8、空间两直线的位置关系(2)

合集下载

空间点、直线、平面之间的位置关系

空间点、直线、平面之间的位置关系

空间点、直线、平面之间的位置关系一、基础知识1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.(2)公理2:过不在一条直线上的三点,有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.2.空间中两直线的位置关系(1)空间中两直线的位置关系⎩⎪⎨⎪⎧ 共面直线⎩⎨⎧ 平行相交异面直线:不同在任何一个 平面内(2)异面直线所成的角 ①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).②范围:⎝ ⎛⎦⎥⎤0,π2. (3)公理4:平行于同一条直线的两条直线互相平行.(4)定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.3.空间中直线与平面、平面与平面的位置关系(1)直线与平面的位置关系有相交、平行、在平面内三种情况.直线l和平面α相交、直线l和平面α平行统称为直线l在平面α外,记作l⊄α.(2)平面与平面的位置关系有平行、相交两种情况.二、常用结论1.公理2的三个推论推论1:经过一条直线和这条直线外一点有且只有一个平面.推论2:经过两条相交直线有且只有一个平面.推论3:经过两条平行直线有且只有一个平面.2.异面直线判定的一个定理过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.3.唯一性定理(1)过直线外一点有且只有一条直线与已知直线平行.(2)过直线外一点有且只有一个平面与已知直线垂直.(3)过平面外一点有且只有一个平面与已知平面平行.(4)过平面外一点有且只有一条直线与已知平面垂直.考点一平面的基本性质及应用B1C1D1中,E,F分[典例]如图所示,在正方体ABCD-A别是AB和AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.[证明](1)如图,连接EF,CD1,A1B.∵E,F分别是AB,AA1的中点,∴EF∥A1B.又A1B∥D1C,∴EF∥CD1,∴E,C,D1,F四点共面.(2)∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P,如图所示.则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈DA,∴CE,D1F,DA三线共点.[变透练清]1.如图是正方体或四面体,P,Q,R,S分别是所在棱的中点,则这四个点不共面的一个图是()解析:选D A,B,C图中四点一定共面,D中四点不共面.2.(变结论)若本例中平面BB1D1D与A1C交于点M,求证:B,M,D1共线.证明:连接BD1(图略),因为BD1与A1C均为正方体ABCD-A1B1C1D1的对角线,故BD1与A1C相交,则令BD1与A1C的交点为O,则B,O,D1共线,因为BD1⊂平面BB1D1D,故A1C与平面BB1D1D的交点为O,与M重合,故B,M,D1共线.考点二空间两直线的位置关系[典例](1)(优质试题·郑州模拟)已知直线a和平面α,β,α∩β=l,a⊄α,a ⊄β,且a在α,β内的射影分别为直线b和c,则直线b和c的位置关系是() A.相交或平行B.相交或异面C.平行或异面D.相交、平行或异面(2)G,N,M,H分别是下图中正三棱柱的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形的是________.(填序号)[解析](1)如图,取平面ABCD为α,平面ABFE为β.若直线CH为a,则a在α,β内的射影分别为CD,BE,此时CD,BE异面,即b,c异面,排除A;若直线GH为a,则a在α,β内的射影分别为CD,EF,此时CD,EF平行,即b,c平行,排除B;若直线BH为a,则a在α,β内的射影分别为BD,BE,此时BD,BE相交,即b,c 相交,排除C.综上所述选D.(2)图①中,直线GH∥MN;图②中,G,H,N三点共面,但M∉平面GHN,因此直线GH与MN异面;图③中,连接MG,GM∥HN,因此GH与MN共面;图④中,G,M,N共面,但H∉平面GMN,因此GH与MN异面.所以在图②④中,GH与MN异面.[答案](1)D(2)②④[题组训练]1.下列结论中正确的是()①在空间中,若两条直线不相交,则它们一定平行;②与同一直线都相交的三条平行线在同一平面内;③一条直线与两条平行直线中的一条相交,那么它也与另一条相交;④空间四条直线a,b,c,d,如果a∥b,c∥d,且a∥d,那么b∥c.A.①②③B.②④C.③④D.②③解析:选B①错,两条直线不相交,则它们可能平行,也可能异面;②显然正确;③错,若一条直线和两条平行直线中的一条相交,则它和另一条直线可能相交,也可能异面;④由平行直线的传递性可知正确.故选B.2.如图,在正方体ABCD -A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四个结论:①直线AM与CC1是相交直线;②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线AM与DD1是异面直线.其中正确结论的序号为________.解析:直线AM与CC1是异面直线,直线AM与BN也是异面直线,所以①②错误.点B,B1,N在平面BB1C1C中,点M在此平面外,所以BN,MB1是异面直线.同理AM,DD1也是异面直线.答案:③④[课时跟踪检测]1.(优质试题·衡阳模拟)若直线l与平面α相交,则()A.平面α内存在直线与l异面B.平面α内存在唯一一条直线与l平行C.平面α内存在唯一一条直线与l垂直D.平面α内的直线与l都相交解析:选A当直线l与平面α相交时,这条直线与该平面内任意一条不过交点的直线均为异面直线,故A正确;该平面内不存在与直线l平行的直线,故B错误;该平面内有无数条直线与直线l垂直,所以C错误,平面α内的直线与l可能异面,故D错误,故选A.2.在正方体ABCD-A1B1C1D1中,E,F分别是线段BC,CD1的中点,则直线A1B与直线EF的位置关系是()A.相交B.异面C.平行D.垂直解析:选A由BC綊AD,AD綊A1D1,知BC綊A1D1,从而四边形A1BCD1是平行四边形,所以A1B∥CD1,又EF⊂平面A1BCD1,EF∩D1C=F,故A1B与EF相交.3.已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件解析:选B直线a,b分别在两个不同的平面α,β内,则由“直线a和直线b相交”可得“平面α和平面β相交”,反之不成立.所以“直线a和直线b 相交”是“平面α和平面β相交”的充分不必要条件.故选B.4.设四棱锥P-ABCD的底面不是平行四边形,用平面α去截此四棱锥(如图),使得截面四边形是平行四边形,则这样的平面α()A.不存在B.只有1个C.恰有4个D.有无数多个解析:选D设四棱锥的两组不相邻的侧面的交线为m,n,直线m,n确定了一个平面β.作与β平行的平面α,与四棱锥的各个侧面相交,则截得的四边形必为平行四边形,而这样的平面α有无数多个.5.在空间四边形ABCD各边AB,BC,CD,DA上分别取E,F,G,H四点,如果EF,GH相交于点P,那么()A.点P必在直线AC上B.点P必在直线BD上C.点P必在平面DBC内D.点P必在平面ABC外解析:选A如图,因为EF⊂平面ABC,而GH⊂平面ADC,且EF和GH 相交于点P,所以点P在两平面的交线上,因为AC是两平面的交线,所以点P 必在直线AC上.6.如图,在平行六面体ABCD-A1B1C1D1中,既与AB共面又与CC1共面的棱有________条.解析:依题意,与AB和CC1都相交的棱有BC;与AB相交且与CC1平行有棱AA1,BB1;与AB平行且与CC1相交的棱有CD,C1D1.故符合条件的有5条.答案:57.在四棱锥P-ABCD中,底面ABCD为平行四边形,E,F分别为侧棱PC,PB的中点,则EF与平面P AD的位置关系为________,平面AEF与平面ABCD 的交线是________.解析:由题易知EF ∥BC ,BC ∥AD ,所以EF ∥AD ,故EF ∥平面P AD ,因为EF ∥AD ,所以E ,F ,A ,D 四点共面,所以AD 为平面AEF 与平面ABCD 的交线. 答案:平行 AD8.如图所示,在空间四边形ABCD 中,点E ,H 分别是边AB ,AD 的中点,点F ,G 分别是边BC ,CD 上的点,且CF CB =CG CD =23,有以下四个结论.①EF 与GH 平行;②EF 与GH 异面;③EF 与GH 的交点M 可能在直线AC 上,也可能不在直线AC 上; ④EF 与GH 的交点M 一定在直线AC 上.其中正确结论的序号为________.解析:如图所示.连接EH ,FG ,依题意,可得EH ∥BD ,FG ∥BD ,故EH ∥FG ,所以E ,F ,G ,H 共面.因为EH =12BD ,FG =23BD ,故EH ≠FG ,所以EFGH 是梯形,EF 与GH 必相交,设交点为M .因为点M 在EF 上, 故点M 在平面ACB 上.同理,点M 在平面ACD 上,所以点M 是平面ACB 与平面ACD 的交点,又AC 是这两个平面的交线,所以点M 一定在直线AC 上.答案:④9.如图所示,正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是A 1B 1,B 1C 1的中点.(1)AM 和CN 是否共面?说明理由;。

空间两条直线的位置关系

空间两条直线的位置关系

空间两条直线的位置关系Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】空间两条直线的位置关系知识点一空间两条直线的位置关系1.异面直线⑴定义:不同在任何一个平面内的两直线叫做异面直线。

⑵特点:既不相交,也不平行。

⑶理解:①“不同在任何一个平面内”,指这两条直线永不具备确定平面的条件,因此,异面直线既不相交,也不平行,要注意把握异面直线的不共面性。

②“不同在任……”也可以理解为“任何一个平面都不可能同时经过这两条直线”。

③不能把异面直线误解为分别在不同平面内的两条直线为异面直线.也就是说,在两个不同平面内的直线,它们既可以是平行直线,也可以是相交直线.2.空间两条直线的位置关系⑴相交——在同一平面内,有且只有一个公共点;⑵平行——在同一平面内,没有公共点;⑶异面——不同在任何个平面内,没有公共点.例1、正方体ABCD-A1B1C1D1中,M、N分别为棱C1D1、C1C的中点,有以下四个结论:①直线AM与CC1是相交直线;②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线AM与DD1是异面直线.其中正确的结论为________.(注:把你认为正确的结论的序号都填上)答案:③④例2、异面直线是指____.①空间中两条不相交的直线;②分别位于两个不同平面内的两条直线;③平面内的一条直线与平面外的一条直线;④不同在任何一个平面内的两条直线.变式1、一个正方体中共有对异面直线.知识点二平行直线了,千万不能画成(2)的图形。

画平面衬托时,通常画成下图中的情形。

2、异面直线的判定⑴异面直线判定定理:过平面内一点与平面外一点的直线,和这个平面内不经过该点的直线是异面直线.⑵判定两条直线为异面直线的常用方法有:①定义法:不同在任一平面内的两条直线.②定理法:过平面内一点与平面外一点的直线,和这个平面内不经过该点的直线为异面直线.③推论法:一条异面直线上两点与另一条异面直线上两点所连成的两条直线为异面直线.④反证法:反证法是证明立体几何问题的一种重要方法,证明步骤有三步:一是提出与结论相反的假设;二是由此假设推出与题目条件或某一公理、定理或某一已被证明是正确的命题相矛盾结果;三是推翻假设,从而肯定与假设相反的结论,即命题的结论成立,3、异面直线所成的角a 与b 是异面直线,经过空间任意一点O ,作直线a′∥a ,b ′θθ将这个角放入某个三角形中计算这个角的大小,若该三角形是直角三角形、等腰三角形等特殊三角形,便易求此角的大小.(3)我们规定:两条平行直线所成的角为0°角,两条相交直线所成的角为这两条相交直线所成的四个角中的锐角(或直角),因此在空间中的两条直线所成的角的范围为(0°,90°];特别地,若两异面直线所成角为90°,则称两异面直线互相垂直;(4)求异面直线所成角的一般步骤是:①构造 恰当地选择一个点,用平移法构造异面直线所成的角. ②证明 证明①中所作出的角就是所求异面直线所成的角,③计算 通过解三角形(常用余弦定理)等知识,求①中所构造的角的大小,④结论 假如所构造的角的大小为α,若0°<α≤90°,则α即为所求异面直线所成角的大小;若90°<α<180°,则180°-α即为所求。

