〔1〕经过这6天后,库里的粮食增多或者减少了多少吨?〔2〕经过这6天后,仓库管理员结算发现库里还存480吨粮食,那么6天前库里存粮多少吨?22.〔6分)泗水段327国道重修工程即将开工,公路局质检小组开车沿公路检查,约定向东为正,向西为负.某天自收费站出发到收工时所走的道路为〔单位:km〕:+9,﹣3,+4,﹣2,﹣8,+13,﹣2,+10,+7,+3,﹣13,﹣6.〔1〕收工时在收费站的什么位置处?〔2〕假设汽车的耗油量为/km,问:从收费站出发到收工时耗油多少kg?23.(6分〕某人用400元购置了8套儿童服装,准备以一定价格出售,假如以每套儿童服装55元的价格为HY,超出的记作正数,缺乏的记作负数,记录如下:+2,﹣3,+2,+1,﹣2,﹣1,0,﹣2.〔单位:元〕〔1〕当他卖完这八套儿童服装后是盈利还是亏损?〔2〕盈利〔或者亏损〕了多少钱?24.〔6分〕出租车司机小李某天上午营运都是在东西走向的大街上进展的,假如规定向东为正,向西为负,他这天上午行车里程〔单位:千米〕如下:﹣2,+5,﹣1,+10,﹣15,﹣3.〔1〕将最后一位乘客送到目的地时,小李距出发地多远?此时在出发东边还是西边?〔2〕假设汽车耗油量为m升/千米,这天上午小李一共耗油多少升?〔3〕假设出租车起步价为8元,起步里程为3千米〔包括3千米〕,超过局部每千米1.2元.问小李今天上午一共得出租款多少元?25.〔8分〕某自行车厂方案一周消费自行车1400辆,平均每天消费200辆,但由于种种原因,实际每天消费量与方案量相比有出入.下表是某周的消费情况〔超产记为正、减产记为负〕:星期一二三四五六日增减+5 ﹣2 ﹣4 +12 ﹣10 +16 ﹣9 〔1〕根据记录的数据可知该厂星期六消费自行车__________辆;〔2〕根据记录的数据可知该厂本周实际消费自行车_________辆;〔3〕产量最多的一天比产量最少的一天多消费自行车_________辆;〔4〕该厂实行每周计件工资制,每消费一辆车可得50元,假设超额完成任务,那么超过局部每辆另奖15元;少消费一辆扣20元,那么该厂工人这一周的工资总额是多少元?26.〔8分〕下表记录的是流花河今年某一周内的水位变化情况,上周末〔星期六〕的水位已到达戒备水位33米.〔正号表示水位比前一天上升,负号表示水位比前一天下降〕星期日一二三四五六〔1〕本周哪一天河流的水位最高?哪一天河流的水位最低?它们位于戒备水位之上还是之下?〔2〕与上周末相比,本周末河流的水位是上升了还是下降了?参考答案与试题解析一.选择题〔一共8小题〕1.算式4﹣|﹣3+5|,计算结果是〔〕A.6 B.﹣4 C.12 D.2考点:绝对值;有理数的加减混合运算.分析:首先求出绝对值,然后根据四那么运算进展解答.解答:解:4﹣|﹣3+5|=4﹣2=2,应选D.点评:此题主要考察绝对值的知识点,解答此题的关键是纯熟掌握绝对值的性质及四那么运算法那么,此题比拟简单.2.一位“粗心〞的同学在做加减运算时,将“﹣5”错写成“+5”进展运算,这样他得到的结果比正确答案〔〕A.少5 B.少10 C.多5 D.多10考点:有理数的加减混合运算.分析:根据有理数的加法和减法法那么进展分析,即可得出答案.解答:解:根据题意得:将“﹣5”错写成“+5”他得到的结果比原结果多10;应选D.点评:此题考察了有理数的加减运算,解题的关键是读懂题意,﹣5与+5正好是相差10,不要把结果看成是多5.3.大堡地区某一天早晨的气温是﹣7℃,中午的时候上升了11℃,至午夜又降了9℃,那么午夜的气温是〔〕A.﹣4℃B.﹣5℃C.﹣6℃D.﹣7℃考点:有理数的加减混合运算.专题:应用题.分析:气温是上升记为正,气温下降记为负.依题意可列式计算.解答:解:∵早晨的气温是﹣7℃,中午的时候上升了11℃,∴中午的时候的气温是﹣7℃+11℃=4℃,∵午夜又降了9℃,∴午夜的气温是4℃﹣9℃=﹣5℃.应选B.点评:此题主要考察正负数在实际生活中的应用,所以学生在学这一局部时一定要联络实际,不能死学.4.去年7月份小明到银行开户,存入1500元,以后每月根据收支情况存入一笔钱,下表为该人从8月份到12月份的存款情况:那么截止到去年12月份,存折上一共有〔〕元钱.A.9750 B.8050 C.1750 D.9550考点:有理数的加减混合运算.专题:应用题.分析:把实际问题转化成有理数的加减法,分别根据上一月的存钱和与上一月的差值求出下一个月的存钱数,然后相加即可.解答:解:小明从8月份到12月份的存款情况:1500+〔1500﹣100〕+〔1500﹣100﹣200〕+〔1500﹣100﹣200+500〕+〔1500﹣100﹣200+500+300〕+〔1500﹣100﹣200+500+300﹣250〕=9550元.应选D.点评:解决问题的关键是正确列式,细心计算.5.某商店在某一时间是以每件100元的价格卖出两件衣服,其中一件盈利25%,另一件亏损20%,那么该商店卖出这两件衣服的盈亏情况为〔〕A.不盈也不亏B.盈利5元C.亏损5元D.盈利10元考点:有理数的加减混合运算.分析:此题可先计算出两件衣服的进价,再算出售价和进价的差值判断盈亏情况.解答:解:设盈利衣服的进价为a,亏损衣服的进价为b,那么a〔1+25%〕=100,解得:a=80;b〔1﹣20%〕=100,解得:b=125;200﹣〔80+125〕=﹣5,那么该商店卖出这两件衣服亏损5元.点评:此题考察了有理数的运算在实际生活中的应用,题目较为新颖,需要好好掌握.6.计算|﹣1﹣〔﹣〕|﹣|﹣﹣|之值为何〔〕A.﹣B.﹣C.D.考点:绝对值;有理数的减法.分析:首先计算出绝对值内各数的值,然后根据有理数的减法法那么求解.解答:解:原式=|﹣1|﹣|﹣|=﹣3=﹣.应选A.点评:此题考察的是绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.7.有理数a、b在数轴上的位置如下图,那么a+b的值〔〕A.大于0 B.小于0 C.小于a D.大于b考点:有理数的加法;数轴.专题:数形结合.分析:根据图象可得a的绝对值小于b的绝对值,再根据a<0,b>0可得出a+b的取值情况.解答:解:由题意得:a<0,b>0,且a的绝对值小于b的绝对值,∴a+b>0,且b>a+b>0,点评:此题考察有理数的加法,比拟简单,关键是根据图形得出a和b的取值情况.8.假设|x﹣3|=x﹣3,那么以下不等式成立的是〔〕A.x﹣3>0 B.x﹣3<0 C.x﹣3≥0D.x﹣3≤0考点:绝对值.专题:常规题型.分析:根据绝对值的意义,任何数的绝对值都是非负数,从结果入手直接得出答案.解答:解:∵|x﹣3|=x﹣3,∴x﹣3≥0.应选:C.点评:此题主要考察了绝对值的意义,从去绝对值后的结果入手分析是解决问题的关键.二.填空题〔一共6小题〕9.假设|x﹣3|+|y+2|=0,那么x+y的值是1.考点:非负数的性质:绝对值.专题:计算题;压轴题.分析:根据非负数的性质,可求出x、y的值,然后将x,y再代入计算.解答:解:∵|x﹣3|+|y+2|=0,∴x﹣3=0,y+2=0,∴x=3,y=﹣2,∴x+y的值是:3﹣2=1,故答案为:1.点评:此题主要考察了绝对值的性质,根据题意得出x,y的值是解决问题的关键.10.假设m、n互为相反数,那么5m+5n﹣5=﹣5.考点:有理数的加减混合运算;相反数.分析:假设m、n互为相反数,那么m+n=0,那么代数式5m+5n﹣5即可解答.解答:解:由题意得:5m+5n﹣5=5〔m+n〕﹣5=5×0﹣5=﹣5.点评:此题主要考察相反数的性质,相反数的和为0.11.计算:1﹣3+5﹣7+9﹣11+…+97﹣99=﹣50.考点:有理数的加减混合运算.专题:规律型.分析:认真审题不难发现:相邻两数之差为﹣2,整个计算式中正好为100以内的所有相邻奇数的差,一一共有50个奇数,所以可以得到50÷2=25个﹣2.解答:解:1﹣3+5﹣7+…+97﹣99=〔1﹣3〕+〔5﹣7〕+〔9﹣11〕+…+〔97﹣99〕=〔﹣2〕×25=﹣50.故应填﹣50.点评:认真审题,找出规律,是解决此类问题的关键所在.12.计算或者化简:〔1〕|﹣7|+5=12.〔2〕〔﹣25〕×〔﹣2〕=50.〔3〕〔﹣2〕÷=﹣4.〔4〕﹣x﹣x﹣x=﹣3x.〔5〕2〔a﹣1〕﹣a=a﹣2.考点:有理数的加减混合运算.分析:〔1〕先去绝对值,再根据有理数的加法法那么进展计算;〔2〕根据有理数的乘法法那么进展计算;〔3〕根据有理数的除法法那么进展计算;〔4〕根据合并同类项的法那么进展计算;〔5〕先去括号,再合并同类项.解答:解:〔1〕|﹣7|+5=7+5=12;〔2〕〔﹣25〕×〔﹣2〕=50;〔3〕〔﹣2〕÷=〔﹣2〕×2=﹣4;〔4〕﹣x﹣x﹣x=〔﹣1﹣1﹣1〕x=﹣3x;〔5〕2〔a﹣1〕﹣a=2a﹣2﹣a=a﹣2.点评:〔1〕有理数的加法运算法那么:①同号两数相加,取一样的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.③互为相反数的两个数相加得0.④一个数同0相加,仍得这个数;〔2〕不为零的有理数相乘的法那么:两数相乘,同号得正,异号得负,并把绝对值相乘;〔3〕有理数的除法运算法那么:两数相除,同号得正,并把绝对值相除;〔4〕括号前是“+〞号时,将括号连同它前边的“+〞号去掉,括号内各项都不变;括号前是“﹣〞号时,将括号连同它前边的“﹣〞去掉,括号内各项都要变号;〔5〕要正确掌握运算顺序,即乘方运算〔和以后学习的开方运算〕叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.注意要会灵敏运用法那么或者者运算律进展解题.13.有理数a、b、c在数轴上的位置如下图,且|a|=1,|b|=2,|c|=4,那么a﹣b+c=﹣7.考点:有理数的加减混合运算;数轴;绝对值.分析:根据a、b、c在数轴上的位置可知b>0,c<0,a<0,再根据|a|=1,|b|=2,|c|=4可求出a、b、c的值,代入a﹣b+c进展计算即可.解答:解:∵a、c在原点的左侧,b在原点的右侧,∴b>0,c<0,a<0,∵|a|=1,|b|=2,|c|=4,∴a=﹣1,b=2,c=﹣4,∴a﹣b+c=﹣1﹣2﹣4=﹣7.点评:此题考察的是数轴的特点及绝对值的性质,属较简单题目.14.计算|﹣|+||+||+…+||=.考点:有理数的加减混合运算.专题:计算题.分析:根据绝对值里边的差都为负数,利用负数的绝对值等于它的相反数化简,抵消合并即可得到结果.解答:解:原式=﹣+﹣+…+﹣+﹣=﹣=.故答案为:点评:此题考察了有理数的加减混合运算,以及绝对值的代数意义,纯熟掌握绝对值的代数意义是解此题的关键.三.解答题〔一共16小题〕15.计算题〔1〕〔2〕23﹣17﹣〔﹣7〕+〔﹣16〕〔3〕﹣23+〔+58〕﹣〔﹣5〕〔4〕.考点:有理数的加减混合运算.专题:计算题.分析:〔1〕根据有理数的运算法那么,减去一个数等于加上这个数的相反数,再根据绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并让较大的绝对值减去较小的绝对值;〔2〕根据有理数的运算法那么,减去一个数等于加上这个数的相反数,再运用有理数加法交换律和结合律,计算出即可;〔3〕根据有理数的运算法那么,减去一个数等于加上这个数的相反数,计算出即可;〔4〕把分数化成小数,再运用有理数加法交换律和结合律,计算出即可;解答:解:〔1〕=﹣+=;〔2〕23﹣17﹣〔﹣7〕+〔﹣16〕=23+〔﹣17〕+7+〔﹣16〕=〔23+7〕+[〔﹣17〕+〔﹣16〕]=30+〔﹣33〕=﹣3;〔3〕﹣23+〔+58〕﹣〔﹣5〕=﹣23+58+5=40;〔4〕=10.点评:此题主要考察了有理数的加减混合运算,注意其中的简便计算方法:分别让其中的正数和负数结合计算.16.有理数a、b、c在数轴上的位置如图,〔1〕判断正负,用“>〞或者“<〞填空b﹣c<0,a﹣b<0,a+c>0;〔2〕化简:|b﹣c|+|a﹣b|﹣|a+c|.考点:有理数大小比拟;数轴;绝对值;有理数的加法;有理数的减法.分析:先根据数轴上a、b、c的位置关系求出b﹣c、a﹣b、a+c的符号,然后代入〔2〕中求解即可.解答:解:〔1〕如图:由图知:b<c,a<b,a>﹣c;因此b﹣c<0;a﹣b<0;a+c>0;〔2〕原式=﹣〔b﹣c〕﹣〔a﹣b〕﹣〔a+c〕=﹣2a.点评:由于引进了数轴,我们把数和点对应起来,也就是把“数〞和“形〞结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.17.〔1〕请你在数轴上表示以下有理数:﹣,|﹣2.5|,0,﹣22,﹣〔﹣4〕;〔2〕将上列各数用“<〞号连接起来:﹣22<﹣<0<|﹣2.5|<﹣〔﹣4〕.考点:有理数大小比拟;数轴.专题:计算题.分析:首先化简有理数,然后根据有理数大小比拟规那么求解即可.解答:解:〔1〕化简得,|﹣2.5|=2.5,﹣22=﹣4,﹣〔﹣4〕=4;〔2〕结合数轴得,﹣22<﹣<0<|﹣2.5|<﹣〔﹣4〕.点评:有理数比拟大小与实数比拟大小一样:〔1〕正数都大于0,负数都小于0,正数大于一切负数;〔2〕两个负数,绝对值大的反而小.18.某书店举行图书促销会,每位促销人员以销售50本为基准,超过记为正,缺乏的记为负,其中10名促销人员的销售结果如下〔单位:本〕:4,2,3,﹣7,﹣3,﹣8,3,4,8,﹣1.〔1〕这组促销人员的总销售量超过还是缺乏总销售基准?相差多少?〔2〕如销售图书每本的利润为2.7元,此次促销会所得总利润为多少元?〔结果保存整数〕考点:有理数的加法;有理数的加减混合运算.分析:〔1〕以50本为HY记录的10个数字相加,结果为正,那么超过,为负,那么缺乏,结果即为差额;〔2〕销售的总本数×促销人员数×利润=所的总利润.解答:〔1〕4+2+3﹣7﹣3﹣8+3+4+8﹣1,=5,答:超过基准,超过5本;〔2〕2.7×〔500+5〕=1363.5≈1364〔元〕,答:约为1364元.点评:此题考察的是有理数的加减混合运算,解题关键是理解“正〞和“负〞的相对性,确定一对具有相反意义的量.19.退休的钱教师去年用12000元购置了某种基金14775份.该基金上周末的价格是:每份0.63元,本周内与前一天相比的涨跌情况如下表〔单位:元〕.〔1〕本周内哪一天把该基金赎回比拟合算?为什么?〔2〕赎回时须交纳当时总值0.5%的费用.假如钱教师在本周星期五收盘前将全部基金赎回,他的收益情况如何?考点:有理数的加减混合运算;正数和负数.专题:应用题;图表型.分析:根据“正〞和“负〞的相对性,确定一对具有相反意义的量.〔1〕该基金在星期三的价格最高为0.63+0.13=0.81元/份;〔2〕本周星期五的价格是0.63+0.08=0.71元/份,基金总价值是14775×0.71=10490.25元,而赎回时须交纳当时总值的费用是10490.25×0.5%≈52.45元,那么他的实际收益即可求得.解答:解:〔1〕答:本周内星期三把该基金赎回比拟合算,因为该基金在星期三的价格最高为0.63+0.13=0.81元/份;〔2〕∵星期五的价格是0.63+0.08=0.71元/份,基金总价值是14775×0.71=10490.25元,交纳的费用是10490.25×0.5%≈52.45元,∴他的实际收益是10490.25﹣52.45﹣12000=﹣239.1元,答:他亏损了239.1元.点评:此题主要考察正负数在实际生活中的应用.20.一位病人上午8时的体温是39.4℃,下表表示该病人一天中的体温变化:时间是11时14时17时20时23时凌晨2时凌晨5时上午8时〔1〕这位病人的最高体温出如今几时?最高体温和最低体温相差多少度?〔2〕从这位病人的病情变化看,请你分析他的病情在恶化还是好转?考点:有理数的加减混合运算;正数和负数.专题:计算题.分析:〔1〕根据题意分别求出各个时间是的温度,找出这位病人的最高体温出如今几时即可,注意此题只要在病人上午8时的体温的根底上根据表格进展加减即可求出.〔2〕根据计算的结果,假如病人的体温维持在正常温度37℃左右,就说明病情在好转.解答:解:〔1〕这位病人的最高体温出如今17时,即39.4﹣1.2+1+0.5=39.7℃,最低体温=39.4﹣1.2+1+0.5﹣1.2﹣0.5﹣0.5﹣0.4=37.1℃,∴最高体温和最低体温相差39.7℃﹣37.1℃=2.6℃;〔2〕体温逐渐降低到人体正常温度37℃左右,病情好转.〔8分〕点评:此题考察了有理数的加减混合运算以及正数和负数的知识,解题的关键是理解升降都是相对前一次而言的.21.某仓库6天内粮食进、出库的吨数如下〔“+〞表示进库,“﹣〞表示出库〕:+26,﹣30,﹣18,+34,﹣20,﹣15〔1〕经过这6天后,库里的粮食增多或者减少了多少吨?〔2〕经过这6天后,仓库管理员结算发现库里还存480吨粮食,那么6天前库里存粮多少吨?考点:有理数的加减混合运算.专题:计算题.分析:〔1〕求出+26,﹣30,﹣18,+34,﹣20,﹣15的和即可;〔2〕求出480+|﹣23|即可得出答案.解答:〔1〕解:+26﹣30﹣18+34﹣20﹣15=﹣23,答:经过这6天,库里的粮食减少了23吨.〔2〕解:480+23=503,答:6天前库里存粮503吨.点评:此题考察了有理数的加减混合运算的应用,解此题的关键是能根据题意得出算式,即把实际问题转化成数学问题来解决.22.泗水段327国道重修工程即将开工,公路局质检小组开车沿公路检查,约定向东为正,向西为负.某天自收费站出发到收工时所走的道路为〔单位:km〕:+9,﹣3,+4,﹣2,﹣8,+13,﹣2,+10,+7,+3,﹣13,﹣6.〔1〕收工时在收费站的什么位置处?〔2〕假设汽车的耗油量为/km,问:从收费站出发到收工时耗油多少kg?考点:有理数的加法;正数和负数.专题:应用题.分析:首先审清题意,明确“正〞和“负〞所表示的意义;再根据题意答题.解答:解:〔1〕根据题意可得:向东为正,向西为负.那么有9﹣3+4﹣2+13﹣2+10+7+3﹣13﹣6=10.故收工时在收费站的东边10km处.〔2〕某天自收费站出发到收工时所走的路程为:|+9|+|﹣3|+|+4|+|﹣2|+|﹣8|+|+13|+|﹣2|+|+10|+|+7|+|+3|+|﹣13|+|﹣6|=80,80×0.3=24.故从收费站出发到收工时耗油24kg.点评:解题关键是理解“正〞和“负〞的相对性,明确什么是一对具有相反意义的量.一般情况下具有相反意义的量才是一对具有相反意义的量.23.某人用400元购置了8套儿童服装,准备以一定价格出售,假如以每套儿童服装55元的价格为HY,超出的记作正数,缺乏的记作负数,记录如下:+2,﹣3,+2,+1,﹣2,﹣1,0,﹣2.〔单位:元〕〔1〕当他卖完这八套儿童服装后是盈利还是亏损?〔2〕盈利〔或者亏损〕了多少钱?考点:有理数的加减混合运算;正数和负数.专题:计算题.分析:〔1〕以55元为HY记录的8个数字相加,再加上55,即可求出每件衣服的平均价钱,再乘以8,与400元比拟,假设大于400,那么盈利;假设小于400,那么亏损;〔2〕假设盈利,就用买衣服的总价钱﹣400就是盈利的钱,假设亏损,就用400﹣买衣服的总价钱,就是亏损的钱.解答:解:根据题意得〔1〕2﹣3+2+1﹣2﹣1+0﹣2=﹣3,55×8+〔﹣3〕=437元,∵437>400,∴卖完后是盈利;〔2〕437﹣400=37元,故盈利37元.点评:此题考察的是有理数的加减混合运算,注意相反意义的量的理解.24.出租车司机小李某天上午营运都是在东西走向的大街上进展的,假如规定向东为正,向西为负,他这天上午行车里程〔单位:千米〕如下:﹣2,+5,﹣1,+10,﹣15,﹣3.〔1〕将最后一位乘客送到目的地时,小李距出发地多远?此时在出发东边还是西边?〔2〕假设汽车耗油量为m升/千米,这天上午小李一共耗油多少升?〔3〕假设出租车起步价为8元,起步里程为3千米〔包括3千米〕,超过局部每千米1.2元.问小李今天上午一共得出租款多少元?考点:有理数的加减混合运算;正数和负数.分析:〔1〕依次把他这天上午行车里程相加得小李与出发地的间隔,由正负断定是在东边还是西边;〔2〕先计算出小李这天上午一共行进的里程,再乘以汽车耗油量m升/千米得这天上午小李的耗油量;〔3〕由这天上午每次的行车里程计算出每次的出租款,再相加即可得出小李一共得的出租款.解答:解:〔1〕﹣2+5﹣1+10﹣15﹣3=﹣6;小李距出发地6米,此时在出发西边;〔2〕2+5+1+10+15+3=36,那么这天上午小李一共耗油36m升;〔3〕由题意得,每次行车里程的出租款分别为8,10.4,8,16.4,22.4,8,那么小李今天上午一共得出租款为8+10.4+8+16.4+22.4+8=73.2〔元〕.点评:此题考察了正数和负数的应用,正确理解题意是解决此题的关键.25.某自行车厂方案一周消费自行车1400辆,平均每天消费200辆,但由于种种原因,实际每天消费量与方案量相比有出入.下表是某周的消费情况〔超产记为正、减产记为负〕:星期一二三四五六日增减+5 ﹣2 ﹣4 +12 ﹣10 +16 ﹣9 〔1〕根据记录的数据可知该厂星期六消费自行车216_辆;〔2〕根据记录的数据可知该厂本周实际消费自行车1408辆;〔3〕产量最多的一天比产量最少的一天多消费自行车26辆;〔4〕该厂实行每周计件工资制,每消费一辆车可得50元,假设超额完成任务,那么超过局部每辆另奖15元;少消费一辆扣20元,那么该厂工人这一周的工资总额是多少元?考点:正数和负数;有理数的加减混合运算.专题:计算题;图表型.分析:〔1〕用200加上增减的+16即可;〔2〕先把增减的量都相加,然后根据有理数的加法运算法那么进展计算,再加上方案消费量即可;〔3〕用最多的星期六的量减去最少的星期五的量,根据有理数的减法运算计算即可;〔4〕根据规定列出算式,然后根据有理数的混合运算方法进展计算即可求解.解答:解:〔1〕200+〔+16〕=216;〔2〕∵〔+5〕+〔﹣2〕+〔﹣4〕+〔+12〕+〔﹣10〕+〔+16〕+〔﹣9〕,=5﹣2﹣4+12﹣10+16﹣9,=33﹣25,=8,∴1400+8=1408;〔3〕〔+16〕﹣〔﹣10〕,=16+10,=26;〔4〕50×1408+8×15,=70400+120,=70520.故答案为:〔1〕216,〔2〕1408,〔3〕26,〔4〕70520.点评:此题考察了正数与负数,有理数加减混合运算,读懂表格数据,根据题意准确列式是解题的关键.26.下表记录的是流花河今年某一周内的水位变化情况,上周末〔星期六〕的水位已到达戒备水位33米.〔正号表示水位比前一天上升,负号表示水位比前一天下降〕星期日一二三四五六〔1〕本周哪一天河流的水位最高?哪一天河流的水位最低?它们位于戒备水位之上还是之下?〔2〕与上周末相比,本周末河流的水位是上升了还是下降了?考点:正数和负数;有理数的加减混合运算.分析:〔1〕根据上周末的水位计算出这一周中每一天的水位,即可得出答案;〔2〕根据〔1〕题中计算的周六的水位与上周的水位比拟即可确定答案.解答:解:〔1〕正号表示水位比前一天上升,负号表示水位比前一天下降:周一:33.2+0.8=34,周二:34﹣0.4=+33.6,周三:33.6+0.2=33.8,周四:33.8+0.3=34.1,周五:34.1﹣0.5=33.6,周六:33.6﹣0.2=33.4.故本周四水位最高,周六水位最低,它们位于戒备水位之上;〔2〕本周末的水位高为,上周末的水位为33米,故水位上升了.点评:此题考察了有理数的加法以及正负数所表示的意义.解题的关键是理解正数与负数分别表示具有相反意义的量.。

第1章 有理数 章末检测 2022-2023学年沪科版数学七年级上册(原卷版)

第1章 有理数 章末检测 2022-2023学年沪科版数学七年级上册(原卷版)

