高考数学一轮复习课件:选修4-5不等式选讲2

合集下载

2018年高三理科数学复习选修4-5 不等式选讲

2018年高三理科数学复习选修4-5 不等式选讲

选修4-5不等式选讲考点1不等式的性质1.已知a,b,c均为正数,证明: a2+b2+c2+(++)2≥6, 并确定a,b,c为何值时,等号成立.考点2绝对值不等式2.设函数f(x)=|x-1|+|x-2|.(1)解不等式f(x)>2;(2)求函数g(x)=ln f(x)的值域.3.已知函数f(x)=2|x+a|-|x-1|(a>0).(1)若函数f(x)与x轴围成的三角形的面积的最小值为4,求实数a的取值范围;(2)若对任意的x∈R都有f(x)+2≥0,求实数a的取值范围.4.已知m>1,且关于x的不等式m-|x-2|≥1的解集为[0,4].(1)求m的值;(2)若a,b均为正实数,且满足a+b=m,求a2+b2的最小值.5.设函数f(x)=-+-的最大值为M.(1)求实数M的值;(2)求关于x的不等式|x-|+|x+2|≤M的解集.6.已知函数f(x)=|x+a|+|x-2|.(1)当a=-3时,求不等式f(x)≥3的解集;(2)若f(x)≤|x-4|的解集包含[1,2],求实数a的取值范围.考点3证明不等式的基本方法7.已知a>0,b>0,求证:+≥+.8.已知a,b∈R,且a+b=1,求证:(a+2)2+(b+2)2≥.9.已知a,b,c均为正实数.求证:(1)(a+b)(ab+c2)≥4abc;(2)若a+b+c=3,则++≤3.考点4柯西不等式10.已知x,y是两个不相等的正实数,求证:(x2y+x+y2)·(xy2+y+x2)>9x2y2.答案1.解法一因为a,b,c均为正数,所以a2+b2+c2≥3(abc)①,因为++≥3(abc)-,所以(++)2≥9(abc)-②.故a2+b2+c2+(++)2≥3(abc)+9(abc)-.又3(abc)+9(abc)-≥2=6③,所以原不等式成立.当且仅当a=b=c时,①式和②式等号成立.当且仅当3(abc)=9(abc)-时,③式等号成立,即当a=b=c=时,原式等号成立.解法二因为a,b,c均为正数,由基本不等式得a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ac,所以a2+b2+c2≥ab+bc+ac①.同理,++≥++②.故a2+b2+c2+(++)2=a2+b2+c2++++++≥ab+bc+ac+++≥6③.所以原不等式成立.当且仅当a=b=c时,①式和②式等号成立,当且仅当(ab)2=(bc)2=(ac)2=3时,③式等号成立.即当且仅当a=b=c=时,原不等式等号成立.2.(1)由题意知f(x)=|x-1|+|x-2|=-,, ,, -,当x<1时,由f(x)>2,得3-2x>2,解得x<,所以x<; 当1≤x≤2时,f(x)>2无解;当x>2时,由f(x)>2,得2x-3>2,解得x>,所以x>.综上,不等式f(x)>2的解集为(-∞,)∪(,+∞).(2)因为f(x)=|x-1|+|x-2|,则f(x)≥1,又函数y=ln x在其定义域内为增函数.所以函数g(x)=ln f(x)的值域为[0,+∞).3.(1)由题意可得f(x)=---, -,-, -,,画出函数f(x)的图象,如图D 1所示,图D 1函数f(x)与x轴围成的三角形为△ABC,易求得A(-2a-1,0),B(-,0),C(-a,-a-1).所以S△ABC=[--(-2a-1)]×|-a-1|=(a+1)2≥4(a>0),解得a≥-1.(2)由图D 1可知,f(x)min=f(-a)=-a-1.对任意的x∈R都有f(x)+2≥0,即f(x)min+2≥0,即-a-1+2≥0,解得a≤1,又a>0,所以实数a的取值范围为(0,1].4.(1)∵m>1,不等式m-|x-2|≥1可化为|x-2|≤m-1,∴1-m≤x-2≤m-1,即3-m≤x≤m+1.∵不等式m-|x-2|≥1的解集为[0,4],∴-,,即m=3.(2)由(1)知a+b=3,解法一(利用基本不等式)∵(a+b)2=a2+b2+2ab≤(a2+b2)+(a2+b2)=2(a2+b2),∴a2+b2≥,∴a2+b2的最小值为.解法二(消元法求二次函数的最值)∵a+b=3,∴b=3-a,∴a2+b2=a2+(3-a)2=2a2-6a+9=2(-)+≥,∴a2+b2的最小值为.5.(1)f(x)=-+-≤2(-)(-)=3,当且仅当x=时等号成立.故函数f(x)的最大值M=3.(2)由(1)知M=3.由绝对值三角不等式可得|x-|+|x+2|≥|(x-)-(x+2)|=3.所以不等式|x-|+|x+2|≤3的解集就是方程|x-|+|x+2|=3的解.由绝对值的几何意义得,当且仅当-2x≤,|x-|+|x+2|=3,所以不等式|x- 2 |≤M 的解集为{x|-2 ≤x ≤ .6.(1)当a=-3时,f (x )≥3⇔|x-3|+|x-2|≥3⇔ ,- 或 , 或 , - ,解得x ≤1或x ≥4. 故当a=-3时,不等式f (x )≥3的解集为{x|x ≤1或x ≥4}.(2)由题意可得f (x )≤|x-4|在区间[1,2]上恒成立⇔|x+a|+2-x ≤4-x 在区间[1,2]上恒成立⇔-2-x ≤a ≤2-x 在区间[1,2]上恒成立⇔-3≤a ≤0,即实数a 的取值范围是[-3,0].7.解法一 (作差比较法)因为a>0,b>0,所以 +-( + )= ) ) = )( - ≥0, 所以 +≥ + . 解法二 (作商比较法)因为a>0,b>0,所以 = ) ) ( )= )( ) ( )== - ) ≥1,所以 +≥ + . 8.解法一 (放缩法)因为a+b=1,所以(a+2)2+(b+2)2≥2[( ) ( ) ]2= [(a+b )+4]2=(当且仅当a+2=b+2,即a=b= 时,等号成立). 解法二 (反证法)假设(a+2)2+(b+2)2< ,则 a 2+b 2+4(a+b )+8< .因为a+b=1,则b=1-a ,所以a 2+(1-a )2+12< .所以(a- )2<0,这与(a- )2≥0矛盾,故假设不成立.所以(a+2)2+(b+2)2≥ . 9.(1)要证(a+b )(ab+c 2)≥4abc ,可证a 2b+ac 2+ab 2+bc 2-4abc ≥0,需证b (a 2+c 2-2ac )+a (c 2+b 2-2bc )≥0,即证b (a-c )2+a (c-b )2≥0,当且仅当a=b=c 时,取等号, 由已知,上式显然成立,故不等式(a+b )(ab+c 2)≥4abc 成立.(2)因为a ,b ,c 均为正实数,由不等式的性质知· ≤ =,当且仅当a +1=2时,取等号,·≤=,当且仅当b+1=2时,取等号,·≤=,当且仅当c+1=2时,取等号,以上三式相加,得(++)≤=6,所以++≤3,当且仅当a=b=c=1时,取等号.10.因为x,y是正实数,所以x2y+x+y2≥33xy,当且仅当x2y=x=y2,即x=y=1时,等号成立;同理:xy2+y+x2≥3=3xy,当且仅当xy2=y=x2,即x=y=1 时,等号成立.所以(x2y+x+y2)(xy2+y+x2)≥9x2y2,当且仅当x=y=1时,等号成立.因为x≠y,所以(x2y+x+y2)(xy2+y+x2)>9x2y2.。

高三理科数学第一轮复习选修4-5§2:几个重要不等式的证明及其应用

高三理科数学第一轮复习选修4-5§2:几个重要不等式的证明及其应用

选修4-5:不等式选讲 §2:几个重要不等式的证明及其应用
选修4-5:不等式选讲 §2:几个重要不等式的证明及其应用
解析
选修4-5:不等式选讲 §2:几个重要不等式的证明及其应用
解析
选修4-5:不等式选讲 §2:几个重要不等式的证明及其应用
解析
选修4-5:不等式选讲 §2:几个重要不等式的证明及其应用
选修4-5:不等式选讲 §2:几个重要不等式的证明及其应用
选修4-5:不等式选讲 §2:几个重要不等式的证明及其应用
选修4-5:不等式选讲 §2:几个重要不等式的证明及其应用
选修4-5:不等式选讲 §2:几个重要不等式的证明及其应用
选修4-5:不等式选讲 §2:几个重要不等式的证明及其应用
选修4-5:不等式选讲 §2:几个重要不等式的证明及其应用
选修4-5:不等式选讲 §2:几个重要不等式的证明及其应用
选修4-5:不等式选讲 §2:几个重要不等式的证明及其应用
解析
选修4-5:不等式选讲 §2:几个重要不等式的证明及其应用
选修4-5:不等式选讲 §2:几个重要不等式的证明及其应用
解析
选修4-5:不等式选讲 §2:几个重要不等式的证明及其应用
解析
选修4-5:不等式选讲 §2:几个重要不等式的证明及其应用
解析
选修4-5:不等式选讲 §2:几个重要不等式的证明及其应用
选修4-5:不等式选讲 §2:几个重要不等式的证明及其应用
选修4-5:不等式选讲 §2:几个重要不等式的证明及其应用
选修4-5:不等式选讲 §2:几个重要不等式的证明及其应用
选修4-5:不等式选讲 §2:几个重要不等式的证明及其应用
选修4-5:不等式选讲 §2:几个重要不等式的证明及其应用

