北京市通州区2019-2020学年高二下学期期末考试数学试题
2023-2024学年北京市通州区高二下学期期末质量检测数学试卷(含解析)
2023-2024学年北京市通州区高二下学期期末质量检测数学试卷一、单选题:本题共10小题,每小题5分,共50分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知全集U ={−3,−2,−1,0,1,2,3},集合A ={x ∈Z|x 2<4},则∁U A =( )A. {−3,3}B. {2,3}C. {−1,0,1}D. {−3,−2,2,3}2.下列函数中,在区间(0,+∞)上单调递增的是( )A. f(x)=1 xB. f(x)=(x−1) 2C. f(x)=lg xD. f(x)=(12)x 3.已知a =lg 12,b =30.1,c = 3,则( )A. a <b <cB. b <a <cC. a <c <bD. c <b <a 4.设A ,B 为两个随机事件,若P(B|A)=12,P (A )=25,P (B )=23,则P(A|B)=( )A. 15B. 310C. 12D. 355.已知a >0,b >0,则“ab =1”是“a +b ≥2”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件6.在(x−2)10的展开式中,x 6的系数为( )A. −64C 610B. 64C 610C. −16C 410D. 16C 4107.有两台车床加工同一型号零件,第1台加工的次品率为4%,第2台加工的次品率为5%,将两台车床加工出来的零件混放在一起,已知第1台,第2台车床加工的零件占比分别为40%,60%,现任取一件零件,则它是次品的概率为( )A. 0.044B. 0.046C. 0.050D. 0.0908.某工厂生产一种产品需经过一,二,三,四共4道工序,现要从A ,B ,C ,D ,E ,F 这6名员工中选出4人,安排在4道工序上工作(每道工序安排一人),如果员工A 不能安排在第四道工序,则不同的安排方法共有( )A. 360种B. 300种C. 180种D. 120种9.设函数f (x )为定义在R 上的奇函数,若曲线y =f (x )在点(2,4)处的切线的斜率为10,则f′(−2)+f (−2)=( )A. −16B. −6C. 6D. 1610.已知函数f(x)={ln x x ,x >0x 2+2x,x ≤0;若方程f(x)=a 恰有三个根,则实数a 的取值范围是( )A. (0,1e ) B. [0,1e ] C. (−1,1e ) D. (0,1e )∪{−1}二、填空题:本题共5小题,每小题5分,共25分。
2019-2020学年人教A版北京市通州区高三(上)期末数学试卷 含解析
2019-2020学年高三上学期期末数学试卷一、选择题1.已知集合A={x|﹣2<x<1},B={x|﹣1<x<3},则A∪B=()A.{x|﹣2<x<3} B.{x|﹣1<x<1} C.{x|1<x<3} D.{x|﹣2<x<﹣1} 2.在复平面内,复数(其中i是虚数单位)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.已知点A(2,a)为抛物线y2=4x图象上一点,点F为抛物线的焦点,则|AF|等于()A.4 B.3 C.D.24.若x>y>0,则下列各式中一定正确的是()A.B.tan x>tan yC.D.lnx>lny5.某三棱锥的三视图如图所示,则该三棱锥最长棱的长度为()A.B.C.D.6.甲、乙、丙、丁四名同学和一名老师站成一排合影留念.若老师站在正中间,甲同学不与老师相邻,乙同学与老师相邻,则不同站法种数为()A.24 B.12 C.8 D.67.对于向量,,“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.关于函数f(x)=(x2+ax﹣1)e x﹣1有以下三个判断①函数恒有两个零点且两个零点之积为﹣1;②函数恒有两个极值点且两个极值点之积为﹣1;③若x=﹣2是函数的一个极值点,则函数极小值为﹣1.其中正确判断的个数有()A.0个B.1个C.2个D.3个二、填空题:本大题共6小题,每小题5分,共30分.9.已知向量=(3,﹣2),=(1,m),若⊥(),则m=.10.在公差不为零的等差数列{a n}中,a1=2,且a1,a3,a7依次成等比数列,那么数列{a n}的前n项和S n等于.11.已知中心在原点的双曲线的右焦点坐标为,且两条渐近线互相垂直,则此双曲线的标准方程为.12.在△ABC中,a=3,,∠B=2∠A,则cos B=.13.已知a,b,a+m均为大于0的实数,给出下列五个论断:①a>b,②a<b,③m>0,④m<0,⑤.以其中的两个论断为条件,余下的论断中选择一个为结论,请你写出一个正确的命题.14.如图,某城市中心花园的边界是圆心为O,直径为1千米的圆,花园一侧有一条直线型公路l,花园中间有一条公路AB(AB是圆O的直径),规划在公路l上选两个点P,Q,并修建两段直线型道路PB,QA.规划要求:道路PB,QA不穿过花园.已知OC⊥l,BD ⊥l(C、D为垂足),测得OC=0.9,BD=1.2(单位:千米).已知修建道路费用为m 元/千米.在规划要求下,修建道路总费用的最小值为元.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.已知函数.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在区间上的最大值和最小值.16.为了解某地区初中学生的体质健康情况,统计了该地区8所学校学生的体质健康数据,按总分评定等级为优秀,良好,及格,不及格.良好及其以上的比例之和超过40%的学校为先进校.各等级学生人数占该校学生总人数的比例如表:学校A学校B学校C学校D学校E学校F学校G学校H 学校比例等级优秀8% 3% 2% 9% 1% 22% 2% 3%良好37% 50% 23% 30% 45% 46% 37% 35%及格22% 30% 33% 26% 22% 17% 23% 38%不及格33% 17% 42% 35% 32% 15% 38% 24% (Ⅰ)从8所学校中随机选出一所学校,求该校为先进校的概率;(Ⅱ)从8所学校中随机选出两所学校,记这两所学校中不及格比例低于30%的学校个数为X,求X的分布列;(Ⅲ)设8所学校优秀比例的方差为S12,良好及其以下比例之和的方差为S22,比较S12与S22的大小.(只写出结果)17.如图,在四棱锥S﹣ABCD中,底面ABCD为直角梯形,AD∥BC,∠SAD=∠DAB=90°,SA=3,SB=5,AB=4,BC=2,AD=1.(Ⅰ)求证:AB⊥平面SAD;(Ⅱ)求平面SCD与平面SAB所成的锐二面角的余弦值;(Ⅲ)点E,F分别为线段BC,SB上的一点,若平面AEF∥平面SCD,求三棱锥B﹣AEF 的体积.18.已知椭圆C :(a>b>0)的长轴长为4,离心率为,点P在椭圆C上.(Ⅰ)求椭圆C的标准方程;(Ⅱ)已知点M(4,0),点N(0,n),若以PM为直径的圆恰好经过线段PN的中点,求n的取值范围.19.已知函数f(x)=x sin x+cos x.(Ⅰ)求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)求函数g(x)=f(x)﹣零点的个数.20.已知项数为m(m∈N*,m≥2)的数列{a n}满足如下条件:①a n∈N*(n=1,2,…,m);②a1<a2<…<a m.若数列{b n}满足b n=,其中n=1,2,…,m,则称{b n}为{a n}的“伴随数列”.(Ⅰ)数列1,3,5,7,9是否存在“伴随数列”,若存在,写出其“伴随数列”;若不存在,请说明理由;(Ⅱ)若{b n}为{a n}的“伴随数列”,证明:b1>b2>…>b m;(Ⅲ)已知数列{a n}存在“伴随数列”{b n},且a1=1,a m=2049,求m的最大值.参考答案一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|﹣2<x<1},B={x|﹣1<x<3},则A∪B=()A.{x|﹣2<x<3} B.{x|﹣1<x<1} C.{x|1<x<3} D.{x|﹣2<x<﹣1} 【分析】根据题意,由并集的定义分析可得答案.解:根据题意,集合A={x|﹣2<x<1},B={x|﹣1<x<3},则A∪B={x|﹣2<x<3};故选:A.2.在复平面内,复数(其中i是虚数单位)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】先进行复数的除法运算,分子和分母同乘以分母的共轭复数,分母变成一个实数,分子进行复数的乘法运算,整理成复数的标准形式,写出对应点的坐标,看出所在的象限.解:∵复数===,∴复数对应的点的坐标是(,)∴复数在复平面内对应的点位于第一象限,故选:A.3.已知点A(2,a)为抛物线y2=4x图象上一点,点F为抛物线的焦点,则|AF|等于()A.4 B.3 C.D.2【分析】由题意可得抛物线的焦点和准线,而|AF|等于点A到准线的距离d=|2﹣(﹣1)|,计算可得.解:由题意可得抛物线y2=4x的焦点为F(1,0),准线的方程为x=﹣1,由抛物线的定义可知|AF|等于点A到准线的距离d,而d=|2﹣(﹣1)|=3,故|AF|=3,故选:B.4.若x>y>0,则下列各式中一定正确的是()A.B.tan x>tan yC.D.lnx>lny【分析】A.利用不等式的基本性质即可判断出正误.B.利用三角函数的单调性周期性即可判断出正误.C.利用指数函数的单调性即可判断出正误.D.利用对数函数的单调性即可判断出正误.解:A.∵x>y>0,∴>,因此不正确;B.取x=π+,y=,满足x>y>0,但是tan x<tan y,因此不正确;C.由x>y>0,∴<,因此不正确;D.由x>y>0,∴lnx>lny,因此正确.故选:D.5.某三棱锥的三视图如图所示,则该三棱锥最长棱的长度为()A.B.C.D.【分析】首先把三视图转换为几何体,进一步利用公式的应用求出结果解:根据几何体的三视图转换为几何体为:所以:AB=.故选:C.6.甲、乙、丙、丁四名同学和一名老师站成一排合影留念.若老师站在正中间,甲同学不与老师相邻,乙同学与老师相邻,则不同站法种数为()A.24 B.12 C.8 D.6【分析】根据题意,分3步依次分析甲、乙和其他2人的站法数目,由分步计数原理计算可得答案.解:根据题意,分3步进行分析:①,老师站在正中间,甲同学不与老师相邻,则甲的站法有2种,乙的站法有2种,②,乙同学与老师相邻,则乙的站法有2种,③,将剩下的2人全排列,安排在剩下的2个位置,有A22=2种情况,则不同站法有2×2×2=8种;故选:C.7.对于向量,,“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】举例说明由不能得到;反之成立.再由充分必要条件的判定得答案.解:当,且与的夹角为120°时,有,故由,不能得到;反之,由,能够得到.∴“”是“”的必要不充分条件.故选:B.8.关于函数f(x)=(x2+ax﹣1)e x﹣1有以下三个判断①函数恒有两个零点且两个零点之积为﹣1;②函数恒有两个极值点且两个极值点之积为﹣1;③若x=﹣2是函数的一个极值点,则函数极小值为﹣1.其中正确判断的个数有()A.0个B.1个C.2个D.3个【分析】函数f(x)=(x2+ax﹣1)e x﹣1,e x﹣1>0.①令f(x)=0,可得x2+ax﹣1=0,△>0,函数恒有两个零点,可得两个零点之积,即可判断出正误;②f′(x)=[x2+(2+a)x+a﹣1]e x﹣1.令g(x)=x2+(2+a)x+a﹣1,△>0.可得方程x2+(2+a)x+a﹣1=0,有两个不相等的实数根.可得其单调性极值,函数恒有两个极值点且两个极值点之积为a﹣1,即可判断出正误;③若x=﹣2是函数的一个极值点,可得4﹣2(2+a)+a﹣1=0,解得a,即可判断出正误.解:函数f(x)=(x2+ax﹣1)e x﹣1,e x﹣1>0.①令f(x)=0,则x2+ax﹣1=0,△=a2+4>0,则函数恒有两个零点且两个零点之积为﹣1,正确;②f′(x)=[x2+(2+a)x+a﹣1]e x﹣1.令g(x)=x2+(2+a)x+a﹣1,△=(2+a)2﹣4(a﹣1)=a2+8>0.∴方程x2+(2+a)x+a﹣1=0,有两个不相等的实数根.又e x﹣1>0,∴函数f(x)有两个极值点x1,x2,不妨设x1<x2,则函数f(x)在(﹣∞,x1),(x2,+∞)上单调递增,在(x1,x2)上单调递减.∴函数恒有两个极值点且两个极值点之积为a﹣1,因此②不正确;③若x=﹣2是函数的一个极值点,则4﹣2(2+a)+a﹣1=0,解得a=﹣1.∴f′(x)=(x2+x﹣2)e x﹣1=(x+2)(x﹣1)e x﹣1.可得x=1时函数f(x)取得极小值,f(1)=(1﹣1﹣1)e0=﹣1.则函数极小值为﹣1.其中正确判断的个数有2个.故选:C.二、填空题:本大题共6小题,每小题5分,共30分.9.已知向量=(3,﹣2),=(1,m),若⊥(),则m=﹣5 .【分析】根据平面向量的坐标运算与数量积的定义,列方程求出m的值.解:向量=(3,﹣2),=(1,m),则﹣=(2,﹣m﹣2),又⊥(),所以•(﹣)=0,即3×2﹣2×(﹣m﹣2)=0,解得m=﹣5.故答案为:﹣5.10.在公差不为零的等差数列{a n}中,a1=2,且a1,a3,a7依次成等比数列,那么数列{a n}的前n项和S n等于.【分析】设公差d不为零的等差数列{a n},运用等比数列的中项性质和等差数列的通项公式,可得公差d,由等差数列的求和公式,计算可得所求和.解:在公差d不为零的等差数列{a n}中,a1=2,且a1,a3,a7依次成等比数列,可得a32=a1a7,即(2+2d)2=2(2+6d),解得d=1,(0舍去),则数列{a n}的前n项和S n=2n+n(n﹣1)=n2+n.故答案为:n2+n.11.已知中心在原点的双曲线的右焦点坐标为,且两条渐近线互相垂直,则此双曲线的标准方程为x2﹣y2=1 .【分析】设双曲线的标准方程为﹣=1(a>0,b>0),由题意可得c,结合渐近线方程和两直线垂直的条件:斜率之积为﹣1,解方程可得a,b,进而得到所求双曲线的标准方程.解:设双曲线的标准方程为﹣=1(a>0,b>0),由题意可得c==,双曲线的渐近线方程为y=±x,两条渐近线互相垂直,可得﹣=﹣1,解得a=b=1,则双曲线的标准方程为x2﹣y2=1,故答案为:x2﹣y2=1.12.在△ABC中,a=3,,∠B=2∠A,则cos B=.【分析】由已知利用正弦定理,二倍角的正弦函数公式可求cos A的值,进而利用二倍角的余弦函数公式即可求解cos B的值.解:∵a=3,,∠B=2∠A,∴由正弦定理,可得==,∴解得cos A=,∴cos B=cos2A=2cos2A﹣1=.故答案为:.13.已知a,b,a+m均为大于0的实数,给出下列五个论断:①a>b,②a<b,③m>0,④m<0,⑤.以其中的两个论断为条件,余下的论断中选择一个为结论,请你写出一个正确的命题①③推出⑤(答案不唯一还可以①⑤推出③等).【分析】利用不等式的基本性质可得由①③⇒⑤.(答案不唯一).解:因为:若a,b满足a>b,b>0,则a>b,m>0,⇒﹣==>0;即由①③⇒⑤.(答案不唯一).故答案为:①③推出⑤(答案不唯一还可以①⑤推出③等)14.如图,某城市中心花园的边界是圆心为O,直径为1千米的圆,花园一侧有一条直线型公路l,花园中间有一条公路AB(AB是圆O的直径),规划在公路l上选两个点P,Q,并修建两段直线型道路PB,QA.规划要求:道路PB,QA不穿过花园.已知OC⊥l,BD ⊥l(C、D为垂足),测得OC=0.9,BD=1.2(单位:千米).已知修建道路费用为m 元/千米.在规划要求下,修建道路总费用的最小值为 2.1m元.【分析】根据题意找到对应的点P,Q,利用三角形相似计算即可解:根据题意,因为道路PB,QA不穿过花园,所以作AQ⊥l,垂足为Q,此时AQ最短,过B作圆O的切线BP交l于P,此时PB最短,如图:根据平行线段成比例可得AQ=0.6,即有AQ为△BMD的中位线,所以BM=2AB=2,则在Rt△BMD中,DM=1.6,又因为△PBD∽△BMD,所以PB===1.5,故修建道路总费用的最小值为1.5m+0.6m=2.1m,故答案为:2.1m.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.已知函数.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求f(x)在区间上的最大值和最小值.【分析】(I)先化简f(x),根据周期计算公式即可得出T.(II)利用三角函数的单调性即可得出.解:=,(Ⅰ)f(x)的最小正周期T=,(Ⅱ)因为,所以,所以当,即x=0时,f(x)取得最小值0;当,即时,f(x)取得最大值.16.为了解某地区初中学生的体质健康情况,统计了该地区8所学校学生的体质健康数据,按总分评定等级为优秀,良好,及格,不及格.良好及其以上的比例之和超过40%的学校为先进校.各等级学生人数占该校学生总人数的比例如表:学校A学校B学校C学校D学校E学校F学校G学校H 学校比例等级优秀8% 3% 2% 9% 1% 22% 2% 3%良好37% 50% 23% 30% 45% 46% 37% 35%及格22% 30% 33% 26% 22% 17% 23% 38%不及格33% 17% 42% 35% 32% 15% 38% 24% (Ⅰ)从8所学校中随机选出一所学校,求该校为先进校的概率;(Ⅱ)从8所学校中随机选出两所学校,记这两所学校中不及格比例低于30%的学校个数为X,求X的分布列;(Ⅲ)设8所学校优秀比例的方差为S12,良好及其以下比例之和的方差为S22,比较S12与S22的大小.(只写出结果)【分析】(Ⅰ)8所学校中有四所学校学生的体质健康测试成绩达到良好及其以上的比例超过40%,即可得出从8所学校中随机取出一所学校,该校为先进校的概率.(Ⅱ)8所学校中,学生不及格率低于30%的学校有学校B、F、H三所,所以X的取值为0,1,2.利用超几何分布列即可得出随机变量X的分布列.(Ⅲ)经过计算即可得出S12与S22的关系.解:(Ⅰ)8所学校中有四所学校学生的体质健康测试成绩达到良好及其以上的比例超过40%,所以从8所学校中随机取出一所学校,该校为先进校的概率为.(Ⅱ)8所学校中,学生不及格率低于30%的学校有学校B、F、H三所,所以X的取值为0,1,2.,所以随机变量X的分布列为:X0 1 2P(Ⅲ)S12=S22.17.如图,在四棱锥S﹣ABCD中,底面ABCD为直角梯形,AD∥BC,∠SAD=∠DAB=90°,SA=3,SB=5,AB=4,BC=2,AD=1.(Ⅰ)求证:AB⊥平面SAD;(Ⅱ)求平面SCD与平面SAB所成的锐二面角的余弦值;(Ⅲ)点E,F分别为线段BC,SB上的一点,若平面AEF∥平面SCD,求三棱锥B﹣AEF 的体积.【分析】(Ⅰ)证明AB⊥SA,AB⊥AD,然后证明AB⊥平面SAD.(Ⅱ)建立如图直角坐标系,求出平面SAB的法向量,平面SDC的法向量,通过向量的数量积求解即可.(Ⅲ)利用V B﹣AEF=V F﹣ABE,转化求解即可.【解答】(Ⅰ)证明:在△SAB中,因为SA=3,AB=4,SB=5,所以AB⊥SA.又因为∠DAB=90°所以AB⊥AD,因为SA∩AD=A所以AB⊥平面SAD.(Ⅱ)解:因为SA⊥AD,AB⊥SA,AB⊥AD.建立如图直角坐标系则A(0,0,0)B(0,4,0),C(2,4,0),D(1,0,0),S(0,0,3).平面SAB的法向量为.设平面SDC的法向量为所以有即,令x=1所以平面SDC的法向量为,所以.(Ⅲ)解:因为平面AEF∥平面SCD,平面AEF∩平面ABCD=AE,平面SCD∩平面ABCD=CD,所以AE∥CD,平面AEF∩平面SBC=EF,平面SCD∩平面SBC=SC,所以FE∥SC,由AE∥CD,AD∥BC得四边形AEDC为平行四边形.所以E为BC中点.又FE∥SC,所以F为SB中点,所以F到平面ABE的距离为,又△ABE的面积为2,所以V B﹣AEF=V F﹣ABE=1.18.已知椭圆C:(a>b>0)的长轴长为4,离心率为,点P在椭圆C上.(Ⅰ)求椭圆C的标准方程;(Ⅱ)已知点M(4,0),点N(0,n),若以PM为直径的圆恰好经过线段PN的中点,求n的取值范围.【分析】(Ⅰ)由椭圆的长轴长,结合离心率求出a,b,然后求解椭圆C的方程.(Ⅱ)法一:设点P(x0,y0),则,PN的中点,通过,结合函数的值域为[﹣12,20],求解n的范围即可.法二:设点P(x0,y0),则.设PN的中点为Q,利用|MP|=|MN|,通过函数的值域为[﹣12,20],求解即可.解:(Ⅰ)由椭圆的长轴长2a=4,得a=2又离心率,所以所以b2=a2﹣c2=2.所以椭圆C的方程为;.(Ⅱ)法一:设点P(x0,y0),则所以PN的中点,,.因为以PM为直径的圆恰好经过线段PN的中点所以MQ⊥NP,则,即.又因为,所以所以.函数的值域为[﹣12,20]所以0≤n2≤20所以.法二:设点P(x0,y0),则.设PN的中点为Q因为以PM为直径的圆恰好经过线段PN的中点所以MQ是线段PN的垂直平分线,所以|MP|=|MN|,即,所以.函数的值域为[﹣12,20],所以0≤n2≤20.所以.19.已知函数f(x)=x sin x+cos x.(Ⅰ)求曲线y=f(x)在点(0,f(0))处的切线方程;(Ⅱ)求函数g(x)=f(x)﹣零点的个数.【分析】(Ⅰ)求出原函数的导函数,得到函数在x=0处的导数,再求出f(0),利用直线方程的点斜式得答案;(Ⅱ)由为偶函数,g(0)=1,把求g(x)在x∈R上零点个数,转化为求g(x)在x∈(0,+∞)上零点个数即可.利用导数研究函数单调性,再由函数零点存在性定理判定.解:(Ⅰ)f'(x)=x cos x,∴f'(0)=0.又f(0)=1,∴曲线y=f(x)在点(0,f(0))处的切线方程为y=1;(Ⅱ)∵为偶函数,g(0)=1,∴要求g(x)在x∈R上零点个数,只需求g(x)在x∈(0,+∞)上零点个数即可.,令g'(x)=0,得,k ∈N,∴g(x )在单调递增,在单调递减,在单调递增,在单调递减,在单调递增k∈N*,列表得:x 0 …g'(x)0 + 0 ﹣0 + 0 ﹣0 …g (x )1 ↗极大值↘极小值↗极大值↘极小值…由上表可以看出g(x )在(k∈N )处取得极大值,在(k∈N)处取得极小值,又;.当k∈N*且k≥1时,,(或,).∴g(x)在x∈(0,+∞)上只有一个零点.故函数零点的个数为2.20.已知项数为m(m∈N*,m≥2)的数列{a n}满足如下条件:①a n∈N*(n=1,2,…,m);②a1<a2<…<a m.若数列{b n}满足b n=,其中n=1,2,…,m,则称{b n}为{a n}的“伴随数列”.(Ⅰ)数列1,3,5,7,9是否存在“伴随数列”,若存在,写出其“伴随数列”;若不存在,请说明理由;(Ⅱ)若{b n}为{a n}的“伴随数列”,证明:b1>b2>…>b m;(Ⅲ)已知数列{a n}存在“伴随数列”{b n},且a1=1,a m=2049,求m的最大值.【分析】(Ⅰ)根据题目中“伴随数列”的定义得,所以数列1,3,5,7,9不存在“伴随数列”.(Ⅱ)只要用作差法证明{b n}的单调性即可,(Ⅲ)∀1≤i<j≤m,都有,因为,b1>b2>…>b m.因为,所以a n﹣a n﹣1≥m﹣1,又a m﹣a1=(a m﹣a m﹣1)+(a m﹣1﹣a m﹣2)+…+(a2﹣a1)≥(m﹣1)+(m﹣1)+…+(m﹣1)=(m﹣1)2.所以2049﹣1≥(m﹣1)2,即可解得m的最大值.解:(Ⅰ)数列1,3,5,7,9不存在“伴随数列”.因为,所以数列1,3,5,7,9不存在“伴随数列”.(Ⅱ)证明:因为,1≤n≤m﹣1,n∈N*,又因为a1<a2<…<a m,所以有a n﹣a n+1<0,所以,所以b1>b2>…>b m成立.(Ⅲ)∀1≤i<j≤m,都有,因为,b1>b2>…>b m.所以,所以,所以,因为,所以a n﹣a n﹣1≥m﹣1,又a m﹣a1=(a m﹣a m﹣1)+(a m﹣1﹣a m﹣2)+…+(a2﹣a1)≥(m﹣1)+(m﹣1)+…+(m﹣1)=(m﹣1)2.所以2049﹣1≥(m﹣1)2所以(m﹣1)2≤2048,所以m≤46,又,所以m≤33,例如:a n=64n﹣63(1≤n≤33),满足题意,所以,m的最大值是33.。
