9.3 解一元一次不等式组1导学案

合集下载

一元一次不等式组导学案1

一元一次不等式组导学案1
解下列不等式,并在数轴上表示
2X-1>-X 0.5X<3
3X-2<X+1 X+4>4X+1
第二环节:活动探究、合作学习
活动内容:
对比方程组的概念,你能将上述你解的不等式进行组合吗?你能将它们的的解集表示在同一条数轴上吗?你能给你所组成的形如“方程组”的式子取个名字吗?试试看.
此时学生可以进行独立思考,小组讨论,交流,最后进行归纳总结.
(1)一元一次不等式组的概念:
(2)一元一次不等式组的解集的概念:
(3)解不等式组:
第三环节:运用巩固、练习提高
活动内容:
1、某校今年冬季烧煤取暖时间为4个月,如果每月比计划多烧5吨煤,那么取暖用煤总量将超过100吨;如果每月比计划少烧5吨煤,那么取暖用煤总量不足68吨。该校计划每月烧煤多少吨?(要求学生能够列出一元一次不等式组即可)
2、想一想
(1)在习题1.1中,如果要配制的饮料同时满足第3、4题的条件,那么你能列出一个不等式组吗?
(2)你能尝试找出符合上面一元一次不等式组的未知数的值吗?
(目的:给学生展示不等式组的求解过程)
3、例题讲解:
例解不。
拓展延伸
课堂
小结
本结主要讲述一元一次方程组的定义,一元一次方程的解法
科目
数学
课题
6.一元一次不等式组(一)
授课时间
设计人
序号
学习
目标
1.理解一元一次不等式组及其解的意义,加强运算的熟练性和准确性,培养思维的全面性;
2.初步感知利用一元一次不等式解集的数轴表示求不等式组的解和解集的方法。




第一环节:情境引入
活动内容:

9.3一元一次不等式组的解法(第一课时)

9.3一元一次不等式组的解法(第一课时)
9.3 一元一次不 等式组的解法
铜陵市义安区朱村中学 慈龙英
一、情境引入: 问题:用每分钟可抽30t的抽水机来抽污 水管道里积存的污水,估计积存的污水超 过1200t而不足1500t,那么将污水抽完所 用时间的范围是什么?
你能列出上面的不等式并将其解集在数 轴上表示出来吗?
情境问题: 用每分钟可抽30t的抽水机来抽污水管
2x 1

x

3

的解集在数
0(
)
五、强化训练
3解下列不等式组:
(1) x 1< 3 x ①

x

1>
3

(2) x 1>3 ①

x

1<3

4
x

解:(1)由①得X>-0.5 解:(2)由①得 X>4
由②得X>2
由②得X<0.4
o
o
0 0.5
2
不等式组的解集为x>2
不 组



x x

2 1

0 0
x 2 0

x

1

0
x 2 0

x

1

0
x 2 0

x

1

0
解集 无解 -1<X<2 X<-1 X>2
归纳:不等式组的解法是分开解, 借数轴,集中判。
变式训练,更上层楼:
解不等式组,并把解集表示在数轴上。
合作探究三:
具体分析如下:
用数轴来表示一元一次不等式组的解集,

人教版第九章不等式与不等式组导学案[1]

人教版第九章不等式与不等式组导学案[1]

(1)(2第九章不等式与不等式组9.1.1 不等式及其解集学习目标: 1、了解不等式及一元一次不等式的概念。

2.、理解不等式的解、不等式的解集的概念。

3、能在数轴上正确表示不等式的解集。

学习重点、难点:理解不等式的解集,会在数轴上表示解集.学习过程:一、学前准备:1.等式:用“=”连接的表示相等关系的式子叫做等式.2.一元一次方程:含有_____个未知数,并且未知数的次数是_____的方程叫做一元一次方程.3. 方程的解:使方程左右两边相等的未知数的值叫做方程的解二、新课探究:(一)、不等式、一元一次不等式的概念1. 你能列出下列式子吗?(1)5小于7;(2)x与1的和是正数(3)m的2倍大于或等于-1;(4)x-3不等于2(5)a不大于1 ;(6)y的2倍与1的和不等于3(7)c与4的和的30﹪不大于-2不等式:像上面的这些式子,用符号“”,“”,“”“”或“”表示不等关系的式子叫做不等式。

一元一次不等式:含有且未知数的次数是的不等式,叫做一元一次不等式.巩固练习2:下列式子中哪些是不等式?哪些是一元一次不等式?(1)a+b=b+a (2)-3>-5 (3)x≠l(4)3>2 (5) 2a+1≥0 (6)32x+2x(7)x<2x+1 (8)x=2x-5 (9)2x +4x<3x+1 (10)a+b≠c(11)x十3≥6 (12) 2m< n(二)、不等式的解、不等式的解集总结1:1、不等式的解:使不等式的的值叫做不等式的解.2、不等式的解有个。

由上题我们可以发现,当x>3时,不等式x+3 > 6总成立;而当x≤3时,不等式x+3 > 6总不成立.这就是说,任何一个大于3的数都是不等式x+3 > 6的解,因此x>3表示了能使不等式x+3 > 6成立的x的取值范围,叫做不等式x+3 > 6的解的集合,简称解集总结2: 1.不等式的解集:一个含有未知数的不等式的组成这个不等式的解集。

9.3.1一元一次不等式组

9.3.1一元一次不等式组

例1. 求下列不等式组的解集:在同一数轴上表示出两个不等 式的解集,并写出不等式组的解集
x 3, (1) x 7. x 2, ( 2) x 3 . x 2, (3) x 5 . x 0, ( 4) x 4 .
解:原不等式组的解集为
3 x 7 8
小结
你有哪些收获?说出来,大家共同分享
你还有什么疑惑?提出来,我们一起讨

作业

第141页:2(1.4.5和2.3.6)、A:7题
解:原不等式组无解.
x 2, (14) x 5. x 1, (15) x 4. x 0, (16) x 4.
-7 -6 -5 -4 -3 -2 -1 0
解:原不等式组无解.
-3 -2 -1 0
1
2
3
4
5
解:原不等式组无解.
-6
-5 -4 -3 -2 -1
9.3 一元一次不等式组(1)
学习目标
1、理解有关不等式组的概念。 2、会解由两个一元一次不等式组成的不等 式组。

解不等式的基本步骤
1、去分母 (不等式的性质二) 2、去括号 (乘法分配律) 3、移项 (不等式的性质一) 4、合并同类项 (整式加减性质) 5、化系数为1 (不等式性质二,三)
① ②
(1)分别解不等式组中的各个不等式 , (2)再求出这几个不等式解集的公共部分.
不等式组的解集情况:
选择题: x≥2, (1)不等式组 x 的解集是( D ) ≤2 A. x ≥2, B. x≤2, C. 无解,
x 0.5, (2)不等式组 的整数解是( x≤1
0

导学案 9.3.1一元一次不等式组(2)

导学案 9.3.1一元一次不等式组(2)

姓名________________ 组别_________________ 评价__________________学习目标: 1.巩固解一元一次不等式组的过程。

2.总结解一元一次不等式组的步骤及情形。

3.理解与掌握一元一次不等式组的解集及其应用。

一、复习巩固解下列不等式并在数轴上表示它们的解集:1、⎩⎨⎧-<+->14212x x x x2、⎪⎪⎩⎪⎪⎨⎧-≤-->+814311532x x x x二、自主先学请同学们通过自学课本129页的例2,完成下列习题1、 34125x +-<≤的整数解为 2、若m<n ,则不等式组12x m x n >-⎧⎨<+⎩的解集是 3、已知不等式组2113x x m-⎧>⎪⎨⎪>⎩的解集为2x >,则( ).2.2.2.2Am B m C m D m ><=≤4、关于不等式组x m x m ≥⎧⎨≤⎩的解集是( ) A.任意的有理数 B.无解 C.x=m D.x= -m三、自学总结(1)⎩⎨⎧>>a x x 1的解集是1>x ,则a 的取值范围是______________. (2)⎩⎨⎧<<ax x 1的解集是1<x ,则a 的取值范围是______________.(3)⎩⎨⎧>>a x x 1的解集是1<<x a ,则a 的取值范围是______________. (4)⎩⎨⎧<>a x x 1无解,则a 的取值范围是______________.四、总结分享1、 对于今天的知识你总结出了一些什么结论?2、你还需要老师为你解决哪些问题?3、请你编写一道利用一元一次不等式组的解集的相关性质解决的问题,当然也可以是你在其它参考书上见到过的题目,并请你将这个题目的解答过程写出来。

五、牛刀小试内容见PPT 。

六、自学检测1、求同时满足不等式2116234132x x x x +--≥--<和的整数2、求出不等式组⎩⎨⎧≤-≥-873273x x 的解集中的正整数3、若不等式组⎩⎨⎧-<+<423a x a x 的解集是23+<a x ,求a 的取值范围六、总结提升1、已知不等式组⎩⎨⎧<->a x x 3, (1)若此不等式组无解,求a 的取值范围,并利用数轴说明。

一元一次不等式组导学案

一元一次不等式组导学案

课题:9.3一元一次不等式组(1)主备人:谭宪宗 2014级 班 组学习目标:1.了解一元一次不等式组的概念,理解一元一次不等式组的解集的意义,掌握求一元一次不等式组的解集的常规方法;2.经历知识的拓展过程,感受学习一元一次不等式组的必要性;3.逐步熟悉数形结合的思想方法,感受类比与化归的思想。