空间两直线的位置关系2

空间两直线的位置关系2
2020
1.2.2 空间两条直线的位置关系(2)
苏教版必修2 数学
授课教师:江苏省太湖高级中学 指导教师:无锡滨湖区教研中心
殷玲 王华民
复习回顾 空间两条直线的三种位置关系:
位置关系
相交直线 平行直线 异面直线
共面情况 在同一平面内 不同在任何一个平面内
公共点个数
有且只有一个 没有 没有
直观 感知
A1 D
B1 C
所以直线 AB 与l 都应在平面 内, 于是 A ,这与点 A 矛盾.
因此,直线 AB 与l 是异面直线.
A
B
2020年 锡慧在线
定理应用: A是BCD 所在平面外的一点, E、F 分别是 BC、AD的中点, 求证:直线 EF 与 BD 是异面直线.
A
证明:因为 BD 面 BCD,E 面 BCD,
则 AB 与CD 所成的角就是 FG 与 EG 所成的锐角或直角.
2020年 锡慧在线
变式
A
60
E G
D B
F
在EGF 中, EG 1, FG 2, EF 7, 利用余弦定理得,
cos EGF EG2 FG2 EF 2 2EG FG
12 22 ( 7 )2 1
21 2
2
因为0 EGF 180, 所以EGF 120 ,
答:应该也可以通过角来刻画.
问题 3:两条相交直线是通过什么几何量来刻画它们 相对位置(错开程度)的?
答:通过两条相交直线所成的 锐角或直 角.
o
问题4:如何用角来刻画异面直线的相对位置呢? 平移!
2020年 锡慧在线
问题5:以异面直线a 和b为例,如果将b平移,相对倾斜程度变不变?
平移变为相交直线后,相对倾斜程度变不变? 答:都不变.

空间中直线与直线之间的位置关系

空间中直线与直线之间的位置关系

2.1.2空间中直线与直线之间的位置关系一、空间两直线的位置关系 1.异面直线(1)异面直线的定义:我们把不同在 的两条直线叫做异面直线. 即若a ,b 是异面直线,则不存在平面α,使a ⊂α且b ⊂α.(2)异面直线的画法:为了表示异面直线不共面的特点,通常用一个或两个平面衬托,如图:2.空间两直线的位置关系空间两条直线的位置关系有且只有三种:相交、平行和异面. (1) ——同一平面内,有且只有一个公共点; (2) ——同一平面内,没有公共点;学!科网 (3) ——不同在任何一个平面内,没有公共点. 3. 空间中两直线位置关系的分类空间中两条直线的位置关系有以下两种分类方式: (1)从有无公共点的角度分类:⎧⎪⎨⎪⎩⎩⎧⎨两条直线有且仅有一个公共点:相交直线平行直线两条直线无公共点:异面直线直线 (2)从是否共面的角度分类:⎧⎧⎪⎨⎨⎩⎪⎩相交直线共面直线直线平行直线不共面直线:异面直线二、公理4与等角定理 1.公理4(1)自然语言:平行于同一条直线的两条直线互相 .(2)符号语言:a ,b ,c 是三条不同的直线, a ∥b ,b ∥c . (3)作用:判断或证明空间中两条直线平行. 公理4表述的性质也通常叫做空间平行线的传递性.用公理4证明空间两条直线,a c 平行的步骤(1)找到直线b ; (2)证明∥a b ,∥b c ; (3)得到∥a c .2.等角定理(1)自然语言:空间中如果两个角的两边分别对应平行,那么这两个角 . (2)符号语言:如图(1)(2)所示,在∠AOB 与∠A ′O ′B ′中,OA ∥O ′A ′,OB ∥O ′ B ′,则∠AOB =∠A ′O ′B ′或∠AOB +∠A ′O ′B ′=180°.图(1) 图(2)三、异面直线所成的角1.两条异面直线所成的角的定义如图,已知两异面直线a ,b ,经过空间任一点O ,分别作直线a ′∥a ,b ′∥b ,相交直线a ′,b ′所成的 叫做异面直线a 与b 所成的角(或夹角).(1)在定义中,空间一点O 是任取的,根据等角定理,可以判定a ′,b ′所成的角的大小与点O 的位置无关.为了简便,点O 常取在两条异面直线中的一条上.(2)研究异面直线所成的角,就是通过平移把异面直线转化为相交直线,即把求空间角问题转化为求平面角问题,这是研究空间图形的一种基本思路.2.异面直线所成的角的范围异面直线所成的角必须是锐角或直角,则这个角α的取值范围为 . 3.两条异面直线垂直的定义如果两条异面直线所成的角是 ,那么我们就说这两条直线互相垂直.两条互相垂直的异面直线a ,b ,记作a ⊥b .4.构造异面直线所成角的方法(1)过其中一条直线上的已知点(往往是特殊点)作另一条直线的平行线;(2)当异面直线依附于某几何体,且直接平移异面直线有困难时,可利用该几何体的特殊点,将两条异面直线分别平移相交于该点;(3)构造辅助平面、辅助几何体来平移直线.注意,若求得的角为钝角,则两异面直线所成的角应为其补角.学科*网5.求两条异面直线所成的角的步骤(1)平移:选择适当的点,平移异面直线中的一条或两条,使其成为相交直线; (2)证明:证明作出的角就是要求的角; (3)计算:求角度(常利用三角形的有关知识);(4)结论:若求出的角是锐角或直角,则它就是所求异面直线所成的角;若求出的角是钝角,则它的补角就是所求异面直线所成的角.K 知识参考答案:一、1.(1)任何一个平面内2.(1)相交直线 (2)平行直线 (3)异面直线 二、1.(1)平行 (2)a ∥c 2.(1)相等或互补 三、1.锐角(或直角) 2.090α<≤ 3.直角K—重点掌握公理4及等角定理,异面直线及其所成的角K—难点理解两异面直线所成角的定义,并会求两异面直线所成的角K—易错忽略异面直线所成的角的范围致误1.空间两直线的位置关系的判断空间两直线的位置关系有平行、相交、异面三种情形,因此对于空间两直线位置关系的判断,应由题意认真分析,进而确定它们的位置关系.【例1】如图,在正方体ABCD-A1B1C1D1中,M、N分别为棱C1D1、C1C的中点,有以下四个结论:①直线AM与CC1是相交直线;②直线AM与BN是平行直线;③直线BN与MB1是异面直线;④直线AM 与DD1是异面直线.其中正确的结论为A.③④B.①②C.①③D.②④【答案】A【解析】∵A、M、C、C1四点不共面,∴直线AM与CC1是异面直线,故①错误;同理,直线AM与BN也是异面直线,故②错误.同理,直线BN与MB1是异面直线,故③正确;同理,直线AM与DD1是异面直线,故④正确.故选A.【方法技巧】判定或证明两直线异面的常用方法:1.定义法:不同在任何一个平面内的两条直线.2.定理法:过平面外一点与平面内一点的直线,和平面内不经过该点的直线是异面直线.3.推论法:一条直线上两点与另一条与它异面的直线上两点所连成的两条直线为异面直线.4.反证法:证明立体几何问题的一种重要方法. 证明步骤有三步:第一步是提出与结论相反的假设;第二步是由此假设推出与已知条件或某一公理、定理或某一已被证明是正确的命题相矛盾的结果;第三步是推翻假设,从而原命题成立. 2.公理4的应用证明两条直线平行的方法: (1)平行线的定义;(2)利用平面几何的知识,如三角形与梯形的中位线、平行四边形的性质、平行线分线段成比例定理等; (3)利用公理4.【例2】如图,△ABC 的各边对应平行于111△A B C 的各边,点E ,F 分别在边AB ,AC 上,且1,3AE AB AF ==13AC ,试判断EF 与的位置关系,并说明理由.【解析】平行.理由如下: ∵11,33AE AB AF AC ==,∴∥EF BC . 又11∥B C BC ,∴11∥B C EF . 3.等角定理利用等角定理解题的关键是不要漏掉两个角互补的这种情况. 【例3】空间两个角α,β的两边分别对应平行,且α=60°,则β为 A .60° B .120° C .30°D .60°或120°【答案】D【解析】∵空间两个角α,β的两边对应平行,∴这两个角相等或互补,∵α=60°,∴β=60°或120°.故选D . 【名师点睛】根据公理4知道当空间两个角α与β的两边对应平行时,得到这两个角相等或互补,根据所给的角的度数,即可得到β的度数.【例4】如图所示,已知棱长为a 的正方体中,M ,N 分别是棱的中点.(1)求证:四边形是梯形; (2)求证:(2)由(1)知MN ∥A 1C 1,又∵ND ∥A 1D 1,∴∠DNM 与∠D 1A 1C 1相等或互补,而∠DNM 与∠D 1A 1C 1均是直角三角形的锐角,∴∠DNM =∠D 1A 1C 1. 4.两异面直线所成的角通过平移直线至相交位置求两条异面直线所成的角,是数学中转化思想的运用,也是立体几何问题的一个难点.【例5】如图,四棱锥P ABCD -中,90ABC BAD ∠=∠=,2BC AD =,PAB △和PAD △都是等边三角形,则异面直线CD 和PB 所成角的大小为A.90B.75C.60D.45【答案】A【方法点睛】本题主要考查了空间几何体的结构特征及空间中异面直线所成角的求解,其中根据空间几,放置在三角形中,利用何体的结构特征,把空间中异面直线CD和PB所成的角转化为平面角AEF解三角形的知识求解是解答本题的关键,着重考查了转化与化归思想和学生的推理、运算能力,试题属于基础题.5.忽略异面直线所成的角的范围致误【例6】如图,已知空间四边形ABCD中,AD=BC,M,N分别为AB,CD的中点,且直线BC与MN所成的角为30°,求BC与AD所成的角.【错因分析】在未判断出∠MEN 是锐角或直角还是钝角之前,不能断定它就是两异面直线所成的角,因为异面直线所成的角α的取值范围是090α<≤,如果∠MEN 为钝角,那么它的补角才是异面直线所成的角. 学#科网【正解】以上同错解,求得∠MEN =120°,即BC 与AD 所成的角为60°.【误区警示】求异面直线所成的角的时候,要注意异面直线所成的角α的取值范围是090α<≤.1.若,a b 为异面直线,直线c a ∥,则c 与b 的位置关系是 A .相交 B .异面 C .平行 D .异面或相交 2.已知∥AB PQ ,∥BC QR ,∠ABC =30°,则∠PQR 等于 A .30° B .30°或150° C .150° D .以上结论都不对 3.已知异面直线,a b 分别在平面,αβ内,且c αβ=,那么直线c 一定A .与a b ,都相交B .只能与a b ,中的一条相交C .至少与a b ,中的一条相交D .与a b ,都平行 4.如图所示,在三棱锥P ABC -的六条棱所在的直线中,异面直线共有A .2对B .3对C .4对D .6对5.如图,四面体ABCD 中,AD BC =,且AD BC ⊥,E F 、分别是AB CD 、的中点,则EF 与BC 所成的角为A .30B .45C .60D .906.如果OA //O A '',OB //O B '',那么AOB ∠和A O B '''∠的关系为 . 7.下列命题中不正确的是________.(填序号)①没有公共点的两条直线是异面直线; ②分别和两条异面直线都相交的两直线异面;③一条直线和两条异面直线中的一条平行,则它和另一条直线不可能平行; ④一条直线和两条异面直线都相交,则它们可以确定两个平面.8.如图所示,两个三角形ABC 和A'B'C'的对应顶点的连线AA',BB',CC'交于同一点O , 且AO BO COOA OB OC =='''.求证:△∽△ABC A B C '''.9.空间四边形ABCD中,AB=CD且AB与CD所成的角为60°,E、F分别是BC、AD的中点,求EF与AB所成角的大小.10.分别和两条异面直线相交的两条不同直线的位置关系是A.相交B.异面C.异面或相交D.平行11.如图是一个正方体的平面展开图,则在正方体中,AB与CD的位置关系为A.相交B.平行C .异面而且垂直D .异面但不垂直12.如图,正四棱锥ABCD P 的所有棱长均相等,E 是PC 的中点,那么异面直线BE 与PA 所成的角的余弦值等于_________.ECDPAB13.如图,若P 是△ABC 所在平面外一点,PA ≠PB ,PN ⊥AB ,N 为垂足,M 为AB 的中点,求证:PN 与MC 为异面直线.14.(2016上海)如图,在正方体ABCD −A 1B 1C 1D 1中,E 、F 分别为BC 、BB 1的中点,则下列直线中与直线EF 相交的是BC D E F A B 11D 1A .直线AA 1B .直线A 1B 1C .直线A 1D 1 D .直线B 1C 115.(2015广东)若直线l 1与l 2是异面直线,l 1在平面α内,l 2在平面β内,l 是平面α与平面β的交线,则下列命题正确的是 A .l 与l 1,l 2都不相交B .l 与l 1,l 2都相交C .l 至多与l 1,l 2中的一条相交D .l 至少与l 1,l 2中的一条相交16.(2015浙江)如图,直三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥平面ABC .若AB =AC =AA 1=1,BC =2,则异面直线A 1C 与B 1C 1所成的角为A .30°B .45°C .60°D .90°17.(2014广东)若空间中四条两两不同的直线1234,,,l l l l ,满足12l l ⊥,23l l ∥,34l l ⊥,则下列结论一定正确的是A .14l l ⊥B .14l l ∥C .1l 与4l 既不垂直也不平行D .1l 与4l 的位置关系不确定1 2 3 4 5 10 11 14 15 16 17 DBCBBCDDDCD1.【答案】D【解析】c a ∥,a b ,为异面直线,所以c 与b 的位置关系是异面或相交.4.【答案】B【解析】根据异面直线的定义观察图形,可知有三对异面直线,分别是PB 与AC 、P A 与BC 、PC 与AB ,故选B. 5.【答案】B【解析】如图,设G 为AC 的中点,连接,EG FG .由中位线可知,∥∥EG BC GF AD ,所以GEF ∠就是EF 与BC 所成的角,且三角形GEF 为等腰直角三角形,所以45GEF ∠=.6.【答案】相等或互补【解析】根据等角定理的概念可知AOB ∠和A O B '''∠的关系为相等或互补. 7.【答案】①②8.【解析】∵AA'与BB'交于点O ,且AO BOOA OB='',∴AB ∥A'B'.同理,AC ∥A'C'.又∠BAC 与∠B'A'C'两边的方向相反,∴∠BAC =∠B'A'C'. 同理,∠ABC =∠A'B'C'. 因此,△∽△ABC A B C '''.9.【解析】如图,取AC 的中点G ,连接EG 、FG ,则EG ∥AB ,GF ∥CD ,且由AB =CD 知EG =FG ,∴∠GEF (或它的补角)为EF 与AB 所成的角,∠EGF (或它的补角)为AB 与CD 所成的角. ∵AB 与CD 所成的角为60°,∴∠EGF =60°或120°. 由EG =FG 知△EFG 为等腰三角形, 当∠EGF =60°时,∠GEF =60°;当∠EGF =120°时,∠GEF =30°.学@科网 故EF 与AB 所成的角为60°或30°.10.【答案】C【解析】(1)若两条直线与两异面直线的交点有4个,如图(1),两条直线异面;(2)若两条直线与两异面直线的交点有3个,如图(2),两条直线相交.故选C.(1) (2)【误区警示】在判断两直线的位置关系时,要全面思考问题,可通过画出相关图形帮助分析,从而防止遗漏.本题中,没有明确指出直线交点的个数,两条直线分别与两异面直线相交,交点可能有4个,此时两条直线异面,也可能有3个,此时两条直线相交.11.【答案】D【解析】将展开图还原为正方体,如图所示.AB与CD所成的角为60°,故选D.13.【解析】假设PN与MC不是异面直线,则存在一个平面α,使得PN⊂α,MC⊂α,于是P∈α,C∈α,N∈α,M∈α.∵PA≠PB,PN⊥AB,N为垂足,M是AB的中点,∴M,N不重合.∵M∈α,N∈α,∴直线MN⊂α.∵A∈MN,B∈MN,∴A∈α,B∈α.即A,B,C,P四点均在平面α内,这与点P在平面ABC外相矛盾.∴假设不成立,则PN与MC是异面直线.16.【答案】C【解析】根据题意,得BC∥B1C1,故异面直线A1C与B1C1所成的角即BC与A1C所成的角.如图,连接A 1B ,在△A 1BC 中,BC =A 1C =A 1B =2,故∠A 1CB =60°,即异面直线A 1C 与B 1C 1所成的角为60°.故选C.17.【答案】D【解析】如下图所示,在正方体1111ABCD A B C D -中,取1AA 为2l ,1BB 为3l ,取AD 为1l ,BC 为4l ,则14l l ∥;取AD 为1l ,AB 为4l ,则14l l ⊥;取AD 为1l ,11A B 为4l ,则1l 与4l 异面,因此14,l l 的位置关系不确定,故选D.D 1C 1B 1A 1DCBA。

