正比例的意义1

合集下载

六年级数学下册比例讲义

六年级数学下册比例讲义

六年级数学下册比例讲义知识点1.正比例和反比例的意义【知识点归纳】1.正比例的意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系.如果用字母x和y表示这两种相关联的量,用k表示它们的比值(一定),正比例关系可以用式子表示为:=k(一定).2.反比例的意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系.如果用字母x和y表示这两种相关联的量,用k表示它们的乘积(一定),反比例的关系可以表示为:xy=k(一定).【命题方向】常考题型:例1:y﹣x=0,y与x()A、成正比例B、成反比例C、不成比例D、无法确定例2:长方形的面积一定,长和宽()A、成正比例B、成反比例C、不成比例知识点2.辨识成正比例的量与成反比例的量【知识点归纳】1.成正比例的量:(1)“变化方向”相同,一种量扩大或缩小,另一种量也扩大或缩小.(2)相对应的两个数的比值(商)一定.(3)关系式:=k(一定).2.成反比例的量:(1)“变化方向”相反,一种量扩大或缩小,另一种量反而缩小或扩大.(2)相对应的两个数的乘积一定.(3)关系式:xy=k(一定).3.判断方法:关键是看着两种相关量中相对应的两个数是商一定还是积一定,如果商一定,就成正比例;如果积一定,就成反比例.【命题方向】常考题型:例:下列x和y成反比例关系的是()A、y=3+xB、x+y=C、x=yD、y=典型例题例1.长方形的面积一定,长和宽()A.成正比例B.成反比例C.不成比例例2.下列式子中(a、b都不为0),a和b成反比例的是()A.9×a=2×b B.a×﹣4÷b=0C.a=D.a×7=例3.下列关系式中x、y 都不为0,则x与y不是成反比例关系的是()A.x=B.y=3÷x C.x=×πD.x=例4.成反比例的两个量在变化时的规律是它们的()不变.A.积B.商C.和例6.如图的图象表示一辆汽车在高速公路上行驶的路程与耗油量的关系.①这辆汽车行驶的路程和耗油量成比例.②根据图象判断,行驶150千米需耗油升.(1)若长方形的宽是8厘米,长是厘米;若长是8厘米,宽是厘米.(2)这些长方形的宽与长成比例.如果用y表示长,x表示宽,则y=.(3)这样的长方形中,当周长是70厘米时,它的长和宽各是多少?(列式解答)例8.一种服装布料每米售价为60元,购买2米、3米、…各需要多少元?(3)购买布匹的长度和需要的钱数有什么关系?(4)根据图象判断,购买2.5米布匹需要多少钱?例9.右面的图象表示小军骑车的路程和时间的关系.)小军骑车行驶的路程和时间成比例,这是因为:.千米大约需要分钟.甲地到乙地K1214:2622:268时640千米(1)将表格补充完整,根据表中的数据,在图中描点再顺次连接.(2)量没变,数量和总价之间成比例.(3)从图中可以看出,如果买9本笔记本,需要元钱?达标检测1.如果x=y,那么与y成()比例.A.正B.反C.不成D.无法确定2.买同样的书,花钱的总价与()成正比例.A.书的本数B.书的页数C.书的单价D.不能确定3.下面关系式,()中X与Y不成正比例.A.X×=3B.5X=6Y C.4÷X=Y D.X=Y4.如果a:b=7:8,那么a和b()A.成正比例B.成反比例C.不成比例5.下面构成正比例的是()A.总页数一定,每天看的页数与天数B.长方形周长一定,长和宽C.x=y,x与y6.被除数一定,除数和商成比例.7.速度一定,时间和路程成正比例.(判断对错)8.如果A÷B=C,当A一定时,B 和C成比例.当B一定时,A和C成比例.9.按要求回答问题.a、b是相关联的两个量,并且a=,请补充下表,并且判断a与b成什么比例关系.成比例关系.10.根据下面的3张表,按要求回答问题.表1中的两种量,表2中的两种量,表3中的两种量.A.成正比例B.成反比例C.不成正比例,也不成反比例(2)根据成正比例的量的数据,在下图中描出所对应的点,再连起来.根据图象判断,装订6本练习本要用张纸,175张纸能装订本.课后作业【巩固练习】1.下列两种量的关系成正比例关系的是()A.圆的半径和圆的面积B.写字总数一定,写一个字所用时问和写字总时间C.写字总数一定,每分钟写字个数和写字总时间D.两个互相咬合的齿轮,齿轮的齿数和转数2.成正比例的两种量中,一种量扩大,另一种量()A.随着扩大B.随着缩小C.不变从表中我发现了,车费和人数比例关系.4.如果下表中的X与Y成正比例,那么表中的括号应填,如果X与Y成反比例,表中的括号应5.已知6x=4y,x和y成比例,已知=,x和y成比例.6.如果a=(c≠0),那么一定时,和成反比例;一定时,和c成正比例.表中每天看的页数和所用天数的规律是;每题要看的页数和看的天数成比,如果每天看30页,则要天;如果用了15天,则每天看页.8.一辆汽车2时行驶160千米,照这样的速度,行驶80千米、240千米、320千米…所需的时间分别填入(1)所描的点连线,你发现:(2)这些数量中不变.(3)路程和时间成比例.(4)估计4.5时行驶千米.因为一定,随着变化而变化.增加,随着增加;减少,随着减少,并且和的一定,与成比例.(2)把上表中的数据在下面的方格纸上表示出来.(3)连接各点,你发现什么?(4)表中的数量和时间有什么关系?(5)估计一下,2.5小时大约做多少个零件?5.5小时呢?。