学习重点:一元一次不等式组解集的理解 学习难点:一元一次不等式组的解集和解法。

探究案探究一:不等式组的有关概念现有两根木条a 和b ,a 长10 cm ,b 长3 cm.如果再找一根木条。

,用这三根木条钉成一个三角形木框,如果设木条长x cm ,那么对木条的长度有什么要求?类似于方程组 叫做一元一次不等式组。

判别下列不等式组中哪些是一元一次不等式组,并说明为什么?(1)⎩⎨⎧>-<03x 0x (2)⎩⎨⎧<->3y 3x (3)⎩⎨⎧<>4x 2x(4)⎩⎨⎧>-<-1y x 413x (5)⎪⎩⎪⎨⎧<->-09014x 2x (6) ⎪⎩⎪⎨⎧<->-<+03x 123x 532x 问题:怎样确定不等式组的解集呢?不等式组中所有不等式的解集的_____,叫做这个不等式组的解集。

求不等式组的_____的过程,叫做解不等式组。

例:利用数轴来确定不等式组的解集(1)⎩⎨⎧->>13x x (2)⎩⎨⎧-<<1x 3x (3)⎩⎨⎧><-1x 3x (4)⎩⎨⎧-<>1x 3x归纳:求两个一元一次不等式组的解集的公共部分,通常是利用数轴来确定的,公共部分是指数轴上被两个不等式的解集的区域都覆盖的部分.归纳小结:一元一次不等式组解集四种类型如下表:(1)⎩⎨⎧->>3,2x x 的解集是______; (2)⎩⎨⎧-<<3,2x x 的解集是______;(3)⎩⎨⎧-><3,2x x 的解集是_______; (4)⎩⎨⎧-<>3,2x x 的解集是______.探究二:解一元一次不等式组 例 :解下列不等式组:①22841x x x x >+⎧⎨+>-⎩ 解: 解不等式①,得 .解不等式②, 得 . 把不等式○1和○2的解集在数轴上表示出来:所以这个不等式组的解集为:2x+3≥x+11 ② x x -<-+21352解:①① ②解一元一次不等式组的两个步骤:(1)求出这个不等式组中各个 ; (2)利用 求出这些不等式的解集的公共部分。

9.3一元一次不等式组的教案

9.3一元一次不等式组的教案

深沟初中教师全程备课稿纸深沟初中教师全程备课稿纸深沟初中教师全程备课稿纸深沟初中教师全程备课稿纸9.2 实际问题与一元一次不等式(第一课时)自学检测题某学校计划购实若干台电脑,现从两家商店了解到同一型号的电脑每台报价均为6000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原报价收款,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%.如果你是校长,你该怎么考虑,如何选择?课堂作业1、必做题:教科书第140页习题9.2第1题(1)(2)第3题1、2.2、选做题:教科书第141页习题9.2第5、6题3、备选题.(1)某校两名教师拟带若干名学生去旅游,联系了两家标价相同的旅游公司.经洽谈,甲公司的优惠条件是一名教师全额收费,其余师生按7. 5折收费;乙公司的优惠条件则是全体师生都按8折收费.①当学生人数超过多少时,甲公司的价格比乙公司优惠?②经核算,甲公司的优惠价比乙公司要便宜金,问参加旅游的学生有多少人?(2)某单位要制作一批宣传资料.甲公司提出:每份材料收费20元,另收设计费3 000元;乙公司提出:每份材料收费30元,不收设计费.①什么情况下,选择甲公司比较合算?②什么情况下,选择乙公司比较合算?③什么情况下,两公司收费相同?(3)某移动通讯公司开设两种业务:“全球通”月租费30元,每分钟通话费o.2元;“神州行”没有月租费,每分钟通话费0.4元(两种通话均指市内通话).如果一个月内通话x分钟,选择哪种通讯业务比较合算?(4)某商场画夹每个定价20元,水彩每盒定价5元.为了促销,商场制定了两种优惠办法:一是买一个画夹送一盒水彩;一是画夹和水彩均按九折付款.章老师要买画夹4个,水彩若干盒(不少于4盒).问:哪种方法更优惠?复习 9.2-9.3一、双基回顾1、一元一次不等式组几个一元一次不等式组成了一个一元一次不等式组。

2、一元一次不等式组的解一元一次不等式组的各个不等式解集的公共部分叫做一元一次不等式组的解. 〔1〕若a >b,请你指出下列不等式组的解集: ①,;x a x b ⎧⎨⎩ ②,;x a x b ⎧⎨⎩ ③,;x a x b ⎧⎨⎩ ④,.x a x b ⎧⎨⎩3、解一元一次不等式组(1)分别求每个不等式的解集;(2)利用数轴找出它们的公共部分,即一元一次不等式组的解集。

一元一次不等式(组)导学案

一元一次不等式(组)导学案

课题:9.3一元一次不等式(组)的应用(一)【学习目标】1. 知道列一元一次不等式(组)解应用题的一般步骤,会列一元一次不等式组解较简单的应用题.2.培养从数学的角度理解问题、解决问题的能力,发展应用意识. 【学习重点与难点】1.重点:列一元一次不等式组解较简单的应用题.2.难点:从数学的角度理解实际问题.【预习感知】:1. 格桑家办了一个小宾馆,开业那天来了48名旅客.如果每间住5人,房间不够;如果每间住6人,又住不满.问格桑家的小宾馆有几间客房? 解:设格桑家的小宾馆有x 间客房. 根据题意列不等式组,得______________ ,______________.⎧⎨⎩ 解不等式组,得_______________. x 是正整数,所以x =________. 答:格桑家的小宾馆有____间客房.2.王波今天70岁,比张明年龄的5倍还要大,不过到后年张明年龄的5倍就比王波的年龄大了.求张明今年的年龄.解:设张明今年的年龄为x 岁. 根据题意列不等式组,得______________ ,______________.⎧⎨⎩ 解不等式组,得_______________. x 是正整数,所以x =________. 答:张明今年的年龄为______岁.【共研释疑】(课内完成) 例题讲解:例1. 一次智力测验,有20道选择题.评分标准为:对1题给5分,错1题扣2分,不答题不给分也不扣分.小明有两道题未答.至少答对几道题,总分才不会低于60分?师生互动例2. 七年级三班学生到阅览室读书,班长问老师要分成几个小组,老师风趣地说:请你帮助班长分组,你知道该分几个组吗?(注意写出解题过程,不能仅有分组的结果哟!)例3.某种商品进价为150元,出售时标价为225元,由于销售情况不好,商品准备降价出售,但要保证利润不低于10%,那么商店最多降价多少元出售商品?【评测拓展】1.1、某校在一次参观活动中,把学生编为8个组,若每组比预定人数多1人,则参观人数超过200人,若每组比预定人数少2人,则参观人数不大于184人,试求预定每组学生的人数.2. 某车间生产机器零件,若每天比预定计划多做几件,8天所做零件的总数超过100件,如果每天比预定计划少做一件,那么8天可做零件的总数不到90件,问预定计划每天做多少件?3.某汽车厂改进生产工艺后,每天生产的汽车比原来每天的产量多6辆,那么15天的产量就超过了原来20天的产量,求原来每天最多能生产多少辆汽车?4.某工人加工300个零件,若每小时加工50个就可按时完成;但他加工2小时后,因事停工40分钟.那么这个工人为了按时或提前完成任务,后面的时间每小时他至少要加工多少个零件?5.一个工程队原定在10天内至少要挖掘600m3的土方.在前两天共完成了120m3后,接到要求要提前2天完成掘土任务.问以后几天内,平均每天至少要挖掘多少土方?14题课后作业 9.3一元一次不等式(组)的应用(一) 班级________ 姓名________1.如图,天平右边托盘里的每个砝码的质量都是1千克,则图中显示物体质量的范围是( ) A .大于2千克 B .小于3千克C .大于2千克且.小于3千克D .大于2千克或.小于3千克 2.九年级(1)班的几个同学,毕业前合影留念,每人交0.70元.一张彩色底片0.68元,扩印一张相片0.50元,每人分一张.在收来的钱尽量用掉的前提下,这张相片上的同学最少有( ). (A)2人 (B)3人 (C)4人 (D)5人3.某市出租车的收费标准是:起步价7元,超过3km 时,每增加1km 加收2.4元(不足1km 按1km 计).某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程是x km ,那么x 的最大值是( ). (A)11 (B)8 (C)7 (D)54.乐天借到一本72页的图书,要在10天之内读完,开始两天每天只读5页,那么以后几天里每天至少要读多少页?设以后几天里每天要读x 页,列出的不等式为______.5.一次普法知识竞赛共有30道题,规定答对一道题得4分,答错或不答一道题得-1分,在这次竞赛中,小明获得优秀(90分或90分以上),则小明至少答对了______道题.6.三个连续自然数的和不大于 15,这样的自然数组有 组。

9.3.1一元一次不等式组(第一课时)

9.3.1一元一次不等式组(第一课时)