空间两直线的位置关系

空间两直线的位置关系

其中 l 和 m 是不全为零的实数,且
A1 B1 C1 m (否则左端恒为零)
A2 B2 C2
l
(2)由平面 : Ax By Cz d 0
所决定的平面束的方程是 Ax By Cz 0
其中 为任意实数。(这是常用的形式)
空间“有轴平面束”和“平行平面束”这两个概念,退 化到平面上,有“中心直线束”和“平行直线束”的概 念中:心直线束: 如果给定了平面上的两条直线,
因此,所求直线的方程为:
32 6
x9

y

2 9

z
39
8
7
1
P。133
9。(2)解:
L1
:
x

y

2t 3t

3 5,
L2
:
x

y

5t 4t
10 7
z t
z t
设所求直线L与 L1 的交点为P,它所对应的参数为 t1
L与 L2 的交点为Q,它所对应的参数为 t2
由 1 1 1 0 1 2
1 2 3 0, 2 1 4 0
XYZ X Y Z

X X
2Y 2Y

Z Z

0 0
可得:X:Y:Z=0:1:2 所求直线的方程为:
x 1 y 1 z 1 012
例2。已知两直线
L1 :
x 1

y 1
z 1 0 , L2
解: 过直线L的平面束方程为:
l(2x y 2z 1) m(x 2y z 2) 0
即: (2l m)x (l 2m) y (2l m)z (l 2m) 0 (1)