北京市通州区2019-2020学年高二下学期期末考试语文试题 Word版含答案
Evaluation Only. Created with Aspose.Words. Copyright 2003-2016 Aspose Pty Ltd.通州区2019- -2020学年第二学期高二年级期末考试语文试卷2020年7月本试卷共8页,150分,考试时长150分钟。
考生务必将答案写在答题卡上,在试卷上答题无效。
考试结束后,请将答题卡交回。
一、本大题共5小题,共18分。
阅读下面的材料,完成1-5题。
材料一火星是太阳系中与地球最相似且距离第二近的行星,因此成为目前除地球以外人类研究程度最高的行星,人类用空间探测器对火星进行探测的历史几乎贯穿整个人类航天史。
探测火星对研究地球生命的起源和演变,了解火星的气候、地质和资源,为今后在其上建立人类第二个家园做准备等,都具有重要的意义。
人类探测火星的方式与探测月球的方式基本相似,包括环绕探测、着陆探测、巡视探测、采样返回探测、载人登陆探测等五种。
其中采用环绕探测方式可以对火星进行普查;采用着陆探测和巡视探测方式可以对火星进行区城性详查;采用采样返回探测和载人登陆探测方式可以对火星进行区域性精查。
探测方式按前后顺序来说技术难度越来越大,因此先进行环绕探测。
然后进行着陆探测、巡视探测、采样返回探测,最终进行载人登陆探测。
目前,人类在探月的历程中,这五种探测方式都采用过,但每次发射基本上只采用其中的一两种探测方式。
与月球探测相比,由于火星距地球的距离比月球距地球的距离遙远得多,探测火星的难度也比探测月球的难度大得多,因此,至今人类对火星的探测只采用过环绕探测、着陆探测、巡视探测方式。
我国将在2020年首次发射火星探测器,并计划通过一次发射完成火星环绕、着陆和巡视三项探测任务。
起点很高,同时也具有很大的挑战性。
我国火星探测无论在巡视器上,还是轨道器上都有很多不同的有效载荷,可实现各种科学目标。
我国很早就开展了相关研究2016年6月初样方案就完成了,所以我们还是很有信心的。
专题12必考必刷解答题之复数(解析版)
专题12必考必刷解答题之复数1.【北京市通州区2019-2020学年(下)期末】已知复数1(z i i =-是虚数单位).(1)求2z z -;(2)如图,复数1z ,2z 在复平面上的对应点分别是A ,B ,求12z z z+. 【答案】(1)1i --;(2)15i 22-+. 解:(1)1z i =-,222(1)(1)1211z z i i i i i i ∴-=---=-+-+=--;(2)12z i =,22z i =+,∴122223(23)(1)1511(1)(1)22z z i i i i i i z i i i i ++++++====-+---+. 2.【江苏省常州市教育学会2019-2020学年下学期期末】已知22(815)(56)i z m m m m =-++-+,其中i 是虚数单位,m 为实数.(1)当z 为纯虚数时,求m 的值;(2)当复数z ·i 在复平面内对应的点位于第二象限时,求m 的取值范围. 【答案】(1)m =5;(2)(-∞,2)(5,+∞).(1)因为z 为纯虚数,所以2235815023560m m m m m m m m ⎧==⎧-+=⇒⎨⎨≠≠-+≠⎩⎩或且 综上可得,当z 为纯虚数时m =5;(2)因为22i (815)i (56)z m m m m ⋅=-+--+在复平面内对应的点位于第二象限,()2281505332560m m m m m m m m ⎧-+>><⎧⎪⇒⎨⎨><--+<⎩⎪⎩或或,即m <2或者m >5, 所以m 的取值范围为(-∞,2)(5,+∞).3.【山东省泰安市2018-2019学年下学期期末】已知复数1z 与21(2)8z i +-都是纯虚数,复数21z i =-,其中i 是虚数单位. (1)求复数1z ; (2)若复数z 满足12111z z z =+,求z . 【答案】(1)12z i =-;(2)2455i -. (1)设1()z bi b R =∈,则()22128(2)8z i bi i +-=+-()24(48)b b i =-+-由题意得240480b b ⎧-=⎨-≠⎩. ∴2b =- ∴12z i =-(2)∵12111z z z =+ ∴1212(2)(1)(2)(1)z z i i z z z i i -⨯-==+-+- 2213i i--=-(22)(13)(13)(13)i i i i --+=-+2455i =- 4.【江苏省南京市秦淮中学2019-2020学年(美术班)上学期期末】莱昂哈德·欧拉(),1707.4.151783.9.18Leonhard Euler ,瑞士数学家、自然科学家.13岁时入读巴塞尔大学,15岁大学毕业,16岁获得硕士学位,他是数学史上最多产的数学家.其中之一就是他发现并证明欧拉公式cos sin i e i θθθ=+,从而建立了三角函数和指数函数的关系.若将其中的θ取作π就得到了欧拉恒等式10i e π+=,它是数学里令人着迷的一个公式,它将数学里最重要的几个量联系起来:两个超越数:自然对数的底数e ,圆周率π;两个单位:虚数单位i 和自然数单位1;以及被称为人类伟大发现之一的0,数学家评价它是“上帝创造的公式”请你根据欧拉公式:cos sin i e i θθθ=+,解决以下问题:(1)试将复数3i e π写成a bi +(a 、b R ∈,i 是虚数单位)的形式; (2)试求复数312+πi e的模. 【答案】(1)122+;(2)2. (1)根据欧拉公式可得31cossin 3322πππ=+=+i ei ; (2)由题意可知31112212πi e ++=+=,因此,312πi e +==. 5.【上海市理工大附中2018-2019学年下学期期末】设复数z 1=2+ai (其中a ∈R ),z 2=3-4i .(1)若z 1+z 2是实数,求z 1·z 2的值; (2)若12z z 是纯虚数,求|z 1|. 【答案】(1)224i +;(2)52. 解:(1)12z ai =+(其中)a R ∈,234z i =-, 125(4)z z a i ∴+=+-,由12z z +是实数,得4a =.124z i ∴=+,234z i =-,则12(24)(34)224z z i i i =+-=+; (2)由122(2)(34)643834(34)(34)2525z ai ai i a a i z i i i +++-+===+--+是纯虚数, 得640380a a -=⎧⎨+≠⎩,即32a =.135|||2|22z i ∴=+==.6.【辽宁省辽阳市2019-2020学年(下)期末】设复数2312iz i-=+. (1)求z 的共轭复数z ;(2)设a R ∈,1z ai +=,求a 的值.【答案】(1)4755z i =-+;(2)45a =或2a =.解:(1)因为()()()()2231223243647471212125555i i i i i i i z i i i i -----+--=====--++-; 所以4755z i =-+; (2)因为47475555z ai i ai a i ⎛⎫+=--+=-+- ⎪⎝⎭,所以1z ai +==,解得45a =或2a =. 7.【陕西省西安市蓝田县2019-2020学年下学期期末】已知0m ≠,复数()()229z m m i =-+-.(Ⅰ)若z 在复平面内对应的点在第一象限,求m 的取值范围; (Ⅱ)若z 的共轭复数z 与复数85i m+相等,求m 的值. 【答案】(Ⅰ)3m >;(Ⅱ)2m =-.解:(Ⅰ)由题意,22090m m ->⎧⎨->⎩,解得3m >;(Ⅱ)由()()229z m m i =-+-,得()()229z m m i =---,又z 与复数85i m+相等,28295m m m ⎧=-⎪∴⎨⎪-=⎩,解得2m =-.8.【福建省龙岩市一级达标校2019-2020学年下学期期末质检】已知复数241miz i-=+(m R ∈,i 是虚数单位). (1)若z 是纯虚数,求m 的值;(2)设z 是z 的共轭复数,若复数2z i +在复平面上对应的点位于第四象限,求m 的取值范围.【答案】(1)12m =;(2)32m <-.解:(1)241mi z i -=+=()()24(1)(24)(24)(12)(12)1(1)2mi i m m im m i i i ----+==--++- 若z 是纯虚数,则120,120m m -=⎧⎨+≠⎩12m ∴=. (2)由(1)得,(12)(12),z m m i =--+(12)(12)z m m i ∴=-++,2(12)(32)z i m m i +=-++,又因为复数2z i +在复平面上对应的点位于第四象限,120,320m m ->⎧∴⎨+<⎩∴32m <-.9.【吉林省辽源市田家炳高级中学等友好学校2019-2020学年下学期期末】已知复数()()11z m m i m R =++-∈.(1)m 取什么值时,z 为实数; (2)m 取什么值时,z 为纯虚数. 【答案】(1)1m =(2)1m =- (1)复数()()11z m m i m R =++-∈, 若z 为实数,则10m -=,即1m =(2)若z 为纯虚数,则1010m m +=⎧⎨-≠⎩,解得1m =-10.【山东省潍坊市2019-2020学年第二学期期末】在①z 为实数,②z 为虚数,③z 为纯虚数,这三个条件中任选一个,补充在下面问题中. 已知复数:()()2221z m m m i =--+- (1)若________,求实数m 的值;(2)当z 在复平面内对应的点位于第三象限时,求m 的取值范围.【答案】(1)选择①:1m =-或1m =;选择②:1m ≠-或1m ≠;选择③:2m =;(2)()1,1-.选择①,当z 为实数时,有210m -=, 解得1m =-或1m =,选择②,当z 为虚数时,有210m -≠, 解得1m ≠-或1m ≠,选择③,当z 为纯虚数时,有222010m m m ⎧--=⎨-≠⎩,解得211m m m ==-⎧⎨≠±⎩或,∴2m =;(2)因为z 在复平面内对应的点位于第三象限,所以222010m m m ⎧--<⎨-<⎩,解得11m -<<,所以m 的取值范围为()1,1-.11.【上海市徐汇区2019-2020学年下学期期末】已知关于x 的一元二次方程210()x kx k -+=∈R 的两根为12,x x .(1)若1x 为虚数,求k 的取值范围; (2)若12||2x x ,求k 的值.【答案】(1)22k -<<;(2)k 的值为±或0. 解:(1)依题意可得240k ∆=-<,解得22k -<<; (2)因为210x kx -+= 所以12x x k +=,121=x x①0∆≥时,222121212||()444x x x x x x k -=+-=-=,解得k =± ②∆<0时,222121212||[()4]44x x x x x x k -=-+-=-=,解得0k =;综上,k 的值为±或0.12.【江苏省盐城中学2018-2019学年上学期期末】若复数()()12i mi ++为纯虚数,其中i 为虚数单位,m R ∈ (1)求实数m 的值;(2)若用mi 为实系数方程()2220x a x a +-+=的根,求实数a 的值.【答案】(1)2;(2)2. (1)(1)(2)2(2)i mi m m i ++=-++为纯虚数,∴2020m m -=⎧⎨+≠⎩,解得2m =.∴实数m 的值是2;(2)mi 为实系数方程22(2)0x a x a +-+=的根,实系数方程虚根成对, 由韦达定理可知,2220a i i -+=-=,且2(2)(2)i i a ⋅-=,即2a =.∴实数a 的值是2.13.【宁夏银川三沙源上游学校2019-2020学年上学期期末】已知1234iz i+=-. (1)求z ;(2)已知23i -是关于x 的一元二次实系数方程20x px q ++=的一个根,求实数p ,q 的值.【答案】(1)5z =;(2)4p =-,13q =. (1)由()()()()123451012343425512354i i i i i i z i i ++-+=+=-==-+-+,得z ==;(2)把23i -代入方程20x px q ++=中,得到:()()521230p q p i -++++=, 即520p q -++=且1230p +=,解得4p =-,13q =.14.【陕西省宝鸡市渭滨区2018-2019学年下学期期末】已知复数1az i i=++,其中i 为虚数单位,a R ∈.(1)若z R ∈,求实数a 的值;(2)若z 在复平面内对应的点位于第一象限,求实数a 的取值范围. 【答案】(1)2a =(2)(0,2)a ∈解:(1)由题意,根据复数的运算,可得()()()1(1)11122a i a a a z i i i i i i -=+=+=+-++-, 由z R ∈,则102a-=,解得2a =. (2)由z 在复平面内对应的点位于第一象限,则02a >且102a->,解得02a <<,即(0,2)a ∈.15.【山东省临沂市沂水县2018-2019学年上学期期末】已知复数2()z m mi m R =-∈,若||z z 在复平面内对应的点位于第四象限.(1)求复数z ;(2)若21z az b i ++=+,求实数a ,b 的值. 【答案】(1)z =1﹣i ;(2)a =﹣3,b =4.解:(1)2z m mi =-,||z =422m m ∴+=,得21m =.又z 在复平面内对应的点位于第四象限,1m ∴=-,即1z i =-;(2)由(1)得1z i =-, 21z az b i ∴++=+,2(1)(1)1i a i b i ∴-+-+=-,()(2)1a b a i i ∴+-+=+,∴121a b a +=⎧⎨+-⎩解得3a =-,4b =.16.【上海市上海中学2019-2020学年上学期期末】已知复数()221iz i m i =++-(其中i 是虚数单位,m R ∈).(1)若复数z 是纯虚数,求m 的值; (2)求1z -的取值范围.【答案】(1)12m =-;(2)1z -5≥(1)()()()()()2i i 12i2i 2i i 1i 1i 1z m m +=++=++--+ ()()2i i i 121(1)i m m m =+-+=++-,若复数z 是纯虚数,则210,10m m +=-≠,所以12m =-. (2)由(1)得21(1)i z m m =++-,12(1)i z m m -=+-,1z -==因为2521y m m =-+是开口向上的抛物线,有最小值45;所以1z -≥17.【宁夏贺兰县景博中学2020-2021学年上学期期末】已知复数241miz i+=-,(,m R i ∈是虚数单位).(1)若z 是纯虚数,求m 的值;(2)设z 是z 的共轭复数,复数2z z +在复平面上对应的点在第一象限,求m 的取值范围. 【答案】(1)12;(2)11,22⎛⎫- ⎪⎝⎭. (1)()()()()()241241221111mi i mi z m m i i i i +++===-++--+, ∵z 是纯虚数,∴120m -=,且210m +≠, 解得12m =. (2)∵z 是z 的共轭复数,所以()1221z m m i =--+, ∴()()2122121221z z m m i m m i +=--++-++⎡⎤⎣⎦()3621m m i =-++,复数2z z +在复平面上对应的点在第一象限,∴360210m m ->⎧⎨+>⎩,解得1122m -<<,即实数m 的取值范围为11,22⎛⎫-⎪⎝⎭. 18.【福建省泉州市2018-2019学年下学期期末教学质量跟踪监测】已知复数1i z a b =+(a ,b ∈R ),2i zcd =+(c ,d ∈R ).(1)当1a =,2b =,3c =,4d =时,求1z ,2z ,12z z ⋅;(2)根据(1)的计算结果猜想12z z ⋅与12z z ⋅的关系,并证明该关系的一般性【答案】(1)1z =25z =,12z z ⋅=2)猜想1212z z z z ⋅=⋅,见解析(1)由题知1z ==,25z ==,所以()()1212i 34i 510i z z ⋅=+⨯+=-+所以12z z ⋅===(2)猜想1212z z z z ⋅=⋅证明:因为1z =2z =,所以12z z ⋅==因为()()()()12i i i z z a b c d ac bd ad bc ⋅=+⨯+=-++,所以12z z ⋅====,所以1212z z z z ⋅=⋅猜想成立.19.【重庆市2019-2020学年(下)期末】(1)已知z C ∈,解关于z 的方程(3)13z i z i -⋅=+; (2)已知32i +是关于x 的方程220x ax b ++=在复数集内的一个根,求实数a ,b 的值.【答案】(1)1z =-或13i -+;(2)12,26a b =-=.(1)设z a bi =+,则(3)()13a bi i a bi i +--=+,即223313a b b ai i +--=+ ∴223133a b b a ⎧+-=⎨-=⎩,解得10a b =-⎧⎨=⎩,或13a b =-⎧⎨=⎩∴1z =-或13i -+; (2)由题知方程在复数集内另一根为32i -,故323262(32)(32)132a i ib i i ⎧-=++-=⎪⎪⎨⎪=+-=⎪⎩, 即12,26a b =-=.20.【山东省烟台市莱州一中2018-2019学年(下)第三次质检】已知复数1212,34,z i z i i =-=+为虚数单位.(1)若复数21z az +对应的点在第四象限,求实数a 的取值范围;(2)若()1212z z z z z +=-,求z 的共轭复数.【答案】(1)0a >;(2)1z i =-+【解析】(I )=,由题意得解得(2)()()()()12121234261,123442i i z z i z i z z i i i--+---====--+-+++ 1.z i =-+21.【江苏省徐州市2019-2020学年下学期期末】复数()()()2152615z i m i m i =++-+-. (1)实数m 取什么数时,z 是实数;(2)实数m 取什么数时,z 是纯虚数;(3)实数m 取什么数时,z 对应的点在直线70x y ++=上.【答案】(1)5m =或3-;(2)2m =-;(3)12m =或2- 解:复数222(1)(52)(615)(56)(215)z i m i m i m m m m i =++-+-=+++--.(1)由22150m m --=,解得5m =或3-.5m ∴=或3-时,复数z 为实数.(2)由225602150m m m m ⎧++=⎨--≠⎩,解得2m =-. 2m ∴=-时,复数z 为纯虚数.(3)由22(56)(215)70m m m m +++--+=.化为:22320m m +-=, 解得12m =或2-. 12m ∴=或2-,z 对应点在直线70x y ++=上. 22.【上海市曹杨二中2019-2020学年下学期期末】设,αβ分别是方程220x x a ++=()a R ∈的两个虚数根.(1)求a 的取值范围及αβ+的值;(2)若4αβ-=,求a 的值.【答案】(1)1a >,(2)5.(1)由方程220x x a ++=()a R ∈有两个虚数根所以440a ∆=-<,解得1a >由,αβ是方程220x x a ++=()a R ∈的两个虚数根.可得,αβ,不妨设1α==-+,1β==-所以αβ+(2)由(1)可得αβ-==根据4αβ-=,即4=,解得5a =23.【江苏省宿迁市2018-2019学年下学期期末】已知复数()112z m mi =++,()21z i =+,其中m R ∈,i 为虚数单位.(1)若复数12z z 为纯虚数,求实数m 的值;(2)在复平面内,若复数12z z =对应的点在第四象限,求实数m 的取值范围.【答案】(1)1m =.(2)()3,0-(1)由()112z m mi =++,21z i =+得()()12131z z m m i =-+++,又12z z 为纯虚数,所以10m -+=,且310m +≠, 所以1m =.(2)()1232z z m mi ==++,又复数12z z =对应的点在第四象限,所以30m +>,且20m ,所以m 的取值范围是()3,0-.24.【广东省中山市2018-2019学年下学期期末】已知复数2(),43z a i w i =+=-其中a 是(1)若在复平面内表示复数z 的点位于第一象限,求a 的范围; (2)若z w是纯虚数,a 是正实数, ①求a ,②求232019()()...()z z z z w w w w++++; 【答案】(1)1a >;(2)①2;②-1.(1)由题可得:221()2z a i a ai -=+=+,因为复数z 在第一象限,所以21020a a ⎧->⎨>⎩,解得1a >.(2)依题意得:22()()(43)43(43)(43)za i a i i i i i ω+++==--+ ()2222223222(43)4843634(3)16(9)a ai i i a ai i a i ai i i ++++++++==--- ()()2246438325a a a a i--++-= 因为z w 是纯虚数,则:2246403830a a a a ⎧--=⎨+-≠⎩, 即122133a a a a ⎧==-⎪⎪⎨⎪≠-≠⎪⎩或或, 又因为a 是正实数,则2a =.当2a =时,22464833161232525za a ai a i i i i i i ω--++-+-===, 232019232019()()()z z z z i i i i ωωωω⎛⎫⎛⎫⎛⎫++++=++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()201911i i i -=-25.【北京市大兴区2018-2019学年第二学期期末】已知复数1z a i =+,21z i =-,a R ∈. (Ⅰ)当1a =时,求12z z ⋅的值;(Ⅱ)若12z z -是纯虚数,求a 的值;(Ⅲ)若12z z 在复平面上对应的点在第二象限,求a 的取值范围. 【答案】(Ⅰ)2i ;(Ⅱ)1;(Ⅲ)(1,1)-. (Ⅰ)由题意12z z ⋅2(1)(1)122i i i i i =++=++=;(Ⅱ)由题意12(1)2z z a i -=-+为纯虚数,则10a -=,所以1a =; (Ⅲ)212()(1)111(1)(1)222z a i a i i a ai i i a a i z i i i ++++++-+====+--+,对应点11(,)22a a -+,它是第二象限点,则102102a a -⎧<⎪⎪⎨+⎪>⎪⎩,解得11a -<<.故a 的范围是(1,1)-.。