铁冲中学七年级数学导学案制定人: 审核:课题 9.3.1一元一次不等式组(第一课时)学习目标 1、掌握一元一次不等式组的不同形式,理解不等式组的解集的涵义。

2、会利用数轴准确的确定一元一次不等式组的解集。

体会数形结合的思想 学习重点 1.理解不等式组的有关概念;2.会解一元一次不等式组,并在数轴上确定其解集 学习难点在数轴上找公共部分,确定不等式组的解集课堂流程 学法指导 教师点拨情境导入 目标点睛小熊重90千克,米老鼠重40千克,小熊的体重比米老鼠与小猪体重的和还重,却比三只小猪的重量小,小猪的体重可能是多小?合作探究 激情展示一区(一)一元一次不等式组的定义:巩固练习:下列各式哪些是一元一次不等式组,哪些不是,为什么?二区不等式组的解集你们会解这两个不等式吗?并把解集在同一坐标轴上表示出来 (1)X+40<90 (2)3X >90 三区1.不等式组的解集在数轴上表示如图,其解集是什么?四区2.求下列不等式组的解集(在同一数轴上表示出两个不等式的解集,并写出不等式组的解集): 五区例1解下列不等式组(求下列不等式组的非负整数解)2x-1>x-2 x+8>4x-1 六区1、解下列不等式组:不等式组数轴表示 解集 ⎩⎨⎧>>>).(,b a b x a x ⎩⎨⎧><<).(,b a b x a x⎩⎨⎧>><).(,b a b x a x⎩⎨⎧><>).(,b a b x a x我的收获⎩⎨⎧>>.7,3)1(x x ⎩⎨⎧->>.3,2)2(x x ⎩⎨⎧->->.5,2)3(x x ⎩⎨⎧->>.4,0)4(x x ⎩⎨⎧<<.7,3)5(x x ⎩⎨⎧-<-<.5,2)6(x x ⎩⎨⎧<-<.4,1)7(x x ⎩⎨⎧-<<.4,0)8(x x ⎩⎨⎧<>.7,3)9(x x ⎩⎨⎧->-<.5,2)10(x x ⎩⎨⎧<->.4,1)11(x x ⎩⎨⎧-><.4,0)12(x x ⎩⎨⎧><.7,3)13(x x ⎩⎨⎧-<->.5,2)14(x x ⎩⎨⎧>-<.4,1)15(x x ⎩⎨⎧-<>.4,0)16(x x 第一组 第二组 第三组 第四组⎩⎨⎧-<++>-148112x x x x (1) ⎩⎨⎧X>3X<6 4(x +5) >100 4(y -5)<68 (4)3x-5 >5x+1⎪⎩⎪⎨⎧-≥+≤->-.5.2,21,45)5(x x x x -1 2–2 –1 0 1 2–2 –1 0 1 2 –2 –1 0 1 2xx x x -<-++≥+213521132⎩⎨⎧+--+1121481x x x x ><)(⎩⎨⎧+-+1314352><)(x x ⎩⎨⎧++131257433><)(x x ⎪⎩⎪⎨⎧-<-++≥+)2(21352)1(1132)4(x x x x。

导学案 9.3.1一元一次不等式组(1)

导学案 9.3.1一元一次不等式组(1)

9.3.1一元一次不等式组(1)姓名________________ 组别_________________ 评价__________________学习目标:1、理解一元一次不等式组,一元一次不等式组的解集,解不等式组等概念;2、会解一元一次不等式组,并会用数轴确定解集.3、感受学习一元一次不等式组的必要性,逐步熟悉数形结合的思想方法,感受类比与化归的思想。

一、复习巩固1、___________________________________________________称为一元一次不等式。

2、_______________________________________________叫做一元一次不等式的解集。

3、______________________________________________叫做解一元一次不等式。

4、解一元一次不等式的一般步骤有(1)______________(2)_________________(3)_________________(4)_________________(5)_________________5、解不等式并在数轴上表示出它们的解集:(1)2-3x>5 (2) 2y+6<3二、自主先学请同学们带着下列问题去自学课本127-128页的内容。

1、什么是一元一次不等式组?2、什么叫做一元一次不等式组的解集?三、自学总结概念:1、一元一次不等式组:含有___________个未知数,且未知数的次数是_________的两个不等式,组成一元一次不等式组.2、一元一次不等式组的解集:一元一次不等式组中的两个不等式的________部分,叫做这个一元一次不等式组的解集.3.利用数轴直接求出不等式的解集(对应总结口诀):(1)x4x2⎧<⎨<-⎩的解集是_______; (2)x4x2⎧>⎨>⎩的解集是_______;(3)x3x1⎧<⎨>-⎩的解集是______;(4)x2x1⎧<-⎨>-⎩的解集是_______.四、总结分享1、总结一下你自学过程中的收获,你觉得有哪些内容是本节课需要掌握的。

七年级下册《9.2 一元一次不等式》教案、导学案、同步练习

七年级下册《9.2 一元一次不等式》教案、导学案、同步练习

《9.2 一元一次不等式》教案一第1课时 一元一次不等式的解法【教学目标】1、使学生熟练掌握一元一次不等式的解法,初步认识一元一次不等式的应用价值;2、对比一元一次不等式的解法与一元一次方程的解法,让学生感知不等式和方程的不同作用与内在联系,体会其中渗透的类比思想;3、让学生在分组活动和班级交流的过程中,积累数学活动的经验并感受成功的喜悦,从而增强学习数学的自信心。

【教学重点】:熟练并准确地解一元一次不等式。

【教学难点】:熟练并准确地解一元一次不等式。

【教学过程】(师生活动)提出问题:某地庆典活动需燃放某种礼花弹.为确保人身安全,要求燃放者在点燃导火索后于燃放前转移到10米以外的地方.已知导火索的燃烧速度为0.02m/s,人离开的速度是4m/s ,导火索的长x(m)应满足怎样的关系式?你会运用已学知识解这个不等式吗?请你说说解这个不等式的过程.探究新知1、在学生充分发表意见的基础上,师生共同归纳出这个不等式的解法.教师规范地板书解的过程.2、例题.解下列不等式,并在数轴上表示解集:(1)32x ≤50 (2)-4x<3 (3)7-3x ≤10(4)2x-3<3x +1分组活动.先独立思考,然后请4名学生上来板演,其余同学组内相互交流,作出记录,最后各组选派代表发言,点评板演情况.教师作总结讲评并示范解题格式.3、教师提问:从以上的求解过程中,你比较出它与解方程有什么异同? 让学生展开充分讨论,体会不等式和方程的内在联系与不同之处。

巩固新知1、解下列不等式,并在数轴上表示解集:(1)7671 x (2)-8x<102、用不等式表示下列语句并写出解集:(1)x 的3倍大于或等于1;(2)y 的41的差不大于-2.解决问题测量一棵树的树围(树干的周长)可以计算它的树龄一般规定以树干离地面1.5m 的地方作为测量部位.某树栽种时的树围为5cm,以后树围每年增加约3cm.这棵树至少生一长多少年,其树围才能超过2.4m?总结归纳:围绕以下几个问题:1、这节课的主要内容是什么?2、通过学习,我取得了哪些收获?3、还有哪些问题需要注意?让学生自己归纳,教师仅做必要的补充和点拨.布置作业:教科书第120页 习题9.1第6题9.2实际问题与一元一次不等式(一)【教学目标】1、会从实际问题中抽象出数学模型,会用一元一次不等式解决实际问题;2、通过观察、实践、讨论等活动,经历从实际中抽象出数学模型的过程,积累利用一元一次不等式解决实际问题的经验,渗透分类讨论思想,感知方程与不等式的内在联系;3、在积极参与数学学习活动的过程中,初步认识一元一次不等式的应用价值,形成实事求是的态度和独立思考的习惯。

七年级数学下册一元一次不等式组导学案1

七年级数学下册一元一次不等式组导学案1

⎩⎨⎧<+>-⎪⎩⎪⎨⎧<=+⎩⎨⎧-><⎩⎨⎧>+<-033172)4(1112)3(21)2(133672)1(a a x x x x x y 9.3 一元一次不等式组(学案1)备课人:韩莉莉时间 授课人 学生[学习目标]1、了解一元一次不等式组的概念,理解一元一次不等式组解集的意义;2、掌握一元一次不等式组的解法。

[重点难点] 重点:一元一次不等式组的解法是;难点:一元一次不等式组的解集的表示。

[教学过程]一. 复习导入解下列一元一次不等式,并把解集用数轴表示出来。

(1)233(2)x x -<+(2)35x -≤(3)112x -< (4)、52113x x ->+二.自学指导阅读教材第137—138页,并回答下列问题:1. 什么是一元一次不等式组?2.下列不等式中哪些是一元一次不等式?3.如何在数轴上表示下列不等式组?(1)⎩⎨⎧>>24x x(2)⎩⎨⎧><24x x (3)⎩⎨⎧<>24x x(4)⎩⎨⎧<<24x x 温馨提示:上面的表示可以用口诀来概括:大大取大,小小取小,大小小大取中间,大大小小无解(如果在画出的数轴上没有公共部分则这个不等式无解)。

注意:如果不等号中带有等号,空心圆就要变成 。

x >44.什么是一元一次不等式组的解集?几个不等式的解集的 ,叫做由它们所组成的不等式组的解集。

解不等式组就是 。

三.我来试一试例 解下列不等式组:(1)⎩⎨⎧-<++>-)2(148)1(112x x x x (2)⎪⎩⎪⎨⎧-<-++≥+)2(21352)1(1132x x x x 解:解不等式①得解不等式②得把不等式①和②的解集在数轴上表示出来所以不等式组的解集是讨论:解一元一次不等式组的步骤是什么?四.当堂检测1. 解下列不等式组,并把解集在数轴上表示出来。

七数下36:《一元一次不等式组》-导学案姜畅

七数下36:《一元一次不等式组》-导学案姜畅
因为x为整数,所以x=5.
答:有5个小组。
【当堂检测】
解不等式组
请编辑人员在第1个不等式后添上①,在第2个不等式后添上②。
解:解不等式①得x>5.
解不等式②得x< .
把不等式①和②的解集在数轴上表示出来.
从图上可以找出两个不等式解集的公共部分,得不等式组的解集为无解.
【回顾反馈】5分钟
【自主学习】15分钟
3.从“书有剩余”和“书不够”两个方面寻找不等关系。
★梳理巩固:
解一元一次不等式组的一般步骤。
【当堂检测】5分钟
限时训练,独立完成,检测效果。
第36课时9.3一元一次不等式组
学习目标:
1.理解一元一次不等式组的概念,理解不等式组的解的概念,会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集;
2.培养学生类比推理能力。
学习程序
课堂导航
【回顾反馈】
1.当x满足x≥-0.5时,2 (x+ 1)大于或等于1;
2.当y满足y≥2时,y与1的差不大于2y与3的差.
解:解不等式①,得x< .
解不等式②,x> .
把不等式①和②的解集在数轴上表示出来.
从图上可以找出两个不等式解集的公共部分,得不等式组的解集为 <x< .
【合作探究】
若关于x、y的二元一次方程组 中,x的值为负数,y的值为正数,求m的取值范围.
解:由方程组
得x=2m-1
y=m+4.
因为x的值为负数,y的值为正数,
1.认真阅读课本,独立完成练习。
2.按照例题格式,严格规范书写过程。
3.重点学会观察数轴,找到解集的公共部分。
【合作探究】15分钟
1.独立完成,合作交流,互相帮助。