第1章有理数—章末检测—一、选择题1、疫情防控,人人有责.引发新冠疫情的病毒粒子呈不规则形状,直径约0.00000022m.将数字0.00000022用科学记数法表示为()A.2.2×107B.2.2×10﹣7C.0.22×106D.0.22×10﹣62、自然界中花粉的质量很小,一粒某种植物花粉的质量约为0.000045毫克,将0.000045用科学记数法表示为()A.45×10﹣6B.4.5×10﹣6C.4.5×10﹣5D.0.45×10﹣53、纳米(nm)是非常小的长度单位,1nm=0.000000001m,将数据0.000000001用科学记数法表示为()A.10﹣10B.10﹣9C.10﹣8D.10﹣74、人体内的许多细胞大约都只有0.01mm长,那么用科学记数法表示0.01mm为()A.1×10﹣1mm B.1×10﹣2mm C.1×10﹣3mm D.1×102mm5、2021年河北CDP首次突破四万亿元,其中石家庄2021年GDP总量约为6.49×1011元,GDP名义增速约9.4%.数据6.49×1011可以表示为()A.64.9亿B.649亿C.6490亿D.64900亿6、根据国家卫健委公布的数据,截止2021年12月5日,全国累计报告接种新冠病毒疫苗2.553×109次,则数据2.553×109表示的原数是()A.25530000B.255300000C.2553000000D.255300000007、根据国家卫健委公布的数据,截止2021年12月5日,全国累计报告接种新冠病毒疫苗2.553×109次,则数据2.553×109表示的原数是()A.25530000B.255300000C.2553000000D.255300000008、已知某新型感冒病毒的直径约为0.000002022米,将0.000002022用科学记数法表示为()A.2.022×10﹣5B.0.2022×10﹣5C.2.022×10﹣6D.20.22×10﹣79、已知某新型感冒病毒的直径约为0.000002022米,将0.000002022用科学记数法表示为()A.2.022×10﹣5B.0.2022×10﹣5C.2.022×10﹣6D.20.22×10﹣710、2018年2月18日清•袁枚的一首诗《苔》被乡村老师梁俊和山里的孩子小梁在《经典永流传》的舞台重新唤醒,“白日不到处,青春恰自来.苔花如米小,也学牡丹开.”若苔花的花粉直径约为0.0000084米,用科学记数法表示0.0000084=8.4×10n,则n为()A.﹣5B.﹣6C.5D.6二、填空题11、用小数表示﹣1.6×10﹣4应为.12、面对新冠疫情,全国人民团结一心全力抗击,无数白衣天使不惧危险奋战在挽救生命的第一线,无数科技工作者不辞辛苦拼搏在攻克COVID﹣19的征程上.在这些科技工作者中也不乏数学工作者的身影,他们根据医学原理和公开数据进行数学建模,通过动力学分析和统计学分析,结合优化算法等定量手段,试图揭示COVID﹣19的传播规律及其重要特征,评估治疗或防控措施的实效性,为流行病学和传染病学研究提供定量支撑,为政府和公共卫生部门的预测和控制决策提供理论依据.目前发现的新冠病毒其直径约为0.00012毫米,将0.00012用科学记数法表示为.13、用小数表示:6×10﹣3=.14、用科学记数法表示的数﹣1.78×10﹣6,化为原数是.15、将有理数3.1×10﹣4用小数表示为.16、一种细菌半径是1.91×10﹣5米,用小数表示为米.17、纳秒(ns)是非常小的时间单位,1ns=10﹣9s.北斗全球导航系统的授时精度优于20ns.用科学记数法表示20ns是s.18、将实数3.18×10﹣5用小数表示为.19、生物具有遗传多样性,遗传信息大多储存在DNA分子上,一个DNA分子的直径约为0.00000021cm,这个数用科学记数法可表示为cm.20、纳米是非常小的长度单位,1纳米=10﹣9米,某种病菌的长度约为50纳米,用科学记数法表示该病菌的长度,结果是米.三、解答题21、将有理数﹣12,0,﹣3.25,,﹣|﹣12|,﹣(﹣5)放入恰当的集合中.22、已知4x2+1=4x﹣|y+2|,求x y的值.23、把下列各数填写在相应的大括号内.3,﹣7,﹣,5.6,﹣8,15.﹣23,(﹣)2正整数集合:{…};负整数集合:{…};正分数集合:{…};负分数集合:{…}.24、已知|a+3|+(2b﹣5)2=0,求2a﹣4b的值.25、已知(a﹣3)2与|b﹣12|互为相反数,求ab的平方根.26、计算:|﹣4|÷×(﹣3)2.27、将,(﹣2)2,|﹣2|,﹣3用“<”连接,并在数轴上表示出来.28、根据测算,太阳能热水器每平方米集热面积平均每月所产生的能量相当于10千克煤燃烧所产生的能量,某新建居民小区共600户,开发商统一为每户安装一台2平方米集热面积的太阳能热水器,这个小区一年中所产生太阳能能量大致相当于多少千克煤燃烧所产生的能量?(结果用科学记数法表示)29、(1)画出数轴,在数轴上标出表示﹣2的点A,设点B在数轴上,且到点A的距离为3,请标出点B的位置,并写出点B表示的数.(2)已知|a|=2,b2=1,求a+b的值.30、某种液体每升含有1012个细菌,有一种杀菌剂1滴可以杀死109个此种有害细菌.现准备将3L该种液体中的有害细菌杀死,要用这种杀菌剂多少滴?若每滴这种杀菌剂为10﹣4L,则要用多少升杀虫剂(用科学记数法表示)?。

七年级数学 第1章 有理数 章末检测卷

七年级数学 第1章  有理数  章末检测卷

第1章 有理数 章末检测卷(浙教版)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,考试时间90分钟,试题共26题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2021·河南南阳市·七年级期中)从踏入学校的那一刻起,我们就认识和使用数学,为了表示物体的个数或者顺序,产生了整数1、2、3,...;为了表示“没有”引入了数0古希腊著名数学家毕达哥拉斯相信“哪里有数,那里就有美”.数仅仅因为它的寓意,就可以给人以丰富的美感.正是由于这种美感,才使人们在各种场合有选择性的使用数.一个数字既表示万物之始,又表示一个整体,这个数字是( ) A .10 B .100 C .1 D .92.(2021·浙江九年级期末)“天问,问天!祝融,探火!”,2021年5月15日,“天问一号”搭载火星探测器“祝融号”成功降落火星,据悉,火星表面平均温度大约是55-℃,55-的绝对值是( )A .55B .55-C .155D .155- 3. (2021·菏泽市牡丹区第二十一初级中学初一月考)下列说法:①规定了原点、正方向的直线是数轴;②数轴上两个不同的点可以表示同一个有理数 ③有理数1100-数轴上无法表示出来;④任何一个有理数都可以在数轴上找到与它对应的唯一点 其中正确的是( )A .①②③④B .②②③④C .③④D .④4.(2021·浙江省台州学院附属中学七年级期中)下列说法中:①0是最小的整数;②有理数不是正数就是负数;③非负数就是正数;④整数和分数统称有理数,其中正确的是( )A .①B .②C .③D .④5.(2021·山东潍坊市·九年级一模)如图,数轴上的A ,B ,C 三点所表示的数分别为a ,b ,c ,且原点为O ,根据图中各点位置,下列数值最大的是( )A .aB .bC .cD .b -6.(2021·广西南宁市·南宁三中七年级期中)若|2|2a a -=-,则a 的范围( )A .2a ≤B .2a >C .2a <D .2a ≥7.(2020·山东济南市·七年级期中)如图,把半径为1的圆放到数轴上,圆上一点A 与表示1的点重合,圆沿着数轴正方向滚动一周,此时点A 表示的数是( )A .πB .2π+1C .2πD .2π﹣18.(2021·广西贵港市·七年级期末)若a ,b ,c ,m 都是不为零的有理数,且23++=a b c m ,2a b c m ++=,则b 与c 的关系是( )A .互为相反数B .互为倒数C .相等D .无法确定9.(2021·山东淄博市·)如图,数轴上的单位长度为1,有三个点A 、B 、C ,若点A 、C 表示的数互为相反数,则图中点B 对应的数是( )A .-1B .0C .1D .310.(2021·河北沧州市·七年级期末)a ,b 是有理数,它们在数轴上的位置如图所示.把a ,b ,﹣a ,﹣b 按照从小到大的顺序排列,正确的是( )A .b a a b <<-<-B .a b b a -<<-<C .b a a b <-<<-D .b a a b -<-<<11.(2021·黑龙江大庆市·中考真题)下列说法正确的是( )A .||x x <B .若|1|2x -+取最小值,则0x =C .若11x y >>>-,则||||x y <D .若|1|0x +≤,则1x =-12.(2020·浙江七年级期中)若不等式|4||2||1|||x x x x a -+-+-+≥,对一切实数x 都成立,则a 的取值范围是( )A .5a <B .5a ≤C .5a ≥D .5a >二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在横线上) 13.(2020·浙江七年级期末)如图,数轴的单位长度为1,点A ,B 表示的数互为相反数,若数轴上有一点C 到点B 的距离为8个单位,则点C 表示的数是__________.14.(2021·宜昌市第九中学七年级期中)化简: ()3⎡⎤--+⎣⎦ =______; ()7⎡⎤+-+=⎣⎦ _______;-(-6)的相反数为___.15.(2020·浙江)在化肥袋上我们经常看到(500.2)kg ±的字样,这说明这种装化肥最重的比最轻的重_______kg .16.(2020·四川成都七中七年级期中)有六个数:5,0,132,0.3-,14-,π-,其中分数有a 个,非负整数有b 个,有理数有c 个,则a b c +-=______.17.(2021·山东七年级月考)若34a +与26b -互为相反数,则46b a +的值为________________. 18.(2021·宜兴外国语学校七年级月考)用“⇒”与“⇐”表示一种法则:(a ⇒b )=﹣b ,(a ⇐b )=﹣a ,如(2⇒3)=﹣3,则(2017⇒2018)⇐ (2016⇒2015)=__________三、解答题(本大题共6小题,共46分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(2021·江西宜春市·七年级期末)已知有理数a ,b 在数轴上对应的点如图所示.(1)当0.5a =, 2.5b =-时,求1a b a b b b -++--+的值;(2)化简:1a b a b b b -++--+.20.(2021·河南南阳市·七年级期中)把下列有理数填入相应的数集内:3.5-,0.2-,34,0,23-,1.07,5212-,10,19-(1)正数集合{…}(2)负数集合{…}(3)整数集合{…}(4)分数集合{…}21.(2021·渠县三江中学七年级月考)一次体育课,老师对七年级男生进行了100米赛跑的测试,以跑13秒为标准,超过标准时间用正数表示,不足标准时间用负数表示,第一小组8人的成绩如下:+0.2,-0.3,-0.4,0,0.1,-0.1,-0.5,1.(1)这8名同学实际各跑了多长时间?(2)这个小组的达标率是多少?22.(2020·沙坪坝区·重庆一中七年级月考)将有理数﹣5,0.4,0,﹣214,﹣412表示在数轴上,并用“<”连接各数.23.(2021·广东广州市·七年级期末)如图,已知数轴上A 、B 两点所表示的数分别为﹣2和6(1)求线段AB 的长;(2)已知点P 为数轴上点A 左侧的一个动点,且M 为PA 的中点,N 为PB 的中点.请你画出图形,并探究MN 的长度是否发生改变?若不变,求出线段MN 的长;若改变,请说明理由.24.(2020·浙江杭州市·七年级期末)阅读与写作:一个数学问题,在特定的题设下,有时其结论并不唯一,因而我们需要对这一问题进行必要的分类,将一个数学问题根据题设分为有限的若干种情况,在每一种情况中分别求解,最后再将各种情况下得到的结果进行归纳综合,这种解决问题的思维方法在数学上称为“分类讨论” 例如在解方程32x +=时,我们就可以利用这种思维方式来解决.当30x +≥时,原方程可化为32x +=,解得1x =-;当30x +<时,原方程可化为32x +=-,解得5x =-.所以原方程的解是1x =-或5x =-. (1)请你用这种思维方式解方程3240x --=.(2)围绕“分类讨论”这一主题撰写一篇数学小文章,题目自拟.(要求:书写端正,字数限于100字内.)25.(2021·浙江七年级期中)定义:若A ,B ,C 为数轴上三点,若点C 到点A 的距离是点C 到点B 的距离2倍,我们就称点C 是[],A B 的美好点.例如;如图1,点A 表示的数为1-,点B 表示的数为2.表示1的点C 到点A 的距离是2,到点B 的距离是1,那么点C 是[,]A B 的美好点;又如,表示0的点D 到点A 的距离是1,到点B 的距高是2,那么点D 就不是[,]A B 的美好点,但点D 是[,]B A 的美好点.如图2,M ,N 为数轴上两点,点M 所表示的数为7-,点N 所表示的数为2.(1)点E ,F ,G 表示的数分别是3-,6.5,11,其中是[,]M N 美好点的是________;写出[,]N M 美好点H 所表示的数是___________.(2)现有一只电子蚂蚁P 从点N 开始出发,以2个单位每秒的速度向左运动.当t 为何值时,点P 恰好为M 和N 的美好点?26.(2020·浙江杭州市·七年级期末)阅读绝对值拓展材料:a 表示数a 在数轴上的对应点与原点的距离如:5表示5在数轴上的对应点到原点的距离而550=-,即50-表示5、0在数轴上对应的两点之间的距离,类似的,有:()5353+=--表示5、3-在数轴上对应的两点之间的距离.一般地,点A 、B 在数轴上分别表示有理数a 、b ,那么A 、B 之间的距离可表示为a b -.回答下列问题:(1)数轴上表示2和5的两点之间的距离是 ,数轴上表示1和3-的两点之间的距离是 ; (2)数轴上表示x 和1-的两点A 和B 之间的距离是 ,如果A 、B 两点之间的距离为2,那么x = .(3)2x +可以理解为数轴上表示x 和 的两点之间的距离.(4)23x x -+-可以理解为数轴上表示x 的点到表示 和 这两点的距离之和. 21x x ++-可以理解为数轴上表示x 的点到表示 和 这两点的距离之和.(5)23x x -+-最小值是 ,21x x ++-的最小值是 .第1章 有理数 章末检测卷(浙教版)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,考试时间90分钟,试题共26题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2021·河南南阳市·七年级期中)从踏入学校的那一刻起,我们就认识和使用数学,为了表示物体的个数或者顺序,产生了整数1、2、3,...;为了表示“没有”引入了数0古希腊著名数学家毕达哥拉斯相信“哪里有数,那里就有美”.数仅仅因为它的寓意,就可以给人以丰富的美感.正是由于这种美感,才使人们在各种场合有选择性的使用数.一个数字既表示万物之始,又表示一个整体,这个数字是( )A .10B .100C .1D .9【答案】C【分析】依据题意,为了表示“没有”引入了数0,与一个数字既表示万物之始,又表示一个整体,这两句话,可得答案【详解】解:依据题意:0表示“没有” 而这个数字又既表示万物之始,又表示一个整体,即这个数是题意中数的开始,又可以表示一个整体可得该数为1故答案为:C【点睛】本题实际考查自然数的定义,准确理解题意是解题的关键2.(2021·浙江九年级期末)“天问,问天!祝融,探火!”,2021年5月15日,“天问一号”搭载火星探测器“祝融号”成功降落火星,据悉,火星表面平均温度大约是55-℃,55-的绝对值是( )A .55B .55-C .155D .155- 【答案】A【分析】利用绝对值的定义即可求解.【详解】解:55-的绝对值是55,故选:A .【点睛】本题考查求绝对值,掌握绝对值的定义是解题的关键.3. (2021·菏泽市牡丹区第二十一初级中学初一月考)下列说法:①规定了原点、正方向的直线是数轴②数轴上两个不同的点可以表示同一个有理数 ③有理数1100-数轴上无法表示出来 ④任何一个有理数都可以在数轴上找到与它对应的唯一点其中正确的是( )A .①②③④B .②②③④C .③④D .④ 【答案】D【分析】根据数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数可得答案.【解析】①规定了原点、正方向和单位长度的直线是数轴,故原说法错误;②数轴上两个不同的点可以表示两个不同的有理数,故原说法错误; ③有理数1100-在数轴上可以表示出来,故原说法错误; ④任何一个有理数都可以在数轴上找到与它对应的唯一点,说法正确;故选:D .【点睛】此题主要考查了数轴,关键是掌握数轴的概念.4.(2021·浙江省台州学院附属中学七年级期中)下列说法中:①0是最小的整数;②有理数不是正数就是负数;③非负数就是正数;④整数和分数统称有理数,其中正确的是( )A .①B .②C .③D .④【答案】D【分析】根据有理数的分类依此作出判断,即可得出答案.【详解】解:①、0是最小的整数,说法错误,因为整数有正、负、0之分;②、一个有理数不是正数就是负数,说法错误,0既不是正数也不是负数;③、非负数指的是正数和0,说法错误;④、整数和分数统称有理数,说法正确;故选:D .【点睛】本题考查了有理数的分类以及正数负数的有关概念,正确理解有理数的分类是解题的关键. 5.(2021·山东潍坊市·九年级一模)如图,数轴上的A ,B ,C 三点所表示的数分别为a ,b ,c ,且原点为O ,根据图中各点位置,下列数值最大的是( )A .aB .bC .cD .b - 【答案】D【分析】根据数轴,确定a ,b ,c 的属性,进行绝对值的化简,利用实数大小比较原则判断即可.【详解】根据题意,得b <c <0<a ,且|b |>|c |>|a |>c >b ,∵b <0∴|b |=-b ,|a|=a,∴-b >|c |>a >c >b ,∴-b 最大,故选D .【点睛】本题考查了数轴,绝对值,绝对值的化简,有理数的大小比较,熟练掌握绝对值及其化简,灵活运用有理数大小比较的基本原则是解题的关键.6.(2021·广西南宁市·南宁三中七年级期中)若|2|2a a -=-,则a 的范围( )A .2a ≤B .2a >C .2a <D .2a ≥ 【答案】A【分析】利用绝对值的意义得到20a -≤,然后解不等式即可. 【详解】解:∵22a a -=-,∴20a -≤,∴2a ≤.故选:A .【点睛】本题考查了绝对值的化简,熟练掌握绝对值分类化简的标准是解题的关键.7.(2020·山东济南市·七年级期中)如图,把半径为1的圆放到数轴上,圆上一点A 与表示1的点重合,圆沿着数轴正方向滚动一周,此时点A 表示的数是( )A .πB .2π+1C .2πD .2π﹣1【答案】B 【分析】首先计算出圆的周长,然后可得答案.【详解】解:∵圆的半径为1,∴圆的周长为:2π,∵点A 与表示1的点重合,∴圆沿着数轴正方向滚动一周,此时点A 表示的数是2π+1,故选:B .【点睛】本题主要考查数轴与有理数,掌握圆的周长公式是关键.8.(2021·广西贵港市·七年级期末)若a ,b ,c ,m 都是不为零的有理数,且23++=a b c m ,2a b c m ++=,则b 与c 的关系是( )A .互为相反数B .互为倒数C .相等D .无法确定 【答案】A【分析】由题可得232a b c a b c ++=++,则可得到b 与c 的关系,即可得到答案.【详解】,,,a b c m 为不为零的有理数 2a b c m ++=,2a b c m ++=∴232a b c a b c ++=++∴ 0b c +=∴,b c 互为相反数故选:A .【点睛】本题考查了代数式的换算,相反数的性质,熟练掌握是解题关键.9.(2021·山东淄博市·)如图,数轴上的单位长度为1,有三个点A 、B 、C ,若点A 、C 表示的数互为相反数,则图中点B 对应的数是( )A .-1B .0C .1D .3【答案】C【分析】根据点A 、C 表示的数互为相反数得到数轴原点的位置,读出点B表示的数即可求解.【详解】解:根据点A 、C 表示的数互为相反数,可得图中点D 为数轴原点,,∴点B 对应的数是1,故选:C .【点睛】本题考查数轴上表示的数,根据相反数在数轴上的位置确定原点的位置是解题的关键. 10.(2021·河北沧州市·七年级期末)a ,b 是有理数,它们在数轴上的位置如图所示.把a ,b ,﹣a ,﹣b 按照从小到大的顺序排列,正确的是( )A .b a a b <<-<-B .a b b a -<<-<C .b a a b <-<<-D .b a a b -<-<<【答案】C【分析】根据a 、b 在数轴上的位置可得a -、b -在数轴上的位置,进而可得答案.【详解】解:根据题意可得:a 、a -、b 、b -在数轴上的位置如图所示:所以把a 、a -、b 、b -按照从小到大的顺序排列为:b a a b <-<<-.故选择:C .【点睛】本题考查了数轴和有理数的大小比较,属于常考题型,正确理解题意、掌握解答的方法是解题的关键.11.(2021·黑龙江大庆市·中考真题)下列说法正确的是( )A .||x x <B .若|1|2x -+取最小值,则0x =C .若11x y >>>-,则||||x y <D .若|1|0x +≤,则1x =-【答案】D【分析】根据绝对值的定义和绝对值的非负性逐一分析判定即可.【详解】解:A .当0x =时,||=x x ,故该项错误;B .∵10x -≥,∴当1x =时|1|2x -+取最小值,故该项错误;C .∵11x y >>>-,∴1x >,1y <,∴||||x y ,故该项错误;D .∵|1|0x +≤且|1|0x +≥,∴|1|0x +=,∴1x =-,故该项正确;故选:D .【点睛】本题考查绝对值,掌握绝对值的定义和绝对值的非负性是解题的关键.12.(2020·浙江七年级期中)若不等式|4||2||1|||x x x x a -+-+-+≥,对一切实数x 都成立,则a 的取值范围是( )A .5a <B .5a ≤C .5a ≥D .5a > 【答案】B【分析】先得出代数式|4||2||1|||x x x x -+-+-+的意义,从而得出结论.【详解】解:由数轴知,|4||2||1|||x x x x -+-+-+表示x 到4,2,1,0这四个点的距离之和. 当1≤x ≤2时,距离之和最小,此时|4||2||1|||x x x x -+-+-+=5,即不等式|4||2||1|||x x x x -+-+-+≥5对一切数x 都成立,∴a ≤5,故选B .【点睛】本题考查绝对值的意义,解题的关键是学会利用数形结合的思想解决问题.二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在横线上) 13.(2020·浙江七年级期末)如图,数轴的单位长度为1,点A ,B 表示的数互为相反数,若数轴上有一点C 到点B 的距离为8个单位,则点C 表示的数是__________.【答案】11或-5【分析】由点A 、B 在数轴上的位置,点A ,B 表示的数互为相反数,可求出点A 、B 所表示的数,再利用数轴上两点之间的距离公式求出结果即可.【详解】解:由点A 、B 在数轴上的位置,得AB =6,∵点A ,B 表示的数互为相反数,∴点A 表示的数为-3,点B 表示的数为3,设点C 表示的数为x ,则|x -3|=8,解得x =11或-5.故答案为:11或-5.【点睛】本题考查数轴,掌握数轴上两点之间距离公式是正确解答的关键.14.(2021·宜昌市第九中学七年级期中)化简: ()3⎡⎤--+⎣⎦ =______; ()7⎡⎤+-+=⎣⎦ _______;-(-6)的相反数为___.【答案】3 -7 -6【分析】根据去多重括号的方法求解即可.【详解】解:()3⎡⎤--+⎣⎦=-(-3)=3;()7+(7)7⎡⎤+-+=-=-⎣⎦∵-(-6)=6,6的相反数是-6,∴-(-6)的相反数是-6,故答案为:3;-7;-6.【点睛】本题考查了去多重括号及相反数,理解相反数的意义是解题关键.15.(2020·浙江)在化肥袋上我们经常看到(500.2)kg ±的字样,这说明这种装化肥最重的比最轻的重_______kg .【答案】0.4【分析】首先理解±0.2表示在标准质量50kg 的基础上最多多0.2kg 和最少少0.2,从而计算结果.【详解】解:由题意可知:最轻的化肥每袋为50-0.2=49.8kg ,最重的每袋为50+0.2=50.2kg .所以最重的比最轻的重50.2-49.8=0.4kg .故答案为:0.4.【点睛】本题主要考查正负数的意义,用正数表示其中一种意义的量,另一种意义相反的量用负数表示,±0.2表示在标准的基础上多出和少0.2.16.(2020·四川成都七中七年级期中)有六个数:5,0,132,0.3-,14-,π-,其中分数有a 个,非负整数有b 个,有理数有c 个,则a b c +-=______.【答案】0 【分析】根据分数、非负整数和有理数的定义得到a ,b ,c 的值,即可求解. 【详解】解:分数有132,0.3-,14-,∴3a =,非负整数有0,5,∴2b =, 有理数有5,0,132,0.3-,14-,∴5c =,∴3250a b c +-=+-=,故答案为:0. 【点睛】本题考查有理数的定义,掌握分数、非负整数和有理数的定义是解题的关键.17.(2021·山东七年级月考)若34a +与26b -互为相反数,则46b a +的值为________________.【答案】4【分析】根据相反数的定义求解即可.【详解】解:由题意可得出,34(26)0a b ++-=,∴322a b +=∴46224b a +=⨯=.故答案为:4.【点睛】本题考查的知识点是相反数的定义以及求代数式的值,利用已知条件得出322a b +=是解此题的关键.18.(2021·宜兴外国语学校七年级月考)用“⇒”与“⇐”表示一种法则:(a ⇒b )=﹣b ,(a ⇐b )=﹣a ,如(2⇒3)=﹣3,则(2017⇒2018)⇐ (2016⇒2015)=__________【答案】2018.【分析】根据题意,(a ⇒b )=-b ,(a ⇐b )=-a ,可知(2017⇒2018)=-2018,(2016⇒2015)=-2015,再计算(-2018⇐-2015)即可.【详解】解:∵(a ⇒b )=-b ,(a ⇐b )=-a ,∴(2017⇒2018)⇐(2016⇒2015)=(-2018⇐-2015)=2018.故答案为:2018.【点睛】本题这是一种新定义问题,间接考查了相反数的概念,一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.解题的关键是根据题意掌握规律.三、解答题(本大题共6小题,共46分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(2021·江西宜春市·七年级期末)已知有理数a ,b 在数轴上对应的点如图所示.(1)当0.5a =, 2.5b =-时,求1a b a b b b -++--+的值;(2)化简:1a b a b b b -++--+.【答案】(1)1;(2)1【分析】(1)先代入数值,再根据绝对值的代数意义化简求解即可;(2)根据绝对值的代数意义、去括号、合并即可得到结果.【详解】(1)当0.5a =, 2.5b =-时原式()()0.5 2.50.5 2.5 2.5 2.51=--++-----+32 2.5 1.51=+--=(2)根据如图所示数轴上点的位置可知:1b <-,01a <<∴0a b ->,0a b +<,0b <,10b +<,原式()()()1a b a b b b =--+--++1a b a b b b =---+++1=【点睛】此题考查了整式的加减、数轴、以及绝对值,解题的关键是熟练掌握各自的定义.20.(2021·河南南阳市·七年级期中)把下列有理数填入相应的数集内:3.5-,0.2-,34,0,23-,1.07,5212-,10,19- (1)正数集合{ …}(2)负数集合{ …}(3)整数集合{ …}(4)分数集合{ …}【答案】(1)34,1.07,10;(2) 3.5-,0.2-,23-,5212-,19-;(3)0,10,19-;(4) 3.5-,0.2-,34,23-,1.07,5212- 【分析】根据有理数的分类方法解答即可.【详解】解:(1)正数集合{34,1.07,10, …}; (2)负数集合{ 3.5-,0.2-,23-,5212-,19-,…}; (3)整数集合{0,10,19-,…};(4)分数集合{ 3.5-,0.2-,34,23-,1.07,5212-,…}. 【点睛】本题考查了有理数的分类,熟练掌握有理数的两种分类方式是解答本题的关键. 有理数可分为整数和分数,整数分正整数,零和负整数;分数分正分数和负分数.有理数也可分为正有理数,零和负有理数,正有理数分为正整数和正分数,负有理数分为负整数和负分数.21.(2021·渠县三江中学七年级月考)一次体育课,老师对七年级男生进行了100米赛跑的测试,以跑13秒为标准,超过标准时间用正数表示,不足标准时间用负数表示,第一小组8人的成绩如下:+0.2,-0.3,-0.4,0,0.1,-0.1,-0.5,1.(1)这8名同学实际各跑了多长时间?(2)这个小组的达标率是多少?【答案】(1)这8名同学实际各跑了分别为:13.2秒,12.7秒,12.6秒,13秒,13.1秒,12.9秒,12.5秒,14秒;(2)62.5%【分析】(1)根据已知条件直接列出算式即可.(2)根据(1)即可知达标人数,然后用达标人数除以总人数即可.【详解】(1)根据题意13+0.2=13.2(秒)、13-0.3=12.7(秒)、13-0.4=12.6(秒)、13+0=13(秒)、13+0.1=13.1(秒)、13-0.1=12.9(秒)、13-0.5=12.5(秒)、13+1=14(秒).这8名同学实际各跑了分别为:13.2秒,12.7秒,12.6秒,13秒,13.1秒,12.9秒,12.5秒,14秒.(2)根据(1)可知有5人达标,所以达标率为:5÷8=0.625=62.5%.、【点睛】本题考察了正数和负数,解题关键是理解“正”、“负”的相对性,“正”代表超出标准时间,“负”则相反为不足标准时间.22.(2020·沙坪坝区·重庆一中七年级月考)将有理数﹣5,0.4,0,﹣214,﹣412表示在数轴上,并用“<”连接各数.【答案】见解析,11 54200.424-<-<-<<【分析】先把各数在数轴上表示出来,再从左到右用“<”连接起来即可.【详解】解:如图所示:故1154200.424-<-<-<<.【点睛】本题主要考查数轴及有理数的大小比较,熟练掌握数轴及有理数的大小比较是解题的关键.23.(2021·广东广州市·七年级期末)如图,已知数轴上A、B两点所表示的数分别为﹣2和6(1)求线段AB的长;(2)已知点P为数轴上点A左侧的一个动点,且M为PA的中点,N为PB的中点.请你画出图形,并探究MN 的长度是否发生改变?若不变,求出线段MN 的长;若改变,请说明理由.【答案】(1)8;(2)见解析;MN 的长度不会发生改变,线段MN =4.【分析】(1)数轴上两点之间的距离等于较大数与较小数的差;(2)根据中点的意义,利用线段的和差可得出答案.【详解】解:(1)AB =|﹣2﹣6|=8,答:AB 的长为8;(2)MN 的长度不会发生改变,线段MN =4,理由如下:如图,因为M 为PA 的中点,N 为PB 的中点,所以MA =MP =12PA ,NP =NB =12PB , 所以MN =NP ﹣MP =12PB ﹣12PA =12(PB ﹣PA )=12AB =12×8=4. 【点睛】本题考查了数轴上两点之间的距离,数轴上线段中点的意义,熟练掌握两点间距离计算方法,灵活运用中点的意义是解题的关键.24.(2020·浙江杭州市·七年级期末)阅读与写作:一个数学问题,在特定的题设下,有时其结论并不唯一,因而我们需要对这一问题进行必要的分类,将一个数学问题根据题设分为有限的若干种情况,在每一种情况中分别求解,最后再将各种情况下得到的结果进行归纳综合,这种解决问题的思维方法在数学上称为“分类讨论” 例如在解方程32x +=时,我们就可以利用这种思维方式来解决.当30x +≥时,原方程可化为32x +=,解得1x =-;当30x +<时,原方程可化为32x +=-,解得5x =-.所以原方程的解是1x =-或5x =-. (1)请你用这种思维方式解方程3240x --=.(2)围绕“分类讨论”这一主题撰写一篇数学小文章,题目自拟.(要求:书写端正,字数限于100字内.)【答案】(1)2x =或23x =-;(2)见解析 【分析】(1)分320x -≥,320x -<两种情况,分别化简方程求解,最后合并即可;(2)根据“分类讨论”的意义书写即可.【详解】解:(1)当320x -≥时,原方程可化为3240x --=,解得2x =;当320x -<时,原方程可化为()3240x --=-,解得23x =-.所以原方程的解是2x =或23x =-.(2)分类讨论是在解决一个复杂问题时,将讨论的对象分成若干相对简单的情况,然后对各种情况逐个讨论,使问题得以解决.分类讨论思想是生活中普遍使用的分析解决问题的思想,是为了简化问题,分类时要做到不重不漏.【点睛】本题考查了解绝对值方程,解题的关键是理解“分类讨论”的意义.25.(2021·浙江七年级期中)定义:若A ,B ,C 为数轴上三点,若点C 到点A 的距离是点C 到点B 的距离2倍,我们就称点C 是[],A B 的美好点.例如;如图1,点A 表示的数为1-,点B 表示的数为2.表示1的点C 到点A 的距离是2,到点B 的距离是1,那么点C 是[,]A B 的美好点;又如,表示0的点D 到点A 的距离是1,到点B 的距高是2,那么点D 就不是[,]A B 的美好点,但点D 是[,]B A 的美好点.如图2,M ,N 为数轴上两点,点M 所表示的数为7-,点N 所表示的数为2.(1)点E ,F ,G 表示的数分别是3-,6.5,11,其中是[,]M N 美好点的是________;写出[,]N M 美好点H 所表示的数是___________.(2)现有一只电子蚂蚁P 从点N 开始出发,以2个单位每秒的速度向左运动.当t 为何值时,点P 恰好为M 和N 的美好点?【答案】(1)G ,-4或-16;(2)1.5或3或9【分析】(1)根据美好点的定义,结合图2,直观考察点E ,F ,G 到点M ,N 的距离,只有点G 符合条件.结合图2,根据美好点的定义,在数轴上寻找到点N 的距离是到点M 的距离2倍的点,在点的移动过程中注意到两个点的距离的变化.(2)根据美好点的定义,分情况分别确定P 点的位置,进而可确定t 的值.【详解】解:(1)根据美好点的定义,结合图2,直观考察点E ,F ,G 到点M ,N 的距离,只有点G 符合条件,故答案是:G .结合图2,根据美好点的定义,在数轴上寻找到点N 的距离是到点M 的距离2倍的点,点N 的右侧不存在满足条件的点,点M 和N 之间靠近点M 一侧应该有满足条件的点,进而可以确定-4符合条件.点M 的左侧距离点M 的距离等于点M 和点N 的距离的点符合条件,进而可得符合条件的点是-16.故答案是:-4或-16.(2)根据美好点的定义,P ,M 和N 中恰有一个点为其余两点的美好点分6种情况,第一情况:当P 为【M ,N 】的美好点,点P 在M ,N 之间,如图1,当MP =2PN 时,PN =3,点P 对应的数为2-3=-1,因此t =1.5秒;第二种情况,当P 为【N ,M 】的美好点,点P 在M ,N 之间,如图2,当2PM =PN 时,NP =6,点P 对应的数为2-6=-4,因此t =3秒;第三种情况,P 为【N ,M 】的美好点,点P 在M 左侧,如图3,当PN =2MN 时,NP =18,点P 对应的数为2-18=-16,因此t =9秒;综上所述,t 的值为:1.5或3或9.【点睛】本题考查实数与数轴、美好点的定义等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考创新题目.26.(2020·浙江杭州市·七年级期末)阅读绝对值拓展材料:a 表示数a 在数轴上的对应点与原点的距离如:5表示5在数轴上的对应点到原点的距离而550=-,即50-表示5、0在数轴上对应的两点之间的距离,类似的,有:()5353+=--表示5、3-在数轴上对应的两点之间的距离.一般地,点A 、B 在数轴上分别表示有理数a 、b ,那么A 、B 之间的距离可表示为a b -.回答下列问题:(1)数轴上表示2和5的两点之间的距离是 ,数轴上表示1和3-的两点之间的距离是 ; (2)数轴上表示x 和1-的两点A 和B 之间的距离是 ,如果A 、B 两点之间的距离为2,那么x = .(3)2x +可以理解为数轴上表示x 和 的两点之间的距离.(4)23x x -+-可以理解为数轴上表示x 的点到表示 和 这两点的距离之和. 21x x ++-可以理解为数轴上表示x 的点到表示 和 这两点的距离之和.。

