七年级数学上册《整式》教案北师大版
北师大版数学七年级上册《3 整式》说课稿1

北师大版数学七年级上册《3 整式》说课稿1一. 教材分析北师大版数学七年级上册《3 整式》是学生在学习了有理数、一元一次方程等基础知识后,进一步学习代数知识的模块。
本节课的内容包括整式的概念、整式的加减、乘法以及乘法公式等。
这些内容不仅是学生进一步学习高级代数知识的基础,也是培养学生逻辑思维能力、抽象思维能力的重要环节。
二. 学情分析面对七年级的学生,他们在数学学习方面已经具备了一定的基础,比如有理数的四则运算、简单方程的解法等。
但是,对于整式的概念、整式的运算等知识,学生可能还存在一定的困难。
因此,在教学过程中,需要注重引导学生从具体的事物中抽象出整式的概念,以及通过实例让学生理解整式的运算规律。
三. 说教学目标1.知识与技能目标:使学生理解整式的概念,掌握整式的加减、乘法运算,以及运用乘法公式进行计算。
2.过程与方法目标:通过观察、分析、归纳等方法,培养学生从具体事物中抽象出整式的概念,以及运用整式解决实际问题的能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,增强学生的自信心,使学生体验到数学学习的成就感。
四. 说教学重难点1.教学重点:整式的概念,整式的加减、乘法运算,乘法公式。
2.教学难点:整式的概念的理解,整式的运算规律的把握。
五. 说教学方法与手段在教学过程中,我将采用引导发现法、实例教学法、分组合作学习法等教学方法。
同时,利用多媒体教学手段,如PPT、网络资源等,为学生提供丰富的学习资源,提高学生的学习兴趣。
六. 说教学过程1.导入:通过展示生活中的实际问题,引导学生从具体事物中抽象出整式的概念。
2.教学新课:讲解整式的概念,通过实例让学生理解整式的运算规律,介绍乘法公式。
3.课堂练习:设计具有层次性的练习题,让学生巩固所学知识。
4.课堂小结:引导学生总结本节课所学内容,巩固知识点。
5.课后作业:布置具有针对性的作业,巩固所学知识。
七. 说板书设计板书设计要清晰、简洁,能够突出本节课的重点知识。
北师大版七年级数学上册《整式的加减》精品教案

《整式的加减》精品教案●教学目标:一、知识与技能目标:1. 理解同类项的概念和合并同类项的意义,学会合并同类项。
2. 理解整式加减的实质就是合并同类项。
二、过程与方法目标:培养学生观察、分析、归纳和动手解决问题的能力,初步使学生了解数学的分类思想。
三、情感态度与价值观目标:激励全体学生积极参与教学活动,培养他们团结协作,严谨求实的学习作风和锲而不舍,勇于创新的精神。
●重点:掌握同类项的定义以及合并同类项的法则。
●难点能根据题目的要求,正确熟练地进行整式的加减运算.●教学流程:一、回顾旧知,情景导入图中的长方形由两个小长方形组成,求这个长方形的面积。
图中长方形的面积可以用代数式表示为8n+5n,或(8+5)n,从而8n+5n=(8+5)n=13n。
二、解答困惑,讲授新知这就是说,当我们计算8n+5n时,可以先将它们的系数相加,再乘n就可以了。
利用乘法分配律也可以得到这个结果。
与此类似,根据乘法分配律可得:-7a²b+2a²b=(-7+2)a²b=-5a²b像8n与5n,2a²b与-7a²b这样所含字母相同,并且相同字母的指数也相同的项,叫做同类项。
(两个相同)x+y 和xy是同类项吗?不是2ab和5ab是同类项吗?是b和a是同类项吗?不是3和-4是同类项吗?是与所含字母顺序无关两无关与系数大小无关注意同类项的两相同和两无关!!把同类型合并成一项叫做合并同类项。
例如:8n+5n =13n -7a²b+2a²b=-5a²b6xy-10x²-5yx+7x²+5x(先分)=(6xy-5yx)+(-10x²+7x²)+5x (移)=(6-5)xy+(-10+7)x²+5x (合并)=xy-3x²+5x合并同类项步骤:一分,二移,三合并,移时连同项的符号移火眼金睛1.下列各组是同类项的有_________-①x与y ②a²b与ab²③-3pq与3pq ④abc与ac ⑤a²和a³⑥π与-3 ⑦ x4与a42.若 2x3y n与-x m y2是同类项,则m+n=___.3.5x2y和7y m x n是同类项,则m=____,n=______三、实例演练深化认识例1根据乘法分配律合并同类项:(1)-xy²+3xy² (2)7a+3a²+2a-a²+3解:(1)-xy²+3xy² =(-1+3)xy²=2 xy²(2)7a+3a²+2a-a²+3=(7a+2a)+(3a²-a²)+3=(7+2)a+(3-1)a²+3=9a+2a²+3注意:合并同类项时,把同类项的系数相加,字母和字母的指数不变。
北师大版七年级数学上册《整式及其加减——整式》教学PPT课件(4篇)

( 4 )产量由增长后,达到______________.