9.3不等式组

9.3不等式组

组名: 姓名: 指导教师: 【学习目标】1. 了解一元一次不等式组的概念,理解一元一次不等式组解集的意义;2.掌握一元一次不等式组的解法.3. 激情投入课堂小组交流合作学习,学会倾听其他同学的发言,并与自己的理解对照学习,并积极参与展示、点评和评价. 【重点难点】一元一次不等式组的解法; 一元一次不等式组的解集的表示. 【知识链接】用每分钟可抽30t 水的抽水机来抽污水管道里积存的污水,估计积存的污水超过1200t 而不足1500t ,那么将污水抽完所用时间的范围是什么?【自主学习、合作探究】认真阅读课本第127至129页的内容,思考并完成下列问题,将你的理解写在课本相应的位置.1.阅读课本找出一元一次不等式组的定义和不等式组的解集.2.利用数轴确定下列不等式组的解集.(1)⎩⎨⎧>>24x x (2)⎩⎨⎧><24x x(3)⎩⎨⎧<>24x x (4)⎩⎨⎧<<24x x通过上述学习请自己用口诀总结规律:3.解不等式并在数住上表示其解集(1)⎩⎨⎧+-31x 31x << (2)⎩⎨⎧+-31x 31>>x(3)⎩⎨⎧+-31x 31x >< (4)⎩⎨⎧+-31x 31x <>【课堂检测】见课本第129页练习1. 【课堂小结】通过本节课的学习,你学会了什么,将你的收获和疑惑写在下面.【课后作业】1.见课本第130页习题9.3第2题.2.家庭作业:练习册练习八.组名: 姓名: 指导教师: 【学习目标】1. 进一步熟练一元一次不等式组的解法,会用一元一次不等式组解决有关的实际问题;2. 激情投入课堂小组交流合作学习,学会倾听其他同学的发言,并与自己的理解对照学习,并积极参与展示、点评和评价. 【重点难点】用一元一次不等式组解决有关的实际问题;正确分析实际问题中的不等关系. 【知识链接】1. 解下列不等式组:(1)⎩⎨⎧-<++>-148112x x x x (2)⎪⎩⎪⎨⎧-<-++≥+x x x x 213521132【自主学习、合作探究】例1:3 个小组计划在10天内生产500件产品(每天产量相同),按原先的生产速度,不能完成任务;如果每个小组每天比原先多生产1件产品,就能提前完成任务.每个小组原先每天生产多少件产品?例2:将若干只鸡放入若干个笼,若每4个放一笼,则有1只鸡无笼可放;若每5个放一笼,则有1笼无鸡可放,那么至少有多少只鸡,多少个笼?【课堂检测】见课本第130页复习巩固第6题.【课堂小结】通过本节课的学习,你学会了什么,将你的收获和疑惑写在下面.【课后作业】1.见课本第133页复习题9第7、8题.2.练习册练习九.组名:姓名:指导教师:一、选择题:(每小题3分,共30分)1、若m>n,则下列不等式中成立的是()A.m + a<n + b B.ma<nb C.ma2>na2 D.a-m<a-n2、若不等式组的解集为-1≤x≤3,则图中表示正确的是()A. B.C. D.3、在不等式51232->+xx变形过程中,出现错误的步骤是()A、5(2+x)>3(2x-1)B、10+5x>6x-3C、5x-6x>-3 -10D、x>134、若x同时满足不等式-x≤1和x-2<3x,则x的取值范围是()A.x≥-1 B.x<5 C.-1≤x<5 D.x≤-1或x<55、不等式2(x-2)>3x + 5的非负整数解的个数为( )A.0个 B.1个 C.2个 D.3个6、下列各题正确的是()A、a为任意有理数,a2≥0一定成立B、若a<0,b<0,则ab<0C、满足x≤3的非负整数解为0,1,2D、若x<1,则1/x>17、不等式(a+1)x>a+1的解集为x<1,则a的取值范围是()A 、a> B、a≥1 C、a<1 D、a≤18、不等式()123x m m->-的解集为2x>,则m的值为()A.4 B.2 C.23D.219、已知不等式-2x<6的最小正整数解为方程2x-ax=4的解,则a的值是().A、2B、4C、-2D、不存在10、现用甲、乙两种运输车10辆,要将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,则甲种运输车至少应安排()A、4辆B、5辆C、6辆D、7辆二、填空题:(每小题3分,共24分)11、已知x的21与5的差不小于3,用不等式表示这一关系式为 .12、一元一次不等式组⎩⎨⎧>>bxax(a≠b)解集为x>a,则a b.13、当x 时,式子3x-5的值大于5x+3的值.14、若点M(2m+1,3-m)在第二象限,则m的取值范围是 .15、满足-1≤3-2x≤6的所有x的整数之和是 .16、若0,0><ba,则点()2,1+-ba在第象限.17、不等式组⎩⎨⎧>-+>-54axxa无解,则a的取值范围是 .18、一个长方形,两边长分别为x㎝和10㎝,如果它的周长小于80㎝,面积大于100㎝2,则x的取值是 .三、解答下列各题:19、解下列不等式(组):(8分)(1)12x-3>2x (2)⎪⎩⎪⎨⎧+<--≤3121132xxxx20、求不等式组513(1)131722x xx x->+⎧⎪⎨-≤-⎪⎩的整数解.(6分)21、关于x的一元一次方程2(2x-m)+1=2x-5的解是负数,求m的取值范围.(6分)22、已知整式253kk+-,当k满足什么条件时,该整式(1)大于1;(2)等于1;(3)小于1.(8分)23、某移动通讯公司开设两种业务:“全球通”月租费30元,每分钟通话费o.2元;“神州行”没有月租费,每分钟通话费0.4元(两种通话均指市内通话).在什么情况下选择“神州行”比较合算?(8分)24、学校将若干间宿舍分配给七年级一班的女生住宿,已知该班女生少于35人,若每个房间住5人,则剩下5人没处住;若每个房间住8人,则空一间房,并且还有一间房也不满。

(完整版)9.3-一元一次不等式组-教学设计-教案

(完整版)9.3-一元一次不等式组-教学设计-教案

3212x x -≤-9.3:一元一次不等式组教学设计教师:张华海一、 教学目标知识与技能:1、了解一元一次不等式组及其解集的概念。

2、会利用数轴求不等式组的解集。

过程与方法:1、培养学生分析简单实际问题,抽象出数学关系的能力。

2、培养学生初步数学建模的能力。

情感态度价值观:加深学生对数形结合的作用的理解,让学生体会数学解题的直观性和简洁性的数学美。

感受探索的乐趣和成功的体验,使学生养成独立思考的好习惯。

二、 教学重点/难点重点:不等式组的解法及其步骤。

难点:确定两个不等式解集的公共部分。

三、 教学用具多媒体课件四、 教学过程(一)、复习引入一元一次不等式的解法我们已经全部讲完,现在复习一下前面的内容。

1、不等式的三个基本性质是什么?2、一元一次不等式的解法是怎样的?3、解一元一次不等式(1)3(2x+5)>2(4x+3) (2)二、讲授新知展示课本问题3:用每分钟可抽30吨水的抽水机来抽污水管道里积存的污水,估计积存的污水不少于1200吨且不超过1500吨,那么大约多少时间能将污水抽完?题中一共有两种数量关系,讲解时应注意引导学生自主探究发现。

解:设x需要分钟才能将污水抽完,那么总的抽水量为30x吨,由题可知题中的x应同时满足两个不等式,从而引出一元一次不等式组的概念:把两个一元一次不等式合在一起,就得到一个一元一次不等式组。

同时满足两个不等式的未知数,既是两个不等式解集的公共部分,要找出公共部分,就要利用数轴,在此要引导学生重视数轴的作用,并指导学生在数轴如何观察数轴上对应解集的范围。

记着40≤x≤50(引导发现,此就是不等式组的解集。

)不等式解集的概念:不等式组中的几个不等式解集的公共部分。

由此,教师可以引导学生自己总结出解一元一次不等式组的一般步骤。

学生回答后教师总结步骤:分别求出每个不等式的解集;找出它们的公共部分。

三、例题讲解教师提出问题,有了上面的铺垫,我们来完整的解一元一次不等式组。

导学案 9.3.2实际问题与一元一次不等式组(1)

导学案 9.3.2实际问题与一元一次不等式组(1)

姓名________________ 组别_________________ 评价__________________学习目标: 1、经历实际问题中的数量关系的分析、抽象、建立不等式组模型的过程。

2、能够根据具体问题中的数量关系,列出一元一次不等式组。

一、复习巩固1、如果三角形的三边长分别为a +1,a ,a -1,那么a 的取值范围是( )A 、a >0B 、a >1C 、a >2D 、1<a <22、一个钝角的度数为(5x-35)°,求x 的取值范围。

3、若不等式组⎩⎨⎧><mx x 3有解,则m 的范围是( ) (提示:利用数轴)A 、m >3B 、m ≥3C 、m <3D 、m ≤34、你能说说用一元一次不等式解决实际问题需要哪些步骤呢?二、自主先学例1、 一个长方形足球场的宽是65m ,如果它的周长大于330m ,面积不大于7150㎡。