2024年高考数学总复习第八章《立体几何与空间向量》8

2024年高考数学总复习第八章《立体几何与空间向量》8

2024年高考数学总复习第八章《立体几何与空间向量》§8.2空间点、直线、平面之间的位置关系最新考纲 1.借助长方体模型,在直观认识和理解空间点、线、面的位置关系的基础上,抽象出空间线、面位置关系的定义.2.了解可以作为推理依据的公理和定理.3.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.1.四个公理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.公理2:过不在一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理4:平行于同一条直线的两条直线互相平行.2.直线与直线的位置关系(1)位置关系的分类异面直线:不同在任何一个平面内,没有公共点(2)异面直线所成的角①定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).,π2.3.直线与平面的位置关系有直线在平面内、直线与平面相交、直线与平面平行三种情况.4.平面与平面的位置关系有平行、相交两种情况.5.等角定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.概念方法微思考1.分别在两个不同平面内的两条直线为异面直线吗?提示不一定.因为异面直线不同在任何一个平面内.分别在两个不同平面内的两条直线可能平行或相交.2.空间中如果两个角的两边分别对应平行,那么这两个角一定相等吗?提示不一定.如果这两个角开口方向一致,则它们相等,若反向则互补.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)如果两个不重合的平面α,β有一条公共直线a,就说平面α,β相交,并记作α∩β=a.(√)(2)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直线.(×)(3)如果两个平面有三个公共点,则这两个平面重合.(×)(4)经过两条相交直线,有且只有一个平面.(√)(5)没有公共点的两条直线是异面直线.(×)(6)若a,b是两条直线,α,β是两个平面,且a⊂α,b⊂β,则a,b是异面直线.(×)题组二教材改编2.如图所示,在正方体ABCD—A1B1C1D1中,E,F分别是AB,AD的中点,则异面直线B1C与EF所成角的大小为()A.30°B.45°C.60°D.90°答案C解析连接B1D1,D1C,则B1D1∥EF,故∠D1B1C即为所求的角.又B1D1=B1C=D1C,∴△B1D1C为等边三角形,∴∠D1B1C=60°.3.如图,在三棱锥A—BCD中,E,F,G,H分别是棱AB,BC,CD,DA的中点,则(1)当AC,BD满足条件________时,四边形EFGH为菱形;(2)当AC,BD满足条件________时,四边形EFGH为正方形.答案(1)AC=BD(2)AC=BD且AC⊥BD解析(1)∵四边形EFGH为菱形,∴EF=EH,∴AC=BD.(2)∵四边形EFGH为正方形,∴EF=EH且EF⊥EH,∵EF∥AC,EH∥BD,且EF=12AC,EH=12BD,∴AC=BD且AC⊥BD.题组三易错自纠4.α是一个平面,m,n是两条直线,A是一个点,若m⊄α,n⊂α,且A∈m,A∈α,则m,n的位置关系不可能是()A.垂直B.相交C.异面D.平行答案D解析依题意,m∩α=A,n⊂α,∴m与n可能异面、相交(垂直是相交的特例),一定不平行.5.如图,α∩β=l,A,B∈α,C∈β,且C∉l,直线AB∩l=M,过A,B,C三点的平面记作γ,则γ与β的交线必通过()A.点AB.点BC.点C但不过点MD.点C和点M答案D解析∵AB⊂γ,M∈AB,∴M∈γ.又α∩β=l,M∈l,∴M∈β.根据公理3可知,M在γ与β的交线上.同理可知,点C也在γ与β的交线上.6.如图为正方体表面的一种展开图,则图中的四条线段AB,CD,EF,GH在原正方体中互为异面的对数为______.答案3解析平面图形的翻折应注意翻折前后相对位置的变化,则AB,CD,EF和GH在原正方体中,显然AB与CD,EF与GH,AB与GH都是异面直线,而AB与EF相交,CD与GH 相交,CD与EF平行.故互为异面的直线有且只有3对.题型一平面基本性质的应用例1如图所示,在正方体ABCD—A1B1C1D1中,E,F分别是AB和AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.证明(1)如图,连接EF,CD1,A1B.∵E,F分别是AB,AA1的中点,∴EF∥BA1.又A1B∥D1C,∴EF∥CD1,∴E,C,D1,F四点共面.(2)∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P,如图所示.则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈直线DA,∴CE,D1F,DA三线共点.思维升华共面、共线、共点问题的证明(1)证明共面的方法:①先确定一个平面,然后再证其余的线(或点)在这个平面内;②证两平面重合.(2)证明共线的方法:①先由两点确定一条直线,再证其他各点都在这条直线上;②直接证明这些点都在同一条特定直线上.(3)证明线共点问题的常用方法是:先证其中两条直线交于一点,再证其他直线经过该点.跟踪训练1如图,在空间四边形ABCD 中,E ,F 分别是AB ,AD 的中点,G ,H 分别在BC ,CD 上,且BG ∶GC =DH ∶HC =1∶2.(1)求证:E ,F ,G ,H 四点共面;(2)设EG 与FH 交于点P ,求证:P ,A ,C 三点共线.证明(1)∵E ,F 分别为AB ,AD 的中点,∴EF ∥BD .∵在△BCD 中,BG GC =DH HC =12,∴GH ∥BD ,∴EF ∥GH .∴E ,F ,G ,H 四点共面.(2)∵EG ∩FH =P ,P ∈EG ,EG ⊂平面ABC ,∴P ∈平面ABC .同理P ∈平面ADC .∴P 为平面ABC 与平面ADC 的公共点.又平面ABC ∩平面ADC =AC ,∴P ∈AC ,∴P ,A ,C 三点共线.题型二判断空间两直线的位置关系例2(1)若直线l 1和l 2是异面直线,l 1在平面α内,l 2在平面β内,l 是平面α与平面β的交线,则下列命题正确的是()A .l 与l 1,l 2都不相交B .l 与l 1,l 2都相交C .l 至多与l 1,l 2中的一条相交D .l 至少与l 1,l 2中的一条相交答案D 解析由直线l 1和l 2是异面直线可知l 1与l 2不平行,故l 1,l 2中至少有一条与l 相交.故选D.(2)如图,在正方体ABCD -A 1B 1C 1D 1中,点E ,F 分别在A 1D ,AC 上,且A 1E =2ED ,CF =2FA ,则EF 与BD 1的位置关系是()A.相交但不垂直B.相交且垂直C.异面D.平行答案D解析连接D1E并延长,与AD交于点M,由A1E=2ED,可得M为AD的中点,连接BF并延长,交AD于点N,因为CF=2FA,可得N为AD的中点,所以M,N重合,所以EF和BD1共面,且MEED1=12,MFBF=12,所以MEED1=MFBF,所以EF∥BD1.思维升华空间中两直线位置关系的判定,主要是异面、平行和垂直的判定.异面直线可采用直接法或反证法;平行直线可利用三角形(梯形)中位线的性质、公理4及线面平行与面面平行的性质定理;垂直关系往往利用线面垂直或面面垂直的性质来解决.跟踪训练2(1)已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A解析若直线a和直线b相交,则平面α和平面β相交;若平面α和平面β相交,那么直线a 和直线b可能平行或异面或相交,故选A.(2)如图所示,正方体ABCD-A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,有以下四个结论:①直线AM 与CC 1是相交直线;②直线AM 与BN 是平行直线;③直线BN 与MB 1是异面直线;④直线AM 与DD 1是异面直线.其中正确的结论为________.(注:把你认为正确的结论序号都填上)答案③④解析因为点A 在平面CDD 1C 1外,点M 在平面CDD 1C 1内,直线CC 1在平面CDD 1C 1内,CC 1不过点M ,所以AM 与CC 1是异面直线,故①错;取DD 1中点E ,连接AE ,则BN ∥AE ,但AE 与AM 相交,故②错;因为B 1与BN 都在平面BCC 1B 1内,M 在平面BCC 1B 1外,BN 不过点B 1,所以BN 与MB 1是异面直线,故③正确;同理④正确,故填③④.题型三求两条异面直线所成的角例3(2019·青岛模拟)如图,在底面为正方形,侧棱垂直于底面的四棱柱ABCD —A 1B 1C 1D 1中,AA 1=2AB =2,则异面直线A 1B 与AD 1所成角的余弦值为()A.15B.25C.35D.45答案D 解析连接BC 1,易证BC 1∥AD 1,则∠A 1BC 1即为异面直线A 1B 与AD 1所成的角.连接A 1C 1,由AB =1,AA 1=2,易得A 1C 1=2,A 1B =BC 1=5,故cos ∠A 1BC 1=A 1B 2+BC 21-A 1C 212×A 1B ×BC 1=45,即异面直线A 1B 与AD 1所成角的余弦值为45.引申探究将上例条件“AA 1=2AB =2”改为“AB =1,若异面直线A 1B 与AD 1所成角的余弦值为910”,试求AA 1AB 的值.解设AA 1AB=t (t >0),则AA 1=tAB .∵AB =1,∴AA 1=t .∵A 1C 1=2,A 1B =t 2+1=BC 1,∴cos ∠A 1BC 1=A 1B 2+BC 21-A 1C 212×A 1B ×BC 1=t 2+1+t 2+1-22×t 2+1×t 2+1=910.∴t =3,即AA 1AB =3.思维升华用平移法求异面直线所成的角的三个步骤(1)一作:根据定义作平行线,作出异面直线所成的角;(2)二证:证明作出的角是异面直线所成的角;(3)三求:解三角形,求出所作的角.跟踪训练3(2018·全国Ⅱ)在正方体ABCD -A 1B 1C 1D 1中,E 为棱CC 1的中点,则异面直线AE 与CD 所成角的正切值为()A.22 B.32 C.52 D.72答案C 解析如图,因为AB ∥CD ,所以AE 与CD 所成角为∠EAB .在Rt △ABE 中,设AB =2,则BE =5,则tan ∠EAB =BE AB =52,所以异面直线AE 与CD 所成角的正切值为52.立体几何中的线面位置关系直观想象是指借助几何直观和空间想象感知事物的形态与变化,利用空间形式特别是图形,理解和解决数学问题.例如图所示,四边形ABEF 和ABCD 都是梯形,BC ∥AD 且BC =12AD ,BE ∥FA 且BE =12FA ,G ,H 分别为FA ,FD 的中点.(1)证明:四边形BCHG 是平行四边形;(2)C ,D ,F ,E 四点是否共面?为什么?(1)证明由已知FG =GA ,FH =HD ,可得GH ∥AD 且GH =12AD .又BC ∥AD 且BC =12AD ,∴GH ∥BC 且GH =BC ,∴四边形BCHG 为平行四边形.(2)解∵BE ∥AF 且BE =12AF ,G 为FA 的中点,∴BE ∥FG 且BE =FG ,∴四边形BEFG 为平行四边形,∴EF ∥BG .由(1)知BG ∥CH .∴EF ∥CH ,∴EF 与CH 共面.又D ∈FH ,∴C ,D ,F ,E 四点共面.素养提升平面几何和立体几何在点线面的位置关系中有很多的不同,借助确定的几何模型,利用直观想象讨论点线面关系在平面和空间中的差异.1.四条线段顺次首尾相连,它们最多可确定的平面个数为()A .4B .3C .2D .1答案A 解析首尾相连的四条线段每相邻两条确定一个平面,所以最多可以确定四个平面.2.a ,b ,c 是两两不同的三条直线,下面四个命题中,真命题是()A.若直线a,b异面,b,c异面,则a,c异面B.若直线a,b相交,b,c相交,则a,c相交C.若a∥b,则a,b与c所成的角相等D.若a⊥b,b⊥c,则a∥c答案C解析若直线a,b异面,b,c异面,则a,c相交、平行或异面;若a,b相交,b,c相交,则a,c相交、平行或异面;若a⊥b,b⊥c,则a,c相交、平行或异面;由异面直线所成的角的定义知C正确.故选C.3.如图所示,平面α∩平面β=l,A∈α,B∈α,AB∩l=D,C∈β,C∉l,则平面ABC与平面β的交线是()A.直线ACB.直线ABC.直线CDD.直线BC答案C解析由题意知,D∈l,l⊂β,所以D∈β,又因为D∈AB,所以D∈平面ABC,所以点D在平面ABC与平面β的交线上.又因为C∈平面ABC,C∈β,所以点C在平面β与平面ABC的交线上,所以平面ABC∩平面β=CD.4.如图所示,ABCD-A1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确是()A.A,M,O三点共线B.A,M,O,A1不共面C.A,M,C,O不共面D.B,B1,O,M共面答案A 解析连接A 1C 1,AC ,则A 1C 1∥AC ,∴A 1,C 1,A ,C 四点共面,∴A 1C ⊂平面ACC 1A 1,∵M ∈A 1C ,∴M ∈平面ACC 1A 1,又M ∈平面AB 1D 1,∴M 在平面ACC 1A 1与平面AB 1D 1的交线上,同理A ,O 在平面ACC 1A 1与平面AB 1D 1的交线上.∴A ,M ,O 三点共线.5.(2017·全国Ⅱ)已知直三棱柱ABCA 1B 1C 1中,∠ABC =120°,AB =2,BC =CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为()A.32 B.155 C.105 D.33答案C解析方法一将直三棱柱ABC -A 1B 1C 1补形为直四棱柱ABCD -A 1B 1C 1D 1,如图①所示,连接AD 1,B 1D 1,BD .图①由题意知∠ABC =120°,AB =2,BC =CC 1=1,所以AD 1=BC 1=2,AB 1=5,∠DAB =60°.在△ABD 中,由余弦定理知BD 2=AB 2+AD 2-2×AB ×AD ×cos ∠DAB =22+12-2×2×1×cos 60°=3,所以BD =3,所以B 1D 1=3.又AB 1与AD 1所成的角即为AB 1与BC 1所成的角θ,所以cos θ=AB 21+AD 21-B 1D 212×AB 1×AD 1=5+2-32×5×2=105.故选C.方法二以B 1为坐标原点,B 1C 1所在的直线为x 轴,垂直于B 1C 1的直线为y 轴,BB 1所在的直线为z 轴建立空间直角坐标系,如图②所示.图②由已知条件知B 1(0,0,0),B (0,0,1),C 1(1,0,0),A (-1,3,1),则BC 1→=(1,0,-1),AB 1→=(1,-3,-1).所以cos 〈AB 1→,BC 1→〉=AB 1,→·BC 1→|AB 1→||BC 1→|=25×2=105.所以异面直线AB 1与BC 1所成角的余弦值为105.故选C.6.正方体AC 1中,与面ABCD 的对角线AC 异面的棱有________条.答案6解析如图,在正方体AC 1中,与面ABCD 的对角线AC 异面的棱有BB 1,DD 1,A 1B 1,A 1D 1,D 1C 1,B 1C 1,共6条.7.(2019·东北三省三校模拟)若直线l ⊥平面β,平面α⊥平面β,则直线l 与平面α的位置关系为________.答案l ∥α或l ⊂α解析∵直线l ⊥平面β,平面α⊥平面β,∴直线l ∥平面α,或者直线l ⊂平面α.8.在三棱锥S -ABC 中,G 1,G 2分别是△SAB 和△SAC 的重心,则直线G 1G 2与BC 的位置关系是________.答案平行解析如图所示,连接SG 1并延长交AB 于M ,连接SG 2并延长交AC 于N ,连接MN .由题意知SM为△SAB的中线,且SG1=23SM,SN为△SAC的中线,且SG2=23SN,∴在△SMN中,SG1SM=SG2SN,∴G1G2∥MN,易知MN是△ABC的中位线,∴MN∥BC,∴G1G2∥BC.9.如图,已知圆柱的轴截面ABB1A1是正方形,C是圆柱下底面弧AB的中点,C1是圆柱上底面弧A1B1的中点,那么异面直线AC1与BC所成角的正切值为________.答案2解析取圆柱下底面弧AB的另一中点D,连接C1D,AD,因为C是圆柱下底面弧AB的中点,所以AD∥BC,所以直线AC1与AD所成的角即为异面直线AC1与BC所成的角,因为C1是圆柱上底面弧A1B1的中点,所以C1D垂直于圆柱下底面,所以C1D⊥AD.因为圆柱的轴截面ABB1A1是正方形,所以C1D=2AD,所以直线AC1与AD所成角的正切值为2,所以异面直线AC1与BC所成角的正切值为2.10.如图是正四面体的平面展开图,G,H,M,N分别为DE,BE,EF,EC的中点,在这个正四面体中,①GH与EF平行;②BD与MN为异面直线;③GH与MN成60°角;④DE与MN垂直.以上四个命题中,正确命题的序号是________.答案②③④解析还原成正四面体A -DEF ,其中H 与N 重合,A ,B ,C 三点重合.易知GH 与EF 异面,BD 与MN 异面.连接GM ,∵△GMH 为等边三角形,∴GH 与MN 成60°角,易证DE ⊥AF ,又MN ∥AF ,∴MN ⊥DE .因此正确命题的序号是②③④.11.如图所示,A 是△BCD 所在平面外的一点,E ,F 分别是BC ,AD 的中点.(1)求证:直线EF 与BD 是异面直线;(2)若AC ⊥BD ,AC =BD ,求EF 与BD 所成的角.(1)证明假设EF 与BD 不是异面直线,则EF 与BD 共面,从而DF 与BE 共面,即AD 与BC 共面,所以A ,B ,C ,D 在同一平面内,这与A 是△BCD 所在平面外的一点相矛盾.故直线EF 与BD 是异面直线.(2)解取CD 的中点G ,连接EG ,FG ,则AC ∥FG ,EG ∥BD ,所以相交直线EF 与EG 所成的角,即为异面直线EF 与BD 所成的角.又因为AC ⊥BD ,则FG ⊥EG .在Rt △EGF 中,由EG =FG=12AC ,求得∠FEG =45°,即异面直线EF 与BD 所成的角为45°.12.如图,在三棱锥P -ABC 中,PA ⊥底面ABC ,D 是PC 的中点.已知∠BAC =π2,AB =2,AC =23,PA =2.求:(1)三棱锥P -ABC 的体积;(2)异面直线BC 与AD 所成角的余弦值.解(1)S △ABC =12×2×23=23,三棱锥P -ABC 的体积为V =13S △ABC ·PA =13×23×2=433.(2)如图,取PB 的中点E ,连接DE ,AE ,则ED ∥BC ,所以∠ADE (或其补角)是异面直线BC 与AD 所成的角.在△ADE 中,DE =2,AE =2,AD =2,cos ∠ADE =AD 2+DE 2-AE 22×AD ×DE =22+22-22×2×2=34.故异面直线BC 与AD 所成角的余弦值为34.13.平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,则m ,n 所成角的正弦值为()A.32 B.22 C.33 D.13答案A解析如图所示,设平面CB 1D 1∩平面ABCD =m 1,∵α∥平面CB 1D 1,则m 1∥m ,又∵平面ABCD ∥平面A 1B 1C 1D 1,平面CB 1D 1∩平面A 1B 1C 1D 1=B 1D 1,∴B 1D 1∥m 1,∴B 1D 1∥m ,同理可得CD 1∥n .故m ,n 所成角的大小与B 1D 1,CD 1所成角的大小相等,即∠CD 1B 1的大小.又∵B 1C =B 1D 1=CD 1(均为面对角线),∴∠CD 1B 1=π3,得sin ∠CD 1B 1=32,故选A.14.一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:①AB ⊥EF ;②AB 与CM 所成的角为60°;③EF 与MN 是异面直线;④MN ∥CD .以上四个命题中,正确命题的序号是________.答案①③解析如图,①AB ⊥EF ,正确;②显然AB ∥CM ,所以不正确;③EF 与MN 是异面直线,所以正确;④MN 与CD 异面,并且垂直,所以不正确,则正确的是①③.15.如图,正方形ACDE 与等腰直角三角形ACB 所在的平面互相垂直,且AC =BC =4,∠ACB =90°,F ,G 分别是线段AE ,BC 的中点,则AD 与GF 所成的角的余弦值为________.答案36解析取DE 的中点H ,连接HF ,GH .由题设,HF ∥AD 且HF =12AD ,∴∠GFH 为异面直线AD 与GF 所成的角(或其补角).在△GHF 中,可求HF =22,GF =GH =26,∴cos ∠GFH =HF 2+GF 2-GH 22×HF ×GF =(22)2+(26)2-(26)22×22×26=36.16.如图所示,三棱柱ABC -A 1B 1C 1的底面是边长为2的正三角形,侧棱A 1A ⊥底面ABC ,点E ,F 分别是棱CC 1,BB 1上的点,点M 是线段AC 上的动点,EC =2FB =2.(1)当点M 在何位置时,BM ∥平面AEF?(2)若BM ∥平面AEF ,判断BM 与EF 的位置关系,说明理由;并求BM 与EF 所成的角的余弦值.解(1)方法一如图所示,取AE 的中点O ,连接OF ,过点O 作OM ⊥AC 于点M .因为EC ⊥AC ,OM ,EC ⊂平面ACC 1A 1,所以OM ∥EC .又因为EC =2FB =2,EC ∥FB ,所以OM ∥FB 且OM =12EC =FB ,所以四边形OMBF 为矩形,BM ∥OF .因为OF ⊂平面AEF ,BM ⊄平面AEF ,故BM ∥平面AEF ,此时点M 为AC 的中点.方法二如图所示,取EC 的中点P ,AC 的中点Q ,连接PQ ,PB ,BQ .因为EC =2FB =2,所以PE ∥BF 且PE =BF ,所以PB ∥EF ,PQ ∥AE ,又AE ,EF ⊂平面AEF ,PQ ,PB ⊄平面AEF ,所以PQ ∥平面AFE ,PB ∥平面AEF ,因为PB ∩PQ =P ,PB ,PQ ⊂平面PBQ ,所以平面PBQ ∥平面AEF .又因为BQ ⊂平面PBQ ,所以BQ ∥平面AEF .故点Q 即为所求的点M ,此时点M 为AC 的中点.(2)由(1)知,BM 与EF 异面,∠OFE (或∠MBP )就是异面直线BM 与EF 所成的角或其补角.易求AF =EF =5,MB =OF =3,OF ⊥AE ,所以cos ∠OFE =OF EF =35=155,所以BM 与EF 所成的角的余弦值为155.。