2.某班共有个学生,其中女生人数占45%,那么男生人数是(
A.
B
C.
D.
)
新课导入
小明房间的窗户如图所示,其中上方
的装饰物由两个四分之一圆和一个半
圆组成(它们的半径相同)。
( 1 )装饰物所占的面积是多少?
整
式
项:多项式中每一个项
多项式:几个单项式的和
次数:次数最高项的次数
课后探究
某小区一块长方形绿地的造型如下图所示(单位:),其中两个
扇形表示绿地,两块绿地用五彩石隔开,那么需要铺多大面积
的五彩石?
第三章 整式及其加减
整式
1.经历用代数式表示具体情境中数量关系的过
程,理解字母表示数的意义。
2.了解单项式、多项式、整式及有关的概念,
( 2 )窗户中能射进阳光的部分的面
积是多少?(窗框面积忽略不计)
解:( 1 )装饰物所占的面积为:
( 2 )窗户中能射进阳光的部分的面积:
新课讲授ห้องสมุดไป่ตู้
( 1 )如右图所示,一个十字形花坛铺满了草皮,这个花坛草地
面积是______________;
( 2 )当水结冰时,其体积大约会比原来增加,的水结成冰后体
单项式中的数字因数叫做这个单项式的系
数;
一个单项式中,所有字母的指数的和,
叫做这个单项式的次数。
单项式概念中的字母具有可任意取值的含义。
➢注 意
是圆周率的代号,不是单
项式概念中的字母。
试一试
单项式 1 r 2h 2 .035 a 2 b xy 5 x 3 2 x 2 y 2 z 2 13 a 2bc
北师大七年级上册数学 整式的概念 教案

教学过程一、复习预习上节课我们已经把整个有理数的章节学习完了,现在让我们一起回忆下在有理数这章中我们都学习了哪些内容1、有理数的概念及其分类2、相反数、数轴与绝对值的意义及运用3、有理数加、减、乘、除及乘方运算4、有理数运算中常用到的运算律及计算技巧5、科学记数法与近似数二、知识讲解1、做一做(1)某种瓜子的单价为16元/千克,则n千克需要 _____元;(16n)(2)小刚上学步行速度为5千米/小时,若小刚到学校的路程为s千米,则他上学需走________小时。
(5s) (3)钢笔每支a 元,铅笔每支b 元,买2支钢笔和3支铅笔共需__________元。
(23a b +) 在前面的研究中,出现了16n 、5s、23a b +等式子,我们称它们为代数式. 代数式:由数和字母用运算符号连接所成的式子. 注意:单独一个数或一个字母也是代数式. 2、代数式的规范写法(1)b a ⨯通常写作ab b a 或⋅; (2)aa 11通常写作÷ (3)数字通常写在字母前面;如:3a ⨯通常写作3a (4)带分数一般写成假分数.如:a a 56511通常写作⨯(5)所写代数式如果有单位,在写答案时,应带上单位,若是乘除关系,单位名称应写在式子后面,如12akg ,若是加减关系,式子必须用括号括起来,再写上单位名称,如()a b +h.3、列代数式:把问题中与数量有关的词语,用含有数、字母及运算符号表示出来,就是列代数式. 4、列代数式的步骤:(1)抓住关键词,理解其意义; (2)明确运算顺序;(3)概括原题,正确使用括号. 5、求代数式的值:用数值代替代数式中的字母,按照代数式中给出的运算计算出的结果,叫做求代数式的值。
6、求代数式值的方法(1)直接求值法:先代入,即用数值代替代数式里的字母,后计算,即按代数式中的运算关系计算得出结果,运算时既要分清运算种类,又要注意运算顺序,代入时通常有两种情况,即单独代入和整体代入.(2)化简求值法:对于一些复杂的式子,不能直接代入求值时,要经过化简整理,才能求出代数式的值.考点/易错点1代数式的特点:(1)代数式是用运算符号把数或表示数的字母连结而成的式子;一般来讲,这里的运算是指加,减,乘,除,乘方和开方 如,23a b +(2)单独的一个字母或一个数也是代数式;如,a ,-15,0(3)代数式中不含“=”、“>”、“<” 、“≠”等符号。
北师大版七年级数学上册第三章整式及其加减复习教案

(五)总结回顾(用时5分钟)
今天的学习,我们回顾了整式的基本概念、加减运算及其在实际中的应用。通过实践活动和小组讨论,我们加深了对整式知识的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
北师大版七年级数学上册第三章整式及其加减复习教案
一、教学内容
本节复习课将围绕北师大版七年级数学上册第三章“整式及其加减”进行。内容包括:
1.整式的概念与分类:单项式、多项式、常数项;
2.整式的加减运算:合并同类项、去括号法则、添括号法则;
3.整式
-在整式的除法中,如何判断商的每一项系数以及如何处理余数;
-在解决实际问题时,如何正确建立整式模型,尤其是涉及多个变量时的情况;
-对于含有未知数的整式运算,如何进行合理的假设和代入。