人教a版高考数学(理)一轮课件:选修4-5不等式选讲

人教a版高考数学(理)一轮课件:选修4-5不等式选讲

考纲解读
通过近几年的高考题可以看出, 本 部分内容的考查主要是在绝对值 不等式的几何意义和解绝对值不 等式两个方面,考查难度一般,试题 题型较为单一 .对于绝对值不等式 的证明一般会结合函数、导数等 内容考查,难度较大,属中高档题.
1.绝对值三角不等式 (1)定理 1:如果 a,b 是实数,则|a+b|≤|a|+|b|,当且仅当 ab≥0 时,等号成立. 其中不等式|a+b|≤|a|+|b|又称为三角不等式. (2)在|a+b|≤|a|+|b|中用向量 a,b 分别替换实数 a,b,则|a+b|<|a|+|b|的几 何意义是三角形的两边之和大于第三边(a,b 不共线). (3)定理 2:如果 a,b,c 是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0 时,等号成立.
(������ + 1)2 ≥ (x + 2)2 , ⇔ ������ + 2 ≠ 0, (������ + 1 + ������ + 2)(������ + 1-������-2) ≥ 0, 即 ������ ≠ -2, 解得 x≤- 且 x≠-2.
3 2
3 .设 a=2- 5,b= 5-2,c=5-2 5,则 a ,b ,c 之间的大小关系是 【答案】 c>b>a 【解析】分别由 a<0,b>0,c>0,再由 b 2-c2<0 得 b<c 判断.
5 .设 m 等于|a| ,|b| 和 1 中最大的一个,当|x|>m 时,求证: +
3 .|ax+b| ≤c,|ax+b| ≥c(c>0)型不等式的解法 (1)|ax+b| ≤c(c>0)型不等式的解法是:先化为不等式-c≤ax+b ≤c,再利用 不等式的性质求出原不等式的解集. (2)|ax+b| ≥c(c>0)的解法是:先化为 ax+b ≥c 或 ax+b ≤-c,再进一步利用不 等式的性质求出原不等式的解集.