七年级上册有理数章末练习卷(Word版 含解析)

七年级上册有理数章末练习卷(Word版 含解析)

一、初一数学有理数解答题压轴题精选(难)1.如图,为原点,数轴上两点所对应的数分别为,且满足关于的整式与之和是是单项式,动点以每秒个单位长度的速度从点向终点运动.(1)求的值.(2)当时,求点的运动时间的值.(3)当点开始运动时,点也同时以每秒个单位长度的速度从点向终点运动,若,求的长.【答案】(1)解:因为m、n满足关于x、y的整式-x41+m y n+60与2xy3n之和是单项式所以所以m=-40,n=30.(2)解:因为A、B所对应的数分别为-40和30,所以AB=70,AO=40,BO=30,当点P在O的左侧时:则PA+PO=AO=40,因为PB-(PA+PO)=10, PB=AB-AP=70-4t所以70-4t-40=10所以t=5.当点P在O的右侧时:因为PB<PA所以PB-(PA+PO)<0,不合题意,舍去(3)解:①如图1,当点P在点Q左侧时,因为AP=4t,BQ=2t,AB=70所以PQ=AB-(AP+BQ)=70-6t又因为PQ= AB=35所以70-6t=35所以t= ,AP= = ,②如图2,当点P在点Q右侧时,因为AP=4t,BQ=2t,AB=70,所以PQ=(AP+BQ)-AB=6t-70,又因为PQ= AB=35所以6t-70=35所以t=所以AP= =70.【解析】【分析】(1)根据单项式的次数相同,列方程即可得到答案;(2)分情况讨论:当点P在O的左侧时:当点P在O的右侧时.即可得到答案.(3)结合题意分别计算:①如图1,当点P在点Q左侧时,如图2,当点P在点Q右侧时.2.如图,已知数轴上点A表示的数为-3,B是数轴上位于点A右侧一点,且AB=12.动点P从点A出发,以每秒2个单位长度的速度沿数轴向点B方向匀速运动,设运动时间为t秒.(1)数轴上点B表示的数为________;点P表示的数为________(用含t的代数式表示). (2)动点Q从点B出发,以每秒1个单位长度的速度沿数轴向点A方向匀速运动;点P、点Q同时出发,当点P与点Q重合后,点P马上改变方向,与点Q继续向点A方向匀速运动(点P、点Q在运动过程中,速度始终保持不变);当点P到达A点时,P、Q停止运动.设运动时间为t秒.①当点P与点Q重合时,求t的值,并求出此时点P表示的数.②当点P是线段AQ的三等分点时,求t的值.【答案】(1)9;-3+2t(2)解:①根据题意,得:(1+2)t=12,解得:t=4,∴-3+2t=-3+2×4=5,答:当t=4时,点P与点Q重合,此时点P表示的数为5;②P与Q重合前:当2AP=PQ时,有2t+4t+t=12,解得t= ;当AP=2PQ时,有2t+t+t=12,解得t=3;P与Q重合后:当AP=2PQ时,有2(8-t)=2(t-4),解得t=6;当2AP=PQ时,有4(8-t)=t-4,解得t= ;综上所述,当t= 秒或3秒或6秒或秒时,点P是线段AQ的三等分点【解析】【解答】解:(1)由题意知,点B表示的数是-3+12=9,点P表示的数是-3+2t,故答案为:9,-3+2t;【分析】(1)根据数轴上两点间的距离等于两坐标之差的绝对值可求得点B所表示的数;根据路程=速度×时间可得点P运动的距离,再根据平移的点的坐标的性质可得点P表示的数;(2)①由题意可列方程求解;②分两种情况讨论求解:P与Q重合前:当2AP=PQ时,可得关于t的方程求解;当AP=2PQ时,可得关于t的方程求解;P与Q重合后:当AP=2PQ时,可得关于t的方程求解;当2AP=PQ时,可得关于t的方程求解。

人教版七年级数学上册《第1章有理数》期末复习综合练习题(附答案)

人教版七年级数学上册《第1章有理数》期末复习综合练习题(附答案)

人教版七年级数学上册《第1章有理数》期末复习综合练习题(附答案)一.选择题1.若气温上升2℃记作+2℃,则气温下降3℃记作()A.﹣2℃B.+2℃C.﹣3℃D.+3℃2.一个数的相反数是它本身,则该数为()A.0B.1C.﹣1D.不存在3.根据世界卫生组织的统计,截止10月28日,全球新冠确诊病例累计超过4430万,用科学记数法表示这一数据是()A.4.43×107B.0.443×108C.44.3×106D.4.43×1084.下列各组的两个数中,运算后的结果相等的是()A.23和32B.﹣33和(﹣3)3C.﹣22和(﹣2)2D.﹣|﹣2|和|﹣2|5.把算式:(﹣5)﹣(﹣4)+(﹣7)﹣(+2)写成省略括号的形式,结果正确的是()A.﹣5﹣4+7﹣2B.5+4﹣7﹣2C.﹣5+4﹣7﹣2D.﹣5+4+7﹣26.下列各数在数轴上所对应的点与原点的距离最远的是()A.2B.1C.﹣1.5D.﹣37.下列各式比较大小正确的是()A.﹣<﹣B.﹣100>0.1C.|﹣|<D.|﹣7|>|﹣8|8.在数学课上,老师让甲、乙、丙、丁,四位同学分别做了一道有理数运算题,你认为做对的同学是()甲:9﹣32÷8=0÷8=0乙:24﹣(4×32)=24﹣4×6=0丙:(36﹣12)÷=36×﹣12×=16丁:(﹣3)2÷×3=9÷1=9A.甲B.乙C.丙D.丁9.已知a、b、c大小如图所示,则的值为()A.1B.﹣1C.±1D.010.等边△ABC在数轴上的位置如图所示,点A,C对应的数分别是0和﹣1,若△ABC绕顶点A沿顺时针方向连续翻转,翻转一次后点B对应的数为1,则翻转2021次后点B对应的数是()A.不对应任何数B.2019C.2020D.2021二.填空题11.的倒数等于.12.用四舍五入法将0.00519精确到千分位的近似数是.13.101﹣102+103﹣104+…+199﹣200=.14.用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=ab2+2ab+a,如1☆3=1×32+2×1×3+1=16.则(﹣2)☆3的值为.15.已知a<b,且|a|=6,|b|=3,则a+b的值为.三.解答题16.计算:(1)13+(﹣15)﹣(﹣23).(2)﹣17+(﹣33)﹣10﹣(﹣16).17.计算:(1)﹣14﹣(﹣2)3÷4×[5﹣(﹣3)2];(2).18.(6分)已知|a﹣2|与(b+2)2互为相反数,c、d互为倒数,x的绝对值为4,求的值.19.淇淇在计算:时,步骤如下:解:原式=﹣2022﹣(﹣6)+6÷﹣6………………①=﹣2022+6+12﹣18………………………②=﹣2048…………………………………③(1)淇淇的计算过程中开始出现错误的步骤是;(填序号)(2)请给出正确的解题过程.20.已知点A、B、C、D、E在数轴上分别对应下列各数:0,|﹣3.5|,(﹣1)2,﹣(+4),﹣2.(1)如图所示,在数轴上标出表示其余各数的点.(标字母)(2)用“<”号把这些数连接起来.21.小虫从某点O出发在一直线上来回爬行,假定向右爬行路程记为正,向左爬行的路程记为负,爬过的路程依次为(单位:厘米):+5,﹣3,+10,﹣8,﹣6,+12,﹣10.问:(1)小虫是否回到原点O?(2)小虫离开出发点O最远是多少厘米?(3)在爬行过程中,如果每爬行1厘米奖励一粒芝麻,则小虫共可得到多少粒芝麻?22.定义一种新的运算:x★y=(x+2)×(y+2).(1)计算(﹣3)★(﹣4)与(﹣4)★(﹣3),此运算满足乘法交换律吗?(2)计算[(﹣3★(4)]★(﹣5)与(﹣3)★[(﹣4)★(﹣5)],此运算满足乘法结合律吗?23.已知|a|=5,|b|=2,回答下列问题:(1)由|a|=5,|b|=2,可得a=,b=;(2)若a+b>0,求a﹣b的值;(3)若ab<0,求|a+b|的值.24.如图,半径为1个单位长度的圆形纸片上有一点Q与数轴上的原点重合.(提示:圆的周长C=2πr,π取值为3.14)(1)把圆形纸片沿数轴向左滚动1周,点Q到达数轴上点A的位置,则点A表示的数是;(2)圆形纸片在数轴上向右滚动的周数记为正数,圆形纸片在数轴上向左滚动的周数记为负数,依次运动周数记录如下:+2,﹣1,﹣5,+4,+3,﹣2.当圆形纸片结束运动时,Q点运动的路程共是多少?此时点Q所表示的数是多少?参考答案一.选择题1.解:∵气温上升2℃记作+2℃,∴气温下降3℃记作﹣3℃.故选:C.2.解:∵0的相反数是0,∴一个数的相反数是它本身,则该数为0.故选:A.3.解:4430万=44300000=4.43×107.故选:A.4.解:A.23=8,32=9,∴23≠32,故此选项不符合题意;B.﹣33=﹣27,(﹣3)3=﹣27,∴﹣33=(﹣3)3,故此选项符合题意;C.﹣22=﹣4,(﹣2)2=4,∴﹣22≠(﹣2)2,故此选项不符合题意;D.﹣|﹣2|=﹣2,|﹣2|=2,∴﹣|﹣2|≠|﹣2|,故此选项不符合题意;故选:B.5.解:(﹣5)﹣(﹣4)+(﹣7)﹣(+2)=﹣5+4﹣7﹣2=﹣10故选:C.6.解:A.2到原点的距离是2个长度单位,不符合题意;B.1到原点的距离是1个长度单位,不符合题意;C.﹣1.5到原点的距离是1.5个长度单位,不符合题意;D.﹣3到原点的距离是3个长度单位,符合题意;∴在数轴上所对应的点与原点的距离最远的点表示的数是﹣3.故选:D.7.解:A.∵|﹣|=,|﹣|=,而,∴,故本选项不合题意;B.﹣100<0.1,故本选项不合题意;C.|﹣|==,而,∴,故本选项符合题意;D.∵|﹣7|=7,|﹣8|=8,∴|﹣7|<|﹣8|,故本选项不合题意;故选:C.8.解:甲:9﹣32÷8=9﹣9÷8=7,原来没有做对;乙:24﹣(4×32)=24﹣4×9=﹣12,原来没有做对;丙:(36﹣12)÷=36×﹣12×=16,做对了;丁:(﹣3)2÷×3=9÷×3=81,原来没有做对.故选:C.9.解:根据图示,知a<0<b<c,∴=++=﹣1+1+1=1.故选:A.10.解:由题意得:2021÷3=673•2,所以:翻转2021次后点B对应的数是2020,故选:C.二.填空题11.解:的倒数是:2.故答案为:2.12.解:将0.00519精确到千分位的近似数是0.005.故答案为:0.005.13.解:原式=(﹣1)+(﹣1)+…+(﹣1)=﹣50,故答案为:﹣5014.解:∵a☆b=ab2+2ab+a,∴(﹣2)☆3=﹣2×32+2×(﹣2)×3+(﹣2)=﹣18﹣12﹣2=﹣32.15.解:∵|a|=6,|b|=3,∴a=±6,b=±3,∵a<b,∴a=﹣6,b=±3,∴a+b=﹣9或a+b=﹣3,故答案为:﹣9或﹣3.三.解答题16.解:(1)13+(﹣15)﹣(﹣23)=13+(﹣15)+23=21.(2)﹣17+(﹣33)﹣10﹣(﹣16)=﹣17+(﹣33)+(﹣10)+16=﹣44.17.解:(1)原式=﹣1﹣(﹣8)÷4×(5﹣9)=﹣1﹣(﹣8)÷4×(﹣4)=﹣1﹣8÷4×4=﹣1﹣8=﹣9;(2)原式===﹣9+(﹣)×12=﹣9+(﹣13)=﹣22.18.解:由题意得:|a﹣2|+(b+2)2=0,cd=1,x=4或﹣4,则a﹣2=0,b+2=0,解得a=2,b=﹣2,则当x=4时,原式=0+(﹣1﹣1)×4﹣5=﹣8﹣5=﹣13;当x=﹣4时,原式=0+(﹣1﹣1)×(﹣4)﹣5=8﹣5=3.故的值是﹣13或3.19.解:(1)∵(﹣1)2022=1,(﹣2)3=﹣8,6÷(﹣)=6÷=36,∴原式=1﹣(﹣8)+6÷,∴开始出现错误的步骤是①,故答案为:①;(2)原式=1﹣(﹣8)+6÷=1+8+6×6=1+8+36=45.20.解:(1)如图所示:(2)用“<”号把这些数连接起来:﹣(+4)<﹣2<0<(﹣1)2<|﹣3.5|.21.解:(1)(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10)=27+(﹣27)=0,所以,小虫最后能回到出发点O;(2)根据记录,小虫离开出发点O的距离分别为5cm、2cm、12cm、4cm、2cm、10cm、0cm,所以,小虫离开出发点的O最远为12cm;(3)根据记录,小虫共爬行的距离为:5+3+10+8+6+12+10=54(cm),所以,小虫共可得到54粒芝麻.22.解:(1)此运算满足乘法交换律,理由如下:(﹣3)★(﹣4)=(﹣3+2)×(﹣4+2)=(﹣1)×(﹣2)=2;(﹣4)★(﹣3)=(﹣4+2)(﹣3+2)=(﹣2)×(﹣1)=2.故此运算满足乘法交换律.(2)运算不满足乘法结合律,理由如下:[(﹣3)★(﹣4)]★(﹣5)=[(﹣3+2)(﹣4+2)]★(﹣5)=2★(﹣5)=(2+2)(﹣5+2)=4×(﹣3)=﹣12;(﹣3)★[(﹣4)★(﹣5)]=(﹣3)★[(﹣4+2)(﹣5+2)]=(﹣3)★6=(﹣3+2)(6+2)=﹣1×8=﹣8.故此运算不满足乘法结合律.23.解:(1)∵|a|=5,|b|=2,∴a=±5,b=±2.故答案为:±5,±2;(2)∵a+b>0,∴a=5,b=±2,当a=5,b=2时,a﹣b=5﹣2=3;当a=5,b=﹣2时,a﹣b=5﹣(﹣2)=5+2=7;综上,a﹣b=3或7.(3)∵ab<0,∴a=5,b=﹣2或a=﹣5,b=2.当a=5,b=﹣3时,|a+b|=|5﹣2|=3;当a=﹣5,b=3时,|a+b|=|﹣5+2|=3;∴|a+b|=3.24.解:(1)∵2πr=2×3.14×1=6.28,∴点A表示的数是﹣6.28,故答案为:﹣6.28;(2)∵|+2|+|﹣1|+|﹣5|+|+4|+|+3|+|﹣2|=17,∴17×2π×1=106.76,∴当圆片结束运动时,Q点运动的路程共有106.76,∵2﹣1﹣5+4+3﹣2=1,∴1×2π×1≈6.28,∴此时点Q所表示的数是6.28.答:当圆片结束运动时,Q点运动的路共是106.76,此时点Q所表示的数是6.28.。

必刷提高练2【第1章《有理数》章节达标检测】(原卷版+解析版)(人教版)

必刷提高练2【第1章《有理数》章节达标检测】(原卷版+解析版)(人教版)