举例:难点在于解决整式除法中的“带余除法”,例如,当多项式被单项式除时,如何确定商的每一项系数,以及如何处理剩余的多项式。此外,对于多项式乘多项式的运算,学生可能会在确定各项系数时出现混淆,需要通过具体例题进行详细讲解和练习。
在小组讨论环节,我观察到学生们在解决实际问题时表现得相当积极。他们能够将整式的知识应用到购物清单计算等生活场景中,这让我感到很高兴。但同时,我也注意到,有些学生在交流想法时显得不够自信,可能是对自己的答案不确定。我需要在课堂上创造更多的机会,鼓励学生表达自己,增强他们的自信心。
实践活动方面,我觉得通过实验操作来演示整式的运算原理是一个很好的教学方法。学生们通过直观的操作,能够更加深刻地理解抽象的数学概念。但在操作过程中,我也发现了一些学生在细节处理上的疏漏,这提醒我需要在指导学生操作时更加细致,确保每个步骤都清晰明了。
《整式》教案 2022年北师大版数学七上3

一、课题§二、教学目标1.使学生在理解线段概念的根底上,了解线段的长度可以用正数来表示,因而线段可以度量、比拟大小以及进行一些运算.使学生对几何图形与数之间的联系有一定的认识,从而初步了解数形结合的思想.2.使学生学会线段的两种比拟方法及表示法.3.通过本课的教学,进一步培养学生的动手能力、观察能力.三、教学重点和难点对线段与数之间的关系的认识,掌握线段比拟的正确方法,是本节的重点,也是难点.四、教学手段现代课堂教学手段五、教学方法启发式教学六、教学过程〔一〕、复习线段的概念,引出线段的长度的度量和表示1.学生动手画出(1)直线AB.(2)射线OA.(3)线段CD.2.提出问题:能否量出直线、射线、线段的长度?(如果有学生将直线、射线也量出了长度,借此复习直线和射线的概念.)3.提出数与形的问题:线段是一个几何图形,而线段的长度可用一个正数表示.这就是数与形的结合.4.线段的两种度量方法:(1)直接用刻度尺.(2)圆规和刻度尺结合使用.(教师可让学生自己寻找这两种方法) 5.教师再讲表示法:线段AB=7cm.二、通过实例,引导学生发现线段大小的比拟方法教师设计以下过程由学生完成.1.怎样比拟两个学生的身高?提出为什么要站在一起,脚底要在一个平面上?2.怎样比拟两座大山的上下?只要量出它们的高度.由此引导学生发现线段大小比拟的两种比拟方法:重叠比拟法将两条线段的各一个端点对齐,看另一个端点的位置.教师为学生演示,步骤有三:(1)将线段AB的端点A与线段CD的端点C重合.(2)线段AB沿着线段CD的方向落下.(3)假设端点B与端点D重合,那么得到线段AB等于线段CD,可以记AB=CD.假设端点B落在D上,那么得到线段AB小于线段CD,可以记作AB<CD.假设端点B落在D外,那么得到线段AB大于线段CD,可以记作AB>CD.如图1-6.教师讲授此局部时,应用几个木条表示线段AB和线段CD,这样可以更加直观和形象.也可以用圆规截取线段的方法进行.数量比拟法用刻度尺分别量出线段AB和线段CD的长度,将长度进行比拟.可以用推理的写法,培养学生的推理能力.写法如下:因为量得AB=××cm,CD=××cm,所以 AB=CD(或AB<CD或AB>CD).总结:现在我们学会了比拟线段的大小,还会比拟什么?学生可以答复出,可以比拟数的大小,进而再问:数的大小如何比拟?(数轴)再问:比拟线段的大小与比拟数的大小有什么联系?引导学生得到:比拟线段的大小就是比拟数的大小.三、应用实例,变式练习:1.如图1-7,量出以下列图形中各条线段的长度,比拟它们的大小.并比拟一个三角形中任意两边的和与第三边的关系.可以得出什么结论?2.如图1-8,根据图形填空.AD=AB+______+______,AC=______+______,CD=AD-______.3.如图1-9,线段AB,量出它的长度并找出它的中点、三等分点、四等分点.4.如图1-10,根据图形填空,(1)AB=______+______+______.(2)AB-a=______+______.〔四〕、小结1.教师提问:怎样表示线段的长度?怎样比拟线段的大小?通过本节课你对图形与数之间的关系有什么了解?2.根据学生答复的情况,教师重点总结数与形的结合以及比拟线段大小的两种方法.七、练习设计p.18,1.2题.p21,2.3.4题.八、板书设计九、教学后记1.本课的教学时间为1课时45分钟.2.本课时设计的主导思想是:将数形结合的思想渗透给学生,使学生对数与形有一个初步的认识.为将来的学习打下根底,这节课是一堂起始课,它为学生的思维开拓了一个新的天地.在传统的教学安排中,这节课的地位没有提到一定的高度,只是交给学生比拟线段的方法,没有从数形结合的高度去认识.实际上这节课大有可讲,可以挖掘出较深的内容.在教知识的同时,交给学生一种很重要的数学思想.