2019-2020学年高二下学期期中考试数学(理)试题 Word版含解析
2019—2020学年第二学期南昌市八一中学高二理科数学期中考试试卷第Ⅰ卷(选择题:共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数z 满足1i 1i z +=-,则||z =( ) A. 2iB. 2C. iD. 1 【★答案★】D【解析】【分析】 根据复数的运算法则,求得复数zi ,即可得到复数的模,得到★答案★. 【详解】由题意,复数11i i z +=-,解得()()()()111111i i i z i i i i +++===--+,所以1z =,故选D . 【点睛】本题主要考查了复数的运算,以及复数的模的求解,其中解答中熟记复数的运算法则是解答的关键,着重考查了推理与运算能力,属于基础题.2. 已知平面α内一条直线l 及平面β,则“l β⊥”是“αβ⊥”的( )A. 充分必要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件【★答案★】B【解析】【分析】根据面面垂直和线面垂直的定义,结合充分条件和必要条件的定义进行判断即可.【详解】解:由面面垂直的定义知,当“l ⊥β”时,“α⊥β”成立,当αβ⊥时,l β⊥不一定成立,即“l β⊥”是“αβ⊥”的充分不必要条件,故选:B .【点睛】本题考查命题充分性和必要性的判断,涉及线面垂直和面面垂直的判定,属基础题.3. 已知水平放置的△ABC 是按“斜二测画法”得到如图所示的直观图,其中B ′O ′=C ′O ′=1,A′O′=32,那么原△ABC的面积是( )A. 3B. 22C.32D.34【★答案★】A【解析】【分析】先根据已知求出原△ABC的高为AO=3,再求原△ABC的面积. 【详解】由题图可知原△ABC的高为AO=3,∴S△ABC=12×BC×OA=12×2×3=3,故★答案★为A【点睛】本题主要考查斜二测画法的定义和三角形面积的计算,意在考察学生对这些知识的掌握水平和分析推理能力.4. 某几何体的三视图如图所示,则这个几何体的体积等于()A. 4B. 6C. 8D. 12【★答案★】A【解析】由三视图复原几何体,是如图所示的四棱锥,它的底面是直角梯形,梯形的上底长为2,下底长为4,高为2,棱锥的一条侧棱垂直底面高为2,所以这个几何体的体积:12422432V+=⨯⨯⨯=,故选A.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.5. 下列命题中,正确的是()A. 经过不同的三点有且只有一个平面B. 分别在两个平面的两条直线一定是异面直线C. 垂直于同一个平面的两条直线是平行直线D. 垂直于同一个平面的两个平面平行【★答案★】C【解析】【分析】根据不在一条直线上的三点确定一个平面,来判断A是否正确;根据分别在两个平面内的两条直线的位置关系不确定,来判断B是否正确;根据垂直于同一平面的两直线平行,来判断C是否正确;根据垂直于同一条直线的两条直线的位置关系是平行、相交或异面,来判断D是否正确.【详解】解:对A,当三点在一条直线上时,平面不唯一,∴A错误;对B,分别在两个平面内的两条直线的位置关系不确定,∴B错误;对C,根据垂直于同一平面的两直线平行,∴C正确;对D,垂直于同一平面的两平面的位置关系是平行、相交,∴D错误.故选C.【点睛】本题考查了空间直线与直线的位置关系及线面垂直的判定与性质,考查了学生的空间想象能力.6. 实数a 使得复数1a i i +-是纯虚数,10b xdx =⎰,1201c x dx =-⎰则a ,b ,c 的大小关系是( ) A. a b c <<B. a c b <<C. b c a <<D. c b a <<【★答案★】C【解析】【分析】 利用复数的乘除运算求出a ,再利用微积分基本定理以及定积分的定义即可求出b ,c ,从而比较其大小关系. 【详解】()()()()11111122a i i a i a a i i i i +++-+==+--+, 1a i i +-是纯虚数, 102a -∴=,1a , 121001122b xdx x ⎛⎫===⎪⎝⎭⎰, 1201c x dx =-⎰表示是以()0,0为圆心, 以1为半径的圆在第一象限的部分与坐标轴围成的14个圆的面积, 21144c ππ∴=⨯⨯=,所以b c a <<. 故选:C【点睛】本题考查了复数的乘除运算、微积分基本定理求定积分、定积分的定义,考查了基本运算求解能力,属于基础题.7. 已知正四棱柱''''ABCD A B C D -的底面是边长为1的正方形,若平面ABCD 内有且仅有1个点到顶点A '的距离为1,则异面直线,AA BC '' 所成的角为 ( ) A. 6π B. 4π C. 3π D. 512π 【★答案★】B【解析】由题意可知,只有点A 到'A 距离为1,即高为1,所以该几何体是个正方体,异面直线11,AA BC 所成的角是4π,故选B.8. 函数3xeyx=的部分图象可能是()A. B.C. D.【★答案★】C【解析】分析:根据函数的奇偶性,及x=1和x=2处的函数值进行排除即可得解.详解:易知函数3xeyx=为奇函数,图象关于原点对称,排除B,当x=1时,y=<1,排除A,当x=4时,4112ey=>,排除D,故选C.点睛:已知函数的解析式判断函数的图象时,可从以下几个方面考虑:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的周期性,判断图象的循环往复;(5)从函数的特征点,排除不合要求的图象.9. 如图所示,三棱锥P ABC -的底面在平面α内,且AC PC ⊥,平面PAC ⊥平面PBC ,点P A B ,,是定点,则动点C 的轨迹是( )A. 一条线段B. 一条直线C. 一个圆D. 一个圆,但要去掉两个点【★答案★】D【解析】 因为平面PAC⊥平面PBC ,AC⊥PC,平面PAC∩平面PBC=PC ,AC ⊂平面PAC ,所以AC⊥平面PBC.又因为BC ⊂平面PBC ,所以AC⊥BC.所以∠ACB=90°.所以动点C 的轨迹是以AB 为直径的圆,除去A 和B 两点.选D.点睛:求轨迹实质是研究线面关系,本题根据面面垂直转化得到线线垂直,再根据圆的定义可得轨迹,注意轨迹纯粹性.10. 如图,以等腰直角三角形ABC 的斜边BC 上的高AD 为折痕,把△ABD 和△ACD 折成互相垂直的两个平面后,某学生得出下列四个结论:①BD ⊥AC ;②△BAC 等边三角形;③三棱锥D -ABC 是正三棱锥;④平面ADC ⊥平面AB C.其中正确的是( )A. ①②④B. ①②③C. ②③④D. ①③④【★答案★】B【解析】【分析】根据翻折后垂直关系得BD ⊥平面ADC ,即得BD ⊥AC ,再根据计算得△BAC 是等边三角形,最后可确定选项.【详解】由题意知,BD ⊥平面ADC ,故BD ⊥AC ,①正确;AD 为等腰直角三角形斜边BC 上的高,平面ABD ⊥平面ACD ,所以AB =AC =BC ,△BAC 是等边三角形,②正确;易知DA =DB =DC ,又由②知③正确;由①知④错.故选B .【点睛】本题考查线面垂直判定与性质,考查推理论证求解能力,属中档题.11. 如图所示,在正三棱锥S —ABC 中,M 、N 分别是SC .BC 的中点,且MN AM ⊥,若侧棱23SA =,则正三棱锥S —ABC 外接球的表面积是()A. 12πB. 32πC. 36πD. 48π【★答案★】C【解析】分析】 根据题目条件可得∠ASB =∠BSC =∠ASC =90∘,以SA ,SB ,SC 为棱构造正方体,即为球的内接正方体,正方体对角线即为球的直径,即可求出球的表面积.【详解】∵M ,N 分别为棱SC ,BC 的中点,∴MN ∥SB∵三棱锥S −ABC 为正棱锥,∴SB ⊥AC (对棱互相垂直)∴MN ⊥AC又∵MN ⊥AM ,而AM ∩AC =A ,∴MN ⊥平面SAC ,∴SB ⊥平面SAC∴∠ASB =∠BSC =∠ASC =90∘以SA ,SB ,SC 为从同一定点S 出发的正方体三条棱,将此三棱锥补成以正方体,则它们有相同的外接球,正方体的对角线就是球的直径. ∴236R SA ==,∴R =3,∴V =36π.故选:C【点睛】本题主要考查了三棱锥的外接球的表面积,考查空间想象能力,由三棱锥构造正方体,它的对角线长就是外接球的直径,是解决本题的关键. 12. 已知椭圆22221(0)x y a b a b+=>>上一点A 关于原点的对称点为点B ,F 为其右焦点,若AF BF ⊥,设ABF α∠=,且,64ππα⎡⎤∈⎢⎥⎣⎦,则该椭圆离心率e 的取值范围为( ) A. 2,312⎡⎤-⎢⎥⎣⎦B. 2,12⎡⎫⎪⎢⎪⎣⎭C. 23,22⎡⎤⎢⎥⎣⎦D. 36,33⎡⎤⎢⎥⎣⎦【★答案★】A【解析】【分析】 根据直角三角形性质得A 在圆上,解得A 点横坐标,再根据条件确定A 横坐标满足条件,解得离心率.【详解】由题意得OA OB OF c ===,所以A 在圆222=x y c +上,与22221x y a b +=联立解得22222()Aa cb xc -=, 因为ABF α∠=,且,64ππα⎡⎤∈⎢⎥⎣⎦, 所以22sin 22sin ()2sin [,]A A a a c a c a c AF c e x c x c e e eααα---=∴-=∴=∈因此2222222()()()a c a c b a c e c e---≤≤, 解得22222222(2)()(2)2()a c c b a c a c c a a c -≤-≤--≤-≤-,,即222,20a c a c ac ≤--≥,即2212,120312e e e e ≤--≥∴≤≤-,选A. 【点睛】本题考查椭圆离心率,考查基本分析化简求解能力,属中档题.第Ⅱ卷(非选择题:共90分)二、填空题:本大题共4小题,每小题5分,共20分.请将★答案★填在答题卡的相应位置.13. ()ππsin cos x x dx -+=⎰__________. 【★答案★】0【解析】【分析】求出被积函数的原函数,然后分别代入积分上限和积分下限作差得出★答案★.【详解】()()ππsin cos cos sin x x dx x x ππ--+=-+⎰()()()cos sin cos sin 110ππππ=-+---+-=-=⎡⎤⎣⎦.故★答案★为:0【点睛】本题主要考查了定积分的计算,解题的关键是确定原函数,属于基础题.14. 在三棱锥P ABC -中,6,3PB AC ==,G 为PAC ∆的重心,过点G 作三棱锥的一个截面,使截面平行于直线PB 和AC ,则截面的周长为_________.【★答案★】8【解析】【分析】如图所示,过点G 作EF ∥AC ,分别交PA ,PC 于点E ,F .过点F 作FM ∥PB 交BC 于点M ,过点E 作EN ∥PB 交AB 于点N .可得四点EFMN 共面,进而得到23EF MN AC AC ==,根据比例可求出截面各边长度,进而得到周长. 【详解】解:如图所示,过点G 作EF ∥AC ,分别交PA ,PC 于点E ,F过点F 作FM ∥PB 交BC 于点M ,过点E 作EN ∥PB 交AB 于点N .由作图可知:EN ∥FM ,∴四点EFMN 共面可得MN ∥AC ∥EF ,EN ∥PB ∥FM . ∴23EF MN AC AC == 可得EF =MN =2.同理可得:EN =FM =2.∴截面的周长为8.故★答案★为:8.【点睛】本题考查了三角形重心的性质、线面平行的判定与性质定理、平行线分线段成比例定理,属于中档题.15. 已知一个正三棱柱,一个体积为4π3的球体与棱柱的所有面均相切,那么这个正三棱柱的表面积是______. 【★答案★】183【解析】【分析】由球的体积可以求出半径,从而得到棱柱的高;由球体与棱柱的所有面均相切,得出球的半径和棱柱底面正三角形边长的关系,求出边长,即求出底面正三角形的面积,得出棱柱的表面积.【详解】由球的体积公式可得24433R ππ=,1R ∴=, ∴正三棱柱的高22h R ==,设正三棱柱的底面边长为a , 则其内切圆的半径为:13132a ⋅=,23a ∴=,∴该正三棱柱的表面积为:21333226183222a R a a a a ⋅+⨯⨯=+=. 故★答案★为:183【点睛】本题考查了球的体积公式、多面体的表面积求法,属于基础题.16. 如图,在矩形ABCD 中,E 为边AB 的中点,将ADE ∆沿直线DE 翻转成1A DE ∆.若M 为线段1A C 的中点,则在ADE ∆翻转过程中,正确的命题是______.(填序号)①BM 是定值;②点M 在圆上运动;③一定存在某个位置,使1DE A C ⊥;④一定存在某个位置,使MB平面1A DE .【★答案★】①②④【解析】【分析】取DC 中点N 再根据直线与平面的平行垂直关系判断即可.【详解】对①, 取DC 中点N ,连接,MN BN ,则1//MN A D ,//NB DE .因为MN NB N ⋂=,1A D DE D ⋂=,故平面1//MNB A DE .易得1MNB A DE ∠=∠为定值,故在ADE ∆翻转过程中MNB ∆的形状不变.故BM 是定值.故①正确.对②,由①得, 在ADE ∆翻转过程中MNB ∆沿着NB 翻折,作MO NB ⊥交NB 于O ,则点M 在以O 为圆心,半径为MO 的圆上运动.故②正确.对③,在DE 上取一点P 使得AP DE ⊥,则1A P DE ⊥,若1DE A C ⊥则因为111A P A C A ⋂=,故DE ⊥面1A CP ,故DE PC ⊥,不一定成立.故③错误.对④,由①有1//MNB A DE ,故MB平面1A DE 成立.综上所述,①②④正确.故★答案★为:①②④ 【点睛】本题主要考查了翻折中线面垂直平行的判定,需要画出对应的辅助线分析平行垂直关系,属于中等题型.三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17. 如图,已知点P 是平行四边形ABCD 所在平面外的一点,E ,F 分别是PA ,BD 上的点且PE ∶EA =BF ∶FD ,求证:EF ∥平面PBC .【★答案★】见解析【解析】试题分析:连接AF 并延长交BC 于M .连接PM ,因为AD ∥BC ,∴BF MF FD FA =,又BF PE FD EA =,∴PE MF EA FA=, 所以EF ∥PM ,从而得证.试题解析:连接AF 并延长交BC 于M .连接PM .因为AD ∥BC ,所以=. 又由已知=,所以=. 由平面几何知识可得EF ∥PM ,又EF ⊄平面PBC ,PM ⊂平面PBC ,所以EF ∥平面PBC .18. 如图所示,在长方体ABCD ﹣A 1B 1C 1D 1中,AB =AD =1,AA 1=2,M 是棱CC 1的中点.证明:平面ABM ⊥平面A 1B 1M .【★答案★】证明见解析【解析】【分析】通过长方体的几何性质证得11BM A B ⊥,通过计算证明证得1BM B M ⊥,由此证得BM ⊥平面11A B M ,从而证得平面ABM ⊥平面11A B M .【详解】由长方体的性质可知A 1B 1⊥平面BCC 1B 1,又BM ⊂平面BCC 1B 1,∴A 1B 1⊥BM .又CC 1=2,M 为CC 1的中点,∴C 1M =CM =1.在Rt△B 1C 1M 中,B 1M 2212C M CM =+=, 同理BM 222BC CM =+=,又B 1B =2, ∴B 1M 2+BM 2=B 1B 2,从而BM ⊥B 1M .又A 1B 1∩B 1M =B 1,∴BM ⊥平面A 1B 1M ,∵BM ⊂平面ABM ,∴平面ABM ⊥平面A 1B 1M .【点睛】本小题主要考查面面垂直的证明,考查空间想象能力和逻辑推理能力,属于中档题.19. 以平面直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知点M 的直角坐标为()1,0,若直线l 的极坐标方程为2cos 104ρθπ⎛⎫+-= ⎪⎝⎭,曲线C 的参数方程是244x m y m ⎧=⎨=⎩,(m 为参数).(1)求直线l 的直角坐标方程和曲线C 的普通方程;(2)设直线l 与曲线C 交于,A B 两点,求11MA MB +. 【★答案★】(1)10x y --=,24y x =;(2)1【解析】【试题分析】(1) 2cos 104πρθ⎛⎫+-= ⎪⎝⎭展开后利用公式直接转化为直角坐标方程.对C 消去m 后得到直角坐标方程.(2)求出直线l 的参数方程,代入抛物线,利用直线参数的几何意义求得11MA MB+的值. 【试题解析】(1)由2cos 104πρθ⎛⎫+-= ⎪⎝⎭,得cos sin 10ρθρθ--=, 令cos x ρθ=,sin y ρθ=,得10x y --=.因为244x m y m⎧=⎨=⎩,消去m 得24y x =, 所以直线l 的直角坐标方程为10x y --=,曲线C 的普通方程为24y x =.(2)点M 的直角坐标为()1,0,点M 在直线l 上. 设直线l 的参数方程为21222t x ty ⎧=+⎪⎪⎨⎪=⎪⎩,(t 为参数),代入24y x =,得24280t t --=.设点,A B 对应的参数分别为1t ,2t ,则1242t t +=,128t t =-,所以121211t t MA MB t t -+== ()21212224323218t t t t t t +-+==. 20. 如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,//AD BC ,090ADC ∠=,平面PAD ⊥底面ABCD ,为AD 中点,M 是棱PC 上的点,.(1)求证:平面POB ⊥平面PAD ;(2)若点M 是棱的中点,求证://PA 平面.【★答案★】(1)见解析;(2)见解析【解析】【详解】(1)证明: ∵AD 中点,且,∴DO BC =又//AD BC ,090ADC ∠=,∴ 四边形BCDO 是矩形,∴BO OD ⊥,又平面PAD ⊥平面ABCD ,且平面PAD 平面ABCD OD =,BO ⊂平面ABCD ,∴BO ⊥平面PAD ,又BO ⊂平面POB ,∴ 平面POB ⊥平面PAD .(2)如下图,连接AC 交BO 于点E ,连接EM ,由(1)知四边形BCDO 是矩形,∴//OB CD ,又为AD 中点,∴E 为AC 中点,又是棱AC 的中点,∴//EM PA ,又EM ⊂平面,平面, ∴//PA 平面21. 如图,四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,底面ABCD 为梯形,//AB CD ,223AB DC ==,AC BD F ⋂=.且PAD ∆与ABD ∆均为正三角形,E 为AD 的中点,G 为PAD ∆重心.(1)求证://GF 平面PDC ;(2)求异面直线GF 与BC 的夹角的余弦值.【★答案★】(1)证明见解析;(2)33952. 【解析】试题分析:(1)连接AG 交PD 于H ,连接GH ,由重心性质推导出GFHC ,根据线面平行的判定定理可得GF 平面PDC ;(2)取线段AB 上一点Q ,使得13BQ AB =,可证GFQ ∠ 即是异面直线GF 与BC 的夹角,由余弦定理可得结果.试题解析:(1)方法一:连AG 交PD 于H ,连接CH .由梯形ABCD ,//AB CD 且2AB DC =,知21AF FC = 又E 为AD 的中点,G 为PAD ∆的重心,∴21AG GH =,在AFC ∆中,21AG AF GH FC ==,故GF //HC . 又HC ⊆平面PCD ,GF ⊄ 平面PCD ,∴GF //平面PDC .