选修4-5 不等式选讲

选修4-5 不等式选讲

选修4-5 ⎪⎪⎪不等式选讲第一节绝对值不等式1.绝对值三角不等式定理1:如果a ,b 是实数,则|a +b |≤|a |+|b |,当且仅当ab ≥0时,等号成立. 定理2:如果a ,b ,c 是实数,那么|a -c |≤|a -b |+|b -c |,当且仅当(a -b )(b -c )≥0时,等号成立.2.绝对值不等式的解法(1)含绝对值不等式|x |<a 与|x |>a 的解法: 不等式 a >0a =0 a <0 |x |<a {}x |-a <x <a ∅∅ |x |>a {}x |x >a 或x <-a{}x |x ∈R 且x ≠0R(2)|ax +b |≤c (c >0)和|ax +b |≥c (c >0)型不等式的解法: ①|ax +b |≤c ⇔-c ≤ax +b ≤c ; ②|ax +b |≥c ⇔ax +b ≥c 或ax +b ≤-c .1.设a ,b 为满足ab <0的实数,那么( ) A .|a +b |>|a -b | B .|a +b |<|a -b | C .|a -b |<||a |-|b || D .|a -b |<|a |+|b | 解析:选B ∵ab <0, ∴|a -b |=|a |+|b |>|a +b |.2.若不等式|kx -4|≤2的解集为{}x |1≤x ≤3,则实数k =________.解析:由|kx-4|≤2⇔2≤kx≤6.∵不等式的解集为{}x|1≤x≤3,∴k=2.答案:23.函数y=|x-4|+|x+4|的最小值为________.解析:因为|x-4|+|x+4|≥|(x-4)-(x+4)|=8,所以所求函数的最小值为8.答案:84.不等式|x+1|-|x-2|≥1的解集是________.解析:令f(x)=|x+1|-|x-2|=⎩⎪⎨⎪⎧-3,x≤-1,2x-1,-1<x<2,3,x≥2.当-1<x<2时,由2x-1≥1,解得1≤x<2.又当x≥2时,f(x)=3>1恒成立.所以不等式的解集为{}x|x≥1.答案:{}x|x≥1考点一绝对值不等式的解法(基础送分型考点——自主练透)[考什么·怎么考]绝对值不等式的解法是每年高考的重点,既单独考查,也与函数的图象、含参问题等的综合考查,难度较小,属于低档题.(1)画出y=f(x)的图象;(2)求不等式|f(x)|>1的解集.解:(1)由题意得f (x )=⎩⎨⎧x -4,x ≤-1,3x -2,-1<x ≤32,-x +4,x >32,故y =f (x )的图象如图所示.(2)由f (x )的函数表达式及图象可知, 当f (x )=1时,可得x =1或x =3; 当f (x )=-1时,可得x =13或x =5.故f (x )>1的解集为{x |1<x <3},f (x )<-1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <13或x >5. 所以|f (x )|>1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <13或1<x <3或x >5. 2.解下列不等式. (1)|2x +1|-2|x -1|>0; (2)|x +3|-|2x -1|<x2+1.解:(1)法一:原不等式可化为|2x +1|>2|x -1|, 两边平方得4x 2+4x +1>4(x 2-2x +1), 解得x >14,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x |x >14.法二:原不等式等价于⎩⎪⎨⎪⎧x <-12,-(2x +1)+2(x -1)>0或⎩⎪⎨⎪⎧-12≤x ≤1,(2x +1)+2(x -1)>0或⎩⎪⎨⎪⎧x >1,(2x +1)-2(x -1)>0.解得x >14,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x |x >14.(2)①当x <-3时,原不等式化为-(x +3)-(1-2x )<x2+1,解得x <10,∴x <-3. ②当-3≤x ≤12时,原不等式化为(x +3)-(1-2x )<x2+1,解得x <-25,∴-3≤x <-25.③当x >12时,原不等式化为(x +3)+(1-2x )<x2+1,解得x >2,∴x >2.综上可知,原不等式的解集为⎩⎨⎧⎭⎬⎫x |x <-25或x >2.[怎样快解·准解]绝对值不等式的常见3解法 (1)零点分段讨论法含有两个或两个以上绝对值符号的不等式,可用零点分段讨论法脱去绝对值符号,将其转化为与之等价的不含绝对值符号的不等式(组),一般步骤如下:①令每个绝对值符号里的代数式为零,并求出相应的根; ②将这些根按从小到大排序,它们把实数集分为若干个区间;③在所分的各区间上,根据绝对值的定义去掉绝对值符号,求所得的各不等式在相应区间上的解集;④这些解集的并集就是原不等式的解集. (2)利用绝对值的几何意义由于|x -a |+|x -b |与|x -a |-|x -b |分别表示数轴上与x 对应的点到与a ,b 对应的点的距离之和与距离之差,因此对形如|x -a |+|x -b |<c (c >0)或|x -a |-|x -b |>c (c >0)的不等式,利用绝对值的几何意义求解更直观.(3)数形结合法在直角坐标系中作出不等式两边所对应的两个函数的图象,利用函数图象求解.[易错提醒]用零点分段法和几何意义求解绝对值不等式时,去绝对值符号的关键点是找零点,将数轴分成若干段,然后从左到右逐段讨论.考点二绝对值三角不等式的应用(重点保分型考点——师生共研)应用绝对值三角不等式证明不等式或求最值是高考的常考内容,难度适中.[典题领悟]1.若对于实数x,y有|1-x|≤2,|y+1|≤1,求|2x+3y+1|的最大值.解:因为|2x+3y+1|=|2(x-1)+3(y+1)|≤2|x-1|+3|y+1|≤7,所以|2x+3y+1|的最大值为7.2.若a≥2,x∈R,求证:|x-1+a|+|x-a|≥3.证明:因为|x-1+a|+|x-a|≥|(x-1+a)-(x-a)|=|2a-1|,又a≥2,故|2a-1|≥3,所以|x-1+a|+|x-a|≥3成立.[解题师说]证明绝对值不等式的3种主要方法(1)利用绝对值的定义去掉绝对值符号,转化为一般不等式再证明.(2)利用三角不等式||a|-|b||≤|a±b|≤|a|+|b|进行证明.(3)转化为函数问题,利用数形结合进行证明.[冲关演练]已知x,y∈R,且|x+y|≤16,|x-y|≤14,求证:|x+5y|≤1.证明:∵|x+5y|=|3(x+y)-2(x-y)|.∴由绝对值不等式的性质,得|x+5y|=|3(x+y)-2(x-y)|≤|3(x+y)|+|2(x-y)|=3|x +y |+2|x -y |≤3×16+2×14=1.即|x +5y |≤1成立.考点三 绝对值不等式的综合应用 (重点保分型考点——师生共研)(2017·全国卷Ⅲ)已知函数f (x )=|x +1|-|x -2|. (1)求不等式f (x )≥1的解集;(2)若不等式f (x )≥x 2-x +m 的解集非空,求m 的取值范围. 解:(1)f (x )=⎩⎪⎨⎪⎧-3,x <-1,2x -1,-1≤x ≤2,3,x >2.当x <-1时,f (x )≥1无解;当-1≤x ≤2时,由f (x )≥1,得2x -1≥1,解得1≤x ≤2; 当x >2时,由f (x )≥1,解得x >2. 所以f (x )≥1的解集为{x |x ≥1}.(2)由f (x )≥x 2-x +m ,得m ≤|x +1|-|x -2|-x 2+x .而|x +1|-|x -2|-x 2+x ≤|x |+1+|x |-2-x 2+|x |=-⎝⎛⎭⎫|x |-322+54≤54, 当且仅当x =32时,|x +1|-|x -2|-x 2+x =54.故m 的取值范围为⎝⎛⎦⎤-∞,54. [解题师说]设函数f (x )中含有绝对值,则 (1)f (x )>a 有解⇔f (x )max >a . (2)f (x )>a 恒成立⇔f (x )min >a .(3)f (x )>a 恰在(c ,b )上成立⇔c ,b 是方程f (x )=a 的解.[冲关演练]1.(2017·全国卷Ⅰ)已知函数f (x )=-x 2+ax +4,g (x )=|x +1|+|x -1|. (1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[-1,1],求a 的取值范围. 解:(1)当a =1时,不等式f (x )≥g (x )等价于 x 2-x +|x +1|+|x -1|-4≤0. ①当x <-1时,①式化为x 2-3x -4≤0,无解;当-1≤x ≤1时,①式化为x 2-x -2≤0,从而-1≤x ≤1; 当x >1时,①式化为x 2+x -4≤0, 从而1<x ≤-1+172.所以f (x )≥g (x )的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-1≤x ≤-1+172. (2)当x ∈[-1,1]时,g (x )=2.所以f (x )≥g (x )的解集包含[-1,1],等价于当x ∈[-1,1]时,f (x )≥2. 又f (x )在[-1,1]的最小值必为f (-1)与f (1)之一, 所以f (-1)≥2且f (1)≥2,得-1≤a ≤1. 所以a 的取值范围为[-1,1]. 2.已知函数f (x )=|2x -a |+a .(1)当a =2时,求不等式f (x )≤6的解集;(2)设函数g (x )=|2x -1|.当x ∈R 时,f (x )+g (x )≥3,求a 的取值范围. 解:(1)当a =2时,f (x )=|2x -2|+2. 解不等式|2x -2|+2≤6,得-1≤x ≤3. 因此f (x )≤6的解集为{x |-1≤x ≤3}.(2)当x ∈R 时,f (x )+g (x )=|2x -a |+a +|1-2x |≥3, 即⎪⎪⎪⎪x -a 2+⎪⎪⎪⎪12-x ≥3-a 2. 又⎝⎛⎭⎫⎪⎪⎪⎪x -a 2+⎪⎪⎪⎪12-x min =⎪⎪⎪⎪12-a 2, 所以⎪⎪⎪⎪12-a 2≥3-a 2,解得a ≥2.所以a 的取值范围是[2,+∞).1.已知函数f (x )=|x -4|+|x -a |(a ∈R)的最小值为a . (1)求实数a 的值; (2)解不等式f (x )≤5.解:(1)f (x )=|x -4|+|x -a |≥|a -4|=a , 从而解得a =2.(2)由(1)知,f (x )=|x -4|+|x -2|=⎩⎪⎨⎪⎧-2x +6,x ≤2,2,2<x ≤4,2x -6,x >4.故当x ≤2时,由-2x +6≤5,得12≤x ≤2,当2<x ≤4时,显然不等式成立, 当x >4时,由2x -6≤5,得4<x ≤112,故不等式f (x )≤5的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪12≤x ≤112.2.(2018·石家庄质检)已知函数f (x )=|x -3|+|x +m |(x ∈R). (1)当m =1时,求不等式f (x )≥6的解集;(2)若不等式f (x )≤5的解集不是空集,求实数m 的取值范围. 解:(1)当m =1时,f (x )≥6等价于⎩⎪⎨⎪⎧ x ≤-1,-(x -3)-(x +1)≥6或⎩⎪⎨⎪⎧-1<x <3,-(x -3)+(x +1)≥6 或⎩⎪⎨⎪⎧x ≥3,(x -3)+(x +1)≥6,解得x ≤-2或x ≥4,所以不等式f (x )≥6的解集为{x |x ≤-2或x ≥4}. (2)∵|x -3|+|x +m |≥|(x -3)-(x +m )|=|m +3|,∴f (x )min =|3+m |,∴|m +3|≤5, 解得-8≤m ≤2,∴实数m 的取值范围为[-8,2].3.(2018·郑州质检)已知函数f (x )=|2x +1|,g (x )=|x |+a . (1)当a =0时,解不等式f (x )≥g (x );(2)若存在x ∈R ,使f (x )≤g (x )成立,求实数a 的取值范围. 解:(1)当a =0时,由f (x )≥g (x ),得|2x +1|≥|x |, 两边平方整理得3x 2+4x +1≥0, 解得x ≤-1或x ≥-13,故原不等式的解集为(-∞,-1]∪⎣⎡⎭⎫-13,+∞. (2)由f (x )≤g (x ),得a ≥|2x +1|-|x |, 令h (x )=|2x +1|-|x |,则h (x )=⎩⎨⎧-x -1,x ≤-12,3x +1,-12<x <0,x +1,x ≥0,故h (x )min =h ⎝⎛⎭⎫-12=-12, 所以实数a 的取值范围为⎣⎡⎭⎫-12,+∞. 4.已知函数f (x )=|4x -a |+a 2-4a (a ∈R). (1)当a =1时,求不等式-2≤f (x )≤4的解集;(2)设函数g (x )=|x -1|,若对任意的x ∈R ,f (x )-4g (x )≤6恒成立,求实数a 的取值范围.解:(1)f (x )=|4x -a |+a 2-4a , 当a =1时,f (x )=|4x -1|-3.因为-2≤f (x )≤4,所以1≤|4x -1|≤7,即⎩⎪⎨⎪⎧-7≤4x -1≤7,4x -1≥1或4x -1≤-1,解得-32≤x ≤0或12≤x ≤2,因此-2≤f (x )≤4的解集为⎣⎡⎦⎤-32,0∪⎣⎡⎦⎤12,2. (2)因为f (x )-4g (x )=|4x -a |+a 2-4a -4|x -1|≤|4x -a +4-4x |+a 2-4a =a 2-4a +|4-a |,所以a 2-4a +|4-a |≤6,当a ≥4时,a 2-4a +a -4≤6,得4≤a ≤5, 当a <4时,a 2-4a +4-a ≤6,得5-332≤a <4, 所以实数a 的取值范围是⎣⎢⎡⎦⎥⎤5-332,5.5.设函数f (x )=|x +2|-|x -1|. (1)求不等式f (x )>1的解集;(2)若关于x 的不等式f (x )+4≥|1-2m |有解,求实数m 的取值范围. 解:(1)函数f (x )可化为f (x )=⎩⎪⎨⎪⎧-3,x ≤-2,2x +1,-2<x <1,3,x ≥1,当x ≤-2时,f (x )=-3<0,不合题意;当-2<x <1时,f (x )=2x +1>1,得x >0,即0<x <1; 当x ≥1时,f (x )=3>1,即x ≥1.综上,不等式f (x )>1的解集为(0,+∞).(2)关于x 的不等式f (x )+4≥|1-2m |有解等价于(f (x )+4)max ≥|1-2m |,由(1)可知f (x )max =3(也可由|f (x )|=||x +2|-|x -1||≤|(x +2)-(x -1)|=3,得f (x )max =3), 即|1-2m |≤7,解得-3≤m ≤4. 故实数m 的取值范围为[-3,4].6.(2018·东北四市模拟)已知a >0,b >0,函数f (x )=|x +a |+|2x -b |的最小值为1. (1)证明:2a +b =2;(2)若a +2b ≥tab 恒成立,求实数t 的最大值.解:(1)证明:因为-a <b 2,所以f (x )=|x +a |+|2x -b |=⎩⎨⎧-3x -a +b ,x <-a ,-x +a +b ,-a ≤x ≤b 2,3x +a -b ,x >b2,显然f (x )在⎝⎛⎭⎫-∞,b 2上单调递减,在⎝⎛⎭⎫b 2,+∞上单调递增,所以f (x )的最小值为f ⎝⎛⎭⎫b 2=a +b2,所以a +b2=1,即2a +b =2.(2)因为a +2b ≥tab 恒成立,所以a +2bab ≥t 恒成立,a +2b ab =1b +2a =12⎝⎛⎭⎫1b +2a (2a +b ) =12⎝⎛⎭⎫5+2a b +2b a ≥12⎝⎛⎭⎫5+2 2a b ·2b a =92. 当且仅当a =b =23时,a +2b ab 取得最小值92,所以t ≤92,即实数t 的最大值为92.7.已知函数f (x )=|x +1|-2|x -a |,a >0. (1)当a =1时,求不等式f (x )>1的解集;(2)若f (x )的图象与x 轴围成的三角形面积大于6,求a 的取值范围. 解:(1)当a =1时,f (x )>1化为|x +1|-2|x -1|-1>0.当x ≤-1时,不等式化为x -4>0,无解; 当-1<x <1时,不等式化为3x -2>0, 解得23<x <1;当x ≥1时,不等式化为-x +2>0,解得1≤x <2.所以f (x )>1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪23<x <2. (2)由题设可得f (x )=⎩⎪⎨⎪⎧x -1-2a ,x <-1,3x +1-2a ,-1≤x ≤a ,-x +1+2a ,x >a .所以函数f (x )的图象与x 轴围成的三角形的三个顶点分别为A ⎝ ⎛⎭⎪⎫2a -13,0,B (2a +1,0),C (a ,a +1),所以△ABC 的面积为23(a +1)2.由题设得23(a +1)2>6,故a >2.所以a 的取值范围为(2,+∞). 8.已知函数f (x )=|3x +2|. (1)解不等式f (x )<4-|x -1|;(2)已知m +n =1(m ,n >0),若|x -a |-f (x )≤1m +1n (a >0)恒成立,求实数a 的取值范围.解:(1)不等式f (x )<4-|x -1|, 即|3x +2|+|x -1|<4.当x <-23时,不等式化为-3x -2-x +1<4,解得-54<x <-23;当-23≤x ≤1时,不等式化为3x +2-x +1<4,解得-23≤x <12;当x >1时,不等式化为3x +2+x -1<4,无解. 综上所述,原不等式的解集为⎩⎨⎧⎭⎬⎫x |-54<x <12.(2)1m +1n =⎝⎛⎭⎫1m +1n (m +n )=1+1+n m +m n ≥4, 当且仅当m =n =12时等号成立.令g (x )=|x -a |-f (x )=|x -a |-|3x +2|=⎩⎪⎨⎪⎧2x +2+a ,x <-23,-4x -2+a ,-23≤x ≤a ,-2x -2-a ,x >a .∴x =-23时,g (x )max =23+a ,要使不等式恒成立,只需g (x )max =23+a ≤4,解得0<a ≤103,所以实数a 的取值范围是⎝⎛⎦⎤0,103. 第二节不等式的证明1.基本不等式定理1:如果a ,b ∈R ,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 定理2:如果a ,b >0,那么a +b2≥ab ,当且仅当a =b 时,等号成立,即两个正数的算术平均不小于(即大于或等于)它们的几何平均.