2022-2023学年七年级数学上册考点必刷练精编讲义(人教版)提高第一章《有理数》 章节达标检测考试时间:120分钟 试卷满分:100分姓名:__________ 班级:__________考号:__________第Ⅰ卷(共10题;每题2分,共20分)1.(2分)(2022七上·汇川期末)已知代数式8x ﹣7与6﹣2x 的值互为相反数,那么x 的值等于( ) A .16B .﹣16C .1310D .﹣13102.(2分)(2020七上·仁寿期末)点A 表示数轴上的一个点,将点A 向右移动6个单位,再向左移动4个单位,终点恰好是原点,则点A 表示的数是( ) A .2-B .3-C .0D .1-3.(2分)(2021七上·丽水期末)|-4|的相反数是( ) A .4B .14C .-4D .14-4.(2分)(2021七上·宜宾期末)如图,点A ,B ,C ,D 四个点在数轴上表示的数分别为a ,b ,c ,d ,则下列结论中,错误的是( )A .0a c +<B .0b a ->C .0ac >D .0bd< 5.(2分)(2021七上·南京期末)目前全球新型冠状病毒肺炎疫情防控形势依旧严峻,我们应该坚持“勤洗手,戴口罩,常通风”.一双没有洗过的手,带有各种细菌约75 000万个,将数据75 000用科学记数法表示是( ) A .7.5×103B .75×103C .7.5×104D .7.5×1056.(2分)(2022七上·遵义期末)在数轴上,点M 、N 分别表示数m ,n.则点M 、N 之间的距离为m n - .已知点A ,B ,C ,D 在数轴上分别表示的数为a ,b ,c ,d.且22,1()5a cbcd a a b -=-=-=≠ ,则线段 BD 的长度为( ) A .4.5B .1.5C .6.5或1.5D .4.5或1.57.(2分)(2021七上·长兴期末)如图,已知正方形的边长为24厘米,甲,乙两动点分别从正方形ABCD 的顶点D ,B 同时沿正方形的边开始移动,甲点按顺时针方向环行,乙点按逆时针方向环行,若乙的速度为9厘米/秒,甲的速度为3厘米/秒,当它们运动了2022秒时,它们在正方形边上相遇了( )A .252 次B .253次C .254次D .255次8.(2分)(2021七上·平阳期中)将1,2,3,4...,60这60个自然数,任意分成30组,每组两个数,将每组的两个数中的任意一个数记做a ,另一个数记做b ,代入代数式(|a-b|+a+b)中进行计算,求出结果,30组分别代入后可求出30个结果,则这30个值的和的最大值是( ) A .1365B .1565C .1735D .18309.(2分)(2021七上·江津期中)a ,b ,c 大小关系如图,下列各式①0a b c --<②1b ca ab c++=③0ac b ->④a c a b c b --+=+ ,其中错误的个数为( ).A .1个B .2个C .3个D .4个10.(2分)(2021七上·苏州月考)若a 表示一个有理数,且有|﹣3﹣a|=3+|a|,则a 应该是( ) A .任意一个有理数 B .任意一个正数 C .任意一个负数D .任意一个非负数(共10题;每题2分,共20分)11.(2分)(2021七上·紫金期末)若|a ﹣2020|+|b +2021|=0,则|a +b|= .12.(2分)(2021七上·宜宾期末)有理数a ,b 在数轴上的位置如图所示,化简 a b b a +-- 的结果是 .13.(2分)(2021七上·衡阳期末)比较两数大小: - 67 - 76(用“<”,或“>”,或“=”填空)14.(2分)(2021七上·普陀期末)设a ,b ,c 为不为零的实数,且 0abc > ,那么b a cx a b c=++ ,则x 的值为 . 15.(2分)(2021七上·余姚期末)计算: 34ππ-+-= .16.(2分)(2021七上·云梦期末)一只昆虫从点A 处出发,以每分钟2米的速度在一条直线上运动,它先前进1米,再后退2米,又前进3米,再后退4米,…依此规律继续走下去,则运动1小时时这只昆虫与A 点相距 米.17.(2分)(2021七上·青岛期中)若 0x y z ++= ,且x ,y ,z 均不为零,则 y x zx y z++ 的值为 .18.(2分)(2021七上·苏州期中)如图1,在一条可以折叠的数轴上有点A ,B ,C ,其中点A ,点B 表示的数分别为﹣16和9,现以点C 为折点,将数轴向右对折,点A 对应的点A 1落在B 的右边;如图2,再以点B 为折点,将数轴向左折叠,点A 1对应的点A 2落在B 的左边.若A 2、B 之间的距离为3,则点C 表示的数为 .19.(2分)(2021七上·黔西南期中)若a ,b ,c 为整数,且|a -b|+|c -a|=1,则|c -a|+|a -b|+|b -c|的值为20.(2分)(2020七上·龙山期末)我们知道: 52- 表示5与2的差的绝对值,也可理解为5与2两数在数轴上所对应的两点之间的距离; 52+ 也可以看成 5(2)-- ,表示5与 2- 之差的绝对值,也可理解为数轴上表示5与 2- 两数在数轴上所对应的两点之间的距离事实上,数轴上表示有理数 ,a b 的点 ,A B 的距离均可以用 a b - 来计算.根据以上材料,则使 347x x ++-= 的所有整数x 的和是 .第Ⅱ卷 主观题(共8题;共61分)21.(9分)(2022七上·句容期末)计算: (1)(3分)10(5)(9)--+-(2)(3分)1251631248⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭(3)(3分)20211113269⎛⎫--÷-⨯+- ⎪⎝⎭22.(4分)(2021七上·孝义期中)把以下各数填入表示它所在的数集的集合里:2, 0.3⋅- ,0.1,32-,-100,0, 13- .-,23.(10分)(2021七上·韶关期末)如图,点A,B是数轴上两点,点A表示的数为16AB=.动点P,Q分别从A,B出发,点P以每秒2个单位长度的速度沿数轴向右匀速运动,点Q 20t t>秒.以每秒1个单位长度的速度沿数轴向左匀速运动,设运动时间为()0(1)(1分)数轴上点B表示的数是.(2)(3分)求数轴上点P,Q表示的数(用含t的式子表示).(3)(3分)若点P和Q同时出发,t为何值时,这两点相遇?(4)(3分)若点Q比点P迟2秒钟出发,则点Q出发几秒时,点P和点Q刚好相距5个单位长度?24.(9分)(2021七上·黄埔期末)数轴上两点A、B,A在B左边,原点O是线段AB上的一点,已知AB=4,且OB=3OA.A、B对应的数分别是a、b,点P为数轴上的一动点,其对应的数为x.(1)(1分)a= ,b= ,并在数轴上面标出A、B两点;(2)(3分)若PA=2PB,求x的值;(3)(4分)若点P以每秒2个单位长度的速度从原点O向右运动,同时点A以每秒1个单位长度的速度向左运动,点B以每秒3个单位长度的速度向右运动,设运动时间为t秒.请问在运动过程中,3PB-PA 的值是否随着时间t的变化而改变?若变化,请说明理由若不变,请求其值.25.(6分)如图,数轴上A点表示的数是﹣2,B点表示的数是5,C点表示的数是10.(1)(1分)若要使A、C两点所表示的数是一对相反数,则“原点”表示的数是:.(2)(5分)若此时恰有一只老鼠在B点,一只小猫在C点,老鼠发现小猫后立即以每秒一个单位的速度向点A方向逃跑,小猫随即以每秒两个单位的速度追击.①在小猫未抓住老鼠前,用时间t(秒)的代数式表示老鼠和小猫在移动过程中分别与点A之间的距离;26.(7分)(2021七上·海珠期末)某食品厂从生产的食品中抽出样品20袋,检测每袋的质量是否符合标准,超过的部分用正数表示,不足的部分用负数表示,记录如表:(1)(3分)若每袋标准质量为350克,则这批抽样检测的样品的总质量是多少克?(2)(4分)若该食品的包装袋上标有产品合格要求为“净重350±2克”,则这批样品的合格率为多少?27.(7分)(2020七上·仁寿期末)2020年12月8日,中尼两国共同宣布珠穆朗玛峰的最新测定高度为8848.86米.今有某登山队5名队员在一次登山活动中,以二号高地为基地,开始向海拔距二号高地500米的顶峰冲刺,设他们向上走为正,行程单位:记录如下:180+,33-,75+,25-,40+,55+,42-,150+.(1)(3分)他们最终有没有登上顶峰?如果没有,那么他们离顶峰还差多少米?(2)(4分)登山时,5名队员在登山全程中都使用了氧气瓶,且每人向下行走每米要消耗氧气m 升,向上行走每米还要多消耗0.01升,求他们共消耗了氧气多少升?(用含m 的代数式表示)28.(9分)(2022七上·句容期末)某快递公司规定每件体积不超标的普通小件物品的收费标准如表:例如:寄往省内一件1.6千克的物品,运费总额为: 85(0.50.5)13+⨯+= 元. 寄往省外一件2.3千克的物品,运费总额为: 126(10.5)21+⨯+= 元. (下面问题涉及的寄件按上表收费标准计费)(1)(4分)小明同时寄往省内一件3千克的物品和省外一件2.8千克的物品,各需付运费多少元? (2)(1分)小明寄往省内一件重 ()m n + 千克,其中m 是大于1的正整数,n 为大于0且不超过0.5的小数(即 00.5n <≤ ),则用含字母m 的代数式表示小明这次寄件的运费为 ; (3)(4分)小明一次向省外寄了一件物品,用了36元,你能知道小明这次寄件物品的重量范围吗?2022-2023学年七年级数学上册考点必刷练精编讲义(人教版)提高第一章《有理数》 章节达标检测考试时间:120分钟 试卷满分:100分(共10题;每题2分,共20分)8x ﹣7与6﹣2x 的值互为相反数,那么x 的值等于( ) A .16B .﹣16C .1310D .﹣1310【答案】A【完整解答】根据题意得:(8x ﹣7)+(6﹣2x )=0, 解得:x=16. 故答案为:A.【思路引导】根据互为相反数的两个数的和为0,据此解答即可.2.(2分)(2020七上·仁寿期末)点A 表示数轴上的一个点,将点A 向右移动6个单位,再向左移动4个单位,终点恰好是原点,则点A 表示的数是( ) A .2- B .3-C .0D .1-【答案】A【完整解答】解:设点A 表示的数是x. 依题意,有640x +-=, 解得2x =-, 即点A 表示的数是2-. 故答案为:A.【思路引导】 设点A 表示的数是x ,根据向右移动用加法,向左移动用减法,列方程求解即可.3.(2分)(2021七上·丽水期末)|-4|的相反数是( )A .4B .14C .-4D .14- 【答案】C 【完整解答】解:|-4|=4∴|-4|的相反数为-4.故答案为:C.【思路引导】利用负数的绝对值等于它的相反数,再求出|-4|的相反数.4.(2分)(2021七上·宜宾期末)如图,点A ,B ,C ,D 四个点在数轴上表示的数分别为a ,b ,c ,d ,则下列结论中,错误的是( )A .0a c +<B .0b a ->C .0ac >D .0b d < 【答案】C【完整解答】解:由数轴上点的位置可知: 0a b c d <<<< ,因为 0a c << 且 a c > ,所以 0a c +< ,故 A 正确,不符合题意;因为 0a b << ,所以 0b a -> ,故 B 正确,不符合题意;因为 0a < , 0c > ,所以 0ac < ,故 C 错误,符合题意,因为 0b < , 0d > ,所以0b d < ,故 D 正确,不符合题意. 故答案为:C.【思路引导】根据数轴可得a<b<0<c<d ,且|a|>|c|,据此判断A 、B ;根据有理数的乘法法则可判断C ;根据有理数的除法法则可判断D.5.(2分)(2021七上·南京期末)目前全球新型冠状病毒肺炎疫情防控形势依旧严峻,我们应该坚持“勤洗手,戴口罩,常通风”.一双没有洗过的手,带有各种细菌约75 000万个,将数据75 000用科学记数法表示是( )A .7.5×103B .75×103C .7.5×104D .7.5×105 【答案】C【完整解答】解:将数据75000用科学记数法表示为7.5×104.故答案为:C.【思路引导】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.6.(2分)(2022七上·遵义期末)在数轴上,点M 、N 分别表示数m ,n.则点M 、N 之间的距离为 m n - .已知点A ,B ,C ,D 在数轴上分别表示的数为a ,b ,c ,d.且22,1()5a c b c d a a b -=-=-=≠ ,则线段 BD 的长度为( ) A .4.5B .1.5C .6.5或1.5D .4.5或1.5【答案】C 【完整解答】解:①如图,当 D 在 A 点的右侧时,22,1()5a cbcd a a b -=-=-=≠ 224AB AC a c ∴==-= , 2.5AD =∴4 2.5 1.5BD AB AD =-=-=②如图,当 D 在 A 点的左侧时,22,1()5a cbcd a a b -=-=-=≠ 224AB AC a c ∴==-= , 2.5AD =∴4 2.5 6.5BD AB AD =+=+=综上所述,线段 BD 的长度为6.5或1.5故答案为:C【思路引导】分两种情况:①如图,当 D 在 A 点的右侧时,②如图,当 D 在 A 点的左侧时,据此分别解答即可.7.(2分)(2021七上·长兴期末)如图,已知正方形的边长为24厘米,甲,乙两动点分别从正方形ABCD 的顶点D ,B 同时沿正方形的边开始移动,甲点按顺时针方向环行,乙点按逆时针方向环行,若乙的速度为9厘米/秒,甲的速度为3厘米/秒,当它们运动了2022秒时,它们在正方形边上相遇了( )A .252 次B .253次C .254次D .255次【答案】B【完整解答】解:根据题意可得:第一次相遇所需时间为:2424934+÷+=()()(秒) 从第2此相遇起,相遇路程变成了正方形的周长,也就是24×4=96(厘米)因此,之后每次相遇所需时间为:96938÷+=()(秒)2022-4=2018(秒)20188252......2÷=所以,在第一次相遇后还有252此相遇因此,总共相遇了252+1=253(次)故答案为:B.【思路引导】根据相遇问题的公式求出第一次和第二次之后的相遇时间,再根据周期规律,求解出相遇次数。