方法二:过G 作//GN AD 交PD 于N ,过F 作//FM AD 交CD 于M ,连接MN ,G 为PAD ∆的重心,23GN PG ED PE ==,22333GN ED ∴==,又ABCD 为梯形,//AB CD ,12CD AB =,12CF AF ∴=13MF AD ∴=,233MF ∴= ∴GN FM = 又由所作,//FM AD 得GN //FM ,GNMF ∴为平行四边形.//GN AD //,GF MN GF PCD MN PCD ⊄⊆面,面,∴ //GF 面PDC(2) 取线段AB 上一点Q ,使得13BQ AB =,连FQ ,则223FQ BC ==, 1013,33EF GF ==,1316,33EQ GQ == ,在GFQ ∆中 222339cos 2?52GF FQ GQ GFQ GF FQ +-∠== ,则异面直线GF 与BC 的夹角的余弦值为33952. 角函数和等差数列综合起来命题,也正体现了这种命题特点.【方法点晴】本题主要考查线面平行的判定定理、异面直线所成的角、余弦定理,属于中挡题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面. 本题(1)是就是利用方法①证明的.22. 已知函数()1ln (2)(1),f x a x a a R x=+-+∈.(Ⅰ)试求函数()f x 的单调区间;(Ⅱ)若不等式()(ln )x f x a x e ≥-对任意的(0,)x ∈+∞恒成立,求实数a 的取值范围. 【★答案★】(1) 见解析(2) 1,1e ⎡⎫+∞⎪⎢-⎣⎭【解析】 【详解】(Ⅰ)因为()()1ln 21,(,0).f x a x a a R x x ⎛⎫=+-+∈> ⎪⎝⎭所以()()2211.ax a a a f x x x x'-++=-= ①若10a -≤≤,则()0f x '<,即()f x 在区间∞(0,+)上单调递减; ②若0a >,则当10a x a +<<时,()0f x '< ;当1a x a +>时,()0f x '>; 所以()f x 在区间10,a a +⎛⎫ ⎪⎝⎭上单调递减,在区间1,a a +⎛⎫+∞ ⎪⎝⎭上单调递增; ③若1a <-,则当10a x a +<<时,()0f x '>;当1a x a+>时,()0f x '<; 所以函数在区间上单调递增,在区间1,a a +⎛⎫+∞⎪⎝⎭上单调递减. 综上所述,若10a -≤≤,函数在区间上单调递减;; 若,函数在区间上单调递减,在区间1,a a +⎛⎫+∞ ⎪⎝⎭上单调递增; 若1a <-,函数在区间上单调递增,在区间1,a a +⎛⎫+∞⎪⎝⎭上单调递减. (Ⅱ)依题意得()()()1ln 210x x f x a x e ae a x ⎛⎫≥-⇔+-+≥ ⎪⎝⎭, 令()()121x h x ae a x ⎛⎫=+-+ ⎪⎝⎭.因为()10h ≥,则()11a e -≥,即101a e ≥>-. 于是,由()1210x ae a x ⎛⎫+-+≥ ⎪⎝⎭,得1201x a e a x +-≥+, 即211x a x a xe-≥+对任意0x >恒成立. 设函数()21(0)x x F x x xe -=>,则()()()2211x x x F x x e +-='-. 当01x <<时,()0F x '>;当1x >时,()0F x '<;所以函数()F x 在()0,1上单调递增,在()1,+∞上单调递减;所以()()max 11F x F e ⎡⎤==⎣⎦. 于,可知11a a e ≥+,解得11a e ≥-.故a 的取值范围是1,1e ⎡⎫+∞⎪⎢-⎣⎭感谢您的下载!快乐分享,知识无限!不积跬步无以至千里,不积小流无以成江海!。
部编版2019---2020学年度下学期小学五年级语文期末测试卷及答案
最新部编版2019---2020学年度下学期小学五年级语文期末测试卷及答案-CAL-FENGHAI.-(YICAI)-Company One12最新部编版2019---2020学年度下学期小学五年级语文期末测试卷及答案(满分:100分 时间: 90分钟)题号 一 二 三 四 五 六 七 八 九 十 总分 得分一、选择题。
(共12分)1.下面加点字的读音全都正确的一项是( )。
A.提供.(ɡòn ɡ)—供.认(ɡōn ɡ) 晃.眼(hu ǎn ɡ)—摇头晃.脑(hu àn ɡ)B.停泊.(b ó)—血泊.(p ō) 监.牢(ji ān )—国子监.(ji àn )C.丈夫.(f ū)—逝者如斯夫.(f ū) 喧哗.(hu á)—哗.哗流水(hu á)2.下面加点的字书写全都正确的一项是( )。
A.师傅. 副.业 负.担 附.庸 B.俊.马 竣.工 严骏. 峻.杰 C.树稍. 船艄. 捎.话 梢.胜一筹3.下面句子中加点的字哪一项解释有误( ) A.其人弗能应.也。
应:应答。
B.果.有杨梅。
果:果然。
C.未闻.孔雀是夫子家禽。
闻:听说。
4.下列句子中没有语病的一项是( )。
A.此次家长会上,学校领导认真总结并听取了家委会成员的建议B.今天全班都来参加毕业典礼彩排,只有龙一鸣一人请假C.中国为了实现半导体国产化这一夙愿,展现出毫不松懈的态度5.下面三幅书法作品中,哪一幅是怀素草书《千字文》(局部)( )A. B. C.6.对这幅漫画的寓意理解正确的一项是( )。
A.有些医生自己生病了,却不愿意进行急救B.讽刺少数医生良心出了问题却不承认,不改正C.有些人总喜欢把没有生病的人送进抢救室二、用修改符号修改下面的一段话。
(共2分)马老师多么和蔼可亲呀!上课时,他教我们耐心地写字的方法;下课时,他常常和我们在一起。
昨天下午,他给淘淘补了一天的课,他非常感动马老师。
2019-2020学年北京市通州区八年级上册期末数学试卷(有答案)-优质版
2019-2020学年北京市通州区八年级(上)期末数学试卷一、选择题(每题只有一个正确答案,共8道小题,每小题2分,共16分)1.若代数式有意义,则x的取值是()A.x=2 B.x≠2 C.x=3 D.x≠﹣32.若代数式有意义,则x的取值是()A.x=0 B.x≠0 C.x≥0 D.x>03.“瓦当”是中国古代用以装饰美化建筑物檐头的建筑附件,其图案各式各样,属于中国特有的文化艺术遗产.下列“瓦当”的图案中,是轴对称图形的为()A.B.C.D.4.如图:过△ABC的边BC上一点D作DF∥AC,若∠A=40°,∠B=60°,则∠FDB的度数为()A.40°B.60°C.100°D.120°5.下列多边形中,内角和为720°的图形是()A.B.C.D.6.如图,两个三角形△ABC与△BDE全等,观察图形,判断在这两个三角形中边DE的对应边为()A.BE B.AB C.CA D.BC7.在一条数轴上四个点A,B,C,D中的一个点表示实数,这个点是()A.A B.B C.C D.D8.下列事件中,满足是随机事件且该事件每个结果发生的可能性都相等的是()A.在50件同种产品中,检验员从中取出一件进行检验,取出每件产品的可能性相同B.一枚质地均匀的骰子,任意掷一次,1﹣6点数朝上的可能性相同C.小东经过任意一个有红绿灯的路口,遇到红、黄和绿指示灯的可能性相同D.口袋里有5个颜色不同的球,从口袋里随意摸出一个球,摸出每个球的可能性相同二、填空题(共8道小题,每小题2分,共16分)9.在括号内填入适当的整式,使分式值不变:.10.实数的平方根是.11.=.12.写出一个比4大且比5小的无理数:.13.如图,在△ABC中,AC=BC,D是BA延长线上一点,E是CB延长线上一点,F是AC延长线上一点,∠DAC=130°,则∠ECF的度数为.14.等腰三角形的一腰长为3,底边长为4,那么它底边上的高为.15.在解分式方程的过程中,该分式方程等号两边同时乘以6x可以去分母,若6x≠0可以得到与其同解的整式方程3+6x=4,此步骤的依据是.16.如图,在△ABC中,按以下步骤作图:①以B为圆心,任意长为半径作弧,交AB于D,交BC于E;②分别以D ,E 为圆心,以大于DE 的同样长为半径作弧,两弧交于点F ;③作射线BF 交AC 于G .如果BG =CG ,∠A =60°,那么∠ACB 的度数为 .三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)17.计算:18.计算:19.=.20.解方程:.21.如图,点C 在线段AE 上,BC ∥DE ,AC =DE ,BC =CE .求证:AB =CD .22.已知a ﹣b =2,求代数式的值.23.如果a 2+2a ﹣1=0,求代数式(a ﹣)•的值.24.已知:如图,在△ABC 中,∠1=∠2,DE ∥AC ,求证:△ADE 是等腰三角形.25.如图,在四边形ABCD 中,∠B =∠D =90°,AB =BC =2,CD =1,求AD 的长.26.已知:过点A的射线l⊥AB,在射线l上截取线段AC=AB,过A的直线m不与直线l及直线AB 重合,过点B作BD⊥m于点D,过点C作CE⊥m于点E.(1)依题意补全图形;(2)求证:△AEC≌△BDA.27.已知:线段AB.(1)尺规作图:作线段AB的垂直平分线l,与线段AB交于点D;(保留作图痕迹,不写作法)(2)在(1)的基础上,点C为l上一个动点(点C不与点D重合),连接CB,过点A作AE⊥BC,垂足为点E.①当垂足E在线段BC上时,直接写出∠ABC度数的取值范围.②若∠B=60°,求证:BD=BC.28.在等边△ABC中,(1)如图1,P,Q是BC边上两点,AP=AQ,∠BAP=20°,求∠AQB的度数;(2)点P,Q是BC边上的两个动点(不与B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM.①依题意将图2补全;②求证:PA=PM.2019-2020学年北京市通州区八年级(上)期末数学试卷参考答案与试题解析一、选择题(每题只有一个正确答案,共8道小题,每小题2分,共16分)1.若代数式有意义,则x的取值是()A.x=2 B.x≠2 C.x=3 D.x≠﹣3【分析】根据分式有意义分母不等于0列式计算,求出x的取值范围即可得解.【解答】解:由题意得,x+3≠0,解得x≠﹣3.故选:D.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)如果分式无意义,那么分母为零;(2)如果分式有意义,那么分母不为零;(3)如果分式的值为零,那么分子为零且分母不为零.反之也成立.2.若代数式有意义,则x的取值是()A.x=0 B.x≠0 C.x≥0 D.x>0【分析】二次根式有意义要求被开方数为非负数,由此可得出x的取值范围.【解答】解:由题意得:x≥0,故选:C.【点评】本题考查二次根式有意义的条件,比较简单,注意掌握被开方数只能为非负数.3.“瓦当”是中国古代用以装饰美化建筑物檐头的建筑附件,其图案各式各样,属于中国特有的文化艺术遗产.下列“瓦当”的图案中,是轴对称图形的为()A.B.C.D.【分析】根据轴对称图形的概念对各图形分析判断后即可求解.【解答】解:A、不是轴对称图形,故选项错误;B、是轴对称图形,故选项正确;C、不是轴对称图形,故选项错误;D、不是轴对称图形,故选项错误.故选:B.【点评】本题考查了轴对称图形,图形两部分沿对称轴折叠后可重合,轴对称图形的关键是寻找对称轴.4.如图:过△ABC的边BC上一点D作DF∥AC,若∠A=40°,∠B=60°,则∠FDB的度数为()A.40°B.60°C.100°D.120°【分析】依据三角形内角和定理,即可得到∠C的度数,再根据平行线的性质,即可得到∠FDB的度数.【解答】解:∵∠A=40°,∠B=60°,∴∠C=80°,又∵DF∥AC,∴∠CDF=∠C=80°,∴∠FDB=100°,故选:C.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.5.下列多边形中,内角和为720°的图形是()A.B.C.D.【分析】n边形的内角和可以表示成(n﹣2)•180°,设这个正多边形的边数是n,就得到方程,从而求出边数.【解答】解:这个正多边形的边数是n,则(n﹣2)•180°=720°,解得:n=6.则这个正多边形的边数是六,故选:D.【点评】本题考查了多边形内角和定理,此题只要结合多边形的内角和公式,寻求等量关系,构建方程求解.6.如图,两个三角形△ABC与△BDE全等,观察图形,判断在这两个三角形中边DE的对应边为()A.BE B.AB C.CA D.BC【分析】全等三角形的对应边相等,根据全等三角形的性质即可得出结论.【解答】解:∵△ABC与△BDE全等,BD<DE<BE,BC<AB<AC,∴在这两个三角形中边DE的对应边为AB,故选:B.【点评】本题主要考查了全等三角形的性质,解决问题的关键是掌握:全等三角形的对应边相等.7.在一条数轴上四个点A,B,C,D中的一个点表示实数,这个点是()A.A B.B C.C D.D【分析】首先判断出的取值范围,然后根据:一般来说,当数轴方向朝右时,右边的数总比左边的数大,判定出这个点是哪个即可.【解答】解:∵2.5<<3,∴在一条数轴上四个点A,B,C,D中的一个点表示实数,这个点是D.故选:D.【点评】此题主要考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.8.下列事件中,满足是随机事件且该事件每个结果发生的可能性都相等的是()A.在50件同种产品中,检验员从中取出一件进行检验,取出每件产品的可能性相同B.一枚质地均匀的骰子,任意掷一次,1﹣6点数朝上的可能性相同C.小东经过任意一个有红绿灯的路口,遇到红、黄和绿指示灯的可能性相同D.口袋里有5个颜色不同的球,从口袋里随意摸出一个球,摸出每个球的可能性相同【分析】利用随机事件发生的可能性是否一样对各选项进行判断.【解答】解:A、在50件同种产品中,检验员从中取出一件进行检验,取出每件产品的可能性不相同,应该对50件产品编序号,然后抽取序号的方式,这样满足是随机事件且该事件每个结果发生的可能性都相等;B、一枚质地均匀的骰子,任意掷一次,1﹣6点数朝上的可能性相同,这个事件满足是随机事件且该事件每个结果发生的可能性都相等;C、小东经过任意一个有红绿灯的路口,遇到红、黄和绿指示灯的可能性不相同;D、口袋里有5个颜色不同的球,从口袋里随意摸出一个球,满足摸出每个球的可能性相同,则要使5个球只是颜色不同,其它都一样.故选:B.【点评】本题考查了可能性的大小:对于机事件发生的可能性(概率)的计算方法,只涉及一步实验的随机事件发生的概率,如:根据概率的大小与面积的关系,对一类概率模型进行的计算;通过列表法、列举法、树状图来计算涉及两步或两步以上实验的随机事件发生的概率,如:配紫色,对游戏是否公平的计算.二、填空题(共8道小题,每小题2分,共16分)9.在括号内填入适当的整式,使分式值不变:.【分析】根据分式的分子分母都乘以(或除以)同一个不为零的整式,分式的值不变,可得答案.【解答】解:分式的分子分母都乘以﹣a,得.∴括号内应填入﹣ab.故答案为:﹣ab.【点评】本题考查了分式的基本性质,解题时注意:分式的分子分母都乘以(或除以)同一个不为零的整式,分式的值不变.10.实数的平方根是.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±)2=,∴实数的平方根是±.故答案为±.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.11.=﹣2 .【分析】根据简=|a|得到原式=|2﹣|,然后根据绝对值的意义去绝对值即可.【解答】解:原式=|2﹣|=﹣(2﹣)=﹣2.故答案为﹣2.【点评】本题考查了二次根式的性质与化简:=|a|.也考查了绝对值的意义.12.写出一个比4大且比5小的无理数:.【分析】由于4=,5=,所以可写出一个二次根式,此根式的被开方数大于16且小于25即可.【解答】解:比4大且比5小的无理数可以是.故答案为.【点评】本题考查了对估算无理数的大小的应用,注意:无理数是指无限不循环小数,此题是一道开放型的题目,答案不唯一.13.如图,在△ABC中,AC=BC,D是BA延长线上一点,E是CB延长线上一点,F是AC延长线上一点,∠DAC=130°,则∠ECF的度数为100°.【分析】根据等腰三角形的性质和三角形的内角和解答即可.【解答】解:∵∠DAC=130°,∠DAC+∠CAB=180°,∴∠CAB=50°,∵AC=BC,∴∠CBA=50°,∠ACB=180°﹣50°﹣50°=80°,∴∠ECF=180°﹣80°=100°,故答案为:100°.【点评】此题考查等腰三角形的性质和三角形内角和,关键是根据等腰三角形的性质和三角形的内角和解答.14.等腰三角形的一腰长为3,底边长为4,那么它底边上的高为.【分析】等腰三角形的腰和底边高线构成直角三角形,根据勾股定理即可求得底边上高线的长度.【解答】解:如图,∵AB=AC=3,BC=4,AD⊥BC,∴BD=DC=2,在Rt△ABD中,由勾股定理得:AD==.故答案为:.【点评】本题主要考查了等腰三角形的性质以及勾股定理的应用.等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.15.在解分式方程的过程中,该分式方程等号两边同时乘以6x可以去分母,若6x≠0可以得到与其同解的整式方程3+6x=4,此步骤的依据是分式基本性质:分式的分子、分母同乘一个不等于零的整式,分式的值不变.【分析】依据分式的基本性质进行判断即可.【解答】解:在解分式方程的过程中,该分式方程等号两边同时乘以6x可以去分母,若6x≠0可以得到与其同解的整式方程3+6x=4,此步骤的依据是分式基本性质:分式的分子、分母同乘一个不等于零的整式,分式的值不变,故答案为:分式基本性质:分式的分子、分母同乘一个不等于零的整式,分式的值不变.【点评】本题主要考查了解分式方程,解决问题的关键是掌握解分式方程的基本步骤.16.如图,在△ABC中,按以下步骤作图:①以B为圆心,任意长为半径作弧,交AB于D,交BC于E;②分别以D,E为圆心,以大于DE的同样长为半径作弧,两弧交于点F;③作射线BF交AC于G.如果BG=CG,∠A=60°,那么∠ACB的度数为40°.【分析】利用基本作图可判断BG平分∠ABC,则∠ABG=∠CBG,再利用BG=CG得到∠C=∠CBG,然后根据三角形内角和计算∠C的度数.【解答】解:由作法得BG平分∠ABC,∴∠ABG=∠CBG,∵BG=CG,∴∠C=∠CBG,∴∠ABG=∠CBG=∠C,∵∠A+∠ABC+∠C=180°,即60°+3∠C=180°,∴∠C=40°.故答案为40°.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)17.计算:【分析】先通分化为同分母分式,再利用同分母分式的加减法则计算,约分得到最简结果.【解答】解:原式=====.【点评】本题考查了分式的加减运算,掌握运算法则是解题的关键.18.计算:【分析】可运用平方差公式,直接计算出结果.【解答】解:原式==12﹣2=10.【点评】本题考查了乘法的平方差公式.掌握平方差公式的结构特点是解决本题的关键.19.=.【分析】先把分式方程化为整式方程,求出x的值,代入最简公分母进行检验即可.【解答】解:方程两边同时乘以2x(x+3)得,x+3=4x,整理得,3x=3,解得x=1,把x=1代入2x(x+3)得,2x(x+3)=8,故x=1是原分式方程的解.【点评】本题考查的是解分式方程,在解答此类问题时要注意验根.20.解方程:.【分析】观察可得最简公分母是(x+1)(x﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程两边同乘以(x+1)(x﹣1)得(x+1)2﹣6=(x+1)(x﹣1)整理,得2x=4(3分)x=2(4分)检验,把x=2代入(x+1)(x﹣1)=3≠0.所以,原方程的根是x=2.【点评】本题考查了分式方程的解法,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.21.如图,点C在线段AE上,BC∥DE,AC=DE,BC=CE.求证:AB=CD.【分析】利用SAS证明△ABC≌△DCE,根据全等三角形的对应边相等即可得到AB=CD.【解答】解:∵BC∥DE∴∠ACB=∠E,在△ABC和△DCE中∵∴△ABC≌△DCE(SAS)∴AB=CD.【点评】本题考查了全等三角形的性质定理与判定定理,解决本题的关键是证明△ABC≌△DCE(SAS).22.已知a﹣b=2,求代数式的值.【分析】原式括号中通分并利用同分母分式的加减法则计算,约分得到最简结果,把a﹣b=2整体代入计算即可求出值.【解答】解:原式====,当a﹣b=2时,原式==.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.23.如果a2+2a﹣1=0,求代数式(a﹣)•的值.【分析】原式括号中通分并利用同分母分式的加减法则计算,约分得到最简结果,然后对a2+2a﹣1=0变形即可解答本题.【解答】解:原式====a(a+2)=a2+2a,∵a2+2a﹣1=0,∴原式=1.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.24.已知:如图,在△ABC中,∠1=∠2,DE∥AC,求证:△ADE是等腰三角形.【分析】欲证明△ADE是等腰三角形,只要证明∠ADE=∠1即可.【解答】证明:∵DE∥AC,∴∠ADE=∠2,∵∠1=∠2,∴∠ADE=∠1,∴EA=ED,即△ADE是等腰三角形.【点评】本题考查等腰三角形的判定,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.如图,在四边形ABCD中,∠B=∠D=90°,AB=BC=2,CD=1,求AD的长.【分析】连接AC,首先由勾股定理求得AC2的值;然后在直角△ACD中,再次利用勾股定理来求AD 的长度即可.【解答】解:连接AC,∵∠B=90°∴AC2=AB2+BC2.∵AB=BC=2∴AC2=8.∵∠D=90°∴AD2=AC2﹣CD2.∵CD=1,∴AD2=7.∴.【点评】考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.26.已知:过点A的射线l⊥AB,在射线l上截取线段AC=AB,过A的直线m不与直线l及直线AB 重合,过点B作BD⊥m于点D,过点C作CE⊥m于点E.(1)依题意补全图形;(2)求证:△AEC≌△BDA.【分析】(1)根据要求画出图形即可.(2)根据AAS证明即可.【解答】(1)解:如图所示.(2)证明:∵直线l⊥AB,∴∠CAB=90°,∴∠CAE+∠DAB=90°,∵BD⊥m,∴∠ADB=90°,∴∠DAB+∠B=90°,∴∠CAE=∠B,∵BD⊥m于点D,CE⊥m于点E,∴∠CEA=∠DAB=90°,在△AEC和△BDA中,,∴△AEC≌△BDA(AAS).【点评】本题考查全等三角形的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.27.已知:线段AB.(1)尺规作图:作线段AB的垂直平分线l,与线段AB交于点D;(保留作图痕迹,不写作法)(2)在(1)的基础上,点C为l上一个动点(点C不与点D重合),连接CB,过点A作AE⊥BC,垂足为点E.①当垂足E在线段BC上时,直接写出∠ABC度数的取值范围.②若∠B=60°,求证:BD=BC.【分析】(1)分别以A,B为圆心,大于AB长的一半为半径画弧,过两弧的交点作直线l即可;(2)①依据图形即可得到∠ABC度数的取值范围.②连接AC,依据线段垂直平分线的性质以及等边三角形的性质,即可得到结论.【解答】解:(1)如图所示,直线l即为所求,(2)①当垂足E在线段BC上时,45°≤∠ABC<90°;②如图,连接AC,∵CD是AB的垂直平分线∴,CA=CB,又∵∠B=60°,∴△ABC是等边三角形,∴BC=AB,∴.【点评】本题主要考查了基本作图以及线段垂直平分线的性质,线段垂直平分线上任意一点,到线段两端点的距离相等.28.在等边△ABC中,(1)如图1,P,Q是BC边上两点,AP=AQ,∠BAP=20°,求∠AQB的度数;(2)点P,Q是BC边上的两个动点(不与B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM.①依题意将图2补全;②求证:PA=PM.【分析】(1)根据三角形的外角性质得到∠APC,由等腰三角形的性质即可得到结论;(2)①根据题意补全图形即可;②过点A作AH⊥BC于点H,根据等边三角形的判定和性质解答即可.【解答】解:(1)∵△ABC为等边三角形∴∠B=60°∴∠APC=∠BAP+∠B=80°∵AP=AQ∴∠AQB=∠APC=80°,(2)①补全图形如图所示,②证明:过点A作AH⊥BC于点H,如图.由△ABC为等边三角形,AP=AQ,可得∠PAB=∠QAC,∵点Q,M关于直线AC对称,∴∠QAC=∠MAC,AQ=AM∴∠PAB=∠MAC,AQ=AM∴∠PAM=∠BAC=60°,∴△APM为等边三角形∴PA=PM.【点评】本题考查了等边三角形的性质和判定,等腰三角形的性质,三角形的外角的性质,轴对称的性质,熟练掌握等边三角形的判定和性质是解题的关键.。