这一点不容无视,在日常的教学中要时时注意.3.学生在小学时只会用圆规画圆,不会用圆规去度量线段的大小以及截取线段,通过这节课,学生对圆规的用法有一个新的认识.4.在课堂练习中安排了度量一些三角形的边的长度,目的是想通过度量使学生对“两点之间线段最短〞这一结论有一个感性的认识,并为下面的教学做一个铺垫.5.为防止本节课的枯燥,可以用提问的形式,出现悬念.如:开始的提问“线段是几何图形,它与数字有什么联系?〞“在我们学过的知识和生活中,什么东西可以比拟大小?〞等.这样就会调动学生的学习的积极性,提高他们的学习兴趣,积极思维,使课堂的气氛更加活泼.6.如果感觉课堂密度小,还可以增加一些培养动手能力的题.如:(1)量一量老师的大三角板中的等腰三角形各边的长,然后再量一量自己手中同样的小三角板各边的长,算一算相等的角所对的边长度的比值,是否相等.(为相似三角形的内容做一些铺垫)(2)量一量课桌四条边的长,再量一量课本四条边的长,算一算长边与长边的比、短边与短边的比.(得到角相等的图形,边不一定成比例)(3)在同一时间下,两棵高矮不同的大树的影子的长度自己量出,然后比拟大小,想一想这两棵树哪一棵高?(对相似三角形的边角关系有一定的感性认识)以上的三个题对学有余力的同学是很好的认识数学世界的实例.使本节课的内容更加生动丰富,课堂气氛更加活泼.。
七年级初一数学上册整式整式教案北师大

3.3 整式课题 3.3 整式课型新授教学目标1、列代数式,进一步理解用字母表示数的意义;2、发展符号感,初步了解项、系数的概念;3、通过尝试对项分类,培养观察、比较、分类的数学思想。
重点了解代数式的项、系数的概念难点比较整式的项、尝试着去分类教学用具电脑、投影仪教学环节说明二次备课新课导入一、情境引入讨论教材提供的问题情境。
通过师生交流,获得问题的初步解。
并在求解的过程中关注学生在相关运算方面的技能掌握情况:从21π(2n)2化简到82nπ。
课 程讲 授二、深化训练讨论教材中的“做一做”:1)一辆火车以v 千米/小时的速度匀速行驶,1.5小时行驶的路程是千米;2)圆锥的底面半径为r ,高为h ,这个圆锥的体积是如下图,一个长方体的箱子紧靠墙角,它的长、宽、高分别是a ,b,c 。
这个箱子露在外面的表面积是3)圆柱与圆锥的相同点和不同点三、明晰概念观察以上活动中得到的代数式,帮助学生归纳,形成代数式的相关概念。
投影31h r 2 、-15a 2b 、xy 、3222b a 、-a 请同学们说出它们的系数。
师生共同讨论结果。
请每个同学写出一个单独的项,可以现编一个,也可以在以往的练习中找一个,注意尽量避免雷同的。
然后,大家就凭着你写的项去找一找谁和你是好朋友?是有共同点的?小结 教师引导、启发学生回顾所学基本内容。
作业布置 课后习题1 2 3板书设计hr七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.在一些美术字中,有的汉字是轴对称图形,下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.【答案】A【解析】根据轴对称图形的概念,找出沿一条直线折叠,直线两旁的部分能够完全重合的字即可解答. 【详解】根据轴对称图形是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形,可得A是轴对称图形.故选A.【点睛】轴对称图形是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形,这条直线就叫做对称轴;2.解为12xy=⎧⎨=⎩的方程组是()A.135x yx y-=⎧⎨+=⎩B.135x yx y-=-⎧⎨+=-⎩C.331x yx y-=⎧⎨-=⎩D.2335x yx y-=-⎧⎨+=⎩【答案】D【解析】根据方程组的解的定义,只要检验12xy=⎧⎨=⎩是否是选项中方程的解即可.【详解】A、把12xy=⎧⎨=⎩代入方程x-y=-1,左边=1≠右边,把12xy=⎧⎨=⎩代入方程y+3x=5,左边=5=右边,故不是方程组的解,故选项错误;B、把12xy=⎧⎨=⎩代入方程3x+y=-5,左边=5≠右边,故不是方程组的解,故选项错误;C、把12xy=⎧⎨=⎩代入方程x-y=3,左边=-1≠右边,故不是方程组的解,故选项错误;D、把12xy=⎧⎨=⎩代入方程x-2y=-3,左边=-3=右边=-3,把12xy=⎧⎨=⎩代入方程3x+y=5,左边=5=右边,故是方程组的解,故选项正确.故选D.【点睛】本题主要考查了二元一次方程组的解的定义,正确理解定义是关键.3.一次学习小组交换出题检测的活动中,小刚的作答如下:①()363a a a ÷-=-;②23325a a a +=;③()()32255a bb a b ⋅-=; ④22144a a -=, 请问小刚做对了( )A .1道B .2道C .3道D .4道 【答案】A【解析】先对各项进行计算,再进行判断.