2013新课标高考文科数学试题及答案
高考文科数学真题及答案全国卷
2013年高考文科数学真题及答案全国卷1本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013课标全国Ⅰ,文1)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =( ).A .{1,4}B .{2,3}C .{9,16}D .{1,2} 【答案】A【考点】本题主要考查集合的基本知识。
【解析】∵B ={x |x =n 2,n ∈A }={1,4,9,16}, ∴A ∩B ={1,4}.2.(2013课标全国Ⅰ,文2)212i1i +(-)=( ). A. −1−12i B .11+i 2- C .1+12i D .1−12i【答案】B【考点】本题主要考查复数的基本运算。
【解析】212i 12i 12i i 2i 1i 2i 22++(+)-+===(-)-=11+i 2-. 3.(2013课标全国Ⅰ,文3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ).A .12B .13C .14D .16 【答案】B【考点】本题主要考查列举法解古典概型问题的基本能力。
【解析】由题意知总事件数为6,且分别为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),满足条件的事件数是2,所以所求的概率为13.4.(2013课标全国Ⅰ,文4)已知双曲线C :2222=1x y a b-(a >0,b >0)则C 的渐近线方程为( ).A . y =±14i B .y =±13i C .12y x =± D .y =±i【答案】C【考点】本题主要考查双曲线的离心率、渐近线方程。
【解析】∵2e =2c a =,即2254c a =.∵c 2=a 2+b 2,∴2214b a =.∴12b a =.∵双曲线的渐近线方程为by x a=±,∴渐近线方程为12y x =±.故选C.5.(2013课标全国Ⅰ,文5)已知命题p :x ∈R,2x <3x ;命题q :x ∈R ,x 3=1-x 2,则下列命题中为真命题的是( ).A .p ∧qB .⌝p ∧qC .p ∧⌝qD .⌝p ∧⌝q 【答案】B【考点】本题主要考查常用逻辑用语等基本知识。
2013年高考文科数学真题及答案全国卷1
2013年高考文科数学真题及答案全国卷1本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013课标全国Ⅰ,文1)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =( ).A .{1,4}B .{2,3}C .{9,16}D .{1,2} 【答案】A【考点】本题主要考查集合的基本知识。
【解析】∵B ={x |x =n 2,n ∈A }={1,4,9,16}, ∴A ∩B ={1,4}.2.(2013课标全国Ⅰ,文2)212i1i +(-)=( ).A.B .11+i 2- C . D .【答案】B【考点】本题主要考查复数的基本运算。
【解析】212i 12i 12i i 2i 1i 2i 22++(+)-+===(-)-=11+i 2-。
3.(2013课标全国Ⅰ,文3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ).A .12B .13C .14D .16【答案】B【考点】本题主要考查列举法解古典概型问题的基本能力。
【解析】由题意知总事件数为6,且分别为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),满足条件的事件数是2,所以所求的概率为13。
4.(2013课标全国Ⅰ,文4)已知双曲线C :2222=1x y a b -(a >0,b >0)的离心率为52,则C 的渐近线方程为( ).A .B .C .12y x =±D .【答案】C【考点】本题主要考查双曲线的离心率、渐近线方程。
【解析】∵5e =5c a =,即2254c a =。
∵c 2=a 2+b 2,∴2214b a =.∴12b a =。
∵双曲线的渐近线方程为by x a=±,∴渐近线方程为12y x =±.故选C 。
2013年高考新课标1数学文科试题及答案
2013年高考新课标1数学文科试题及答案绝密★启封并使用完毕前2013年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至4页。
全卷满分150分。
考试时间120分钟。
注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3. 全部答案在答题卡上完成,答在本试题上无效。
4. 考试结束,将本试题和答题卡一并交回。
第Ⅰ卷一、选择题共12小题。
每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
(1)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B= ( )(A){1,4}(B){2,3}(C){9,16} (D){1,2}(2)1+2i(1-i)2=( )(A )-1-12i (B )-1+12i (C )1+12i (D )1-12i (3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( )(A )12 (B )13(C )14(D )16 (4)已知双曲线C:x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则C 的渐近线方程为 ( )(A )y =±14x (B )y =±13x (C )y =±12x (D )y =±x (5)已知命题p :∀x ∈R,2x ><3x;命题q :∃x ∈R ,x 3=1-x 2,则下列命题中为真命题的是:( )(A)p∧q (B)¬p∧q (C)p∧¬q (D)¬p∧¬q(6)设首项为1,公比为23的等比数列{a n}的前n项和为S n,则()(A)S n=2a n-1 (B)S n =3a n-2 (C)Sn=4-3a n(D)S n =3-2a n(7)执行右面的程序框图,如果输入的t∈[-1,3],则输出的s属于 ( )(A)[-3,4] (B)[-5,2](C)[-4,3](D)[-2,5](8)O为坐标原点,F为抛物线C:y²=42x的焦点,P为C上一点,若|PF|=42,则△POF的面积为( )(A)2 (B)2 2 (C)2 3(D)4(9)函数f(x)=(1-cos x)sin x在[-π,π]的图像大致为( )A B C D(10)已知锐角△ABC的内角A,B,C的对边分别为a,b,c,23cos²A+cos2A=0,a=7,c=6,则b=( )(A)10 (B)9 (C)8 (D)5(11)某几何函数的三视图如图所示,则该几何的体积为(A)18+8π (B)8+8π(C)16+16π (D)8+16π(12)已知函数f (x )=⎩⎨⎧ -x 2+2x x ≤0ln(x +1) x >0,若| f (x )|≥ax ,则a 的取值范围是( )(A )(-∞,0] (B )(-∞,1](C)[-2,1] (D)[-2,0]第Ⅱ卷本卷包括必考题和选考题两个部分。
2013年高考文科数学真题及答案全国卷1
2013年高考文科数学真题及答案全国卷1本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013课标全国Ⅰ,文1)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =( ).A .{1,4}B .{2,3}C .{9,16}D .{1,2} 【答案】A【考点】本题主要考查集合的基本知识。
【解析】∵B ={x |x =n 2,n ∈A }={1,4,9,16}, ∴A ∩B ={1,4}.2.(2013课标全国Ⅰ,文2)212i1i +(-)=( ).A 。
B .11+i 2- C . D .【答案】B【考点】本题主要考查复数的基本运算。
【解析】212i 12i 12i i 2i 1i 2i 22++(+)-+===(-)-=11+i 2-.3.(2013课标全国Ⅰ,文3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ).A .12B .13C .14D .16【答案】B【考点】本题主要考查列举法解古典概型问题的基本能力。
【解析】由题意知总事件数为6,且分别为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),满足条件的事件数是2,所以所求的概率为13。
4.(2013课标全国Ⅰ,文4)已知双曲线C :2222=1x y a b -(a >0,b >0)的离心率为52,则C 的渐近线方程为( ).A .B .C .12y x =±D .【答案】C【考点】本题主要考查双曲线的离心率、渐近线方程.【解析】∵5e =5c a =,即2254c a =。
∵c 2=a 2+b 2,∴2214b a =。
∴12b a =.∵双曲线的渐近线方程为by x a=±,∴渐近线方程为12y x =±。
(完整版)2013年高考新课标全国(I卷)文科数学试题及答案