求这个足球场的长的范围,并判断这个足球场是否可以用于国际足球比赛。

(国际比赛的足球场长度为100~110m,宽度为64~75m)问题1、:本题已知什么?求什么?解:问题2、:本题的两个不等关系是例2、某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。

问题1、:本题已知什么?求什么?解:问题2:本题的两个不等关系是三、探究分享1、通过以上两个例题你能不能够总结一下用一元一次不等式组的主要步骤?2、你还需要老师为你解决哪些问题?3、请你编写一道利用一元一次不等式组解决实际问题,当然也可以是你在其它参考书上见到过的题目,并请你将这个题目的解答过程写出来。

四、总结提升请各组同学讨论交流列一元一次不等式组解应用题的一般步骤是什么,请你将你们的结论写在下面空白处。

五、小组合作探究把价格为每千克20元的甲种糖果8千克和价格为每千克18元的乙种糖果若干千克混合,要使总价不超过400元,且糖果不少于15千克,所混合的乙种糖果最多是多少?最少是多少?分析:你能利用表格的形式将这个题目中的数量关系表示清楚吗?由上面的表格,你能列出不等式组吗?解:五、自学检测1.把若干颗花生分给若干只猴子。

9.3.1一元一次不等式组(教案)

9.3.1一元一次不等式组(教案)
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解一元一次不等式组的基本概念。一元一次不等式组是由几个含有同一个未知数的一元一次不等式组合而成的。它在解决实际问题中起着重要作用,帮助我们确定未知数的取值范围。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何通过解一元一次不等式组来确定某个学生在数学和英语两门课程中的最低及格分数要求。
其次,在新课讲授环节,我发现学生们对一元一次不等式组的理解还存在一些困难。在讲解重点难点时,我应该更加注意用简洁明了的语言和具体的例子来阐述,让学生更容易理解。此外,我还可以尝试用图表、动画等辅助教学手段,使抽象的知识更加直观。
在实践活动环节,学生们分组讨论和实验操作的积极性很高,但我发现部分学生在讨论过程中还是过于依赖同学,缺乏独立思考。在今后的教学中,我应该鼓励学生们独立思考,培养他们解决问题的能力。
三、教学难点与重点
1.教学重点
(1)理解一元一次不等式组的定义及解的概念;
(2)掌握一元一次不等式组的解法步骤,包括同大取大、同小取小、大小小大中间找、大大小小无解了;
(3)能够将一元一次不等式组应用于解决实际问题;
(4)了解一元一次不等式组的解与方程组的解之间的关系。
举例:对于一元一次不等式组如:x>-2和x<5,学生需要理解其解集为-2<x<5。
3.重点难点解析:在讲授过程中,我会特别强调一元一次不等式组的解法和其在实际问题中的应用这两个重点。对于难点部分,如“同大取大、同小取小”的原则,我会通过具体的例题和图示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一元一次不等式组相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示如何通过比较不等式组中的不等式来求解。