【详解】①()363a a a ÷-=-计算正确;②232a a 、不能直接相加,故计算错误;③()()32265a bb a b ⋅-=,故计算错误; ④2244a a -=,故计算错误; 所以共计做对了1题.故选: A.【点睛】考查了积的乘方、幂的乘方和负整数指数幂,解题关键是熟记其运算法则.4.已知方程组3x 5y k 22x 3y k +=+⎧⎨+=⎩,x 与y 的值之和等于2,则k 的值为( ) A .4B .4-C .3D .3-【答案】A【解析】分析:先解关于x 的不等式组,求得x ,y 的值,然后根据x 与y 的和是2,即可得到一个关于k 的方程,进而求解. 详解:35223x y k x y k ++⎧⎨+⎩=①=②, ①×2-②×3得:y=2(k+2)-3k=-k+4, 把y=-k+4代入②得:x=2k-6,又x 与y 的值之和等于2,所以x+y=-k+4+2k-6=2,解得:k=4故选A点睛:本题考查了方程组的解的定义,能使方程组中每个方程的左右两边相等的未知数的值即是方程组的解.5.已知三元一次方程组102040x y y z z x +=⎧⎪+=⎨⎪+=⎩,则x y z ++=( )A .20B .30C .35D .70【答案】C【解析】利用方程组中三个方程左右两边相加,变形即可得到x+y+z 的值. 【详解】,①+②+③得:2(x +y +z )=70,则x +y +z=1.故选C .【点睛】本题考查了解三元一次方程组,本题的关键是将三个方程相加得出结果.6.在••0201⋅,227,2,2π,3.14,3,9,035 1.262662…中,无理数的个数是( ) A .3个B .4个C .5个D .6个 【答案】C【解析】先把93的形式,再根据无理数的定义进行解答即可.【详解】解:∵9,-3是有理数,∴这一组数中的无理数有:2,2π,3,35 1.262662…共5个.故选:C .【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式7.下列调查:(1)为了检测一批电视机的使用寿命;(2)为了调查全国平均几人拥有一部手机;(3)为了解本班学生的平均上网时间;(4)为了解中央电视台春节联欢晚会的收视率.其中适合用抽样调查的个数有()A.1个B.2个C.3个D.4个【答案】C【解析】试题分析:根据对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查可分析出答案.解:(1)为了检测一批电视机的使用寿命适用抽样调查;(2)为了调查全国平均几人拥有一部手机适用抽样调查;(3)为了解本班学生的平均上网时间适用全面调查;(4)为了解中央电视台春节联欢晚会的收视率适用抽样调查;故选C.8.如图,直线AB∥CD,∠FGH=90°,∠GHM= 40°,∠HMN=30°,并且∠EFA的两倍比∠CNP大10°,则∠PND的大小是()A.100°B.120°C.130°D.150°【答案】C【解析】作辅助线:延长PM、EG交于点K;EG的延长线交CD于点O,PM延长线交AB于点L,利用平行线性质进行求解.【详解】延长PM、EG交于点K;EG的延长线交CD于点O,PM延长线交AB于点L,如图,∵∠HMN=30゜,∴∠HMK=150゜,在四边形GHMK中,∠HGK=90゜,∠GHM=40゜,∠HMK=150゜,∴∠GKM=360゜-∠HGK-∠GHM-∠HMK=360゜-90゜-40゜-150゜=80゜,∴∠FKL=100゜,∴∠NKO=100゜,设∠EFA =x,则∠PNC =2x-10゜,∴∠KNO=2x-10゜,∵AB∥CD,∴∠KON=∠EFA=x,∵∠KNO+∠NKO+∠KON=180゜,∴2x-10゜+x+100゜=180゜,解得,x=30゜,∴∠PNC=2×30゜-10゜=50゜,∴∠PND=180゜-50゜=130゜.故选C.【点睛】本题考查了平行线的性质,平行线的性质可以简单的记忆为:两直线平行内错角相等、同位角相等,同旁内角互补.9.用四舍五入法按要求对0.05019分别取近似值,其中错误的是()A.0.1(精确到0.1)B.0.05(精确到百分位)C.0.050(精确到0.01)D.0.0502(精确到0.0001)【答案】C【解析】根据近似数的精确度把0.05019精确到0.1得到0.1,精确度千分位得0.050,精确到百分位得0.05,精确到0.0001得0.0502,然后依次进行判断【详解】A、0.05019≈0.1(精确到0.1),所以A选项正确;B、0.05019≈0.05(精确到百分位),所以B选项正确;C、0.05019≈0.05(精确到0.01),所以C选项错误;D、0.05019≈0.0502(精确到0.0001),所以D选项正确.