高中数学人教A版必修2课件:2.1.2空间中直线与直线之间的位置关系2异面直线所成角(共20张PPT)

高中数学人教A版必修2课件:2.1.2空间中直线与直线之间的位置关系2异面直线所成角(共20张PPT)

【例】如图,在正方体ABCD-A′B′C′D′中:
(1)哪些棱所在的直线与直线AA′垂直?
(2)哪些棱所在的直线与直线A′B垂直?
(3)直线A′B和CC′所成角是多少?
解:(1) 直线AB,BC,CD,DA, A′B′ ,B′C′,
D′
C′ C′D′, D′A′与直线AA′ 都垂直.
(2) 直线AD,BC, B′C′ ,A′D′与直线A′B
抛 砖 • 在平面内,如果两个角的两边分别对应 引 平行,那么这两个角有什么关系? 玉
抛 砖 • 在空间中,如果两个角的两边分别对应 引 平行,结论是否仍然成立呢? 玉
1、等角定理:
• 空间中如果两个角的两边分别对应平行, 那么这两个角相等或互补。
• 【定理的推论】 如果两条相交直线和另两条相交直线
• 推论2:经过_两_条_相_交直线,有且只有一个平面。 • 推论3:经过_两_条_平_行直线,有且只有一个平面。
• 公理3:如果两个不重合的平面有一个公共点,那 么它们_有_且_只_有_一_条_过_该_点_的_公_共_直_线。
• 公理4:_平_行_于_同_一_直_线_的两条直线互相平行。
• 空间中直线与直线的位置关系:
看图说话
1(1)长方体ABCD-A′B′C′D′中,有没有两条棱所
在的直线是互相垂直的异面直线?
(2)如果两条平行直线中的一条与某一条直线垂 直,那么,另一条直线是否也与这条直线垂直?
(3)垂直于同一条直线的两条直线是否平行?
C' B'
C
B
D' A'
D
A
精讲点拨
求异面直线夹角的一般步骤是: “作—证—算—答”
2、异面直线所成角:

空间两直线的位置关系

空间两直线的位置关系

解答: 如图
答: 这个角的大小与O点的位置无关.
设a ′与 b ′相交所成的角为∠1, a ″与 b 所成的角为∠2 ,
∵ a′∥a , a″ ∥a∴ a′∥ a″ (公理4), 同理 b′∥b″, ∴ ∠1 = ∠2 (等角定理)
b
b′
a″ a

∠2
a′
O
∠1
BACK
NEXT
我们下面看书本P26例题1
B F A E D B1 E1
图2
C
F1
A1
C1
D1
3.已知:四边形ABCD空间四边形(四顶点不共面的 四边形),E、H分别是边AB,AD的中点,F、G CF CG 2 分别是边CB,CD上的点,且 CB CD 3 求证:四边形EFGH是梯形。
A
H
E
D B F
G
C
证明:如图,连结BD ∵EH是三角形ABD的中位线 1 ∴EH∥BD,EH= BD 2 CF CG 2 又在△BCD中, CB CD 3 2 ∴FG∥BD,FG= BD E 3
b b b 1b 1b 1b 1b 1b 1b 1b 1b 1b 1b 1b 111 b 1 b b b b b b b b b b b b b b b b 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 b b b b b 1b 1b 1b 1b 1b 11111 b 1 b b a a b 11 b a 1111 1 a 1 a b a1 1 a 1 a a1 1 a 1 a 1 a o 1 a 1 a a 11 a 1 a a11 a 1 a a1 1 a
练习1. 如图,是一块长方体形状的木块,平面AC上 有一点P,过点P画一条直线和棱 C1D1平行,说明应 该怎么画。 解: 如图(1),过点P作直线 MN∥CD,分别交AD,BC于M、N, 则由基本性质4得,MN∥C 1D1.