最新人教版七年级数学上册单元测试题及答案全册

最新人教版七年级数学上册单元测试题及答案全册

最新人教版七年级数学上册单元测试题及答案全册第一章有理数章末综合检测(时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.有理数-4的相反数是()A.4B.-4C.14D14-2.比较-3,1,-2的大小,下列排序正确的是()A.-3<-2<1B.-2<-3<1C.1<-2<-3D.1<-3<-23.为了市民出行更加方便,某市政府大力发展交通,2016年某市公共交通客运量约为1 608 000 000人次,将1 608 000 000用科学记数法表示为()A.160.8×107B.16.08×108C.1.608×109D.0.160 8×10104.某市一天上午的气温是10 ℃,下午上升了2 ℃,半夜(24时)下降了15 ℃,则半夜的气温是()A.3 ℃B.-3 ℃C.4 ℃D.-2 ℃5.杨梅开始采摘啦!每筐杨梅以5 kg为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图1-1,则4筐杨梅的总质量是()图1-1A.19.7 kgB.19.9 kgC.20.1 kgD.20.3 kg6.-23-的倒数是()A. 32B.32- C.23 D. 23-7.下列运算错误的是()A.-8×2×6=-96B.(-1)2 014+(-1)2 015=0C.-(-3)2=-9D.2÷ 43× 34=28.如图1-2,A,B两点在数轴上表示的数分别为a,b,下列式子成立的是()A.ab>0B.a+b<0C.(b-a)(a+1)>0D.(b-1)(a-1)>09.若|a-1|+(b+3)2=0,则ba=()A.1B.-1C.3D.-310.规定一种新的运算“*”:对于任意有理数x,y满足x*y=x-y+xy.例如,3*2=3-2+3×2=7,则2*1=()A.4B.3C.2D.1二、填空题(每小题4分,共32分)11.一个点从数轴上表示-1的点开始,先向右平移6个单位长度,再向左平移8个单位长度,则此时这个点表示的数是_____.12.已知有理数a,b,c在数轴上的位置如图1-3,且|a|=1,|b|=2,|c|=4,则a-b+c=_____.图1-313.在数-5,1,-3,5,-2中任取三个数相乘,其中最大的积是____,最小的积是_____.14.已知a,b互为相反数,且|a-b|=6,则b-1=____.15.已知|x|=4,|y|=12,且xy<0,则xy的值等于_____.16.将640 000精确到十万位为_______,4.10×105精确到了_____位.17.定义一种新的运算“@”的法则为:x@y=xy-1,则(2@3)@4=______.18.计算:1+2-3-4+5+6-7-8+9+10-11-12+……-2007-2008+2009+2010-2011-2012+2013=______.三、解答题(共58分)19.(8分)如图1-4,一个单位长度表示2,解答下列问题:图1-4(1)若点B与点D所表示的数互为相反数,求点D所表示的数;(2)若点A与点D所表示的数互为相反数,求点D所表示的数;(3)若点B与点F所表示的数互为相反数,求点D所表示的数的相反数.20.(8分)计算:(1)1137(3)() 63412+-÷-+-;(2)-23+(-2)2×(-1)-(-2)4÷(-2)3;(3)11311()() 6841248--+-÷-;×(-12).(4)23292421.(10分)如图1-5,观察图形得1+3+5+7+9+11=()2,由此你能推出从1开始的n个连续奇数之和是多少吗?选择几个n的值,用计算器验证一下.图1-522.(10分)规定一种新的运算:a△b=ab-a-b+1,如3△4=3×4-3-4+1=6,试求(-5)△4的值.23.(10分)从图1-6中最小的数开始,由小到大依次用线段连接各数,并指出你所得图形的名称.图1-624.(12分)某摩托车厂家本周计划每天生产250辆摩托车,由于工厂实行轮休,每天上班人数不一定相等,实际每天生产与计划相比情况如下表:(1)本周六生产了多少辆摩托车?(2)本周总产量与计划相比是增加了还是减少了?具体数量是多少?产量最多的一天比产量最少的一天多生产了多少答案一、1.A 2.A 3.C4.B 解析:根据题意可列算式为10+2-15=12-15=-3 (△).故选B.5.C 解析:(-0.1-0.3+0.2+0.3)+5×4=20.1(kg).故选C.6.B 解析:23-- =23-,23-的倒数为32-.故选B. 7.D 解析:2÷43×34 =2×34×34=98,故D 选项错误.故选D. 8.C 解析:由A ,B 两点在数轴上的位置可知,-1<a <0,b >1,所以ab <0,a +b >0,故A ,B 错误;因为-1<a <0,b >1,所以b -1>0,a +1>0,a -1<0,所以(b -a )(a +1)>0,(b -1)(a -1)<0,故C 正确,D 错误.故选C.9.D 解析:因为|a -1|+(b +3)2=0,所以a -1=0,b +3=0,所以a =1,b =-3,所以ba =(-3)1=-3.故选D.10.B 解析:2*1=2-1+2×1=1+2=3.故选B.二、11. -3 解析:由-1先向右平移6个单位长度到达点A ,再由点A 向左平移8个单位长度到达点B,则此时这个点表示的数是-1+6-8=-3.12. -7 解析:根据a,b,c在数轴上的位置可知b>0,c<0,a<0,再根据|a|=1,|b|=2,|c|=4可求出a,b,c的值,代入a-b+c进行计算即可.13. 75 -30 解析:根据题意知任取的三个数是-5,-3,5时,它们的积最大,是(-5)×(-3)×5=75.任取的三个数是-5,-3,-2时,它们的积最小,是(-5)×(-3)×(-2)=-30.14. 2或-4 解析:由a,b互为相反数,可得a+b=0,得a=-b.由|a-b|=6,得|-b-b|=6,|b|=3,所以b=±3.当b=3时,b-1=2;当b=-3时,b-1=-4.15. -8 解析:先根据xy<0确定xy的符号,再根据绝对值的定义求出x与y的比值即可.16. 6×105千17. 19 解析:根据运算法则x@y=xy-1知,(2@3)@4=(2×3-1)×4-1=19.18. 1 解析:原式=1+(2-3)+(-4+5)+(6-7)+(-8+9)+…+(2 006-2 007)+(-2 008+2 009)+(2 010-2 011)+(-2 012+2 013)=1.三、19.解:(1)因为点B与点D所表示的数互为相反数,且点B与点D之间有4个单位长度,每个单位长度为2,所以可得点D所表示的数为4.(2)因为点A与点D所表示的数互为相反数,且它们之间有5个单位长度,所以点D表示的数为5.(3)因为点B与点F所表示的数互为相反数,且它们之间有6个单位长度,可得C,D中间的点为原点,可得点D表示的数为2,它的相反数为-2.20.解:(1)原式=16+(-3)÷-16=16+3×6=1816.(2)原式=-8+(-4)-16÷(-8)=-8-4+2=-10.(3)原式=-16-18+34-112×(-48)=-16×(-48)-18×(-48)+34×(-48)-112×(-48)=8+6-36+4=-18.(4)原式=30-124×(-12)=30×(-12)-124×(-12)=-360+12=-35912.21.解:6;n2.验证略.22.解:根据题意,得(-5)△4=(-5)×4-(-5)-4+1=-20+5-4+1=-18.23.解:连数顺序为-193→-512→-4.9→-|-4.5|→-4→+(-1)→0→2→|-3|→-(-5)→|-6|→8.所得图形是小轿车.24.解:(1)250-9=241(辆).故本周六生产了241辆摩托车.(2)-5+7-3+4+10-9-25=-21<0,所以本周总产量与计划相比减少了21辆.产量最多的一天为周五,产量最少的一天多生产了35辆.与计划相比减少了21辆.第二章整式的加减章末综合检测(时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.下列式子,不是整式的是( ) A .x y -12 B .37x C .x -11D .02.已知一个单项式的系数是2,次数是3,则这个单项式可以是( ) A .-2xy 2 B .3x 2 C .2xy 3 D .2x 33.如果一个多项式的次数是5,那么这个多项式的任何一项的次数满足( ) A .都小于5 B .都大于5 C .都不小于5 D .都不大于54.下列各组单项式,不是同类项的是( ) A .3x 2y 与-2yx 2 B .2ab 2与-ba 2 C .xy3与5xy D .23a 与32a 5.若单项式2x n y m -n 与单项式3x 3y 2n 的和是5x n y 2n ,则m 与n 的值分别是( ) A .3,9 B .9,9 C .9,3 D .3,3 6.-[x -(y -z )]去括号后应得( )A .-x +y -zB .-x -y +zC .-x -y -zD .-x +y +z 7.A ,B 都是五次多项式,则A -B 一定是( ) A .四次多项式 B .五次多项式 C .十次多项式 D .不高于五次的多项式8.已知a ,b 两数在数轴上对应的点的位置如图2-1,则化简式子|a+b |-|a -2|+|b+2|的结果是( )图2-18A .2a +2bB .2b +3C .2a -3D .-19.已知m -n =100,x+y =-1,则式子(n+x )-(m -y )的值是( )A .99B .101C .-99D .-10110.某商家在甲批发市场以每包m 元的价格购进了40包茶叶,又在乙批发市场以每包n 元(m >n )的价格购进了同样的茶叶60包,如果商家以每包m n +2元的价格卖出这种茶叶,那么卖完后,该商家( ) A .盈利了 B .亏损了 C .不盈不亏 D .盈亏不能确定 二、填空题(每小题4分,共32分)11.在多项式3x 2+πxy 2+9中,次数最高的项的系数是 .12.观察下列单项式:3a 2,5a 5,7a 10,9a 17,11a 26,…,它们是按一定规律排列的,那么这列式子的第n 个单项式是 .13.若多项式x 2-3kxy -3y 2+6xy -8不含xy 项,则k = . 14.写出一个只含有字母x ,y15.如果单项式-xy b +1与a x y -231216.在等式的括号内填上恰当的项,x 2-y 2+8y -4=x 2-( ). 17.已知P =2xy -5x +3,Q=x -3xy -2 且3P +2Q=5恒成立,则x = .18.如图2-2是王明家的楼梯示意图,其水平距离(即AB 的长度)为(2a+b )米,一只蚂蚁从A 点沿着楼梯爬到C 点,共爬了(3a -b )米,则王明家楼梯的竖直高度(即BC 的长度)为 米.图2-2三、解答题(共58分)19.(8分)计算:(1)-x+2(x-2)-(3x+5);(2)3a2b-2[ab2-2(a2b-2ab2)].xy△z△时,不小心把字母y,z的指数用墨水污染了,20.(8分)王佳在抄写单项式-23他只知道这个单项式的次数是5,你能帮助王佳确定这个单项式吗?21.(10分)已知-5x3y|a|-(a-4)x-6是关于x,y的七次三项式,求a2-2a+1的值.22.(10分)化简求值:(1)把a-2b看作一个“字母”,化简多项式-3a(a-2b)5+6b(a-2b)5-5(-a+2b)3,并求当a-2b=-1时的值.(2)已知|x-2|+(y-1)2=0,求x2+(2xy-3y2)-2(x2+xy-2y2)的值.23.(10分)已知成婷的年龄是m岁,乔豆的年龄比成婷的年龄的2倍少4岁,张华的年龄比乔豆的年龄的1还多1岁,求这三位同学的年龄的和.224.(12分)某超市在春节期间实行打折促销活动,规定如下表:一次性购物促销方法少于200元不打折低于500元但不低于200元打九折500元或超过500元其中500元部分打九折,超过500元部分打八折(1)王老师一次性购物600元,他实际付款元.(2)若顾客在该超市一次性购物x元,当x小于500元但不小于200元时,他实际付款元,当x大于或等于500元时,他实际付款元.(用含x的式子表示)(3)如果王老师两次购物货款合计820元,第一次购物的货款为a元(200<a <300),用含a的式子表示两次购物王老师实际付款多少元?答案一、1.C 解析:A.是多项式,故A 不符合题意;B.是单项式,故B 不符合题意;C.不是整式,故C 符合题意;D.是单项式,故D 不符合题意.故选C.2.D 解析:A.-2xy 2的系数是-2,不符合题意;B.3x 2的系数是3,次数是2,不符合题意;C.2xy 3的系数是2,次数是4,不符合题意;D.2x 3的系数是2,次数是3,符合题意.故选D.3.D 解析:因为多项式里次数最高项的次数,就是这个多项式的次数,该多项式的次数是5,所以这个多项式次数最高项的次数是5,所以这个多项式的任何一项的次数满足都不大于5.故选D.4.B 解析:字母相同且相同字母的指数也相同,故A ,C ,D 不符合题意;相同字母的指数不同,不是同类项,故B 符合题意.故选B.5.C 解析:由题意,得n =3,m -n =2n ,所以m =9,n =3.故选C.6.A 解析:-[x -(y -z )]=-(x -y +z )=-x +y -z .故选A.7.D 解析:若五次项是同类项,且系数相等,则A -B 的次数低于五次;否则A -B 的次数一定是五次.故选D.8.A 解析:由图可得-2<b <-1<1<a <2,且|a |>|b |,则|a +b |-|a -2|+|b +2|=a +b +(a -2)+b +2=a +b +a -2+b +2=2a +2b .故选A.9.D 解析:因为m -n =100,x +y =-1,所以原式=n +x -m +y =-(m -n )+(x +y )=-100-1=-101.故选D.10.A 解析:根据题意,得该商家在甲批发市场购进的茶叶的利润为40()m n m +-2=20(m +n )-40m =20n -20m (元);在乙批发市场购进的茶叶的利润为60m +n 2-n =30(m +n )-60n =30m -30n (元).所以该商家的总利润为20n-20m+30m-30n=10m-10n=10(m-n)(元).因为m>n,所以m-n>0,即10(m-n)>0,所以该商家盈利了.故选A.二、11.π 解析:在多项式3x2+πxy2+9中,次数最高的项是πxy2,其系数是π.12.(2n+1)a n2+1 解析:3a2=(2×1+1)a12+1,5a5=(2×2+1)a22+1,7a10=(2×3+1)a32+1,…,所以第n个单项式是(2n+1)a n2+1.13. 2 解析:原式=x2+(-3k+6)xy-3y2-8.因为该多项式不含xy项,所以-3k+6=0,所以k=2.14.x2+2xy+1(答案不唯一)15. 1 解析:由同类项的概念可知a-2=1,b+1=3,所以a=3,b=2,所以(a-b)2 017=(3-2)2 017=1.16.y2-8y+4 解析:括号内的项为x2-(x2-y2+8y-4)=y2-8y+4.17. 0 解析:因为P=2xy-5x+3,Q=x-3xy-2,所以3P+2Q=6xy-15x+9+2x-6xy-4=-13x+5.因为3P+2Q=5恒成立,所以-13x+5=5,解得x=0.即x=0时,3P+2Q=5恒成立.18.(a-2b)解析:根据题意可得,(3a-b)-(2a+b)=3a-b-2a-b=a-2b.故王明家楼梯的竖直高度(即BC的长度)为(a-2b)米.三、19.解:(1)原式=-x+2x-4-3x-5=-2x-9.(2)原式=3a2b-2ab2+4a2b-8ab2=7a2b-10ab2.20.解:由题意知,x的指数是1,则y,z的指数的和是4.当y的指数是1时,z的指数是3;当y的指数是2时,z的指数是2;当y的指数是3时,z的指数是1.所以这个单项式是-23xyz3或-23xy2z2或-23xy3z.21.解:因为-5x3y|a|-(a-4)x-6是关于x,y的七次三项式,所以3+|a|=7,a-4≠0,所以a=-4.故a2-2a+1=(-4)2-2×(-4)+1=25.22.解:(1)-3a(a-2b)5+6b(a-2b)5-5(-a+2b)3=(a-2b)5(-3a+6b)+5(a-2b)3=-3(a-2b)6+5(a-2b)3.当a-2b=-1时,原式=-3×(-1)6+5×(-1)3=-3×1+5×(-1)=-8.(2)原式=x2+2xy-3y2-2x2-2xy+4y2=-x2+y2.因为|x-2|+(y-1)2=0,所以x-2=0,y-1=0,即x=2,y=1,则原式=-4+1=-3.23.解:由题意可知,乔豆的年龄为(2m-4)岁,张华的年龄为12(2m-4)+1岁,则这三位同学的年龄的和为m+(2m-4)+12(2m-4)+1=m+2m-4+(m-2+1)=4m-5(岁).答:这三位同学的年龄的和是(4m-5)岁.24.分析:(1)500元部分按9折付款,剩下的100元按8折付款.(2)当200≤x<500时,他实际付款0.9x元;当x≥500时,他实际付款500×0.9+0.8×(x-500)=0.8x+50 (元).(3)两次购物王老师实际付款=第一次购物款×9折+500×9折+(总购物款-第一次购物款-500)×8折,把相关数值代入即可求解.解:(1)530.500×0.9+(600-500)×0.8=530(元).(2)0.9x 0.8x +50.(3)因为200<a <300,所以第一次实际付款为0.9a 元,第二次付款超过500元,超过500元部分为(820-a -500)元,所以两次购物王老师实际付款为0.9a +0.8(820-a -500)+450=0.1a +706(元).第三章 一元一次方程 章末综合检测(时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.在方程①3x -y =2,②x +1x -2=0 ,④ x 2-2x -3=0中一元一次方程的个数为( )A .1B .2C .3D .42.已知x =1是方程x +2a =-1的解,那么a 的值是( )A .-1B .0C .1D .23.方程|x -3|=6的解是( )A .9B .±9C .3D .9或-34.运用等式的性质变形,正确的是( )A .如果a =b ,那么a +c=b -cB .如果 =a b c c ,那么a =bC .如果a =b ,那么 =a b c cD .如果a =3,那么a 2=3a 2 5.解方程 21101136++-=x x 时,去分母、去括号后,正确的结果是( )A .4x +1-10x +1=1B .4x +2-10x -1=1C .4x +2-10x -1=6D .4x +2-10x +1=66.若4x -5与 212-x 的值相等,则x 的值是( )A .1B .32C .23D .27.马强在计算“41+x ”时,误将“+”看成“-”,结果得12,则41+x 的值应为( )A .29B .53C .67D .708.为了参加全校文艺演出,某年级组建了46人的合唱队和30人的舞蹈队,现根据演出需要,从舞蹈队中抽调了部分同学参加合唱队,使合唱队的人数恰好是舞蹈队的人数的3倍.设从舞蹈队中抽调了x 人参加合唱队,可得正确的方程是( )A .3(46-x )=30+xB .46+x =3(30-x )C .46-3x =30+xD .46-x =3(30-x )9.当x =1时,式子ax 3+bx +1的值是2,则方程 123244+-+=ax bx x 的解是() A .x =13 B .x =-13C .x =1D .x =-1 10.某种商品因换季准备打折出售,如果按原价的七五折出售,将赔25元,而按原价的九折出售,将赚20元,那么这种商品的原价是( )A .500元B .400元C .300元D .200元二、填空题(每小题4分,共32分)11.若关于x 的方程(k -2)x |k -1|+5=0是一元一次方程,则k =______.12.若a -5=b -5,则a =b ,这是根据______.13.在方程3a -5=2a +6的两边同时减去一个多项式可以得到方程的解为a =11,则这个多项式是________.14.已知a ,b 互为相反数,且ab ≠0,则方程ax +b =0的解为________.15.如果2(x +3)的值与3(1-x )的值互为相反数,那么x 等于________.16.在有理数范围内定义运算“△”,其规则为a △b =ab +1,则方程(3△4)△x =2的解为x =________.17.张强在做作业时,不小心将方程中的一个常数污染了看不清楚,被污染的方程是x + 13=13x +△,怎么办呢?张强想了想,便翻看了书后的答案,此方程的解是x =-3,张强很快补好了这个常数,并迅速完成了作业,这个常数是______.18.请你阅读下面的诗句:“栖树一群鸦,鸦数不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”诗句中谈到的树为______棵.三、解答题(共58分)19.(8分)解下列方程:(1)3x (7-x )=18-x (3x -15);(2) 0.170.210.70.03--=x x . 20.(8分)下面是马小哈同学做的一道题:解方程: 212134-+=-x x . 解:①去分母,得4(2x -1)=1-3(x +2).②去括号,得8x -4=1-3x -6.③移项,得8x +3x =1-6+4.④合并同类项,得11x =-1.⑤系数化为1,得x =- 111.(1)上面的解题过程中最早出现错误的步骤(填序号)是________.(2)请正确的解方程: 12224-+-=-x x x . 21.(10分)已知|a -3|+(b +1)2=0,式子22-+b a m 的值比 12b -a +m 的值多1,求m 的值. 22.(10分)当m 为何值时,关于x 的方程4x -m =2x +5的解比2(x -m )=3(x -2)-1的解小2.23.(10分)已知a 是非零整数,关于x 的方程ax |a |-bx 2+x -2=0是一元一次方程,求a +b 的值与方程的解.24.(12分)一艘载重480 t 的船,容积是1 050 m 3,现有甲种货物450 m 3,乙种货物350 t ,而甲种货物每吨的体积为2.5 m 3,乙种货物每立方米0.5 t .问:(1)甲、乙两种货物是否都能装上船?如果不能,请说明理由.(2)为了最大限度地利用船的载质量和容积,两种货物应各装多少吨? 答案一、1.A 解析:①含有两个未知数,不是一元一次方程;②方程左边不是整式,不是一元一次方程;③符合一元一次方程的概念;④未知数的最高次数是2,不是一元一次方程.故选A.2.A 解析:把x =1代入方程,得1+2a =-1,解得a =-1.故选A.3.D 解析:因为|x -3|=6,所以x -3=6或x -3=-6.①x -3=6,解得x =9;②x -3=-6,解得x =-3.故选D.4.B 解析:A.利用等式的性质1,两边都加c ,得到a +c=b +c ,所以A 不正确;B.利用等式的性质2,两边都乘c ,得到a =b ,所以B 正确;C.因为c 可能为0,所以C 不正确;D.因为a 2=9,3a 2=27,所以a 2≠3a 2,所以D 不正确.故选B.5.C 解析:去分母,得2(2x +1)-(10x +1)=6.去括号,得4x +2-10x -1=6.故选C.6.B 解析:根据题意,得4x -5=212-x .去分母,得8x -10=2x -1,解得x =32.故选B. 7.D 解析:根据题意,得41-x =12,解得x =29.所以41+x =41+29=70.故选D.8.B 解析:由题意可知,46+x =3(30-x ).故选B.9.C 解析:把x =1代入ax 3+bx +1=2,得a +b +1=2,即a +b =1.去分母,得2ax +2+2bx -3=x ,整理,得(2a +2b -1)x =1,即[2(a +b )-1]x =1.把a +b =1代入,得x =1.故选C.10.C 解析:设这种商品的原价是x 元.根据题意,得75%x +25=90%x -20,解得x =300.故选C.二、 11. 0 解析:由关于x 的方程(k -2)x |k -1|+5=0是一元一次方程,得|k -1|=1且k -2≠0,解得k =0.12.等式的性质1 解析:在等式的两边同时加5就可以得到a =b .这是根据等式的性质1.13. 2a -5 解析:方程两边都减2a -5,得a =11.14.x =1 解析:因为a ,b 互为相反数,且ab ≠0,所以b a=-1.方程ax +b =0的解为x =-b a=1. 15. 9 解析:根据题意,得2(x +3)+3(1-x )=0.去括号,得2x +6+3-3x =0.移项,合并同类项,得-x =-9,解得x =9. 16.113 解析:根据题中的新定义,得3△4=12+1=13.代入方程(3△4)△x =2,得13△x =2,即13x +1=2,解得x =113. 17.53- 解析:设这个常数是a .把x =-3代入方程,得-3+13=13×(-3)+a ,解得a =53-.故这个常数是53-. 18. 5 解析:设诗句中谈到的树为x 棵,则鸦有(3x +5)只.根据题意,得5(x -1)=3x +5,解得x =5.所以诗句中谈到的树为5棵.三、19.解:(1)去括号,得21x -3x 2=18-3x 2+15x .移项、合并同类项,得6x =18,解得x =3.(2)将分母转化为整数,得=101720173--xx 方程两边同乘21,得30x -7(17-20x )=21.去括号,得30x -119+140x =21.移项、合并同类项,得170x =140.系数化为1,得x =1417. 20.分析:(1)根据等式的性质,解一元一次方程的步骤即可判断;(2)首先去分母,然后去括号、移项、合并同类项、系数化成1即可求解. 解:(1)①.(2)去分母,得4x -2(x -1)=8-(x +2).去括号,得4x -2x +2=8-x -2.移项,得4x -2x +x =8-2-2.合并同类项,得3x =4.系数化为1,得x =43. 21.分析:先根据|a -3|+(b +1)2=0求出a ,b 的值,再根据式子22-+ba m 的值比12b -a +m 的值多1列出方程 22-+b a m =12b -a +m ,把a ,b 的值分别代入求出m 的值.解:因为|a -3|≥0,(b +1)2≥0,且|a -3|+(b +1)2=0,所以a -3=0且b +1=0,解得a =3,b =-1. 由题意,得22-+ba m =12b -a +m +1, 即131252-=--+++m m , 解得m =0.所以m 的值为0.22.分析:先分别解两个方程求得方程的解,再根据关于x 的方程4x -m =2x +5的解比2(x -m )=3(x -2)-1的解小2,即可列方程求得m 的值.解:由4x -m =2x +5,得x =52+m . 由2(x -m )=3(x -2)-1,得x =-2m +7.因为关于x 的方程4x -m =2x +5的解比2(x -m )=3(x -2)-1的解小2, 所以52+m +2=-2m +7, 解得m =1.故当m =1时,关于x 的方程4x -m =2x +5的解比2(x -m )=3(x -2)-1的解小2.23.分析:分情况讨论,(1)a =b ,|a |=2;(2)b =0,|a |=1.首先根据一元一次方程的概念求得a ,b 的值,然后将其代入a +b 并求值,最后将a ,b 的值代入原方程,由一元一次方程的解法解方程.解:(1)a =b ,|a |=2,当a =2时,b =2,此时a +b =4,方程的解为x =2;当a =-2时,b =-2,此时a +b =-4,方程的解为x =2.(2)|a |=1,b =0,解得a =±1,b =0.当a=1时,原方程为x+x-2=0,解得x=1,a+b=1+0=1;当a=-1时,原方程为-x+x-2=0,不存在.24.分析:求出甲种货物和乙种货物的吨数,与载质量进行比较即可作出判断;设装甲种货物x t,乙种货物(480-x)t,通过理解题意可知本题存在等量关系:甲种货物所占的总体积+乙种货物所占的总体积=1 050 m3,根据这个等量关系列出方程求解即可.解:(1)不能.=180(t),理由:甲种货物重4502.5180+350=530>480,所以甲、乙两种货物不能都装上船.x=1 050,(2)设装甲种货物x t,则装乙种货物(480-x)t.依题意有2.5x+4800.5解得x=180.480-x=300.答:为了最大限度地利用船的载质量和容积,应装甲种货物180 t,乙种货物300 t.第四章几何图形初步章末综合检测(时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1. 下列第一行的四个图形,每个图形均是由四种简单的图形a,b,c,d(圆、直线、三角形、长方形)中的两种组成.例如,由a,b组成的图形记作a⊙b,那么由此可知,下列选项的图形,可以记作a⊙d的是()2. 如图4-1,该几何体从正面看得到的平面图形是()图4-13. 对于直线AB、线段CD、射线EF,其中能相交的图是()4. 下列现象:(1)用两个钉子就可以把木条固定在墙上;(2)从A地到B地架设电线,总是尽可能沿着线段AB架设;(3)植树时,只要确定两棵树的位置,就能确定同一行树所在的直线;(4)把弯曲的公路改直,就能缩短路程.其中能用“两点确定一条直线”来解释的现象是()A.(1)(2)B.(1)(3)C.(2)(4)D.(3)(4)5. 如图4-2,AB=12,C为AB的中点,点D在线段AC上,且AD∶CB=1∶3,则线段DB的长度为()图4-2A.4B.6C.8D.106. 已知线段AB和点P,如果PA+PB=AB,那么()A.P为AB的中点B.点P在线段AB上C.点P在线段AB外D.点P在线段AB的延长线上7. 学校、书店、邮局在平面图上的标点分别是A,B,C,书店在学校的正东方向,邮局在学校的南偏西25°,那么平面图上的∠CAB等于()A.25°B.65°C.115°D.155°8. 若∠1=40.4°,∠2=40°4′,则∠1与∠2的关系是()A.∠1=∠2B.∠1>∠2C.∠1<∠2D.以上都不对图4-39. 如图4-3,∠AOB=130°,射线OC是∠AOB内部任意一条射线,OD,OE分别是∠AOC,∠BOC的平分线,下列叙述正确的是()A.∠DOE的度数不能确定B.∠AOD+∠BOE=∠EOC+∠COD=∠DOE=65°C.∠BOE=2∠CODD.∠AOD=1∠EOC210. 如图4-4,OD⊥AB于点O,OC⊥OE,图中与∠AOC互补的角有()图4-4A.1个B.2个C.3个D.4个二、填空题(每小题4分,共32分)11.夏天,快速转动的电扇叶片,给我们一个完整的平面的感觉,说明_____.12.如图4-5,C,D是线段AB上的两点,若AC=4,CD=5,DB=3则图中所有线段长度的和是_____.图4-513.已知∠A=100°,那么∠A的补角是_____.14.时钟上3点40分时分针与时针夹角的度数为____.15.如图4-6,O在直线AB上,∠AOD=90°,∠COE=90°,则图中相等的锐角有_____对.图4-616.已知∠AOC和∠BOD都是直角,如果∠AOB=150°,那么∠COD的度数为_____.17.如图4-7,一个正方体的表面上分别写着连续的6个整数,且每两个相对面上的两个数的和都相等,则这6个整数的和为_____.图4-718.平面内有四个点A,B,C,D,过其中每两个点画直线可以画出的直线有_____.三、解答题(共58分)19.(8分)计算:(1)22°18′×5;(2)90°-57°23′27″.20.(8分)把图4-8的展开图和它们的立体图形连起来.图4-821.(10分)如图4-9,已知线段a,b,c,用圆规和直尺画图.(不用写作法,保留画图痕迹)(1)画线段AB,使得AB=a+b-c;(2)在直线AB外任取一点K,画射线AK和直线BK;(3)反向延长AK至点P,使AP=KA,画线段PB,比较所画图形中线段PA与BK长度的和与线段AB长度的大小.图4-922.(10分)如图4-10,已知线段AB和CD的公共部分BD=13AB=14CD,线段AB,CD的中点E,F之间的距离是10 cm,求线段AB,CD的长度.图4-1023.(10分)如图4-11(1),已知直角三角形两直角边的长分别为3和4,斜边的长为5.(1)试计算该直角三角形斜边上的高;(2)按如图4-11(2),4-11(3),4-11(4)三种情形计算该直角三角形绕某一边旋转得到的立体图形的体积.(结果保留π)图4-1124.(12分)如图4-12,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)请你数一数,图中有多少个小于平角的角;(2)求出∠BOD的度数;(3)请通过计算说明OE是否平分∠BOC.图4-12答案一、1.A 解析:根据题意,知a代表长方形,d代表直线,所以记作a⊙d的图形是长方形和直线的组合.故选A.2. A3. B 解析:A.直线AB与线段CD不能相交,故此选项不符合题意;B.直线AB 与射线EF能相交,故此选项符合题意;C.射线EF与线段CD不能相交,故此选项不符合题意;D.直线AB与射线EF不能相交,故此选项不符合题意.故选B.4. B 解析:(1)用两个钉子就可以把木条固定在墙上,根据是两点确定一条直线;(2)从A地到B地架设电线,总是尽可能沿着线段AB架设,根据是两点之间,线段最短;(3)植树时,只要确定两棵树的位置,就能确定同一行树所在的直线,根据是两点确定一条直线;(4)把弯曲的公路改直,就能缩短路程,根据是两点之间,线段最短.故选B.5. D 解析:因为C为AB的中点,AB=12,所以AC=BC=12AB=12×12=6.因为AD∶CB=1∶3,所以AD=2,所以DB=AB-AD=12-2=10.故选D.6. B 解析:如图D4-1.因为PA+PB=AB,所以点P在线段AB上.故选B.图D4-17. C 解析:如图D4-2.由图可知,∠CAB=∠1+∠2=25°+90°=115°.故选C.图D4-28. B 解析:因为∠1=40.4°=40°24′,∠2=40°4′,所以∠1>∠2.故选B.9. B 解析:因为OD,OE分别是∠AOC,∠BOC的平分线,所以∠AOD=∠COD,∠EOC=∠BOE.又因为∠AOD+∠BOE+∠EOC+∠COD=∠AOB=130°,所以∠AOD+∠BOE=∠EOC+∠COD=∠DOE=65°.故选B.10. B 解析:根据题意,得(1)因为∠AOC+∠BOC=180°,所以∠BOC与∠AOC 互补.(2)因为OD⊥AB,OC⊥OE,所以∠EOD+∠DOC=∠BOC+∠DOC=90°,所以∠EOD=∠BOC,所以∠AOC+∠EOD=180°,所以∠EOD与∠AOC互补,所以图中与∠AOC互补的角有2个.故选B.二、11.线动成面12. 41 解析:AD=AC+CD=9,AB=AC+CD+DB=12,CB=CD+DB=8,故题图中所有线段长度的和为AC+AD+AB+CD+CB+DB=41.13. 80°14. 130°解析:3点40分时分针与时针夹角的度数为30°×4+1=130°.315. 2 解析:因为∠AOD=90°,所以∠AOC+∠COD=90°.因为∠COE=90°,所以∠COD+∠DOE=90°,所以∠AOC=∠DOE.因为∠BOD=180°-∠AOD=90°,所以∠DOE+∠BOE=90°,所以∠BOE=∠COD.故图中相等的锐角有2对.16. 30°或150°解析:如图D4-3(1),因为∠BOD=90°,∠AOB=150°,所以∠AOD=60°.又因为∠AOC=90°,所以∠COD=30°.如图D4-3(2),因为∠BOD=90°,∠AOC=90°,∠AOB=150°,所以∠AOD=60°,所以∠COD=150°.综上所述,∠COD的度数为30°或150°.图D4-317. 51 解析:因为正方体的表面展开图,相对的面一定相隔一个正方形,所以6若不是最小的数,则6与9是相对面.因为6与9相邻,所以6是最小的数,所以这6个整数的和为6+7+8+9+10+11=51.18. 1条、4条或6条解析:如果A,B,C,D四点在同一直线上,那么只能确定一条直线,如图D4-4(1);如果4个点中有3个点(不妨设点A,B,C)在同一直线上,而第4个点,点D不在此直线上,那么可以确定4条直线,如图D4-4(2);如果4个点中,任何3个点都不在同一直线上,那么点A分别和点B,C,D确定3条直线,点B分别与点C,D确定2条直线,最后点C,D确定一条直线,这样共确定6条直线,如图D4-4(3).综上所述,过其中每2个点可以画1条、4条或6条直线.(1)(2)(3)图D4-4三、19.解:(1)22°18′×5=110°90′=111°30′.(2)90°-57°23′27″=32°36′33″.20. 解:如图D4-5.图D4-521. 分析:(1)首先作射线CE在射线CE上截取CD=a,BD=b,再在CB上截取AC=c,则可得出AB=a+b-c;(2)根据射线和直线的概念过点K即可作出;(3)根据AP=AK,利用两点之间线段最短即可得出答案.解:(1)如图D4-6(1).(2)如图D4-6(2).(1)(2)(3)图D4-6(3)如图D4-6(3).因为AP=KA,所以线段PA与BK长度的和大于线段AB的长度.22.解:设BD=x cm,则AB=3x cm,CD=4x cm,AC=6x cm.因为E,F分别为线段AB,CD的中点,所以AE=12AB=1.5x(cm),CF=12CD=2x(cm).所以EF=AC-AE-CF=6x-1.5x-2x=2.5x(cm).因为EF=10 cm,所以2.5x=10,解得x=4.所以AB=12 cm,CD=16 cm.23. 解:(1)三角形的面积为12×5h=12×3×4,解得h= 12/5.(2)在图4-11(2)中,所得立体图形的体积为13π×32×4=12π;在图4-11(3)中,所得立体图形的体积为13π×42×3=16π;在图4-11(4)中,所得立体图形的体积为13π×(125)2×5=485π.24. 解:(1)图中小于平角的角有∠AOD,∠AOC,∠AOE,∠DOC,∠DOE,∠DOB,∠COE,∠COB,∠EOB,共9个.(2)因为∠AOC=50°,OD平分∠AOC,所以∠DOC=1/2∠AOC=25°,∠BOC=180°-∠AOC=130°.所以∠BOD=∠DOC+∠BOC=155°.(3)因为∠DOE=90°,∠DOC=25°,所以∠COE=∠DOE-∠DOC=90°-25°=65°.又因为∠BOE=∠BOD-∠DOE=155°-90°=65°,所以∠COE=∠BOE,即OE平分∠BOC.。

人教版七年级数学上册第一章有理数章末检测试卷

人教版七年级数学上册第一章有理数章末检测试卷

人教版七年级数学上册第一章 有理数 章末检测试卷(解析版)姓名: 满分:120分 时间:120分钟 得分: 分一、选择题(每小题3分,共30分)1.我国是最早使用负数的国家,如果收入100元记为+100元,那么支出60元记为( C )A .60元B .40元C .-60元D .-160元2.用四舍五入法将3.145 9精确到百分位的近似值为( C )A .3.1B .3.146C .3.15D .3.143.下列各数:3,-7,-23 ,5.6,0,-814 ,15,19,其中非正数有( D ) A .1个 B .2个 C .3个 D .4个4.2020年3月2日的数据显示,我国口罩日产能从2月初的约2 000万只,增长到了1.1亿只.而在2019年,中国口罩原料之一的聚丙烯产能2 549万吨,产量为2 096.3万吨,约占全球30%.数据“2 096.3万”用科学记数法可表示为( B )A .20.963×106B .2.096 3×107C .0.209 63×108D .2.096 3×1085.如图,点A ,B ,C ,D 四个点在数轴上表示的数分别为a ,b ,c ,d ,则下列结论中,错误的是( C )A .a +b <0B .c -b >0C .ac >0D .b d<0 6.数轴上一动点A 向右移动2个单位长度到达点B ,再向左移动5个单位长度到达点C.若点C 表示的数为3,则点A 表示的数为( A )A .6B .0C .-6D .-27.某种细菌在培养过程中,每半个小时分裂一次,每次由一个分裂为两个,若这种细菌由1个分裂到64个,这个过程要经过( C )A .12小时B .6小时C .3小时D .2.5小时8.如果有4个不同的正整数a ,b ,c ,d 满足(2 019-a)(2 019-b)(2 019-c)(2 019-d)=9,那么a +b +c +d 的值为( D )A .0B .9C .8 048D .8 0769.如果一对有理数a ,b 使等式a -b =a·b +1成立,那么这对有理数a ,b 叫做“共生有理数对”,记为(a ,b),根据上述定义,下列四对有理数中不是“共生有理数对”的是( D )A .(3,12 )B .(2,13 )C .(5,23 )D .(-2,-13) 10.有依次排列的3个数:6,2,8,先将任意相邻的两个数,都用右边减去左边的数,所得之差写在这两个数之间,可产生一个新的数串:6,-4,2,6,8,这称为第一次操作;做第二次同样操作后也可产生一个新数串:6,-10,-4,6,2,4,6,2,8,继续依次操作下去,问:从数串6,2,8开始操作到第2 020次后所产生的那个新数串的所有数之和是( B )A .4 054B .4 056C .4 058D .4 060点拨:第一次操作:6,-4,2,6,8,求和结果:18.第二次操作:6,-10,-4,6,2,4,6,2,8,求和结果:20.第三次操作:6,-16,-10,6,-4,10,6,-4,2,2,4,2,6,-4,2,6,8,求和结果:22.……第n 次操作:……求和结果:16+2n.所以第2 020次操作后的求和结果为:16+2×2 020=4 056.二、填空题(每小题3分,共24分)11.14的倒数是4;若|a|=3,则a =±3. 12.比较大小:+(-56 )>-|-89|. 13.每袋大米以50 kg 为标准,其中超过标准的千克数记为正数,不足的千克数记为负数,则图中第3袋大米的实际重量是49.3 kg .14.如果一个数的实际值为a ,测量值为b ,我们把|a -b|称为绝对误差,|a -b|a称为相对误差.若有一种零件实际长度为5.0 cm ,测量得4.8 cm ,则测量所产生的绝对误差是0.2cm ,相对误差是0.04.15.若|m +3|+(n -2)2=0,则(m +n)2 020的值为1.16.在如图所示的运算流程中,若输入的数x =-4,则输出的数y =-8.17.已知a ,b ,c 都是有理数,且满足|a|a +|b|b +|c|c =1,那么6-abc |abc|=7. 18.填在如图各正方形中的四个数之间都有相同的规律,则a +b -c 的值是-128.点拨:由图可知,左上角的数依次为0,2,4,6……右上角的数都是左上角的数加3,左下角的数都是左上角的数加4,右下角的数都是左上角的数加1的和与左下角的数的积加1,则a =10+3=13,b =10+4=14,c =(10+1)×14+1=155,所以a +b -c =13+14-155=-128.三、解答题(共66分)19.(8分)将下列各数填入相应的大括号里.-13 ,0.618,-3.14,260,-2,67,-0.010 010 001…,0,0.3· . 正分数集合:{0.618,67 ,0.3· _…};整数集合:{260,-2,0…}; 非正数集合:{-13,-3.14,-2,-0.010_010_001…,0…}; 有理数集合:{-13 ,0.618,-3.14,260,-2,67,0,0.3· _…}.20.(12分)计算:(1)-22×(-3)-|-8|÷4;解:原式=-4×(-3)-8÷4=12-2=10.(2)(-1)3-14×[2-(-3)2]; 解:原式=-1-14 ×(-7)=34.(3)(14 +16 -12)×12+(-2)3÷(-4). 解:原式=14 ×12+16 ×12-12 ×12+8×14=3+2-6+2=1.21.(8分)七年级二班的几位同学正在一起讨论一个关于数轴上的点表示数的题目: 甲说:“这条数轴上的两个点A ,B 表示的数都是绝对值是4的数,且点A 表示的数小于点B 表示的数.”乙说:“点C 表示负整数,点D 表示正整数,且这两个数的差是3.”丙说:“点E 表示的数的相反数是它本身.”(1)请你根据以上三位同学的发言,画出一条数轴,并描出A ,B ,C ,D ,E 五个不同的点;(2)求这五个点表示的数的和.解:(1)因为点A ,B 表示的数都是绝对值是4的数,且点A 表示的数小于点B 表示的数,所以点A 表示-4,点B 表示4.因为点E 表示的数的相反数是它本身,所以点E 表示0.因为点C 表示负整数,点D 表示正整数,且这两个数的差是3,所以若点C 表示-1,则点D 表示2;若点C 表示-2,则点D 表示1.如图所示:或如图所示:(2)-4+4+0+2-1=1或-4+4+0+1-2=-1,则这五个点表示的数的和是1或-1.22.(8分)已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值是2,求x 2-(a +b +cd)x +(a +b)2 019+(-cd)2 020的值.解:由已知可得,a+b=0,cd=1,x=±2.当x=2时,原式=22-(0+1)×2+02 019+(-1)2 020=4-2+0+1=3;当x=-2时,原式=(-2)2-(0+1)×(-2)+02 019+(-1)2 020=4+2+0+1=7.23.(8分)王先生到市行政中心大楼办事,假定乘电梯向上一层楼记作+1,向下一层楼记作-1,王先生从1楼出发,乘电梯上下楼情况依次记录如下(单位:层):+6,-3,+10,-8,+12,-7,-10.(1)请你通过计算说明王先生最后是否回到出发点1楼;(2)该中心大楼每层高3 m,电梯每向上或下1 m需要耗电0.2度,根据王先生乘电梯上下楼的情况,请你算算,他办事时电梯需要耗电多少度?解:(1)因为(+6)+(-3)+(+10)+(-8)+(+12)+(-7)+(-10)=6-3+10-8+12-7-10=0,所以王先生最后回到出发点1楼.(2)王先生走过的路程是3(|+6|+|-3|+|+10|+|-8|+|+12|+|-7|+|-10|)=3(6+3+10+8+12+7+10)=3×56=168(m).所以他办事时电梯需要耗电168×0.2=33.6(度).24.(10分)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上的数的和都相等.(1)求前4个台阶上的数的和.(2)求第5个台阶上的数x的值.(3)从下到上前n(n为奇数)个台阶上的数的和能否为2 020?若能,求出n的值;若不能,请说明理由.解:(1)-5+(-2)+1+9=3,所以前4个台阶上的数的和为3.(2)-2+1+9=8,3-8=-5,所以x=-5,所以第5个台阶上的数x为-5.(3)能.解答如下:由题意知:台阶上的数每4个数循环一次,“-5,-2,1,9”4个数为一组,每一组4个数的和为3.可设前n 项中含有x 组.因为n 为奇数,所以有两种情况:①3x +(-5)=2 020.解得x =675.所以n =675×4+1=2 701;②3x +(-5)+(-2)+1=2 020.解得x =2 0263(不合题意,舍去). 综上,n 的值为2 701.25.(12分)【概念学习】规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(-3)÷(-3)÷(-3)÷(-3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(-3)÷(-3)÷(-3)÷(-3)记作(-3)④,读作“-3的圈4次方”.一般地,把a÷a÷a÷a÷…÷a,\s\do4(c 个)) (a≠0)记作a ⓒ,读作“a 的圈c 次方”.【初步探究】(1)直接写出计算结果:3③= ,(-13)⑤= . (2)关于除方,下列说法错误的是 .A .任意非零数的圈2次方都等于1B .对于任意正整数n ,1○n =1C .3④=4③D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数【深入思考】(3)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢? 除方 ―→2④=2÷2÷2÷2=2×12 ×12 ×12 =(12)2=乘方幂的形式 Ⅰ.试一试:仿照上面的算式,将下列运算结果直接写成幂的形式:(-3)④= ,5⑥= ,(-12)⑩= ; Ⅱ.想一想:将一个非零有理数a 的圈n 次方写成幂的形式等于 ;Ⅲ.算一算:求122÷(-13 )④÷(-2)⑤-(-13)⑥÷33的值. 解:(1)3③=3÷3÷3=13 ,(-13 )⑤=(-13 )÷(-13 )÷(-13 )÷(-13 )÷(-13)=-27.故答案为:13 -27.(2)C(3)Ⅰ.(-3)④=(-3)÷(-3)÷(-3)÷(-3)=(-13 )2;5⑥=5÷5÷5÷5÷5÷5=(15)4;同理得:(-12 )⑩=(-2)8;故答案为:(-13 )2 (15)4 (-2)8; Ⅱ. (1a)n -2 ; Ⅲ.122÷(-13 )④÷(-2)⑤-(-13 )⑥÷33=144÷(-3)2×(-2)3-(-3)4÷33=144×19×(-8)-81÷27=16×(-8)-3=-128-3=-131.。