故选:C.【点睛】本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起到这个数完为止,所有数字都叫这个数的有效数字.10.某生产车间共90名工人,每人每天平均能生产螺栓15个或螺帽24个,要使1个螺栓配套2个螺帽,应如何分配工人才能使每天生产的螺栓和螺帽刚好配套,设生产螺栓x人,生产螺帽y人,由题意列方程组()A.901524x yx y+=⎧⎨=⎩B.9022415x yy x=-⎧⎨⨯=⎩C.9021524x yx y+=⎧⎨⨯=⎩D.9015242x yxy=+⎧⎪⎨=⎪⎩【答案】C【解析】等量关系为:生产螺栓的工人数+生产螺帽的工人数=90;螺栓总数×2=螺帽总数,把相关数值代入即可.【详解】解:设生产螺栓x人,生产螺帽y人,根据总人数可得方程x+y=90;根据生产的零件个数可得方程2×15x=24y,可得方程组:9021524x yx y+=⎧⎨⨯=⎩.故选:C.【点睛】本题考查了由实际问题抽象出二元一次方程组,难点在于理解第二个等量关系:若要保证配套,则生产的螺母的数量是生产的螺栓数量的2倍,所以列方程的时候,应是螺栓数量的2倍=螺母数量.二、填空题题11.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E=_____度.【答案】80【解析】如图,根据角平分线的性质和平行线的性质,可知∠FMA=12∠CPE=∠F+∠1,∠ANE=∠E+2∠1=∠CPE=2∠FMA,即∠E=2∠F=2×40°=80°.故答案为80.12.如图,ABC △中,AB AC =,AD 是BC 边上的中线,ABC ∠的平分线交AD 于点E ,EF AB ⊥于点F ,若3EF =,则ED 的长度为______.【答案】3【解析】根据等腰三角形三线合一,确定AD ⊥BC ,又因为EF ⊥AB ,然后根据角平分线上的点到角的两边的距离相等证出结论.【详解】,AB AC AD =是BC 边上的中线AD BC ∴⊥ BE 平分ABC ∠且,ED BC EF AB ⊥⊥3ED EF ∴==【点睛】本题考查角平分线的性质和等腰三角形的性质,解题的关键是掌握角平分线的性质和等腰三角形的性质. 13.为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有________条鱼.【答案】1【解析】试题分析:先打捞200条鱼,发现其中带标记的鱼有5条,求出有标记的鱼占的百分比,再根据共有30条鱼做上标记,即可得出答案.解:∵打捞200条鱼,发现其中带标记的鱼有5条, ∴有标记的鱼占5200×100%=2.5%, ∵共有30条鱼做上标记,∴鱼塘中估计有30÷2.5%=1(条).故答案为1.考点:用样本估计总体.14.x 的与5的差不小于3,用不等式表示为__. 【答案】x ﹣5≥1.【解析】x 的与5的差为因为x 的与5的差不小于1,即 故填15.把多项式22363ax axy ay ++分解因式,结果为_________.【答案】()23a x y +【解析】先提取公因式3a ,再对余下的多项式利用完全平方公式继续分解.【详解】解:3ax 2−6axy +3ay 2,=3a (x 2−2xy +y 2),=()23a x y +.故答案为()23a x y +.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 16.若方程组34225x y x y +=⎧⎨-=⎩与312210ax by ax by -=⎧⎨+=⎩有相同的解,则a=___,b=___. 【答案】3 2【解析】分析: 本题用代入法和加减消元法均可详解: 34225x y x y +=⎧⎨-=⎩①②②变形为:y=2x-5,代入①,得x=2,将x=2代入②,得4-y=5,y=-1.把x=2,y=-1代入312210ax by ax by -=⎧⎨+=⎩,得 2312410a b a b +⎧⎨-⎩=③=④, 把b=4a-10代入③,得2a+12a-30=12,a=3,代入,得b=2.∴a=3,b=2点睛: 此题较简单,只要掌握二元一次方程组的解法即可.17.《孙子算经》是中国古代重要的数学著作,现在的传本共三卷,卷上叙述算筹记数的纵横相间制度和筹算乘除法;卷中举例说明筹算分数算法和筹算开平方法;卷下记录算题,不但提供了答案,而且还给出了解法,其中记载:“今有木、不知长短,引绳度之,余绳四尺五寸,屈绳量之,不足一尺,木长几何?”