空间中直线与直线的位置关系

空间中直线与直线的位置关系

例1 空间四边形ABCD,E,F,G,H分别是 AB,BC,CD,DA的中点,连结EF,FG, GH,HE,求证:四边形EFGH是平行四边形。
证明: 连结BD
∵ EH是△ABD的中位线 1 ∴EH ∥BD且EH = BD
2
A H E D G
1 同理,FG ∥BD且FG = 2 BD
∴EH ∥FG且EH =FG ∴EFGH是一个平行四边形 B F
在同一个平 有且只有一 面内 个公共点 没有公共点 不同在任何 一个平面内
a∩b=A a∥b
M
空间的平行直线与异面直线
例题选讲
5、在长方体 ABCD A1 B1 C 1 D1 中, AB a , BC b, AA1 c (a b), 求异面直线 D1 B 与 AC 所成的角
E
O
空间的平行直线与异面直线
例题选讲
6、空间四边形 ABCD 中,AB AC , AE 是 BC 边上的高,DF 是 BC 边上的中线,求证: 和 DF是 AE 异面直线
空间直线与直线之间的位 置关系
一、复习引入:
1. 平行定义:
在同一平面内,没有公共点的两条直线叫做平 行直线
2.平行公理
过直线外一点有且只有一条直线和这条直线平行. 3. 在同一平面内, 如果两条直线都和第三条直线平行, 那么这两条直线关系如何?
这两条直线也互相平行.
二、新授课
1、空间直线的平行关系
例4、 在空间四边形ABCD中, AD=BC=2,点 E 是 AB 的中点, 点 F 是CD 的中点,EF= 3 ,求 AD,BC所成角的余弦值
A
E. D F.
B
C
例5、 如图棱长为
a 正方体中

空间中直线与直线之间的位置关系

空间中直线与直线之间的位置关系

与直线BA′成异面直线的有直线B′C′,AD,CC′,DD′,DC,D′C′.
√ (与2直)线那直线垂B么A直′和. 这CC′的两夹角是组多少直? 线所成的锐角(或直角)相等.(

同理,FG∥BD,且FG= BD.
理解空间两直线的位置关系,并掌握异面直线的
2.填空: (1) 空间两条不重合的直线的位置关系有 平行 、
=
5+5-4 2× 5×
5
=
3 5
.
F E
5.如图,已知长方体ABCD-EFGH中, AB=2 3 ,AD=2 3 , AE=2. (1)求BC和EG所成的角是多少度? (2)求AE和BG所成的角是多少度?
H
G
E
2 2 3D
A
23
F C
B
解答:
(1)因为GF∥BC, 所以∠EGF(或其补角)为所求. H
(4)直线 AB 与直线 B1C 的位置关系是________.
相交 异面
问题探究
例2在如图同,已一知正方平体A面BCD内-A′B,′C′D′.如果两条直线都与第三条直线平行,那
有且仅有一个公共点——相交直线
若两条异面直线所成的角为90°,则称它们互相垂直.
么这两条直线互相平行.在空间中,是否有类似的规律? 公理4实质上是说平行具有传递性,在平面、空间这个性质都适用.
证明:连接BD. 因为 EH是△ABD的中位线, 所以EH∥BD,且EH=1 BD.
21 同理,FG∥BD,且FG= BD.
2 因为EH∥FG,且EH =FG,
A
H
E
D G
B
F
C
所以四边形EFGH是平行四边形.
[拓展1] 若E,F,G,H分别是四面体A-BCD的棱AB,BC, CD,DA上的中点,且AC=BD,则四边形EFGH为 菱形 . [拓展2] 若E,F,G,H分别是四面体A-BCD的棱AB,BC, CD,DA上的中点,且AC⊥BD,则四边形EFGH为 矩形 . [拓展3] 若E,F,G,H分别是四面体A-BCD的棱AB,BC, CD,DA上的中点,且AC=BD,AC⊥BD,则四边形EFGH 为 正方形 . (以上三个问题你会证明吗?不妨一试)

2.1.2空间中直线与直线之间的位置关系

2.1.2空间中直线与直线之间的位置关系

2、空间中直线和直线之间的位置关系【主要知识】(一)空间两条直线的位置关系(1)相交直线——在同一平面内,有且仅有一个公共点; (2)平行直线——在同一平面内,没有公共点;(3)异面直线——不同在任何一个平面内,没有公共点。

若从有无公共点的角度看,可分两类: ①有且仅有一个公共点——相交直线②没有公共点——⎩⎨⎧异面直线平行直线若从是否共面的角度看,也可分两类:①在同一平面内——⎩⎨⎧平行直线相交直线②不在同一平面内——异面直线(三)异面直线1、异面直线的画法:aba bαα2、异面直线所成角(1)异面直线所成角的范围:____________(2)两条异面直线所成角的步骤可以归纳为四步:选点→平移→定角→计算【习题讲解】1、异面直线是( )A 、同在某一个平面内的两条直线B 、某平面内一条直线和这个平面外的一条直线C 、分别位于两个不同平面内的两条直线D 、无交点且不共面的两条直线2、分别在两个平面内的两条直线间的位置关系是( ). A 、异面 B 、平行 C 、相交 D 、以上都有可能3、下列说法中,正确的有( )①空间中,两个角的两边分别平行,则这两个角相等或互补。

②垂直于同一条直线的两条直线平行。

③分别和两条异面直线都相交的两条直线一定是异面直线。

④若a 、b 是异面直线,b 、c 是异面直线,则a 、c 也是异面直线。

A 、1个 B 、2个 C 、3个 D 、4个4、把两条异面直线称作“一对”,在正方体的十二条棱中,异面直线的对数为( ). A 、12 B 、24 C 、36 D 、48【变式】若把两异面直线看成“一对”,则六棱锥的棱所在12条直线中,异面直线共有( ) A 、12对 B 、24对 C 、36对 D 、48对5、如图,正方体1111D C B A ABCD -,E 、F 分别是AD 、AA 1的中点. (1)求直线AB 1和CC 1所成的角的大小;(2)求直线AB 1和EF 所成的角的大小.【变式】5-1、如图,正方体1111ABCD A B C D -中,直线1AB 与1BC 所成角为______度。

空间中直线与直线之间的位置关系(附答案)

空间中直线与直线之间的位置关系(附答案)