2019-2020学年北京市通州区七年级(下)期中数学试卷 (解析版)
2019-2020学年北京市通州区七年级第二学期期中数学试卷一、选择题1.(2分)已知两个不等式的解集在数轴上如图所示,则由这两个不等式组成的不等式组的解集为()A.﹣2<x<2B.x<2C.x≥﹣2D.x>22.(2分)下列运算:①x2•x3=x6;②x2+x2=2x2;③(x2)3=x6;④(﹣3x)2=9x2中,正确的是()A.②③④B.①②④C.①③④D.①②③3.(2分)解方程组时,由①﹣②,得()A.﹣2n=1B.﹣2n=3C.8n=3D.8n=14.(2分)如图,量得直线l外一点P到l的距离PB的长为5cm,点A是直线l上的一点,那么线段PA的长不可能是()A.15 cm B.5.5cm C.5cm D.4cm5.(2分)如果x<y,那么下列各式中一定成立的是()A.>B.﹣x>﹣y C.x+1>y+1D.x﹣c>y﹣c 6.(2分)已知二元一次方程组,把(2)代入(1),整理,得()A.x﹣2x+1=4B.x﹣2x﹣1=4C.x﹣6x﹣3=6D.x﹣6x+3=4 7.(2分)如果关于x的不等式组只有3个整数解,那么a的取值范围是()A.3≤a<4B.3<a≤4C.2≤a<3D.2<a≤38.(2分)用加减法解方程组,下列解法正确的是()A.①×3+②×2,消去y B.①×2﹣②×3,消去yC.①×(﹣3)+②×2,消去x D.①×2﹣②×3,消去x9.(2分)把一根长11cm的绳子截成1cm和3cm两种规格的绳子,要求每种规格的绳子至少1根,且无浪费.下面有四种说法:①规格为1cm的绳子可能截出8根;②规格为1cm的绳子可能截出5根;③规格为1cm的绳子可能截出2根;④规格为1cm的绳子可能截出1根.则所有正确说法的序号是()A.①②③④B.①②③C.①②④D.②③④10.(2分)如图,这是王彬同学设计的一个计算机程序,规定从“输入一个值x”到判断“结果是否≥13”为一次运行过程.如果程序运行两次就停止,那么x的取值范围是()A.x≥4B.4≤x<7C.4<x≤7D.x≤7二、填空题{本题共10个小题,每小题2分,共20分)11.(2分)根据数量关系“m的3倍与2的和不大于1”,列出不等式为.12.(2分)(2x﹣1)2=.13.(2分)如果关于x的不等式x≥的解集在数轴上表示如图所示,那么a的值为.14.(2分)如果关于x,y的二元一次方程的一个解为,那么这个方程可以是.15.(2分)已知x=2是关于x的不等式x﹣3m+1≤0的一个解,那么m的取值范围为.16.(2分)已知整式2a x+y b3﹣a2b x﹣y可以合并,那么代数式(x+y)(x﹣y)的值是.17.(2分)计算:52021×0.22020=.18.(2分)《九章算术》中有这样一个问题:“五只雀、六只燕,共重1斤(等于16两),雀重燕轻,互换其中一只,恰好一样重,问:每只燕、雀的重量各为多少?”译文如下:有5只麻雀和6只燕子,一共重16两;5只麻雀的重量超过了6只燕子的重量,如果互换其中的一只,重量恰好相等,则每只麻雀、燕子的平均重量分别为多少两?设每只麻雀的平均重量为x两,每只燕子的平均重量为y两,根据题意列出的方程组是.19.(2分)下表中的每一对x,y的值都是方程x+y=3的一个解.x…﹣2﹣1012345…y…543210﹣1﹣2…①当x<0时,y的值大于3;②当y<2时,x的值小于1;③y的值随着x的增大越来越小.上述结论中,所有正确结论的序号是.20.(2分)五一期间,各大商场掀起购物狂潮,现有甲、乙、丙三个商场开展的促销活动如表所示:商场优惠话动甲全场按标价的6折销售乙实行“满100元送100元的购物券“的优惠,购物券可以在再购买时冲抵现金(比如:顾客购买衣服220元,赠券200元,再购买裤子时可冲抵现金,不再送券丙实行“满100元减50元”的优惠(比如:某顾客购物320元,他只需付款170元)三个商场同时出售某种标价320元的破壁机和某种标价390元的空气炸锅,若张阿姨想买这两样厨房用具,她选择商场更合适.三、解答題(本题共60分,第21-24题,每小題5分;第25~27题,每小题5分;第28~29题,每小题5分;第30题8分)解答应写出文字说明、演算步骤或证明过程21.(5分)解方程组.22.(5分)解不等式组.23.(5分)计算:(x+y)2﹣(x+2y)(x﹣2y)﹣2y(x﹣2y).24.(5分)通过测量一棵树的树围(树干的周长)可以计算出它的树龄,通常规定以树干离地面1.5m的地方作为测量部位,某树栽种时的树围约为8cm,以后树围每年增加约4cm,这棵树至少生长多少年(年数取整数),其树围才能超过2m?25.(6分)若不等式的最大整数解为方程2x﹣ax=3的解,求a的值.26.(6分)某道路规划为城市主干路,全长7.6千米.如果该任务由甲、乙两工程队先后接力完成.甲工程队每天修建道路0.02千米,乙工程队每天修建道路0.01千米,两工程队共需修建560天,求甲、乙两工程队分别修建道路多少千米?根据题意,小刚同学列出了一个尚不完整的方程组(1)根据小刚同学列的方程组,请你分别指出未知数x,y表示的意义:x表示,y表示.(2)小红同学“设甲工程队的工作时间为x天,乙工程队的工作时间为y天”,请你利用小红同学设的未知数求甲、乙两工程队分别修建道路的长度.27.(6分)将边长为a的正方形的左上角剪掉一个边长为b的正方形(如图1),将剩下部分按照虚线分割成①和②两部分,将①和②两部分拼成一个长方形(如图2).(1)设图1中阴影部分的面积为S₁,图2中阴影部分的面积为S₂,请用含a.b的式子表示:S₁=,S₂=;(不必化简)(2)以上结果可以验证的乘法公式是.(3)利用(2)中得到的公式,计算;20202﹣2019×2021.28.(7分)在数轴上,点A表示的数为2,点B表示的数为5.(1)如果C是数轴上的一点,那么点C到点A的距离与点C到点B的距离之和的最小值是;(2)求关于x的不等式组的解集;(3)如果关于x的不等式组的解集中每一个x值都不在线段AB上,求m的取值范围.29.(7分)阅读以下内容:已知有理数m,n满足m+n=3,且求k的值.三位同学分别提出了以下三种不同的解题思路:甲同学:先解关于m,n的方程组,再求k的值;乙同学:将原方程组中的两个方程相加,再求k的值;丙同学:先解方程组,再求k的值.(1)试选择其中一名同学的思路,解答此题;(2)在解关于x,y的方程组时,可以用①×7﹣②×3消去未知数x,也可以用①×2+②×5消去未知数y.求a和b的值.30.(8分)如果一元一次方程的解是一元一次不等式组的一个解,那么称该一元一次方程为该不等式组的子集方程.(1)在方程x﹣3=0①,2x+1=0②,x﹣(3x+1)=﹣5③中,写出是不等式组的子集方程的序号:;(2)写出不等式组的一个子集方程,使得它的解是整数:;(3)若方程x=1,x=2都是关于x的不等式组的子集方程,求m的取值范围.参考答案一、选择题(本题共10个小題,每小题2分,共20分)每题均有四个选项,符合题意的选项只有一个.1.(2分)已知两个不等式的解集在数轴上如图所示,则由这两个不等式组成的不等式组的解集为()A.﹣2<x<2B.x<2C.x≥﹣2D.x>2解:根据数轴图示可知,这两个不等式组成的不等式组的解集为x>2,故选:D.2.(2分)下列运算:①x2•x3=x6;②x2+x2=2x2;③(x2)3=x6;④(﹣3x)2=9x2中,正确的是()A.②③④B.①②④C.①③④D.①②③解:x2•x3=x2+3=x5,因此①不正确;根据整式加减的计算方法,合并同类项可得x2+x2=2x2,因此②正确;(x2)3=x2×3=x6,因此③正确;④(﹣3x)2=(﹣3)2•x2=9x2,因此④正确;因此正确的有:②③④,故选:A.3.(2分)解方程组时,由①﹣②,得()A.﹣2n=1B.﹣2n=3C.8n=3D.8n=1解:解方程组时,由①﹣②,得8n=3.故选:C.4.(2分)如图,量得直线l外一点P到l的距离PB的长为5cm,点A是直线l上的一点,那么线段PA的长不可能是()A.15 cm B.5.5cm C.5cm D.4cm解:直线l外一点P到l的距离PB的长为5cm,点A是直线l上的一点,那么线段PA的长最短等于5cm,故不可能是4cm,故选:D.5.(2分)如果x<y,那么下列各式中一定成立的是()A.>B.﹣x>﹣y C.x+1>y+1D.x﹣c>y﹣c解:A、由x<y,可得:,选项不成立;B、由x<y,可得:﹣x>﹣y,选项成立;C、由x<y,可得:x+1<y+1,选项不成立;D、由x<y,可得:x﹣c<y﹣c,选项不成立;故选:B.6.(2分)已知二元一次方程组,把(2)代入(1),整理,得()A.x﹣2x+1=4B.x﹣2x﹣1=4C.x﹣6x﹣3=6D.x﹣6x+3=4解:,把(2)代入(1)得:x﹣3(2x﹣1)=4,整理,得:x﹣6x+3=4;故选:D.7.(2分)如果关于x的不等式组只有3个整数解,那么a的取值范围是()A.3≤a<4B.3<a≤4C.2≤a<3D.2<a≤3解:∵关于x的不等式组只有3个整数解,∴3个整数解是0,1,2,∴2≤a<3,故选:C.8.(2分)用加减法解方程组,下列解法正确的是()A.①×3+②×2,消去y B.①×2﹣②×3,消去yC.①×(﹣3)+②×2,消去x D.①×2﹣②×3,消去x解:用加减法解方程组,①×(﹣3)+②×2,消去x,故选:C.9.(2分)把一根长11cm的绳子截成1cm和3cm两种规格的绳子,要求每种规格的绳子至少1根,且无浪费.下面有四种说法:①规格为1cm的绳子可能截出8根;②规格为1cm的绳子可能截出5根;③规格为1cm的绳子可能截出2根;④规格为1cm的绳子可能截出1根.则所有正确说法的序号是()A.①②③④B.①②③C.①②④D.②③④解:设截成1cm的绳子x根,3cm的绳子y根,由题意得:x+3y=11,①当x=8时,y=1,即规格为1cm的绳子截出8根时,3cm规格的绳子可以截1根,正确;②当x=5时,y=2,即规格为1cm的绳子截出5根时,3cm规格的绳子可以截2根,正确;③当x=2时,y=3,即规格为1cm的绳子截出2根时,3cm规格的绳子可以截3根,正确;④当x=1时,y=,即规格为1cm的绳子截出1根时,3cm规格的绳子截不出整数根,所以不正确;正确说法的序号是①②③.故选:B.10.(2分)如图,这是王彬同学设计的一个计算机程序,规定从“输入一个值x”到判断“结果是否≥13”为一次运行过程.如果程序运行两次就停止,那么x的取值范围是()A.x≥4B.4≤x<7C.4<x≤7D.x≤7解:依题意,得,解得:4≤x<7.故选:B.二、填空题{本题共10个小题,每小题2分,共20分)11.(2分)根据数量关系“m的3倍与2的和不大于1”,列出不等式为3m+2≤1.解:根据题意得:3m+2≤1.故答案为:3m+2≤1.12.(2分)(2x﹣1)2=4x2﹣4x+1.解:原式=4x2﹣4x+1.故答案为4x2﹣4x+1.13.(2分)如果关于x的不等式x≥的解集在数轴上表示如图所示,那么a的值为﹣3.解:根据题意知=﹣2,∴a﹣1=﹣4,则a=﹣3,故答案为:﹣3.14.(2分)如果关于x,y的二元一次方程的一个解为,那么这个方程可以是x+y =1(答案不唯一).解:根据题意:x+y=1(答案不唯一),故答案为:x+y=1(答案不唯一).15.(2分)已知x=2是关于x的不等式x﹣3m+1≤0的一个解,那么m的取值范围为m ≥1.解:∵x=2是关于x的不等式x﹣3m+1≤0的一个解,∴2﹣3m+1≤0,解得:m≥1.故答案为:m≥1.16.(2分)已知整式2a x+y b3﹣a2b x﹣y可以合并,那么代数式(x+y)(x﹣y)的值是6.解:∵整式2a x+y b3﹣a2b x﹣y可以合并,∴x+y=2,x﹣y=3,∴(x+y)(x﹣y)=2×3=6,故答案为:6.17.(2分)计算:52021×0.22020=5.解:52021×0.22020=(5×0.2)2020×5=12020×5=5,故答案为:5.18.(2分)《九章算术》中有这样一个问题:“五只雀、六只燕,共重1斤(等于16两),雀重燕轻,互换其中一只,恰好一样重,问:每只燕、雀的重量各为多少?”译文如下:有5只麻雀和6只燕子,一共重16两;5只麻雀的重量超过了6只燕子的重量,如果互换其中的一只,重量恰好相等,则每只麻雀、燕子的平均重量分别为多少两?设每只麻雀的平均重量为x两,每只燕子的平均重量为y两,根据题意列出的方程组是.解:依题意,得:.故答案为:.19.(2分)下表中的每一对x,y的值都是方程x+y=3的一个解.x…﹣2﹣1012345…y…543210﹣1﹣2…①当x<0时,y的值大于3;②当y<2时,x的值小于1;③y的值随着x的增大越来越小.上述结论中,所有正确结论的序号是①③.解:观察表格得:①当x<0时,y>3;②当y<2时,x的值大于1;③y的值随着x 的增大越来越小.故答案为:①③.20.(2分)五一期间,各大商场掀起购物狂潮,现有甲、乙、丙三个商场开展的促销活动如表所示:商场优惠话动甲全场按标价的6折销售乙实行“满100元送100元的购物券“的优惠,购物券可以在再购买时冲抵现金(比如:顾客购买衣服220元,赠券200元,再购买裤子时可冲抵现金,不再送券丙实行“满100元减50元”的优惠(比如:某顾客购物320元,他只需付款170元)三个商场同时出售某种标价320元的破壁机和某种标价390元的空气炸锅,若张阿姨想买这两样厨房用具,她选择丙商场更合适.解:在甲商场购买所需费用(320+390)×0.6=426(元);在乙商场购买所需费用320+(390﹣300)=410(元);在丙商场购买所需费用(320+390)﹣50×7=360(元).∵426>410>360,∴选择丙商场更合适.故答案为:丙.三、解答題(本题共60分,第21-24题,每小題5分;第25~27题,每小题5分;第28~29题,每小题5分;第30题8分)解答应写出文字说明、演算步骤或证明过程21.(5分)解方程组.解:,①×3+②得:10x=﹣30,解得:x=﹣3,把x=﹣3代入②得:y=5,则方程组的解为.22.(5分)解不等式组.解:不等式组,由①得:x<2,由②得:x≤1,则不等式组的解集为x≤1.23.(5分)计算:(x+y)2﹣(x+2y)(x﹣2y)﹣2y(x﹣2y).解:原式=x2+2xy+y2﹣(x2﹣4y2)﹣(2xy﹣4y2)=x2+2xy+y2﹣x2+4y2﹣2xy+4y2=9y2.24.(5分)通过测量一棵树的树围(树干的周长)可以计算出它的树龄,通常规定以树干离地面1.5m的地方作为测量部位,某树栽种时的树围约为8cm,以后树围每年增加约4cm,这棵树至少生长多少年(年数取整数),其树围才能超过2m?解:设这棵树生长x年,其树围才能超过2m,由题意得8+4x>200解得:x>48∵x是整数,∴x=49.答:这棵树生长49年,其树围才能超过2m.25.(6分)若不等式的最大整数解为方程2x﹣ax=3的解,求a的值.解:不等式,去分母得:6﹣2(x﹣2)>3x,去括号得:6﹣2x+4>3x,移项合并得:﹣5x>﹣10,解得:x<2,不等式最大整数解为1,把x=1代入方程得:2﹣a=3,解得:a=﹣1,则a的值为﹣1.26.(6分)某道路规划为城市主干路,全长7.6千米.如果该任务由甲、乙两工程队先后接力完成.甲工程队每天修建道路0.02千米,乙工程队每天修建道路0.01千米,两工程队共需修建560天,求甲、乙两工程队分别修建道路多少千米?根据题意,小刚同学列出了一个尚不完整的方程组(1)根据小刚同学列的方程组,请你分别指出未知数x,y表示的意义:x表示甲工程队修建道路的长度,y表示乙工程队修建道路的长度.(2)小红同学“设甲工程队的工作时间为x天,乙工程队的工作时间为y天”,请你利用小红同学设的未知数求甲、乙两工程队分别修建道路的长度.解:(1)由题意可知:x表示甲工程队修建道路的长度,y表示乙工程队修建道路的长度.故答案为:甲工程队修建道路的长度,乙工程队修建道路的长度.(2)根据题意,得,解得.∴200×0.02=4(千米),360×0.01=3.6(千米).答:甲工程队修建道路4千米,乙工程队修建道路3.6千米.27.(6分)将边长为a的正方形的左上角剪掉一个边长为b的正方形(如图1),将剩下部分按照虚线分割成①和②两部分,将①和②两部分拼成一个长方形(如图2).(1)设图1中阴影部分的面积为S₁,图2中阴影部分的面积为S₂,请用含a.b的式子表示:S₁=a2﹣b2,S₂=(a+b)(a﹣b);(不必化简)(2)以上结果可以验证的乘法公式是(a+b)(a﹣b)=a2﹣b2.(3)利用(2)中得到的公式,计算;20202﹣2019×2021.解:(1)根据图形以及正方形和长方形的面积计算公式可得:S₁=a2﹣b2,S₂=(a+b)(a﹣b)故答案为:a2﹣b2,(a+b)(a﹣b);(2)以上结果可以验证的乘法公式是a2﹣b2=(a+b)(a﹣b).故答案为:(a+b)(a﹣b)=a2﹣b2.(3)20202﹣2019×2021=20202﹣(2020﹣1)×(2020+1)=20202﹣(20202﹣1)=20202﹣20202+1=1.28.(7分)在数轴上,点A表示的数为2,点B表示的数为5.(1)如果C是数轴上的一点,那么点C到点A的距离与点C到点B的距离之和的最小值是3;(2)求关于x的不等式组的解集;(3)如果关于x的不等式组的解集中每一个x值都不在线段AB上,求m的取值范围.解:(1)点C到点A的距离与点C到点B的距离之和的最小值是5﹣2=3,故答案为:3;(2)解不等式x﹣m≥﹣1,得x≥m﹣1,解不等式x﹣m<1,得:x<m+1,则不等式组的解集为m﹣1≤x<m+1;(3)∵关于x的不等式组的解集中每一个x值都不在线段AB上,∴m﹣1>5或m+1≤2,解得m>6或m≤1.29.(7分)阅读以下内容:已知有理数m,n满足m+n=3,且求k的值.三位同学分别提出了以下三种不同的解题思路:甲同学:先解关于m,n的方程组,再求k的值;乙同学:将原方程组中的两个方程相加,再求k的值;丙同学:先解方程组,再求k的值.(1)试选择其中一名同学的思路,解答此题;(2)在解关于x,y的方程组时,可以用①×7﹣②×3消去未知数x,也可以用①×2+②×5消去未知数y.求a和b的值.解:(1)选择甲,,①×3﹣②×2得:5m=21k﹣8,解得:m=,②×3﹣①×2得:5n=2﹣14k,解得:n=,代入m+n=3得:+=3,去分母得:21k﹣8+2﹣14k=15,移项合并得:7k=21,解得:k=3;选择乙,,①+②得:5m+5n=7k﹣6,解得:m+n=,代入m+n=3得:=3,去分母得:7k﹣6=15,解得:k=3;选择丙,联立得:,①×3﹣②得:m=11,把m=11代入①得:n=﹣8,代入3m+2n=7k﹣4得:33﹣16=7k﹣4,解得:k=3;(2)根据题意得:,解得:,检验符合题意,则a和b的值分别为2,5.30.(8分)如果一元一次方程的解是一元一次不等式组的一个解,那么称该一元一次方程为该不等式组的子集方程.(1)在方程x﹣3=0①,2x+1=0②,x﹣(3x+1)=﹣5③中,写出是不等式组的子集方程的序号:①③;(2)写出不等式组的一个子集方程,使得它的解是整数:2x﹣2=0;(3)若方程x=1,x=2都是关于x的不等式组的子集方程,求m的取值范围.解:(1)解方程x﹣3=0得:x=3,解方程2x+1=0得:x=﹣,解方程x﹣(3x+1)=﹣5得:x=2,解不等式组得:<x<,所以不等式组子集方程是①③,故答案为:①③;(2)解不等式2x﹣1<3,得:x<2,解不等式3x+1>﹣x﹣5,得:x>﹣,则不等式组的解集为﹣<x<2,∴其整数解为﹣1、0、1,则该不等式组的一个子集方程为2x﹣2=0.故答案为:2x﹣2=0;(3)解关于x的不等式组的得m<x≤m+2,∵方程x=1,x=2都是关于x的不等式组的子集方程,∴0≤m<1.。