译文:“用一根绳子量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还到余1尺,问木长多少尺?”设绳长x 尺,木长y 尺.可列方程组为__________. 【答案】 4.5112x y x y -=⎧⎪⎨=-⎪⎩ 【解析】本题的等量关系是:绳长-木长=4.5;木长-12绳长=1,据此可列方程组求解. 【详解】设绳长x 尺,长木为y 尺, 依题意得 4.5112x y x y -=⎧⎪⎨=-⎪⎩, 故答案为: 4.5112x y x y -=⎧⎪⎨=-⎪⎩. 【点睛】此题考查由实际问题抽象出二元一次方程组,解题关键在于列出方程.三、解答题18.如图,ABD ∠和BDC ∠的平分线交于点E ,BE 的延长线交CD 于点F ,且1290︒∠+∠=,求证: (1)AB ∥CD ;(2)猜想∠2与∠3的关系并证明.【答案】(1)证明见解析(2)90°【解析】由角平分线的性质得到∠1=12∠ABD ,∠2=12∠BDC ;由∠1+∠2=90°,得∠ABD+∠BDC=180°;所以AB ∥CD ;(2)由DE 平分∠BDC ,得∠2=∠FDE ;由∠1+∠2=90°,结合题意得∠3+∠FDE=90°;所以∠2+∠3=90°.【详解】解:证明:(1)∵BE 、DE 平分∠ABD 、∠BDC ,∴∠1=12∠ABD ,∠2=12∠BDC ; ∵∠1+∠2=90°,∴∠ABD+∠BDC=180°;∴AB ∥CD ;(同旁内角互补,两直线平行)(2)∵DE 平分∠BDC ,∴∠2=∠FDE ;∵∠1+∠2=90°,∴∠BED=∠DEF=90°;∴∠3+∠FDE=90°;∴∠2+∠3=90°.【点睛】本题考查角平分线的性质、平行线的判定,解题的关键是熟悉平分线的性质、平行线的判定.19.如图,先将三角形ABC 向左平移3个单位长度,再向下平移4个单位长度,得到三角形111A B C .(1)画出经过两次平移后的图形,并写出1A ,1B ,1C 的坐标;(2)已知三角形ABC 内部一点P 的坐标为(),a b ,若点P 随三角形ABC 一起平移,平移后点P 的对应点1P 的坐标为()2,2--,请求出a ,b 的值;(3)求三角形ABC 的面积.【答案】(1)点1A ,1B ,1C 的坐标分别为()4,3--,()2,2-,()1,1-;(2)12a b =⎧⎨=⎩;(3)10.5. 【解析】(1)分别作出A ,B ,C 的对应点111A B C ,,,即可解决问题.(2)利用平移规律,构建方程组即可解决问题.(3)利用分割法求出三角形的面积即可.【详解】解:(1)如图,111A B C ∆为所作,点1A ,1B ,1C 的坐标分别为()4,3--,()2,2-,()1,1-;(2) 平移后点P 的对应点1P 的坐标为()3,4a b --;1P 的坐标为()2,2--∴3242a b -=-⎧⎨-=-⎩解得:12a b =⎧⎨=⎩ (3)ABC ∆的面积1146613322=⨯-⨯⨯-⨯⨯14310.52-⨯⨯= 【点睛】本题考查作图-平移变换,三角形的面积等知识,解题的关键是熟练掌握基本知识,学会用分割法求三角形的面积,属于中考常考题型.20.在等式2y ax bx c =++ 中,当2x =- 和4x = 时,y 的值相等。
北师大版数学七年级上册3.3《整式》说课稿

北师大版数学七年级上册3.3《整式》说课稿一. 教材分析北师大版数学七年级上册3.3《整式》是学生在学习了有理数、实数和代数式等基础知识后,进一步研究多项式和单项式的课程。
这一节内容是整个初中数学的重要基础,对于学生掌握代数知识,理解数学的抽象概念有着重要作用。
教材从实际问题出发,引导学生认识整式,理解整式的概念,学会用整式进行表示和运算。
二. 学情分析面对七年级的学生,他们对数学已有一定的认识和理解,但是抽象思维能力还在发展中。
他们在之前的学习中已经接触过代数式,对代数式的概念和性质有一定的了解。
但是,对于整式的概念和性质,他们可能还存在着模糊的认识。
因此,在教学过程中,我需要从学生的实际出发,用他们熟悉的事物和知识引导他们理解和掌握整式。
三. 说教学目标1.知识与技能目标:通过学习,使学生理解整式的概念,掌握整式的性质,能正确对整式进行运算。
2.过程与方法目标:通过自主学习、合作交流,培养学生提出问题、分析问题、解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的抽象思维能力,使学生体验到数学的乐趣。
四. 说教学重难点1.教学重点:整式的概念、性质和运算。
2.教学难点:整式的性质的理解和运用,整式的运算。
五. 说教学方法与手段在教学过程中,我将以引导为主,让学生通过自主学习、合作交流来理解整式的概念和性质。