定理3:如果a ,b ,c ∈R +,那么a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立. 2.比较法(1)作差法的依据是:a -b >0⇔a >b .(2)作商法:若B >0,欲证A ≥B ,只需证AB ≥1.3.综合法与分析法(1)综合法:一般地,从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立.(2)分析法:从要证的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义,公理或已证明的定理,性质等),从而得出要证的命题成立.1.设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是( ) A .s ≥t B .s >t C .s ≤tD .s <t解析:选A ∵s -t =b 2-2b +1=(b -1)2≥0,∴s ≥t . 2.已知a ,b ∈R +,且a +b =2,则1a +1b 的最小值为( ) A .1 B .2 C .4D .8解析:选B ∵a ,b ∈R +,且a +b =2, ∴(a +b )⎝⎛⎭⎫1a +1b =2+b a +ab≥2+2b a ·ab =4,∴1a +1b ≥4a +b =2,即1a +1b 的最小值为2(当且仅当a =b =1时,等号成立). 3.已知a ,b ,c 是正实数,且a +b +c =1,则1a +1b +1c 的最小值为________. 解析:把a +b +c =1代入1a +1b +1c 中 得a +b +c a +a +b +c b +a +b +cc=3+⎝⎛⎭⎫b a +a b +⎝⎛⎭⎫c a +a c +⎝⎛⎭⎫c b +b c≥3+2+2+2=9,当且仅当a =b =c =13时,等号成立.故1a +1b +1c 的最小值为9. 答案:9考点一 比较法证明不等式 (重点保分型考点——师生共研)比较法证明不等式是高考考查的重点,主要涉及作差比较法和作商比较法,难度适中,有时难度也较大.(2016·全国卷Ⅱ)已知函数f (x )=⎪⎪⎪⎪x -12+⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集. (1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.解:(1)f (x )=⎩⎪⎨⎪⎧-2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2,得-2x <2,解得x >-1;当-12<x<12时,f(x)<2恒成立;当x≥12时,由f(x)<2,得2x<2,解得x<1.所以f(x)<2的解集M={x|-1<x<1}.(2)证明:由(1)知,当a,b∈M时,-1<a<1,-1<b<1,从而(a+b)2-(1+ab)2=a2+b2-a2b2-1=(a2-1)(1-b2)<0.因此|a+b|<|1+ab|.[解题师说]1.作差比较法(1)作差比较法证明不等式的4步骤(2)作差比较法的应用范围当被证的不等式两端是多项式、分式或对数式时,一般使用作差比较法.2.作商比较法(1)作商比较法证明不等式的一般步骤(2)作商比较法的应用范围当被证的不等式两边含有幂式或指数式或乘积式时,一般使用作商比较法.[冲关演练]1.求证:当x ∈R 时,1+2x 4≥2x 3+x 2. 证明:法一:(1+2x 4)-(2x 3+x 2) =2x 3(x -1)-(x +1)(x -1) =(x -1)(2x 3-x -1) =(x -1)(2x 3-2x +x -1) =(x -1)[2x (x 2-1)+(x -1)] =(x -1)2(2x 2+2x +1) =(x -1)2⎣⎡⎦⎤2⎝⎛⎭⎫x +122+12≥0, 所以1+2x 4≥2x 3+x 2. 法二:(1+2x 4)-(2x 3+x 2) =x 4-2x 3+x 2+x 4-2x 2+1 =(x -1)2·x 2+(x 2-1)2≥0, 所以1+2x 4≥2x 3+x 2.2.求证:当a >0,b >0时,a a b b≥(ab )+2a b.证明:∵a ab b(ab )+2a b =⎝⎛⎭⎫a b -2a b,∴当a =b 时,⎝⎛⎭⎫a b -2a b=1,当a >b >0时,ab >1,a -b 2>0,∴⎝⎛⎭⎫a b -2a b>1,当b >a >0时,0<ab <1,a -b 2<0,∴⎝⎛⎭⎫a b -2a b>1,∴a a b b≥(ab )+2a b .考点二 综合法证明不等式 (重点保分型考点——师生共研)综合法证明不等式是每年高考的重点,主要涉及基本不等式的应用,难度适中.[典题领悟](2017·全国卷Ⅱ)已知a >0,b >0,a 3+b 3=2.证明: (1)(a +b )(a 5+b 5)≥4; (2)a +b ≤2.证明:(1)(1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6 =(a 3+b 3)2-2a 3b 3+ab (a 4+b 4) =4+ab (a 2-b 2)2≥4.(2)∵(a +b )3=a 3+3a 2b +3ab 2+b 3 =2+3ab (a +b )≤2+3(a +b )24(a +b )=2+3(a +b )34,∴(a +b )3≤8,因此a +b ≤2.[解题师说]1.综合法证明不等式的方法(1)综合法证明不等式,要着力分析已知与求证之间,不等式的左右两端之间的差异与联系.合理进行转换,恰当选择已知不等式,这是证明的关键;(2)在用综合法证明不等式时,不等式的性质和基本不等式是最常用的.在运用这些性质时,要注意性质成立的前提条件.2.综合法证明时常用的不等式 (1)a 2≥0. (2)|a |≥0.(3)a 2+b 2≥2ab ,它的变形形式有a 2+b 2≥2|ab |;a 2+b 2≥-2ab ;(a +b )2≥4ab ; a 2+b 2≥12(a +b )2;a 2+b 22≥⎝⎛⎭⎫a +b 22.(4)a +b2≥ab ,它的变形形式有a +1a ≥2(a >0);ab +b a ≥2(ab >0); a b +ba≤-2(ab <0). (5)(a 2+b 2)(c 2+d 2)≥(ac +bd )2.[冲关演练]1.已知a >0,b >0,a +b =1,求证: (1)1a +1b +1ab ≥8; (2)⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b ≥9. 证明:(1)∵a +b =1,a >0,b >0, ∴1a +1b +1ab =1a +1b +a +b ab =2⎝⎛⎭⎫1a +1b=2⎝ ⎛⎭⎪⎫a +b a +a +b b =2⎝⎛⎭⎫b a +a b +4 ≥4b a ·a b +4=8,当且仅当a =b =12时,等号成立, ∴1a +1b +1ab≥8. (2)∵⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b =1a +1b +1ab +1, 由(1)知1a +1b +1ab ≥8. ∴⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b ≥9. 2.已知函数f (x )=2|x +1|+|x -2|. (1)求f (x )的最小值m ;(2)若a ,b ,c 均为正实数,且满足a +b +c =m ,求证:b 2a +c 2b +a 2c ≥3.解:(1)当x <-1时,f (x )=-2(x +1)-(x -2)=-3x ∈(3,+∞); 当-1≤x <2时,f (x )=2(x +1)-(x -2)=x +4∈[3,6); 当x ≥2时,f (x )=2(x +1)+(x -2)=3x ∈[6,+∞). 综上,f (x )的最小值m =3.(2)证明:因为a ,b ,c 均为正实数,且满足a +b +c =3, 所以b 2a +c 2b +a 2c +(a +b +c ) =⎝⎛⎭⎫b 2a +a +⎝⎛⎭⎫c 2b +b +⎝⎛⎭⎫a2c +c ≥2⎝⎛⎭⎫b 2a ·a +c 2b ·b +a 2c ·c =2(a +b +c ), 当且仅当a =b =c =1时,取“=”, 所以b 2a +c 2b +a 2c ≥a +b +c ,即b 2a +c 2b +a 2c ≥3.考点三 分析法证明不等式 (重点保分型考点——师生共研)分析法证明不等式是高考考查的重点,常与充要条件等综合考查,难度中等及以上.[典题领悟]已知函数f (x )=|x +1|.(1)求不等式f (x )<|2x +1|-1的解集M ; (2)设a ,b ∈M ,证明:f (ab )>f (a )-f (-b ). 解:(1)由题意,|x +1|<|2x +1|-1, ①当x ≤-1时,不等式可化为-x -1<-2x -2, 解得x <-1; ②当-1<x <-12时,不等式可化为x +1<-2x -2, 此时不等式无解;③当x ≥-12时,不等式可化为x +1<2x ,解得x >1. 综上,M ={x |x <-1或x >1}.(2)证明:因为f (a )-f (-b )=|a +1|-|-b +1|≤|a +1-(-b +1)|=|a +b |, 所以要证f (ab )>f (a )-f (-b ), 只需证|ab +1|>|a +b |, 即证|ab +1|2>|a +b |2,即证a 2b 2+2ab +1>a 2+2ab +b 2, 即证a 2b 2-a 2-b 2+1>0, 即证(a 2-1)(b 2-1)>0.因为a ,b ∈M ,所以a 2>1,b 2>1,所以(a 2-1)(b 2-1)>0成立,所以原不等式成立.[解题师说]1.分析法的应用条件当所证明的不等式不能使用比较法,且和重要不等式(a 2+b 2≥2ab )、基本不等式⎝⎛⎭⎫ab ≤a +b 2,a >0,b >0没有直接联系,较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.2.用分析法证“若A 则B ”这个命题的模式 为了证明命题B 为真,只需证明命题B 1为真,从而有… 只需证明命题B 2为真,从而有… ……只需证明命题A 为真,而已知A 为真,故B 必真.[冲关演练]已知a >0,b >0,2c >a +b ,求证:c -c 2-ab <a <c +c 2-ab .证明:要证c -c 2-ab <a <c +c 2-ab , 即证-c 2-ab <a -c <c 2-ab , 即证|a -c |<c 2-ab , 即证(a -c )2<c 2-ab ,即证a 2-2ac <-ab .因为a >0,所以只要证a -2c <-b ,即证a +b <2c .由已知条件知,上式显然成立,所以原不等式成立.1.设a ,b ,c ∈R +,且a +b +c =1.(1)求证:2ab +bc +ca +c 22≤12; (2)求证:a 2+c 2b +b 2+a 2c +c 2+b 2a≥2. 证明:(1)因为1=(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ca ≥4ab +2bc +2ca +c 2,所以2ab +bc +ca +c 22=12(4ab +2bc +2ca +c 2)≤12. (2)因为a 2+c 2b ≥2ac b ,b 2+a 2c ≥2ab c ,c 2+b 2a ≥2bc a, 所以a 2+c 2b +b 2+a 2c +c 2+b 2a ≥⎝⎛⎭⎫ac b +ab c +⎝⎛⎭⎫ab c +bc a +⎝⎛⎭⎫ac b +bc a =a ⎝⎛⎭⎫c b +b c +b ⎝⎛⎭⎫a c +c a +c ⎝⎛⎭⎫a b +b a ≥2a +2b +2c =2. 2.若a >0,b >0,且1a +1b=ab . (1)求a 3+b 3的最小值;(2)是否存在a ,b ,使得2a +3b =6?并说明理由.解:(1)由ab =1a +1b ≥2ab, 得ab ≥2,且当a =b =2时等号成立.故a 3+b 3≥2a 3b 3≥42,且当a =b =2时等号成立.所以a3+b3的最小值为4 2.(2)由(1)知,2a+3b≥26ab≥4 3.由于43>6,从而不存在a,b,使得2a+3b=6.3.设a,b,c,d均为正数,且a+b=c+d,求证:(1)若ab>cd,则a+b>c+d;(2)a+b>c+d是|a-b|<|c-d|的充要条件.证明:(1)因为(a+b)2=a+b+2ab,(c+d)2=c+d+2cd,由题设a+b=c+d,ab>cd,得(a+b)2>(c+d)2.因此a+b>c+d.(2)①必要性:若|a-b|<|c-d|,则(a-b)2<(c-d)2,即(a+b)2-4ab<(c+d)2-4cd.因为a+b=c+d,所以ab>cd.由(1),得a+b>c+d.②充分性:若a+b>c+d,则(a+b)2>(c+d)2,即a+b+2ab>c+d+2cd.因为a+b=c+d,所以ab>cd.于是(a-b)2=(a+b)2-4ab<(c+d)2-4cd=(c-d)2.因此|a-b|<|c-d|.综上,a+b>c+d是|a-b|<|c-d|的充要条件.4.已知定义在R上的函数f(x)=|x+1|+|x-2|的最小值为a.(1)求a的值;(2)若p,q,r是正实数,且满足p+q+r=a,求证:p2+q2+r2≥3. 解:(1)因为|x+1|+|x-2|≥|(x+1)-(x-2)|=3,当且仅当-1≤x ≤2时,等号成立,所以f (x )的最小值等于3,即a =3.(2)证明:由(1)知p +q +r =3,又因为p ,q ,r 是正实数,所以(p 2+q 2+r 2)(12+12+12)≥(p ×1+q ×1+r ×1)2=(p +q +r )2=9,即p 2+q 2+r 2≥3.5.已知函数f (x )=|x -1|.(1)解不等式f (2x )+f (x +4)≥8;(2)若|a |<1,|b |<1,a ≠0,求证:f (ab )|a |>f ⎝⎛⎭⎫b a . 解:(1)f (2x )+f (x +4)=|2x -1|+|x +3|=⎩⎨⎧ -3x -2,x <-3,-x +4,-3≤x <12,3x +2,x ≥12,当x <-3时,由-3x -2≥8,解得x ≤-103; 当-3≤x <12时,-x +4≥8无解; 当x ≥12时,由3x +2≥8,解得x ≥2. 所以不等式f (2x )+f (x +4)≥8的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤-103或x ≥2. (2)证明:f (ab )|a |>f ⎝⎛⎭⎫b a 等价于f (ab )>|a |f ⎝⎛⎭⎫b a , 即|ab -1|>|a -b |.因为|a |<1,|b |<1,所以|ab -1|2-|a -b |2=(a 2b 2-2ab +1)-(a 2-2ab +b 2)=(a 2-1)(b 2-1)>0,所以|ab -1|>|a -b |.故所证不等式成立.6.(2018·武昌调研)设函数f (x )=|x -2|+2x -3,记f (x )≤-1的解集为M .(1)求M ;(2)当x ∈M 时,证明:x [f (x )]2-x 2f (x )≤0.解:(1)由已知,得f (x )=⎩⎪⎨⎪⎧x -1,x ≤2,3x -5,x >2. 当x ≤2时,由f (x )=x -1≤-1,解得x ≤0,此时x ≤0;当x >2时,由f (x )=3x -5≤-1,解得x ≤43,显然不成立. 故f (x )≤-1的解集为M ={x |x ≤0}.(2)证明:当x ∈M 时,f (x )=x -1,于是x [f (x )]2-x 2f (x )=x (x -1)2-x 2(x -1)=-x 2+x=-⎝⎛⎭⎫x -122+14. 令g (x )=-⎝⎛⎭⎫x -122+14, 则函数g (x )在(-∞,0]上是增函数,∴g (x )≤g (0)=0.故x [f (x )]2-x 2f (x )≤0.7.已知a ,b 都是正实数,且a +b =2,求证:a 2a +1+b 2b +1≥1. 证明:∵a >0,b >0,a +b =2,∴a 2a +1+b 2b +1-1=a 2(b +1)+b 2(a +1)-(a +1)(b +1)(a +1)(b +1)=a 2b +a 2+b 2a +b 2-ab -a -b -1(a +1)(b +1)=a 2+b 2+ab (a +b )-ab -(a +b )-1(a +1)(b +1)=a 2+b 2+2ab -ab -3(a +1)(b +1)=(a +b )2-3-ab (a +1)(b +1)=1-ab (a +1)(b +1). ∵a +b =2≥2ab ,∴ab ≤1.∴1-ab (a +1)(b +1)≥0. ∴a 2a +1+b 2b +1≥1. 8.设函数f (x )=x -|x +2|-|x -3|-m ,若∀x ∈R ,1m-4≥f (x )恒成立. (1)求实数m 的取值范围;(2)求证:log (m +1)(m +2)>log (m +2)(m +3).解:(1)∵∀x ∈R ,1m -4≥f (x )恒成立,∴m +1m ≥x -|x +2|-|x -3|+4恒成立.令g (x )=x -|x +2|-|x -3|+4=⎩⎪⎨⎪⎧ 3x +3,x <-2,x -1,-2≤x ≤3,-x +5,x >3.∴函数g (x )在(-∞,3]上是增函数,在(3,+∞)上是减函数,∴g (x )max =g (3)=2,∴m +1m ≥g (x )max =2,即m +1m -2≥0⇒m 2-2m +1m=(m -1)2m ≥0, ∴m >0,综上,实数m 的取值范围是(0,+∞).(2)证明:由m >0,知m +3>m +2>m +1>1,即lg(m +3)>lg(m +2)>lg(m +1)>lg 1=0.∴要证log (m +1)(m +2)>log (m +2)(m +3).只需证lg (m +2)lg (m +1)>lg (m +3)lg (m +2), 即证lg(m +1)·lg(m +3)<lg 2(m +2),又lg(m +1)·lg(m +3)< ⎣⎢⎡⎦⎥⎤lg (m +1)+lg (m +3)2 2 =[lg (m +1)(m +3)]24<[lg (m 2+4m +4)]24=lg 2(m +2), ∴log (m +1)(m +2)>log (m +2)(m +3)成立.。