北京市通州区2023-2024学年高一下学期期末考试数学试卷(含答案)
2024北京通州高一(下)期末数 学2024年7月本试卷共4页,共150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,请将答题卡交回。
第一部分(选择题 共40分)一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)复平面内点所对应复数的虚部为(A )1(B ) (C ) (D )(2)样本数据3,5,7,2,10,2的中位数是(A )7(B )6(C )5(D )2(3)已知向量,,那么向量可以是(A )(B )(C )(D )(4)在△中,角所对的边分别为,已知(A )(B )(C )或(D )或(A )()在下列关于直线(A )若,且,则 (B )若,且,则(C )若,,,则(D )若,且,则(8)一个口袋内装有大小、形状相同的红色、黄色和绿色小球各2个,不放回地逐个取出2个小球,则与事件“2个小球都为红色”互斥而不对立的事件有(1,2)-A 2-i 2-i(-1,2)a =⊥a b b 21(,)(21)-,(21)-,(12)-,ABC ,,A B C ,,a b c ,1,6A a b π==B =3π4π4π34π3π23π11111116π⊂l β⊥αβ⊥l α⊥l β//αβ⊥l α//αβl ⊂α⊂m β//l m⊥l β⊥αβ//l α(A )(B ))达芬奇方砖是在正六边形上画了具六片这样的达·芬奇方砖拼成下图的组合,这个组合再转换成几何体,则需要10个正方体叠落而成,若一个小球从图中阴影小正方体出发,等概率向相邻小正方体(具有接触面)移动一步,则经过两步移动后小球又回到阴影小正方体的概率为第二部分(非选择题 共二、填空题共5小题,每小题5分,共25分。
11)设复数满足(12)从写有数字1,2,3,4,5是 .(13)已知分别是△的角的对边,若,,,则= ,△的面积为 .(14)在正方形中,是边上一点,且,点为的延长线上一点,写出可以使得成立的,的一组数据为 .(15)如图,正方体的棱长为1,为的中点,为线段上的动点,过点,,的平面截该正方体所得截面记为,则下列命题正确的是 .①直线与直线相交;②当时,为四边形;③当为的中点时,平面截正方体所得的截面面积为;④当时,截面与,分别交于,则23z ()1i 2i -=z ,,a b c ABC ,,A B C 5=b 4=c 10⋅=-AB AC A ABC ABCD E DC 2=DE EC F AE =+AF AB AD λμλμ(),λμ1111ABCD A B C D -E BC F 1CC A E FS 1D D AF 102CF <<S F 1CC AEF 9834CF =S 11A D 11C D ,M N MN三、解答题共6小题,共85分。
2019-2020年高二下学期期末数学试卷(文科)含解析
2019-2020年高二下学期期末数学试卷(文科)含解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U=R,A={x|x(x﹣2)<0},B={x|x﹣1>0},则A∩B=()A.(﹣2,1)B.[1,2)C.(﹣2,1] D.(1,2)2.已知数列…,则2是这个数列的()A.第6项B.第7项C.第11项D.第19项3.下列四个命题中的真命题为()A.∃x0∈Z,1<4x0<3 B.∃x0∈Z,5x0+1=0C.∀x∈R,x2﹣1=0 D.∀x∈R,x2+x+2>04.函数y=在x=1处的导数等于()A.1 B.2 C.3 D.45.“a=﹣2”是“复数z=(a2﹣4)+(a+1)i(a,b∈R)为纯虚数”的()A.充分非必要条件B.必要非充分条件C.充要条件 D.既非充分又非必要条件6.已知a=30.2,b=log64,c=log32,则a,b,c的大小关系为()A.c<a<b B.c<b<a C.b<a<c D.b<c<a7.设函数f(x)(x∈R)为奇函数,f(1)=,f(x+2)=f(x)+f(2),则f(5)=()A.0 B.1 C.D.58.高二第二学期期中考试,按照甲、乙两个班级学生数学考试成绩优秀和不优秀统计后,得到如表:A.0.600 B.0.828 C.2.712 D.6.0049.已知函数f(x)=x|x|﹣2x,则下列结论正确的是()A.f(x)是偶函数,递增区间是(0,+∞)B.f(x)是偶函数,递减区间是(﹣∞,1)C.f(x)是奇函数,递减区间是(﹣1,1)D.f(x)是奇函数,递增区间是(﹣∞,0)10.为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为a0a1a2,a i∈{0,1}(i=0,1,2),传输信息为h0a0a1a2h1,其中h0=a0⊕a1,h1=h0⊕a2,⊕运算规则为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是()A.11010 B.01100 C.10111 D.00011二、填空题(本大题共6小题,每小题3分,共18分)11.设复数z满足(1﹣i)z=2i,则z=_______.12.函数y=的值域为_______.13.若P=﹣1,Q=﹣,则P与Q的大小关系是_______.14.已知变量x,y具有线性相关关系,测得(x,y)的一组数据如下:(0,1),(1,2),(2,4),(3,5),其回归方程为=1.4x+a,则a的值等于_______.15.已知函数则的值为_______.16.按程序框图运算:若x=5,则运算进行_______次才停止;若运算进行3次才停止,则x的取值范围是_______.三、解答题(本大题共5小题,共52分.解答应写出文字说明,证明过程或演算步骤)17.已知函数f(x)=log a(x+1)﹣log a(1﹣x),a>0且a≠1.(1)求f(x)的定义域;(2)判断f(x)的奇偶性并予以证明.18.命题p方程:x2+mx+1=0有两个不等的实根,命题q:方程4x2+4(m+2)x+1=0无实根.若“p或q”为真命题,“p且q”为假命题,求m的取值范围.19.在边长为60cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?20.已知函数f(x)=ax+lnx(a∈R).(Ⅰ)若a=2,求曲线y=f(x)在x=1处的切线方程;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=x2﹣2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范围.21.在无穷数列{a n}中,a1=1,对于任意n∈N*,都有a n∈N*,且a n<a n+1.设集合A m={n|a n ≤m,m∈N*},将集合A m中的元素的最大值记为b m,即b m是数列{a n}中满足不等式a n≤m的所有项的项数的最大值,我们称数列{b n}为数列{a n}的伴随数列.例如:数列{a n}是1,3,4,…,它的伴随数列{b n}是1,1,2,3,….(I)设数列{a n}是1,4,5,…,请写出{a n}的伴随数列{b n}的前5项;(II)设a n=3n﹣1(n∈N*),求数列{a n}的伴随数列{b n}的前20项和.2015-2016学年北京市东城区高二(下)期末数学试卷(文科)参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设全集U=R,A={x|x(x﹣2)<0},B={x|x﹣1>0},则A∩B=()A.(﹣2,1)B.[1,2)C.(﹣2,1] D.(1,2)【考点】交集及其运算.【分析】先求出不等式x(x﹣2)<0的解集,即求出A,再由交集的运算求出A∩B.【解答】解:由x(x﹣2)<0得,0<x<2,则A={x|0<x<2},B={x|x﹣1>0}={x|x>1},∴A∩B═{x|1<x<2}=(1,2),故选D.2.已知数列…,则2是这个数列的()A.第6项B.第7项C.第11项D.第19项【考点】数列的概念及简单表示法.【分析】本题通过观察可知:原数列每一项的平方组成等差数列,且公差为3,即a n2﹣a n﹣12=3从而利用等差数列通项公式an2=2+(n﹣1)×3=3n﹣1=20,得解,n=7【解答】解:数列…,各项的平方为:2,5,8,11,…则a n2﹣a n﹣12=3,又∵a12=2,∴a n2=2+(n﹣1)×3=3n﹣1,令3n﹣1=20,则n=7.故选B.3.下列四个命题中的真命题为()A.∃x0∈Z,1<4x0<3 B.∃x0∈Z,5x0+1=0 C.∀x∈R,x2﹣1=0 D.∀x∈R,x2+x+2>0【考点】四种命题的真假关系.【分析】注意判断区分∃和∀.【解答】解:A错误,因为,不存在x0∉ZB错误,因为C错误,x=3时不满足;D中,△<0,正确,故选D答案:D4.函数y=在x=1处的导数等于()A.1 B.2 C.3 D.4【考点】导数的运算.【分析】先求原函数的导函数,再把x=1的值代入即可.【解答】解:∵y′=,∴y′|x=1==1.故选:A.5.“a=﹣2”是“复数z=(a2﹣4)+(a+1)i(a,b∈R)为纯虚数”的()A.充分非必要条件B.必要非充分条件C.充要条件 D.既非充分又非必要条件【考点】必要条件、充分条件与充要条件的判断;复数的基本概念.【分析】把a=﹣2代入复数,可以得到复数是纯虚数,当复数是纯虚数时,得到的不仅是a=﹣2这个条件,所以得到结论,前者是后者的充分不必要条件.【解答】解:a=﹣2时,Z=(22﹣4)+(﹣2+1)i=﹣i是纯虚数;Z为纯虚数时a2﹣4=0,且a+1≠0∴a=±2.∴“a=2”可以推出“Z为纯虚数”,反之不成立,故选A.6.已知a=30.2,b=log64,c=log32,则a,b,c的大小关系为()A.c<a<b B.c<b<a C.b<a<c D.b<c<a【考点】对数值大小的比较.【分析】a=30.2>1,利用换底公式可得:b=log64=,c=log32=,由于1<log26<log29,即可得出大小关系.【解答】解:∵a=30.2>1,b=log64=,c=log32==,∵1<log26<log29,∴1>b>c,则a>b>c,故选:B.7.设函数f(x)(x∈R)为奇函数,f(1)=,f(x+2)=f(x)+f(2),则f(5)=()A.0 B.1 C.D.5【考点】函数奇偶性的性质;函数的值.【分析】利用奇函数的定义、函数满足的性质转化求解函数在特定自变量处的函数值是解决本题的关键.利用函数的性质寻找并建立所求的函数值与已知函数值之间的关系,用到赋值法.【解答】解:由f(1)=,对f(x+2)=f(x)+f(2),令x=﹣1,得f(1)=f(﹣1)+f(2).又∵f(x)为奇函数,∴f(﹣1)=﹣f(1).于是f(2)=2f(1)=1;令x=1,得f(3)=f(1)+f(2)=,于是f(5)=f(3)+f(2)=.故选:C.8.高二第二学期期中考试,按照甲、乙两个班级学生数学考试成绩优秀和不优秀统计后,得到如表:A.0.600 B.0.828 C.2.712 D.6.004【考点】独立性检验的应用.【分析】本题考查的知识点是独立性检验公式,我们由列联表易得:a=11,b=34,c=8,d=37,代入K2的计算公式:K2=即可得到结果.【解答】解:由列联表我们易得:a=11,b=34,c=8,d=37则K2===0.6004≈0.60故选A9.已知函数f(x)=x|x|﹣2x,则下列结论正确的是()A.f(x)是偶函数,递增区间是(0,+∞)B.f(x)是偶函数,递减区间是(﹣∞,1)C.f(x)是奇函数,递减区间是(﹣1,1)D.f(x)是奇函数,递增区间是(﹣∞,0)【考点】函数奇偶性的判断.【分析】根据奇函数的定义判断函数的奇偶性,化简函数解析式,画出函数的图象,结合图象求出函数的递减区间.【解答】解:由函数f(x)=x|x|﹣2x 可得,函数的定义域为R,且f(﹣x)=﹣x|﹣x|﹣2(﹣x )=﹣x|x|+2x=﹣f(x),故函数为奇函数.函数f(x)=x|x|﹣2x=,如图所示:故函数的递减区间为(﹣1,1),故选C.10.为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为a0a1a2,a i∈{0,1}(i=0,1,2),传输信息为h0a0a1a2h1,其中h0=a0⊕a1,h1=h0⊕a2,⊕运算规则为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是()A.11010 B.01100 C.10111 D.00011【考点】抽象函数及其应用.【分析】首先理解⊕的运算规则,然后各选项依次分析即可.【解答】解:A选项原信息为101,则h0=a0⊕a1=1⊕0=1,h1=h0⊕a2=1⊕1=0,所以传输信息为11010,A选项正确;B选项原信息为110,则h0=a0⊕a1=1⊕1=0,h1=h0⊕a2=0⊕0=0,所以传输信息为01100,B 选项正确;C选项原信息为011,则h0=a0⊕a1=0⊕1=1,h1=h0⊕a2=1⊕1=0,所以传输信息为10110,C 选项错误;D选项原信息为001,则h0=a0⊕a1=0⊕0=0,h1=h0⊕a2=0⊕1=1,所以传输信息为00011,D 选项正确;故选C.二、填空题(本大题共6小题,每小题3分,共18分)11.设复数z满足(1﹣i)z=2i,则z=﹣1+i.【考点】复数相等的充要条件;复数代数形式的乘除运算.【分析】由条件利用两个复数相除,分子和分母同时乘以分母的共轭复数,计算求得结果.【解答】解:∵复数z满足(1﹣i)z=2i,则z====﹣1+i,故答案为:﹣1+i.12.函数y=的值域为{y|y≠2} .【考点】函数的值域.【分析】函数y===2+,利用反比例函数的单调性即可得出.【解答】解:函数y===2+,当x>1时,>0,∴y>2.当x<1时,<0,∴y<2.综上可得:函数y=的值域为{y|y≠2}.故答案为:{y|y≠2}.13.若P=﹣1,Q=﹣,则P与Q的大小关系是P>Q.【考点】不等式比较大小.【分析】利用作差法,和平方法即可比较大小.【解答】解:∵P=﹣1,Q=﹣,∴P﹣Q=﹣1﹣+=(+)﹣(+1)∵(+)2=12+2,( +1)2=12+2∴+>+1,∴P﹣Q>0,故答案为:P>Q14.已知变量x,y具有线性相关关系,测得(x,y)的一组数据如下:(0,1),(1,2),(2,4),(3,5),其回归方程为=1.4x+a,则a的值等于0.9.【考点】线性回归方程.【分析】求出横标和纵标的平均数,写出样本中心点,把样本中心点代入线性回归方程,得到关于a的方程,解方程即可.【解答】解:∵==1.5,==3,∴这组数据的样本中心点是(1.5,3)把样本中心点代入回归直线方程,∴3=1.4×1.5+a,∴a=0.9.故答案为:0.9.15.已知函数则的值为﹣.【考点】函数的值;函数迭代.【分析】由题意可得=f(﹣)=3×(﹣),运算求得结果.【解答】解:∵函数,则=f(﹣)=3×(﹣)=﹣,故答案为﹣.16.按程序框图运算:若x=5,则运算进行4次才停止;若运算进行3次才停止,则x 的取值范围是(10,28] .【考点】循环结构.【分析】本题的考查点是计算循环的次数,及变量初值的设定,在算法中属于难度较高的题型,处理的办法为:模拟程序的运行过程,用表格将程序运行过程中各变量的值进行管理,并分析变量的变化情况,最终得到答案.【解答】解:(1)程序在运行过程中各变量的值如下表示:x x 是否继续循环循环前5∥第一圈15 13 是第二圈39 37 是第三圈111 109 是第四圈327 325 否故循环共进行了4次;(2)由(1)中数据不难发现第n圈循环结束时,经x=(x0﹣1)×3n+1:x 是否继续循环循环前x0/第一圈(x0﹣1)×3+1 是第二圈(x0﹣1)×32+1 是第三圈(x0﹣1)×33+1 否则可得(x0﹣1)×32+1≤244且(x0﹣1)×33+1>244解得:10<x0≤28故答案为:4,(10,28]三、解答题(本大题共5小题,共52分.解答应写出文字说明,证明过程或演算步骤)17.已知函数f(x)=log a(x+1)﹣log a(1﹣x),a>0且a≠1.(1)求f(x)的定义域;(2)判断f(x)的奇偶性并予以证明.【考点】函数奇偶性的判断;函数的定义域及其求法.【分析】(1)使函数各部分都有意义的自变量的范围,即列出不等式组,解此不等式组求出x范围就是函数的定义域;(2)根据函数奇偶性的定义进行证明即可.【解答】解:(1)由题得,使解析式有意义的x范围是使不等式组成立的x范围,解得﹣1<x<1,所以函数f(x)的定义域为{x|﹣1<x<1}.(2)函数f(x)为奇函数,证明:由(1)知函数f(x)的定义域关于原点对称,且f(﹣x)=log a(﹣x+1)﹣log a(1+x)=﹣log a(1+x)+log a(1﹣x)=﹣[log a(1+x)﹣log a (1﹣x)]=﹣f(x)所以函数f(x)为奇函数.18.命题p方程:x2+mx+1=0有两个不等的实根,命题q:方程4x2+4(m+2)x+1=0无实根.若“p或q”为真命题,“p且q”为假命题,求m的取值范围.【考点】复合命题的真假.【分析】先将命题p,q分别化简,然后根据若“p或q”为真命题,“p且q”为假命题,判断出p,q一真一假,分类讨论即可.【解答】解:由题意命题P:x2+mx+1=0有两个不等的实根,则△=m2﹣4>0,解得m>2或m<﹣2,命题Q:方程4x2+4(m+2)x+1=0无实根,则△<0,解得﹣3<m<﹣1,若“p或q”为真命题,“p且q”为假命题,则p,q一真一假,(1)当P真q假时:,解得m≤﹣3,或m>2,(2)当P假q真时:,解得﹣2≤m<﹣1,综上所述:m的取值范围为m≤﹣3,或m>2,或﹣2≤m<﹣1.19.在边长为60cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?【考点】函数模型的选择与应用;基本不等式在最值问题中的应用.【分析】先设箱底边长为xcm,则箱高cm,得箱子容积,再利用导数的方法解决,应注意函数的定义域.【解答】解:设箱底边长为xcm,则箱高cm,得箱子容积(0<x<60).(0<x<60)令=0,解得x=0(舍去),x=40,并求得V(40)=16 000由题意可知,当x过小(接近0)或过大(接近60)时,箱子容积很小,因此,16 000是最大值答:当x=40cm时,箱子容积最大,最大容积是16 000cm320.已知函数f(x)=ax+lnx(a∈R).(Ⅰ)若a=2,求曲线y=f(x)在x=1处的切线方程;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=x2﹣2x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范围.【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【分析】(Ⅰ)把a的值代入f(x)中,求出f(x)的导函数,把x=1代入导函数中求出的导函数值即为切线的斜率,可得曲线y=f(x)在x=1处的切线方程;(Ⅱ)求出f(x)的导函数,分a大于等于0和a小于0两种情况讨论导函数的正负,进而得到函数的单调区间;(Ⅲ)对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),等价于f(x)max<g(x)max,分别求出相应的最大值,即可求得实数a的取值范围.【解答】解:(Ⅰ)由已知,f'(1)=2+1=3,所以斜率k=3,又切点(1,2),所以切线方程为y﹣2=3(x﹣1)),即3x﹣y﹣1=0故曲线y=f(x)在x=1处切线的切线方程为3x﹣y﹣1=0.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(Ⅱ)①当a≥0时,由于x>0,故ax+1>0,f'(x)>0,所以f(x)的单调递增区间为(0,+∞).﹣﹣﹣﹣﹣﹣②当a<0时,由f'(x)=0,得.在区间上,f'(x)>0,在区间上,f'(x)<0,所以,函数f(x)的单调递增区间为,单调递减区间为.﹣﹣﹣﹣﹣﹣﹣﹣(Ⅲ)由已知,转化为f(x)max<g(x)max.g(x)=(x﹣1)2+1,x∈[0,1],所以g (x)max=2由(Ⅱ)知,当a≥0时,f(x)在(0,+∞)上单调递增,值域为R,故不符合题意.(或者举出反例:存在f(e3)=ae3+3>2,故不符合题意.)当a<0时,f(x)在上单调递增,在上单调递减,故f(x)的极大值即为最大值,,所以2>﹣1﹣ln(﹣a),解得.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣21.在无穷数列{a n}中,a1=1,对于任意n∈N*,都有a n∈N*,且a n<a n+1.设集合A m={n|a n ≤m,m∈N*},将集合A m中的元素的最大值记为b m,即b m是数列{a n}中满足不等式a n≤m的所有项的项数的最大值,我们称数列{b n}为数列{a n}的伴随数列.例如:数列{a n}是1,3,4,…,它的伴随数列{b n}是1,1,2,3,….(I)设数列{a n}是1,4,5,…,请写出{a n}的伴随数列{b n}的前5项;(II)设a n=3n﹣1(n∈N*),求数列{a n}的伴随数列{b n}的前20项和.【考点】数列的求和;数列的应用.【分析】(I)由{a n}伴随数列{b n}的定义可得前5项为1,1,1,2,3.(II)由a n=3n﹣1≤m,可得n≤1+log3m,m∈N*,分类讨论:当1≤m≤2时,m∈N*,b1=b2=1;当3≤m≤8时,m∈N*,b3=b4=…=b8=2;当9≤m≤20时,m∈N*,b9=b10=…=3;即可得出数列{a n}的伴随数列{b n}的前20项和.【解答】解:(Ⅰ)数列1,4,5,…的伴随数列{b n}的前5项1,1,1,2,3;(Ⅱ)由,得n≤1+log3m(m∈N*).∴当1≤m≤2,m∈N*时,b1=b2=1;当3≤m≤8,m∈N*时,b3=b4=…=b8=2;当9≤m≤20,m∈N*时,b9=b10=…=b20=3.∴b1+b2+…+b20=1×2+2×6+3×12=50.2016年9月9日。