《一元一次不等式》精品导学案 人教版七年级数学下册导学案

《一元一次不等式》精品导学案 人教版七年级数学下册导学案

9.2 一元一次不等式【总结解题方法 提升解题能力】 【知识点梳理】一、一元一次不等式的概念只含有一个未知数, 未知数的次数是一次的不等式, 叫做一元一次不等式, 例如,2503x >是一个一元一次不等式. 二、一元一次不等式的解法1、解不等式:求不等式解的过程叫做解不等式.2、一元一次不等式的解法:与一元一次方程的解法类似, 其根据是不等式的根本性质, 将不等式逐步化为:a x <〔或a x >〕的形式, 解一元一次不等式的一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)化为ax b >〔或ax b <〕的形式〔其中0a ≠〕;(5)两边同除以未知数的系数, 得到不等式的解集.3、不等式的解集在数轴上表示:在数轴上可以直观地把不等式的解集表示出来, 能形象地说明不等式有无限多个解, 它对以后正确确定一元一次不等式组的解集有很大帮助.三、常见的一些等量关系1、行程问题:路程=速度×时间2、工程问题:工作量=工作效率×工作时间, 各局部劳动量之和=总量3、利润问题:商品利润=商品售价-商品进价,4、和差倍分问题:增长量=原有量×增长率5、银行存贷款问题:本息和=本金+利息, 利息=本金×利率6、数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+.四、列不等式解决实际问题列一元一次不等式解应用题与列一元一次方程解应用题类似, 通常也需要经过以下几个步骤:(1)审:认真审题, 分清量、未知量及其关系, 找出题中不等关系要抓住题中的关键字眼, 如“大于〞、“小于〞、“不大于〞、“至少〞、“不超过〞、“超过〞等;(2)设:设出适当的未知数;(3)列:根据题中的不等关系, 列出不等式;(4)解:解所列的不等式;(5)答:写出答案, 并检验是否符合题意.一、一元一次不等式的概念 1、以下式子中, 是一元一次不等式的是〔 〕.A 、x 2<1B 、y –3>0C 、a +b =1D 、3x =22、以下式子中, 是一元一次不等式的有哪些?〔1〕3x+5=0 〔2〕2x+3>5 〔3〕384x < 〔4〕1x≥2 〔5〕2x+y ≤8 3、以下式子哪些是一元一次不等式?哪些不是一元一次不等式?为什么?〔1〕0x > 〔2〕1x1-> 〔3〕2x 2> 〔4〕3y x ->+ 〔5〕1x -= 二、一元一次不等式的解法1、不等式2(x+1)<3x+1的解集在数轴上表示出来应为( ).2、关于x 的不等式2x-a ≤-1的解集为x ≤-1, 那么a 的值是_________.3、如果关于x 的不等式(a+1)x <a+1的解集是x >l, 那么a 的取值范围是________.4、解不等式2〔x+1〕﹣1≥3x+2, 并把它的解集在数轴上表示出来.5、解不等式:≤﹣1, 并把解集表示在数轴上. 6、假设3511+-=x y ,14522--=x y ,问x 取何值时, 21y y >. 7、关于x 的方程2233x m x x ---=的解是非负数, m 是正整数, 求m 的值. 8、关于y ,x 的方程组⎩⎨⎧-=++=+1p y 3x 41p y 2x 3的解满足y x >, 求p 的取值范围. 三、列不等式解决实际问题1、爆破施工时, 导火索燃烧的速度是0.8cm/s, 人跑开的速度是5m/s, 为了使点火的战士在施工时能跑到100m 以外〔包括100m 〕的平安地区, 导火索至少需要多长?2、某人方案20天内至少加工400个零件, 前5天平均每天加工了33个零件, 此后, 该工人平均每天至少需加工多少个零件, 才能在规定的时间内完成任务?3、水果店进了某种水果1t, 进价是7元/kg .售价定为10元/kg, 销售一半以后, 为了尽快售完, 准备打折出售.如果要使总利润不低于2000元, 那么余下的水果至少可以按原定价的几折出售?4、某体育用品专卖店销售7个篮球和9个排球的总利润为355元, 销售10个篮球和20个排球的总利润为650元. 〔1〕求每个篮球和每个排球的销售利润;〔2〕每个篮球的进价为200元, 每个排球的进价为160元, 假设该专卖店方案用不超过17400元购进篮球和排球共100个, 且要求篮球数量不少于排球数量的一半, 请你为专卖店设计符合要求的进货方案.5、响应“家电下乡〞的惠农政策, 某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台, 其中甲种电冰箱的台数是乙种电冰箱台数的2倍, 购置三种电冰箱的总金额不超过132000元.甲、乙、丙三种电冰箱的出厂价格分别为:1200元/台、1600元/台、2000元/台.〔1〕至少购进乙种电冰箱多少台?〔2〕假设要求甲种电冰箱的台数不超过丙种电冰箱的台数, 那么有哪些购置方案?【稳固练习】一、选择题.1、以下各式中, 是一元一次不等式的是〔 〕.A 、5+4>8B 、2x -1C 、2x ≤5D 、1x-3x ≥0 2、不等式3x ≤2〔x ﹣1〕的解集为〔 〕.A 、x ≤﹣1B 、x ≥﹣1C 、x ≤﹣2D 、x ≥﹣2 3、不等式6x 2x 34-≥-的非负整数解有〔 〕.A 、 1个B 、2个C 、3个D 、4个4、不等式475x a x ->+的解集是1x <-, 那么a 为〔 〕.A 、-2B 、2C 、8D 、55、关于x 的不等式2a x 2≥+-的解集如下图, 那么a 的值是〔 〕.A 、0B 、2C 、 -2D 、-46、小明用100元钱去购置三角板和圆规共30件, 三角板每副2元, 每个圆规5元, 那么小明最多能买圆规〔 〕.A 、12个B 、13个C 、14个D 、15个7、某商品进价为800元, 售价为1200元, 由于受市场供求关系的影响, 现准备打折销售, 但要求利润率100%-⎛⎫=⨯ ⎪⎝⎭售价进价利润率进价不低于5%, 那么至少可打( ). A 、六折 B 、七折 C 、八折 D 、九折8、某风景区招待所有一两层客房, 底层比二层少5间, 一旅行团共有48人, 假设全部安排住底层, 每间住4人, 房间不够;而每间住5人, 有的房间未住满;假设全部安排住二层, 每间住3人, 房间也不够;每间住4人, 有的房间未住满.这家招待所的底层共有房间 ( ) .A 、9间B 、10间C 、11间D 、12间9、一个两位数, 某个位数字比十位数字大2, 这个两位数不小于20, 不大于40, 那么这个两位数是多少?为了解决这个问题, 我们可设个位数字为x, 那么可列不等式〔 〕.A 、20≤10〔x-2〕+x ≤40B 、20<10〔x-2〕+x <40C 、20≤x-2+x ≤40D 、20≤10x+x-2≤4010、张红家离学校1600米, 一天早晨由于有事耽误, 结果吃完饭时只差15分钟就上课, 忙中出错, 出门时又忘了带书包, 结果回到家又取书包共用3分钟, 只好坐小汽车去上学, 小汽车的速度是36千米/时, 小汽车行驶了1分30秒时又发生堵车, 她等了半分钟后, 路还没有畅通, 于是下车又开始步行, 问:张红步行速度至少是( )时, 才不至于迟到.A 、60米/分B 、70米/分C 、80米/分D 、90米/分二、填空题.1、不等式>x ﹣1的解集是. 2、12(x –m )>3–32m 的解集为x >3, 那么m 的值为________. 3、假设关于x 的不等式30x a -≤只有六个正整数解, 那么a 应满足________.4、某种肥皂零售价每块2元, 对于购置两块以上(含两块), 商场推出两种优惠销售方法:第一种为一块按原价, 其余按原价的七折优惠;第二种为全部按原价的八折优惠.在购置相同数量的情况下, 要使第一种方法比第二种方法得到的优惠多, 最少需要购置肥皂______块.5、一艘轮船上午6:00从长江上游的A 地出发, 匀速驶往下游的B 地, 于11:00到达B 地, 方案下午13:00从B 地匀速返回, 如果这段江水流速为3km/h, 且轮船在静水中的往返速度不变, 那么该船至少以 km/h 的速度返回, 才能不晚于19:00到达A 地.三、解答题.1、解不等式:3x >1–36x -. 2、解以下不等式:2x –5≤232x ⎛⎫-⎪⎝⎭. 3、解不等式2x –3<13x +, 并把解集在数轴上表示出来. 四、应用题.1、某工人方案在15天里加工408个零件, 前三天每天加工24个, 问以后每天至少加工多少个零件才能在规定时间内超额完成任务?2、某商店在一次促销活动中规定:消费者消费满200元或超过200元就可享受打折优惠.一名同学为班级买奖品, 准备买6本影集和假设干支钢笔.影集每本15元, 钢笔每支8元, 问他至少买多少支钢笔才能打折?3、某村为解决村民出行难的问题, 村委会决定将一条长为1200m 的村级公路硬化, 并将该项工程承包给甲、乙两工程队来施工.并将该项工程承包给甲、乙两工程队来施工, 假设甲、乙两队做需12天完成此项工程;假设甲队先做了8天后, 剩下的由乙队单独做还需18天才能完工.〔1〕问甲、乙两队单独完成此项工程各需多少天?〔2〕又甲队每施工一天需要费用2万元, 乙队每施工一天需要费用1万元, 要使完成该工程所需费用不超过35万元, 那么乙工程队至少要施工多少天?4、今年3月12日植树节期间, 学校预购进A , B 两种树苗.假设购进A 种树苗3棵, B 种树苗5棵, 需2100元;假设购进A种树苗4棵, B种树苗10棵, 需3800元.〔1〕求购进A, B两种树苗的单价;〔2〕假设该学校准备用不多于8000元的钱购进这两种树苗共30棵, 求A种树苗至少需购进多少棵.5、某冷饮店用200元购进A, B两种水果共20kg, 进价分别为7元/kg和12元/kg.〔1〕这两种水果各购进多少千克?〔2〕该冷饮店将所购进的水果全部混合制成50杯果汁, 要使售完后所获利润不低于进货款的50%, 那么每杯果汁的售价至少为多少元?6、青年志愿者爱心小分队赴山村送温暖, 准备为困难村民购置一些米面.购置1袋大米、4袋面粉, 共需240元;购置2袋大米、1袋面粉, 共需165元.〔1〕求每袋大米和面粉各多少元;〔2〕如果爱心小分队方案购置这些米面共40袋, 总费用不超过2140元, 那么至少购置多少袋面粉?7、某公司为了扩大经营, 决定购进6台机器用于生产某种活塞, 现有甲、乙两种机器供选择, 其中每种机器的价格和每台机器日生产活塞的数量如下表所示, 经过预算, 本次购置机器耗资不能超过34万元.(1)按该公司要求可以有几种购置方案?(2)假设该公司购进的6台机器的日生产能力不低于380个, 那么为了节约资金应选择哪种方案?8、沃尔玛超市销售每台进价为320元和250元的A、B两种型号的电器, 下表是两天的销售情况:〔进价、售价均保持不变, 利润=销售收入﹣进货本钱〕〔1〕求A、B两种型号的电器的销售单价;〔2〕假设超市准备用不多于8200元的金额再采购这两种型号的电器共30台, 求A种型号的电器最多能采购多少台?〔3〕在〔2〕的条件下, 超市销售完这30台电器能否实现利润至少为2100元的目标?请给出相应的采购方案;假设不能, 请说明理由.参考答案一、一元一次不等式的概念1、以下式子中, 是一元一次不等式的是〔〕.A、x2<1B、y–3>0C、a+b=1D、3x=2【答案】B【解析】A 、未知数次数是2, 属于一元二次不等式, 故本选项错误;B 、符合一元一次不等式的定义, 故本选项正确;C 、含有2个未知数, 属于二元一次方程, 故本选项错误;D 、含有1个未知数, 是一元一次方程, 故本选项错误; 应选B .2、以下式子中, 是一元一次不等式的有哪些?〔1〕3x+5=0 〔2〕2x+3>5 〔3〕384x < 〔4〕1x ≥2 〔5〕2x+y ≤8【解析】解:(2)、(3)是一元一次不等式.3、以下式子哪些是一元一次不等式?哪些不是一元一次不等式?为什么?〔1〕0x > 〔2〕1x 1-> 〔3〕2x 2> 〔4〕3y x ->+ 〔5〕1x -=【解析】解:(1)是一元一次不等式.〔2〕〔3〕(4)(5)不是一元一次不等式, 因为:〔2〕中分母中含有字母, 〔3〕未知量的最高次项不是1次, 〔4〕不等式左边含有两个未知量, 〔5〕不是不等式, 是一元一次方程.二、一元一次不等式的解法1、不等式2(x+1)<3x+1的解集在数轴上表示出来应为( ).【答案】C2、关于x 的不等式2x-a ≤-1的解集为x ≤-1, 那么a 的值是_________.【答案】-1【解析】由得:12a x -≤, 由112a -=-, 得1a =-.3、如果关于x 的不等式(a+1)x <a+1的解集是x >l, 那么a 的取值范围是________.【答案】1a -<4、解不等式2〔x+1〕﹣1≥3x+2, 并把它的解集在数轴上表示出来.【解析】解:去括号, 得2x+2﹣1≥3x+2,移项, 得2x ﹣3x ≥2﹣2+1,合并同类项, 得﹣x ≥1,系数化为1, 得x ≤﹣1,这个不等式的解集在数轴上表示为:5、解不等式:≤﹣1, 并把解集表示在数轴上.【解析】解:去分母得, 4〔2x ﹣1〕≤3〔3x+2〕﹣12,去括号得, 8x ﹣4≤9x+6﹣12,移项得, 8x ﹣9x ≤6﹣12+4,合并同类项得, ﹣x ≤﹣2,把x 的系数化为1得, x ≥2.在数轴上表示为:.6、假设3511+-=x y ,14522--=x y ,问x 取何值时, 21y y >. 【解析】解:∵3511+-=x y ,14522--=x y , 假设21y y >,那么有1452351-->+-x x 即 6101<x ∴当6101<x 时, 21y y >. 7、关于x 的方程2233x m x x ---=的解是非负数, m 是正整数, 求m 的值. 【解析】解:由2233x m x x ---=, 得x =22m -, 因为x 为非负数, 所以22m -≥0, 即m ≤2, 又m 是正整数, 所以m 的值为1或2.8、关于y ,x 的方程组⎩⎨⎧-=++=+1p y 3x 41p y 2x 3的解满足y x >, 求p 的取值范围. 【解析】解:由⎩⎨⎧-=++=+1p y 3x 41p y 2x 3, 解得:⎩⎨⎧--=+=7p y 5p x ∵y x >∴7p 5p -->+解得6p ->; ∴p 的取值范围为6p ->.三、列不等式解决实际问题1、爆破施工时, 导火索燃烧的速度是0.8cm/s, 人跑开的速度是5m/s, 为了使点火的战士在施工时能跑到100m 以外〔包括100m 〕的平安地区, 导火索至少需要多长?【解析】解:设导火索要xcm 长, 根据题意得:解得:16x ≥答:导火索至少要16cm 长.2、某人方案20天内至少加工400个零件, 前5天平均每天加工了33个零件, 此后, 该工人平均每天至少需加工多少个零件, 才能在规定的时间内完成任务?【解析】解:设以后平均每天加工x个零件,由题意的:5×33+〔20﹣5〕x≥400,解得:x≥2 153.∵x为正整数,∴x取16.答:该工人以后平均每天至少加工16个零件.3、水果店进了某种水果1t, 进价是7元/kg.售价定为10元/kg, 销售一半以后, 为了尽快售完, 准备打折出售.如果要使总利润不低于2000元, 那么余下的水果至少可以按原定价的几折出售?【解析】解:设余下的水果可以按原定价的x折出售,根据题意得:1t=1000kg解得:8x≥答:余下的水果至少可以按原定价的8折出售.4、某体育用品专卖店销售7个篮球和9个排球的总利润为355元, 销售10个篮球和20个排球的总利润为650元.〔1〕求每个篮球和每个排球的销售利润;〔2〕每个篮球的进价为200元, 每个排球的进价为160元, 假设该专卖店方案用不超过17400元购进篮球和排球共100个, 且要求篮球数量不少于排球数量的一半, 请你为专卖店设计符合要求的进货方案.【解析】解:〔1〕设每个篮球和每个排球的销售利润分别为x元, y元,根据题意得:,解得:,答:每个篮球和每个排球的销售利润分别为25元, 20元;〔2〕设购进篮球m个, 排球〔100﹣m〕个,根据题意得:,解得:≤m≤35,∴m=34或m=35,∴购进篮球34个排球66个, 或购进篮球35个排球65个两种购置方案.5、响应“家电下乡〞的惠农政策, 某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台, 其中甲种电冰箱的台数是乙种电冰箱台数的2倍, 购置三种电冰箱的总金额不超过132000元.