选修4-5 不等式选讲(2020高考数理)

选修4-5  不等式选讲(2020高考数理)

(2)|ax+b|≤c和|ax+b|≥c型不等式的解法: ①若c>0,则|ax+b|≤c等价于-c≤ax+b≤c,|ax+b|≥c等价于ax+b≥c或ax+b≤-c,然 后根据a,b的值解出即可; ②若c<0,则|ax+b|≤c的解集为⌀,|ax+b|≥c的解集为R.
理科数学选修4-5:不等式选讲
注意 分区间讨论时,一是不要把分成的区间的端点遗漏;二是原不等式的解 集是若干个不等式解集的并集,而不是交集.
理科数学选修4-5:不等式选讲
(4)|f(x)|>g(x),|f(x)|<g(x)(g(x)>0)型不等式的解法: ①|f(x)|>g(x)⇔f(x)>g(x)或f(x)<-g(x); ②|f(x)|<g(x)⇔-g(x)<f(x)<g(x). 2.绝对值三角不等式 定理1 如果a,b是实数,则|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立. 定理2 如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|,当且仅当(a-b)(b-c)≥0时,等号 成立. 上述定理还可以推广到以下两个不等式: (1)|a1+a2+…+an|≤|a1|+|a2|+…+|an|;
a的不等式
解不等式,
→ 得出a的
取值范围
理科数学选修4-5:不等式选讲
理科数学选修4-5:不等式选讲
点评 解决含参数绝对值不等式问题的关键是确定参数所满足的条件,基本 思路就是先去掉绝对值符号,然后将其转化为一次不等式求解.
理科数学选修4-5:不等式选讲
理科数学选修4-5:不等式选讲

第2讲 不等式选讲(选修4-5)

第2讲 不等式选讲(选修4-5)

2a3b3+ab(a4+b4)=4+ab(a2-b2)2≥4.
(2)因为(a+b)3=a3+3a2b+3ab2+b3=2+3ab(a+b)
≤2+3(a+4 b)2·(a+b)=2+3(a+4 b)3,
所以(a+b)3≤8,因此 a+b≤2.