北京市西城区2019-2020学年数学高二第二学期期末考试试题含解析
北京市西城区2019-2020学年数学高二第二学期期末考试试题一、选择题:本题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.9的展开式中有理项的项数为( ) A .1 B .2C .3D .4【答案】B 【解析】 【分析】求得二项式展开式的通项公式,由此判断出有理项的项数. 【详解】192(x 的展开式通项为2751962199()C (1)(1)C x r r r r r rr T x x --+=⋅-=⋅⋅⋅⋅-,当3r =或9r =时,为有理项,所以有理项共有2项. 故选:B 【点睛】本小题主要考查二项式展开式的通项公式,属于基础题.2.下列关于曲线24:14x y Γ+=的结论正确的是( )A .曲线Γ是椭圆B .关于直线y x =成轴对称C .关于原点成中心对称D .曲线Γ所围成的封闭图形面积小于4【答案】C 【解析】 【分析】A 根据椭圆的方程判断曲线24:14x y Γ+=不是椭圆;B 把曲线Γ中的(x ,y )同时换成(y ,x ),判断曲线Γ是否关于直线y x =对称; C 把曲线Γ中的(x ,y )同时换成(x -,y -),判断曲线Γ是否关于原点对称; D 根据||2x ,||1y ,判断曲线24:14xy Γ+=所围成的封闭面积是否小于1.【详解】曲线24:14x C y +=,不是椭圆方程,∴曲线Γ不是椭圆,A ∴错误;把曲线Γ中的(x ,y )同时换成(y ,x ),方程变为2414yx +=,∴曲线Γ不关于直线y x =对称,B 错误;把曲线Γ中的(x ,y )同时换成(x -,y -),方程不变,∴曲线Γ关于原点对称,C 正确;||2x ,||1y ,∴曲线24:14x C y +=所围成的封闭面积小于428⨯=,令x y =∴=所以曲线Γ上的四点,,(,(围成的矩形面积为4>, 所以选项D 错误. 故选:C . 【点睛】本题主要考查了方程所表示的曲线以及曲线的对称性问题,解题时应结合圆锥曲线的定义域性质进行解答,是基础题.3.利用数学归纳法证明不等式*n 1111...(n)(n 2,)2321f n N ++++<≥∈-的过程,由n k =到+1n k =时,左边增加了( ) A .1项 B .k 项C .12k -项D .2k 项【答案】D 【解析】 【分析】分别计算n k =和+1n k =时不等式左边的项数,相减得到答案. 【详解】n k =时,不等式左边:1111 (2)321k++++-共有21k - +1n k =时,:1111111 (2321221)k k k ++++++++--共有121k +- 增加了1(21)(21)2k k k +---=故答案选D 【点睛】本题考查了数学归纳法的项数问题,属于基础题型.4.已知定义在R 上的奇函数f (x )满足()32f x f x ⎛⎫-= ⎪⎝⎭,f (-2)=-3,数列{a n }是等差数列,若a 2=3,a 7=13,则f (a 1)+f (a 2)+f (a 3)+…+f (a 2018)=( ) A .-2B .-3C .2D .3【答案】B 【解析】 【分析】 【详解】分析:利用函数的奇偶性和对称性推出周期,求出前三项的值,利用周期化简式子即可. 详解:定义在R 上的奇函数()f x 满足()32f x f x ⎛⎫-=⎪⎝⎭,故周期T 3=,()()()()()()213,300,523f f f f f f -==-==== 数列{}n a 是等差数列,若23a =,713a =,故21n a n =-,所以:()()()()()()1231350f f f f a f a f a ++=++=,()()()()()()1232018133f a f a f a f a f f +++⋯+=+=-点睛:函数的周期性,对称性,奇偶性知二推一,已知()y f x =奇函数,关于轴x a =对称,则()()()()f x f x 1f 2a x f x 2-=-+=-,,令x x 2a =-代入2式,得出()()f x f x 2a =--,由奇偶性()()()()()f 2a x f x f x f x 2a f x 2a ⎡⎤+=-=-=---=-⎣⎦,故周期T 4a =. 5.如图所示,在一个边长为2.的正方形AOBC 内,曲2y x =和曲线y x =围成一个叶形图(阴影部分),向正方形AOBC 内随机投一点(该点落在正方形AOBC 内任何一点是等可能的),则所投的点落在叶形图内部的概率是( )A .12B .14C .13D .16【答案】C 【解析】 【分析】欲求所投的点落在叶形图内部的概率,须结合定积分计算叶形图(阴影部分)平面区域的面积,再根据几何概型概率计算公式求解. 【详解】联立2y x y x⎧=⎪⎨=⎪⎩得(1,1)C . 由图可知基本事件空间所对应的几何度量1OBCA S=正方形, 满足所投的点落在叶形图内部所对应的几何度量:S (A )3123120021()()|33x x dx x x =-=-⎰13=. 所以P (A )1()1313OBCAS A S ===正方形. 故选:C . 【点睛】本题综合考查了几何概型及定积分在求面积中的应用,考查定积分的计算,意在考查学生对这些知识的理解掌握水平.6.在圆C 中,弦AB 的长为4,则AB AC ⋅=( ) A .8 B .-8C .4D .-4【答案】A 【解析】分析:根据平面向量的数量积的定义,老鹰圆的垂径定理,即可求得答案. 详解:如图所示,在圆C 中,过点C 作CD AB ⊥于D ,则D 为AB 的中点,在Rt ACD ∆中,122AD AB ==,可得2cos AD A AC AC ==, 所以2cos 48AB AC AB AC A AC AC⋅=⋅=⨯⨯=,故选A.点睛:本题主要考查了平面向量的数量积的运算,其中解答中涉及到圆的性质,直角三角形中三角函数的定义和向量的数量积的公式等知识点的综合运用,着重考查了分析问题和解答问题的能力. 7.如果函数在区间上存在,满足,,则称函数是区间上的“双中值函数”.已知函数是区间上的“双中值函数”,则实数的取值范围是( )A .(,)B .(,3)C .(,1)D .(,1) 【答案】C 【解析】 试题分析:,,所以函数是区间上的“双中值函数”等价于在区间有两个不同的实数解,即方程在区间有两个不同的实数解,令,则问题可转化为在区间上函数有两个不同的零点,所以,解之得,故选C.考点:1.新定义问题;2.函数与方程;3.导数的运算法则.【名师点睛】本题考查新定义问题、函数与方程、导数的运算法则以及学生接受鷴知识的能力与运用新知识的能力,难题.新定义问题是命题的新视角,在解题时首先是把新定义问题中的新的、不了解的知识通过转翻译成了解的、熟悉的知识,然后再去求解、运算.8.在一项调查中有两个变量x 和y ,下图是由这两个变量近8年来的取值数据得到的散点图,那么适宜作为y 关于x 的回归方程的函数类型是( )A .y a bx =+B .y c x =+C .2y m nx =+D .x y p qc =+(0q >)【答案】B 【解析】 【分析】根据散点图的趋势,选定正确的选项. 【详解】散点图呈曲线,排除A 选项,且增长速度变慢,排除选项C 、D ,故选B . 【点睛】本小题主要考查散点图,考查回归直线方程等知识,属于基础题.9.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a ,b 组成复数a bi +,其中虚数有( ) A .30个 B .42个C .36个D .35个【答案】C 【解析】 【分析】 【详解】解:∵a ,b 互不相等且为虚数,∴所有b 只能从{1,2,3,4,5,6}中选一个有6种, a 从剩余的6个选一个有6种,∴根据分步计数原理知虚数有6×6=36(个). 故选C10.已知某企业上半年前5个月产品广告投入与利润额统计如下:由此所得回归方程为7.5ˆyx a =+,若6月份广告投入10(万元)估计所获利润为( ) A .97万元 B .96.5万元C .95.25万元D .97.25万元【答案】C 【解析】 【分析】首先求出x y ,的平均数,将样本中心点代入回归方程中求出a 的值,然后写出回归方程,然后将10x =代入求解即可 【详解】()19.59.39.18.99.79.35x =⨯++++=()19289898793905y =⨯++++=代入到回归方程为7.5ˆy x a =+,解得20.25a = 7.25ˆ50.2yx ∴=+ 将10x =代入7.50.5ˆ22yx =+,解得ˆ95.25y = 故选C【点睛】本题是一道关于线性回归方程的题目,解答本题的关键是求出线性回归方程,属于基础题。
2019-2020年高二下学期期末数学试卷(理科) 含解析
2019-2020年高二下学期期末数学试卷(理科)含解析一、选择题(本大题共12个小题,每小题5分,在每小题中,只有一项是符合题目要求的)1.已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()A.(﹣∞,2]B.[1,2]C.[﹣2,2] D.[﹣2,1]2.已知复数=i,则实数a=()A.﹣1 B.﹣2 C.1 D.23.将点M的极坐标(4,)化成直角坐标为()A.(2,2)B.C.D.(﹣2,2)4.在同一平面的直角坐标系中,直线x﹣2y=2经过伸缩变换后,得到的直线方程为()A.2x′+y′=4 B.2x′﹣y′=4 C.x′+2y′=4 D.x′﹣2y′=45.如图,曲线f(x)=x2和g(x)=2x围成几何图形的面积是()A.B.C.D.46.10件产品中有3件次品,不放回的抽取2件,每次抽1件,在已知第1次抽出的是次品的条件下,第2次抽到仍为次品的概率为()A.B.C.D.7.下列说法中,正确说法的个数是()①命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”;②“x>1”是“|x|>1”的充分不必要条件;③集合A={1},B={x|ax﹣1=0},若B⊆A,则实数a的所有可能取值构成的集合为{1}.A.0 B.1 C.2 D.38.设某批产品合格率为,不合格率为,现对该产品进行测试,设第ε次首次取到正品,则P(ε=3)等于()A.C32()2×()B.C32()2×()C.()2×()D.()2×()9.在10件产品中,有3件一等品,7件二等品,从这10件产品中任取3件,则取出的3件产品中一等品件数多于二等品件数的概率()A. B.C.D.10.函数f(x)=e﹣x+ax存在与直线2x﹣y=0平行的切线,则实数a的取值范围是()A.(﹣∞,2]B.(﹣∞,2)C.(2,+∞)D.[2,+∞)11.函数y=e sinx(﹣π≤x≤π)的大致图象为()A.B. C. D.12.已知曲线C1:y=e x上一点A(x1,y1),曲线C2:y=1+ln(x﹣m)(m>0)上一点B(x2,y2),当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,则m的最小值为()A.1 B.C.e﹣1 D.e+1二、填空题(本大题共4个小题,每小题5分,共20分)13.已知随机变量X服从正态分布X~N(2,σ2),P(X>4)=0.3,则P(X<0)的值为.14.若函数f(x)=x2﹣alnx在x=1处取极值,则a=.15.如图的三角形数阵中,满足:(1)第1行的数为1;(2)第n(n≥2)行首尾两数均为n,其余的数都等于它肩上的两个数相加.则第10行中第2个数是.16.在平面直角坐标系xOy中,直线1与曲线y=x2(x>0)和y=x3(x>0)均相切,切点分别为A(x1,y1)和B(x2,y2),则的值为.三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明、证明过程及演算步骤)17.在平面直角坐标系xOy中,圆C的参数方程为(φ为参数),直线l过点(0,2)且倾斜角为.(Ⅰ)求圆C的普通方程及直线l的参数方程;(Ⅱ)设直线l与圆C交于A,B两点,求弦|AB|的长.18.在直角坐标系xOy中,已知直线l:(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C:ρ2(1+sin2θ)=2.(Ⅰ)写出直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)设点M的直角坐标为(1,2),直线l与曲线C 的交点为A、B,求|MA|•|MB|的值.19.生产甲乙两种元件,其质量按检测指标划分为:指标大于或者等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如表:测试指标[70,76)[76,82)[82,88)[88,94)[94,100)元件甲8 12 40 32 8元件乙7 18 40 29 6(Ⅰ)试分别估计元件甲,乙为正品的概率;(Ⅱ)在(Ⅰ)的前提下,记X为生产1件甲和1件乙所得的正品数,求随机变量X的分布列和数学期望.20.设函数f(x)=x3﹣+6x.(Ⅰ)当a=1时,求函数f(x)的单调区间;(Ⅱ)若对∀x∈[1,4]都有f(x)>0成立,求a的取值范围.21.为了研究家用轿车在高速公路上的车速情况,交通部门对100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过100km/h的有40人,不超过100km/h的有15人.在45名女性驾驶员中,平均车速超过100km/h 的有20人,不超过100km/h的有25人.(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.平均车速超过100km/h人数平均车速不超过100km/h人数合计男性驾驶员人数女性驾驶员人数合计(Ⅱ)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为男性且车速超过100km/h的车辆数为X,若每次抽取的结果是相互独立的,求X的分布列和数学期望.参考公式与数据:Χ2=,其中n=a+b+c+dP(Χ2≥k0)0.150 0.100 0.050 0.025 0.010 0.005 0.001 k0 2.072 2.706 3.841 5.024 6.635 7.879 10.82822.已知函数f(x)=﹣alnx+1(a∈R).(1)若函数f(x)在[1,2]上是单调递增函数,求实数a的取值范围;(2)若﹣2≤a<0,对任意x1,x2∈[1,2],不等式|f(x1)﹣f(x2)|≤m||恒成立,求m的最小值.2015-2016学年吉林省东北师大附中净月校区高二(下)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,在每小题中,只有一项是符合题目要求的)1.已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()A.(﹣∞,2]B.[1,2]C.[﹣2,2] D.[﹣2,1]【考点】交集及其运算.【分析】先化简集合A,解绝对值不等式可求出集合A,然后根据交集的定义求出A∩B即可.【解答】解:∵A={x||x|≤2}={x|﹣2≤x≤2}∴A∩B={x|﹣2≤x≤2}∩{x|x≤1,x∈R}={x|﹣2≤x≤1}故选D.2.已知复数=i,则实数a=()A.﹣1 B.﹣2 C.1 D.2【考点】复数代数形式的乘除运算.【分析】直接由复数代数形式的乘除运算化简复数,再根据复数相等的充要条件列出方程组,求解即可得答案.【解答】解:===i,则,解得:a=1.故选:C.3.将点M的极坐标(4,)化成直角坐标为()A.(2,2)B.C.D.(﹣2,2)【考点】简单曲线的极坐标方程.【分析】利用x=ρcosθ,y=ρsinθ即可得出直角坐标.【解答】解:点M的极坐标(4,)化成直角坐标为,即.故选:B.4.在同一平面的直角坐标系中,直线x﹣2y=2经过伸缩变换后,得到的直线方程为()A.2x′+y′=4 B.2x′﹣y′=4 C.x′+2y′=4 D.x′﹣2y′=4【考点】伸缩变换.【分析】把伸缩变换的式子变为用x′,y′表示x,y,再代入原方程即可求出.【解答】解:由得,代入直线x﹣2y=2得,即2x′﹣y′=4.故选B.5.如图,曲线f(x)=x2和g(x)=2x围成几何图形的面积是()A.B.C.D.4【考点】定积分在求面积中的应用.【分析】利用积分的几何意义即可得到结论.【解答】解:由题意,S===4﹣=,故选:C.6.10件产品中有3件次品,不放回的抽取2件,每次抽1件,在已知第1次抽出的是次品的条件下,第2次抽到仍为次品的概率为()A.B.C.D.【考点】条件概率与独立事件.【分析】根据题意,易得在第一次抽到次品后,有2件次品,7件正品,由概率计算公式,计算可得答案.【解答】解:根据题意,在第一次抽到次品后,有2件次品,7件正品;则第二次抽到次品的概率为故选:C.7.下列说法中,正确说法的个数是()①命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”;②“x>1”是“|x|>1”的充分不必要条件;③集合A={1},B={x|ax﹣1=0},若B⊆A,则实数a的所有可能取值构成的集合为{1}.A.0 B.1 C.2 D.3【考点】命题的真假判断与应用.【分析】①根据逆否命题的定义进行判断②根据充分条件和必要条件的定义进行判断,③根据集合关系进行判断.【解答】解:①命题“若x2﹣3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2﹣3x+2≠0”正确,故①正确,②由|x|>1得x>1或x<﹣1,则“x>1”是“|x|>1”的充分不必要条件;故②正确,③集合A={1},B={x|ax﹣1=0},若B⊆A,当a=0时,B=∅,也满足B⊆A,当a≠0时,B={},由=1,得a=1,则实数a的所有可能取值构成的集合为{0,1}.故③错误,故正确的是①②,故选:C8.设某批产品合格率为,不合格率为,现对该产品进行测试,设第ε次首次取到正品,则P(ε=3)等于()A.C32()2×()B.C32()2×()C.()2×()D.()2×()【考点】n次独立重复试验中恰好发生k次的概率.【分析】根据题意,P(ε=3)即第3次首次取到正品的概率,若第3次首次取到正品,即前两次取到的都是次品,第3次取到正品,由相互独立事件的概率计算可得答案.【解答】解:根据题意,P(ε=3)即第3次首次取到正品的概率;若第3次首次取到正品,即前两次取到的都是次品,第3次取到正品,则P(ε=3)=()2×();故选C.9.在10件产品中,有3件一等品,7件二等品,从这10件产品中任取3件,则取出的3件产品中一等品件数多于二等品件数的概率()A. B.C.D.【考点】古典概型及其概率计算公式.【分析】先求出基本事件总数,再求出取出的3件产品中一等品件数多于二等品件数包含的基本事件个数,由此能求出取出的3件产品中一等品件数多于二等品件数的概率.【解答】解:∵在10件产品中,有3件一等品,7件二等品,从这10件产品中任取3件,基本事件总数n==120,取出的3件产品中一等品件数多于二等品件数包含的基本事件个数m==22,∴取出的3件产品中一等品件数多于二等品件数的概率p===.故选:C.10.函数f(x)=e﹣x+ax存在与直线2x﹣y=0平行的切线,则实数a的取值范围是()A.(﹣∞,2]B.(﹣∞,2)C.(2,+∞)D.[2,+∞)【考点】利用导数研究曲线上某点切线方程.【分析】利用在切点处的导数值是切线的斜率,令f′(x)=2有解;利用有解问题即求函数的值域问题,求出值域即a的范围.【解答】解:f′(x)=﹣e﹣x+a据题意知﹣e﹣x+a=2有解即a=e﹣x+2有解∵e﹣x+2>2∴a>2故选C11.函数y=e sinx(﹣π≤x≤π)的大致图象为()A.B. C. D.【考点】抽象函数及其应用.【分析】先研究函数的奇偶性知它是非奇非偶函数,从而排除A、D两个选项,再看此函数的最值情况,即可作出正确的判断.【解答】解:由于f(x)=e sinx,∴f(﹣x)=e sin(﹣x)=e﹣sinx∴f(﹣x)≠f(x),且f(﹣x)≠﹣f(x),故此函数是非奇非偶函数,排除A,D;又当x=时,y=e sinx取得最大值,排除B;故选:C.12.已知曲线C1:y=e x上一点A(x1,y1),曲线C2:y=1+ln(x﹣m)(m>0)上一点B(x2,y2),当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,则m的最小值为()A.1 B.C.e﹣1 D.e+1【考点】利用导数求闭区间上函数的最值.【分析】当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,可得:=1+ln(x2﹣m),x2﹣x1≥e,一方面0<1+ln(x2﹣m)≤,.利用lnx≤x﹣1(x≥1),考虑x2﹣m≥1时.可得1+ln(x2﹣m)≤x2﹣m,令x2﹣m≤,可得m≥x﹣e x﹣e,利用导数求其最大值即可得出.【解答】解:当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,可得:=1+ln(x2﹣m),x2﹣x1≥e,∴0<1+ln(x2﹣m)≤,∴.∵lnx≤x﹣1(x≥1),考虑x2﹣m≥1时.∴1+ln(x2﹣m)≤x2﹣m,令x2﹣m≤,化为m≥x﹣e x﹣e,x>m+.令f(x)=x﹣e x﹣e,则f′(x)=1﹣e x﹣e,可得x=e时,f(x)取得最大值.∴m≥e﹣1.故选:C.二、填空题(本大题共4个小题,每小题5分,共20分)13.已知随机变量X服从正态分布X~N(2,σ2),P(X>4)=0.3,则P(X<0)的值为0.3.【考点】正态分布曲线的特点及曲线所表示的意义.【分析】根据随机变量X服从正态分布,可知正态曲线的对称轴,利用对称性,即可求得P (X<0).【解答】解:∵随机变量X服从正态分布N(2,o2),∴正态曲线的对称轴是x=2∵P(X>4)=0.3,∴P(X<0)=P(X>4)=0.3.