甲、乙、丙三种电冰箱的出厂价格分别为:1200元/台、1600元/台、2000元/台.〔1〕至少购进乙种电冰箱多少台?〔2〕假设要求甲种电冰箱的台数不超过丙种电冰箱的台数, 那么有哪些购置方案?【解析】解:〔1〕设购置乙种电冰箱x台, 那么购置甲种电冰箱2x台, 丙种电冰箱〔80-3x〕台, 根据题意得1200×2x+1600x+〔80-3x〕×2000≤132000解这个不等式得x≥14∴至少购进乙种电冰箱14台;〔2〕根据题意得2x≤80-3x解这个不等式得 x≤16由〔1〕知 x≥14∴14≤x≤16又∵x为正整数∴x=14, 15, 16.所以, 有三种购置方案方案一:甲种电冰箱为28台, 乙种电冰箱为14台, 丙种电冰箱为38台.方案二:甲种电冰箱为30台, 乙种电冰箱为15台, 丙种电冰箱为35台.方案三:甲种电冰箱为32台, 乙种电冰箱为16台, 丙种电冰箱为32台.【稳固练习】一、选择题.1、以下各式中, 是一元一次不等式的是〔〕.A、5+4>8B、2x-1C、2x≤5D、1x-3x≥0【答案】C;2、不等式3x≤2〔x﹣1〕的解集为〔〕.A、x≤﹣1B、x≥﹣1C、x≤﹣2D、x≥﹣2【答案】C ;【解析】去括号得, 3x ≤2x ﹣2, 移项、合并同类项得, x ≤﹣2, 应选:C .3、不等式6x 2x 34-≥-的非负整数解有〔 〕.A 、 1个B 、2个C 、3个D 、4个【答案】C ;【解析】先求得解集为2x ≤, 所以非负整数解为:0,1,2;4、不等式475x a x ->+的解集是1x <-, 那么a 为〔 〕.A 、-2B 、2C 、8D 、5【答案】A ;【解析】由475x a x ->+, 可得53a x +<-, 它与1x <-表示同一解集, 所以513a +-=-, 解得2a =-; 5、关于x 的不等式2a x 2≥+-的解集如下图, 那么a 的值是〔 〕. A 、0 B 、2 C 、 -2 D 、-4【答案】A ;【解析】因为不等式2a x 2≥+-的解集为22a x -≤, 再观察数轴上表示的解集为1x -≤, 因此122a -=-, 解得0a =6、小明用100元钱去购置三角板和圆规共30件, 三角板每副2元, 每个圆规5元, 那么小明最多能买圆规〔 〕.A 、12个B 、13个C 、14个D 、15个【答案】B ;【解析】设买圆规x 件, 由题意得:52(30)x x +-≤100, 得x ≤1133, 且x 为正整数, 所以x 最大取13.7、某商品进价为800元, 售价为1200元, 由于受市场供求关系的影响, 现准备打折销售, 但要求利润率100%-⎛⎫=⨯ ⎪⎝⎭售价进价利润率进价不低于5%, 那么至少可打( ). A 、六折 B 、七折 C 、八折 D 、九折【答案】B ;【解析】解:设打x 折, 由题意得:1200800105%800x ⨯-≥, 解得x ≥7, 所以至少应打7折. 8、某风景区招待所有一两层客房, 底层比二层少5间, 一旅行团共有48人, 假设全部安排住底层, 每间住4人, 房间不够;而每间住5人, 有的房间未住满;假设全部安排住二层, 每间住3人, 房间也不够;每间住4人, 有的房间未住满.这家招待所的底层共有房间 ( ) .A 、9间B 、10间C 、11间D 、12间【答案】B ;【解析】设底层有房间x 间, 由题意得:4485483(5)484(5)48x x x x <⎧⎪>⎪⎨+<⎪⎪+>⎩得:39115x <<, 又x 为正整数, 所以10x =.9、一个两位数, 某个位数字比十位数字大2, 这个两位数不小于20, 不大于40, 那么这个两位数是多少?为了解决这个问题, 我们可设个位数字为x, 那么可列不等式〔 〕.A 、20≤10〔x-2〕+x ≤40B 、20<10〔x-2〕+x <40C 、20≤x-2+x ≤40D 、20≤10x+x-2≤40 【答案】A ;10、张红家离学校1600米, 一天早晨由于有事耽误, 结果吃完饭时只差15分钟就上课, 忙中出错, 出门时又忘了带书包, 结果回到家又取书包共用3分钟, 只好坐小汽车去上学, 小汽车的速度是36千米/时, 小汽车行驶了1分30秒时又发生堵车, 她等了半分钟后, 路还没有畅通, 于是下车又开始步行, 问:张红步行速度至少是( )时, 才不至于迟到.A 、60米/分B 、70米/分C 、80米/分D 、90米/分 【答案】B ;【解析】设张红步行速度x 米/分才不至于迟到, 由题意可列不等式引11[153(1)]22x --+≥1160060012-⨯,化简得10x ≥700, x ≥70, 应选B .二、填空题.1、不等式>x ﹣1的解集是.【答案】 x <4 ;【解析】去分母得1+2x >3x ﹣3, 移项得2x ﹣3x >﹣3﹣1, 合并得﹣x >﹣4, 系数化为1得x <4.2、12(x –m )>3–32m 的解集为x >3, 那么m 的值为________. 【答案】32【解析】去括号得:12x −12m >3−32m , 移项得:12x >3−32m +12m , 合并同类项得12x >3−m ,系数化为1得x >6–2m , ∵不等式的解集为x >3, ∴6–2m =3, 解得:m =32,故答案为:32.3、假设关于x 的不等式30x a -≤只有六个正整数解, 那么a 应满足________. 【答案】1821a ≤<; 【解析】由得:3a x ≤, 673a≤<, 即1821a ≤<. 4、某种肥皂零售价每块2元, 对于购置两块以上(含两块), 商场推出两种优惠销售方法:第一种为一块按原价, 其余按原价的七折优惠;第二种为全部按原价的八折优惠.在购置相同数量的情况下, 要使第一种方法比第二种方法得到的优惠多, 最少需要购置肥皂______块. 【答案】4;••2x, 得:x >3.最少需要购置肥皂4块时, 第一种方法比第二种方法得到的优惠多.5、一艘轮船上午6:00从长江上游的A 地出发, 匀速驶往下游的B 地, 于11:00到达B 地, 方案下午13:00从B 地匀速返回, 如果这段江水流速为3km/h, 且轮船在静水中的往返速度不变, 那么该船至少以 km/h 的速度返回, 才能不晚于19:00到达A 地. 【答案】33;【解析】解:设船xkm/h 的速度返回, 根据题意得出:6〔x ﹣3〕≥5〔x+3〕 解得:x ≥33,∴该船至少以33km/h 的速度返回, 才能不晚于19:00到达A 地. 故答案为:33.三、解答题.1、解不等式:3x >1–36x -. 解:3136x x ->-,去分母, 得()263x x >--, 去括号, 得263x x >-+, 移项, 合并同类项, 得39x >, 系数化为1, 得3x >.2、解以下不等式:2x –5≤232x ⎛⎫-⎪⎝⎭. 解:去括号得2x –5≤x –6,移项得, 2x –x ≤–6+5,合并同类项, 系数化为1得x ≤–1.3、解不等式2x –3<13x +, 并把解集在数轴上表示出来. 解:3〔2x –3〕<x +1, 在数轴上表示为: 6x –9<x +1, 5x <10,x<2,∴原不等式的解集为x<2,四、应用题.1、某工人方案在15天里加工408个零件, 前三天每天加工24个, 问以后每天至少加工多少个零件才能在规定时间内超额完成任务?【解析】解:设三天后每天加工x个零件, 根据题意得:24×3+(15-3)x>408,解得 x>28.因为x为正整数,所以以后每天加工的零件数至少为29个.2、某商店在一次促销活动中规定:消费者消费满200元或超过200元就可享受打折优惠.一名同学为班级买奖品,准备买6本影集和假设干支钢笔.影集每本15元, 钢笔每支8元, 问他至少买多少支钢笔才能打折?【解析】解:设该同学买x支钢笔, 根据题题意, 得:15×6+8x≥200,解得x≥3 134.故该同学至少要买14支钢笔才能打折.3、某村为解决村民出行难的问题, 村委会决定将一条长为1200m的村级公路硬化, 并将该项工程承包给甲、乙两工程队来施工.并将该项工程承包给甲、乙两工程队来施工, 假设甲、乙两队做需12天完成此项工程;假设甲队先做了8天后, 剩下的由乙队单独做还需18天才能完工.〔1〕问甲、乙两队单独完成此项工程各需多少天?〔2〕又甲队每施工一天需要费用2万元, 乙队每施工一天需要费用1万元, 要使完成该工程所需费用不超过35万元, 那么乙工程队至少要施工多少天?【解析】解:〔1〕设甲单独做需要用x天, 乙单独做需要y天, 根据题意可得:,解得:.答:甲单独做需要用20天, 乙单独做需要30天;〔2〕甲的工效:1200÷20=60, 乙的工效:1200÷30=40,∵2×20=40>35,∴设乙需要做a天, 由题意可得:2×+a≤35,解得:a≥15.答:乙工程队至少要施工15天.4、今年3月12日植树节期间, 学校预购进A, B两种树苗.假设购进A种树苗3棵, B种树苗5棵, 需2100元;假设购进A种树苗4棵, B种树苗10棵, 需3800元.〔1〕求购进A, B两种树苗的单价;〔2〕假设该学校准备用不多于8000元的钱购进这两种树苗共30棵, 求A种树苗至少需购进多少棵.【解析】〔1〕设A种树苗的单价为x元, 那么B种树苗的单价为y元,可得:3521004103800x yx y+=⎧⎨+=⎩, 解得:200300xy=⎧⎨=⎩.答:A种树苗的单价为200元, B种树苗的单价为300元.〔2〕设购置A种树苗a棵, 那么B种树苗为〔30–a〕棵,可得:200a+300〔30–a〕≤8000,解得:a≥10.答:A种树苗至少需购进10棵.5、某冷饮店用200元购进A, B两种水果共20kg, 进价分别为7元/kg和12元/kg.〔1〕这两种水果各购进多少千克?〔2〕该冷饮店将所购进的水果全部混合制成50杯果汁, 要使售完后所获利润不低于进货款的50%, 那么每杯果汁的售价至少为多少元?【解析】〔1〕设A种水果购进了x千克, 那么B种水果购进了〔20–x〕千克,根据题意得:7x+12〔20–x〕=200,解得:x=8,那么20–x=12.答:购进A种水果8千克, B种水果12千克;〔2〕设每杯果汁的售价至少为y元,根据题意得, 50y–200≥200×50%,解得y≥6.答:每杯果汁的售价至少为6元.6、青年志愿者爱心小分队赴山村送温暖, 准备为困难村民购置一些米面.购置1袋大米、4袋面粉, 共需240元;购置2袋大米、1袋面粉, 共需165元.〔1〕求每袋大米和面粉各多少元;〔2〕如果爱心小分队方案购置这些米面共40袋, 总费用不超过2140元, 那么至少购置多少袋面粉?【解析】〔1〕设每袋大米x元, 每袋面粉y元,7、某公司为了扩大经营, 决定购进6台机器用于生产某种活塞, 现有甲、乙两种机器供选择, 其中每种机器的价格和每台机器日生产活塞的数量如下表所示, 经过预算, 本次购置机器耗资不能超过34万元.(1)按该公司要求可以有几种购置方案?(2)假设该公司购进的6台机器的日生产能力不低于380个, 那么为了节约资金应选择哪种方案?【解析】解:(1)设购置甲种机器x台, 乙种机器〔6-x〕台.由题意, 得7x+5(6-x)≤34.解不等式, 得x≤2, 故x可以取0, l, 2三个值,所以, 该公司按要求可以有以下三种购置方案:方案一:不购置甲种机器, 购置乙种机器6台;方案二:购置甲种机器1台, 购置乙种机器5台;方案三:购置甲种机器2台, 购置乙种机器4台;(2)按方案一购置机器, 所耗资金为30万元, 日生产量6×60=360(个);按方案二购置, 所耗资金为1×7+5×5=32〔万元〕, 日生产量为1×100+5×60=400〔个〕, 按方案三购置, 所耗资金为2×7+4×5=34(万元);日生产量为2×100+4×60=440〔个〕.因此, 选择方案二既能到达生产能力不低于380〔个〕, 又比方案三节约2万元资金, 故应选择方案二.8、沃尔玛超市销售每台进价为320元和250元的A、B两种型号的电器, 下表是两天的销售情况:〔进价、售价均保持不变, 利润=销售收入﹣进货本钱〕〔1〕求A、B两种型号的电器的销售单价;〔2〕假设超市准备用不多于8200元的金额再采购这两种型号的电器共30台, 求A种型号的电器最多能采购多少台?〔3〕在〔2〕的条件下, 超市销售完这30台电器能否实现利润至少为2100元的目标?请给出相应的采购方案;假设不能, 请说明理由.【解析】解:〔1〕设A、B两种型号电器的销售单价分别为x元和y元,由题意, 得:2x+3y=1700,3x+y=1500,解得x=400元, y=300元,∴A、B两种型号电器的销售单价分别为400元和300元;〔2〕设采购A种型号电器a台, 那么采购B种型号电器〔30﹣a〕台,依题意, 得320a+250〔30﹣a〕≤8200,解得a≤10, a取最大值为10,∴超市最多采购A种型号电器10台时, 采购金额不多于8200元;〔3〕依题意, 得〔400﹣320〕a+〔300﹣250〕〔30﹣a〕≥2100,解得 a≥20,∵a的最大值为10,∴在〔2〕的条件下超市不能实现利润至少为2100元的目标.第四单元第1课函数一、根底稳固1.一般地, 如果在一个变化过程中有两个变量x和y, 并且对于变量x的每一个值, 变量y都有________的值与它对应, 那么我们称y是x的________, 其中________是自变量.2.下面选项中给出了某个变化过程中的两个变量x和y, 其中y不是..x的函数的是()A .y :正方形的面积, x :这个正方形的周长B .y :等边三角形的周长, x :这个等边三角形的边长C .y :圆的面积, x :这个圆的直径D .y :一个正数的平方根, x :这个正数 3.以下关系式中, y 不是..x 的函数的是( )A .y =xB .y =x 2+1C .y =|x |D .|y |=2x4.(泸州)以下曲线中不能..表示y 是x 的函数的是( ) 5.表示函数的方法一般有________、__________和__________;函数的表示方法可以互相转化, 应用中要根据具体情况选择适当的方法.6.在下表中, 设x 表示乘公共汽车的站数, y 表示应付的票价.x /站 1 2 3 4 5 6 7 8 9 10 y /元1112233344根据此表, 以下说法正确的选项是( ) A .y 是x 的函数 B .y 不是x 的函数C .x 是y 的函数D .以上说法都不对7.假设每上6个台阶就升高1 m, 那么上升高度h (单位:m)与上的台阶数m (单位:个)之间的函数关系式是( ) A .h =6m B .h =6+mC .h =m -6D .h =m68.(随州)“龟兔赛跑〞这那么寓言故事讲述的是比赛中兔子开始领先, 但它因为骄傲在途中睡觉, 而乌龟一直坚持爬行最终赢得比赛, 以下函数图象可以表达这一故事过程的是( )9.对于一个的函数, 自变量的取值范围是使这个函数________的一切值;对于一个实际问题, 自变量的取值必须使____________有意义.如果当x =a 时y =b , 那么b 叫做当自变量x 的值为a 时的__________. 10.(内江)函数y =x +1x -1, 那么自变量x 的取值范围是( ) A .-1<x <1 B .x ≥-1且x ≠1C .x ≥-1D .x ≠111.函数y =2x -1x +2中, 当x =a 时的函数值为1, 那么a 的值是( )A .-1B .1C .-3D .312.函数y =⎩⎪⎨⎪⎧x 2-3〔x ≤2〕x -1〔x >2〕当函数值y =6时, 自变量的值是( )A .7B .-3C .-3或7D .±3或7。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
你能用自己的语言描述一元一次不等式组的概念吗?
·方程组的解要同时满足方程组中的每一个方程;同理,不等式组的解集也应该满足不等式组中的每一个不等式.
①看上面的两个不等式 由①解得:,
由②解得:;把两个不等式的解集在同一个数轴上表示为:
②用彩色笔画出它们解集的公共部分;我们可以说这个不等式组的解集是.
小组派二名同学进行展示:
课堂板块
学 习 活 动 与 指 导