空间中直线与直线之间的位置关系之马矢奏春创作创作时间:二零二一年六月三十日[学习目标] 1.会判断空间两直线的位置关系.2.理解两异面直线的界说,会求两异面直线所成的角.3.能用公理4解决一些简单的相关问题.知识点一空间中两条直线的位置关系(1)界说:分歧在任何一个平面内的两条直线叫做异面直线.要点分析:①异面直线的界说标明:异面直线不具备确定平面的条件.异面直线既不相交,也不服行.②不能误认为分别在分歧平面内的两条直线为异面直线.如图中,虽然有a⊂α,b⊂β,即a,b分别在两个分歧的平面内,可是因为a∩b=O,所以a与b不是异面直线.(2)画法:画异面直线时,为了充沛显示出它们既不服行也不相交,即不共面的特点,经常需要画一个或两个辅助平面作为烘托,以加强直观性、立体感.如图所示,a与b为异面直线.(3)判断方法方法内容界说法依据界说判断两直线不成能在同一平面内(1)按两条直线是否共面分类⎩⎪⎪⎨⎪⎪⎧ 共面直线⎩⎪⎨⎪⎧ 相交直线:同一平面内有且只有一个公共点平行直线:同一平面内没有公共点异面直线:分歧在任何一个平面内没有公共点(2)按两条直线是否有公共点分类⎩⎪⎨⎪⎧有且仅有一个公共点——相交直线无公共点⎩⎪⎨⎪⎧ 平行直线异面直线 思考 (1)分别在两个平面内的两条直线一定是异面直线吗?(2)两条垂直的直线必相交吗?答 (1)纷歧定.可能相交、平行或异面.(2)纷歧定.可能相交垂直,也可能异面垂直.知识点二 公理4(平行公理)文字语言 平行于同一条直线的两条直线互相平行,这一性质叫做空间平行线的传递性 符号语言 ⎭⎪⎬⎪⎫a ∥c b ∥c ⇒a ∥b 图形语言知识点三 空间等角定理文字语言 空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 符号语言 OA ∥O ′A ′,OB ∥O ′B ′⇒∠AOB =∠A ′O ′B ′或∠AOB +∠A ′O ′B ′=180° 图形语言作用判断或证明两个角相等或互补如果两条相交直线与另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等.思考 如果两条直线和第三条直线成等角,那么这两条直线平行吗?答 纷歧定.这两条直线可能相交、平行或异面知识点四 异面直线所成的角1.概念:已知两条异面直线a,b,经过空间任一点O 作直线a′∥a,b′∥b,我们把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角).2.异面直线所成的角θ的取值范围:0°<θ≤90°.3.如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直.两条互相垂直的异面直线a,b,记作a⊥b.(1)在空间任取一点O,过点O分别作a′∥a,b′∥b,则a′与b′所成的锐角(或直角)为异面直线a与b所成的角,然后通过解三角形等方法求角.(2)在其中一条直线上任取一点(如在b上任取一点)O,过点O作另一条直线的平行线(如过点O作a′∥a),则两条直线相交所成的锐角(或直角)为异面直线所成的角(如b与a′所成的角),然后通过解三角形等方法求角(如图).题型一空间两条直线的位置关系的判定例1 若a和b是异面直线,b和c是异面直线,则a和c的位置关系是( )A.平行B.异面C.相交D.平行、相交或异面谜底D解析可借助长方体来判断.如图,在长方体ABCD-A′B′C′D′中,A′D′所在直线为a,AB 所在直线为b,已知a和b是异面直线,b和c是异面直线,则c可以是长方体ABCD-A′B′C′D′中的B′C′,CC′,DD′.故a和c可以平行、相交或异面.跟踪训练1 如图所示,在正方体ABCD-A1B1C1D1中,判断下列直线的位置关系:(1)直线A1B与直线D1C的位置关系是________;(2)直线A1B与直线B1C的位置关系是________;(3)直线D1D与直线D1C的位置关系是________;(4)直线AB与直线B1C的位置关系是________.谜底(1)平行(2)异面(2)相交(4)异面解析序号结论理由(1)平行因为A1D1綊BC,所以四边形A1BCD1为平行四边形,所以A1B∥D1C(2)异面A1B与B1C分歧在任何一个平面内(3)相交D1D∩D1C=D1(4)异面AB与B1C分歧在任何一个平面内题型二公理4、等角定理的应用例2 E,F分别是长方体ABCD-A1B1C1D1的棱A1A,C1C的中点,求证:四边形B1EDF是平行四边形.证明设Q是DD1的中点,连接EQ,QC1.因为E是AA1的中点,所以.又因为在矩形A1B1C1D1中,,所以..又因为Q,F分别是矩形DD1C1C两边D1D,C1C的中点,所以.所以四边形DQC1F为平行四边形.所以.又因为,所以.所以四边形B1EDF为平行四边形.跟踪训练2 如图,已知E,F,G,H分别是空间四边形ABCD的边AB,BC,CD,DA的中点.(1)求证:E,F,G,H四点共面;(2)若四边形EFGH是矩形,求证:AC⊥BD.证明(1)在△ABD中,∵E,H分别是AB,AD的中点,∴EH∥BD.同理FG∥BD,则EH∥FG.故E,F,G,H 四点共面.(2)由(1)知EH∥BD,同理AC∥GH.又∵四边形EFGH 是矩形,∴EH⊥GH.故AC⊥BD.题型三 异面直线所成的角例 3 如图所示,在空间四边形ABCD 中,AB =CD,AB⊥CD,E,F 分别为BC,AD 的中点,求EF 和AB所成的角.解 如图,取BD 的中点G,连接EG,FG.因为E,F 分别为BC,AD 的中点,AB =CD,所以EG∥CD,GF∥AB,且EG =12CD,GF =12AB. 所以∠GFE 就是EF 与AB 所成的角或其补角,EG =GF.因为AB⊥CD,所以EG⊥GF.所以∠EGF=90°.所以△EFG 为等腰直角三角形.所以∠GFE=45°,即EF 与AB 所成的角为45°.跟踪训练3 空间四边形ABCD中,AB=CD且AB与CD所成的角为30°,E,F分别为BC,AD的中点,求EF与AB所成角的年夜小.解取AC的中点G,连接EG,FG,则EG 12AB,GF12CD.故直线GE,EF所成的锐角即为AB与EF所成的角,直线GE,GF所成的锐角即为AB与CD所成的角.∵AB与CD所成的角为30°,∴∠EGF=30°或150°.由AB=CD,知EG=FG,∴△EFG为等腰三角形.当∠EGF=30°时,∠GEF=75°;当∠EGF=150°时,∠GEF=15°.故EF与AB所成的角为15°或75°.转化与化归思想例5 在空间四边形ABCD中,AD=BC=2a,E,F分别是AB,CD的中点,EF=3a,求异面直线AD,BC所成的角.分析要求异面直线AD,BC所成的角,可在空间中找一些特殊点,将AD,BC平移至一个三角形中.此题已知E,F分别为AB,CD的中点,故可寻找一边中点,如BD的中点M,则∠EMF(或其补角)为所求角.解如图,取BD的中点M.由题意,知EM为△BAD的中位线,所以EM∥AD 且EM =12AD.同理,MF∥BC 且MF =12BC.所以EM =a,MF =a,且∠EMF(或其补角)为所求角.在等腰△MEF 中,取EF 的中点N,连接MN,则MN⊥EF.又因为EF =3a,所以EN =32a.故有sin∠EMN=EN EM =32.所以∠EMN=60°,所以∠EMF=2∠EMN=120°.因为∠EMF=120°>90°,所以AD,BC 所成的角为∠EMF 的补角,即AD 和BC 所成的角为60°.反证法的合理应用例6 如图,三棱锥P -ABC 中,E 是PC 上异于点P 的点.求证:AE与PB 是异面直线.分析利用界说直接证明,即从分歧在任何一个平面内中的“任何”开始入手,一个平面一个平面地寻找是不成能实现的,因此必需找到一个间接证法来证明,反证法即是一种行之有效的方法.证明假设AE与PB不是异面直线,设AE与PB都在平面α内,因为P∈α,E∈α,所以PE⊂α.又因为C∈PE,所以C∈α.所以点P,A,B,C都在平面α内.这与P,A,B,C不共面(P-ABC是三棱锥)矛盾.于是假设不成立,所以AE与PB是异面直线.1.若空间两条直线a和b没有公共点,则a与b的位置关系是( )2.一条直线与两条异面直线中的一条平行,则它和另一条的位置关系是( )3.设P是直线l外一定点,过点P且与l成30°角的异面直线( )4.如图所示,G,H,M,N分别是正三棱柱的极点或所在棱的中点,则暗示直线GH,MN是异面直线的图形有________.(填序号)5.在正方体ABCD-A1B1C1D1中,E为C1D1的中点,则异面直线AE与A1B1所成角的余弦值为________.一、选择题1.分别和两条异面直线平行的两条直线的位置关系是( )2.已知空间两个角α,β,α与β的两边对应平行,且α=60°,则β即是( )A.60°B.120°C.30°D.60°或120°3.在正方体ABCD-A1B1C1D1中,异面直线BA1与CC1所成的角为( )A.30°B.45°C.60°D.90°4.下面四种说法:①若直线a、b异面,b、c异面,则a、c异面;②若直线a、b相交,b、c相交,则a、c相交;③若a∥b,则a、b与c所成的角相等;④若a⊥b,b⊥c,则a∥c.其中正确的个数是( )5.空间四边形的对角线互相垂直且相等,顺次连接这个四边形各边中点,所组成的四边形是( )6.若空间四边形ABCD的两条对角线AC,BD的长分别是8,12,则过AB的中点E且平行于BD,AC的截面四边形的周长为( )7.如图,三棱柱ABCA1B1C1中,底面三角形A1B1C1是正三角形,E是BC的中点,则下列叙述正确的是( )D.AE与B1C1所成的角为60°二、填空题8.在四棱锥P-ABCD中,各棱所在的直线互相异面的有________对.9.一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:①AB⊥EF;②AB与CM所成的角为60°;③EF与MN是异面直线;④MN∥CD.以上结论中正确的序号为________.10.如图所示,在正方体ABCD-A1B1C1D1中,异面直线A1B与AD1所成的角为______.三、解答题11.如图所示,等腰直角三角形ABC中,∠BAC=90°,BC==1,DA若2,DA⊥AC,DA⊥AB,且为BE与求异面直线,DA的中点ECD所成角的余弦值.12.如图,E,F,G,H分别是空间四边形ABCD各边上的点,且有AE∶EB=AH∶HD=m,CF∶FB=CG∶GD=n.(1)证明:E,F,G,H四点共面;(2)m,n满足什么条件时,四边形EFGH是平行四边形?(3)在(2)的条件下,若AC⊥BD,试证明:EG=FH.当堂检测谜底1.谜底D 解析若直线a和b共面,则由题意可知a∥b;若a和b不共面,则由题意可知a与b是异面直线.2.谜底B 解析如图,在正方体ABCD-A1B1C1D1中,AA1与BC是异面直线,又AA1∥BB1,AA1∥DD1,显然BB1∩BC=B,DD1与BC是异面直线,故选B.3.谜底A解析我们现在研究的平台是锥空间.如图所示,过点P作直线l′∥l,以l′为轴,与l′成30°角的圆锥面的所有母线都与l成30°角.解析①中,∵G,M 是中点,∴AG 綊BM,∴GM 綊AB 綊HN,∴GH∥MN,即G,H,M,N 四点共面;②中,∵H,G,N 三点共面,且都在平面HGN 内,而点M 显然不在平面HGN 内,∴H,G,M,N 四点不共面,即GH 与MN 异面;③中,∵G,M 是中点,∴GM 綊12CD,∴GM 綊12HN,即GMNH 是梯形,则HG,MN 必相交,∴H,G,M,N 四点共面;④中,同②,G,H,M,N 四点不共面,即GH 与MN 异面.5.谜底 13解析 设棱长为1,因为A1B1∥C1D1,所以∠AED1就是异面直线AE 与A1B1所成的角.在△AED1中,cos∠AED1=D1E AE =1232=13. 课时精练谜底一、选择题1.谜底 D解析 可能相交也可能异面,但一定不服行(否则与条件矛盾).解析 由等角定理,知β与α相等或互补,故β=60°或120°.3.谜底 B解析 如图,在正方体ABCD -A1B1C1D1中,BB1∥CC1,故∠B1BA1就是异面直线BA1与CC1所成的角,故为45°.4.谜底 D解析 若a 、b 异面,b 、c 异面,则a 、c 相交、平行、异面均有可能,故①分歧毛病.若a 、b 相交,b 、c 相交,则a 、c 相交、平行、异面均有可能,故②分歧毛病.若a⊥b,b⊥c,则a 、c 平行、相交、异面均有可能,故④分歧毛病.③正确.5.谜底 D解析 如图,因为BD⊥AC,且BD =AC,又因为E,F,G,H 分别为对应边的中点,所以FG EH 12BD,HG EF 12AC.所以FG⊥HG,且FG =HG.所以四边形EFGH 为正方形.6.谜底 B解析 设截面四边形为EFGH,E,F,G,H 分别是AB,BC,CD,DA 的中=6)+2×(4周长为6,∴=BD 12=HE =4,FG =AC 12=GH =,∴EF 点20.7.谜底 C解析由于CC1与B1E都在平面C1B1BC内,故C1C与B1E是共面的,所以A毛病;由于C1C在平面C1B1BC内,而AE与平面C1B1BC 相交于E点,点E不在C1C上,故C1C与AE是异面直线,B毛病;同理AE与B1C1是异面直线,C正确;而AE与B1C1所成的角就是AE与BC所成的角,E为BC中点,△ABC为正三角形,所以AE⊥BC,D毛病.综上所述,故选C.二、填空题8.谜底8解析以底边所在直线为准进行考察,因为四边形ABCD是平面图形,4条边在同一平面内,不成能组成异面直线,而每一边所在直线能与2条侧棱组成2对异面直线,所以共有4×2=8(对)异面直线.9.谜底①③解析把正方体的平面展开图还原成原来的正方体,如图所示,AB⊥EF,EF与MN是异面直线,AB∥CM,MN⊥CD,只有①③正确.10.谜底60°解析连接BC1,A1C1,∵BC1∥AD1,∴异面直线A1B与AD1所成的角即为直线A1B与BC1所成的角.在△A1BC1中,A1B=BC1=A1C1,∴∠A1BC1=60°,故异面直线A1B与AD1所成的角为60°.三、解答题11.解 取AC 的中点F,连接EF,BF,在△ACD 中,E,F 分别是AD,AC 的中点,∴EF∥CD,∴∠BEF 即为所求的异面直线BE 与CD 所成的角(或其补角).1,=AC =AC,∴AB =,AB 2=,BC 中Rt△ABC 在 .52=,∴BE 12=AD 12=1,AE =,AB 中Rt△EAB 在 .22=,∴EF 12=,AE 12=AC 12=,AF 中Rt△AEF 在 .52=,∴BF 12=1,AF =,AB 中Rt△ABF 在 ,1010=2452=12EF BE =,cos∠FEB 中EBF 在等腰三角形 .1010所成角的余弦值为CD 与BE 异面直线∴12.(1)证明 因为AE∶EB=AH∶HD,所以EH∥BD.又因为CF∶FB=CG∶GD,所以FG∥DB.所以EH∥FG.所以E,F,G,H 四点共面.(2)解 当且仅当EH∥FG,EH=FG 时,四边形EFGH 为平行四边形.BD.m m +1=EH 所以,m m +1=AE AE +EB =EH BD 因为 n.=m 得FG,=EH 由BD,n n +1=FG 同理故当m =n 时,四边形EFGH 为平行四边形. (3)证明 当m =n 时,AE∶EB=CF∶FB,所以EF∥AC.又因为AC⊥BD,而∠FEH 是AC 与BD 所成的角, 所以∠FEH=90°,从而平行四边形EFGH 为矩形,所以EG =FH.。