比例的意义性质和正反比例

比例的意义性质和正反比例

比例的意义性质和正反比例比例是指两个或多个量之间的关系,它们之间存在倍数关系。

比例具有广泛的应用,能够帮助我们理解和解决各种实际问题。

1.描述事物的量与数值关系:比例能够描述两个或多个事物之间的数量关系,通过比例可以清晰地了解它们的数量差异和相对大小。

2.便于比较和分析:比例可以将不同事物之间的数量关系转化为一个统一的比较标准,方便进行比较和分析。

3.预测和推测:通过已知的比例关系,可以预测或推测未知量的数值,比例可以提供一种有效的量化推测方法。

比例的性质:1.传递性:如果两个比例相等,那么它们的对应项也相等。

例如,如果a:b=c:d,且b:c=e:f,则根据传递性可得a:d=e:f。

2.反比例的倒数性质:如果两个量成反比例关系,那么它们的倒数也成反比例关系。

例如,如果a:b=c:d,则根据反比例的倒数性质可得1/a:1/b=1/c:1/d。

3.乘法性质:如果两个比例的对应项分别相等,那么它们的乘积也相等。

例如,如果a:b=c:d,且b:c=e:f,则根据乘法性质可得(a/b)×(b/c)=(c/d)×(e/f)。

正比例:正比例是指两个量之间的关系是正相关的,即随着一个量的增大,另一个量也相应地增大。

正比例可以用一个常数来表示,该常数称为比例系数。

正比例关系可以表示为a=k×b,其中a和b是两个量,k是比例系数。

例如,如果速度和时间成正比例关系,则速度的变化与时间的变化是成比例的。

反比例:反比例是指两个量之间的关系是反相关的,即随着一个量的增大,另一个量相应地减小。

反比例关系可以用一个常数来表示,该常数称为比例常数。

反比例关系可以表示为a=k/b,其中a和b是两个量,k是比例常数。

例如,如果光的强度和距离成反比例关系,则光的强度的变化与距离的变化是成反比的。

正比例和反比例的区别在于它们表示的数量关系不同。

正比例关系表示随着一个量的增大,另一个量也增大;而反比例关系表示随着一个量的增大,另一个量减小。

正比例的意义

正比例的意义

正比例的意义正比例是数学中一种重要的关系形式,如果两个量之间的关系可以用一个恒定的比例系数来表示,那么我们可以称之为正比例关系。

在现实生活中,正比例关系存在于许多方面,并且具有重要的意义。

1. 数学上的意义正比例关系在数学中经常被用来描述两个变量的相互关系。

如果两个变量X和Y呈现正比例关系,可以表示为Y = kX,其中k是一个常数。

这种关系具有以下几个重要的意义:简洁性与可预测性正比例关系的数学表示形式非常简洁明了。

通过X的变化我们可以准确地预测Y的变化,反之亦然。

这为研究和分析提供了很大的便利性。

比例系数的意义比例系数k反映了两个变量之间的比例关系。

该常数通常具有一定的实际意义,可以通过它来解释变量之间的关系。

例如,在物理学中,质量与体积之间的关系可以表示为质量=密度×体积,其中密度就是比例系数。

解决问题的实用性正比例关系在解决实际问题时具有很强的实用性。

通过观察并建立合适的数学模型,我们可以利用正比例关系来解决一些实际问题。

例如,在经济学中,可以使用工时和产量之间的正比例关系来确定最佳的生产计划。

2. 实际应用正比例关系在现实生活中有许多实际应用,下面列举了几个例子:距离与时间在物理学中,速度与时间之间的关系通常可以表示为速度 = 距离/时间。

在匀速直线运动中,速度恒定,所以距离与时间呈现正比例关系。

温度与体积在热力学中,根据查理定律,对于固定量的气体,在恒定的压力下,温度和体积呈现正比例关系。

这一关系在工程设计和实验室条件下的计量中非常重要。

成本与产量在经济学中,成本(如原材料费用或人工成本)与产量之间通常存在正比例关系。

例如,在生产线上,随着产量的增加,原材料费用也会相应增加。

电压与电流在电学中,根据欧姆定律,电压和电流呈现正比例关系。

这一关系在电路分析和计算中起着核心作用。

3. 经验规律的验证与发现正比例关系也为验证和发现经验规律提供了一个重要的工具。

通过观察和分析现象,我们可以建立正比例关系模型,通过比例系数来验证实际规律的合理性。

正比例和反比例的意义

正比例和反比例的意义

正比例和反比例的意义一、正比例的意义正比例关系是指两个变量之间的关系,当一个变量增大时,另一个变量也随之增大,并且两个变量之间的比值保持不变。

正比例关系在许多领域具有重要意义。

1. 实际应用正比例关系在实际应用中得到广泛应用。

例如,速度与时间的关系通常是正比例关系。

在物理学中,我们可以根据物体的速度和时间来计算物体所走的距离。

又如,成员数量与总费用之间的关系通常也是正比例关系。

在经济学中,企业的成本和产量之间的关系通常被描述为正比例关系。

2. 权衡和计划正比例关系的存在使得我们能够在做出决策时进行权衡和计划。

通过观察两个变量之间的正比例关系,我们可以预测其中一个变量的变化对另一个变量的影响。

这对于制定有效的计划和做出明智的决策至关重要。

3. 图表和图形正比例关系可以通过制作图表和图形来可视化。

例如,我们可以用散点图来表示两个变量之间的正比例关系。

通过观察散点图,我们可以更直观地理解和分析两个变量之间的关系,并且可以预测和推断未来的变化。

二、反比例的意义反比例关系是指两个变量之间的关系,当一个变量增大时,另一个变量相应地减小,并且两个变量之间的乘积保持不变。

反比例关系也在许多领域中具有重要意义。

1. 逆向依赖关系反比例关系在一些情况下可以表示逆向依赖关系。

例如,时间和速度之间的关系通常是反比例关系。

在运动学中,我们知道物体的速度等于它所走过的距离除以所花费的时间。

当时间增加时,速度减小;而当时间减小时,速度增加。

这种反比例关系为我们理解和研究物体的运动提供了重要的数学工具。

2. 优化和最佳化反比例关系也在优化和最佳化问题中发挥重要作用。

在一些情况下,我们需要通过调整一个变量来最大化或最小化另一个变量。

反比例关系使得我们可以通过增加一个变量来减少另一个变量,或者通过减少一个变量来增加另一个变量。

这种关系对于优化问题的求解非常有用。

3. 比例转换反比例关系可以通过比例转换来应用到实际问题中。

例如,一个过程中的速度和所需时间之间的反比例关系可以通过比例转换为速度和所走距离之间的正比例关系。

正比例与反比例比例尺

正比例与反比例比例尺
线段比例尺 如:
0 30 60 90km
1. 生活中有哪些成正比例的例子? 2. 生活中有哪些成反比例的例子?
判断下列各题中的两个量是否成比例,成什么比例? 并说明理由。 1 用砖块铺地,每块砖的大小和所需的块数。 ( 反比例 ) 2 比的前项一定,比的后项与比值。( 反比例 ) 3 圆柱的侧面积一定,底面周长和高。 ( 反比例 ) 4 六一班的出勤率一定,出勤人数和总人数 。 ( 正比例 ) 5 一条绳的长度一定,剪去部分和剩下的部分.( 不成比例 ) 6 圆锥的体积一定,底面积和高 。( 反比例 ) 7 长方形的周长一定,长和宽 。( 不成比例 ) 8 订阅<少年报>的份数和总价 。 ( 正比例 ) 9 正方形的面积和边长 。( 不成比例 ) 10 圆的直径和周长。( 正比例 )
4.一间大厅,用边长为4分米的方砖铺地,需要用324块。如果改 用边长为3分米的方砖铺,需要多少块?
• 小明家正东方向600米处有座图书大厦,图书大厦西 偏北70度方向400米处有个科技馆,科技馆的东偏南 25度方向800米处有个邮局。选择合适的比例尺,再 平面图上画出这些地点。

小明家
正比例、反比例、比例尺
基础知识
(1)正比例的意义:两种相关联的量,一种量 变化,另一种量也随着变化,如果这两种量中 的对应的两个量的比值(或者说商)一定,这 两种量就叫做成正比例的量,它们的关系叫做 正比例关系。 字母公式: y÷x=k(一定) (2)当两个变量成正比例关系时,所绘出的 图 是一条直线,也就是说所有的点都在同 一条直线上。
1.一张精密零件图上的比例尺是5:1,一个零件实际长3毫米,图 上应画多少厘米? 2.在比例尺为1:6000000的地图上,量得两地相距5厘米。甲、 乙两辆汽车同时从两地相向而行,3小时后相遇。已知甲与乙的 速度比是2:3,求甲、乙两辆车的速道,5天安装240米,如果每天安 装的长度一样,那么完成此项任务需要多少天?

正比例的意义

正比例的意义
详细描述
如果两个量x和y满足关系xy=k(k为常数),则x和y成正比。这是因为无论x和y各 自如何变化,它们的乘积始终等于k,这是正比例关系的另一种表达方式。
观察它们是否满足正比例的定义和性质
总结词
如果两个量满足正比例的定义和性质, 则它们成正比。
详细描述
正比例是指两个量之间的特定关系, 其中一个量是另一个量的常数倍。它 具有方向性、对称性和传递性。如果 两个量满足这些性质,则它们成正比。
体重与饮食
摄入的食物量与体重之间存在正比例关系,摄入的食物越多 ,体重增加的可能性越大。
时间与速度
在匀速运动中,时间与速度之间存在正比例关系,时间越长 ,速度越快。
科学中的正比例例子
电流与电阻
在欧姆定律中,电流与电压成正比,而与电阻成反比,但电压保持不变时,电流与电阻之间存在 正比例关系。
密度与质量
$number {01}
正比例的意义
目 录
• 正比例的定义 • 正比例的应用 • 正比例的性质 • 正比例与其他数学概念的关系 • 如何判断两个量是否成正比 • 正比例的意义和重要性
01
正比例的定义
什么是正比例
正比例是指两个量之间的比值保 持恒定,即当一个量增加或减少 时,另一个量也按照相同的比例
客户数量与销售额
客户数量越多,购买商品 的可能性越大,从而促进 销售额的增加,两者之间 存在正比例关系。
03
正比例的性质
当两个量成正比例时,它们的比值是常数
描述
当两个量x和y成正比例时,它们 的比值x/y是一个常数,这个常数 被称为比例常数。
数学表达
如果x和y成正比例,则存在一个常 数k,使得x/y=k。
增加或减少。

正比例和反比例概念和公式是什么(参考一)

正比例和反比例概念和公式是什么(参考一)

正比例和反比例概念和公式是什么>大部分同学们对正反比例的概念还停留在表面,没有更深度的理解,正反比例的概念和公式是什么呢。

以下是由编辑为大家整理的“正比例和反比例的概念和公式是什么”,仅供参考,欢迎大家阅读。

什么叫比例在数学中,比例是一个总体中各个部分的数量占总体数量的比重,用于反映总体的构成或者结构。

两种相关联的量,一种量变化,另一种量也随着变化。

表示两个比相等的式子叫做比例,如3:6=9:18①表示两个比相等的式子叫做比例,如3:4=9:12、7:9=21:27在3:4=9:12中,其中3与12叫做比例的外项,4与9叫做比例的内项。

比例有四个项,分别是两个内项和两个外项;在7:9=21:27中,其中7与27叫做比例的外项,9与21叫做比例的内项。

比例有四个项,分别是两个内项和两个外项。

②比如:教师和学生的~已经达到要求。

③比如:在所销商品中,国货的~比较大。

④比例写成分数的形式后,那么,左边的分母和右边的分子是内项,左边的分子和右边的分母是外项。

⑤比例的基本性质:在一个比例中,两个外项的积等于两个内项的积。

⑥正比例与反比例的相同点与不同点什么叫正比例两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。

如:y/x=k( k一定)或kx=y 什么叫反比例两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。

如:x×y = k( k一定)或k / x = y一、变化的量生活中存在着大量互相依存的变量,一种量变化,另一种量也随着变化。

二、正比例1. 正比例的意义:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

正比例和反比例的意义知识点教学内容

正比例和反比例的意义知识点教学内容

正比例和反比例的意义知识点一:正比例和反比例的意义 (1)正比例两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量变叫做成正比例的量,它们的关系叫做正比例关系。

用字母x 和y 表示两种相关联的量,用k 表示一定的量,那么正比例关系可以写成:()一定k xy= 例如,总价随着数量的变化而变化,总价和数量的比的比值(单价)是一定的,我们就说,总价和数量是成正比例的量。

工总工时 =工效(一定) 工总和工时是成正比例的量路程时间 =速度(一定) 所以路程与时间成正比例。

(2)反比例两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。

用字母x 和y 表示两种相关联的量,用k 表示一定的量,那么反比例关系可以写成:x ×y =k (一定)例如,长×宽=面积(一定) 长和宽是成反比例的量每本的页数×装订的本数=纸的总页数(一定) 每本的页数和装订的本数是成反比例的量知识点二:正比例和反比例有什么相同点和不同点?(1)相同点:正、反比例都是研究两种相关联的量之间的关系,即一种量变化,另一种量也随着变化。

(2)不同点:正比例是两种相关联的量中相对应的两个数的比值(商)一定;反比例是两种相关联的量中相对应的两个数的积一定。

不同点知识点三:正比例和反比例的图像是一条什么线?(1)正比例关系的图象是一条过原点的直线。

(2)反比例关系的量是一条不过原点的曲线。

知识点四:正比例和反比例的判断(1)先判断两种量x 和y 是不是相关联的量,即一种量变化,另一种量也随着变化。

(2)若符合()一定k xy=,则x 和y 成正比例;若符合x ×y =k (一定),则x 和y 成反比例;否则,这两种量就不成比例关系。

【典型例题】题型一:根据图标填写信息例1 :购买面粉的重量和钱数如下表,根据表填空。

什么是正比例有哪些意义

什么是正比例有哪些意义

什么是正⽐例有哪些意义 在⾏程问题中,若速度⼀定时,则路程与时间成正⽐例,那么你对正⽐例了解多少呢?以下是由店铺整理关于什么是正⽐例的内容,希望⼤家喜欢! 正⽐例的概念 两种相关联的变量,⼀种量变化,另⼀种量也随着变化,如果这两种相对应的⽐值⼀定,那么这两个变量之间的关系就叫做正⽐例关系。

⽤字母表⽰是 y/x =k(⼀定)(k≠ 0)。

正⽐例的意义 y/x 满⾜关系式y=k*x(k为⼀定量)的两个变量,我们称这两个变量的关系成正⽐例。

显然,若y与x成正⽐例,则y/x=k(k为常量);反之亦然。

例如:在⾏程问题中,若速度⼀定时,则路程与时间成正⽐例;在⼯程问题中,若⼯作效率⼀定时,则⼯作总量与⼯作时间成正⽐例。

注意:k不能等于0。

正⽐例的相关联系 相同之处 1. 事物关系中都有两个变量,⼀个定量。

2.在两个变量中,当⼀个变量发⽣变化时,则另⼀个变量也随之发⽣变化。

3.相对应的两个变数的积或商都是⼀定的。

相互转化 当反⽐例中的x值(⾃变量的值)也转化为它的倒数时,由反⽐例转化为正⽐例;当正⽐例中的x值(⾃变量的值)转化为它的倒数时,由正⽐例转化为反⽐例。

正⽐例的例⼦ 正⽅形的周长与边长 (⽐值4)。

同圆的周长与直径 (⽐值π)。

购买的总价与购买的数量(⽐值单价)。

路程的例⼦: 1.速度⼀定,路程和时间成正⽐例。

2.时间⼀定,路程和速度成正⽐例。

都是定⼀个,变⼀个。

例如aX=Y中,a不变,则 X与Y成正⽐例。

⼀个变量随着另⼀个变量的变化⽽变化。

圆的周长和半径成正⽐例吗?为什么? 答:∵圆的周长÷圆的半径=2π,∴圆的周长和半径成正⽐例。

易错的⽐例: 圆的⾯积(S):半径(R)=πR 上⾯这个⽐例是错误的。

它不属于正⽐例。

因为(S:R=πR)因为根据上⾯所说,⽐值须是⼀个不变的量,⽽⽐的前项和后项必须是可以变化的量,如果R变化,那⽐值也会变化,所以圆的⾯积与半径不成正⽐例。

正比例的意义1

正比例的意义1
所以: 学生拍手次数和老师拍手次数是成正比例关系, 学生拍手次数和老师拍手次数就叫做成正比例关系 的两个量。
课堂练习:

判断下列两种量是否成正比例,说明理由:



1:购买数学书的总价和本数。 2:长方形的宽一定,它的面积和长。 3:小新的年龄和他的身高。 4:书的总页数一定,已经看的页数和未看 的页数。
所以: 路程和时间是成正比例关系,路程和时
间就叫做成正比例关系的两个量。
想一想:你能写出老师和学生拍手次 数成什么比例关系?
学生拍手次数和老师拍手次数是成正比例关系
因为: ①学生拍手次数和老师拍手次数是两种相关联的量 。 ②学生拍手次数随着老师拍手次数变化而变化。
③学生拍手次数÷老师拍手次数=2(一定) 比值一定。
相关联的量:
相关联的量 路程÷时间=速度 总价÷数量=单价
正方形的边长×4=正方形的周长 相关联的量
路程÷时间=速度
相关联的量
讨论:
先下结论:
当速度(一定)的情况下
路程和时间成什么关系: 路程和时间是成正比例关系
再写理由: 因为路程÷时间 : ①路程和时间是两种相关联的量 。 =速度 (一定) ②路程随着时间变化而变化。 ③路程÷时间=速度(一定) 比值一定。
正比例的意义
教师:佘 锐
我最喜欢吃 巧克力
谁能带我Байду номын сангаас去买巧克 力?
肚子好饿啊
我只能卖给 你2块巧克力 只能给你 4块 巧克力
4元能买 几块巧 克力?
谁来帮帮小米奇算算?
那 8元 呢?
想想:巧克力数量和所支付钱数有 什么关系?
1、巧克力的数量发生变化 支付的钱也发生变化, 巧克力的数量和所支付的钱是两个相关联的量。 2、 正比例的定义: 正比例的定义: 巧克力的数量越多所支付的钱就越多, 所支付的钱 64 像这样,两种相关联的量 ,一种量变化, 2 4 8 16 32 …… 1 、两种相关联的量 。 巧克力数量 ( 块 ) 随着巧克力的数量变化而变化。 3、巧克力的数量 另一种量也随着变化,如果这两种量中相对 2、一种量变化,另一种量也随着变化。 4 8 128 …… 32 16 64 支付的钱 ( 元 ) 与支付钱的有这样的关系: 支付的钱数÷巧克力的 应的两个数的比值一定,这两种量的关系叫 3、如果这两种量的比值一定。 数量 =巧克力的单价(定值)支付的钱数与巧克力数 做正比例关系,这两种量就叫做成正比例的 这两种量的关系叫做正比例关系,这两 量的比值一定 ,所支付的钱数与巧克力的数量之间 量。 种量就叫做成正比例的量。 的关系就叫成正比例关系,而支付的钱数和巧克力 的数量就叫成正比例的两个量。

正比例和反比例

正比例和反比例

两种量 相关联
加的关系 →不成比例 减的关系 →不成比例 乘的关系 积一定 →成反比例
除的关系 商(比值)一定 →成正比例
1、判断下面各题中的两种量是否成比例,成什么比例? (1)数量一定,单价和总价。
总价 单价和总价是两种相关 联的量,因为 数量 单价 (一定),所以单价和 总价成正比例。
(2)学校食堂新进一批煤,每天的用煤量与使用天数。 每天的用煤量与使用天数是两种相关联的量,因为
不 同 点
变化的方向相反,一种 量扩大(或缩小),另 一种量反而缩小(或扩 大)。相对应的两个数 的乘积一定。 关系式: x y k(一定)
判断正、反比例的方法:
(1)两种量是否相关联。
(2)它们的关系是商一定,还是积一定。
(3)商一定是正比例关系,积一定是反比例关系。
不相关联 →不成比例
竹高(米) 0.2 0.5 0.8 1
影长(米) 0.4
1
1.6
2
(1)竹竿的高度与影长之间成(正比例 )关系。
影 长 2 ( 一 定 ) 竹 高
(2)如果聪聪在这一时刻测得一根竹竿得影长 为0.9米,那么这根竹竿得高度为(0.45)米。
判断下面的两个量成正比例、反比例还是不成比例 ①圆的周长和半径。(
每天用煤量×使用天数=煤的总量(一定),所以每天的 用煤量与使用天数成反比例。
(3)在一块菜地上种的黄瓜和西红柿的面积。
黄瓜的种植面积和西红柿的种植面积是两种相关联
的量,因为黄瓜的种植面积+西红柿的种植面积=这块 地的总面积(一定),也就是和一定,所以黄瓜的种植面
Байду номын сангаас
积和西红柿的种植面积不成比例。
2、根据下列等式判断x和y是否成比例,成什么比例? (1)xy=8 ( 反比例 )

正比例和反比例

正比例和反比例

正比例的意义☆知识要点:(1)正比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做成正比例关系.①用字母表示:如果用字母x和y表示两种相关联的量,用k表示它们的比值,正比例关系可以用以下关系式表示:x:y=k(一定) 。

②正比例关系两种相关联的量的变化规律:同时扩大,同时缩小,比值不变.例如:汽车每小时行驶的速度一定,所行的路程和所用的时间是否成正比例?以上各种商都是一定的,那么被除数和除数.所表示的两种相关联的量,成正比例关系.注意:在判断两种相关联的量是否成正比例时应注意这两种相关联的量,虽然也是一种量,随着另一种的变化而变化,但它们相对应的两个数的比值不一定,它们就不能成正比例.例如:一个人的年龄和它的体重,就不能成正比关系,正方形的边长和它的面积也不成正比例关系.反比例:两种相关联的量一种量变化,另种量也随着变化,如果这两种量中,相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做成反比例关系.用字母表示:两种相关联的量,分别“x”和“y”表示,“k”表示不变的量,那么反比例关系式是:x×y=k(一定)②反比例关系的两种相关联的量的变化规律是一种量扩大,另一种量缩小,一种量缩而另一种量则扩大,积不变.例:图上距离一定,实际距离和比例尺是否成反比例.因为实际距离×比例尺=图上距离(一定)所以,实际距离和比例尺成反比例.3.正比例和反比例相同点:两种量都是相关联的量,一种量变化,另一种量也随着变化.不同点:两种量成正比例,是一种量扩大,另一种量也随着扩大,一种量缩小,另一种量也随着缩小,它们扩大,缩小的规律是,这两种量相对应的两个数的比值不变,即商一定.两种量成反比例是一种量扩大,反比例的意义反比例关系是通过应用题的总数与份数关系帮助我们认识的。

在总数与份数关系中,包含总数、份数和每份数。

六年级数学下册《正比例》知识点

六年级数学下册《正比例》知识点

六年级数学下册《正比例》知识点知识点1. 正比例的意义:两种相关联的量,一种量变化,另一种量也随着变化, 如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

如果用字母x 和y 表示两种相关联的量, 用字母k 表示它们的比值(一定) , 正比例关系可以表示为:y/x=k (一定)。

2. 应用正比例的意义判断两种量是否成正比例:有些相关联的量,虽然也是一种量随着另一种量的变化而变化,但它们相对应的数的比值不一定,就不成正比例,如被减数与差,正方形的面积与边长等。

练习题1、工程队修一条水渠,原计划每天修360米,30天修完。

修10天后,每天多修40米,再修多少天就能完成任务?2、农场挖一条水渠,头5天挖了180米,照这样速度,又用了16天挖完这条水渠。

这条水渠全长多少米?3、40千克小麦能磨面粉32千克,照这样计算,7吨小麦能磨面粉多少千克?4、机床厂4天能生产小机床32台,照这样计算,要生产120台小机床需几天?5、测量小组把一米长的竹竿直立在地面上,测得它的影子长度是1.6米,同时测得电线杆的影子长度是4米,求电线杆高多少米?6、要测量一棵树的高度,量得树的影子长度是8.4米,同时用一根2米长的标杆直立在地面上,量得影子长度是1.2米,这棵树高是多少米?7、一辆汽车从甲地开往乙地,甲乙两地相距405千米,头4小时行驶了180千米,剩下的路程还要行多少小时?8、某印刷厂计划三月份印刷课本20000本,结果上旬就印刷7000本,照这样速度,三月份可以多印刷多少本?9、用5辆同样汽车运粮食一次能运22.5吨,照这样计算,要把36吨粮食一次运完,需要增加多少辆这样的汽车? 10、服装厂生产制服,前3个月生产0.48万套,照这样计算,今年可以生产制服多少万套?。

正比例和反比例的意义知识点

正比例和反比例的意义知识点

正比例和反比例的意义知识点一:正比例和反比例的意义 (1)正比例两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量变叫做成正比例的量,它们的关系叫做正比例关系。

用字母x 和y 表示两种相关联的量,用k 表示一定的量,那么正比例关系可以写成:()一定k xy= 例如,总价随着数量的变化而变化,总价和数量的比的比值(单价)是一定的,我们就说,总价和数量是成正比例的量。

工总工时 =工效(一定) 工总和工时是成正比例的量路程时间 =速度(一定) 所以路程与时间成正比例。

(2)反比例两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。

用字母x 和y 表示两种相关联的量,用k 表示一定的量,那么反比例关系可以写成:x ×y =k (一定)例如,长×宽=面积(一定) 长和宽是成反比例的量每本的页数×装订的本数=纸的总页数(一定) 每本的页数和装订的本数是成反比例的量知识点二:正比例和反比例有什么相同点和不同点?(1)相同点:正、反比例都是研究两种相关联的量之间的关系,即一种量变化,另一种量也随着变化。

(2)不同点:正比例是两种相关联的量中相对应的两个数的比值(商)一定;反比例是两种相关联的量中相对应的两个数的积一定。

不同点知识点三:正比例和反比例的图像是一条什么线?(1)正比例关系的图象是一条过原点的直线。

(2)反比例关系的量是一条不过原点的曲线。

知识点四:正比例和反比例的判断(1)先判断两种量x 和y 是不是相关联的量,即一种量变化,另一种量也随着变化。

(2)若符合()一定k xy=,则x 和y 成正比例;若符合x ×y =k (一定),则x 和y 成反比例;否则,这两种量就不成比例关系。

【典型例题】题型一:根据图标填写信息例1 :购买面粉的重量和钱数如下表,根据表填空。

正比例和反比例的意义

正比例和反比例的意义
用时间也会减少一半,变为2.5小时。
05
正比例和反比例在日常生 活中的应用
购物时花费与商品数量的关系(Fra bibliotek比例)总结词
购物时,花费的金额与购买的商品数量成正 比关系,即商品数量增加,所需支付的总金 额也相应增加。
详细描述
在购买商品时,通常需要支付商品的总价, 这个总价是由商品的单价和购买数量共同决 定的。例如,购买一本书需要支付一定的金 额,如果购买更多的书,则需要支付更多的 总金额。这是因为每增加一本书,都需要支 付相应的单价,因此花费与商品数量之间存 在正比关系。
在生活中,反比例关系也广泛存在,如时间与速度之间的关系等。
03
正比例和反比例的区别与 联系
定义上的区别
总结词
正比例和反比例在定义上存在显著差异。
详细描述
正比例是指两个量之间的比值保持恒定,即当一个量增加时,另一个量也相应增 加,反之亦然。反比例则是指两个量之间的乘积保持恒定,即当一个量增加时, 另一个量相应减少,反之亦然。
总结词
当边长增加时,面积增加,但边长的增 加幅度大于面积的增加幅度,呈反比关 系。
VS
详细描述
当一个形状的边长增加时,它的面积也会 增加,但随着边长的增加,面积的增长速 度会逐渐减慢。例如,一个正方形的面积 是边长的平方,如果边长增加一倍,面积 会增加四倍,但如果边长再增加一倍,面 积只会增加八倍。
正比例的性质
当两个量成正比例时,它们的比值是 恒定的,即它们的相对大小不会改变。
正比例关系只适用于线性关系,不适 用于非线性关系。
如果两个量成正比例,那么它们的变 化方向相同,即当一个量增加时,另 一个量也增加;当一个量减少时,另 一个量也减少。
正比例的应用

小学六年级数学正反比例

小学六年级数学正反比例

都有两个相关联的量,并且一个量随 另一个量的变化而变化。
一种量在扩大(或缩 小),另一种量也随 着扩大(或缩小)
一种量在扩大(或缩 小),另一种量反而 缩小(或扩大) 两种量相对应的数的 积一定
不同
两种量相对应的数的 比值一定 图像是直线
图像是曲线
练习
判断是否成正反比例
1.圆柱体的体积一定,底面积和高
关系式:
y x
k(比值一定)

工作总量和时间成正比例关系
复习
巩固练习
由题目得到:
3、
用去的 剩下的 =布的总长 布长一定,用去的和剩下的是否成比例 它既不是“比”的关 系也不是“积”的关 系 得
用去的和剩下的不成比例关系
复习
例题
表1 路程(千米) 时间(时) 100 200 1 2 300 3 400 4 500 5
在表1中相关联的量是(路程)和(时间),( 路程 )随着
路程(千米)
( )变化,(速度 )一定。因此,时间和路程成( 正 )比例。 时间
500
400 300 200 100 0 1 2 3 4 5 6 7 时间(时)
路程 时间
速度 (一定)
复习
例题
速度(千米/时) 200 表2 时间(时) 1 100 2 50 4 40 5 25 8
在表2中相关联的量是(速度)和( 时间),(速度)随着
( 时间)变化,(路程)一定。因此,速度和时间成( 反 )比例。
200 160 120 80 40 0 1 2 3 4 5 6 7 8 9 时间(时) 速度(千米/时)
速度 × 时间
路程(一定)
表1
表2
路程(千米) 100

正比例和反比例的意义

正比例和反比例的意义

正比例和反比例的意义正比例和反比例是数学中的两个重要概念,用来描述两个量之间的关系,它们的意义在于帮助我们理解和分析现实世界中的各种问题和现象。

在这篇文章中,我将详细阐述正比例和反比例的意义,并结合例子进行解释,希望能对读者有所启发。

一、正比例的意义正比例是指两个量之间存在直接关系,即当一个量的值增加时,另一个量的值也随之增加,或者当一个量的值减少时,另一个量的值也随之减少。

正比例的意义在于揭示了事物之间的相关性和变化规律。

1. 实际问题中的应用正比例在实际问题中的应用非常广泛,例如:(1)速度和时间的关系:当一个物体以恒定的速度行驶时,它所用的时间和所走的距离是成正比的。

这一原理在交通规划、物流运输等领域中有着重要的应用。

(2)工作时间和产量的关系:在生产过程中,工作时间和产量通常是成正比的。

增加工作时间可以提高产量,而减少工作时间则会导致产量下降。

这个规律在企业管理、生产计划等方面有着重要意义。

2. 数学模型的建立正比例关系可以用数学模型进行描述,这有助于我们对现实问题进行分析和预测。

(1)一次函数:在平面直角坐标系中,正比例关系可以用一次函数的形式进行表示,即y=kx(其中k为常数)。

通过求解方程的根、导数的零点等方法,我们可以确定两个量之间的正比例关系。

(2)线性回归分析:在统计学中,我们可以利用线性回归分析来检测两个变量之间是否存在正比例关系。

通过求解最小二乘法的问题,我们可以得到一个最佳拟合直线,从而估计两个变量之间的正比例关系。

二、反比例的意义反比例是指两个量之间存在间接关系,即一个量的值增加时,另一个量的值会相应地减少,或者一个量的值减少时,另一个量的值会相应地增加。

反比例的意义在于揭示了相互依赖的关系和相互制约的规律。

1. 实际问题中的应用反比例在实际问题中的应用也非常广泛,例如:(1)速度和时间的关系:在物理学中,我们知道速度和时间是存在反比例关系的。

当一个物体的速度增加时,所花费的时间会相应减少,反之亦然。

数学教案:正比例的定义和意义

数学教案:正比例的定义和意义

在数学中,正比例是一种重要的概念,特别是在统计和金融领域。

正比例也是一种基本的数学运算,可以帮助学生熟悉并深入理解比例概念。

在这篇文章中,我们将探讨正比例的定义及意义,并且讨论如何将其应用于我们的日常生活和事业中。

让我们简要了解一下正比例是什么。

在数学中,正比例是两个变量之具有相似比例的关系。

换句话说,一个变量的改变,将会引起另一个变量的相应变化,且变化的速率和方向是相似的。

用数学符号来表示这种关系,我们可以用 y=kx 或 y/x=k 的形式来描述。

其中,x和y是两个变量,k是比例常数,代表了两个变量之间的比例关系。

如果我们知道其中任意两个量,我们就能够计算出其他量的值。

例如,如果我们知道y和x的值,我们可以用y/x=k来得到k的值,从而可以计算出其他x或y的值。

或者,如果我们知道k和x的值,我们也可以用y=kx来计算y的值。

这种正比例性质具有很广泛的应用范围,在日常生活和工作中都能够体现出来。

为了更好地理解正比例的概念,让我们看几个例子。

让我们考虑一下销售额和广告预算之间的关系。

通常情况下,销售额与广告预算呈正比例关系,也就是说,如果我们增加广告预算,销售额也会相应地增加。

这是一个经典的商业模型,许多公司都采用这种模式来制定广告预算。

另一个实际应用正比例的例子是,贷款利率和还款金额之间的关系。

通常情况下,利率越高,还款金额也就越高。

因此,如果我们知道贷款金额和利率,我们就可以预测还款金额。

这在金融领域特别有用,可以帮助我们更好地规划金融业务。

除了实际应用之外,正比例还有很多数学应用。

在统计学中,正比例是一种重要的拟合模型。

例如,我们可以用正比例模型来拟合两个变量之间的关系,从而得到预测值。

这在数据分析和预测工作中非常有用。

正比例是一个非常重要的数学概念,在学习和应用过程中都具有广泛的应用范围。

通过了解正比例的定义和意义,我们可以更好地理解比例和变量之间的关系,从而更好地应用于我们的日常生活和事业中。

正比例的意义

正比例的意义

(1)、填写上表,说说总价是随着哪个量变化的。 (2)、写出几组相对应的总价和数量的比,并比较比值的大小 (3)、这个比值的实际意义是什么?你能用式子表示它与总价、
数量关系吗? (4)、铅笔的总价和数量成正比例吗?为什么?
抽象概括
思考:成正比例关系的两个量有什么共同特点?
启发:如果用字母x和y分别表示两种相关联的量,用k表示它们的 比值,正比例关系可以用什么样的式子来表示?
y x =k (一定)
练一练
1、张师傅生产零件的情况如下表:
时间/时
1
生产零件数量/个 25
2 4 6 8 …… 50 100 150 200 ……
(1)写出相对应的生产零件数量和时间的比,比较比值的大小。
(2)张师傅生产零件的数量和时间成正比例关系吗?
2、做同一种服装,做的套数和用布的吹草动
水涨船高
风吹草动
水涨了船就升高了。
风吹着草,草就动了。
一种事件的变化往往会引起另一种事件的变化, 像这样的例子在生活中很常见。
在我们数学中,也存在着这种相关联的现象。
例1、一辆汽车在公路上行驶,行驶的时间和路程如下表:
时间/时
1
2
3
4
5
6
7 ……
路程/千米 80 160 240 320 400 480 560 ……
80
160
240
320
=80 1
2 =80
3 =80
4 =80
……
路程 时间
=速度 (一定)
行驶的路程和时间是成正比例的量, 它们之间的关系成正比例关系。
条件:1、两种量是相关联的量。 2、这两种量的比值一定。
试一试
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6、北京到上海的距离画在图上,图 上距离和比例尺。
7、甲和乙互为倒数,甲和乙。
8、正方形的周长和边长。
二、下列各题中,哪种量一定,谁和谁成 正比例?
1、试验种子数、 发芽种子数、发 芽率。 2、总施肥量、公顷数、每公顷施 肥量。 3、纸张总页数、装订本数、每本 练习本的页数. 4、植树的总棵数、成活的棵数、 成活率。
5、分数的分子、分母、分数值。
6、图上距离、实际距离、比例尺。
7、a×b=c
8、载重量、运货次数、货物总量。
动 脑 筋??

y = 4 , x和y成( x )比例。
⑵ y=100x,x和y成(
⑶ xy=12,x和y成( ⑷
24 y= x
)ห้องสมุดไป่ตู้例。
)比例。 )比例。
,x和y成(
⑸ x-y=0,x和y成(
⑶相对应的总价和枝数的比的比值各是多 少?
根据表格回答问题。
正方形的边长和面积如下表:
边长 (米 ) 面积 (平方米) 1 2 3 4 5 6 7
1
4
9
16
25
36
49
表中两种量是否成正比例?为什么?
根据表格回答问题。
正方形的边长和周长如下表:
边长 (米 ) 周长 (米 ) 1 2 3 4 5 6 7
)比例。
⑹x=(a+1)y(a一定) ,那么x与y成( )比 例。 a ⑺如果 bc =1,当a一定时,b和c成( )
比例;当b一定时,a和c成( )比例; 当c一定时,a和b成( )比例。
⑻圆的半径的平方与它的面积成( )比 例;圆的半径与它的面积( )比例。
⑼一个数与它的倒数成(
)比例。
例2
一种圆珠笔,枝数和总价如下表。
1 2 3 4 5 8 6
……
数量(枝) 总价(元)
1.6 3.2 4.8 6.4
9.6 ……
观察下表,你能回答下面的问题吗? ⑴表中有哪两种量?它们是相关联的量吗? ⑴表中有总价和数量两种相关联的量。
4.8 8 1.6 = 1.6 = 1.6 …… = 1.6 ⑵总价是怎样随着枝数的变化而变化的 ? ⑵ 3 5 1
(12)出油率一定,黄豆的重量和豆 油的重量.
(13)8X=5y ,X和 y ; y x︰4= ,x 和y 。
(14)加工每个零件的时间一定,加 工零件的总个数和加工的总时间。
3
(15)圆柱的底面半径一定,圆 柱的体积和高.
(16)圆锥体高一定,它的体积和 底面积。 (17)从甲地到乙地,已行路程和剩 下路程。
强化提问:
1、两种相关联的量,一种量变化,另一种 量也随着变化,是否一定成正比例关系? 如:已行路程+剩下路程=总路程(一定) 2、判断成正比例的量的关键是什么? ①找出两种量是否相关联; ②找出相关联的量的比值是否一定。
成正比例关系的数量关系式:
y x
=
k (一定)
一、判断下面各题中的两种量是否成正比例。
成正比例关系的数量关系式:
y x
=
k (一定)
三、判断每题中的两个量是不是成正比 例,并说明理由。
1、织布机的效率一定,织布的 米数和时间。
2、梯形的高一定,梯形的面积与上 下底之和。
3、每立方米的稻谷重量一定, 稻谷的体积和重量。
4、长方体的长和宽都一定,体积和 高。
5、比值一定,比的前项和后项。
1
2
3
4
5
6 ……
80 160 240 320 400 480 ……
两种相关联的量,一种量变化,另 一种量也随着变化,如果这两种量中相 对应的两个数的比的比值(也就是商) 一定,这两种量就叫做成正比例的量, 它们的关系叫做正比例关系。
① 两种相关联的量, 一种量变化,另 一种量也随着变化,② 如果这两种量中相 对应的两个数的比的比值(也就是商)一 定,这两种量就叫做成正比例的量,它们 的关系叫做正比例关系。
(1)买同样的大米,买大米的重 量和总价. (2)订阅《小数报》的份数和所 需钱数。 (3)圆的周长和它的直径。 (4)一个人的身高和他的体重。
(5)公顷数一定,每公顷产量和总 产量。 (6)行数一定,每行的人数和总人 数。 (7)圆柱体的高一定,它的侧面积 和底面周长.
(8)班级人数一定,男生人数和 女生人数。 (9)圆的半径和周长。 (10)一辆汽车在行驶的过程中, 行驶的路程与所用的时间。 (11)一辆自行车在行驶的过程中, 行驶的路程和车轮的转数。
4
8
12
16
20
24
28
表中两种量是否成正比例?为什么?
一、复习
请说出各题中关系式。 (1)速度 时间 路程 (2)单价 数量 总价 (3)工作总量 工作时间 工作效率 (4)总产量 公顷数 每公顷产量
(5)分子
分母
分数值
例1 一辆汽车每小时行80千米,行1小时、 2小时、3小时……各行了多少千米? 所行的路程和时间有什么关系?
时间(时)
路程 (千米)
相关文档
最新文档