2013年普通高等学校夏季招生全国统一考试数学文史类(全国卷I 新课标)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =( ).A .{1,4}B .{2,3}C .{9,16}D .{1,2}2. 212i1i +(-)=( ).A .11i 2-- B .11+i 2- C .11+i 2 D .11i 2- 3.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ).A .12B .13C .14 D .164.( ,文4)已知双曲线C :2222=1x y a b-(a >0,b >0)的离心率为2,则C 的渐近线方程为( ). A .y =14x ± B .y =13x ± C .y =12x ± D .y =±x5.( ,文5)已知命题p :∀x ∈R,2x <3x ;命题q :∃x ∈R ,x 3=1-x 2,则下列命题中为真命题的是( ). A .p ∧q B .⌝p ∧q C .p ∧⌝q D .⌝p ∧⌝q6.( ,文6)设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则( ).A .Sn =2an -1B .Sn =3an -2C .Sn =4-3anD .Sn =3-2an7.( ,文7)执行下面的程序框图,如果输入的t ∈[-1,3],则输出的s 属于( ).A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5]8.( ,文8)O 为坐标原点,F 为抛物线C :y 2=的焦点,P 为C 上一点,若|PF |=则△POF 的面积为( ).A .2 B. C. D .49.( ,文9)函数f (x )=(1-cos x )sin x 在[-π,π]的图像大致为( ).10.( ,文10)已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c,23cos 2A +cos 2A =0,a =7,c =6,则b =( ).A .10B .9C .8D .511.( ,文11)某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π12.( ,文12)已知函数f (x )=22,0,ln(1),0.x x x x x ⎧-+≤⎨+>⎩若|f (x )|≥ax ,则a 的取值范围是().A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]第Ⅱ卷二、填空题:本大题共4小题,每小题5分. 13.( ,文13)已知两个单位向量a ,b 的夹角为60°,c =ta +(1-t )b .若b ·c =0,则t =______.14.( ,文14)设x ,y 满足约束条件13,10,x x y ≤≤⎧⎨-≤-≤⎩则z =2x -y 的最大值为______. 15.( ,文15)已知H 是球O 的直径AB 上一点,AH ∶HB =1∶2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为______.16.( ,文16)设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=______.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.( ,文17)(本小题满分12分)已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5.(1)求{a n }的通项公式;(2)求数列21211n n a a -+⎧⎫⎨⎬⎩⎭的前n 项和.18.( ,文18)(本小题满分12分)为了比较两种治疗失眠症的药(分别称为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下:服用A药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4服用B药的20位患者日平均增加的睡眠时间:3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好?(2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?19.( ,文19)(本小题满分12分)如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若AB=CB=2,A1C,求三棱柱ABC-A1B1C1的体积.20.( ,文20)(本小题满分12分)已知函数f(x)=e x(ax+b)-x2-4x,曲线y=f(x)在点(0,f(0))处的切线方程为y=4x+4.(1)求a,b的值;(2)讨论f(x)的单调性,并求f(x)的极大值.21.( ,文21)(本小题满分12分)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.(1)求C的方程;(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.22.( ,文22)(本小题满分10分)选修4—1:几何证明选讲如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.23.( ,文23)(本小题满分10分)选修4—4:坐标系与参数方程已知曲线C1的参数方程为45cos,55sinx ty t=+⎧⎨=+⎩(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sin θ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).24.( ,文24)(本小题满分10分)选修4—5:不等式选讲已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.(1)当a=-2时,求不等式f(x)<g(x)的解集;(2)设a>-1,且当x∈1,22a⎡⎫-⎪⎢⎣⎭时,f(x)≤g(x),求a的取值范围.2013年普通高等学校夏季招生全国统一考试数学文史类(全国卷I 新课标)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.答案:A解析:∵B ={x |x =n 2,n ∈A }={1,4,9,16},∴A ∩B ={1,4}.2.答案:B 解析:212i 12i 12i i 2i 1i 2i 22++(+)-+===(-)-=11+i 2-. 3.答案:B解析:由题意知总事件数为6,且分别为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),满足条件的事件数是2,所以所求的概率为13. 4.答案:C解析:∵e =c a =,即2254c a =. ∵c 2=a 2+b 2,∴2214b a =.∴12b a =. ∵双曲线的渐近线方程为b y x a=±, ∴渐近线方程为12y x =±.故选C. 5.答案:B解析:由20=30知,p 为假命题.令h (x )=x 3-1+x 2,∵h (0)=-1<0,h (1)=1>0,∴x 3-1+x 2=0在(0,1)内有解.∴∃x ∈R ,x 3=1-x 2,即命题q 为真命题.由此可知只有⌝p ∧q 为真命题.故选B.6.答案:D 解析:11211321113n n n n a a a q a q S q q --(-)===---=3-2a n ,故选D.7.答案:A解析:当-1≤t <1时,s =3t ,则s ∈[-3,3).当1≤t ≤3时,s =4t -t 2.∵该函数的对称轴为t =2,∴该函数在[1,2]上单调递增,在[2,3]上单调递减.∴s max =4,s min =3.∴s ∈[3,4].综上知s ∈[-3,4].故选A.8.答案:C解析:利用|PF |=Px =x P =∴y P =±∴S △POF =12|OF |·|y P |=故选C.9.答案:C解析:由f (x )=(1-cos x )sin x 知其为奇函数.可排除B .当x ∈π0,2⎛⎤ ⎥⎝⎦时,f (x )>0,排除A. 当x ∈(0,π)时,f ′(x )=sin 2x +cos x (1-cos x )=-2cos 2x +cos x +1.令f ′(x )=0,得2π3x=. 故极值点为2π3x=,可排除D ,故选C. 10.答案:D解析:由23cos 2A +cos 2A =0,得cos 2A =125. ∵A ∈π0,2⎛⎫ ⎪⎝⎭,∴cos A =15. ∵cos A =2364926b b +-⨯,∴b =5或135b =-(舍). 故选D.11.答案:A解析:该几何体为一个半圆柱与一个长方体组成的一个组合体.V 半圆柱=12π×22×4=8π, V 长方体=4×2×2=16.所以所求体积为16+8π.故选A.12.答案:D解析:可画出|f (x )|的图象如图所示.当a >0时,y =ax 与y =|f (x )|恒有公共点,所以排除B ,C ;当a ≤0时,若x >0,则|f (x )|≥ax 恒成立.若x ≤0,则以y =ax 与y =|-x 2+2x |相切为界限,由2,2,y ax y x x =⎧⎨=-⎩得x 2-(a +2)x =0. ∵Δ=(a +2)2=0,∴a =-2.∴a ∈[-2,0].故选D.第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.答案:2解析:∵b ·c =0,|a |=|b |=1,〈a ,b 〉=60°,∴a ·b =111122⨯⨯=. ∴b ·c =[ta +(1-t )b ]·b =0,即ta ·b +(1-t )b 2=0.∴12t +1-t =0. ∴t =2.14.答案:3解析:画出可行域如图所示.画出直线2x -y =0,并平移,当直线经过点A (3,3)时,z 取最大值,且最大值为z =2×3-3=3.15.答案:9π2解析:如图,设球O 的半径为R ,则AH =23R , OH =3R. 又∵π·EH 2=π,∴EH =1.∵在Rt △OEH 中,R 2=22+13R ⎛⎫ ⎪⎝⎭,∴R 2=98. ∴S 球=4πR 2=9π2.16.答案:解析:∵f (x )=sin x -2cos x x -φ),其中sin φ,cos φ当x -φ=2k π+π2(k ∈Z)时,f (x )取最大值. 即θ-φ=2k π+π2(k ∈Z),θ=2k π+π2+φ(k ∈Z).∴cos θ=πcos 2ϕ⎛⎫+ ⎪⎝⎭=-sin φ=. 三、解答题:解答应写出文字说明,证明过程或演算步骤.17.解:(1)设{a n }的公差为d ,则S n =1(1)2n n na d -+.由已知可得11330,5105,a d a d +=⎧⎨+=⎩ 解得a 1=1,d =-1.故{a n }的通项公式为a n =2-n .(2)由(1)知21211n n a a -+=1111321222321n n n n ⎛⎫=- ⎪(-)(-)--⎝⎭, 从而数列21211n n a a -+⎧⎫⎨⎬⎩⎭的前n 项和为1111111211132321n n ⎛⎫-+-++- ⎪---⎝⎭L =12n n-. 18.解:(1)设A 药观测数据的平均数为x ,B 药观测数据的平均数为y .由观测结果可得 x =120(0.6+1.2+1.2+1.5+1.5+1.8+2.2+2.3+2.3+2.4+2.5+2.6+2.7+2.7+2.8+2.9+3.0+3.1+3.2+3.5) =2.3, y =120(0.5+0.5+0.6+0.8+0.9+1.1+1.2+1.2+1.3+1.4+1.6+1.7+1.8+1.9+2.1+2.4+2.5+2.6+2.7+3.2) =1.6. 由以上计算结果可得x >y ,因此可看出A 药的疗效更好. (2)由观测结果可绘制如下茎叶图:从以上茎叶图可以看出,A 药疗效的试验结果有710的叶集中在茎2,3上,而B 药疗效的试验结果有710的叶集中在茎0,1上,由此可看出A 药的疗效更好.19.(1)证明:取AB 的中点O ,连结OC ,OA 1,A 1B .因为CA =CB ,所以OC ⊥AB .由于AB =AA 1,∠BAA 1=60°,故△AA 1B 为等边三角形,所以OA 1⊥AB .因为OC ∩OA 1=O ,所以 AB ⊥平面OA 1C .又A 1C ⊂平面OA 1C ,故AB ⊥A 1C .(2)解:由题设知△ABC 与△AA 1B 都是边长为2的等边三角形,所以OC =OA 1=又A 1C,则A 1C 2=OC 2+21OA ,故OA 1⊥OC .因为OC ∩AB =O ,所以OA 1⊥平面ABC ,OA 1为三棱柱ABC -A 1B 1C 1的高.又△ABC 的面积S △ABCABC -A 1B 1C 1的体积V =S △ABC ×OA 1=3.20.解:(1)f ′(x )=e x (ax +a +b )-2x -4.由已知得f (0)=4,f ′(0)=4.故b =4,a +b =8.从而a =4,b =4.(2)由(1)知,f (x )=4e x (x +1)-x 2-4x , f ′(x )=4e x (x +2)-2x -4=4(x +2)·1e2x ⎛⎫- ⎪⎝⎭. 令f ′(x )=0得,x =-ln 2或x =-2. 从而当x ∈(-∞,-2)∪(-ln 2,+∞)时,f ′(x )>0;当x ∈(-2,-ln 2)时,f ′(x )<0.故f (x )在(-∞,-2),(-ln 2,+∞)上单调递增,在(-2,-ln 2)上单调递减.当x =-2时,函数f (x )取得极大值,极大值为f (-2)=4(1-e -2).21.解:由已知得圆M 的圆心为M (-1,0),半径r 1=1;圆N 的圆心为N (1,0),半径r 2=3.设圆P 的圆心为P (x ,y ),半径为R .(1)因为圆P 与圆M 外切并且与圆N 内切,所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4.由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2的椭圆(左顶点除外),其方程为22=143x y +(x ≠-2). (2)对于曲线C 上任意一点P (x ,y ),由于|PM |-|PN |=2R -2≤2,所以R ≤2,当且仅当圆P 的圆心为(2,0)时,R =2.所以当圆P 的半径最长时,其方程为(x -2)2+y 2=4.若l 的倾斜角为90°,则l 与y 轴重合,可得|AB |=若l 的倾斜角不为90°,由r 1≠R 知l 不平行于x 轴,设l 与x 轴的交点为Q ,则1||||QP R QM r =,可求得Q (-4,0),所以可设l :y =k (x +4).由l 与圆M=1,解得k=当k=4时,将4y x =代入22=143x y +,并整理得7x 2+8x -8=0,解得x 1,2=47-±, 所以|AB ||x 2-x 1|=187. 当k=时,由图形的对称性可知|AB |=187. 综上,|AB |=|AB |=187. 请考生在第(22)、(23)、(24)三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,做答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑.22.(1)证明:连结DE,交BC于点G.由弦切角定理得,∠ABE=∠BCE.而∠ABE=∠CBE,故∠CBE=∠BCE,BE=CE.又因为DB⊥BE,所以DE为直径,∠DCE=90°,由勾股定理可得DB=DC.(2)解:由(1)知,∠CDE=∠BDE,DB=DC,故DG是BC的中垂线,所以BG=2.设DE的中点为O,连结BO,则∠BOG=60°. 从而∠ABE=∠BCE=∠CBE=30°,所以CF⊥BF,故Rt△BCF外接圆的半径等于.23.解:(1)将45cos,55sinx ty t=+⎧⎨=+⎩消去参数t,化为普通方程(x-4)2+(y-5)2=25,即C1:x2+y2-8x-10y+16=0.将cos,sinxyρθρθ=⎧⎨=⎩代入x2+y2-8x-10y+16=0得ρ2-8ρcos θ-10ρsin θ+16=0.所以C1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0.(2)C2的普通方程为x2+y2-2y=0.由2222810160,20x y x yx y y⎧+--+=⎨+-=⎩解得1,1xy=⎧⎨=⎩或0,2.xy=⎧⎨=⎩所以C1与C2交点的极坐标分别为π4⎫⎪⎭,π2,2⎛⎫⎪⎝⎭.24.解:(1)当a=-2时,不等式f(x)<g(x)化为|2x-1|+|2x-2|-x-3<0. 设函数y=|2x-1|+|2x-2|-x-3,则y=1 5,,212,1,236, 1.x xx xx x⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩其图像如图所示.从图像可知,当且仅当x∈(0,2)时,y<0.所以原不等式的解集是{x |0<x <2}.(2)当x ∈1,22a⎡⎫-⎪⎢⎣⎭时,f (x )=1+a .不等式f (x )≤g (x )化为1+a ≤x +3. 所以x ≥a -2对x ∈1,22a ⎡⎫-⎪⎢⎣⎭都成立. 故2a-≥a -2,即a ≤43.从而a 的取值范围是41,3⎛⎤- ⎥⎝⎦.。
2013年高考全国Ⅱ文科数学试题及答案(word解析版)
2013年普通高等学校招生全国统一考试(全国II )数学(文科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2013年全国Ⅱ,文1,5分】已知集合{|31}M x x =-<<,{3,2,1,0,1}N =---,则M N = ( )(A ){2,1,0,1}-- (B ){3,2,1,0}--- (C ){2,1,0}-- (D ){3,2,1}--- 【答案】C【解析】因为{31}M x x =-<<,{3,2,1,0,1}N =---,所以M N {2,1,0}=--,故选C . (2)【2013年全国Ⅱ,文2,5分】21i=+( ) (A) (B )2 (C(D )1 【答案】C【解析】22(1i)2(1i)1i 1i (1i)(1i)2--===-+-+,所以21i=+C . (3)【2013年全国Ⅱ,文3,5分】设,x y 满足约束条件10103x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩,则23z x y =-的最小值是( )(A )7- (B )6- (C )5- (D )3- 【答案】B【解析】由23z x y =-得32y x z =-,即233z y x =-.作出可行域如图,平移直线233zy x =-,由图象可知当直线233z y x =-经过点B 时,直线233zy x =-的截距最大,此时z 取得最小值,由103x y x -+=⎧⎨=⎩得34x y =⎧⎨=⎩,即(3,4)B ,代入直线23z x y =-得32346z =⨯-⨯=-,故选B .(4)【2013年全国Ⅱ,文4,5分】ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知2b =,6B π=,4C π=,则ABC ∆的面积为( )(A)2 (B1 (C)2 (D1【答案】B【解析】因为,64B C ππ==,所以712A π=.由正弦定理得sin sin 64b c =,解得c =.所以三角形的面积为117sin 22212bc A π=⨯⨯.因为7231s i n s i n (()1232222πππ=++,所以13s i n ()312b c A =++,故选B . (5)【2013年全国Ⅱ,文5,5分】设椭圆2222:1x y C a b+=(0)a b >>的左、右焦点分别为12,F F ,P 是C 上的点,212PF F F ⊥,1230PF F ∠=,则C 的离心率为( )(A(B )13(C )12 (D【答案】D【解析】因为21212,30PF F F PF F ⊥∠=,所以212tan 30,PF c PF ===.又122PF PF a +==,所以c a ==,故选D .(6)【2013年全国Ⅱ,文6,5分】已知2sin 23α=,则2cos ()4πα+=( )(A )16 (B )13(C )12 (D )23【答案】A【解析】因为21cos2()1cos(2)1sin 242cos ()4222ππααπαα++++-+===,所以2211sin 213cos ()4226παα--+===,故选A .(7)【2013年全国Ⅱ,文7,5分】执行右面的程序框图,如果输入的4N =,那么输出的S =( )(A )1111234+++ (B )1111232432+++⨯⨯⨯ (C )111112345++++ (D )111112324325432++++⨯⨯⨯⨯⨯⨯ 【答案】B【解析】第一次循环,1,1,2T S k ===;第二次循环,11,1,322T S k ==+=;第三次循环,111,1,423223T S k ==++=⨯⨯,第四次循环,1111,1,5234223234T S k ==+++=⨯⨯⨯⨯⨯,此时满足条件输出1111223234S =+++⨯⨯⨯,故选B . (8)【2013年全国Ⅱ,文8,5分】设3log 2a =,5log 2b =,2log 3c =,则( )(A )4 (B )5 (C )6 (D )7 【答案】D【解析】因为321lo g 21lo g 3=<,521log 21log 5=<,又2log 31>,所以c 最大.又221log 3log 5<<,所以2211log 3log 5>,即a b >,所以c a b >>,故选D . (9)【2013年全国Ⅱ,文9,5分】一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是()1,0,1,()1,1,0,()0,1,1,()0,0,0,画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( )(A ) (B ) (C ) (D )【答案】A【解析】在空间直角坐标系中,先画出四面体O ABC -的直观图,以zOx 平面为投影面,则得到正视图(坐标系中红色部分),故选A .(10)【2013年全国Ⅱ,文10,5分】设抛物线2:4C y x =的焦点为F ,直线l 过F 且与C 交于A ,B 两点.若||3||AF BF =,则l 的方程为( ) (A )1y x =-或1y x =-+ (B)1)y x =-或1)y x =- (C)1)y x -或1)y x =- (D)1)y x =-或1)y x =-【答案】C【解析】抛物线24y x =的焦点坐标为10(,),准线方程为1x =-,设11A x y (,),22B x y (,),则因为3AF BF =,所以12131x x +=+(),所以1232x x =+,因为123y y =,129x x =,所以13x =,213x =,当13x =时,2112y =,所以此时1y ==±,若1y =1(,3A B ,此时AB k =线方程为1)y x -.若1y =-,则1(3,),()3A B -,此时AB k =,此时直线方程为1)y x =-.所以l 的方程是1)y x -或1)y x =-,故选C .(11)【2013年全国Ⅱ,文11,5分】已知函数32()f x x ax bx c =+++,下列结论中错误的是( )(A )0x R ∃∈,0()0f x = (B )函数()y f x =的图象是中心对称图形 (C )若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞单调递减(D )若0x 是()f x 的极值点,则0'()0f x = 【答案】C【解析】若0c =则有(0)0f =,所以A 正确.由32()f x x ax bx c =+++得32()f x c x ax bx -=++,因为函数32y x ax bx =++的对称中心为0,0(),所以32()f x x ax bx c =+++的对称中心为(0,)c ,所以B 正确.由三次函数的图象可知,若0x 是()f x 的极小值点,则极大值点在0x 的左侧,所以函数在区间0,x -∞()单调递减是错误的,D 正确,故选C .(12)【2013年全国Ⅱ,文12,5分】若存在正数x 使2()1x x a -<成立,则a 的取值范围是( ) (A )(,)-∞+∞ (B )(2,)-+∞ (C )(0,)+∞ (D )(1,)-+∞【答案】D【解析】解法一:因为20x >,所以由2()1x x a -<得122x x x a --<=,在坐标系中,作出函数 (),()2xf x x ag x -=-=的图象,当0x >时,()21x g x -=<,所以如果存在0x >,使2()1x x a -<,则有1a -<,即1a >-,故选D .解法二:由题意可得,()102xa x x ⎛⎫>-> ⎪⎝⎭.令()12xf x x ⎛⎫=- ⎪⎝⎭,该函数在(0)∞,+上为增函数,可知()f x 的值域为()1∞-,+,故1a >-时,存在正数x 使原不等式成立,故选D .第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上 (13)【2013年全国Ⅱ,文13,5分】从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是______.【答案】15【解析】从5个正整中任意取出两个不同的数,有2510C =种,若取出的两数之和等于5,则有(1,4),(2,3),共有2个,所以取出的两数之和等于5的概率为21105=.(14)【2013年全国Ⅱ,文14,5分】已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD ⋅=__ ____. 【答案】2【解析】在正方形中,12AE AD DC =+ ,BD BA AD AD DC =+=-,所以2222111()()222222AE BD AD DC AD DC AD DC ⋅=+⋅-=-=-⨯= .(15)【2013年全国Ⅱ,文15,5分】已知正四棱锥O ABCD -则以O 为球心,OA 为半径的球的表面积为_______.【答案】24π【解析】设正四棱锥的高为h ,则213h ⨯=,解得高h =.所以OA =2424ππ=. (16)【2013年全国Ⅱ,文16,5分】函数cos(2)()y x ϕπϕπ=+-≤≤的图象向右平移2π个单位后,与函数sin(2)3y x π=+的图象重合,则ϕ=_______.【答案】56π【解析】函数cos(2)y x ϕ=+,向右平移2π个单位,得到sin(2)3y x π=+,即sin(2)3y x π=+向左平移2π个单位得到函数cos(2)y x ϕ=+,sin(2)3y x π=+向左平移2π个单位,得sin[2()]sin(2)233y x x ππππ=++=++sin(2)cos(2)323x x πππ=-+=++5cos(2)6x π=+,即56πϕ=. 三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)【2013年全国Ⅱ,文17,12分】已知等差数列{}n a 的公差不为零,125a =,且11113,,a a a 成等比数列.(1)求{}n a 的通项公式; (2)求14732+n a a a a -++⋅⋅⋅+.解:(1)设{}n a 的公差为d .由题意,211113a a a =,即2111()1012()a d a a d +=+.于是1225(0)d a d +=.又125a =,所以0d = (舍去),2d =-.故227n a n =-+.(2)令14732n n S a a a a -=+++⋯+.由(1)知32631n a n -=-+,故32{}n a -是首项为25,公差为6-的等差数列.从而()()2132656328n n S a a n n n -=+=-+=-+.(18)【2013年全国Ⅱ,文18,12分】如图,直三棱柱111ABC A B C -中,D ,E 分别是AB ,1BB 的中点.(1)证明:1//BC 平面11A CD ;(2)设12AA AC CB ===,AB =1C A DE -的体积.解:(1)连结1AC 交1A C 于点F ,则F 为1AC 中点.又D 是AB 中点,连结DF ,则1//BC DF .因为DF ⊂平面1A CD ,1BC ⊄平面1A CD ,所以1//BC 平面1A CD .(2)因为111ABC A B C -是直三棱柱,所以1AA CD ⊥.由已知AC CB =,D 为AB 的中点,所以CD AB ⊥.又1AA AB A = ,于是CD ⊥平面11ABB A .由12AA AC CB ===,AB =得90ACB ∠=︒,CD1A D =DE =13A E =,故22211A D DE A E +=,即1D E A D ⊥.所以111132C A DE V -⨯=.(19)【2013年全国Ⅱ,文19,12分】经销商经销某种农产品,在一个销售季度内,每售出1 t 该产品获利润500元,未售出的产品,每1 t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130 t 该农产品.以X (单位:t ,100150X ≤≤)表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内经销该农产品的利润 (1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57000元的概率.1解:(1)当[)100,130X ∈时,()50030013080039000T X X X =--=-,当[]130,150X ∈时,50013065000T =⨯=. 所以80039000,10013065000,130150X X T X -≤<⎧=⎨≤≤⎩.(2)由(1)知利润T 不少于57000元当且仅当120150X ≤≤.由直方图知需求量[]120,150X ∈的频率为0.7,所以下一个销售季度内的利润T 不少于57000元的概率的估计值为0.7.(20)【2013年全国Ⅱ,文20,12分】在平面直角坐标系xOy 中,已知圆P 在x轴上截得线段长为在y 轴上截得线段长为.(1)求圆心P 的轨迹方程;(2)若P 点到直线y x =P 的方程. 解:(1)设()P x y ,,圆P 的半径为r .由题设222y r +=,223x r +=.从而2223y x +=+.故P 点的轨迹方程为221y x -=. (2)设00()P x y ,=.又P 点在双曲线221y x -=上,从而得002210||11x y y x -=⎧⎨-=⎩ 由00220011x y y x -=⎧⎨-=⎩得0001x y =⎧⎨=-⎩,此时,圆P 的半径r =3.由00220011x y y x -=-⎧⎨-=⎩得001x y =⎧⎨=⎩,此时,圆P的半径r =.故圆P 的方程为()2213x y +-=或()2213x y ++=.(21)【2013年全国Ⅱ,文21,12分】已知函数2()x f x x e -=.(1)求()f x 的极小值和极大值;(2)当曲线()y f x =的切线l 的斜率为负数时,求l 在x 轴上截距的取值范围.解:(1)()f x 的定义域为()-∞+∞,,()()2x f x e x x -'=--.① 当)0(x ∈-∞,或2()x ∈+∞,时,()0f x '<; 当)2(0x ∈,时,()0f x '>.所以()f x 在()0-∞,,(2)+∞,单调递减,在(0)2,单调递增.故当0x =时,()f x取得极小值,极小值为()00f =;当2x =时,()f x 取得极大值,极大值为()224f e -=.(2)设切点为()()t f t ,,则l 的方程为()()()y f t x t f t ='-+.所以l 在x 轴上的截距为()()223'()22f t t t t t f t t m t t -=+=-++--=.由已知和①得()02()t ∈-∞+∞ ,,.令()()20h x x x x+=≠, 则当0()x ∈+∞,时,()h x的取值范围为⎡⎤+∞⎣⎦;当2()x ∈-∞-,时,()h x 的取值范围是()3-∞-,. 所以当()02()t ∈-∞+∞ ,,时,()m t的取值范围是0()3,⎡⎤-+∞⎦∞⎣ ,. 综上,l 在x轴上的截距的取值范围是0()3,⎡⎤-+∞⎦∞⎣ ,.请考生在(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个题目计分,做答时请写清题号. (22)【2013年全国Ⅱ,文22,10分】(选修4-1:几何证明选讲)如图,CD 为ABC ∆外接圆的切线,AB 的延长线交直线CD 于点D ,E ,F 分别为弦AB 与弦AC 上的点,且··BC AE DC AF =,B , E ,F ,C 四点共圆.(1)证明:CA 是ABC ∆外接圆的直径;(2)若DB BE EA ==,求过B ,E ,F ,C 四点的圆的面积与ABC ∆外接圆面积的比值.解:(1)因为CD 为ABC ∆外接圆的切线,所以DCB A ∠=∠,由题设知BC DCFA EA=,故CDB AEF ∆∆∽, 所以DBC EFA ∠=∠.因为B ,E ,F ,C 四点共圆,所以CFE DBC ∠=∠,故90EFA CFE ∠=∠=︒. 所以90CBA ∠=︒,因此CA 是ABC ∆外接圆的直径.(2)连结CE ,因为90CBE ∠=︒,所以过B ,E ,F ,C 四点的圆的直径为CE ,由D B B E =,有CE DC =又22·2BC DB BA DB ==,所以222246CA DB BC DB =+=.而22·3DC DB DA DB ==,故过B ,E ,F , C 四点的圆的面积与ABC ∆外接圆面积的比值为12.(23)【2013年全国Ⅱ,文23,10分】(选修4-4:坐标系与参数方程)已知动点P Q 、都在曲线2cos :2sin x tC y t=⎧⎨=⎩(t 为参数)上,对应参数分别为=t α与=2t α(02απ<<),M 为PQ 的中点. (1)求M 的轨迹的参数方程;(2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点.解:(1)依题意有2cos (n )2si P αα,,2cos2(2)2sin Q αα,,因此cos cos ()2sin sin2M αααα++,. M 的轨迹的参数方程为cos cos 2sin sin 2x y αααα=+⎧⎨=+⎩(α为参数,02απ<<).(2)M 点到坐标原点的距离)02d απ<<.当απ=时,0d =,故M 的轨迹过坐标原点.(24)【2013年全国Ⅱ,文24,10分】(选修4-5:不等式选讲)设a ,b ,c 均为正数,且1a b c ++=,证明:(1)13ab bc ac ++≤;(2)2221a b cb c a ++≥.解:(1)由222a b ab +≥,222b c bc +≥,222c a ca +≥,得222a b c ab bc ca ++≥++.由题设得()21a b c ++=,即2222221a b c a b b c c a +++++=.()31ab bc ca ∴++≤,即13a b b c c a ++≤.(2)因为22a b a b +≥,22b c b c +≥,22c a c a +≥,故()222(2)a b ca abc c a b c b +≥++++++,即222a b c a b c b c a ≥++++.所以2221a b cb c a++≥.。
2013年高考新课标1数学文科试题及答案
绝密★启封并使用完毕前2013年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至4页。
全卷满分150分。
考试时间120分钟。
注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3. 全部答案在答题卡上完成,答在本试题上无效。
4. 考试结束,将本试题和答题卡一并交回。
第Ⅰ卷一、 选择题共12小题。
每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
(1)已知集合A={1,2,3,4},B={x |x =n 2,n ∈A},则A∩B= ( ) (A ){1,4} (B ){2,3} (C ){9,16} (D ){1,2} (2)1+2i(1-i)2=( ) (A )-1-12i(B )-1+12i(C )1+12i(D )1-12i(3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是 ( )(A )12(B )13(C )14(D )16(4)已知双曲线C:x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则C 的渐近线方程为()(A )y =±14x (B )y =±13x(C )y =±12x(D )y =±x(5)已知命题p :∀x ∈R,2x><3x;命题q :∃x ∈R ,x 3=1-x 2,则下列命题中为真命题的是:()(A ) p∧q(B )¬p∧q(C )p∧¬q(D )¬p∧¬q(6)设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则 ()(A )S n =2a n -1 (B )S n =3a n -2 (C )S n =4-3a n (D )S n =3-2a n(7)执行右面的程序框图,如果输入的t ∈[-1,3],则输出的s 属于 ( ) (A )[-3,4] (B )[-5,2] (C )[-4,3] (D )[-2,5](8)O 为坐标原点,F 为抛物线C :y ²=42x 的焦点,P 为C 上一点,若|PF|=42,则△POF 的面积为( )(A )2 (B )2 2 (C )2 3 (D )4 (9)函数f (x )=(1-cos x )sin x 在[-π,π]的图像大致为( )ππO1y xππO1y xππO1y xππO1y xA B C D(10)已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,23cos²A+cos2A=0,a=7,c=6,则b=( )(A )10 (B )9 (C )8 (D )5(11)某几何函数的三视图如图所示,则该几何的体积为 (A )18+8π (B )8+8π (C )16+16π (D )8+16π开始 输入t t <1s =3t s = 4t -t 2输出s 结束是否(12)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x x ≤0ln(x +1) x >0,若| f (x )|≥ax ,则a 的取值范围是( )(A )(-∞,0] (B )(-∞,1] (C)[-2,1] (D)[-2,0]第Ⅱ卷本卷包括必考题和选考题两个部分。
(完整版)2013年高考文科数学全国新课标卷2试题与答案
2013年普通高等学校夏季招生全国统一考试数学文史类(全国卷II 新课标)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.)已知集合M ={x |-3<x <1},N ={-3,-2,-1,0,1},则M ∩N =( ).A .{-2,-1,0,1}B .{-3,-2,-1,0}C .{-2,-1,0}D ..{-3,-2,-1}2. 21i+=( ). A. B .2 CD ..13.设x ,y 满足约束条件10,10,3,x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩则z =2x -3y 的最小值是( ).A .-7B .-6C .-5D .-34.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2,πB =,π4C =,则△ABC 的面积为( ). A . B C .2 D 15.设椭圆C :2222=1x y a b +(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为( ).A .6B .13C .12 D .36.已知sin 2α=23,则2πcos 4α⎛⎫+ ⎪⎝⎭=( ). A .16 B .13 C .12 D .23 7.执行下面的程序框图,如果输入的N =4,那么输出的S =( ).A .1111+234++B .1111+232432++⨯⨯⨯C .11111+2345+++D .11111+2324325432+++⨯⨯⨯⨯⨯⨯8.设a =log 32,b =log 52,c =log 23,则().A .a >c >bB .b >c >aC .c >b >aD .c >a >b9.一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( ).10.设抛物线C :y 2=4x 的焦点为F ,直线l 过F 且与C 交于A ,B 两点.若|AF |=3|BF |,则l 的方程为( ). A .y =x -1或y =-x +1 B .y=1)x -或y=1)x -C .y=(1)3x -或y=(1)3x -- D .y=(1)2x -或y=(1)2x --11.已知函数f (x )=x 3+ax 2+bx +c ,下列结论中错误的是( ).A .∃x0∈R ,f(x0)=0B .函数y =f(x)的图像是中心对称图形C .若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)单调递减D .若x0是f(x)的极值点,则f′(x0)=012.若存在正数x 使2x (x -a )<1成立,则a 的取值范围是( ).A .(-∞,+∞) B.(-2,+∞) C .(0,+∞) D .(-1,+∞) 第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是__________. 14.已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD ⋅u u u r u u u r =__________.15.已知正四棱锥O -ABCD的体积为2,则以O 为球心,OA 为半径的球的表面积为__________. 16.函数y =cos(2x +φ)(-π≤φ<π)的图像向右平移π2个单位后,与函数y =πsin 23x ⎛⎫+ ⎪⎝⎭的图像重合,则φ=__________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17. (本小题满分12分)已知等差数列{a n }的公差不为零,a 1=25,且a 1,a 11,a 13成等比数列.(1)求{a n }的通项公式;(2)求a 1+a 4+a 7+…+a 3n -2.18. (本小题满分12分)如图,直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点.(1) 证明:BC 平行面CD A 1 (2) 设,22,21====AB CB AC AA 求三棱锥DE A C 1-的体积19. (本小题满分12分)经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130 t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T表示为X的函数;(2)根据直方图估计利润T不少于57 000元的概率.20. (本小题满分12分)在平面直角坐标系xOy中,已知圆P在x轴上截得线段长为y轴上截得线段长为(1)求圆心P的轨迹方程;,求圆P的方程.(2)若P点到直线y=x的距离为221. (本小题满分12分)已知函数f(x)=x2e-x.(1)求f(x)的极小值和极大值;(2)当曲线y=f(x)的切线l的斜率为负数时,求l在x轴上截距的取值范围.22. (本小题满分10分)选修4—1:几何证明选讲如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E,F分别为弦AB与弦AC上的点,且BC·AE =DC·AF,B,E,F,C四点共圆.23. (本小题满分10分)选修4—4:坐标系与参数方程已知动点P,Q都在曲线C:2cos,2sinx ty t=⎧⎨=⎩(t为参数)上,对应参数分别为t=α与t=2α(0<α<2π),M为PQ的中点.(1)求M的轨迹的参数方程;(2)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点.24.)(本小题满分10分)选修4—5:不等式选讲设a,b,c均为正数,且a+b+c=1.证明:(1)ab+bc+ca≤13;(2)222a b c b c a++≥1.2013年普通高等学校夏季招生全国统一考试数学文史类(全国卷II 新课标)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.答案:C解析:由题意可得,M ∩N ={-2,-1,0}.故选C.2.答案:C解析:∵21i +=1-i ,∴21i +=|1-i|. 3.答案:B解析:如图所示,约束条件所表示的区域为图中的阴影部分,而目标函数可化为233z y x =-,先画出l 0:y =23x ,当z 最小时,直线在y 轴上的截距最大,故最优点为图中的点C ,由3,10,x x y =⎧⎨-+=⎩可得C (3,4),代入目标函数得,z min =2×3-3×4=-6.4.答案:B解析:A =π-(B +C )=ππ7ππ6412⎛⎫-+=⎪⎝⎭, 由正弦定理得sin sin a b A B=,则7π2sin sin 12πsin sin 6b A a B === ∴S △ABC=11sin 21222ab C =⨯⨯⨯=. 5.答案:D解析:如图所示,在Rt △PF 1F 2中,|F 1F 2|=2c ,设|PF 2|=x ,则|PF 1|=2x ,由tan 30°=212||||23PF x F F c ==,得3x c =.而由椭圆定义得,|PF 1|+|PF 2|=2a =3x ,∴32a x ==,∴c e a ===6. 答案:A 解析:由半角公式可得,2πcos 4α⎛⎫+ ⎪⎝⎭=π21cos 211sin 21232226αα⎛⎫++- ⎪-⎝⎭===. 7.答案:B解析:由程序框图依次可得,输入N =4,T =1,S =1,k =2;12T =,11+2S =,k =3; 132T =⨯,S =111+232+⨯,k =4; 1432T =⨯⨯,1111232432S =+++⨯⨯⨯,k =5; 输出1111232432S =+++⨯⨯⨯. 8.答案:D解析:∵log 25>log 23>1,∴log 23>1>21log 3>21log 5>0,即log 23>1>log 32>log 52>0,∴c >a >b .9.答案:A解析:如图所示,该四面体在空间直角坐标系O -xyz 的图像为下图:则它在平面zOx 的投影即正视图为,故选A.10.答案:C解析:由题意可得抛物线焦点F (1,0),准线方程为x =-1.当直线l 的斜率大于0时,如图所示,过A ,B 两点分别向准线x =-1作垂线,垂足分别为M ,N ,则由抛物线定义可得,|AM |=|AF |,|BN |=|BF |.设|AM |=|AF |=3t (t >0),|BN |=|BF |=t ,|BK |=x ,而|GF |=2,在△AMK 中,由||||||||NB BK AM AK =,得34t x t x t=+, 解得x =2t ,则cos ∠NBK =||1||2NB t BK x ==, ∴∠NBK =60°,则∠GFK =60°,即直线AB 的倾斜角为60°.∴斜率k y 1)x -.当直线l 的斜率小于0时,如图所示,同理可得直线方程为y =1)x -,故选C.11.答案:C解析:若x 0是f (x )的极小值点,则y =f (x )的图像大致如下图所示,则在(-∞,x 0)上不单调,故C 不正确.12.答案:D解析:由题意可得,12x a x ⎛⎫>- ⎪⎝⎭(x >0). 令f (x )=12x x ⎛⎫- ⎪⎝⎭,该函数在(0,+∞)上为增函数,可知f (x )的值域为(-1,+∞),故a >-1时,存在正数x 使原不等式成立.第Ⅱ卷本卷包括必考题和选考题两部分。
2013高考文科数学真题与答案全国卷1
2013年高考文科数学真题及答案全国卷1本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。
第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013课标全国Ⅰ,文1)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=( ).A.{1,4} B.{2,3} C.{9,16} D.{1,2}【答案】A【考点】本题主要考查集合的基本知识。
【解析】∵B={x|x=n2,n∈A}={1,4,9,16},∴A∩B={1,4}.2.(2013课标全国Ⅰ,文2)212i1i+(-)=( ).A. B.11+i2-C. D.【答案】B【考点】本题主要考查复数的基本运算。
【解析】212i12i12i i2i1i2i22++(+)-+===(-)-=11+i2-.3.(2013课标全国Ⅰ,文3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ).A.12 B.13 C.14 D.16【答案】B【考点】本题主要考查列举法解古典概型问题的基本能力。
【解析】由题意知总事件数为6,且分别为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),满足条件的事件数是2,所以所求的概率为1 3.4.(2013课标全国Ⅰ,文4)已知双曲线C:2222=1x ya b-(a>0,b>0)的离心率为,则C的渐近线方程为( ).A. B. C.12y x=±D.【答案】C【考点】本题主要考查双曲线的离心率、渐近线方程。
【解析】∵2e =,∴2c a =,即2254c a =. ∵c 2=a 2+b 2,∴2214b a =.∴12b a =. ∵双曲线的渐近线方程为b y x a =±, ∴渐近线方程为12y x =±.故选C.5.(2013课标全国Ⅰ,文5)已知命题p :∀x ∈R,2x <3x ;命题q :∃x ∈R ,x 3=1-x 2,则下列命题中为真命题的是( ).A .p ∧qB .⌝p ∧qC .p ∧⌝qD .⌝p ∧⌝q【答案】B【考点】本题主要考查常用逻辑用语等基本知识。
2013年高考文科数学全国新课标卷1试题与标准答案word解析版
2013年普通高等学校招生全国统一考试(新课标全国卷I)数学(文科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B=( ).A.{1,4} B.{2,3} C.{9,16} D .{1,2}(2) = ﻩﻩﻩ ﻩﻩﻩ ﻩ ﻩ ( ) (A)-1 - i ﻩ(B)-1 + iﻩﻩ(C )1 + i ﻩﻩ(D) 1 - i3.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ).A .12 B.13 C.14 D.164.已知双曲线C :2222=1x y a b-(a >0,b >0)的离心率为52,则C的渐近线方程为( ). A. B.C.12y x =±D. 5.已知命题p :∀x ∈R,2x<3x ;命题q:∃x∈R ,x3=1-x2,则下列命题中为真命题的是( ).A .p ∧q B.⌝p ∧q C.p ∧⌝q D .⌝p ∧⌝q(6)设首项为1,公比为ﻩ的等比数列{an }的前n 项和为S n ,则ﻩ( )(A)Sn =2a n-1 (B)S n =3a n -2 (C)S n ﻩ=4-3an (D)S n=3-2a n7.执行下面的程序框图,如果输入的t∈[-1,3],则输出的s属于(). A .[-3,4]B.[-5,2] C .[-4,3]D.[-2,5]8.O 为坐标原点,F 为抛物线C :y 2=2x 的焦点,P为C 上一点,若|PF |=2,则△POF 的面积为( ).A.2B.22.23 D.49.函数f(x )=(1-cos x )sin x 在[-π,π]的图像大致为( ).10.已知锐角△ABC 的内角A ,B ,C 的对边分别为a ,b ,c,23cos 2A +cos 2A =0,a =7,c =6,则b =( ).A.10 B.9 C.8 D.511.某几何体的三视图如图所示,则该几何体的体积为( ).A.16+8πB .8+8π C .16+16πD.8+16π12已知函数f (x )=22,0,ln(1),0.x x x x x ⎧-+≤⎨+>⎩若|f(x )|≥ax ,则a 的取值范围是( ).A.(-∞,0] B.(-∞,1] C.[-2,1] D.[-2,0]二、填空题:本大题共4小题,每小题5分.13.已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t )b .若b ·c =0,则t =______.14.设x ,y满足约束条件13,10,x x y ≤≤⎧⎨-≤-≤⎩则z=2x -y 的最大值为______.15.已知H 是球O 的直径AB 上一点,AH ∶HB =1∶2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为______.16.设当x =θ时,函数f(x )=sin x -2cos x 取得最大值,则cos θ=______.。
2013年全国高考文科数学试题及答案-全国卷
2013年普通高等学校招生全国统一考试数学(文科)一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的1.设集合{}{}1,2,3,4,5,1,2,u U A A ===集合则ð(A ){}1,2 (B ){}3,4,5 (C ){}1,2,3,4,5 (D )∅2.已知a 是第二象限角,5sin ,cos 13a a ==则 (A )1213- (B )513- (C )513 (D )1213 3.已知向量()()()()1,1,2,2,,=m n m n m n λλλ=+=++⊥-若则(A )4- (B )3- (C )-2 (D )-14.不等式222x -<的解集是(A )()-1,1 (B )()-2,2 (C )()()-1,00,1 (D )()()-2,00,25.()862x x +的展开式中的系数是 (A )28 (B )56 (C )112 (D )2246.函数()()()-121log 10=f x x f x x ⎛⎫=+> ⎪⎝⎭的反函数 (A )()1021x x >- (B )()1021x x ≠- (C )()21x x R -∈ (D )()210x x -> 7.已知数列{}n a 满足{}12430,,103n n n a a a a ++==-则的前项和等于 (A )()-10-61-3 (B )()-1011-39(C )()-1031-3 (D )()-1031+3 8.已知()()1221,0,1,0,F F C F x -是椭圆的两个焦点过且垂直于轴的直线交于A B 、两点,且3AB =,则C 的方程为(A )2212x y += (B )22132x y += (C )22143x y += (D )22154x y += 9.若函数()()sin 0=y x ωϕωω=+>的部分图像如图,则(A )5 (B )4 (C )3 (D )210.已知曲线()421-128=y x ax a a =+++在点,处切线的斜率为, (A )9 (B )6 (C )-9 (D )-611.已知正四棱锥1111112,ABCD A B C D AA AB CD BDC -=中,则与平面所成角的正弦值等于 (A )23 (B)(C(D )13 12.已知抛物线2:8C y x =与点()2,2M -,过C 的焦点且斜率为k 的直线与C 交于,A B 两点,若0MA MB =,则k =(A )12 (B)2(C(D )2 二、填空题:本大题共4小题,每小题5分13.设()[)()21,3=f x x f x ∈是以为周期的函数,且当时, .14.从进入决赛的6名选手中决出1名一等奖,2名二等奖,3名三等奖,则可能的决赛结果共有 种.(用数字作答) 15.若x y 、满足约束条件0,34,34,x x y x y ≥⎧⎪+≥⎨⎪+≤⎩则z x y =-+的最小值为 .16.已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,3602OK O K =,且圆与圆所在的平面所成角为,则球O 的表面积等于 . 三、解答题:解答应写出文字说明、证明过程或演算步骤17.(本小题满分10分)等差数列{}n a 中,71994,2,a a a ==(I )求{}n a 的通项公式;(II )设{}1,.n n n nb b n S na =求数列的前项和 18.(本小题满分12分)设ABC ∆的内角,,A B C 的对边分别为,,a bc ,()()a b c a b c ac ++-+=。
2013年高考文科数学全国卷1(含详细答案)
数学试卷 第1页(共33页)数学试卷 第2页(共33页)数学试卷 第3页(共33页)绝密★启用前2013年普通高等学校招生全国统一考试(全国新课标卷1)文科数学使用地区:河南、山西、河北注意事项:1.本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至3页,第Ⅱ卷3至6页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{1,2,3,4}A =,2{|,}B x x n n A ==∈,则A B = ( )A .{1,4}B .{2,3}C .{9,16}D .{1,2} 2.212i (1i)+=-( )A .11i 2--B .11i 2-+C .11i 2+D .11i 2-3.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是 ( )A .12B .13C .14D .164.已知双曲线C :22221(0,0)x y a b a b-=>>的离心率为52,则C 的渐近线方程为 ( )A .14y x =±B .13y x =±C .12y x =±D .y x =± 5.已知命题p :x ∀∈R ,23x x<;命题q :x ∃∈R ,321x x =-,则下列命题中为真命题的是( )A .p q ∧B .p q ⌝∧C .p q ∧⌝D .p q ⌝∧⌝ 6.设首项为1,公比为23的等比数列{}n a 的前n 项和为n S ,则( )A .21n n S a =-B .32n n S a =-C .43n n S a =-D .32n n S a =-7.执行如图的程序框图,如果输入的[1,3]t ∈-,则输 出的s 属于( )A .[3,4]-B .[5,2]-C .[4,3]-D .[2,5]-8.O 为坐标原点,F 为抛物线C :242y x =的焦点,P 为C 上一点,若||42PF =,则POF △的面积为( )A .2B .22C .23D .49.函数()(1cos )sin f x x x =-在[π,π]-上的图象大致为( )10.已知锐角ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,223cos cos20A A +=,7a =,6c =,则b =( )A .10B .9C .8D .5 11.某几何体的三视图如图所示,则该几何体的体积为( )A .168π+B .88π+C .1616π+D .816π+12.已知函数22,0()ln(1),0.x x x f x x x ⎧-+=⎨+⎩≤,>若|()|f x ax ≥,则a 的取值范围是( )A .(,0]-∞B .(,1]-∞C .[2,1]-D .[2,0]-第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.13.已知两个单位向量a ,b 的夹角为60,(1)t t =+-c a b ,若0=b c ,则t =________.14.设x ,y 满足约束条件13,10,x x y ⎧⎨--⎩≤≤≤≤,则2z x y =-的最大值为________.15.已知H 是球O 的直径AB 上一点,:1:2AH HB =,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为________.16.设当x θ=时,函数()sin 2cos f x x x =-取得最大值,则cos θ=________. 三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知等差数列{}n a 的前n 项和n S 满足30S =,55S =-. (Ⅰ)求{}n a 的通项公式; (Ⅱ)求数列21211{}n n a a -+的前n 项和.--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共33页)数学试卷 第5页(共33页) 数学试卷 第6页(共33页)18.(本小题满分12分)为了比较两种治疗失眠症的药(分别称为A 药,B 药)的疗效,随机地选取20位患者服用A 药,20位患者服用B 药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h ).试验的观测结果如下: 服用A 药的20位患者日平均增加的睡眠时间: 0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5 2.52.61.22.71.52.93.03.12.32.4服用B 药的20位患者日平均增加的睡眠时间: 3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.60.51.80.62.11.12.51.22.70.5(Ⅰ)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好? (Ⅱ)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?A 药B 药0. 1. 2.3.19.(本小题满分12分)如图,三棱柱111ABC A B C -中,CA CB =,1AB AA =,160BAA ∠=. (Ⅰ)证明:1AB AC ⊥; (Ⅱ)若2AB CB ==,16A C =,求三棱柱111ABC A B C -的体积.20.(本小题满分12分)已知函数2()e ()4x f x ax b x x =+--,曲线()y f x =在点(0,(0))f 处的切线方程为44y x =+.(Ⅰ)求a ,b 的值;(Ⅱ)讨论()f x 的单调性,并求()f x 的极大值.21.(本小题满分12分)已知圆M :22(1)1x y ++=,圆N :22(1)9x y -+=,动圆P 与圆M 外切并且与圆N内切,圆心P 的轨迹为曲线C . (Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求||AB .请考生在第22、23、24三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分,作答时请用2B 铅笔在答题卡上将所选题号后的方框涂黑. 22.(本小题满分10分)选修4—1:几何证明选讲如图,直线AB 为圆的切线,切点为B ,点C 在圆上,ABC ∠的角平分线BE 交圆于点E ,DB 垂直BE 交圆于点D .(Ⅰ)证明:DB DC =;(Ⅱ)设圆的半径为1,3BC =,延长CE 交AB 于点F ,求BCF △外接圆的半径.23.(本小题满分10分)选修4—4:坐标系与参数方程已知曲线1C 的参数方程为45cos ,55sin ,x t y t =+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin ρθ=. (Ⅰ)把1C 的参数方程化为极坐标方程; (Ⅱ)求1C 与2C 交点的极坐标(0,02π)ρθ≥≤<.24.(本小题满分10分)选修4—5:不等式选讲已知函数()|21||2|f x x x a =-++,()3g x x =+. (Ⅰ)当2a =-时,求不等式()()f x g x <的解集;(Ⅱ)设1a ->,且当1[,)22a x ∈-时,()()f x g x ≤,求a 的取值范围.2013年普通高等学校招生全国统一考试(全国新课标卷1)文科数学答案解析第Ⅰ卷3/ 114当0a >时,y ax =与()y f x =恒有公共点,所以排除()5 / 11由2,2,y ax y x x =⎧⎨=-⎩得22()0x a x -+=. ∵22()0a ∆=+=,∴2a =-. ∴,0[]2a ∈-;故选D .第Ⅱ卷0=b c ,a 1112⨯⨯=a b 1(0[)]t t =+-=b c a b b ,即1()t +-a b b 1120t t +-=;∴2t =. 【答案】3【解析】画出可行域如图所示。
2013年高考文科数学全国新课标卷2试题与答案word解析版
2013年普通高等学校夏季招生全国统一考试数学文史类(全国卷II新课标)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2013课标全国Ⅱ,文1)已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M∩N=( ).A.{-2,-1,0,1} B.{-3,-2,-1,0} C.{-2,-1,0} D..{-3,-2,-1}2.(2013课标全国Ⅱ,文2)21i+=( ).A. B.2 CD..13.(2013课标全国Ⅱ,文3)设x,y满足约束条件10,10,3,x yx yx-+≥⎧⎪+-≥⎨⎪≤⎩则z=2x-3y的最小值是( ).A.-7 B.-6 C.-5 D.-34.(2013课标全国Ⅱ,文4)△ABC的内角A,B,C的对边分别为a,b,c,已知b=2,π6B=,π4C=,则△ABC的面积为( ).A. BC.2 D15.(2013课标全国Ⅱ,文5)设椭圆C:2222=1x ya b+(a>b>0)的左、右焦点分别为F1,F2,P是C上的点,PF2⊥F1F2,∠PF1F2=30°,则C的离心率为( ).A. B.13 C.12 D.6.(2013课标全国Ⅱ,文6)已知sin 2α=23,则2πcos4α⎛⎫+⎪⎝⎭=( ).A.16 B.13 C.12 D.237.(2013课标全国Ⅱ,文7)执行下面的程序框图,如果输入的N=4,那么输出的S =( ).A .1111+234++B .1111+232432++⨯⨯⨯C .11111+2345+++D .11111+2324325432+++⨯⨯⨯⨯⨯⨯8.(2013课标全国Ⅱ,文8)设a =log 32,b =log 52,c =log 23,则( ).A .a >c >bB .b >c >aC .c >b >aD .c >a >b9.(2013课标全国Ⅱ,文9)一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( ).10.(2013课标全国Ⅱ,文10)设抛物线C :y 2=4x 的焦点为F ,直线l 过F 且与C 交于A ,B 两点.若|AF |=3|BF |,则l 的方程为( ).A .y =x -1或y =-x +1B .)1(3-±=x yC .y =(1)3x -或y =(1)3x -- D .y =(1)2x -或y =1)2x --11.(2013课标全国Ⅱ,文11)已知函数f (x )=x 3+ax 2+bx +c ,下列结论中错误的是( ).A .∃x0∈R ,f(x0)=0B .函数y =f (x)的图像是中心对称图形C .若x0是f(x )的极小值点,则f (x )在区间(-∞,x0)单调递减D .若x0是f (x)的极值点,则f ′(x0)=012.(2013课标全国Ⅱ,文12)若存在正数x 使2x(x -a )<1成立,则a 的取值范围是( ).A .(-∞,+∞)B .(-2,+∞)C .(0,+∞)D .(-1,+∞)第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.(2013课标全国Ⅱ,文13)从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是__________.14.(2013课标全国Ⅱ,文14)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD ⋅=__________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启封并使用完毕前
2013年普通高等学校招生全国统一考试
文科数学
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至4页。
全卷满分150分。
考试时间120分钟。
注意事项:
1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3. 全部答案在答题卡上完成,答在本试题上无效。
4. 考试结束,将本试题和答题卡一并交回。
第Ⅰ卷
一、选择题共8小题。
每小题5分,共40分。
在每个小题给出的四个选项中,
只有一项是符合题目要求的一项。
(1)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B= ( ) (A){0}(B){-1,,0}(C){0,1} (D){-1,,0,1}
(2) = ( )
(A)-1 - i(B)-1 + i(C)1 + i(D)1 - i
(3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是()
(A)(B)(C)(D)
(4)已知双曲线C: = 1(a>0,b>0)的离心率为,则C的渐近线方程
()(A)y=±x (B)y=±x (C)y=±x (D)y=±x
(5)已知命题p :2
31,q ;32,χχχχχχ-=∈∃<∈∀R R :命题,则下列命题
中为真命题的是:( )
(A ) p ∧q (B )¬p ∧q (C )p ∧¬q (D )¬p ∧¬q (6)设首项为1,公比为 的等比数列{a n }的前n 项和为S n ,则(
)
(A )S n =2a n -1 (B )S n =3a n -2
(C )S n =4-3a n (D )S n =3-2a n
(7)执行右面的程序框图,如果输入的t ∈[-1,3],则输出的s 属于
(A )[-3,4] (B )[-5,2] (C )[-4,3] (D )[-2,5]
(8)O 为坐标原点,F 为抛物线C :y ²=4x 的焦点,P 为C 上
一点,若丨PF 丨=4,则△POF 的面积为
(A )2
(B )2
(C )2
(D )4
(9)函数f (x )=(1-cosx )sinx 在[-π,π]的图像大致为
(10)已知锐角△ABC的内角A,B,C的对边分别为a,b,c,23cos²A+cos2A=0,a=7,c=6,则b=
(A)10 (B)9 (C)
8 (D)5
(11)某几何函数的三视图如图所示,则
该几何的体积为
(A)18+8π(B)
8+8π
(C)16+16π(D)
8+16π
(12)已知函数f(x)=
若|f(x)|≥ax,则a的取值范围是
(A)(-∞] (B)(-∞] (C)[-2,1] (D)[-2,0]
3 / 6
第Ⅱ卷
本卷包括必考题和选考题两个部分。
第(13)题-第(21)题为必考题,每个考生都必须作答。
第(22)题-第(24)题为选考题,考生根据要求作答。
二.填空题:本大题共四小题,每小题5分。
(13)已知两个单位向量a,b的夹角为60°,c=ta+(1-t)b,若b·c=0,则t=_____.
(14)设x,y满足约束条件,则z=2x-y的最大值为______. (15)已知H是求O的直径AB上一点,AH:HB=1:2,AB⊥平面a,H为垂足,a截球o所得截面的面积为π,则求o的表面积为_______.
(16)设当x=θ时,函数f(x)=sinx-2cosx取得最大值,则cosθ=______.
三.解答题:解答应写出文字说明,证明过程或演算步骤。
(17)(本小题满分12分)
已知等差数列{an}的前n项和Sn满足S3=0,S5=-5.
(Ⅰ)求{an}的通项公式;
(Ⅱ)求数列的前n项和
18(本小题满分共12分)
为了比较两种治疗失眠症的药(分别成为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h)实验的观测结果如下:
服用A药的20位患者日平均增加的睡眠时间:
0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5
2.5 2.6 1.2 2.7 1.5 2.9
3.0 3.1 2.3 2.4
服用B药的20位患者日平均增加的睡眠时间:
3.2 1.7 1.9 0.8 0.9
2.4 1.2 2.6 1.3 1.4
1.6 0.5 1.8 0.6
2.1 1.1 2.5 1.2 2.7 0.5
A药 B药
1
2
3
19.(本小题满分12分)
如图,三棱柱ABC-A1B1C1中,CA=CB,AB=A A1,∠BA A1=600.
(Ⅰ)证明AB⊥A1C;
(Ⅱ)若AB=CB=2, A1C=,求三棱柱ABC-A1B1C1的体积
(20)(本小题满分共12分)
已知函数f(x)=ex(ax+b)-x2-4x,曲线y=f(x)在点(0,f(0))处切线方程为
y=4x+4
(Ⅰ)求a,b的值
(Ⅱ)讨论f(x)的单调性,并求f(x)的极大值
(21)(本小题满分12分)
已知圆M:(x+1)2+y2=1,圆N:(x+1)2+y2=9,动圆P与M外切并且与圆N内切,圆心P的轨迹为曲线 C.
(Ⅰ)求C得方程;
5 / 6
(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P 的半径最长是,求|AB|.
请考生在第(22)、(23)、(24)三题中任选一题作答。
注意:只能做所选定的题目。
如果多做,则按所做的第一个题目计分,作答时请用2B铅笔在答题卡上将所选题号后的方框涂黑。
(22)(本小题满分10分)选修4—1:几何证明选讲如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于D。
(Ⅰ)证明:DB=DC;
(Ⅱ)设圆的半径为1,BC=,延长CE交AB于点F,求△BCF外接圆的半径。
(23)(本小题10分)选修4—4:坐标系与参数方程已知曲线C1的参数方程为x=4+5cost,y=5+5sint,(t为参数),以坐标原点为极点,x轴的正半轴为极轴简历极坐标系,曲线C2的极坐标方程为ρ=2sinθ。
(Ⅰ)把C1的参数方程化为极坐标方程;
(Ⅱ)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π)。
(24)(本小题满分10分)选修4—5:不等式选讲
已知函数f(x)= ∣2x-1∣+∣2x+a∣,g(x)=x+3.
(Ⅰ)当a=2时,求不等式f(x) <g(x)的解集;
(Ⅱ)设a>-1,且当x∈[-, )时,f(x) ≤g(x),求a的取值范围.。