[思维升华] 1.证明不等式的基本方法有比较法、综合法、分析 法和反证法,其中比较法和综合法是基础,综合法证明的 关键是找到证明的切入点. 2.当要证的不等式较难发现条件和结论之间的关系 时,可用分析法来寻找证明途径,使用分析法证明的关键 是推理的每一步必须可逆.在不等式的证明中,一要善于 对“式子”恰当转化变形,二要注意等号成立的条件.

[变式训练] 设不等式-2<|x-1|-|x+2|<0 的解 集为 M,且 a,b∈M.
(1)证明:13a+16b<14. (2)比较|1-4ab|与 2|a-b|的大小,并说明理由. (1)证明:记 f(x)=|x-1|-|x+2|= 3-,2xx≤--1,2-,2<x<1, -3,x≥1.

2.(2019·全国卷Ⅰ)已知 a,b,c 为正数,且满足 abc =1.证明:
(1)1a+1b+1c≤a2+b2+c2; (2)(a+b)3+(b+c)3+(c+a)3≥24. 证明:(1)因为 a2+b2≥2ab,b2+c2≥2bc,c2+a2≥ 2ac, 又 abc=1, 故有 a2+b2+c2≥ab+bc+ca=ab+abbcc+ca=1a+1b+1c.
(2)若 f(x)≤|2x+1|的解集包含集合12,1,求实数 a
的取值范围.

解:(1)当 a=1 时,f(x)=|x-1|+|2x-1|.
f(x)≤2⇒|x-, 1-x+1-2x≤2,

高考数学一轮总复习 2不等式证明的基本方法课件(选修4-5)

高考数学一轮总复习 2不等式证明的基本方法课件(选修4-5)

放缩法等.
A
9
对点自测
知识点一
基本不等式
1.若 0<a<b<1,则 a+b,2 ab,a2+b2,2ab 中最大的一个是 ________.
A
10
解析 ∵a+b>2 ab,a2+b2>2ab. 又(a2+b2)-(a+b)=a(a-1)+b(b-1). ∵0<a<1,0<b<1,∴a(a-1)+b(b-1)<0. ∴a2+b2<a+b.
由平均不等式可得a13+b13+c13≥3 3 a13·b13·c13, 即a13+b13+c13≥a3bc. 所以a13+b13+c13+abc≥a3bc+abc.
而a3bc+abc≥2 a3bc·abc=2 3.
所以a13+b13+c13+abc≥2 3.
A
16
R 热点命题·深度剖析
研考点 知规律 通法悟道
答案 a+b
A
11
2.已知 x,y∈R,且 xy=1, 则1+1x1+1y的最小值为 ________.
解析 1+1x1+1y≥1+ 1xy2=4. 答案 4
A
12
知识点二
柯西不等式
3.已知 x,y,z 为正数,且 x+y+z=1,则 x2+y2+z2 的最小
值是__________.
解析 x2+y2+z2=(12+12+12)(x2+y2+z2)×13≥(1·x+1·y+ 1·z)2×13=13.
A
19
(2)反证法必须从否定结论进行推理,且必须根据这一条件进 行论证,否则,仅否定结论,不从结论的反面出发进行论证,就 不是反证法.
(3)推导出来的矛盾可能多种多样,有的与已知矛盾,有的与 假设矛盾,有的与定理、公理相违背等等,但推导出的矛盾必须 是明显的.

高考理科第一轮复习课件(选修4-5第1节绝对值不等式)

高考理科第一轮复习课件(选修4-5第1节绝对值不等式)

【变式备选】解下列不等式.
(1)
x 1 x 1 1.
(2)|x+3|+|x-3|>8.
【解析】(1)原不等式等价于不等式组
2 2 x 1 x 1 , (x 1) x 1) ( , 即 x 1, x 1 0,
解得x≥0且x≠1, ≨原不等式的解集为{x|x≥0且x≠1}.
【变式备选】(2013·渭南模拟)设实数a,b满足2a+b=9. (1)若|9-b|+|a|<3,求a的取值范围. (2)若a,b>0,且z=a2b,求z的最大值. 【解析】(1)由2a+b=9,得9-b=2a,即|9-b|=2|a|, 所以|9-b|+|a|<3可化为3|a|<3, 即|a|<1,解得-1<a<1, 所以a的取值范围为-1<a<1.
1 1 .( a b
) )
, 则n≥1.(
(3)|x-1|-|x-5|<2的几何意义为数轴上的点x到点1,-5的距 离之差小于2.( (4)不等式
ab ab
)
1成立的充要条件是|a|>|b|.(
)
(5)函数 f(x) x 1 的最小值是2.(
x
)
1 1 【解析】(1)错误.当ab>0时,有 1 1 ; 当ab<0时,有 .
(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型绝对值不等式的解法.
-c≤ax+b≤c ①|ax+b|≤c⇔____________;
ax+b≥c或ax+b≤-c ②|ax+b|≥c⇔__________________.
3.平均值不等式

高考数学一轮复习-不等式选讲 第一节 绝对值不等式课件 理 选修4-5

高考数学一轮复习-不等式选讲 第一节 绝对值不等式课件 理 选修4-5
(1)证明:13a+16b<14; (2)比较|1-4ab|与 2|a-b|的大小,并说明理由.
[听前试做] (1)证明:记 f(x)=|x-1|-|x+2|
=3-,2xx≤--1,2,-2<x<1, -3,x≥1.
由-2<-2x-1<0,解得-12<x<12, 则 M=-12,12. 所以13a+16b≤13|a|+16|b|<13×12+16×12=14.
2.|x-a|+|x-b|≥c(或≤c)(c>0),|x-a|-|x-b|≤c(或≥c)(c >0)型不等式的解法
(1) 可 通 过 零 点 分 区 间 法 或 利 用 绝 对 值 的 几 何 意 义 进 行 求 解.零点分区间法的一般步骤:
①令每个绝对值符号的代数式为零,并求出相应的根; ②将这些根按从小到大排列,把实数集分为若干个区间; ③由所分区间去掉绝对值符号得若干个不等式,解这些不等 式,求出解集; ④取各个不等式解集的并集就是原不等式的解集.
含绝对值不等式的常用解法 (1)基本性质法:对 a∈(0,+∞),|x|<a⇔-a<x<a,|x|>a⇔ x<-a 或 x>a. (2)平方法:两边平方去掉绝对值符号. (3)零点分区间法(或叫定义法):含有两个或两个以上绝对值 符号的不等式,可用零点分区间法脱去绝对值符号,将其转化为 与之等价的不含绝对值符号的不等式(组)求解.
-5x,x<12, 则 y=-x-2,12≤x≤1,
3x-6,x>1.
其图象如图所示.从图象可
知,当且仅当 x∈(0,2)时,y<0.所以原不等式的解集是(0,2).
(2)当 x∈-a2,12时,f(x)=1+a. 不等式 f(x)≤g(x)化为 1+a≤x+3. 所以 x≥a-2 对 x∈-a2,12都成立. 故-a2≥a-2,即 a≤43. 从而 a 的取值范围是-1,43.

选修4-5不等式选讲

选修4-5不等式选讲
选修4-5 不等式选讲
根据课程标准,本专题介绍一些重 要的不等式和它们的证明、数学归纳法 和它的简单应用。
本专题的内容是在初中阶段掌握了 不等式的基本概念,学会了一元一次不 等式、一元一次不等式组的解法,多数 学生在学习高中必修课五个模块的基础 上展开的.作为一个选修专题,教科书 在内容的呈现上保持了相对的完整性.
第二部分讨论了有关绝对值不等式的性质及 绝对值不等式的解法.绝对值是与实数有关 的一个基本而重要的概念,讨论关于绝对值 的不等式具有重要的意义.
• 绝对值三角不等式是一个基本的结论,教 科书首先引导学生借助于实数在数轴上的 表示和绝对值的几何意义,探究归纳出绝 对值三角不等式,接着联系向量形式的三 角不等式,得到绝对值三角不等式的几何 解释,最后用代数方法给出证明.这样, 数形结合,引导学生多角度认识这个不等 式,逐步深化对它的理解.利用绝对值三 角不等式可以解决一种特殊形式的函数的 极值问题,教科书安排了一个这样的实际 问题。
• 课程标准对于本专题的几个教学内容都明 确的教学要求,如:对于解含有绝对值的 不等式,只要求能解几种特殊类型的不等 式,不要求学生会解各种类型的含有绝对 值的不等式。对于数学归纳法证明不等式 的要求也只要求会证明一些简单问题。只 要求通过一些简单问题了解证明不等式的 基本方法,会利用所学的不等式证明一些 简单不等式,等等。
数学归纳法证明一些简单问题。 7.会用数学归纳法证明贝努利不等式:
(1+x)n >1+nx(x>-1,n为正整数)。
了解当n为实数时贝努利不等式也成立。
• 8.会用上述不等式证明一些简单问 题。能够利用平均值不等式、柯西 不等式求一些特定函数的极值。
• 9.通过一些简单问题了解证明不等 式的基本方法:比较法、综合法、 分析法、反证法、放缩法。

选修4-5-不等式选讲 课件

选修4-5-不等式选讲 课件
y=f(x)的图象如图所示.
(2)由函数 y=f(x)与函数 y=ax 的图象可知,当且仅当 a≥12或 a<-2 时,函数 y=f(x)与函数 y=ax 的图象有交点.故不等式 f(x)≤ax 的解集 非空时,a 的取值范围为(-∞,-2)∪12,+∞.
3.设函数f(x)=|x-1|+|x-2|. (1)画出函数y=f(x)的图象; (2)若不等式|a+b|+|a-b|≥|a|f(x)(a≠0,a、b∈R)恒成立,
当 x<-7 时,原不等式为
-(x+7)+(3x-4)+ 2-1>0,
得 x>6- 22,与 x<-7 矛盾;
综上,不等式的解为-12-
42<x<5+
2 2.
考[例向2二] (2绝012对年值高不考等江苏式卷的)已证知明实数 x,y 满足:|x+y|<13,|2x-y|<16,
求证:|y|<158.
综上所述得x<1且x≠-1,故选D.
答案:D
3.(2013年青岛模拟)若不等式x2+|2x-6|≥a对于一切实 数x均成立,则实数a的最大值是( )
A.7
B.9
C.5
D.11
解析:令f(x)=x2+|2x-6|,当x≥3时,f(x)=x2+2x-6= (x+1)2-7≥9;当x<3时,f(x)=x2-2x+6=(x-1)2+ 5≥5.综上可知,f(x)的最小值为5,故原不等式恒成立只 需a≤5即可,从而a的最大值为5.
1.(2013 年南京模拟)解不等式|x+7|-|3x-4|+ 3-2 2>0. 解析:原不等式化为|x+7|-|3x-4|+ 2-1>0, 当 x>43时,原不等式为 x+7-(3x-4)+ 2-1>0, 得 x<5+ 22,即43<x<5+ 22; 当-7≤x≤43时,原不等式为 x+7+(3x-4)+ 2-1>0, 得 x>-12- 42, 即-12- 42<x≤43;

2016高考数学一轮总复习课件:选修4-5 不等式(选讲) 第1节 含绝对值的不等式及其解法

2016高考数学一轮总复习课件:选修4-5 不等式(选讲) 第1节 含绝对值的不等式及其解法
选修4-5 不等式(选讲) 第二十七页,编辑于星期六:点 三十五分。
创新大课堂
(3)数形结合法: 在研究曲线交点的恒成立问题时,若能数形结合,揭示问 题所蕴含的几何背景,发挥形象思维与抽象思维各自的优势, 可直观解决问题. 提醒:不等式的解集为R是指不等式恒成立问题,而不等 式的解集为∅的对立面也是不等式恒成立问题,如f(x)>m的解 集为∅,则f(x)≤m恒成立.
[答案] (5,7)
选修4-5 不等式(选讲) 第十一页,编辑于星期六:点 三十五分。
创新大课堂
5.(2014·广东高考) 不等式|x-1|+|x+2|≥5的解集为__. [解析] 本题考查绝对值不等式的解法.|x-1|+|x+2|≥5 的几何意义是数轴上的点到1与-2的距离之和大于等于5的实 数,所以不等式的解为x≤-3或x≥2,即不等式的解集为(- ∞,-3]∪[2,+∞). [答案] (-∞,-3]∪[2,+∞)
选修4-5 不等式(选讲) 第五页,编辑于星期六:点 三十五分。
创新大课堂
3.|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)不等式 的解法
方法一:利用“零点分段法”求解,体现了分类讨论的思 想;
方法二:利用绝对值不等式的几何意义求解,体现了数形 结合的思想;
方法三:通过构造函数,利用函数的图像求解,体现了函 数与方程的思想.
创新大课堂
活学活用 2 不等式|2x+1|+|x-1|<2 的解集为________.
[解析] 原不等式等价于x<-12, -2x+1-x-1<2
或-12≤x≤1, 2x+1-x-1<2
或2x>x+11,+x-1<2.
选修4-5 不等式(选讲) 第二十一页,编辑于星期六:点 三十五分。

(新课标)高考数学一轮复习 不等式选讲 第2讲 不等式的证明与栖西不等式习题 选修4-5-人教版高三

(新课标)高考数学一轮复习 不等式选讲 第2讲 不等式的证明与栖西不等式习题 选修4-5-人教版高三

2017高考数学一轮复习不等式选讲第2讲不等式的证明与栖西不等式习题选修4-5A组基础巩固一、选择题1.设a、b、c是互不相等的正数,则下列不等式中不恒成立的是导学号 25402910( ) A.(a+3)2<2a2+6a+11B.a2+1a2≥a+1aC.|a-b|+1a-b≥2D.a+3-a+1<a+2-a[答案] C[解析] (a+3)2-(2a2+6a+11)=-a2-2<0,故A恒成立;在B项中不等式的两侧同时乘以a2,得a4+1≥a3+a⇐(a4-a3)+(1-a)≥0⇐a3(a-1)-(a-1)≥0⇐(a-1)2(a2+a+1)≥0,所以B项中的不等式恒成立;对C项中的不等式,当a>b时,恒成立,当a<b时,不恒成立;由不等式2a+3+a+1<2a+2+a恒成立,知D项中的不等式恒成立.故选C.2.a2+b2与2a+2b-2的大小关系是导学号 25402911( )A.a2+b2>2a+2b-2B.a2+b2<2a+2b-2C.a2+b2≤2a+2b-2D.a2+b2≥2a+2b-2[答案] D[解析] ∵a2+b2-2a-2b+2=(a-1)2+(b-1)2≥0,∴a2+b2≥2a+2b-2.3.(2014·某某)若log4(3a+4b)=log2ab,则a+b的最小值是导学号 25402912 ( )A.6+2 3 B.7+2 3C.6+4 3 D.7+4 3[答案] D[解析] 由题意,得ab>0,且3a+4b>0,所以a>0,b>0.又log 4(3a +4b )=log 2ab ,所以3a +4b =ab ,所以4a +3b =1,所以a +b =(a +b )(4a +3b )=7+4b a +3ab≥7+24b a ·3a b=7+4 3.当且仅当4b a =3a b,即a =4+23,b =3+23时,等号成立,故选D.4.(2015·某某八市3月联考)实数a i (i =1,2,3,4,5,6)满足(a 2-a 1)2+(a 3-a 2)2+(a 4-a 3)2+(a 5-a 4)2+(a 6-a 5)2=1,则(a 5+a 6)-(a 1+a 4)的最大值为导学号 25402913()A .3B .2 2 C. 6 D .1[答案]B[解析]因为[(a 2-a 1)2+(a 3-a 2)2+(a 4-a 3)2+(a 5-a 4)2+(a 6-a 5)2](1+1+1+4+1)≥[(a 2-a 1)×1+(a 3-a 2)×1+(a 4-a 3)×1+(a 5-a 4)×2+(a 6-a 5)×1]2=[(a 6+a 5)-(a 1+a 4)]2,所以[(a 6+a 5)-(a 1+a 4)]2≤8,即(a 6+a 5)-(a 1+a 4)≤2 2. 二、填空题5.若a 、b 、c ∈R +,且a +b +c =1,则a +b +c 的最大值为________.导学号 25402914[答案]3[解析] 方法一:(a +b +c )2=a +b +c +2ab +2bc +2bc +2ca ≤a +b +c +(a +b )+(b +c )+(c +a )=3.当且仅当a =b =c 时取等号成立.方法二:栖西不等式:(a +b +c )2=(1×a +1×b +1×c )2≤(12+12+12)(a +b +c )=3.6.(2015·某某七校联考)若log x y =-2,则x +y 的最小值为________.导学号 25402915[答案] 3322[解析] 由log x y =-2,得y =1x2其中x >0且x ≠1.而x +y =x +1x 2=x 2+x 2+1x 2≥33x 2·x 2·1x 2=3314=3322,当且仅当x 2=1x2即x =32时取等号.所以x +y 的最小值为3322.7.(2015·某某长浏宁三县(市)一中5月仿真模拟考试)若正实数a 、b 、c 满足a +2b +3c =2,则当a 2+2b 2+3c 2取最小值时,2a +4b +9c 的值为________.导学号 25402916[答案] 5[解析] 根据栖西不等式,有[a 2+(2b )2+(3c )2][12+(2)2+(3)2]≥(a +2b +3c )2=4,当且仅当a 1=2b 2=3c3时,即a =b =c =13时,取等号,此时2a +4b +9c =5.三、解答题8.(2015·某某)设a >0,b >0,且a +b =1a +1b.证明:导学号 25402917(1)a +b ≥2;(2)a 2+a <2与b 2+b <2不可能同时成立.[证明] 由a +b =1a +1b =a +bab,a >0,b >0,得ab =1.(1)由基本不等式及ab =1,有a +b ≥2ab =2,即a +b ≥2,当且仅当a =b =1时等号成立.(2)假设a 2+a <2与b 2+b <2同时成立,则由a 2+a <2及a >0得0<a <1; 同理0<b <1,从而ab <1,这与ab =1矛盾.故a 2+a <2与b 2+b <2不可能同时成立.9.(2015·新课标全国Ⅱ)设a 、b 、c 、d 均为正数,且a +b =c +d ,证明:导学号 25402918 (1)若ab >cd ,则a +b >c +d ;(2)a +b >c +d 是|a -b |<|c -d |的充要条件.[证明] (1)因为(a +b )2=a +b +2ab ,(c +d )2=c +d +2cd , 由题设a +b =c +d ,ab >cd 得(a +b )2>(c +d )2. 因此a +b >c +d .(2)(ⅰ)若|a -b |<|c -d |,则(a -b )2<(c -d )2,即(a +b )2-4ab <(c +d )2-4cd . 因为a +b =c +d ,所以ab >cd . 由(1)得a +b >c +d .(ⅱ)若a +b >c +d ,则(a +b )2>(c +d )2,即a +b +2ab >c +d +2cd .因为a +b =c +d ,所以ab >cd .于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2. 因此|a -b |<|c -d |.综上,a +b >c +d 是|a -b |<|c -d |的充要条件.10.(2015·某某某某一中上学期期末)已知函数f (x )=|x +3|-m ,m ∈R ,且f (x -2)≤0的解集为[-3,1].导学号 25402919(1)求m 的值;(2)已知a 、b 、c 都是正数,且a +b +c =m ,求证:1a +b +1b +c +1c +a ≥94. [答案] (1)2 (2)略[解析] (1)方法一:f (x -2)=|x -2+3|-m ≤0,|x +1|≤m , 所以m ≥0,且-m ≤x +1≤m ,所以-1-m ≤x ≤-1+m , 又不等式的解集为[-3,1],故m =2.方法二:|x +1|≤m ,即x 2+2x +1-m 2≤0,且m ≥0,不等式的解集为[-3,1],所以方程x 2+2x +1-m 2=0的两个根为-3,1,故m =2. (2)证明:方法一:1a +b +1b +c +1c +a=12(a +b +c )(1a +b +1b +c +1c +a) =14[(a +b )+(b +c )+(c +a )](1a +b +1b +c +1c +a ) =14(3+b +c a +b +a +b b +c +c +a a +b +a +b c +a +a +c b +c +b +c a +c ) ≥14(3+2+2+2)=94, 当且仅当a =b =c =23时,等号成立.方法二:1a +b +1b +c +1c +a=14[(a +b )+(b +c )+(c +a )](1a +b +1b +c +1c +a )≥ 14×33a +b b +c c +a ·331a +b 1b +c 1c +a =94. 此时,等号成立条件为a +b =b +c =c +a ,即a =b =c =23.B 组 能力提升1.(2015·某某名校学术联盟调研考试)已知a 、b 均为正实数,且4a +b +5=ab ,则ab 的最小值为________.导学号 25402920[答案] 25[解析] ∵a >0,b >0,∴4a +b +5=ab ≥24ab +5(当且仅当4a =b 时取等号),即ab -4ab -5≥0,解得ab ≤-1(舍去)或ab ≥5,∴ab 的最小值为25.2.(2015·某某长望浏宁四县3月调研)若2x +3y +4z =11,则x 2+y 2+z 2的最小值为________.导学号 25402921[答案]12129[解析] 由栖西不等式,得(x 2+y 2+z 2)(22+32+42)≥(2x +3y +4z )2,所以x 2+y 2+z 2≥2x +3y +4z 222+32+42=12129,当且仅当x 2=y 3=z 4,即x =2229,y =3329,z =4429时等号成立,所以x 2+y 2+z 2的最小值为12129. 3.已知a 、b 、c 、d 均为正数,且a 2+b 2=4,cd =1,则(a 2c 2+b 2d 2)(b 2c 2+a 2d 2)的最小值为________.导学号 25402922[答案] 16[解析] (a 2c 2+b 2d 2)(b 2c 2+a 2d 2)=(a 2c 2+b 2d 2)·(a 2d 2+b 2c 2)≥(a 2cd +b 2cd )2=(a 2+b 2)2=42=16.4.已知实数m 、n 满足:关于x 的不等式|x 2+mx +n |≤|3x 2-6x -9|的解集为R .导学号 25402923(1)求m 、n 的值;(2)若a 、b 、c ∈R ,且a +b +c =m -n ,求证:a +b +c ≤ 3. [答案] (1)m =-2,n =-3 (2)略[解析] (1)由于解集为R ,那么x =3,x =-1都满足不等式,有⎩⎪⎨⎪⎧|9+3m +n |≤0,|1-m +n |≤0,即⎩⎪⎨⎪⎧9+3m +n =0,1-m +n =0,解得m =-2,n =-3,经验证当m =-2,n =-3时,不等式的解集是R .(2)证明:a +b +c =1,a +b ≥2ab ,b +c ≥2bc ,c +a ≥2ca , 所以(a +b +c )2=a +b +c +2ab +2bc +2ca ≤3(a +b +c )=3, 故a +b +c ≤3(当且仅当a =b =c =13时取等号).5.(2015·某某某某地区八校高三联考)已知函数f (x )=|x -2|+|x -4|的最小值为m ,实数a 、b 、c 、n 、p 、q 满足a 2+b 2+c 2=n 2+p 2+q 2=m .导学号 25402924(1)求m 的值;(2)求证:n 4a 2+p 4b 2+q 4c2≥2.[答案] (1)m =2 (2)略[解析] (1)f (x )=|x -2|+|x -4|≥|(x -2)-(x -4)|=2,当且仅当2≤x ≤4时,等号成立,故m =2.(2)证明:因为[(n 2a )2+(p 2b )2+(q 2c )2]·(a 2+b 2+c 2)≥(n 2a ·a +p 2b ·b +q 2c ·c )2,即(n 4a 2+p 4b 2+q 4c 2)×2≥(n 2+p 2+q 2)2=4, 所以n 4a 2+p 4b 2+q 4c2≥2.。

高考一轮数学复习理科课件(人教版)选修4-5 不等式选讲 第2课时 不等式的证明与柯西不等式

高考一轮数学复习理科课件(人教版)选修4-5 不等式选讲   第2课时 不等式的证明与柯西不等式

选考部分 选修系列4
高考调研
高三数学(新课标版·理)
又 a,b,c 各不相等,等号不成立, ∴2(a+b+c)(a+1 b+b+1 c+c+1 a)>9, 即a+2 b+b+2 c+c+2 a>a+9b+c.
选考部分 选修系列4
高考调研
高三数学(新课标版·理)
探究 2 (1)利用柯西不等式证明不等式,先使用拆项 重组、添项等方法构造符合柯西不等式的形式及条件,再 使用柯西不等式解决有关问题.
选考部分 选修系列4
高考调研
高三数学(新课标版·理)
证法二 因为 a,b,c 均为正数,由基本不等式得 a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ac, 所以 a2+b2+c2≥ab+bc+ac, ① 同理a12+b12+c12≥a1b+b1c+a1c, ② 故 a2+b2+c2+(1a+1b+1c)2≥ab+bc+ac+3a1b+3b1c +3a1c≥6 3. ③
(2)利用柯西不等式求最值,实质上就是利用柯西不 等式进行放缩,放缩不当则等号可能不成立,因此一定不 能忘记检验等号成立的条件.
选考部分 选修系列4
高考调研
高三数学(新课标版·理)
(2)若 3x+4y=2,试求 x2+y2 的最小值及最小值点. 【思路】 由于 3x+4y=2,则可以构造(32+42)(x2 +y2)≥(3x+4y)2 的形式,从而使用柯西不等式求出最值.
选考部分 选修系列4
高考调研
高三数学(新课标版·理)
【解析】 解法一 由柯西不等式 (x2+y2)(32+42)≥(3x+4y)2,① 得 25(x2+y2)≥4, 所以 x2+y2≥245. 不等式①中当且仅当3x=4y时等号成立,为求最小值 点,需解方程组:

人教版全国高考选修4-5 不等式选讲培优辅导讲义

人教版全国高考选修4-5 不等式选讲培优辅导讲义

选修4-5 不等式选讲第一节绝对值不等式考点点击1.理解绝对值不等式的几何意义,并能利用绝对值不等式的几何意义证明以下不等式:(1)|a+b|≤|a|+|b|;(2)|a-b|≤|a-c|+|c-b|。

2.会利用绝对值的几何意义求解以下类型的不等式:|ax+b|≤c;|ax+b|≥c;|x-a|+|x-b|≥c。

理清基础1.绝对值三角不等式定理1:如果a,b是实数,那么|a+b|≤|a|+|b|,当且仅当__________时,等号成立。

定理2:如果a,b,c是实数,那么|a-b|≤|a-c|+|c-b|,当且仅当____________时,等号成立。

2.绝对值不等式的解法(1)含绝对值的不等式|x|<a与|x|>a的解集:①|ax+b|≤c⇔-c≤ax+b≤c;②|ax+b|≥c⇔ax+b≥c或ax+b≤-c。

总结归纳3种方法——求解绝对值不等式的方法形如|x-a|+|x-b|≥c(或≤c)型的不等式主要有如下解法:(1)零点分段讨论法:利用绝对值号内式子对应方程的根,将数轴分为(-∞,a],(a,b],(b,+∞)(此处设a<b)三个部分,在每个部分上去掉绝对值号分别列出对应的不等式求解,然后取各个不等式解集的并集。

(2)几何法:利用|x-a|+|x-b|>c(c>0)的几何意义:数轴上到点x1=a和x2=b的距离之和大于c的点的集合。

(3)图象法:作出函数y1=|x-a|+|x-b|和y2=c的图象,结合图象求解。

考点一含绝对值不等式的解法【例1】解不等式|x-1|+|x+2|≥5。

►归纳提升解绝对值不等式的注意点解含绝对值的不等式时,若两个绝对值中x的系数为1(或可化为1),可选用几何法或图象法求解较为简洁。

若x的系数不全为1,则选用零点分段讨论法求解,同时注意端点值的取舍。

强化训练1解不等式|x+3|-|2x-1|<x2+1。

考点二含参数的绝对值不等式问题【例2】已知不等式|x+1|-|x-3|>a。

高考数学总复习 第2节 证明不等式的基本方法课件 新人

高考数学总复习 第2节 证明不等式的基本方法课件 新人

2.若|x-a|<m,|y-a|<n,则下列不等式一定成立的是( )
A.|x-y|<2m
B.|x-y|<2n
C.|x-y|<n-m
D.|x-y|<n+m
解析:∵|x-a|<m,|y-a|<n,∴|x-a|+|y-a|<m+n.
∵|(x-a)-(y-a)|≤|x-a|+|y-a|<m+n,
∴|x-y|<m+n.
答案:D
3.用反证法证明命题“如果 a>b,那么3 a>3 b”时, 假设的内容是( )
A.3 a=3 b
B.3 a<3 b
3 C.
a=3
b且3
3 a<
b
3 D.
a=3
b或3
3 a<
b
解析:反证法是假设命题的结论不成立,即结论的反面
成立,3
a>3
b的反面是3
a≤3
b.即3
a=3
b或3
3 a<
b.
要证的命题不成立
,以此为出发点,结
合已知条件,应用
等,进行正确的定推义理、,公得理到、和定理、性质
(或已证明的定理、性命质题、的明条显件成立的事实等)矛盾的结论,
以说明假设不正确,从而证明
,我们把它称
为反证法.
原命题成立
(2)证明步骤
反设→ 归谬 →肯定原结论.
5.放缩法
(1)证明不等式时,通过把不等式中的某些部分的值
(1)比较法是证明不等式的一个最基本、最常用的方法。当被证 明的不等式两端是多项式、分式或对数式时,一般使用作差 比较法;当被证明的不等式的两端都是正数且为乘积形式或 幂指数形式时,一般使用作商比较法.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档