8


认真自研教材P127的内容:仔细分析课本中问题:
①画出问题中表示不等关系的语句.
②若设将污水抽完所需的时间为x min,则:
积存污水的总量超过1200t,可得:3x1200 ①;
积水污水的总量又没超过1500t,可得:3x1500 ②;
把这两个不等式合起来,我们就可以得一元一次不等式组.
(2)解学法指导中的两个不等式组,结合例题,总结不等式组解集的四种呈现方式。
板块三
12分
基础题:(前4题,每组派一名同学解答,在限定时间内答对的加分)
1、不等式组的解集是2、不等式组的解集是
3、不等式组ቤተ መጻሕፍቲ ባይዱ解集是4、不等式组的解集是
5、解下列不等式组,并在数轴上表示解集:(每小组的三号同学板演,组长可以帮扶)
⑴ ⑵
能力提升:(先独立完成,在抢答;精英展,重点讲解解题思路)
已知方程组 的解是一对正数。
(1)求a的范围 ; (2)化简:|2a + 1| + |2 - a|



5


自我检测:(按组内答对人数加分)
1.解下列不等式组,并在数轴上表示其解集:



(1)根据问题情境,结合题中的关系列出不等式,引出一元一次不等式组的概念.
(2)根据问题中包含两个必须同时满足的条件,借助数轴,展示一元一次不等式组的解集;



10 分

认真自研P128例1的内容:
·看解答、理步骤:
看例1的解题过程,对于第(1)小题,我们先解不等式①得到:
再解不等式②得到:利用数轴,我们可以找到它们解集的公共部分.所以,此不等式组的解集是:
安林中学数学知行导学案
【课题】9.3解一元一次不等式组(一)【课型】新授课【课时】1课时 【编制】:矫金霞
【备课日期】2015.6.1 【上课日期】2015.6.2 编号:7049
班级__________ 姓名________
学习主题:1、知道一元一次不等式组的定义,理解不等式解集的概念。
2、能较熟练的解一元一次不等式组。
·看结果,找规律:
仿造例题的解题过程,解下面两个不等式组,并利用数轴找出不等式组的解集:
(1) (2)
***将下列数轴上的x的范围用不等式表示出来:
四人小组尝试总结元一次不等式组解集的四种呈现方式:
大大取大大, 小小取, 大小小大中间跑,解不了。
四人小组展示:
(1)再现例题的解题过程于展示板,分析解不等式组的一般流程.总结解不等式组的一般步骤。
相关文档
最新文档