同时,我会运用多媒体手段,如PPT、网络资源等,以丰富的形式展示整式的知识和例子,激发学生的学习兴趣。
六. 说教学过程1.导入:从实际问题出发,引导学生认识整式,提出问题,激发学生的学习兴趣。
2.自主学习:让学生通过自主学习,理解整式的概念和性质。
3.合作交流:让学生通过小组合作,讨论整式的性质,培养学生的合作能力和抽象思维能力。
4.课堂讲解:对整式的性质进行详细讲解,让学生理解并掌握。
5.例题解析:通过例题,让学生学会用整式进行表示和运算。
6.巩固练习:让学生进行练习,巩固所学知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
云南省建水县建民中学七年级数学上册《整式》教案 北师大版
教学内容:
教科书第56—59页,2.1.2整式(多项式)
教学目标和要求:
1.通过本节课的学习,使学生掌握多项式的项及其次数、常数项的概念以及几次几项
式的确定方法。
2.通过小组讨论、合作交流,让学生经历新知的形成过程,培养比较、分析、归纳的
能力。由单项式与多项式归纳出整式,这样更有利于学生把握概念的内涵与外延,有利于
学生知识的迁移和知识结构体系的更新。
3.初步体会类比和逆向思维的数学思想。
教学重点和难点:
重点:掌握多项式的有关概念——多项式的定义、多项式的项和次数,以及常数项等
概念。
难点:多项式的次数以及几次几项式的确定。
教学方法:
分层次教学,讲授、练习相结合。
教学过程:
一、复习引入:
1.列代数式:
(1)长方形的长与宽分别为a、b,则长方形的周长是 ;
(2)某班有男生x人,女生21人,则这个班共有学生 人;
(3)鸡兔同笼,鸡a只,兔b只,则共有头 个,脚 只。
(由于本课的主题是多项式,通过列代数式引入多项式,既是对前面知识的回顾,又由此导
入新课,既符合学生的认知水平,又能为学生学习新知提供丰富的素材。)
2.观察以上所得出的三个子式与上节课所学单项式有何区别。
(1)2(a+b) ; (2)(21+x) ; (3)( a+b)、( 2a+4b) 。
(由学生小组派代表回答,教师应肯定每一位学生说出的特点,培养学生观察、比较、
归纳的能力,同时又锻炼他们的口表能力。通过特征的讲述,由学生自己归纳出多项式的定
义,教室可给予适当的提示及补充。)
二、讲授新课:
1.多项式的定义:几个单项式的和叫做多项式。
2、多项式的项:在多项式中,每个单项式叫做多项式的项。其中,不含字母的项,叫
做常数项。例如,多项式5232xx有三项,它们是23x,-2x,5;其中5是常数项。
注意:多项式的每一项都包括它前面的符号在内。
3、多项式的次数:多项式里,次数最高项的次数,就是这个多项式的次数。
例如,多项式5232xx的次数是二次。
注意:①、多项式的次数不是所有项的次数之和;而是最高次项的次数。
②、常数项的次数为零。
4、多项式的称呼:一个多项式有几次有几项,就叫几次几项式项式。
2
多项式
1.多项式的定义: 2.例:……… 3小结与作业:…………
……………… ………………… …………………
……………… ………………… …………………
…… …………… ……………… …………………
………………… ……………… …………………
………………… ………………… ………………… …………………
(教师介绍多项式的项和次数、以及常数项等概念,并让学生比较多项式的次数与单项
式的次数的区别与联系,渗透类比的数学思想。)
5.例题:
例1:判断:
①多项式a3-a2b+ab2-b3的项为a3、a2b、ab2、b3,次数为12;
②多项式3n4-2n2+1的次数为4,常数项为1。
(这两个判断能使学生清楚的理解多项式中项和次数的概念,第(1)题中第二、四项应
为-a2b、-b3,而往往很多同学都认为是a2b和b3,不把符号包括在项中。另外也有同
学认为该多项式的次数为12,应注意:多项式的次数为最高次项的次数。)
例2:指出下列多项式的项和次数:
(1)3x-1+3x2; (2)4x3+2x-2y2。
解:略。(口答再板书)
例3:指出下列多项式是几次几项式。
(1)x3-x+1; (2)x3-2x2y2+3y2。
解:略。(口答再板书)
(让学生口答例2、例3,老师在黑板上规范书写格式。讲述例2时应特别提醒学生注
意,多项式的项包括前面的符号,多项式的次数应为最高次项的次数。)
6、整式的定义:单项式与多项式统称整式。
7.课堂练习: 课本p59:1,2;
三、课堂小结:
①理解多项式的定义,能说出一个多项式是几次几项式,最高次数是几,分别由哪几
项组成,各项的系数分别为多少,常数项为几。
②这堂课学习了多项式,与前一节所学单项式合起来统称为整式,使知识形成了系统。
(让学生小结,师生进行补充。)
四、课堂作业: 课本p60:2、3
板书设计: