北师大版初二数学下册4.3公式法(一)利用平方差公式进行因式分解
北师大版数学八年级下册:4.3 公式法 同步练习(附答案)
3公式法第1课时运用平方差公式因式分解知识点1直接运用平方差公式因式分解1.(2020·金华)下列多项式中,能运用平方差公式分解因式的是()A.a2+b2B.2a-b2C.a2-b2D.-a2-b22.已知多项式x2+a能用平方差公式在有理数范围内因式分解,那么在下列四个数中a 可以等于()A.9 B.4 C.-1 D.-23.把多项式(x-1)2-4因式分解的结果是()A.(x+3)(x+1)B.(x+1)(x-3)C.(x-1)(x+3)D.(x-5)(x+3)4.因式分解:(1)(2020·绍兴)1-x2=;(2)(2020·张家界)x2-9=;(3)(2019·黔东南)9x2-y2=.5.把下列各式因式分解:(1)9m2-4n2;(2)-16+a2b2;(3)964m2-n2;(4)(x-2y)2-4y2.知识点2先提公因式后运用平方差公式因式分解6.对a2b-b3因式分解,结果正确的是()A.b(a+b)(a-b)B.b(a-b)2C.b(a2-b2)D.b(a+b)27.因式分解:(1)(2020·济宁)a 3-4a = ;(2)(2019·黄冈)3x 2-27y 2= ;(3)(2020·黄石)m 3n -mn 3= .8.把下列各式因式分解:(1)16m 3-mn 2;(2)a 2(a -b )-4(a -b ).知识点3 用平方差公式因式分解的应用9.如图,在边长为6.75 cm 的正方形纸片上,剪去一个边长为3.25 cm 的小正方形,则图中阴影部分的面积为( )A .3.5 cm 2B .12.25 cm 2C .27 cm 2D .35 cm 210.若m 2-n 2=6,且m -n =2,则m +n = .11.已知长方形的面积是9a 2-16(a>43),若一边长为3a +4,则另一边长为 .易错点 因式分解不彻底导致出错12.(2019·毕节)分解因式:x 4-16= .13.如图,从边长为a 的大正方形中剪掉一个边长为b 的小正方形,将阴影部分沿虚线剪开,拼成右边的长方形.根据图形的变化过程写出的一个正确的等式是( )A .(a -b )2=a 2-2ab +b 2B .a(a -b )=a 2-abC .(a -b )2=a 2-b 2D .a 2-b 2=(a +b )(a -b )14.对于任意整数n ,多项式(n +7)2-(n -3)2的值都能( )A.被20整除B.被7整除C.被21整除D.被(n+4)整除15.因式分解:(1)(x-8)(x+2)+6x=;(2)-9x2+(x-y)2=;(3)m2(a-2)+(2-a)=.16.若a+b=4,a-b=1,则(a+1)2-(b-1)2的值为.17.把下列各式因式分解:(1)(2019·河池)(x-1)2+2(x-5);(2)0.36x2-49y2;(3)a3b-16ab;(4)3m4-48;(5)x n-x n+2;(6)(y+2x)2-(x+2y)2;(7)a2(a-b)+b2(b-a).18.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“和谐数”.如4=22-02,12=42-22,20=62-42,因此,4,12,20都是“和谐数”.36和2 020这两个数是“和谐数”吗?为什么?第2课时运用完全平方公式因式分解知识点1完全平方式1.下列式子中是完全平方式的是()A.a2+ab+b2B.a2+2a+2C.a2-2b+b2D.a2+2a+12.(1)若x2-6x+k是完全平方式,则k=9;(2)若x2+kx+4是完全平方式,则k=±4;(3)若x2+2xy+m是完全平方式,则m=y2.知识点2直接运用完全平方公式因式分解3.下列各式中能用完全平方公式进行因式分解的是()A.x2+x+1 B.x2+2x-1C.x2-1 D.x2-2x+14.把下列多项式因式分解,结果正确的是()A.4a2+4a+1=(2a+1)2B.a2-2a+4=(a-2)2C.a2-2a-1=(a-1)2D.a2-b2=(a-b)25.因式分解:(1)(2019·温州)m2+4m+4=;(2)a2-2ab+b2=.6.把下列完全平方式因式分解:(1)y2+y+14;(2)4x2+y2-4xy;(3)(m-n)2+6( m-n)+9.知识点3先提公因式后运用完全平方公式因式分解7.把代数式3x3-12x2+12x因式分解,结果正确的是()A.3x(x2-4x+4)B.3x(x-4)2C.3x(x+2)(x-2)D.3x(x-2)28.因式分解:(1)(2019·威海)2x2-2x+12=;(2)(2019·绵阳)m2n+2mn2+n3=;(3)(2019·眉山)3a3-6a2+3a=.9.把下列各式因式分解:(1)-x2+6xy-9y2;(2)a3+9ab2-6a2b.易错点对完全平方式理解不透10.在多项式4x2+1中,添加一个单项式,使其成为一个完全平方式,则添加的单项式是.(写出一个即可)11.计算1252-50×125+252的结果为()A.100 B.150C.10 000 D.22 50012.下列多项式中,能运用公式法因式分解的有.①-a2+b2;②4x2+4x+1;③-x2-y2;④-x2+8x-16;⑤x4-1;⑥m2+4m-4.13.若m=2n+1,则m2-4mn+4n2的值是.14.(教材P94习题T4变式)将图1中两个全等的直角三角形和一个等腰直角三角形(它的直角边等于前两个三角形的斜边)拼接成一个梯形(如图2),请根据拼接前后面积的关系写出一个关于a,b的多项式的因式分解:.15.把下列各式因式分解:(1)(a-b)2+4ab;(2)-2a3b2+8a2b2-8ab2;(3)4x2-(x2+1)2;(4)25-30(x-y)+9(x-y)2;(5)(x2-2xy+y2)+(-2x+2y)+1.16.(教材P105复习题T6变式)若a +b =-3,ab =1,求12a 3b +a 2b 2+12ab 3的值.17.下面是某同学对多项式(x 2-4x +2)(x 2-4x +6)+4进行因式分解的过程. 解:设x 2-4x =y ,原式=(y +2)(y +6)+4 (第一步)=y 2+8y +16 (第二步)=(y +4)2(第三步)=(x 2-4x +4)2.(第四步)(1)该同学第二步到第三步运用了因式分解的( )A .提取公因式B .平方差公式C .两数和的完全平方公式D .两数差的完全平方公式(2)该同学在第四步将y 用所设中的x 的代数式代换,得到因式分解的最后结果.这个结果是否分解到最后?否(填“是”或“否”).如果否,直接写出最后的结果 ;(3)请你模仿以上方法尝试对多项式(x 2-2x )(x 2-2x +2)+1进行因式分解.18.上数学课时,王老师在讲完乘法公式(a±b )2=a 2±2ab +b 2的多种运用后,要求同学们运用所学知识解答:求代数式x 2+4x +5的最小值?同学们经过交流、讨论,最后总结出如下解答方法:解:x 2+4x +5=x 2+4x +4+1=(x +2)2+1.∵(x +2)2≥0,∴当x =-2时,(x +2)2的值最小,最小值是0.∴(x +2)2+1≥1.∴当x =-2时,x 2+4x +5的最小值是1.请你根据上述方法,解答下列各题:(1)知识再现:当x = 时,代数式x 2-6x +12的最小值是 ;(2)知识运用:若y =-x 2+2x -3,当x =1时,y 有最大值(填“大”或“小”),这个值是 ;(3)知识拓展:若-x2+3x+y+5=0,求y+x的最小值.第3课时运用特殊方法因式分解知识点1利用十字相乘法因式分解1.阅读理解:由多项式乘法:(x+p)(x+q)=x2+(p+q)x+pq,将该式从右到左使用,即可得到“十字相乘法”进行因式分解的公式:x2+(p+q)x+pq=(x+p)(x+q),示例:分解因式:x2+5x+6=x2+(2+3)x+2×3=(x+2)(x+3).问题解决:分解因式:(1)x2+5x+4=;(2)x2-6x+8=;(3)x2+2x-3=;(4)x2-6x-27=.拓展训练:分解因式:(1)2x2+3x+1=;(2)3x2-5x+2=.2.分解因式:(1)x2-2x-8=;(2)2x2-10x-12=.知识点2利用分组分解法因式分解3.【阅读材料】分解因式:mx+nx+my+ny=(mx+nx)+(my+ny)=x(m+n)+y(m+n)=(m+n)(x+y).以上分解因式的方法称为分组分解法.对于四项多项式的分组,可以是“二、二分组(如此例)”,也可以是“三、一(或一、三)分组”.根据以上阅读材料解决问题:【跟着学】分解因式:a3-b3+a2b-ab2=(a3+)-(b3+)=a2( )-(a+b)=( )(a+b)=.【我也可以】分解因式:(1)4x2-2x-y2-y;(2)a2+b2-9+2ab.4.若x2+kx+20能在整数范围内因式分解,则k可取的整数值有()A.2个B.3个C.4个D.6个5.将下列多项式因式分解:(1)x3-7x2-30x;(2)(2019·齐齐哈尔)a2+1-2a+4(a-1);(3)(m2+2m)2-7(m2+2m)-8;(4)(a-b)2+3(a-b)(a+b)-10(a+b)2.6.已知在△ABC中,三边长a,b,c满足a2+2b2+c2-2ab-2bc=0,请判断△ABC 的形状并证明你的结论.【变式】变式点:变换条件若△ABC的三边长a,b,c满足a2+b2+c2+338=10a+24b+26c,则△ABC的形状是.参考答案:第1课时 运用平方差公式因式分解知识点1 直接运用平方差公式因式分解1.(2020·金华)下列多项式中,能运用平方差公式分解因式的是(C )A .a 2+b 2B .2a -b 2C .a 2-b 2D .-a 2-b 22.已知多项式x 2+a 能用平方差公式在有理数范围内因式分解,那么在下列四个数中a 可以等于(C )A .9B .4C .-1D .-23.把多项式(x -1)2-4因式分解的结果是(B )A .(x +3)(x +1)B .(x +1)(x -3)C .(x -1)(x +3)D .(x -5)(x +3)4.因式分解:(1)(2020·绍兴)1-x 2=(1-x )(1+x );(2)(2020·张家界)x 2-9=(x +3)(x -3);(3)(2019·黔东南)9x 2-y 2=(3x +y )(3x -y ).5.把下列各式因式分解:(1)9m 2-4n 2;解:原式=(3m +2n )(3m -2n ).(2)-16+a 2b 2;解:原式=(ab +4)(ab -4).(3)964m 2-n 2; 解:原式=(38m +n )(38m -n ).(4)(x -2y )2-4y 2.解:原式=(x -2y +2y )(x -2y -2y )=x(x -4y ).知识点2 先提公因式后运用平方差公式因式分解6.对a 2b -b 3因式分解,结果正确的是(A )A .b(a +b )(a -b )B .b(a -b )2C .b(a 2-b 2)D .b(a +b )27.因式分解: (1)(2020·济宁)a 3-4a =a(a +2)(a -2);(2)(2019·黄冈)3x 2-27y 2=3(x +3y )(x -3y );(3)(2020·黄石)m 3n -mn 3=mn(m +n )(m -n ).8.把下列各式因式分解:(1)16m 3-mn 2;解:原式=m(4m +n )(4m -n ).(2)a 2(a -b )-4(a -b ).解:原式=(a -b )(a +2)(a -2).知识点3 用平方差公式因式分解的应用9.如图,在边长为6.75 cm 的正方形纸片上,剪去一个边长为3.25 cm 的小正方形,则图中阴影部分的面积为(D )A .3.5 cm 2B .12.25 cm 2C .27 cm 2D .35 cm 210.若m 2-n 2=6,且m -n =2,则m +n =3.11.已知长方形的面积是9a 2-16(a>43),若一边长为3a +4,则另一边长为3a -4.易错点 因式分解不彻底导致出错12.(2019·毕节)分解因式:x 4-16=(x 2+4)(x +2)(x -2).13.如图,从边长为a 的大正方形中剪掉一个边长为b 的小正方形,将阴影部分沿虚线剪开,拼成右边的长方形.根据图形的变化过程写出的一个正确的等式是(D )A.(a-b)2=a2-2ab+b2B.a(a-b)=a2-abC.(a-b)2=a2-b2D.a2-b2=(a+b)(a-b)14.对于任意整数n,多项式(n+7)2-(n-3)2的值都能(A)A.被20整除B.被7整除C.被21整除D.被(n+4)整除15.因式分解:(1)(x-8)(x+2)+6x=(x+4)(x-4);(2)-9x2+(x-y)2=-(4x-y)(2x+y);(3)m2(a-2)+(2-a)=(a-2)(m+1)(m-1).16.若a+b=4,a-b=1,则(a+1)2-(b-1)2的值为12.17.把下列各式因式分解:(1)(2019·河池)(x-1)2+2(x-5);解:原式=x2-2x+1+2x-10=x2-9=(x+3)(x-3).(2)0.36x2-49y2;解:原式=(0.6x)2-(7y)2=(0.6x+7y)(0.6x-7y).(3)a3b-16ab;解:原式=ab(a2-16)=ab(a+4)(a-4).(4)3m4-48;解:原式=3(m4-16)=3(m2+4)(m2-4)=3(m2+4)(m+2)(m-2).(5)x n-x n+2;解:原式=x n(1-x2)=x n(1+x)(1-x).(6)(y+2x)2-(x+2y)2;解:原式=[(y+2x)+(x+2y)][(y+2x)-(x+2y)]=(y+2x+x+2y)(y+2x-x-2y)=(3x+3y)(x-y)=3(x+y)(x-y).(7)a2(a-b)+b2(b-a).解:原式=a2(a-b)-b2(a-b)=(a2-b2)(a-b)=(a-b)2(a+b).18.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“和谐数”.如4=22-02,12=42-22,20=62-42,因此,4,12,20都是“和谐数”.36和2 020这两个数是“和谐数”吗?为什么?解:36和2 020都是和谐数.理由如下:设a=(n+2)2-n2=(n+2-n)(n+2+n)=2(2n+2)=4(n+1),令36=4(n+1),解得n=8.∴36=102-82.同理:令2 020=4(n+1),解得n=504.∴2 020=5062-5042.第2课时运用完全平方公式因式分解知识点1完全平方式1.下列式子中是完全平方式的是(D)A.a2+ab+b2B.a2+2a+2C.a2-2b+b2D.a2+2a+12.(1)若x2-6x+k是完全平方式,则k=9;(2)若x2+kx+4是完全平方式,则k=±4;(3)若x2+2xy+m是完全平方式,则m=y2.知识点2直接运用完全平方公式因式分解3.下列各式中能用完全平方公式进行因式分解的是(D)A.x2+x+1 B.x2+2x-1C.x2-1 D.x2-2x+14.把下列多项式因式分解,结果正确的是(A)A.4a2+4a+1=(2a+1)2B.a2-2a+4=(a-2)2C.a2-2a-1=(a-1)2D.a2-b2=(a-b)25.因式分解:(1)(2019·温州)m2+4m+4=(m+2)2;(2)a2-2ab+b2=(a-b)2.6.把下列完全平方式因式分解:(1)y2+y+1 4;解:原式=(y+1 2)2.(2)4x2+y2-4xy;解:原式=(2x)2+y2-2·2x·y=(2x-y)2.(3)(m-n)2+6( m-n)+9.解:原式=(m-n-3)2.知识点3先提公因式后运用完全平方公式因式分解7.把代数式3x3-12x2+12x因式分解,结果正确的是(D)A.3x(x2-4x+4)B.3x(x-4)2C.3x(x+2)(x-2)D.3x(x-2)28.因式分解:(1)(2019·威海)2x2-2x+12=12(2x-1)2;(2)(2019·绵阳)m2n+2mn2+n3=n(m+n)2;(3)(2019·眉山)3a3-6a2+3a=3a(a-1)2.9.把下列各式因式分解:(1)-x 2+6xy -9y 2;解:原式=-(x 2-6xy +9y 2)=-(x -3y )2.(2)a 3+9ab 2-6a 2b.解:原式=a(a 2+9b 2-6ab )=a(a -3b )2.易错点 对完全平方式理解不透10.在多项式4x 2+1中,添加一个单项式,使其成为一个完全平方式,则添加的单项式是±4x 或4x 4.(写出一个即可)11.计算1252-50×125+252的结果为(C )A .100B .150C .10 000D .22 500 12.下列多项式中,能运用公式法因式分解的有①②④⑤.①-a 2+b 2;②4x 2+4x +1;③-x 2-y 2;④-x 2+8x -16;⑤x 4-1;⑥m 2+4m -4.13.若m =2n +1,则m 2-4mn +4n 2的值是1.14.(教材P94习题T4变式)将图1中两个全等的直角三角形和一个等腰直角三角形(它的直角边等于前两个三角形的斜边)拼接成一个梯形(如图2),请根据拼接前后面积的关系写出一个关于a ,b 的多项式的因式分解:ab +12(a 2+b 2)=12(a +b )2.15.把下列各式因式分解:(1)(a -b )2+4ab ;解:原式=a 2-2ab +b 2+4ab=a 2+2ab +b 2=(a +b )2.(2)-2a 3b 2+8a 2b 2-8ab 2;解:原式=-2ab 2(a 2-4a +4)=-2ab 2(a -2)2.(3)4x 2-(x 2+1)2;解:原式=(2x +x 2+1)(2x -x 2-1)=-(x +1)2(x -1)2.(4)25-30(x -y )+9(x -y )2;解:原式=52-2×5×3(x -y )+[3(x -y )]2=[5-3(x -y )]2=(5-3x +3y )2.(5)(x 2-2xy +y 2)+(-2x +2y )+1.解:原式=(x -y )2-2(x -y )+1=(x -y -1)2.16.(教材P105复习题T6变式)若a +b =-3,ab =1,求12a 3b +a 2b 2+12ab 3的值. 解:当a +b =-3,ab =1时,原式=12ab(a 2+2ab +b 2) =12ab(a +b )2 =12×1×(-3)2 =92.17.下面是某同学对多项式(x 2-4x +2)(x 2-4x +6)+4进行因式分解的过程. 解:设x 2-4x =y ,原式=(y +2)(y +6)+4 (第一步)=y 2+8y +16 (第二步)=(y +4)2(第三步)=(x 2-4x +4)2.(第四步)(1)该同学第二步到第三步运用了因式分解的(C )A .提取公因式B .平方差公式C .两数和的完全平方公式D .两数差的完全平方公式(2)该同学在第四步将y用所设中的x的代数式代换,得到因式分解的最后结果.这个结果是否分解到最后?否(填“是”或“否”).如果否,直接写出最后的结果(x-2)4;(3)请你模仿以上方法尝试对多项式(x2-2x)(x2-2x+2)+1进行因式分解.解:原式=(x2-2x)2+2(x2-2x)+1=(x2-2x+1)2=(x-1)4.18.上数学课时,王老师在讲完乘法公式(a±b)2=a2±2ab+b2的多种运用后,要求同学们运用所学知识解答:求代数式x2+4x+5的最小值?同学们经过交流、讨论,最后总结出如下解答方法:解:x2+4x+5=x2+4x+4+1=(x+2)2+1.∵(x+2)2≥0,∴当x=-2时,(x+2)2的值最小,最小值是0.∴(x+2)2+1≥1.∴当x=-2时,x2+4x+5的最小值是1.请你根据上述方法,解答下列各题:(1)知识再现:当x=3时,代数式x2-6x+12的最小值是3;(2)知识运用:若y=-x2+2x-3,当x=1时,y有最大值(填“大”或“小”),这个值是-2;(3)知识拓展:若-x2+3x+y+5=0,求y+x的最小值.解:∵-x2+3x+y+5=0,∴x+y=x2-2x-5=(x-1)2-6.∵(x-1)2≥0,∴(x-1)2-6≥-6.∴当x=1时,y+x的最小值为-6.第3课时运用特殊方法因式分解知识点1利用十字相乘法因式分解1.阅读理解:由多项式乘法:(x+p)(x+q)=x2+(p+q)x+pq,将该式从右到左使用,即可得到“十字相乘法”进行因式分解的公式:x2+(p+q)x+pq=(x+p)(x+q),示例:分解因式:x2+5x+6=x2+(2+3)x+2×3=(x+2)(x+3).问题解决:分解因式:(1)x2+5x+4=(x+1)(x+4);(2)x2-6x+8=(x-2)(x-4);(3)x2+2x-3=(x+3)(x-1);(4)x2-6x-27=(x-9)(x+3).拓展训练:分解因式:(1)2x2+3x+1=(2x+1)(x+1);(2)3x2-5x+2=(x-1)(3x-2).2.分解因式:(1)x2-2x-8=(x+2)(x-4);(2)2x2-10x-12=2(x+1)(x-6).知识点2利用分组分解法因式分解3.【阅读材料】分解因式:mx+nx+my+ny=(mx+nx)+(my+ny)=x(m+n)+y(m+n)=(m+n)(x+y).以上分解因式的方法称为分组分解法.对于四项多项式的分组,可以是“二、二分组(如此例)”,也可以是“三、一(或一、三)分组”.根据以上阅读材料解决问题:【跟着学】分解因式:a3-b3+a2b-ab2=(a3+a2b)-(b3+ab2)=a2(a+b)-b2(a+b)=(a2-b2)(a+b)=(a-b)(a+b)2.【我也可以】分解因式:(1)4x2-2x-y2-y;解:原式=(4x2-y2)-(2x+y)=(2x-y)(2x+y)-(2x+y)=(2x+y)(2x-y-1).(2)a2+b2-9+2ab.解:原式=a2+2ab+b2-9=(a+b)2-32=(a+b+3)(a+b-3).4.若x2+kx+20能在整数范围内因式分解,则k可取的整数值有(D)A.2个B.3个C.4个D.6个5.将下列多项式因式分解:(1)x3-7x2-30x;解:原式=x(x2-7x-30)=x(x+3)(x-10).(2)(2019·齐齐哈尔)a2+1-2a+4(a-1);解:原式=(a-1)2+4(a-1)=(a-1)(a-1+4)=(a-1)(a+3).(3)(m2+2m)2-7(m2+2m)-8;解:原式=(m2+2m-8)(m2+2m+1)=(m+4)(m-2)(m+1)2.(4)(a-b)2+3(a-b)(a+b)-10(a+b)2.解:原式=[(a-b)-2(a+b)][(a-b)+5(a+b)]=(-a-3b)(6a+4b)=-2(a+3b)(3a+2b).6.已知在△ABC中,三边长a,b,c满足a2+2b2+c2-2ab-2bc=0,请判断△ABC 的形状并证明你的结论.解:△ABC是等边三角形.证明如下:∵a2+2b2+c2-2ab-2bc=0,∴a2-2ab+b2+b2-2bc+c2=0,即(a-b)2+(b-c)2=0.∴(a-b)2=0,(b-c)2=0,得a=b且b=c,即a=b=c.∴△ABC是等边三角形.【变式】变式点:变换条件若△ABC的三边长a,b,c满足a2+b2+c2+338=10a+24b+26c,则△ABC的形状是直角三角形.。
北师大版初二数学下册4.3利用完全平方差公式进行因式分解
4.3公式法(2)1、掌握完全平方式的特点。
2、熟练应用完全平方公式进行因式分解。
3、综合运用提公因式法和完全平方公式进行因式分解。
学习重点:1、掌握完全平方式的特点,特别是乘积项的2倍,学生容易出错2、综合运用提公因式和完全平方公式对多项式进行因式分解。
教学难点1、准确理解和把握完全平方式的特点。
2、在提取公因式后,再用完全平方公式进行分解。
教学过程一、复习回顾你还很熟吧!完全平方公式2 2 2 2 2 21 (a b) =a 2ab b2 (a - b)二a - 2ab b有人云:首平方,尾平方,首尾两倍中间放二、探究新知现在我们把这个公式反过来2 2a2+ 2ab+ b2= (a+b) a2-2ab+b2=(a-b)很显然,我们可以运用以上这个公式来分解因式了,我们把它称为“完全平方式” 试试你的判断力:判别下列各式是不是完全平方式1 a2- b2()2 22 x - 2xy - y() (3 )x + 4x+4()4 a2-6a 95 a2 - 2ab ■ 4b2)完全平方式的特点:a22ab b2a2 - 2ab b21、必须是三项式2、有两个“项”的平方3、有这两“项”的2倍或-2倍首2-2首尾•尾2思者云:首平方,尾平方,首尾两倍中间放四、巩固练习1、小试牛刀:请运用完全平方式把下列各式因式分解:22 4a 4a 1五、自我检测:三、讲授新课例题:把式子因式分解 2 24x 12xy 9y 2 1 a -6a 9 2 2 3 9m -6mn n 4 4a 2 -12ab 9b 22、还敢挑战吗? 思考与讨论2 (1) ( m + n) — 6(m + n) + 9 ⑵ 4(a 2 a) 1 ⑶ 3ax 2 +6axy + 3ay 2(4) - a 2 - 4b 2 + 4ab1、下列各式中,能用完全平方式进行因式分解的是()A a2+b2+abB 、a2+2ab- b2C、a2-b2 D 、-2ab+a2+b22、如果x2+mx+9是一个完全平方式,那么m的值为()A 6B 、土6C 、3D 、土33、b2+_+12仁(______ )24、a2-kab 9b2是一个完全平方式,则K= __________5、把下列多项式因式分解(1)m2 m - (2)-3/-12 12x 46、先因式分解,然后计算求值9x2 +12xy +4y2,其中x = ', y = - - 3 2六、小结完全平方式具有:1、是一个二次三项式2、有两个“项”平方,而且有这两“项”的积的两倍或负两倍3、我们可以利用完全平方公式来进行因式分解。
4.3 公式法(第1课时)北师大版数学八年级下册教案
4.3公式法(第1课时运用平方差公式因式分解)教学目标1.理解平方差公式,弄清平方差公式的形式和特点;2.掌握运用平方差公式分解因式的方法,能正确运用平方差公式把多项式分解因式,培养学生多步骤分解因式的能力.教学重点难点重点:掌握运用平方差公式分解因式的方法.难点:能会综合运用提公因式法和平方差公式对多项式进行因式分解.教学过程复习巩固1.因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做因式分解.因式分解也可称为分解因式.2.平方差公式:(a+b)(a-b)=a2-b2.导入新课活动1(学生交流,教师点评)【问题1】填空:(1)(x+5)(x-5)=;(2)(3x+y)(3x-y)=;(3)(3m+2n)(3m–2n)=.它们的结果有什么共同特征?答案:(1)x2–25;(2)9x2–y2;(3)9m2–4n2学生:以上都是用平方差公式:(a+b)(a-b)=a2-b2计算得出来的.【问题2】根据问题1中等式填空:(1)x2-25=;(2)9x2−y2=;(3)9m2-4n2=.答案:(1)(x+5)(x-5)(2)(3x+y)(3x-y);(3)(3m+2n)(3m–2n).教师总结:公共特点:是两个数(式)的和与这两个数(式)的差的积,等于这两个数(式)的平方差,反过来,两个数(式)的平方差就可以化成这两个数(式)的和与这两个数(式)的差的积的形式,这种变形就是我们今天学习的内容,引出课题.探究新知探究点一用平方差公式因式分解(a+b)(a-b)=a2-b2反过来,a2-b2=(a+b)(a-b).两个数的平方差,等于这两个数的和与这两个数的差的积.【注意】公式中的a,b既可以是单项式,也可以是多项式活动2(学生交流,教师点评)【问题3】(师生互动)下列多项式中能用平方差公式分解因式的是()A.a2+(-b)2B.5m2-20mnC.-x2-y2D.-x2+9解析:A中a2+(-b)2符号相同,不能用平方差公式分解因式,错误;B中5m2-20mn两项都不是平方项,不能用平方差公式分解因式,错误;C中-x2-y2符号相同,不能用平方差公式分解因式,错误;D中-x2+9=-x2+32,两项符号相反,能用平方差公式分解因式,正确.故选D.【方法总结】能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.【互动】(小组交流)下列各式中,能运用平方差公式分解的多项式是.(填序号)①x2+y2;②1-x2;③-x2-y2;④x2-xy.答案:②.活动3小组讨论(师生互学)【例1】因式分解:(1)a4-116b4;(2)x3y2-xy4.【探索思路】(引发学生思考)观察各式的特点,运用平方差公式进行因式分解.解:(1)a4-116b 4=⎝⎛⎭⎫a2+14b2⎝⎛⎭⎫a2-14b2=⎝⎛⎭⎫a2+14b2⎝⎛⎭⎫a-12b⎝⎛⎭⎫a+12b.(2)x3y2-xy4=xy2(x2-y2)=xy2(x+y)(x-y).【总结】(学生总结,老师点评)因式分解前应先分析多项式的特点,一般先提公因式,再套用公式.分解因式必须进行到每一个多项式都不能再分解因式为止.【例2】分解因式:9(m+n)2-(m-n)2.解:原式=[3(m+n)]2-(m-n)2=[3(m+n)+(m-n)][3(m+n)-(m-n)]=(3m+3n+m-n)(3m+3n-m+n)=(4m+2n)(2m+4n)=4(2m+n)(m+2n).【总结】1.如果一个二项式,它能够化成两个整式的平方差的形式,那么就可以用平方差公式分解因式,将多项式分解成两个整式的和与差的积.2.当多项式各项含有公因式时,通常先提出这个公因式,然后再进一步因式分解.【注意】多项式的因式分解有没有分解到不能再分解为止.【即学即练】 (学生独学)因式分解:(1)(a +b )2-4a 2; (2) x 4-y 4.解:(1) (a +b )2-4a 2=(a +b -2a )(a +b +2a )=(b -a )(3a +b );(2)x 4-y 4=(x 2)2-(y 2)2=(x 2+y 2)(x 2-y 2)=(x 2+y 2)(x +y )(x -y ).活动4(合作探究,解决问题)探究点二 用平方差公式因式分解解决综合问题.(师生互动)【例2】 248-1可以被60和70之间某两个自然数整除,求这两个数.【探索思路】被自然数整除的含义是什么?248-1这个数比较大,怎样求出符合要求的两个数?解:248-1=(224+1)(224-1)=(224+1)(212+1)(212-1)=(224+1)(212+1)(26+1)(26-1).∵26=64,∴26-1=63,26+1=65,∴这两个数是65和63.【题后总结】(学生总结,老师点评)解决整除的基本思路就是将数化为整数乘积的形式,然后分析被哪些数整除.活动5 拓展延伸(学生对学)【例3】利用因式分解计算:(1)1012-992;(2)5722×14-4282×14. 【探索思路】观察式子特点,用提公因式法和平方差公式进行因式分解.解:(1)1012-992=(101+99)(101-99)=400.(2)5722×14-4282×14=(5722-4282)×14=(572+428)(572-428)×14=1000×144×14=36 000. 【题后总结】(学生总结,老师点评)对于一些比较复杂的计算,如果通过变形转化为平方差公式的形式,使运算简便.【即学即练】 (学生独学)求证:当n 为整数时,多项式(2n +1)2-(2n -1)2一定能被8整除.证明:原式=(2n +1+2n -1)(2n +1-2n +1)=4n ·2=8n ,∵n 为整数,∴8n 被8整除,即多项式(2n +1)2-(2n -1)2一定能被8整除.课堂练习1下列多项式中能用平方差公式因式分解的是()A.a 2+(−b )2B.5m 2−20mnC.x 2−y 2D.x 2+92.因式分解(2x +3)2-x 2的结果是( )A.3(x 2+4x +3)B.3(x 2+2x +3)C.(3x +3)(x +3)D.3(x +1)(x +3)3若a +b =3,a -b =7,则b 2-a 2的值为( )A.-21B.21C.-10D.104.用平方差公式进行简便计算:(1)38²-37²; (2)213²-87²;(3)229²-171²; (4)91×89.5.已知x 2-y 2=-1,x +y =12,求x -y 的值. 6.已知4m +n =40,2m -3n =5.求(m +2n )2-(3m -n )2的值.参考答案:1.C 解析:A.a 2+(−b )2中两项符号相同,不能用平方差公式因式分解,故A 选项错误;B.5m 2−20mn 两项不都是平方项,不能用平方差公式因式分解,故B 选项错误;C.x 2−y 2中两项符号相反,能用平方差公式因式分解,故C 选项正确;D.x 2+9中,两项符号相同,不能用平方差公式因式分解,故D 选项错误.选C.2.D 解析:(2x +3)2-x 2=(2x +3+x )(2x +3-x )=(3x +3)(x +3)=3(x +1)(x +3)3.A 解析:b 2-a 2=(b +a )(b -a )= 3×(−7)= −21.4.解:(1)38²−37²=(38+37)(38−37)=75.(2)213²-87²=(213+87)(213-87)=300×126=37800.(3)229²-171²=(229+171)(229-171)=400×58=23200.(4)91×89=(90+1)(90−1)=90²-1=8100-1=8099.5.解:∵x 2-y 2=(x +y )(x -y )=-1,x +y =12,∴x -y =-2. 6.解:原式=(m +2n +3m −n )(m +2n −3m +n )=(4m +n )(3n −2m )=− (4m +n )(2m −3n ).当4m +n =40,2m −3n =5时,原式=−40×5=−200.课堂小结(学生总结,老师点评,当堂达标)一、运用平方差公式因式分解:a2-b2=(a+b)(a-b).二、平方差公式的特点:能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.布置作业教材第100页习题4.4板书设计3公式法第1课时运用平方差公式因式分解用平方差公式因式分解:a2-b2=(a+b)(a-b).【问题1】例1因式分解:(1)a4-116b4;(2)x3y2-xy4.【问题2】例2248-1可以被60和70之间某两个自然数整除,求这两个数.。
八年级数学北师大版初二下册--第四单元 4.3《公式法》课件
(1)解:16 25x2
42 (5x)2
=(4+5x)(4-5x)
第一步,将两 项写成平方的 形式;找出a、b 第二步,利用
a2-b2=(a-b)(a+b) 分解因式
学会了吗?
(2)4a2 1 b2 9
(2a)2 (1 b)2
第一步, 将两项写 成平方的 形式;找 出a、b
3
第二步,
判断下列各式能否用平方 差公式分解因式:
(1) a2+4b2
(
)
(2) -x2-4y2
(
)
(3) x-4y2
(
)
(4) -4+0.09m2 ( )
答:一个多项式如果是由两项组成,两部 分是两个式子(或数)的平方,并且这两 项的符号为异号.
运用a2-b2=(a+b)(a-b)公式时,如何区分 a、b?
反思总结
1、今天主要学习了利用平 方差公式进行因式分解
2、当多项式的各项有公因 式时,通常先提出这个公因式, 然后进行因式分解
在多项式x²+y², x²-y²,x²+y², -x²-y²中,能利用平
方差公式分解的有( B )
A 1个 B 2个 C 3个 D 4个
判断正误
(1)x²+y²=(x+y)(x+y) ( ) (2)x²-y²=(x+y)(x-y) ( ) (3)-x²+y²=(-x+y)(-x-y)( )
(4)-x²-y²=-(x+y)(x-y)( )
16-x⁴分解因式( C )
A.(2-x)⁴ B.(4+x²)(4-x²) C.(4+x²)(2+x)(2-x) D.(2+x)³(2-x)
北师版八年级数学下册教学课件(BS) 第四章 因式分解 第1课时 平方差公式
,
y
3. 2
方法总结:在与x2-y2,x±y有关的求代数式或未知数的值的问 题中,通常需先因式分解,然后整体代入或联立方程组求值.
例4 计算下列各题: (1)1012-992; (2)53.52×4-46.52×4.
解:(1)原式=(101+99)(101-99)=400; (2)原式=4(53.52-46.52) =4(53.5+46.5)(53.5-46.5) =4×100×7=2800.
(2)原式=(a2-4b2)-(a+2b) =(a+2b)(a-2b)-(a+2b) =(a+2b)(a-2b-1).
例3 已知x2-y2=-2,x+y=1,求x-y,x,y的值.
解:∵x2-y2=(x+y)(x-y)=-2,
x+y=1①, ∴x-y=-2②.
联立①②组成二元一次方程组,
解得
x
1 2
(x a p)2 (x b q)2
(x p) (x q) (x p) (x q)
(2x p q)( p q).
方法总结:公式中的a、b无论表示数、单项式、还是多项式,只
要被分解的多项式能转化成平方差的形式,就能用平方差公式因 式分解.
针对训练 分解因式:
(1)(a+b)2-4a2; (2)9(m+n)2-(m-n)2.
8. (1)992-1能否被100整除吗?
(2)n为整数,(2n+1)2-25能否被4整除? 解:(1)∵ 992-1=(99+1)(99-1)=100×98,
∴992-1能否被100整除. (2)原式=(2n+1+5)(2n+1-5)
=(2n+6)(2n-4) =2(n+3) ×2(n-2)=4(n+3)(n-2). ∵n为整数 ∴(2n+1)2-25能被4整除.
4-3 公式法课件2022-2023学年北师大版数学八年级下册
2
2
2
2
跟踪练习1
把下列各式因式分解.
1 2 2 − 2
解: 原式 =(ab)2-m2
=(ab+m)(ab-m)
(2)-16x2+81y2
原式 =81y2-16x2
=(9y)2-(4x)2
=(9y+4x)(9y-4x)
例题讲解
例2.把下列各式因式分解.
1 9 m n m n
2.会用平方差公式进行因式分解
3.使学生了解提公因式法是分解因式首先考虑的方法,再
考虑用平方差公式分解
教学重难点
1.重点:会用平方差公式进行因式分解
2.难点:发展学生的逆向思维,渗透数学的
“互逆”、换元整体的思想
学习目标
1.经历通过整式乘法公式的逆向变形得出公式
法因式分解的过程,发展逆向思维和推理能力.
2.会用平方差公式进行因式分解.
平方差公式
公式法
完全平方公式
问题引入
模块一
1.计算下列各式
观察这些式子,等式两边
分别有什么共同特征?
9x 2 y 2
9m2 4n2
2
2
a
b
a
b
=
a
b
两数或式的和与差的乘积
结果都是二项式,其中每一项都
是某数或式的平方,且两项符号
相反(一正一负)
模块二
例题讲解
例1.把下列各式因式分解.
1 2
2 9a b
4
1 25 16x
2
解:1 25 16x =52 - (4x)2 =(5 + 4x) (5 - 4x)
北师大版数学八年级下册《利用平方差公式进行因式分解》教学设计
北师大版数学八年级下册《利用平方差公式进行因式分解》教学设计一. 教材分析北师大版数学八年级下册《利用平方差公式进行因式分解》这一节,是在学生已经掌握了有理数的乘法、完全平方公式的基础上进行学习的。
平方差公式的引入,既是对前面所学知识的巩固,又是进一步学习因式分解的重要工具。
本节课的内容主要包括平方差公式的推导、理解和应用。
通过本节课的学习,学生能够掌握平方差公式的结构特征,学会运用平方差公式进行因式分解,提高解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了有理数的乘法和完全平方公式,对因式分解有一定的了解。
但学生在运用平方差公式进行因式分解时,可能会对公式的结构特征和运用方法产生困惑。
因此,在教学过程中,需要关注学生的认知基础,引导学生理解平方差公式的本质,并通过大量的练习,让学生熟练运用平方差公式进行因式分解。
三. 教学目标1.理解平方差公式的结构特征和推导过程。
2.学会运用平方差公式进行因式分解。
3.提高解决问题的能力。
四. 教学重难点1.重难点:平方差公式的推导和运用。
2.重点:引导学生理解平方差公式的结构特征,学会运用平方差公式进行因式分解。
3.难点:对平方差公式的灵活运用,解决实际问题。
五. 教学方法1.讲授法:讲解平方差公式的推导过程,解释公式的作用。
2.引导法:引导学生通过观察、思考,发现平方差公式的结构特征。
3.练习法:布置适量的练习题,让学生在实践中掌握平方差公式的运用。
六. 教学准备1.准备相关的教学PPT,展示平方差公式的推导过程和应用实例。
2.准备一些练习题,用于课堂练习和巩固知识。
七. 教学过程1.导入(5分钟)通过一个具体的数学问题,引入平方差公式的概念。
例如:已知一个正方形的面积是36,求这个正方形的边长。
让学生尝试解决这个问题,从而引出平方差公式。
2.呈现(10分钟)讲解平方差公式的推导过程,解释公式的作用。
通过PPT展示平方差公式的推导过程,让学生直观地理解平方差公式的来源。
2023八年级数学下册第四章因式分解3公式法第1课时用平方差公式进行因式分解教案(新版)北师大版
- 通过例题,展示平方差公式的应用过程,分析解题思路。
- 对不同类型的题目进行分类解析,让学生掌握各类题型的解题方法。
8. 练习题设计与解析:
- 设计不同难度的练习题,涵盖平方差公式的各种应用场景。
- 对练习题进行详细解析,帮助学生巩固知识点,提高解题能力。
9. 小组讨论与交流:
3. 成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
五、总结回顾(用时5分钟)
今天的学习,我们了解了平方差公式的概念、推导、应用以及在实际问题中的运用。通过实践活动和小组讨论,我们加深了对平方差公式的理解。我希望大家能够掌握这些知识点,并在解决数学问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
重点题型整理
题型一:应用平方差公式进行因式分解
例1:对多项式x^2 - 4进行因式分解。
解答:观察多项式x^2 - 4,符合平方差公式的结构特点,即a^2 - b^2的形式。这里a是x,b是2。因此,应用平方差公式,得到:
x^2 - 4 = (x + 2)(x - 2)。
题型二:解决实际问题中的平方差问题
x^4 - 16 = (x^2 + 4)(x^2 - 4)。
进一步,注意到x^2 - 4可以继续分解,得到:
x^4 - 16 = (x^2 + 4)(x + 2)(x - 2)。
题型五:综合应用平方差公式
例5:对多项式4x^2 - 9y^2进行因式分解。
解答:观察多项式4x^2 - 9y^2,可以看出它是两个平方项的差,即a^2 - b^2的形式。这里a是2x,b是3y。因此,应用平方差公式,得到:
北师大版八年级数学下册4.3 第2课时 完全平方公式
a2 2ab b2 a b2
• 3:完全平方公式特点: 含有三项;两平方项的符号同号;首尾2倍中间项
课外作业
1.练闯考P57(预习导学、课内精 炼1-10题)
2.课本P102-103(随堂练习第1、2 题,习题 4.5第1、2题,做到作业 本上)
(2)a2+2ab-b2 (a b)2
错。此多项式不是完全平方式
典例精析
例3 如果x2-6x+N是一个完全平方式,那么N是( B )
A . 11
B. 9 C. -11 D. -9
解析:根据完全平方式的特征,中间项-6x=2x×(-3), 故可知N=(-3)2=9.
变式训练 如果x2-mx+16是一个完全平方式,那么m的值 为___±__8___.
练习
把下列各式分解因式
① ax4 ax2
解:原式=ax2(x2-1) =ax2(x+1)(x-1)
② x4-16
解:原式=(x2+4)(x2-4)
=(x2 +4)(x+2)(x-2)
(有公因式,先提公因式) (因式分解要彻底。)
2.除了平方差公式外,还学过了哪些公式?
(a b)2 a2 2ab b2 (a b)2 a2 2ab b2
解析:∵16=(±4)2,故-m=2×(±4),m=±8.
方法总结:本题要熟练掌握完全平方公式的结构特 征, 根据参数所在位置,结合公式,找出参数与已 知项之间的数量关系,从而求出参数的值.计算过程 中,要注意积的2倍的符号,避免漏解.
课堂小结
• 1:整式乘法的完全平方公式是:
a b2 a2 2ab b2
北师大版初二数学下册4.3利用平方差公式进行因式分解
第1课时平方差公式变式训练:见《学练优》本课时练习“课堂达标训练”第1题1【类型二】利用平方差公式分解因式一、情境导入1•同学们,你能很快知道992—1是100 的倍数吗?你是怎么想出来的?请与大家交流.2.你能将a2—b2分解因式吗?你是如何思考的?二、合作探究探究点一:用平方差公式因式分解【类型一】判定能否利用平方差公式分解因式解因式的是()A. a2+ (—b)2B. 5m2—20mnC.—x2—y2D. —x2+ 9解析:A中a2+ (—b)2符号相同,不能用平方差公式分解因式,错误;B中5m2—20mn两项都不是平方项,不能用平方差公分解因式:1(1)a4-荷4;(2)x3y2-xy4.1 1解析:(1)a4—16b4可以写成(a2)2—的形式,这样可以用平方差公式进行分解因1式,而其中有一个因式a2—:b2仍可以继续用平方差公式分解因式;(2)x3y2—xy4有公因式xy2,应先提公因式再进一步分解因式.1 1解:(1)原式=(a2+ ~b2)(a2—~b2) = (a2 ,1 21 1+ 4b )(a—2b)(a + ?b);(2)原式=xy2(x2—y2)= xy2(x+ y)(x—y).方法总结:分解因式前应先分析多项式式分解因式,错误;C中一x2—y2符号相同,不能用平方差公式分解因式,错误;D中一x2+9=—x2+ 32,两项符号相反,能用平方的特点,一般先提公因式,再套用公式•分解因式必须进行到每一个多项式都不能再分解因式为止.,正确.故选 D.1•理解平方差公式,弄清平方差公式的形式和特点;(重点)2•掌握运用平方差公式分解因式的方法,能正确运用平方差公式把多项式分解因式.(难点)方法总结:能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.变式训练:见《学练优》本课时练习“课 堂达标训练”第4题【类型三】 利用因式分解整体代换求值1已知 X 1 2 3-y 2=- 1, X + y = 2,求 X—y 的值.解析:已知第一个等式左边利用平方差 公式化简,将x + y 的值代入计算即可求出 x —y 的值.解:•/ X 2— y 4= (x + y)(x — y) = — 1, x +y方法总结:有时给出的条件不是字母的具体值,就需要先进行化简,求出字母的值, 但有时很难或者根本就求不出字母的值, 根据题目特点,将一个代数式的值整体代入可 使运算简便.变式训练:见《学练优》本课时练习“课(1) 10 1 2 — 992; 2 1 2 1(2) 572冬 4— 4282X 4.解析:(1)根据平方差公式进行计算即可;(2)先提取公因式,再根据平方差公式进 行计算即可.解:(1)1012— 992= (101 + 99)(101 — 99) =400;2 1 1(2)5722x 4 — 4282X 4= (5722— 4282)x 41 =(572 + 428)(572 — 428) X 丄=411000 X 144 X 二=36000.堂达标训练”第 9题探究点二:用平方差公式因式分解的应 用【类型一】 利用因式分解解决整除问题D 25 — 1可以被60和70之间某两个自然数整除,求这两个数.解析:先利用平方差公式分解因式, 再 代数式化为整式乘积的形式,然后分析被哪 些数或式子整除.变式训练:见《学练优》本课时练习“课 后巩固提升”第3题【类型二】 利用平方差公式进行简便运算1)(2 12 + 1)(212 — 1) = (224 + 1)(2 12 + 1)(26 7 8 910+1)(26— 1) .I 26= 64,二 26 — 1 = 63, 26+ 1=65 ,•••这两个数是 65和63.为99cm , 98cm ,…,1cm ,那么在这个图 形中,所有画阴影部分的面积和是多少?方法总结:解决整除的基本思路就是将5通过变形转化为平方差公式的形式, 则可以 使运算简便.变式训练:见《学练优》本课时练习“课 后巩固提升”第7题【类型三】 因式分解的实际应用找出范围内的解即可. 起,从外向里相间画上阴影, 最里面一个小正方形没有画阴影,最外面一层画阴影,解: 248 — 1 = (224 + 1)(224 — 1) = (224 +最外面的正方形的边长为100cm ,向里依次如图,100个正方形由小到大套在解析:相邻两正方形面积的差表示一块阴影部分的面积,而正方形的面积是边长的平方,所以能用平方差公式进行因式分解.解:每一块阴影的面积可以表示成相邻正方形的面积的差,而正方形的面积是其边长的平方,这样就可以逆用平方差公式计算了.则S阴影=(1002—992)+ (982—972)+..・ + (32—22) + 1 = 100 + 99 + 98 + 97+-+ 2 + 1=5050(cm2).答:所有阴影部分的面积和是5050cm2.方法总结:首先应找出图形中哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.变式训练:见《学练优》本课时练习“课后巩固提升”第9题三、板书设计1.平方差公式:a2—b2= (a+ b)(a—b);2•平方差公式的特点:能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.运用平方差公式因式分解,首先应注意每个公式的特征.分析多项式的次数和项数,然后再确定公式.如果多项式是二项式,通常考虑应用平方差公式;如果多项式中有公因式可提,应先提取公因式,而且还要“提” 得彻底,最后应注意两点:一是每个因式要化简,二是分解因式时,每个因式都要分解方法总结:一些比较复杂的计算,如果彻底.。
北师版八年级数学下册优秀作业课件(BS) 第四章 因式分解 公式法第1课时 利用平方差公式因式分解
(3)(2a-3b)2-16b2. 解:原式=(2a-3b+4b)(2a-3b-4b)=(2a+b)(2a-7b)
5.(3分)(济宁中考)多项式4a-a3分解因式的结果是( B )
A.a(4-a2)
已知a,b,c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.
解:∵a2c2-b2c2=a4-b4 (A)
∴c2(a2-b2)=(a2+b2)(a2-b2) (B)
∴c2=a2+b2 (C)
∴△ABC是直角三角形
问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:_C___; (2)错误的原因为:________________________;
10.已知x+y=2,则x2-y2+4y的值为( C ) A.2 B.3 C.4 D.6
二、填空题(每小题6分,共12分) 11.(苏州中考)已知a+b=4,a-b=1,则(a+1)2-(b-1)2=__1_2_.
12.如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部 分可剪拼成一个长方形,若拼成的矩形一边长为4,则另一边长为__2_m_+.4
B.a(2-a)(2+a)
C.a(a-2)(a+2) D.a(2-a)2
6.(4分)(株洲中考)因式分解:a2(a-b)-4(a-b)=__(a_-__b_)_(_a_+__2_)(_a_-__2_)____.
7.(12分)因式分解: (1)18a3-2a; 解:原式=2a(3a+1)(3a-1) (2)m2-n2+2m-2n; 解:原式=(m-n)(m+n+2) (3)(x+2y)2-9x2. 解:原式=4(y-x)(2x+y)
北师大版初中八年级下册数学课件 《公式法》因式分解PPT(第1课时)
强化训练
2. 证明:任意两奇数的平方差能被8整除. 证明:设任何奇数为2m+1,2n+1(m,n是整数) 则(2m+1) ²-(2n+1) ² =(2m+1+2n+1)(2m-2n) =4(m-n)(m+n+1) 可见只要证明(m-n)(m+n-1)是偶数即可, 若m,n都是奇数或偶数,则m-n为偶数, 4(m-n)(m+n+1)能被8整除, 若m,n都为一奇一偶,则m+n+1为偶数, 4(m-n)(m+n+1)也能被8整除, 所以,任意的两个奇数的平方差能被8整除.
解:∵b²+2ab=c²+2ac, ∴b²-c²+2ab-2ac=0, ∴(b+c)(b-c)+2a(b-c)=0, (b-c)(b+c+2a)=0. ∵a,b,c为三角形三边,所以b+c+2a>0, ∴b-c=0,即b=c.所以△ABC为等腰三角形.
课堂小结
1.平方差公式运用的条件: (1)二项式 (2)两项的符号相反 (3)每项都能化成平方的形式 2.公式中的a和b可以是单项式,也可以是多项式 3.各项都有公因式,一般先提公因式,再进一步分解,直至不能再分解为止.
强化训练
1.已知a、b、c是∆ABC的三边,且满足a²c²-b²c²=a4-b4,是判断∆ABC的形状. 解:a²c²-b²c²=a4-b4, a²c²-b²c²-a4+b4=0, c²(a²-b²)-(a²+b²)(a²-b²)=0 (a²-b²)(c²-a²-b²)=0 (a+b) (a-b)(c²-a²-b²)=0 其中a+b≠0, ∴a-b=0或c²-a²-b²=0 ∴a²+b²=c²或a=b. ∆ABC是直角三角形,或∆ABC是等腰直角三角形.
北师大版数学八年级下册《利用平方差公式进行因式分解》说课稿7
北师大版数学八年级下册《利用平方差公式进行因式分解》说课稿7一. 教材分析北师大版数学八年级下册《利用平方差公式进行因式分解》这一节,是在学生已经掌握了有理数的乘方、平方差公式、多项式的乘法等知识的基础上进行讲解的。
通过这一节课的学习,让学生能够理解并掌握平方差公式的结构特征,能够运用平方差公式进行因式分解,进一步培养学生的数学思维能力和解决问题的能力。
二. 学情分析学生在学习这一节内容时,已经有了一定的数学基础,对于有理数的乘方、平方差公式、多项式的乘法等知识有一定的了解。
但是,对于平方差公式的灵活运用和因式分解的方法还需要进一步的引导和培养。
因此,在教学过程中,要注重学生对平方差公式的理解,以及让学生通过实践操作,掌握因式分解的方法。
三. 说教学目标1.知识与技能目标:让学生理解平方差公式的结构特征,能够运用平方差公式进行因式分解。
2.过程与方法目标:通过学生的自主探究和合作交流,培养学生的数学思维能力和解决问题的能力。
3.情感态度与价值观目标:让学生在解决数学问题的过程中,体验到数学的乐趣,增强对数学学习的信心。
四. 说教学重难点1.教学重点:平方差公式的结构特征,以及运用平方差公式进行因式分解的方法。
2.教学难点:平方差公式的灵活运用,以及因式分解的方法。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、合作交流法等,引导学生自主探究,培养学生的数学思维能力和解决问题的能力。
2.教学手段:利用多媒体课件,进行直观演示,帮助学生理解平方差公式的结构特征,以及因式分解的方法。
六. 说教学过程1.导入:通过一个具体的例子,让学生尝试进行因式分解,引出平方差公式。
2.自主探究:让学生通过小组合作,探讨平方差公式的结构特征,以及如何运用平方差公式进行因式分解。
3.讲解与演示:教师对学生的探究结果进行讲解和演示,让学生进一步理解平方差公式,以及因式分解的方法。
4.实践操作:让学生进行实际的练习,运用平方差公式进行因式分解。
八下4.3公式法(1)
学习目标 问题引入 例题讲解 巩固训练 课堂小结
例1.把下列各式因式分解.
1 25 16x2
解: 52 4x2
5 4x5 4x
29a2 1 b2
4
3a
2
1 2
b
2
3a
1 2
b
3a
1 2
b
例题讲解
25 16x2 52 4x2 5 4x5 4x a2 b2 a ba b
问题引入
对下列各式进行因式分解
x2 25 __ _x__5___x__5____________; 9x2 y2 __3_x__y___3_x___y_________; 9m2 4n2 _3_m___2_n__3_m___2_n_______.
问题引入
平方差公式: aa2 bb2=aabb=a2bb 2
变式练习
变式练习2.把下列各式因式分解.
13ax2 3ay4
解:
2 16x4 81y4
注意事项
使用平方差公式因式分解时要注意:
02
例题讲解
例3
解:由题意得,剩余部分的面积为:
a2 4b2
a2 2b2
a 3.6,b 0.8, 代入得 原式=10.4cm2
a 2ba 2b 答:剩余部分的面积是10.4cm2.
使用公式分解因式 去括号整理
4m 2n2m 4n
42mnm2n
分解彻底
例题讲解
例2.把下列各式因式分解.
22x3 8x
2xx2 4
2xx 2x 2
当多项式的各项含 有公因式时,先提 出公因式
变式练习
变式练习2.把下列各式因式分解.