人教版(2024)数学七年级上册第一章有理数章末检测(无答案)

人教版(2024)数学七年级上册第一章有理数章末检测(无答案)

第一章有理数 章末检测一、单选题1.高度每增加1千米,气温就下降2℃,现在地面气温是10℃,那么7千米高空的气温是( ) A .-14℃B .-24℃C .-4℃D .14℃2.下列各数中,与的和为0的是( )A.B .C .D .3.如图表示在数轴上四个点p ,q ,r ,s 位置关系,若|p-r|=10,|p-s|=12,|q-s|=9,则|q-r|=( ) A .7B .9C .11D .134.如图,数轴上点A ,B 表示的数互为相反数,且AB =4,则点A 表示的数是( )A .4B .-4C .2D .-25.数轴上在原点以及原点右侧的点所表示的数是 ( )A .正数B .负数C .非负数D .非正数6. 2023的相反数是( )A .2023B .C .D .7.在数轴上表示﹣3.5和2.1两点之间的整数有( )A .3个B .4个C .5个D .6个8.数轴上与-1相距3个单位长度的点表示的数是( )A .4B .3C .-4D .-4或29.不相等的有理数a ,b ,c 在数轴上的对应点分别是A ,B ,C ,如果 ,那么点B A .在A ,C 点的左边B .在A ,C 点的右边C .在A ,C 点之间D .上述三种均可能10.规定f (x )=|x ―3|,g(y)=|y +4|,例如f(―4)=|―4―3|=7,g(―4)=|―4+4|=0,下列结论中,正确的是( )(填写正确选项的序号)(1)若,则;(2)若,则;(3)能使成立的x 的值不存在;(4)式子的最小值是923-23-2332-322023-1202312023-a b b c a c -+-=-()()()0f x g y +=2318x y -=4x <-()()12f x g x x +=-()()f x g x =(1)(1)f x g x -++A .(1)(2)(3)B .(1)(2)(4)C .(1)(4)D .(1)(2)(3)(4)二、填空题11.在现代生活中,手机微信支付已经成为一种重要的支付方式.如果微信零钱收入元记作元,那么支出元记作 元.12.如果电梯上升5米,记作+5米,那么-7米表示 .13.有理数a 在数轴上的对应点的位置如图所示,化简|1﹣a|﹣|a|的结果是 .14.点A 在原点的左侧,且点A 表示的数的绝对值是3,则点A 表示的数为 .15.已知a ,b ,c ,d 分别是一个四位数的千位,百位,十位,个位上的数字,且低位上的数字不小于高位上的数字,当 取得最大值时,这个四位数的最小值是 .三、计算题16.计算:(1)|-8|+|-4|;(2)−(−3.5)−|− |;(3)|−2 |+|−6 |.四、解答题17.画一条数轴,并在数轴上表示下列各数:,3,,0.2020+30a b b c c d d a -+-+-+-1247372-9218.将下列各数按要求分类:、 、 、 、 、 、 、 、 、 、 (相邻两个3之间依次多一个0)19.数a ,b ,c 在数轴上的位置如图所示:化简:.20.已知A ,B 两点在数轴上表示的数分别是 和12,现A ,B 两点分别以1个单位/秒,3个单位秒的速度向左运动,A 比B 早1秒出发,问B 出发后几秒原点恰好在两点正中间?21.绝对值大于2而小于6的所有整数的和是多少?(列式计算)22.如图,图中数轴的单位长度为1.请回答下列问题:(1)如果点A 、B 表示的数是互为相反数,那么点C 表示的数是多少?(2)如果点D 、B 表示的数是互为相反数,那么点C 表示的数是正数还是负数,图中表示的5个点中,哪一个点表示的数的绝对值最小,最小的绝对值是多少?5.20π2013-11020190.75-02000.25⋅480.3030030003- ||||||a c b c c b ++---3-23.已知、在数轴上对应的数分别用、表示,且(12ab +10)2+|a ―2|=0,点是数轴上的一个动点.(1)求出、之间的距离;(2)若到点和点的距离相等,求出此时点所对应的数;(3)数轴上一点距点个单位长度,其对应的数满足.当点满足时,求点对应的数.24.如图,在数轴上点A 表示的数为﹣6,点B 表示的数为10,点M 、N 分别从原点O 、点B 同时出发,都向左运动,点M 的速度是每秒1个单位长度,点N 的速度是每秒3个单位长度,运动时间为t 秒.(1)求点M 、点N 分别所对应的数(用含t 的式子表示);(2)若点M 、点N 均位于点A 右侧,且AN =2AM ,求运动时间t ;(3)若点P 为线段AM 的中点,点Q 为线段BN 的中点,点M 、N 在整个运动过程中,当PQ+AM =17时,求运动时间t .A B P A B P A P P A B a b P C c ac ac =-2PB PC =。

2022~2023学年人教版版七年级数学上册第一章《有理数》章末同步测试附答案详解

2022~2023学年人教版版七年级数学上册第一章《有理数》章末同步测试附答案详解

实数章末测试一、选择题1. 在1,-1,-0,32,π,75-中,负数有( )个 A.1 B.2 C.3 D.42. 下列格式中正确的是( ) A.222-=- B.2)2(2-=- C.2)2(2±=- D.222±=3. 下列各组量中,具有相反意义的是( )A.向东走5米和向南走3米B.长胖5斤和瘦了3斤C.长高了5米和胖了5斤D.收入5元和支出3元4. 如果A 和B 互为相反数,B 和C 互为相反数,那么A 和C 的关系( )A.A 等于CB.A 大于CC.A 和C 互为相反数D.A 和C 不一定互为相反数5. 下列各数中既是负数又是分数的是( ) A.-1 B.31 C. -0.25 D.-0 6. 下列各数中,-1,2,0.312356,-3.132......,•66.0,π,71,无理数的个数为( ) A.1 B.2 C.3 D.47. 若|a|=﹣a ,则实数a 在数轴上的对应点一定在( )A. 原点左侧B. 原点或原点左侧C. 原点右侧D. 原点或原点右侧8. 若A 是数轴上的一点,它到原点的距离为2,现把A 点向右平移5个单位长度,再向左平移4个单位长度,得到点B ,那么点B 到原点的距离为( )A.3B.-3C.-3或-1D.3或-19. 估计15+的值在( )之间A. 在1和2之间B. 在2和3之间C. 在3和4之间D. 在4和5之间10. 下列说法正确的是( )①0既不是正数也不是负数 ②数轴上的点表示有理数 ③最小的整数是0④正数、负数、0统称为有理数 ⑤规定了原点、正方向、单位长度的直线是数轴A.1B.2C.3D.411. x 是2)9(-的平方根,y 是-64的立方根,则x y +=( )A.-1B.-3C.7D.-1或-712. 若|2|-a 与|3|+b 互为相反数,则b a +的值为( )A.-1B.2C.-2D.1或-1二、填空题13. 16的平方根是 ;=-2)(a 。

人教版七年级数学上册 第1章 有理数 章末培优、拔高测评卷(无答案)

人教版七年级数学上册 第1章 有理数 章末培优、拔高测评卷(无答案)

人教版七年级数学上册第1章有理数章末培优、拔高测评卷(时间:90分钟满分:100分)一、选择题(每小题3分,共30分)1.下面关于表示互为相反数的m与﹣m的点到原点的距离,表述正确的是()A.表示数m的点距离原点较远B.表示数﹣m的点距离原点较远C.一样远D.无法比较2.据统计,2018年“十·一”国庆长假期间,眉山市共接待国内外游客约319万人次,与2014年同比增长16.43%,数据319万用科学记数法表示为( )A.3.19×105B.3.19×106C.0.319×107D.319×1063.下列说法中,正确的是()A.因为相反数是成对出现的,所以0没有相反数B.数轴上原点两旁的两点表示的数是互为相反数C.符号不同的两个数是互为相反数D.正数的相反数是负数,负数的相反数是正数4.把数轴上表示数2的点移动3个单位后,表示的数为( )A.5B.1C.5或1D.5或-15.如图,数轴上A、B、C、D四点对应的有理数分别是整数a、b、c、d,且有c-2a=8,则原点应是 ( )A .A 点B .B 点C .C 点D .D 点6.下列说法正确的是( )A .﹣5是的相反数B .与互为相反数C .﹣4是4的相反数D .是2的相反数7.下列说法正确的是 ( )A.带正号的数是正数,带负号的数是负数B.一个数的相反数,不是正数,就是负数C.倒数等于本身的数有2个D.零除以任何数等于零8. 若a 、b 互为相反数,则①0a b +=;②a b =-;③a b =;④2ab b =-中必定成立的有() A.1个 B.2个 C.3个 D.4个9.在-22,(-2)2,-(-2),-|-2|中,负数的个数是 ( )A.1个B.2个C.3个D.4个10.如图,a,b,c 在数轴上的位置如图所示,则下列结论正确的是( )A.abc>0B.a(b-c)>0C.(a+b)c>0D.(a-c)b>0二、填空题(每小题3分,共18分)11.数轴上表示互为相反数的两个点之间的距离为4,则这两个数是.12.若a=13,则﹣a= ;若﹣x=3,则x= .13.数轴上点A、B的位置如图所示,若点B关于点A的对称点为C,则点C表示的数为.14.第四十五届“世界超级计算机500强排行榜”榜单发布,我国国防科技大学研制的“天河二号”以每秒3386×1013次的浮点运算速度第五次蝉联冠军,若将3386×1013用科学记数法表示成a×10n的形式,则n的值是.15.若(a+3)2+|b-2|=0,则(a+b)2019= .16.如图是一数值转换机,若输入的x值为3,y值为-5,则输出的结果为.三、解答题(共52分)17.计算:(1)(-23)-(+13)-|-34|-(-14);(2)(-1)2×2+(-2)3÷4;(3)-14-(1-0.5)×13×[2-(-3)2];(4)27÷[(-2)2+(-4)-(-1)];(5)(59-34+118)×(-36)+1+(-2)+|-2-3|-5;(6)16÷(-2)3-(-18)×(-4)+(-1)10018.已知:a是最小的正整数,b,c是有理数,并且有|2+b|+(3a+2c)2=0,求4ab+c-a2+c2+4的值.19.化简并在数轴上分别画出表示下列各数的点,并把各数用“<”号连接起来.(-1)2020,+(-3.5),-(-1.5),-|-2.5|,-22解:化简:(-1)2020= ;+(-3.5)= ;-(-1.5)= ;-|-2.5|= ;-22= _.在数轴上表示如下:用“<”号连接为: .20.已知数a,b表示的点在数轴上的位置如图所示.(1)在数轴上表示出a,b的相反数的位置;(2)若数b与其相反数相距20个单位长度,则b表示的数是多少?(3)在(2)的条件下,若数a表示的点与数b的相反数表示的点相距5个单位长度,求a表示的数是多少?21.在数轴上点A表示7,点B、C表示互为相反数的两个数,且点C与点A间的距离为2,求点B、C对应的数是什么?22.小李在做题时,画了一个数轴,在数轴上原有一点A,其表示的数是﹣3,由于粗心,把数轴的原点标错了位置,使点A正好落在﹣3的相反数的位置,想一想,要把数轴画正确,原点要向哪个方向移动几个单位长度?23.某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶记录如下(单位:千米):-4,+7,-9,+8,+6,-5,-2.(1)在第几次记录时距A地最远?为多少千米?(2)求收工时距A地多远?在A地的什么方向?(3)若每千米耗油0.3升,问共耗油多少升?24.如图是具有互为相反数的三角形数阵.当最下面一行的两个数为多少时,这两个数以及它们上面的数的个数为2019.。

苏科版七年级上册 第二章有理数章末测试(基础题)(有答案)

苏科版七年级上册 第二章有理数章末测试(基础题)(有答案)

七上第二章有理数章末测试(基础题)班级姓名得分一、选择题1.在下列数-6,1,π,-|-3|,0.1001000100001…,-2.中,有理数有()A. 3B. 4C. 5D. 62.在数-(-2),-|-2|,(-2)2,-22,(-2)3中,正数有()A. 4个B. 3个C. 2个D. 1个3.2015年茂名市生产总值约2450亿元,将2450亿用科学记数法表示为()A. B. C. D.4.下列运算中,结果为负数的是()A. B. C. D.5.若(a-3)2+|b-4|=0,则(a-b)2004的值是()A. B. 1 C. 0 D. 20166.下列各组的两个数中,运算后结果相等的是()A. 和B. 和C. 和D. 和7.下列各数中,最小的数是()A. 0B. 3C.D.8.数轴上点M到1的距离是5,则点M表示的数是()A. 6B.C. 6或D. 不能确定9.小明将父亲经营的便利店中“收入100元”记作“+100元”,那么“-80元”表示()A. 支出20元B. 支出80元C. 收入20元D. 收入80元10.如图,在数轴上点A、B两点对应的有理数a,b的大小关系中,正确的是()A. B. C. D.二、填空题11.把一个正数写成a×10n的形式(其中1≤a<10,n为整数),这种记数法称为科学记数法,其方法如下:(1)确定a,a是只有________位整数的数;(2)确定n,当原数的绝对值≥10时,n为________整数,n等于原数的整数位数减________;当原数的绝对值<1时,n为________整数,n的绝对值等于原数中左起第一个非0数前0的个数(含整数位上的0)。

12.按从小到大的顺序用“”号把下列各数连接起来: .1.6, -1.6 ,0 ,3 -313.已知一个数与5 的和为-2,则这个数是________.14.的相反数是______ ,绝对值是______ .15.现定义两种运算“ⓧ”“*”,对于任意两个整数,aⓧb=a+b-1,a*b=a×b-1,则8*(3ⓧ5)的结果是______.16.已知|x+1|+(y-3)2=0,那么(x+y)2的值是______ .17.数轴上A、B两点,如果点A对应的数为-3,且A、B两点的距离为4,那么点B对应的数是.18.不改变原式的值,将6-(+3)-(-7)-2中的减法改成加法并写成省略括号和的形式是______ .三、计算题19.计算:(1)12-(-18)+(-7)-15 (2)(3)(4)四、解答题20.在数轴上表示下列各有理数:-3,0,,4.5,-1,并用“<”号把它们按从小到大的顺序排列起来21.已知a、b互为相反数,c、d互为倒数,m的绝对值为3,求+m-cd的值.22.出租车司机小张某天下午营运全是在东西走向的大道上行驶的,如果规定向东为正,行车里程(单位:km)如下:+8,﹣3,+6,+12,﹣11,+5,﹣2,﹣5(1)当把最后一名乘客送到目的地时,小张在相对出车地点的何处?(2)若每千米的营运额为8元,成本为1.5元/km,则这天下午他盈利多少元?23.某摩托车厂家本周计划每天生产250辆摩托车,由于工厂实行轮休,每天上班人数不一定相等,实际每天生产与计划相比情况如下表(增加的辆数记为正数,减少的记为负数,单位:辆):(1)本周六生产了多少辆摩托车?(2)本周总产量与计划相比,是增产还是减产?具体数量是多少?(3)产量最多的一天比产量最少的一天多生产多少辆?24.|a-2|+|b+3|=0,求3ab-1的值.25.对于任意非零有理数a、b,定义运算如下:a※b=(a-b)÷(a+b),求(-3)※5的值.26.如图,数轴上点O是原点,点A,B,C表示的有理数分别是a,b,c,且满足|a+2|+(c-3)2=0,b是最小的正整数.我们用AB表示点A与点B之间的距离(以下表示相同).(1)a=________,b=________,c=________.(2)AB=________,BC=________.(3)在数轴上有一点M,且MA+MB=MC,求点M表示的数.(4)若点A′,B′,C′分别从点A,B,C的位置开始,同时沿着数轴运动:点A′以每秒1个单位长度的速度向左运动,点B′和C′分别以每秒2个单位长度和5个单位长度的速度向右运动.设运动时间为t秒,则A′B′-B′C′的值是否随着时间t的变化而改变?并说明理由.答案和解析1.【答案】B【解析】【分析】本题考查了有理数,解决本题的关键是熟记有理数是有限小数或无限循环小数,根据有理数是有限小数或无限循环小数,可得答案.【解答】解:-6,1,-|-3|,是有理数,故选B.2.【答案】C【解析】解:∵-(-2)=2;-|-2|=-2;(-2)2=4;-22=-4;(-2)3=-8.故正数有-(-2),(-2)2.故选C.先根据相反数、乘方和绝对值的意义分别化简,再根据正数的定义进行选择即可.本题主要考查正数和负数的定义,正数就是大于0的数.3.【答案】D【解析】【分析】此题考查科学记数法的表示方法有关知识,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:2450亿=245000000000=2.45×1011,故选D.4.【答案】D【解析】解:A、(-2)4=16,不合题意;B、[(-2)5]2=210,不合题意;C、(-2)3•(-2)=24,不合题意;D、-2•(-2)2=-23,是负数,符合题意.故选:D.直接利用幂的乘方运算法则以及同底数幂的乘法运算法则分别判断得出答案.此题主要考查了幂的乘方运算以及同底数幂的乘法运算,正确化简各数是解题关键.5.【答案】B【解析】解:根据题意得,a-3=0,b-4=0,解得a=3,b=4,所以,(a-b)2004=(-1)2004=1.故选B.根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.6.【答案】B【解析】解:A、23=8,32=9,故本选项错误;B、-33=-27,(-3)3=-27,故本选项正确;C、-22=-4,(-2)2=4,故本选项错误;D、=-,=-,故本选项错误.故选B.本题须根据有理数的乘方法则,分别计算出每一项的结果,即可求出答案.本题主要考查了有理数的乘方运算,在计算时要注意结果的符号.7.【答案】C【解析】【分析】本题考查了有理数比较大小,运用正数大于0,0大于负数是解题关键.根据正数大于0,0大于负数,可得答案.【解答】解:∵-2016<-0.001<0<3,∴四个数中-2016最小,故选C.8.【答案】C【解析】解:设点M表示x,则|x-1|=5,解得x=6或-4.故选C.设点M表示x,再根据数轴上两点间的距离公式即可得出结论.本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.9.【答案】B【解析】解:“收入100元”记作“+100元”,那么“-80元”表示支出80元,故选:B.根据正数和负数表示相反意义的量,可得答案.本题考查了正数和负数,确定相反意义的两是解题关键.10.【答案】B【解析】【分析】根据表示有理数a、b的点在数轴上的位置,得到a<0,b>0,|a|>|b|,再分别根据有理数的加法法则、乘法法则以及绝对值的概念解答.【解答】解:∵a<0,b>0,|a|>|b|,A.∵a<0,b>0,∴a<b,本结论错误;B.∵a>0,b<0,∴a<b,本结论正确;C.∵a<0,b>0,|a|>|b|,本结论错误;D.根据表示有理数a、b的点在数轴上的位置,得到|a|>|b|,本结论错误.故选B.11.【答案】(1)一;(2)正;1;负.【解析】【分析】本题考查科学计数法,把一个正数写成a×10n的形式(其中a×10n,n为整数),这种记数法称为科学记数法,其方法如下:(1)确定a,a是只有一位整数的数;(2)确定n,当原数的绝对值a×10n>10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非0数前0的个数(含整数位上的0).【解答】(1)由科学计数法的定义知:确定a,a是只有一位整数的数;(2)由科学计数法的定义知:确定n,当原数的绝对值a×10n>10时,n为正整数,n 等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非0数前0的个数(含整数位上的0).故答案为(1)一;(2)正;1;负.12.【答案】-3<-1.6<0<1.6<3【解析】【分析】本题考查了有理数的大小比较,利用数轴将1.6, -1.6 ,0 ,3 -3表示在数轴上后,再根据位置关系确定其大小关系.【解答】解:在数轴上表示1.6, -1.6 ,0 ,3 -3如下:则-3<-1.6<0<1.6<3.故答案为-3<-1.6<0<1.6<3.13.【答案】-7【解析】【分析】本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数.这是需要熟记的内容.根据题意列式,然后根据有理数的减法法则计算即可解答.【解答】解:∵这个数与5的和为-2,∴这个数为-2-5=-7.故答案为-7.14.【答案】;【解析】解:-的相反数是;绝对值是;故答案为:;.根据相反数和绝对值的定义可直接得到答案.此题主要考查了绝对值和相反数,关键是掌握它们的定义.15.【答案】55【解析】解:先算3ⓧ5的值:3相当于a,5相当于b,即3ⓧ5=3+5-1=7,∴8*(3ⓧ5)=8*7;在8*7中,8相当于a,7相当于b,即8*7=8×7-1=55,∴8*(3ⓧ5)=55.首先认真分析找出规律,然后再代入数值计算.解决此类问题时,主要运用等量代换思想,即要看准用哪一个数字代替哪一个字母.16.【答案】4【解析】解:∵|x+1|+(y-3)2=0,∴x+1=0,y-3=0,解得x=-1,y=3,∴(-1+3)2=4.故答案为:4.先根据非负数的性质求出x、y的值,再代入代数式进行计算即可.本题考查的是非负数的性质,熟知当几非负数相加和为0时,则其中的每一项都必须等于0是解答此题的关键.17.【答案】1或-7【解析】【分析】本题主要考查了数轴,两点间的距离,也考查了分类讨论的思想,属于基础题.根据题意得出两种情况:当点在表示-3的点的左边时,当点在表示-3的点的右边时,列出算式求出即可.【解答】解:分为两种情况:①当点在表示-3的点的左边时,数为-3-4=-7;②当点在表示-3的点的右边时,数为-3+4=1.故答案为1或-7.18.【答案】6-3+7-2【解析】解:6-(+3)-(-7)-2=6-3+7-2.故答案为:6-3+7-2.根据减去一个数等于加上这个数的相反数进行化简即可.本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.19.【答案】解:(1)原式=12+18-7-15,=8;(2)原式=,=;(3)原式=8-36+4,=-24;原式=-4,=-10.【解析】这是一道考查有理数的混合运算的题目,解题关键在于注意符号,准确计算.20.【答案】解:如图所示:,所以.【解析】本题考查了数轴,有理数的大小比较的应用,能熟记有理数的大小比较法则是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.先在数轴上表示各个数,再比较即可.21.【答案】解:根据题意得:a+b=0,cd=1,m=3或-3,当m=3时,+m-cd=0-1+3=2;当m=-3时,+m-cd=0-1-3=-4.【解析】利用相反数,倒数,以及绝对值的代数意义求出a+b,cd,以及m的值,代入原式计算即可得到结果.此题考查了代数式求值,利用相反数,倒数,以及绝对值的代数意义求出a+b,cd,以及m的值是解本题的关键.22.【答案】解:(1)设出发地为0,∴根据题意列式:+8-3+6+12-11+5-2-5=10,答:小张在在出车地点东边,距离出发地点10km;(2)根据题意列式得:8+3+6+12+11+5+2+5=52,∵每千米的营运额为8元,成本为1.5元/km,∴盈利为:52×(8-1.5)=338(元),答:当天下午盈利338元.【解析】本题主要考查有理数的混合运算,正数和负数等相关的知识点,关键在于根据题意正确的列式,认真的进行计算.(1)可以把出车地看做0,然后根据题意列式,即可推出结果;(2)根据司机下午的总营运路程,由每千米的营运额为8元,成本为1.5元/km,推出每千米的盈利,用每千米的盈利乘以总营运路程即可推出这天下午他的总盈利.23.【答案】解:(1)本周六生产数量=250-9=241(辆);(2)-5+7-3+4+10-9-25=-21,-21<0,故本周总产量与计划相比是减产,且减产21辆.(3)增量最多的是星期五,减量最多的是星期日,∴产量最多的一天比产量最少的一天多生产10-(-25)=35(辆).答:本周六生产241辆,本周总产量与计划相比是减产,且减产21辆,产量最多的一天比产量最少的一天多生产35(辆)【解析】本题考查的是正负数,有理数的混合运算有关知识.(1)根据题意列出算式即可解答;(2)根据-5+7-3+4+10-9-25=-21,然后再解答即可;(3)根据表格可得增量最多的是星期五,减量最多的是星期日,然后再进行解答即可.24.【答案】解:根据题意得:a-2=0,b+3=0,解得:a=2,b=-3,则原式=3×2×(-3)-1=-18-1=-19.【解析】首先根据非负数的性质:几个非负数的和等于0,则每个数等于0求得a和b 的值,进而求得代数式的值.本题考查了非负数的性质:几个非负数的和等于0,则每个数等于0,理解性质是关键.25.【答案】解:(-3)※5=(-3-5)÷(-3+5)=(-8)÷2=-4.【解析】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.将a=-3和b=-5代入a※b=(a-b)÷(a+b),即可推出结论.26.【答案】解:(1)-2;1;3;(2)3;2;(3)设点M对应的数是m,则有以下两种情况:①当点M在点A左侧时,由MA+MB=MC,得(-2-m)+(1-m)=3-m,解得m=-4,②当点M在点A和点B之间时,由MA+MB=MC,得m-(-2)+(1-m)=3-m,解得m=0,∴点M表示的数是-4或0;(4)A′B′-B′C′的值不随着时间t的变化而改变,理由:∵A′B′=(1+2t)-(-2-t)=3t+3,B′C′=(3+5t)-(1+2t)=3t+2,∴A′B′-B′C′=(3t+3)-(3t+2)=1,故A′B′-B′C′的值与t无关,不随着时间t的变化而改变.【解析】【分析】此题考查了绝对值的非负性,偶次方的非负性,整式的加减,一元一次方程的应用,两点间的距离,分类讨论及数形结合的思想.(1)根据|a+2|+(c-3)2=0,得到a+2=0,c-3=0,即a=-2,c=3,根据b是最小的正整数,得到b=1;(2)根据a=-2,b=1,c=3,得到AB=1-(-2)=3,BC=3-1=2;(3)设点M对应的数是m,分点M在点A左侧及点M在点A和点B之间两种情况,进行分析即可得到答案;(4)根据A′B′=(1+2t)-(-2-t)=3t+3,B′C′=(3+5t)-(1+2t)=3t+2,得到A′B′-B′C′=(3t+3)-(3t+2)=1,故A′B′-B′C′的值与t无关,不随着时间t的变化而改变.【解答】解:(1)∵|a+2|+(c-3)2=0,∴a+2=0,c-3=0,即a=-2,c=3,∵b是最小的正整数,∴b=1,故答案为-2;1;3;(2)∵a=-2,b=1,c=3,∴AB=1-(-2)=3,BC=3-1=2,故答案为3;2;(3)见答案;(4)见答案.。

部编数学七年级上册有理数章末检测卷2023年7上册重难题型技巧提升专项精练 含答案

部编数学七年级上册有理数章末检测卷2023年7上册重难题型技巧提升专项精练 含答案

第一章 有理数 章末检测卷(人教版)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分120分,考试时间120分钟,试题共26题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022·河南许昌·七年级期末)今年是全民义务植树开展40周年.40年来,全民义务植树在中华大地蓬勃展开.截止12月13日,全国适龄公民累计175****0000人次参加义务植树,累计植树78100000000株(含折算),数据“175****0000”用科学记数法表示为( )A .81.7510´B .817.510´C .91.7510´D .101.7510´【答案】D【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,确定n 的值时.要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正整数;当原数的绝对值小于1时,n 是负整数.【详解】解:175****0000101.7510,=´ 故选D【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.2.(2022·河南周口·七年级期末)下列说法正确的是( )A .-1的相反数是1B .-1的倒数是1C .-1的绝对值是±1D .-1是最小的负整数【答案】A【分析】根据相反数和倒数以及绝对值的概念求解即可.【详解】解:A 、-1的相反数是1,故选项正确,符合题意;B 、-1的倒数是-1,故选项错误,不符合题意;C 、-1的绝对值是1,故选项错误,不符合题意;D 、-1是最大的负整数,故选项错误,不符合题意.故选:A .【点睛】此题考查了-1的相反数和倒数以及绝对值的概念,解题的关键是熟练掌握相反数和倒数的概念.3.(2022·河北廊坊·七年级期末)如图所示的是某用户微信支付情况,100-表示的意思是( )A .发出100元红包B .收入100元C .余额100元D .抢到100元红包【答案】A 【分析】根据用正负数表示两种具有相反意义的量解答即可.【详解】解:如图某用户微信支付情况,−100表示的意思是发出100元红包故选:A .【点睛】本题考查了正数和负数,解题的关键是明确用正负数表示两种具有相反意义的量.具有相反意义的量都是互相依存的两个量,它包含两个要素,一是它们的意义相反,二是它们都是数量.4.(2022·河南南阳·七年级期末)下列说法中正确的是( )A .正分数和负分数统称为分数B .正整数、负整数统称为整数C .零既可以是正整数,也可以是负整数D .一个有理数不是正数就是负数【答案】A【分析】按照正负,有理数分为正数、0、负数;按照整数分数,有理数分为整数、分数;以此查看选项作答即可.【详解】A .正分数和负分数统称为分数,说法正确,故本选项符合题意;B .正整数、零和负整数统称为整数,原说法错误,故本选项不符合题意;C .零既不是正整数,也不是负整数,原说法错误,故本选项不符合题意;D .零是有理数,但零既不是正数,也不是负数,原说法错误,故本选项不符合题意;故选:A .【点睛】本意考查有理数的分类,解决本题的关键是不能混淆整数和正数,注意0的划分范围.5.(2022·福建三明·七年级期末)已知有理数a ,b 在数轴上表示的点如图所示,则下列结论中正确的是( )A .0a b ->B .0a b +>C .a b 小于1-D .0ab >【答案】A【分析】由数轴上,右边的数总是大于左边的数,得到a >0>b ,且a b <,再根据有理数的运算法则解答.【详解】解:根据数轴可知a >0>b ,且a b <,0a b \->,0a b +<,故A 正确,B 错误,\10a b-<<,故C 错误,0ab \<,故D 错误,故选:A .【点睛】本题考查数轴上两数比较大小及有理数的运算法则,掌握数形结合的思想是解题关键.6.(2022·广西崇左·七年级期末)若()22m -与3n +互为相反数,则()2021m n +的值是( )A .-1B .1C .2021D .-2021【答案】A【分析】由偶次幂及绝对值的非负性可知2m =,3n =-,然后代入求解即可.【详解】解:∵()22m -与3n +互为相反数,∴()22m -30n ++=,∴20m -=,30n +=,∴2m =,3n =-,∴()()20212021231m n +=-=-;故选A .【点睛】本题主要考查有理数的乘方运算、绝对值的非负性及代数式的值,掌握偶次幂及绝对值的非负性是解题的关键.7.(2022·广东揭阳·七年级期末)计算1234567820172018-+-+-+-+×××+-的结果是( )A .-1009B .-2018C .0D .-1【答案】A【分析】利用加法的结合律将原式整理成(12)(34)(20172018)-+-+×××+-即可求解.【详解】解:1234567820172018-+-+-+-+×××+-,(12)(34)(56)(78)(20172018)=-+-+-+-+×××+-,(1)(1)(1)(1)(1)=-+-+-+-+×××+-,1009=-,故选:A .【点睛】本题考查了有理数的加减法,解题的关键是掌握相应的运算法则.8.(2022·湖南长沙·九年级期中)如图,在一个由6个圆圈组成的三角形里,把-25到-30这6个连续整数分别填入图的圆圈中,要求三角形的每条边上的三个数的和S 都相等,那么S 的最小值是( )A .-84B .-85C .-86D .-87【答案】A 【分析】三个顶角分别是−29,−30,−28,−29与−30之间是−-25,−29和−28之间是−27,−30和−28之间是−26,这样每边的和才能相等并且S 有最小值.【详解】解:如图,由图可知S =−29+(−25)+(−30)=−84.故选∶A .【点睛】本题考查了有理数的加法,解题关键是三角形的三个顶点的数字是−25~−30这6个数最小的三个数字.9.(2022·绵阳市·七年级课时练习)定义:如果x a N =(0a >,且1a ¹),那么x 叫做以a 为底N 的对数,记做log a x N =.例如:因为2749=,所以7log 492=;因为35125=,所以5log 1253=.下列说法:①6log 636=;②3log 814=;③若4log (14)2a +=,则2a =;④222log 64log 32+log 2=;正确的序号有( )A .①③B .②③C .①②③D .②③④【答案】D【分析】由新定义可得:2777log 49log 2,==利用新定义逐一计算判断,从而可得答案.【详解】解:根据新定义可得: 6log 61,=故①不符合题意;4333log 81log 4,==故②符合题意;Q 4log (14)2a +=,2144,a \+=解得:2,a = 故③符合题意;Q 6222log 64log 6,==5222222log 32+log 2log log 516,=+=+=\ 222log 64log 32+log 2=,故④符合题意,故选D【点睛】本题考查的新定义运算,有理数的乘方运算的含义,正确理解新定义,运用新定义解决问题是解本题的关键.10.(2022·江苏宿迁·七年级期末)有两个正数a 和b ,满足a <b ,规定把大于等于a 且小于等于b 的所有数记作[a ,b ],例如大于等于0且小于等于5的所有数记作[0,5].如果m 在[5,15]中,n 在[20,30]中,则m n的一切值所在的范围是( )A .13,64éùêúëûB .11,42éùêúëûC .4,63éùêúëûD .13,24éùêúëû【答案】A 【分析】根据m 在[5,15]内,n 在[20,30]内,可得m n的最小值与最大值.【详解】解:∵m 在[5,15]内,n 在[20,30]内,∴5≤m ≤15,20≤n ≤30,∴m n 的最小值为51=306,最大值为153=204∴m n 的一切值所在的范围是13,64éùêúëû.故选:A .【点睛】本题考查了新定义的有理数运算,关键是得到5⩽m ⩽15,20⩽n ⩽30,求出m n的最大与最小值.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在横线上)11.(2022·广东揭阳·七年级期末)若a ,b 互为相反数,则(a +b ﹣1)2016=_____.【答案】1【分析】根据相反数的性质得a +b =0,再代入进行计算即可.【详解】解:∵a ,b 互为倒数,∴a +b =0,∴(a +b ﹣1)2016=20162016(01)(1)1-=-=,故答案为:1.【点睛】此题主要考查相反数的性质和有理数的乘方,关键是正确理解相反数的性质.12.(2022·山东聊城·七年级期中)已知:a 、b 互为相反数,c 、d 互为倒数,2m =,则()()220212020a b m cd ++-=______.【答案】1或-3##-3或1【分析】根据a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,可以得到a +b =0,cd =1,m =±2,然后代入所求式子计算即可.【详解】解:∵a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,∴a +b =0,cd =1,m =±2,当m =2时,()()2202120112020a b m cd ++-=+-=;当m =﹣2时,()()2202120132020a b m cd ++-=-+-=-;故答案为:1或-3.【点睛】本题考查有理数的混合运算,解答本题的关键是求出a +b =0,cd =1,m =±2.13.(2022·黑龙江·绥化市第八中学校期中)比较大小: 56æö+-ç÷èø__________89--.【答案】>【分析】根据正数大于0,0大于负数,正数大于负数,两个负数,绝对值大的其值反而小,比较即可.【详解】解:∵5566æö+-=-ç÷èø,8899--=-,且832530936636=>=,∴5869->-,∴5869æö+->--ç÷èø.故答案为:>【点睛】本题考查了有理数大小比较,绝对值的性质,要熟练掌握有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.14.(2022·浙江台州·七年级期末)某检修小组从A 地出发,在东西方向的马路上检修线路,若规定向东行驶为正,向西行驶为负,一天中五次行驶记录如下(单位:km ):7+,9-,8+,6-,5-.则收工时检修小组在A 地______边______km .【答案】 西 5【分析】将五次行驶的记录数据相加即可得到答案.【详解】∵798655-+--=-,∴在A 地西边5千米处.故答案为:西;5.【点睛】本题考查了有理数的加减法,能够将实际问题和有理数的加减相结合,并且能够准确计算出结果是解决本题的关键.15.(2022·四川资阳·七年级期末)定义一种新运算“Å”:2x y x y x -Å=.如:()()32273233-´-Å-==,则()248ÅÅ=______.【答案】4【分析】根据2x y x y x-Å=,可以计算出()248ÅÅ的值.【详解】解:∵2x y x y x -Å=,∴()248ÅÅ=42822(3)2(2(3)442-´-´-Å=Å-==.故答案为:4.【点睛】本题考查了有理数的混合运算、新定义,解答本题的关键是会用新定义解答问题.16.(2022·江西·景德镇一中七年级期末)使得521n ×+是完全平方数的整数n 的值是_________.【答案】4【分析】由5×2n +1是完全平方数,可设5×2n +1=m 2 (其中m 为正整数),可得5×2n =m 2-1=(m +1)(m -1),即可得m 为奇数,然后设m =2k -1(其中k 是正整数),即可得方程组,解方程组即可求得答案.【详解】解:设5×2n +1=m 2(其中m 为正整数),则5×2n =m 2-1=(m +1)(m -1),∵5×2n 是偶数,∴m 为奇数,设m =2k -1(其中k 是正整数),则5×2n =4k (k -1),即5×2n -2=k (k -1).显然k >1,∵k 和k -1互质,∴25211n k k -ì=´í-=î或2512n k k -=ìí-=î或2215n k k -ì=í-=î,解得:k =5,n =4.因此,满足要求的整数n 为4.故答案为:4.【点睛】此题考查了完全平方数的知识.此题难度较大,解题的关键是将原式变形,可得5×2n =m 2-1=(m +1)(m -1),然后得到m 为奇数,则可设m =2k -1(其中k 是正整数),从而得到方程组.17.(2022·福建·厦门市松柏中学七年级期末)若()()42530x x y y ++-×+-£,()x y +的最大值和最小值的差__________.【答案】11【分析】根据426,55x x y y ++-³+-³,而()()42530x x y y ++-×+-£,求出42,05x y -££££,分别计算x+y 的最大值和最小值,即可得到答案.【详解】解:∵426,55x x y y ++-³+-³,∴()()42530x x y y ++-×+-³,而()()42530x x y y ++-×+-£,∴()()42530x x y y ++-×+-=,∴42,05x y -££££,∴当x =2,y =5时,x+y 有最大值2+5=7,当x =-4,y =0时,x+y 有最小值-4+0=-4,∴x+y 的最大值和最小值的差为7-(-4)=11,故答案为:11.【点睛】此题考查了绝对值最值问题,根据式子讨论得到字母的取值范围进行计算是解题的关键.18.(2021·江苏盐城·七年级期末)如图,数轴上A 、B 两点之间的距离AB =12,有一根木棒PQ ,PQ 在数轴上移动,当Q 移动到与A 、B 其中一个端点重合时,点P 所对应的数为5,且点P 始终在点Q 的左侧,当Q 移动到线段AB 的中点时,点P 所对应的数为__________.【答案】11或-1##-1或11【分析】设PQ的长度为m,当点Q与点A重合时,此时点P对应的数为5,则点A对应的数为m+5,点B 对应的数为m+17,由此即可求解;当点Q与点B重合时,同理可得,点B对应的数为m+5,点A对应的数为m-7,由此即可求解.【详解】解:设PQ的长度为m,当点Q与点A重合时,此时点P对应的数为5,则点A对应的数为m+5,点B对应的数为m+17∴当点Q到AB中点时,点P此时对应的数为:()1755112m m+-++=,当点Q与点B重合时,同理可得,点B对应的数为m+5,点A对应的数为m-7,∴点Q到AB中点时,点P此时对应的数为:()57512m m+---=-,故答案为:11或-1.【点睛】此题综合考查了数轴上两点的距离,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.三、解答题(本大题共8小题,共66分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(2021·广西南宁·七年级期中)把下列各数分别填入相应的集合里.-3,23--,0,227,-3.14,20,-(+5),+1.88(1)正数集合:{…};(2)负数集合:{…};(3)整数集合:{ …};(4)分数集合:{ …};【答案】(1)22,20, 1.88,7ìþ+üíýîL (2)()23,, 3.14,5,3---ì-þ-+üíýîL (3)(){}3,0,20,5,--+L (4)222,, 3.14, 1.88,37-ì-þ-+üíýîL 【分析】(1)根据正数的概念即可得;(2)根据负数的概念即可得;(3)根据整数的概念即可得;(4)根据分数的概念即可得.(1)解:2233--=-,(5)5-+=-,正数集合:22,20, 1.88,7ìþ+üíýîL .(2)解:负数集合:()23,, 3.14,5,3---ì-þ-+üíýîL .(3)解:整数集合:(){}3,0,20,5,--+L .(4)解:分数集合:222,, 3.14, 1.88,37-ì-þ-+üíýîL .【点睛】本题考查了正数与负数、整数与分数、化简绝对值,熟记各概念和绝对值的性质是解题关键.20.(2022·黑龙江·绥化市第八中学校期中)计算:(1)-2×(-3)-(-8)÷4;(2)(14+16-12)×12(3)231152525424-´+´-´;(4)2141420.8263553æö+-+--ç÷èø.【答案】(1)8(2)-1(3)-12.5(4)15.2【分析】(1)根据有理数混合运算进行计算即可,先乘除,再加减;(2)利用乘法分配律进行计算即可;(3)先乘方,再利用乘法分配律进行计算即可;(4)先去括号,再利用有理数加减运算进行计算即可.(1)解:-2×(-3)-(-8)÷4=6-(-2)=6+2=8(2)解:(14+16-12)×12=14×12+16×12-12×12=3+2-6 =-1 (3)解:231152525424 -´+´-´=311 252525424 -´+´-´=311 25424æö-´-+ç÷èø=1 252 -´=-12.5 (4)解:2141 420.826 3553æö+-+--ç÷èø=21441 4226 35553+-++=21144 (46)(22 33555++-+=11+4.2=15.2【点睛】本题主要考查了有理数的混合运算以及乘法分配律的运用,正确地计算能力是解决问题的关键.21.(2022·山西晋城·七年级期中)综合与实践:一名外卖员骑电动车从饭店出发送外卖,向西走了2千米到达小琪家,然后又向东走了4千米到达小莉家,继续向东走了3.5千米到达小刚家,最后回到饭店.以饭店为原点,以向东的方向为正方向,用一个单位长度表示1千米,点,,,O A B C 分别表示饭店,小莉家,小刚家和小琪家.(1)请你在数轴上表示出点,,,O A B C 的位置;(2)小刚家距小琪家多远?(3)小莉步行到小刚家,每小时走5千米;小琪骑自行车到小刚家,每小时骑15千米.若两个人同时分别从自己家出发,问两个人能否同时到达小刚家?若不能,谁先到达?【答案】(1)见解析(2)7.5千米(3)不能同时到达,小琪先到达【分析】(1)根据题意在数轴上表示出点O ,A ,B ,C 的位置即可;(2)由(1)得,小琪家在饭店西2千米处,小刚家在饭店东5.5千米处,根据数轴即可计算;(3)分别计算出两人所行的距离及所用时间,再进行比较,即可得答案.(1)根据已知,以饭店为原点,以向东为正方向,用1个单位长度表示1千米,外卖员骑电动车从饭店出发,向西走了2千米,即为-2,到达小琪家,然后又向东走了4千米,即为242-+=,到达小莉家,继续向东走了3.5千米,即为2 3.5 5.5+=,到达小刚家,最后回到饭店,所以,点O ,A ,B ,C 的位置如图所示:;(2)由数轴可得,22, 5.5OC OB =-==,2 5.57.5BC \=+=,所以,即小刚家距小琪家有7.5千米;(3)由数轴可得, 5.52 3.5AB =-=,\小莉用时为3.550.7h ¸=,小琪用时为7.5150.5h ¸=,0.70.5>Q ,\两人不能同时到达,小琪先到达.【点睛】本题考查了数轴的简单应用,明确数轴的表示方法及数轴上的点与点所表示的数的关系及绝对值等概念,是解题的关键.22.(2021·安徽安庆·七年级期中)已知a ,b ,c 在数轴上的对应点如图所示.(1)判断正、负,用“>”“<”填空:a +b 0,c -a0,b +c 0,b -c 0,a -b0;(2)化简:|a |+|a +b |+|c -a |-2|b +c |-| b -c |+| a -b |.【答案】(1)<,<,<,>,>;(2)2a -b +2c【分析】(1)根据数轴确定字母的符号以及大小,即可判断;(2)根据字母和式子的符号,求解绝对值,化简即可.【详解】解:(1)由数轴可得:0c b a <<<,且b a<-∴0a b +<,0c a -<,0b c +<,0b c ->,0a b ->故答案为:<,<,<,>,>(2)||||||||2||a a b c a b c b c a b +--++-+--+22a a b c a b c b c a b=---+++-++-22a b c=-+【点睛】此题考查了数轴的应用,以及绝对值的化简,解题的关键是根据数轴判断出字母以及各式子的符号.23.(2021·全国·七年级期中)如图在数轴上A 点表示数a ,B 点表示数b ,a ,b 满足2a ++6b -=0;(1)点A 表示的数为 ;点B 表示的数为 ;(2)若点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC ,请在数轴上找一点C ,使AC =2BC ,则C 点表示的数 ;(3)若在原点O 处放一挡板,一小球甲从点A 处以1个单位/秒的速度向左运动;同时另一小球乙从点B 处以2个单位/秒的速度也向左运动,在碰到挡板后 (忽略球的大小,可看作一点) 以原来的速度向相反的方向运动,设运动的时间为t (秒),请分别表示出甲,乙两小球到原点的距离 (用t 表示).【答案】(1)-2;6(2)103或14(3)甲球与原点的距离为:t +2;当03t ……时,乙球到原点的距离为62t -;当3t >时,乙球到原点的距离为26t -【分析】(1)根据非负数的性质求得a =-2,b =6;(2)分C 点在线段AB 上和线段AB 的延长线上两种情况讨论即可求解;(3)甲球到原点的距离=甲球运动的路程+OA 的长,乙球到原点的距离分两种情况:①当0<t ≤3时,乙球从点B 处开始向左运动,一直到原点O ,此时OB 的长度-乙球运动的路程即为乙球到原点的距离;②当t >3时,乙球从原点O 处开始向右运动,此时乙球运动的路程-OB 的长度即为乙球到原点的距离.(1)解:∵|a +2|+|b −6|=0,∴a +2=0,b −6=0,解得,a =−2,b =6,∴点A 表示的数为−2,点B 表示的数为6.故答案为:−2;6.(2)设数轴上点C 表示的数为c ,∵AC =2BC ,∴|c −a |=2|c −b |,即|c +2|=2|c −6|,∵AC =2BC >BC ,∴点C 不可能在BA 的延长线上,则C 点可能在线段AB 上和线段AB 的延长线上,①当C 点在线段AB 上时,则有−2⩽c ⩽6,得c +2=2(6−c ),解得:c =103;②当C 点在线段AB 的延长线上时,则有c >6,得c +2=2(c −6),解得c =14,故当AC =2BC 时,c =103或c =14;故答案为:103或14.(3)∵甲球运动的路程为:1⋅t =t ,OA =2,∴甲球与原点的距离为:t +2;乙球到原点的距离分两种情况:①当0<t ⩽3时,乙球从点B 处开始向左运动,直到原点O ,∵OB =6,乙球运动的路程为:2⋅t =2t ,乙到原点的距离:6−2t (0⩽t ⩽3);②当t >3时,乙球从原点O 处开始一直向右运动,此时乙球到原点的距离为:2t −6(t >3).【点睛】本题主要考查数轴、数轴上两点之间的距离、绝对值的非负数的性质,解题的关键是掌握数轴、绝对值的非负数的性质,注意分类讨论.24.(2022·北京东城·七年级期末)在平面直角坐标系xOy 中,对于任意两点M ,N ,给出如下定义:点M ,N 的横坐标之差的绝对值与纵坐标之差的绝对值的和叫做这两点之间的“直角距离”,记作:MN d ,即点()11,M x y 与点()22,N x y 之间的“直角距离”为1212MN x x d y y -+-=.已知点()3,2A -,点()2,1B .(1)A 与B 两点之间的“直角距离”AB d =______;(2)点()0,C t 为y 轴上的一个动点,当t 的取值范围是______时,AC BC d d +的值最小;(3)若动点P 位于第二象限,且满足AP BP d d ³,请在图中画出点P 的运动区域(用阴影表示).【答案】(1)6(2)12t ££(3)见解析【分析】(1)根据定义即可求得;(2)根据定义可得215AC BC d d t t +=-+-+,再分段讨论即可求得(3) AP BP d d ³,则0AP BP d d -³,根据定义,计算出AP BP d d -即可.(1)解:根据题意得:3221516AB d =--+-=+=,故答案为:6;(2)解:根据题意得:AC BCd d +302201t t =--+-+-+-215t t =-+-+当<1t 时,2<0t -,1<0t -,()()21528AC BC d d t t t +=----+=-+,故此时不存在最小值,当12t ££时,20t -£,10t -³,()()2156AC BC d d t t +=--+-+=,故此时的最小值为6,当>2t 时,2>0t -,1>0t -,()()21522AC BC d d t t t +=-+-+=+,故此时不存在最小值,综上,当12t ££时,AC BC d d +的值最小;故答案为:12t ££;(3)设点P (x ,y )∵点P 在第二象限,∴x <0,y >032AP d x y=--+-21BP d x y=-+-3221AP BP d d x y x y-=--+-----=3221x x y y----+---①当0<y ≤1时3221AP BP d d x x y y-=----+---=321x x ----+若x <-3,则原式=(-3-x )-(2-x )+1=-4(不符合题意)若-3<x <0,则原式=(x +3)-(2-x )+1=2x +2∵AP BPd d ³∴0AP BP d d -³,即2x +2≥0,解得:x ≥-1当0<y ≤1时,x ≥-1,如图;②当1<y ≤2时3221AP BP d d x x y y-=----+---=3232x x y----+-若x <-3,则原式=(-3-x )-(2-x )+3-2y =-2-2y (不符合题意)若-3<x <0,则原式=(x +3)-(2-x )+3-2y =2x -2y +4∵AP BPd d ³∴0AP BP d d -³,即2x -2y +4≥0,整理得:y ≤x +2当1<y ≤2时,y ≤x +2,如图③当y >2时3221AP BP d d x x y y-=----+---=321x x -----若x <-3,则原式=(-3-x )-(2-x )-1=-6(不符合题意)若-3<x <0,则原式=(x +3)-(2-x )-1=2x ,∵x <0,∴2x <0,(不符合题意)综上:点P 的运动范围如图所示.【点睛】本题考查了新定义运算,理解题目中新定义运算的概念是解题的关键,在去掉绝对值符号时,注意分清楚绝对值符号里面的正负,若不知道正负,则应该分类讨论.25.(2022·四川·威远县凤翔中学七年级期中)概念学习规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如222¸¸,(3)(3)(3)(3)-¸-¸-¸-等,类比有理数的乘方,我们把222¸¸记作32,读作“2的3次商”,(3)(3)(3)(3)-¸-¸-¸-记作4(3)-,读作“3-的4次商”.一般地,我们把n 个(0)a a ¹相除记作n a ,读作“a 的n 次商”.初步探究(1)直接写出结果:32=________;(2)关于除方,下列说法错误的是_________.①任何非零数的2次商都等于1;②对于任何正整数n ,(1)1n -=-;③4334=;④负数的奇数次商结果是负数,负数的偶数次商结果是正数.深入思考我们知道,有理数的减法运算可以转化为加法运算,除法运算能够转化为乘法运算,那么有理数的除方运算如何转化为乘方运算呢?例:2411112222222222æö=¸¸¸=´´´=ç÷èø(3)试一试:仿照上面的算式,将下列运算结果直接写成乘方(幂)的形式4(3)-=_______;517æö=ç÷èø_______.(4)想一想:将一个非零有理数a 的n 次商写成幂的形式等于___________;(5)算一算:2453111152344æöæöæö¸-´-+-´=ç÷ç÷ç÷èøèøèø________.【答案】(1)12;(2)②③;(3)213æö-ç÷èø,37;(4)21n a -æöç÷èø;(5)314-【分析】(1)利用题中的新定义计算即可求出值;(2)利用题中的新定义分别判断即可;(3)利用题中的新定义计算即可表示成幂的形式;(4)根据题干和(1)(2)(3)的规律总结即可;(5)将算式中的除方部分根据(4)中结论转化为幂的形式,再根据有理数的混合运算法则计算即可.【详解】解:(1)3122222=¸¸=;(2)当a ≠0时,a 2=a ÷a =1,因此①正确;对于任何正整数n ,当n 为奇数时,(1)(1)(1)...(1)1n -=-¸-¸¸-=-,当n 为偶数时,(1)(1)(1)...(1)1n -=-¸-¸¸-=,因此②错误;因为34=3÷3÷3÷3=19,而43=4÷4÷4=14,因此③错误;负数的奇数次商结果是负数,负数的偶数次商结果是正数,因此④正确;故答案为:②③;(3)4(3)-=(3)(3)(3)(3)-¸-¸-¸-=111(3)333æöæöæö-´-´-´-=ç÷ç÷ç÷èøèøèø213æö-ç÷èø,5111111777777æö=¸¸¸¸ç÷èø=177777´´´´=37;(4)由题意可得:将一个非零有理数a 的n 次商写成幂的形式等于21n a -æöç÷èø;(5)2453111152344æöæöæö¸-´-+-´ç÷ç÷ç÷èøèøèø=()()()23112344¸-´-+-´=()12714´--=314-【点睛】此题考查了有理数的混合运算,理解题中除方的运算法则是解本题的关键.26.(2022·湖北武汉·七年级期中)在数学问题中,我们常用几何方法解决代数问题,借助数形结合的方法使复杂问题简单化.材料一:我们知道|a |的几何意义是:数轴上表示数a 的点到原点的距离;|a ﹣b |的几何意义是:数轴上表示数a ,b 的两点之间的距离;|a +b |的几何意义是:数轴上表示数a ,﹣b 的两点之间的距离;根据绝对值的几何意义,我们可以求出以下方程的解.(1)|x ﹣3|=4解:由绝对值的几何意义知:在数轴上x 表示的点到3的距离等于4∴x 1=3+4=7,x 2=3﹣4=﹣1(2)|x +2|=5解:∵|x +2|=|x ﹣(﹣2)|,∴其绝对值的几何意义为:在数轴上x 表示的点到﹣2的距离等于5.∴x 1=﹣2+5=3,x2=﹣2﹣5=﹣7材料二:如何求|x﹣1|+|x+2|的最小值.由|x﹣1|+|x+2|的几何意义是数轴上表示数x的点到表示数1和﹣2两点的距离的和,要使和最小,则表示数x的这点必在﹣2和1之间(包括这两个端点)取值.∴|x﹣1|+|x+2|的最小值是3;由此可求解方程|x﹣1|+|x+2|=4,把数轴上表示x的点记为点P,由绝对值的几何意义知:当﹣2≤x≤1时,|x﹣1|+|x+2|恒有最小值3,所以要使|x﹣1|+|x+2|=4成立,则点P必在﹣2的左边或1的右边,且到表示数﹣2或1的点的距离均为0.5个单位.故方程|x﹣1|+|x+2|=4的解为:x1=﹣2﹣0.5=﹣2.5,x2=1+0.5=1.5.阅读以上材料,解决以下问题:(1)填空:|x﹣3|+|x+2|的最小值为 ;(2)已知有理数x满足:|x+3|+|x﹣10|=15,有理数y使得|y﹣3|+|y+2|+|y﹣5|的值最小,求x﹣y的值.(3)试找到符合条件的x,使|x﹣1|+|x﹣2|+…+|x﹣n|的值最小,并求出此时的最小值及x的取值范围.【答案】(1)5;(2)﹣7或8;(3)当x=12n+,最小值为214n-;当x=2n时,最小值为24n【分析】(1)由阅读材料直接可得;(2)由已知可得:x=-3-1=-4或x=10+1=11,当y=3时,|y-3|+|y+2|+|y-5|有最小值7;(3)当n是奇数时,中间的点为12n+,所以当x=12n+时,|x-1|+|x-2|+…+|x-n|=0+2+4+…+(n-3)+(n-1)=214n-;当n是偶数时,中间的两个点相同为,所以当x=2n时,|x-1|+|x-2|+…+|x-n|=1+3+5+…+(n-3)+(n-1)=24n.【详解】解:(1)由阅读材料可得::|x﹣3|+|x+2|的最小值为5,故答案为5;(2)|x+3|+|x﹣10|的最小值为13,∵|x+3|+|x﹣10|=15,∴x=﹣3﹣1=﹣4或x=10+1=11,∵|y﹣3|+|y+2|+|y﹣5|表示数轴上表示y到﹣2,3,5之间的距离和最小,∴当y=3时,有最小值7,∴x﹣y=﹣7或x﹣y=8;(3)|x﹣1|+|x﹣2|+…+|x﹣n|表示数轴上点x到1,2,3,…,n之间的距离和最小,当n 是奇数时,中间的点为12n +,∴当x =12n +时,|x ﹣1|+|x ﹣2|+…+|x ﹣n |=0+2+4+…+(n ﹣3)+(n ﹣1)=214n -,∴最小值为214n -;当n 是偶数时,中间的两个点相同为2n ,∴当x =2n 时,|x ﹣1|+|x ﹣2|+…+|x ﹣n |=1+3+5+…+(n ﹣3)+(n ﹣1)=24n ,∴最小值为24n .【点睛】本题考查数轴的性质;理解阅读材料的内容,掌握绝对值的几何意义,利用数轴上点的特点解题是关键.。

最新七年级上册有理数章末练习卷(Word版 含解析)

最新七年级上册有理数章末练习卷(Word版 含解析)

一、初一数学有理数解答题压轴题精选(难)1.如图,已知数轴上的点表示的数为,点表示的数为,点到点、点的距离相等,动点从点出发,以每秒个单位长度的速度沿数轴向右匀速运动,设运动时间为 ( 大于秒.(1)点表示的数是________.(2)求当等于多少秒时,点到达点处?(3)点表示的数是________(用含字母的式子表示)(4)求当等于多少秒时,、之间的距离为个单位长度.【答案】(1)1(2)解:[6-(-4)]÷2=10÷2=5(秒)答:当t=5秒时,点P到达点A处.(3)2t-4(4)解:当点P在点C的左边时,2t=3,则t=1.5;当点P在点C的右边时,2t=7,则t=3.5.综上所述,当t等于1.5或3.5秒时,P、C之间的距离为2个单位长度.【解析】【解答】解:(1)依题意得,点C是AB的中点,故点C表示的数是: =1. 故答案是:1;( 3 )点P表示的数是2t-4.故答案是:2t-4;【分析】(1)根据x c=可求解;(2)根据数轴上两点间的距离等于两点坐标之差的绝对值可求得AB的距离,再根据时间=路程÷速度可求解;(3)根据题意可得点P表示的数=点P运动的距离+X B可求解;(4)由题意可分两种情况讨论求解:① 当点P在点C的左边时,由题意可列关于t的方程求解;② 当点P在点C的右边时,同理可求解.2.数轴上两点间的距离等于这两个点所对应的数的差的绝对值.例:点A、B在数轴上对应的数分别为a、b,则A、B两点间的距离表示为AB=|a﹣b|.根据以上知识解题:(1)点A在数轴上表示3,点B在数轴上表示2,那么AB=________.(2)在数轴上表示数a的点与﹣2的距离是3,那么a=________.(3)如果数轴上表示数a的点位于﹣4和2之间,那么|a+4|+|a﹣2|=________.(4)对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值.如果没有.请说明理由.【答案】(1)1(2)1或-5(3)6(4)解:∵|a-3|+|a﹣6|表示a到3与a到6的距离的和,∴当3≤a≤6时,|a-3|+|a-6|= =3,当a>6或a<3时,|a-3|+|a﹣6|>3,∴|a-3|+|a﹣6|有最小值,最小值为3.【解析】【解答】(1)AB= =1,故答案为:1( 2 )∵数轴上表示数a的点与﹣2的距离是3,∴ =3,∴-2-a=3或-2-a=-3,解得:a=1或a=-5,故答案为:1或-5( 3 )数a位于﹣4与2之间,|a+4|+|a﹣2|表示a到-4与a到2的距离的和,∴|a+4|+|a﹣2|= =6,故答案为:6【分析】(1)根据数轴上两点间的距离等于这两个点所对应的数的差的绝对值即可算出答案;(2)根据数轴上两点间的距离等于这两个点所对应的数的差的绝对值列出方程,求解即可;(3)根据题意可知:此题其实质就是求数轴上表示数a的点到表示数字-4的点的距离与数轴上表示数a的点到表示数字2的点的距离的和,又数轴上表示数a的点位于-4与2之间,故该距离等于数轴上表示数字-4与表示数字2的点之间的距离,从而即可得出答案;(4)此题其实质就是求数轴上表示数a的点到表示数字3的点的距离与数轴上表示数a 的点到表示数字6的点的距离的和,从而分当3≤a≤6时,当a>6或a<3时三种情况考虑即可得出答案.3.列方程解应用题如图,在数轴上的点A表示,点B表示5,若有两只电子蜗牛甲、乙分别从A、B两点同时出发,保持匀速运动,甲的平均速度为2单位长度秒,乙的平均速度为1单位长度秒请问:(1)两只蜗牛相向而行,经过________秒相遇,此时对应点上的数是________.(2)两只蜗牛都向正方向而行,经过多少秒后蜗牛甲能追上蜗牛乙?【答案】(1)3;2(2)解:设两只蜗牛都向正方向而行,经过y秒后蜗牛甲能追上蜗牛乙,依题意有,解得.答:两只蜗牛都向正方向而行,经过9秒后蜗牛甲能追上蜗牛乙【解析】【解答】解:(1)设两只蜗牛相向而行,经过x秒相遇,依题意有,解得..答:两只蜗牛相向而行,经过3秒相遇,此时对应点上的数是2.【分析】(1)可设两只蜗牛相向而行,经过x秒相遇,根据等量关系:两只蜗牛的速度和时间,列出方程求解即可;(2)可设两只蜗牛都向正方向而行,经过y秒后蜗牛甲能追上蜗牛乙,根据等量关系:两只蜗牛的速度差时间,列出方程求解即可.4.如图,数轴上点A,B分别对应数a,b.其中a<0,b>0.(1)当a=﹣2,b=6时,线段AB的中点对应的数是________;(直接填结果)(2)若该数轴上另有一点M对应着数m.①当m=2,b>2,且AM=2BM时,求代数式a+2b+20的值;②当a=﹣2,且AM=3BM时,小安演算发现代数式3b﹣4m是一个定值.老师点评:你的演算发现还不完整!请通过演算解释:为什么“小安的演算发现”是不完整的?【答案】(1)2(2)解:①当m=2,b>2时,点M在点A,B之间,∵AM=2BM,∴m﹣a=2(b﹣m),∴2﹣a=2(b﹣2),∴a+2b=6,∴a+2b+20=6+20=26;②小安只考虑了一种情况,故老师点评“小安的演算发现”是不完整的.当点M在点A,B之间时,a=﹣2,∵AM=3BM,∴m+2=3(b﹣m),∴m+2=3b﹣3m,∴3b﹣4m=2,∴代数式3b﹣4m是一个定值.当点M在点B右侧时,∵AM=3BM,∴m+2=3(m﹣b),∴m+2=3m﹣3b,∴2m﹣3b=2,∴代数式2m﹣3b也是一个定值.【解析】【解答】解:(1)由题意得出,线段AB的中点对应的数是2,故答案为:2.【分析】(1)首先根据数轴的性质,即可得出中点对应的数值;(2)①首先判定点M 在点A,B之间,然后根据等式列出关系式,即可得解;②根据题意,分两种情况进行求解:点M在点A,B之间和点M在点B右侧时,通过列出等式,即可判定.5.点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数轴,根据数形结合思想,回答下列问题:(1)已知|x|=3,则x的值是________.(2)数轴上表示2和6两点之间的距离是________,数轴上表示1和﹣2的两点之间的距离为________;(3)数轴上表示x和1两点之间的距离为________,数轴上表示x和﹣3两点之间的距离为________(4)若x表示一个实数,且﹣5<x<3,化简|x﹣3|+|x+5|=________;(5)|x+3|+|x﹣4|的最小值为________,|x﹣1|+|x﹣2|+|x﹣3|+|x﹣4|+|x﹣5|的最小值为________.(6)|x+1|﹣|x﹣3|的最大值为________.【答案】(1)(2)4;3(3)|x﹣1|;|x+3|(4)8(5)7;6(6)4【解析】【解答】解:(1)∵,则;故答案为:;(2),,故答案为:4,3;(3)根据两点间距离公式可知:数轴上表示x和1两点之间的距离为:;数轴上表示x和-3两点之间的距离为:;故答案为:,;(4)x对应点在点-5和3之间时的任意一点时|x-3|+|x+5|的值都是8;故答案为:8;(5)x对应点在点-4和3之间时的任意一点,|x-3|+|x+4|的值最小是7;当x对应点是3时,|x-1|+|x-2|+|x-3|+|x-4|+|x-5|的最小值为6;故答案为:7,6;(6)当x对应点不在-1和3对应点所在的线段上,即x<-1或x>3时,|x+1|-|x-3|的最大值为4;故答案为:4.【分析】(1)根据绝对值的意义,即可得到答案;(2)(3)直接代入公式即可;(4)实质是在表示3和-5的点之间取一点,计算该点到点3和-5的距离和;(5)可知x对应点在对应-3和4的点之间时|x+3|+|x-4|的值最小;x对应点在3时,|x-1|+|x-2|+|x-3|+|x-4|+|x-5|值最小;(6)可知x对应点在表示-1和3的点所形成的线段外时,|x+1|-|x-3|的值最大.6.先阅读下面的材料,再解答后面的各题:现代社会对保密要求越来越高,密码正在成为人们生活的一部分.有一种密码的明文(真实文)按计算机键盘字母排列分解,其中Q,W,E,……,N,M这26个字母依次对应1,2,3,……,25,26这26个自然数(见下表).Q W E R T Y U I O P A S D12345678910111213F G H J K L Z X C V B N M14151617181920212223242526将明文转成密文,如:,即R变为L;,即A 变为S.将密文转换成明文,如:,即X变为P;13 3×(13-8)-1=14,即D变为F.(1)按上述方法将明文NE T译为密文.(2)若按上方法将明文译成的密文为DWN,请找出它的明文.【答案】(1)解:即NET密文为MQP.(2)解:即密文DWN的明文为FYC .【解析】【分析】(1)由图表找出N、E、T对应的自然数,再根据变换公式变成密文即可;(2)由图表找出D、W、N对应的自然数,再根据变换公式变成明文即可.7.如图,在数轴上点A表示数−20,点C表示数30,我们把数轴上两点之间的距离用表示两点的大写字母一起标记.比如,点A与点B之间的距离记作AB,点B与点C之间的距离记作BC…(1)点A与点C之间的距离记作AC,则AC的长为________;若数轴上有一点D满足CD=AD,则D点表示的数为________;(2)动点B从数1对应的点开始向右运动,速度为每秒1个单位长度,同时点A、C在数轴上运动,点A、C 的速度分别为每秒2个单位长度,每秒3个单位长度,运动时间为t秒.①若点A向右运动,点C向左运动,AB=BC,求t的值________;②若点A向左运动,点C向右运动,2AB−m×BC的值不随时间t的变化而改变,则2AB−m×BC的值为________(直接写出答案).【答案】(1)50;5(2)10或;-45.【解析】【解答】(1)解:∵A表示的数为-20,C表示的数为30,∴AC=30-(-20)=50;∵CD=AD∴点D为AC的中点∴D所表示的数为 =5,故答案为50;5(2)解:①根据题意,A所表示的数为-20+2t,C所表示的数为30-3t,B 所表示的数为1+t,AB=|-20+2t-(1+t)|=|-21+t|,BC=|30-3t-(1+t)|=|29-4t|,∵AB=BC∴|-21+t|=|29-4t|,-21+t=29-4t,解得t=10,-21+t=4t-29解得t= .∴当AB=BC时,t=10或.②根据题意,A所表示的数为-20-2t,B所表示的数为1+t,C所表示的数为30+3t,AB=1+t-(-20-2t)=21+3t,BC=30+3t-(1+t)=29+2t,∴2AB-m×BC=2(21+3t)-m×(29+2t)=42+6t-29m-2mt,∵2AB-m×BC的值不随时间t的变化而改变,∴6t-2mt=0,∴m=3,∴42+6t-29m-2mt=-45,∴2AB-m×BC=-45.故答案为-45.【分析】(1)在数轴上表示两点所组成的线段长度用右边点所表示的数减去左边点所表示的数即可.(2)当数轴上想表示两个点之间的距离,根据绝对值的意义可用绝对值进行处理.动点在数轴上运动,在已知运动的方向和速度之后,就可以利用原来所在的数如果向右移动就加上向右移动的距离,如果向左移动,就减去向左移动的距离.8.先阅读下列材料,再解决问题:学习数轴之后,有同学发现在数轴上到两点之间距离相等的点,可以用表示这两点表示的数来确定.如:(1)到表示数4和数10距离相等的点表示的数是7,有这样的关系7= (4+10);(2)到表示数和数距离相等的点表示的数是,有这样的关系 =.解决问题:根据上述规律完成下列各题:(1)到表示数50和数150距离相等的点表示的数是________(2)到表示数和数距离相等的点表示的数是________(3)到表示数 12和数 26距离相等的点表示的数是________(4)到表示数a和数b距离相等的点表示的数是________【答案】(1)100(2)(3)-14(4)【解析】【解答】解:(1)由题意得:到表示数50和数150距离相等的点表示的数为:(2)到表示数和数距离相等的点表示的数为:(3)到表示数 -12 和数 -26 距离相等的点表示的数为:(4)到表示数a和数b距离相等的点表示的数为: .故答案为:100,, -14,.【分析】根据题中的叙述分别表示出数轴上这些到两点之间距离相等的点,最后得出规律到两点之间距离相等的点的数等于这两点坐标之和除以2, 即x=.9.数轴上两个质点A.B所对应的数为−8、4,A.B两点各自以一定的速度在数轴上运动,且A点的运动速度为2个单位/秒。

七年级上册有理数章末试卷

七年级上册有理数章末试卷

七年级上册第一章有理数章末试卷班级________ 姓名_________一.选择题(共10小题,每小题3分)1.﹣2024的绝对值是( A )A .2024B .﹣2024C .10241D .20241 2.下列各数中,是负整数的是( B )A .+2B .﹣1C .﹣1.5D .51 3.去年12月的某天,沈阳、大连、丹东、哈尔滨这四个城市的最低气温分别是﹣12℃,3℃,0℃,﹣18℃,其中气温最低的城市是( D )A .大连B .丹东C .沈阳D .哈尔滨4.下列四个数轴的画法中,规范的是( C )A .B .C .D .5.2023年10月26日,“神舟十七号”载人飞船发射成功,在飞船上有一种零件的尺寸标准是300±5(单位:mm ),则下列零件尺寸不合格的是( D )A .295mmB .298mmC .304mmD .310mm6.有理数a 、b 在数轴上对应点的位置如图所示,则下列判断正确的是( C )A .a >0B .b <0C .a <bD .a >b7.下列各对数中,互为相反数的是( B )A .﹣(+1)和+(﹣1)B .﹣(﹣1)和+(﹣1)C .﹣(+1)和﹣1D .+(﹣1)和﹣1 8.下列说法正确的是( D )A .最小的正整数是0B .﹣a 是负数C .符号不同的两个数互为相反数D .﹣a 的相反数是a9.如图,数轴上有A 、B 、C 、D 四个点,其中绝对值最小的数对应的点是( B )A .点AB .点BC .点CD .点D10.如果x 为有理数,式子22024+-x 存在最大值,那么这个最大值是( B )A .2025B .2024C .2023D .2022二.填空题(共6小题,每小题3分)11.下列各数:π 31.2 0 6 4.3- 32,,,,, -,其中非负数有 4 个. 12.比较大小:⎪⎭⎫ ⎝⎛--54 > ﹣85-.(用“>”“=”或“<”连接) 13.a -2和﹣3互为相反数,那么a = 5 .14.观察下列各数;,,,,,65 54 43 32 21---...,根据它们的排列规律写出第100个数: 101100 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(时间:120分钟 满分:150分)班级:__________学号:____________姓名:____________成绩:____________(I 卷 100分)一.选择题:(3分/题,共30分)1. -│-21│的倒数是( ). A .2 B .21 C .-21D .-22.如果水库的水位高于正常水位2m 时,记作+2m ,那么低于正常水位3m 时,应记作( ).A .+3mB .-3mC .+13 D .13- 3. 2003年5月19日,国家邮政局特别发行“万众一心 抗击‘非典’”邮票,收入全部捐赠给卫生部门,用以支持抗击“非典”斗争,其邮票发行量为12500000枚,用科学记数法表示正确的是( ). A .125105.⨯枚 B .125106.⨯枚 C .125107.⨯枚D .125108.⨯枚4.已知| a |=3,| b |=5,且ab <0,那么a +b 的值等于( ). A .8 B .-2 C .8或-8 D .2或-25.“五·一”期间,某商场举办商品促销活动,优惠的办法是:购物满100元送20元本店的购物券,满200元送40元本店的购物券,依此类推(用本店的购物券消费同样赠送),“五·一”节这天,小明家购买一套家庭影院,一次花去3000元,他还可以在该商场购回( )元的商品.A .600B .720C .740D .1000 6.下列说法正确的是( ).A .符号不同的两个数互为相反数B .有理数分为正有理数和负有理数C .两数相加,和一定大于任何一数D .所有有理数都能用数轴上的点表示 7.(1994全国高考)某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个)经过3小时,这种细菌由1个可繁殖成( ).A .511个B .512个C .1023个D .1024个8.在本埠投寄平信,每封信质量不超过20克时付邮资0.80元,超过20克不超过40克时付邮资1.60元,依次类推,每增加20克需增加邮资0.80元,(信的质量在100克以内),如果某人所寄一封信的质量为72.5克,那么他应付邮费( ). A .2.4元 B .2.8元 C .3元 D .3.2元 9.小王利用计算机设计了一个计算程序,输入和输出的数据如下表:那么,当输入数据是8时,输出的数据是( ) A .618 B .638 C .658 D .678 10.已知:| a |=1,| b |=2,| c |=3, 且a > b >c ,则2()a b c +-=( ). A .16 B .0 C .4或 0 D .36 二.填空题:(3分/题,共30分)11.平方是25的数是_________,绝对值等于3的数是___________. 12.在数轴上,与表示- 1的点距离为2的所有数是______________. 13.计算:1– 2 + 3 - 4 +5 - 6 +······+2003 - 2004 =________________.14.北京与纽约的时差为 -13小时,北京时间是中国教师节那天 8∶00,则纽约时间是____月______日_______时.(比北京时间晚记为-)15.某商店去年四个季度盈亏情况如下(盈余为正):128.5万元,-140万元,-95.5万元,280万元,这个商店去年总的盈亏情况为: ________________. 16.把边长为1的正方形对折n 次后,所得图形的面积是_________. 17.计算:22)10(5512--⨯÷-的结果是__________________. 18.若一个数的倒数等于本身,则此数是_________,一个数的立方等于本身,这个数是___________,一个数的相反数等于本身,这个数是_____________.19.在同一平面内,1个圆把平面分成0×1+2=2个部分,2个圆把平面最多分成1×2+2=4个部分,3个圆把平面最多分成2×3+2=8个部分,4个圆把平面最多分成3×4+2=14个部分,那么10个圆把平面最多分成 个部分.20.观察下列等式:23333233323323104321632132111=+++=++=+=想一想,等式左边各次幂的底数与右边幂的底数有什么关系,猜一猜可以得到什么规律.并把这个规律用等式写出来:_______________________________________. 三.解答题:(21题20分,22、23题各10分,共40分) 21.计算下列各题:(4分/题,共20分) ①)3()4()2(8102-⨯---÷+- ②1111(241)(1)4288--÷-③11223210)1()3(|)3(|24|)2(|)2()1(3-⨯-÷--÷÷-⨯-+-④)}1582715824()]4(4125.2)1[()3{(443-÷-⨯+÷----⑤22831(2)(1)0.52552142÷--⨯--÷⨯22.《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额.此项税款按下表分段累进计算:某人一月份应交纳此项税款26.78元,则他的当月工资、薪金所得是多少?23.某股民上星期六买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况:(单价:元)(1)星期三收盘时,每股是多少元?(2)本周内最高价是每股多少元?最低价是每股多少元?(3)已知该股民买进股票时付了0.15%的手续费,卖出时需付成交额0.15%的手续费和0.1%的交易税,如果他一直观望到星期六才将股票全部卖出,请算算他本周的收益如何?B 村C 村 (II 卷 50分)一.选择题:(4分/题,共20分)1.下列各组数中,互为相反数的是( ).A .2与21B .(- 1)2与1C .- 1与(- 1)2D .2与| -2| 2.若033=+--a a ,则a 的取值范围是( ).A .a ≤3B .a <3C .a ≥3D .a >3 3.在一列数1,2,3,4,…,1000中,数字“0”出现的次数一共是( ). A .182 B .189 C .192 D .194 4.为解决四个村庄用电问题,政府投资在已建电厂与这四个村庄之间架设输电线路.现已知这四个 则能把电力输送到这四个村庄的输电线路的最短总 长度应该是( ). A .19.5 B .20.5C .21.5D .25.55.某班学生在颁奖大会上得知该班获得奖励的情况如下表:已知该班共有28人获得奖励,其中只获得两项奖励的共有13人,那么该班获得奖励最多的一位同学可获得的奖励为( ).A .3项B .4项C .5项D .6项二.填空题:(4分/题,共20分)6. 2003年6月1日9时,举世瞩目的三峡工程正式下闸蓄水,首批4台机组率先发电,预计年内可发 电年发电量为5500000000度,这个数用科学记数法表示,记 为___________度;0.30精确到_________位,有________个 有效数字.7.某物体从上午7时至下午4时的温度M (℃)与时间t (时)的关系为:M =10053+-t t (其中t =0表示中午12时,t =1表示下午1时),则上午10时此物体的温度为 ℃. 8.某商场对顾客进行优惠,规定:(1)如一次购物不超过200元,则不予优惠;(2)如一次购物超过200元,但不超过500元,按标价给予九折优惠;(3)如一次购物超过500元,其中500元按第(2)条给予优惠,超过500元的部分则给予八折优惠.某人两次购物,分别付款l48元和423元,如果你购买同样的商品,一定会选择一次性购买,你只须付款_____________元.9.探究数字“黑洞”:“黑洞”原指非常奇怪的天体,它体积小,密度大,吸引力强,任何物体到了它那里都别想再“爬”出来.无独有偶,数字中也有类似的“黑洞”,满足某种条件的所有数,通过一种运算,都能被它“吸”进去,无一能逃脱它的魔掌.譬如:任意找一个3的倍数的数,先把这个数的每一个数位上的数字都立方,再相加,得到一个新数,然后把这个新数的每一个数位上的数字再立方、求和,…,重复运算下去,就能得到一个固定的数T = ,我们称它为数字“黑洞”.T 为何具有如此魔力?通过认真的观察、分析,你一定能发现它的奥秘! 10.观察:计算:;32311)3121()211(321211=-=-+-=⨯+⨯ ;43411)4131()3121()211(431321211=-=-+-+-=⨯+⨯+⨯ 计算:1111......_____________________.122334(1)n n ++++=⨯⨯⨯+ 三.解答题:(10分)11.先阅读下面的材料,再解答后面的各题.现代社会对保密要求越来越高,密码正在成为人们生活的一部分.有一种密码的明文(真实文)按计算机键盘字母排列分解,其中Q 、W 、E 、······、N 、M 这26个字母依次对应1、2、3、·····、25、26这26个自然数(见下表):给出一个变换公式:(33217(3318(33xx x x xxx x x xxx x x x⎧'=≤≤⎪⎪+⎪'=+≤≤⎨⎪+⎪'=+≤≤⎪⎩是自然数,126,被整除)是自然数,126,被整除余1)是自然数,126,被整除余2)将明文转换成密文,如:4→42173++=19,即R变为L11→11183++=12,即A变为S将密文转换成明文,如:21→3(2117)210⨯--=,即X变为P13→3(138)114⨯--=,即D变为F (1)按上述方法将明文NET译为密文;(2)若按上述方法将明文译成的密文为DWN,请找出它的明文.。

相关文档
最新文档