空间点、直线、平面之间的位置关系

空间点、直线、平面之间的位置关系

第三节 空间点、直线、平面之间的位置关系1. 平面的基本性质 四个公理 2.空间两直线的位置关系(2)平行公理: 公理4:平行于同一直线的两条直线互相平行——空间平行线的传递性。

(3)等角定理: 空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。

(4)异面直线所成的角:①定义:设a 、b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角)。

②范围:⎝⎛⎦⎤0,π2。

3.直线与平面的位置关系一、高考题3.(2018·全国卷Ⅱ)在长方体ABCD -A 1B 1C 1D 1中,AB =BC =1,AA 1=3,则异面直线AD 1与DB 1所成角的余弦值为( ) A .15B .56 C .55 D .224.(2016·全国卷Ⅰ)平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,则m ,n 所成角的正弦值为( )A .32 B .22 C .33 D .13考点二 空间两条直线的位置关系微点小专题 方向1:异面直线的判定【例2】 (2019·益阳、湘潭调研考试)下图中,G ,N ,M ,H 分别是正三棱柱(两底面为正三角形的直棱柱)的顶点或所在棱的中点,则表示直线GH ,MN 是异面直线的图形有( )A .①③B .②③C .②④D .②③④方向2:平行垂直的判定【例3】 如图,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是BC 1,CD 1的中点,则下列说法错误的是( )A .MN 与CC 1垂直B .MN 与AC 垂直 C .MN 与BD 平行 D .MN 与A 1B 1平行 【题点对应练】1.(方向1)如图,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别为棱C 1D 1,C 1C 的中点,有以下四个结论:① 直线AM 与CC 1是相交直线; ②直线AM 与BN 是平行直线; ② 直线BN 与MB 1是异面直线; ④直线AM 与DD 1是异面直线。

空间两条直线

空间两条直线

三、异面直线
1.定义:所谓异面直线是指不同在任何一个平面内的两条直线. 其含义是不存在这样的平面,能同时经过这两条直线,应明确 分别在某两个平面内的两直线不一定是异面直线. 2.异面直线的判定方法: (1)定义法(反证法): (2)判定定理:过平面外一点与平面内一点的直线 ,和平面内不 经过该点的直线是异面直线. 3.异面直线所成的角:
D B F C
若a、b是异面直线,且分别在平面α、β 内,α∩β = l ,则 直线 l 必定
A.分别与a、b相交 C. 与a、b都不相交 B.至少与a、b之一相交 D.至多与a、b之一相交
(2)范围: (0, ]
(3)求法:

2
①平移法:平移法求异面直线所成角的步骤是一作二证 三求, 关键是通过平移(中点平移,顶点平移以及补形法: 把空间图形补成熟悉的或完整的几何体,如正方体、平行六 面体、长方体等,以便易于发现两条异面直线间的关系)转 化为两相交直线的夹角。 ②向量法
四、异面直线的距离的概念: 1.两条异面直线公垂线:和两条异面直线都垂直相交的直 线叫异面直线的公垂线。 2.异面直线间的距离:两条异面直线的公垂线在这两条异 面直线间的线段的长度叫做异面直线间的距离. 注:两条异面直线的公垂线有且只有一条。而和两条异 面直线都垂直的直线有无数条,因为空间中,垂直不一定 相交。 3.计算异面直线的距离的方法: (1)先确定异面直线公垂线的位置,再计算公垂线段的长度。 (2)向量法。
例 1. (1)空间四边形 ABCD 中,E、F、G、H 分 别是四边上的中点, 则直线 EG和 FH的位置关系_____;
(答:相交)
(2)给出下列四个命题: ①异面直线是指空间既不平行又不相交的直线; ②两异面直线 a, b ,如果 a 平行于平面 ,那么 b 不平行平面 ; ③两异面直线 a, b ,如果 a 平面 ,那么 b 不垂 直于平面 ; ④两异面直线在同一平面内的射影不可能是两条 平行直线 。其中正确的命题是_____。 (答:①③)

人教版高中数学必修第二册8.4 8.4.2 空间点、直线、平面之间的位置关系

人教版高中数学必修第二册8.4 8.4.2 空间点、直线、平面之间的位置关系

34
解析:把展开图还原成正方体,如图所示.由正方体的性质得CD∥GH, AB与EF异面,AD与EF异面,AB与CD相交.故选ABD.
上一页
返回导航
下一页
第八章 立体几何初步
35
4.已知三条直线a,b,c,a与b异面,b与c异面,则a与c有什么样的位 置关系?请画图说明. 解:直线a与c的位置关系有三种情况,如图所示.
上一页
返回导航
下一页
第八章 立体几何初步
31
1.若M∈l,N∈l,N∉α,M∈α,则有( )
A.l∥α
B.l⊂α
√C.l与α相交
D.以上都有可能
解析:由符号语言知,直线l上有一点在平面α内,另一点在平面α外,故
l与α相交.故选C.
上一页
返回导航
下一页
第八章 立体几何初步
32
2.正方体的六个面中相互平行的平面有( )
上一页
返回导航
下一页
第八章 立体几何初步
29
若α∥β,a⊂α,下列四个命题:
①a与β内的所有直线平行;
②a与β内无数条直线平行;
③直线a与β内任何一条直线都不垂直;
④a与β无公共点.
其中真命题的个数为( )
A.1 C.3
上一页
返回导航
B√.2
D.4
下一页
第八章 立体几何初步
30
解 析 : 由 α∥β , a ⊂ α , 可 知 a∥β , 因 此 ②④ 正 确 . 如 图 所 示 , 在 正 方 体 ABCDA1B1C1D1 中 , 令 A1B1 为 a , 平 面 ABCD 为 β , 平 面 A1B1C1D1 为 α , 则 a⊂α,α∥β,显然β内的直线BC⊥A1B1,所以①③不正确.故选B.

必修2_ch1 立体几何初步教学案(19课时)

必修2_ch1   立体几何初步教学案(19课时)
第8课时空间两直线的位置关系(2)------------------(29)
第9课时直线与平面的位置关系(1)-----------------(33)
第10课时直线与平面的位置关系(2)-----------------(37)
第11课时直线与平面的位置关系(3)-----------------(41)
五、回顾小结
六、练习
补全下图所示的物体的三视图:
江苏省泰兴中学高一数学同步课时训练(3)
【中心投影和平行投影】
班级姓名
一、解答题:
1、画出下面的几何体的三视图:
2、画出下面的几何体的三视图:
3、画出下面的几何体的三视图:
4、画出下面的几何体的三视图:
5、根据所给三视图,画出相应的空间图形的大致形状.
江苏省泰兴中学高二数学校本化教学案
立体几何
江苏省泰兴中学龚留俊
第1课时棱柱、棱锥和棱台-----------------------------(1)
第2课时圆柱、圆锥、圆台和球-------------------------(5)
第3课时中心投影和平行投影(三视图)---------------(9)
(3)与圆锥的轴平行的截面是等腰三角形.()
(4)球面作为旋转面,只有一条旋转轴,没有母线.()
(5)半圆以其直径为轴旋转一周所成的曲面叫球.()
(6)到定点的距离等于定长的所有点的集合叫球.()
二、解答题:
7、(探究题)如图,我们知道,若从圆锥的一条母线AC处将其侧面展开,则得到一个扇形,其中弧AB的长就是底面周长,扇形的半径就是圆锥的母线.若已知圆锥底面半径为r,母线长为l,求:(1)圆锥的侧面积公式;(2)圆锥侧面展开图的圆心角的弧度数.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 立体几何初步
课题:§1.2.2空间两直线的位置关系(2) 总第4个课时 教学目标:
1、熟悉了解空间两条直线的三种位置关系,并会判定;
2、掌握平行公理、等角定理及其推论,了解它们的作用,会用它们来证明简单的几何问
题,熟悉、证明空间两直线平行及角相等的方法;
3、了解异面直线所成角的定义,掌握用图形来表示两条异面直线,掌握异面直线所成角
的范围,会求异面直线的所成角,了解异面直线垂直的概念。

教学重点:求异面直线的所成角
教学难点:求异面直线的所成角
教学过程:
一、问题情境
1. 空间两条直线如果不平行就一定相交吗?你能找出两条直线既不平行有不相交的例子?
2. (1)垂直于同一直线的两条直线,有几种位置关系?
(2)已知a 和b 是异面直线,a 与c 是异面直线,那么b 和c 也是异面直线吗?
二、学生活动
在如图的正方形1111D C B A ABCD -中,找出与B A 1异面的棱
三、建构数学
1、 一般的,我们有:过平面内一点与平面外一点的直线,和这个平面内不经过该点的直线是异面直线,用符号可表示为:若l B B A l ∈∈∉⊂,,,ααα,则直线AB 与l 是异面直线
2、 异面直线a,b 所成的角:若a,b 是两条异面直线,经过空间任意一点O ,作直线b b a a //,//'',我们把直线'',b a 所成的锐角(或直角)叫做异面直线a,b 所成的角。

若异面直线a,b 所成的角为直角,我们称这两条异面直线互相垂直。

四、数学应用
例1. 已知正方体1111D C B A ABCD -的棱长为a
(1) 正方形的哪些棱所在的直线与直线1BC 是异面直线?
(2) 求异面直线BC AA ,1所成的角
(3) 求异面直线AC BC ,1所成的角
例2.已知α∩β=a c c A a b b a //,,且且αβ⊂=⊂ ,求证:c b ,是异面直线。

例 3、如图所示,在空间四边形ABCD 中,AB=BD=AD=2。

BC=CD=
23,27=AC ,延长BC 到E 使CE=BC ,F 为BD 中点,求:异面直线AF 与DE 所成角。

例 4、在空间四边形ABCD 中,AB=CD=8,M ,N 分别是BC ,AD 的中点,若异面直线AB 与CD 所成角为︒60,求MN 的长。

四、当堂反馈
1、 书P27练习1—6
2、在空间四边形ABCD 中,对角线AC=BD=a 2,M 、N 分别是边AB 、CD 的中点,若MN a 2=,则AC 与BD 所成角为 ,MN 与AC 所成角为 。

五、作业
1、在正方体ABCD —A 1B 1C 1D 1中,与直线BD 异面且成60°角的面对角线有 ( )
A 、1条
B 、2条
C 、3条
D 、4条
2、如图所示,空间四边形ABCD ,若M 、N 分别为对角线BD 、
AC 的中点,AB=CD=2,MN=3,则AB 和CD 所成的角 。

C
3、如图所示,已知b a ,是异面直线,A 、B ∈a ,C 、D ∈b ,求证:AC 和BD 也是异面直线。

B A D
M N B C A D a b
4.P27习题8 5.P28习题9。

相关文档
最新文档