13ax2 3ay4
解:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.3 公式法(一)利用平方差公式进行因式分解•课题§ 4.3.公式法(一)•教学目标(一)教学知识点1. 使学生了解运用公式法分解因式的意义;2. 使学生掌握用平方差公式分解因式.3. 使学生了解,提公因式法是分解因式的首先考虑的方法,再考虑用平方差公式分解因式•(二)能力训练要求1. 通过对平方差公式特点的辨析,培养学生的观察能力2. 训练学生对平方差公式的运用能力.(三)情感与价值观要求在引导学生逆用乘法公式的过程中,培养学生逆向思维的意识,同时让学生了解换元的思想方法.•教学重点让学生掌握运用平方差公式分解因式.•教学难点将某些单项式化为平方形式,再用平方差公式分解因式;培养学生多步骤分解因式的能力.•教学方法引导自学法•教具准备投影片两张第一张(记作§ 4.3.1 A)第二张(记作§ 4.3.1 B )•教学过程,引入新课1 .创设问题情境[师]在前两节课中我们学习了因式分解的定义,即把一个多项式分解成几个整式的积的形式,还学习了提公因式法分解因式,即在一个多项式中,若各项都含有相同的因式,即公因式,就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式如果一个多项式的各项,不具备相同的因式,是否就不能分解因式了呢?当然不是,只要我们记住因式分解是多项式乘法的相反过程,就能利用这种关系找到新的因式分解的方法,本节课我们就来学习另外的一种因式分解的方法一一公式法n.新课讲解[师]1.请看乘法公式2 2(a+b)(a —b)=a - b (1)左边是整式乘法,右边是一个多项式,把这个等式反过来就是2 2a —b = (a+b)(a—b)(2)左边是一个多项式,右边是整式的乘积.大家判断一下,第二个式子从左边到右边是否是因式分解?[生]符合因式分解的定义,因此是因式分解[师]对,是利用平方差公式进行的因式分解 •第(1)个等式可以看作是整式乘法中的 平方差公式,第(2)个等式可以看作是因式分解中的平方差公式2. 公式讲解[师]请大家观察式子 a 2— b 2,找出它的特点.[生]是一个二项式,每项都可以化成整式的平方,整体来看是两个整式的平方差=(3 m +2 n ) (3 m — 2n ) 3. 例题讲解[例1]把下列各式分解因式:2(1) 25—16x ; (2) 9a 2— b 2.422解:(1) 25 — 16x =5 —( 4x ) =(5+4x ) (5—4x );21 2 2(2) 9a —b = ( 3a )—(4=(3a + 丄 b ) ( 3a —丄 b ).2 2[例2]把下列各式分解因式2 2(1) 9 (nrn ) —( m- n );3(2) 2x — 8x .解:(1) 9 (m +n ) 2—( m- n ) 2 2 2=[3 (m + n )] —( m- n )=[3 (m +n ) + (m- n )] [ 3 ( m +n ) — ( m- n )] =(3 m +3 n + m- n ) ( 3 m +3n —m +n ) =(4 m +2 n ) (2 m +4 n ) =4 (2 m + n ) (m +2 n )32(2) 2x — 8x =2x (x — 4) =2x (x +2) (x —2)说明:例1是把一个多项式的两项都化成两个单项式的平方,利用平方差公式分解因 式;例2的(1)是把一个二项式化成两个多项式的平方差,然后用平方差公式分解因式, 例2的(2)是先提公因式,然后再用平方差公式分解因式,由此可知,当一个题中既要用 提公因式法,又要用公式法分解因式时,首先要考虑提公因式法,再考虑公式法补充例题投影片(§ 4.3.1 A ) 判断下列分解因式是否正确•(1) (a +b ) 2— c 2=a 2+2ab +b 2— c 2.42222[师]如果一个二项式, 分解成两个整式的和与差的积2 2 2女口 x — 16= (x ) — 4 = 9 m — 4n = ( 3 m )- 它能够化成两个整式的平方差, (x+4) (2n )(x — 4).2就可以用平方差公式分解因式, -b ) 22(2) a —仁(a)—仁(a+1) • (a —1).[生]解:(1)不正确•本题错在对分解因式的概念不清,左边是多项式的形式,右边应是整式乘积的形式,但(1) 中还是多项式的形式,因此,最终结果是未对所给多项式进行因式分解(2) 不正确.错误原因是因式分解不到底,因为 a 2— 1还能继续分解成(a +1) (a — 1)应为 a 4— 1= ( a 2+1) (a 2— 1) = (a 2+1) (a +1) (a — 1).川.课堂练习 (一)随堂练习 1. 判断正误2 2解:(1) X +y = (x +y ) (x — y );2 2(2) x — y = (x +y ) (x — y );2 2(3) — x +y = ( — x +y ) ( — x — y )22(4) — x — y =—( x +y ) (x — y ) 2. 把下列各式分解因式 解:(1) a 2b 2— m i =(ab ) 2— m 2 =(ab + m ) (ab — m ; (2 ) (m — a ) 2—( n +b )=[(m — a ) + (n +b )] [(m- a ) — ( n +b )] =(m — a +n +b ) (m — a — n — b );2 2(3) x —( a +b — c )=[x + ( a +b — c ) [x —( a +b — c ) =(x +a +b — c ) (x — a — b +c );44(4) — 16x +81y =(9y 2) 2—( 4x 2) 22 2 2 2=(9y +4x ) ( 9y — 4x )29=(9y +4x ) ( 3y +2x ) (3y — 2 x ) 3. 解:S 剩余=a — 4b1 当 a =3.6, b =0.8 时,2 2 2 2 z 2XS 剩余=3.6 — 4 X 0.8 =3.6 — 1.6 =5.2 X 2=10.4 (cm )答:剩余部分的面积为 210.4 cm .(二)补充练习投影片(§ 4.3.1 B ) 把下列各式分解因式(1) 36 (x +y ) 2— 49 (x — y )2(2) (x —1) +b (1—x );2 2(3) (x +x +1) — 1. 解:(1) 36 (x +y )— 49 (x — y )2 2=[6 (x +y 门—[7 (x —y 厂=[6 (x +y ) +7 (x — y )] :6 (x +y ) — 7 (x — y )] =(6x +6y +7x — 7y ) (6x +6y — 7x +7y ) =(13x — y ) (13y — x );(2) (x — 1) +b 2 (1— x ) =(x — 1)— b 2 (x — 1) =(x — 1) (1 — b 2)(X) (V) (X) (X)=(x —1) (1 + b) (1—b)2 2(3)(x+x+1) —12 2=(x +X+1+1 ) (x +x+1 —1)=(x2+x+2) (x2+x)2=x (x+1) (x +x+2)IV.课时小结我们已学习过的因式分解方法有提公因式法和运用平方差公式法•如果多项式各项含有公因式,则第一步是提公因式,然后看是否符合平方差公式的结构特点,若符合则继续进行•第一步分解因式以后,所含的多项式还可以继续分解,则需要进一步分解因式,直到每个多项式都不能分解为止•V.课后作业习题4.421. 解:(1) a —81= (a+9) ( a—9);2(2)36 —x = (6+x) (6—x);2 2(3) 1 —16b=1—( 4b) = (1+4b) (1 —4b)2 2(4)m —9n = (m+3 n) (m- 3n);2 9(5)0.25 q —121p=(0.5 q+11p) (0.5 q—11p);2 2(6)169x —4y = (13x+2y) (13x—2y);/ 、2 2 .22(7)9a p —b q=(3ap+bq) ( 3ap—bq);49 2 22 7 7(8) a —x y = ( a+xy) ( a —xy); 4 2 22 22. 解: (1) (mm) —n= (m+n+n) (m+n—n) = m (m+2 n);2 2(2) 49 (a—b) —16 (a+b)2=[7 (a—b)] —[ 4 (a+b)]=:7 (a—b) +4 (a+b)] :7 ( a—b)—4 (a+b)]=(7a—7b+4a+4b) (7a—7b—4a—4b)=(11a—3b) (3a—11b);2 2(3)(2x+y) —( x+2y)=(2x+y) + (x+2y)] [(2x+y) — ( x+2y)]=(3x+3y) (x—y)=3 (x+y) (x—y);(4)(x +y ) —x y/22 、/22 、=(x +y +xy) (x +y —xy);2 4 2 4(5)3ax —3ay =3a (x —y )2 2=3a (x+y) (x—y )(6)p4—仁(p2+1) ( p2—1)2=(p+1) (p+1) (p—1).3.解:S环形=n R —n r 2= n ( R —r2)=n (R+r) (R—r)当R=8.45, r=3.45 , n =3.14 时,S环形=3.14 X( 8.45+3.45 ) (8.45 —3.45 ) =3.14 X 11.9 X 5=186.83 (cm i)2答:两圆所围成的环形的面积为186.83 cm .W .活动与探究把(a +b +c ) ( bc +ca +ab )— abc 分解因式 解: (a +b +c ) (bc +ca +ab )— abc =[a + ( b +c )] [bc +a (b +c )]— abc22=abc +a (b +c ) +bc (b +c ) +a (b +c ) — abc22=a (b +c ) +bc (b +c ) +a (b +c ) =(b +c ) [a +bc +a ( b +c )]2=(b +c ) [ a +bc +ab +ac ] =(b +c ) [ a ( a +b ) +c (a +b )] =(b +c ) (a +b ) (a +c ) •板书设计解:(1) 49x — 121y =(7x +11y ) ( 7x — 11y ); 2 2 2 2(2) — 25a +16b = (4b ) —( 5a )=(4b +5a ) (4b — 5a ); (3) 144a 2b 2— 0.81 c 2 =(12ab +0.9c ) (12ab — 0.9 c ); (4) — 36x 2+坐 y 2= ( 7y ) 2—( 6x ) 2648=(7y +6x ) ( -y — 6x );8 82(5) (a — b ) — 1= (a — b +1) (a — b — 1);2 2•备课资料 参考练习把下列各式分解因式:(1) (2) (3) (4) (5) (6) (7)(8)2 249x — 121y ; 2 2—25a +16b ; 2 2 2 144a b — 0.81 c ;249 2.—36x +y ;64(a — b ) 2— 1;2 29x —( 2y +z );2 2 (2m- n ) —( m- 2n );49 (2a — 3b ) 2— 9 (a +b ) 2.(6)9x —( 2y+z)=[3x+ (2y+z)] :3x—( 2y+z门=(3x+2y+z) (3x—2y —z);2 2(7)(2m—n) —( m—2n) =[(2 m—n) + (m-2n)][(2 m—n) — ( m—2n)=(3 m— 3n) (m+ n)=3 (m—n) (m+ n)2 2(8)49 (2a —3b) —9 (a+b)2=:7 (2a—3b) —[ 3 (a+b)=:7 (2a—3b) +3 (a+b) : 7 (2a—3b)—3 (a+b)=(14a—21b+3a+3b) (14a—21b—3a—3b) =(17a—18b) (11a—24b)。