故答案为:0.3.14.若函数f(x)=x2﹣alnx在x=1处取极值,则a=2.【考点】利用导数研究函数的极值.【分析】求出函数的导数,得到f′(1)=0,得到关于a的方程,解出即可.【解答】解:∵f(x)=x2﹣alnx,x>0,∴f′(x)=2x﹣=,若函数f(x)在x=1处取极值,则f′(1)=2﹣a=0,解得:a=2,经检验,a=2符合题意,故答案为:2.15.如图的三角形数阵中,满足:(1)第1行的数为1;(2)第n(n≥2)行首尾两数均为n,其余的数都等于它肩上的两个数相加.则第10行中第2个数是46.【考点】归纳推理.【分析】由三角形阵可知,上一行第二个数与下一行第二个数满足等式a n +1=a n +n ,利用累加法可求.【解答】解:设第一行的第二个数为a 1=1,由此可得上一行第二个数与下一行第二个数满足等式a n +1=a n +n ,即a 2﹣a 1=1,a 3﹣a 2=2,a 4﹣a 3=3,…a n ﹣1﹣a n ﹣2=n ﹣2,a n ﹣a n ﹣1=n ﹣1, ∴a n =(a n ﹣a n ﹣1)+(a n ﹣1﹣a n ﹣2)+…+(a 4﹣a 3)+(a 3﹣a 2)+(a 2﹣a 1)+a 1 =(n ﹣1)+(n ﹣2)+…+3+2+1+1 =+1=,∴a 10==46.故答案为:46.16.在平面直角坐标系xOy 中,直线1与曲线y=x 2(x >0)和y=x 3(x >0)均相切,切点分别为A (x 1,y 1)和B (x 2,y 2),则的值为.【考点】抛物线的简单性质.【分析】求出导数得出切线方程,即可得出结论.【解答】解:由y=x 2,得y ′=2x ,切线方程为y ﹣x 12=2x 1(x ﹣x 1),即y=2x 1x ﹣x 12, 由y=x 3,得y ′=3x 2,切线方程为y ﹣x 23=3x 22(x ﹣x 2),即y=3x 22x ﹣2x 23, ∴2x 1=3x 22,x 12=2x 23, 两式相除,可得=.故答案为:.三、解答题(本大题共6小题,共70分,解答应写出必要的文字说明、证明过程及演算步骤) 17.在平面直角坐标系xOy 中,圆C 的参数方程为(φ为参数),直线l 过点(0,2)且倾斜角为.(Ⅰ)求圆C 的普通方程及直线l 的参数方程;(Ⅱ)设直线l 与圆C 交于A ,B 两点,求弦|AB |的长. 【考点】参数方程化成普通方程. 【分析】(Ⅰ)圆C 的参数方程为(φ为参数),利用cos 2φ+sin 2φ=1消去参数可得圆C 的普通方程.由题意可得:直线l 的参数方程为.(Ⅱ)依题意,直线l的直角坐标方程为,圆心C到直线l的距离d,利用|AB|=2即可得出.【解答】解:(Ⅰ)圆C的参数方程为(φ为参数),消去参数可得:圆C的普通方程为x2+y2=4.由题意可得:直线l的参数方程为.(Ⅱ)依题意,直线l的直角坐标方程为,圆心C到直线l的距离,∴|AB|=2=2.18.在直角坐标系xOy中,已知直线l:(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C:ρ2(1+sin2θ)=2.(Ⅰ)写出直线l的普通方程和曲线C的直角坐标方程;(Ⅱ)设点M的直角坐标为(1,2),直线l与曲线C 的交点为A、B,求|MA|•|MB|的值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(Ⅰ)直线l:(t为参数),消去参数t可得普通方程.曲线C:ρ2(1+sin2θ)=2,可得ρ2+(ρsinθ)2=2,把ρ2=x2+y2,y=ρsinθ代入可得直角坐标方程.(Ⅱ)把代入椭圆方程中,整理得,设A,B对应的参数分别为t1,t2,由t得几何意义可知|MA||MB|=|t1t2|.【解答】解:(Ⅰ)直线l:(t为参数),消去参数t可得普通方程:l:x﹣y+1=0.曲线C:ρ2(1+sin2θ)=2,可得ρ2+(ρsinθ)2=2,可得直角坐标方程:x2+y2+y2=2,即.(Ⅱ)把代入中,整理得,设A,B对应的参数分别为t1,t2,∴,由t得几何意义可知,.19.生产甲乙两种元件,其质量按检测指标划分为:指标大于或者等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如表:测试指标[70,76)[76,82)[82,88)[88,94)[94,100)元件甲8 12 40 32 8元件乙7 18 40 29 6(Ⅰ)试分别估计元件甲,乙为正品的概率;(Ⅱ)在(Ⅰ)的前提下,记X为生产1件甲和1件乙所得的正品数,求随机变量X的分布列和数学期望.【考点】离散型随机变量的期望与方差;古典概型及其概率计算公式;离散型随机变量及其分布列.【分析】(Ⅰ)利用等可能事件概率计算公式能求出元件甲,乙为正品的概率.(Ⅱ)随机变量X的所有取值为0,1,2,分别求出相应的概率,由此能求出随机变量X的分布列和数学期望.【解答】解:(Ⅰ)元件甲为正品的概率约为:,元件乙为正品的概率约为:.(Ⅱ)随机变量X的所有取值为0,1,2,,,,所以随机变量X的分布列为:X 0 1 2P所以:.20.设函数f(x)=x3﹣+6x.(Ⅰ)当a=1时,求函数f(x)的单调区间;(Ⅱ)若对∀x∈[1,4]都有f(x)>0成立,求a的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(Ⅱ)问题转化为在区间[1,4]上恒成立,令,根据函数的单调性求出a的范围即可.【解答】解:(Ⅰ)函数的定义域为R,当a=1时,f(x)=x3﹣x2+6x,f′(x)=3(x﹣1)(x﹣2),当x<1时,f′(x)>0;当1<x<2时,f′(x)<0;当x>2时,f′(x)>0,∴f(x)的单调增区间为(﹣∞,1),(2,+∞),单调减区间为(1,2).(Ⅱ)即在区间[1,4]上恒成立,令,故当时,g(x)单调递减,当时,g(x)单调递增,时,∴,即.21.为了研究家用轿车在高速公路上的车速情况,交通部门对100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过100km/h的有40人,不超过100km/h的有15人.在45名女性驾驶员中,平均车速超过100km/h 的有20人,不超过100km/h的有25人.(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.平均车速超过100km/h人数平均车速不超过100km/h人数合计男性驾驶员人数401555女性驾驶员人数202545合计6040100(Ⅱ)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为男性且车速超过100km/h的车辆数为X,若每次抽取的结果是相互独立的,求X的分布列和数学期望.参考公式与数据:Χ2=,其中n=a+b+c+dP(Χ2≥k0)0.150 0.100 0.050 0.025 0.010 0.005 0.001 k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828【考点】离散型随机变量的期望与方差;独立性检验;离散型随机变量及其分布列.【分析】(Ⅰ)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.求出Χ2,即可判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.(Ⅱ)根据样本估计总体的思想,从高速公路上行驶的大量家用轿车中随机抽取1辆,驾驶员为男性且车速超过100km/h的车辆的概率,X可取值是0,1,2,3,,求出概率得到分布列,然后求解期望即可.【解答】解:(Ⅰ)平均车速超过100km/h人数平均车速不超过100km/h人数合计男性驾驶员人数40 15 55女性驾驶员人数20 25 45合计60 40 100因为,所以有99.5%的把握认为平均车速超过100km/h与性别有关.…(Ⅱ)根据样本估计总体的思想,从高速公路上行驶的大量家用轿车中随机抽取1辆,驾驶员为男性且车速超过100km/h的车辆的概率为.X可取值是0,1,2,3,,有:,,,,分布列为X 0 1 2 3P.…22.已知函数f(x)=﹣alnx+1(a∈R).(1)若函数f(x)在[1,2]上是单调递增函数,求实数a的取值范围;(2)若﹣2≤a<0,对任意x1,x2∈[1,2],不等式|f(x1)﹣f(x2)|≤m||恒成立,求m的最小值.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(1)求出函数的导数,问题转化为a≤x2,求出a的范围即可;(2)问题可化为,设,求出函数的导数,问题等价于m≥x3﹣ax在[1,2]上恒成立,求出m的最小值即可.【解答】解:(1)∵在[1,2]上是增函数,∴恒成立,…所以a≤x2…只需a≤(x2)min=1…(2)因为﹣2≤a<0,由(1)知,函数f(x)在[1,2]上单调递增,…不妨设1≤x1≤x2≤2,则,可化为,设,则h(x1)≥h(x2).所以h(x)为[1,2]上的减函数,即在[1,2]上恒成立,等价于m≥x3﹣ax在[1,2]上恒成立,…设g(x)=x3﹣ax,所以m≥g(x)max,因﹣2≤a<0,所以g'(x)=3x2﹣a>0,所以函数g(x)在[1,2]上是增函数,所以g(x)max=g(2)=8﹣2a≤12(当且仅当a=﹣2时等号成立).所以m≥12.即m的最小值为12.…2016年10月17日。
高二下学期期末考试数学试题(图片版)
,则 .………………………………………10分
故函数在 和 上单调递增…………………………………………11分
在 上单调递减.………………………………………………………………12分
17.(本小题满分12分)
解:(Ⅰ)由A∩B={3,7}得 2+4 +2=7,解得 =1或 =-5.………………4分
所以 , 在 上单调递减,……………………………………10分
.………………………………………………………………………11分
所以 最小值为 .…………………………………………………………………12分
所以至少一种产品研发成功的概率为 .………………………………………5分
(2)依题意, ,……………………6分
由独立试验同时发生的பைடு நூலகம்率计算公式可得:
;………………………………………………7分
;…………………………………………………8分
;……………………………………………………9分
;…………………………………………………………10分
所以 的分布列如下:
………………………………………………………………………………………11分
则数学期望 .
…………………………………………………………………………………………12分
20.(本小题满分12分)
解:(Ⅰ)函数 …………………………………………………1分
所以 ………………………………………………………………3分
当 =1时,集合B={0,7,3,1};……………………………………………………5分
当 =-5时,因为2- =7,集合B中元素重复.…………………………………6分
北京市通州区2023-2024学年高二下学期期末考试语文试卷(含答案)
通州区2023—2024学年第二学期高二年级期末质量检测语文试卷本试卷共8页,150分。
考试时长150分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将答题卡交回。
一、本大题共5小题,共18分。
阅读下面材料,完成1-5题。
材料一遥感意为“遥远的感知”,是指搭载在各类移动或静止平台上,运用现代光学、电子学探测仪器,从一定距离对目标物进行特定电磁波谱段的成像观测,进而获取被观测对象特征、性质及其变化规律等多方面信息的技术。
人类通过大量实践,发现地球上每一物质作为其固有的性质都会反射、吸收、透射及辐射电磁波,物体的这种对电磁波固有的波长特性叫光谱特性。
一切物体,由于其种类及环境条件不同,因而具有反射或辐射不同波长的电磁波的特性。
遥感就是据此来探测地表物体对电磁波的反射和其发射的电磁波,从而提取物体信息并完成识别。
遥感作为一门对地观测综合性技术,它的出现和发展既是人们认识和探索自然界的客观需要,更有其它技术手段无法比拟的特点:第一,遥感探测能在较短的时间内,从空中乃至宇宙对大范围地区进行观测,快速获取有价值的遥感数据。
这些数据为人们宏观掌握地面事物现状创造极为有利的条件,同时也为宏观研究自然现象和规律提供宝贵的第一手资料。
第二,遥感探测能周期性地对同一地区进行对地观测,这有助于人们通过所获取的遥感数据,发现并动态跟踪地球上许多事物的变化,研究自然界的变化规律。
第三,遥感探测所获取的数据综合展现地球上许多自然与人文现象,尤其是在监视天气状况、自然灾害、环境污染、军事目标等方面发挥作用,全面地揭示地理事物之间的关联性。
现代遥感技术起源于20世纪60年代,到20世纪80年代,遥感技术得到了长足的发展。
但卫星遥感存在时效性不强、缺乏机动灵活性、很难获取云下影像等不足,需要开拓更多遥感平台,与卫星遥感形成互补,使遥感科学研究从宏观向微观前进。
进入21世纪,遥感科技显现出了高空间分辨率、高光谱分辨率、高时间分辨率的“三高”新特征,并开拓了更多的应用新领域,比如高光谱技术获取的信息分辨率很高,甚至能分辨出观测物质的分子和原子结构,由此在医学、刑侦、文物保护等领域开展了广泛的探索性应用;光谱分析技术还与智能手机融合,诞生了面向普通民众的高光谱应用。
2019-2020学年北京市通州区九年级上册期末考试数学试题有答案-精华版
3.如图,为了测量某棵树的高度,小刚用长为2m的竹竿做测量工具,移动竹竿,使竹竿、树的顶
端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m,与树相距15m,那么这棵树
的高度为(
).
A.5m
B.7m
C.7.5m
D.21m
4.如图,AB是⊙O的直径,点C,D在⊙O上.若ABD55,则BCD
的度数为(
1
1
1
25.点P的“d值”定义如下:若点Q为圆上任意一点,线段PQ长度的最大值与最小值之差即为点
P的“d值”,记为d.特别的,当点P,Q重合时,线段PQ的长度为0.
P
O
当⊙的半径为2时:
1
,0D3,4
d
C
_________,d
(1)若点C
,
,则
_________;
2
D
2x2
P
P
(2)若在直线y
上存在点,使得d
x
知教学楼外墙长50米,设矩形ABCD的边AB
米,面积为S平方米.
(1)请写出活动区面积S与x之间的关系式,并指出x的取值范围;
(2)当AB为多少米时,活动区的面积最大?最大面积是多少?
22.如图,△ABC是等腰三角形,AB
AC
,以
为直径的⊙O与
AC
⊥
交于点D,DEAB,
AC
BC
垂足为E,ED的延长线与
的延长线交于点F.
(1)求证:DE是⊙O的切线;
(2)若⊙O的半径为2,BE
1,求cosA的值.
23.如图1,在矩形ABCD中,点E为AD边中点,点F为
边中点;点G,H为AB边三等
BC
分点,,J为CD边三等分点.小瑞分别用不同的方式连接矩形对边上的点,如图2,图3所示.
专题05 全称量词与存在量词(练)(原卷版)附答案.pdf
② x (, 4), f (x)g(x) 0 .则 m 的取值范围是________________.
10.命题:“ x R, x2 ax 1 0 ”的否定为____.
11.【江苏省苏州中学园区校 2018-2019 学年 10 月调研】若命题“ x R ,使得 x2 (1 a)x 1 0 ”是假命
称量词的真命题;③“至少存在一个实数 x ,使得
x
0
”
是含有存在量词的真命题;
④“能被 3 整除的整
数,其各位数字之和也能被 3 整除”是全称量词命题。其中正确的有_________.
9.“ x R ,都有 k x2 1 恒成立”是真命题,则实数 k 的取值范围是____________;
10.命题“有些一元一次不等式的解集是空集”是__________;(全称量词命题、存在量词命题)
5
C. x R , x 1… 0
D. x R , x 1„ 0
【参考答案】A 【解析】
解:命题“ x R , x 1… 0 ”为全称命题,则命题的否定为 x R , x 1 0 ,
故选:A. 3.【必修第一册 过关斩将】下列命题中是全称命题的是( ) A.圆有内接四边形
B. 3 2
C. 3 2
7.【宁夏平罗中学 2019-2020 学年高二上学期期末】下列是全称命题且是真命题的是( )
A.∀x∈R,x2>0
B.∀x∈Q,x2∈Q
2
C.∃x0∈Z,x 0 >1
D.∀x,y∈R,x2+y2>0
8.已知下列命题①“实数都大于 0”的否定是“实数都小于或等于 0”;②“三角形外角和为 360 度”是含有全
x
x2
0
”的否定是(
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
通州区2019—2020学年第二学期高二年级期末考试
数学试卷
2020年7月
第一部分(选择题共40分)
一、选择题:本大题共10小题,每小题4分,共40分,在每个小题给出的四个备选答案中,只有一个是符合题目要求的.
1.已知复数12(z i i =+是虚数单位),那么z 的虚部是
A . -2
B . -1
C .1
D .
2 2.已知函数()ln f x x =,导函数为()f x ' ,那么(2)f '等于
11
1
. B. C. D.1422A --
3.5(1)a +展开式中的第2项是
3344.5 B. 10 .C. 510A a D a a a
4.命题“,10x R x ∀∈+≥”的否定是
.,10 B. ,10
.,10 D. ,10A x R x x R x C x R x x R x ∃∈+<∀∈+<∃∈+≥∀∈+≤
5.“21x =”是“x =1”的
A .充分而不必要条件
B .必要而不充分条件
C .充分必要条件
D .既不充分也不必要条件
6.下列给出四个求导运算:
2
2211
();()(1)
sin cos (
1)(21)
();(ln )24x x x x xe e x x x x x x x x x x x
''''--==+-+=--=①②③④
其中运算结果正确的个数是
A . 1
B .2
C .3
D .4
7.已知有126,,,B B B 支篮球队举行单循环赛(单循环赛:所有参赛队均能相遇一次),那么比赛的场次数是
A . 15
B . 18
C .24
D . 30
8.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如12=5+7,在不超过18的素数2,3,5,7,11,13,17中,随机选取两个不同的数,其和等于18的概率是
1
121. B. C. D.4221217
A 9.甲、乙等7人排成一排,甲在最中间,且与乙不相邻,那么不同的排法种数是
A .96
B . 120
C . 360
D .480
10.已知函数f (x )的图象如图所示,那么该函数可能为
ln ln ||.() B. ()||x
x A f x f x x x
== 1,0.()(1),0x x x x C f x e x e x -⎧>⎪=⎨⎪+<⎩22ln ,0.()ln(),0x x x D f x x x x ⎧->⎪⎪=⎨-⎪<⎪⎩
第二部分(非选择题共110分)
二、填空题:本大题共5小题,每小题5分,共25分.
11.已知函数21()212
f x x x =--,那么f (x )的极小值是________ 12. 6(21)x -的展开式中2x 的系数是________
13.某飞碟运动员每次射击中靶的概率为0.8,该运动员连续3次射击,中靶2次的概率是________
14.欧拉公式cos isin ix e x x =+(其中i 为虚数单位)是由著名数学家欧拉发现的,当x π=时,10i e π+=,这是数学里最令人着迷的一个公式,数学家们评
价它是“上帝创造的公式”,根据欧拉公式,若将3i
e π
所表示的复数记为z ,那么
||z =________ 15.已知函数ln ,0()(1),0
x x x f x e x x >⎧=⎨+≤⎩, 若函数()()()F x f x c c R =-∈恰有3个零点,则实数c 的取值范围是________
三、解答题:本大题共6小题,共85分·解答应写出必要的文字说明,证明过程或演算步骤.
16. (本题14分)
已知函数3()31f x x x =-+
(Ⅰ)求曲线y =f (x )在点(0,f (0) )处的切线方程
(Ⅱ)求f (x )在[1,2]上的最大值和最小值.
17. (本题14分)
已知复数1(z i i =-是虚数单位).
(Ⅰ)求2z z -;
(Ⅱ)如图,复数12,z z 在复平面上的对应点分别是A ,B ,求12z z z
+.
18.(本题14分)
—批笔记本电脑共有8台,其中A 品牌3台,B 品牌5台,如果从中随机挑选2台.
(Ⅰ)求挑选的2台电脑都是B 品牌电脑的概率;
(Ⅱ)设挑选的2台电脑中A 品牌的台数为X ,求X 的分布列和均值.
19.(本题14分)
已知函数21()2ln ,2
f x x mx x m R =--∈. (Ⅰ)若m =1,求f (x )的单调递增区间和单调递减区间;
(Ⅱ)求f (x )的极值点.
20.(本题14分)为了让市民了解垃圾分类,养成垃圾分类的好习惯,同时让绿色环保理念深入人心,我市将垃圾进行了分类,共分为四类:厨余垃圾、可回收物、有害垃圾、其他垃圾,某班按此四类由10位同学组成宣传小组,其中厨余垃圾与可回收物宣传小组各有2位同学,有害垃圾与其他垃圾宣传小组各有3位同学,现从这10位同学中选派同学到社区进行宣传活动.
(Ⅰ)若选派3位同学参加活动,求这3位同学中至少有1位是可回收物宣传小组的选法有多少种?
(Ⅱ)若选派4位同学参加活动,求这4位同学中,每个小组恰好1位的概率;
(Ⅲ)若选派5位同学参加活动,求这5位同学中,每个小组至少1位的概率。
(直接写出结论即可)
21.(本题15分)
已知函数
434 ()(22)ln2,()
2
x
f x ax a x
g x e x
x x =-+-+=--
(Ⅰ)若1
a≤,讨论f(x)的单调性;
(Ⅱ)若
3
2
a=-,求证:()()
f x
g x
<.。