2012高中物理_第八章_气体章末综合19_新人教版选修3-3
最新人教版高中物理选修3-3第八章理想气体的状态方程1
1.1 DNA重组技术的基本工具
首 页
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
S 随堂练习
UITANG LIANXI
探究一
探究二
3.理想气体的内能 (1)对于一切物体而言,物体的内能包括分子动能和分子势能。 (2)对于理想气体而言,其微观本质是忽略了分子力,即不存在分子势能, 只有分子动能,故一定质量的理想气体的内能完全由温度决定。 【例题 1】关于理想气体,下列说法不正确的是(
-7-
1.1 DNA重组技术的基本工具
首 页
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
S 随堂练习
UITANG LIANXI
探究一
探究二
题后反思理想气体是一种理想化模型,客观上不存在,它
是对实际气体的科学抽象。实际气体在温度不太低、压强不太大时可以看 成理想气体。
-5-
1.1 DNA重组技术的基本工具
首 页
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
S 随堂练习
UITANG LIANXI
探究一
探究二
●名师精讲● 1.理想气体的特点 (1)严格遵守气体实验定律及理想气体状态方程。 (2)理想气体分子本身的大小与分子间的距离相比可以忽略不计,分子 可视为质点。 (3)理想气体分子除碰撞外,无相互作用的引力和斥力,故无分子势能, 理想气体的内能等于所有分子热运动动能之和,一定质量的理想气体内能 只与温度有关。 2.对理想气体的理解 (1)理想气体是为了研究问题方便而提出的一种理想模型,是实际气体 的一种近似,实际上并不存在,就像力学中的质点、电学中的点电荷模型一 样。 (2)从宏观上讲,实际气体在压强不太大、温度不太低的条件下,可视为 理想气体。 而在微观意义上,理想气体是指分子本身大小与分子间的距离相 比可以忽略不计且分子间不存在相互作用的引力和斥力的气体。
(完整版)人教版高中物理目录(必修版新教材课本目录)
高中物理目录新课标教材•必修1第一章运动的描述1 质点参考系和坐标系2 时间和位移3 运动快慢的描述──速度4 实验:用打点计时器测速度5 速度变化快慢的描述──加速度第二章匀变速直线运动的研究1 实验:探究小车速度随时间变化的规律2 匀变速直线运动的速度与时间的关系3 匀变速直线运动的位移与时间的关系4 自由落体运动5 伽利略对自由落体运动的研究第三章相互作用1 重力基本相互作用2 弹力3 摩擦力3 摩擦力4 力的合成5 力的分解第四章牛顿运动定律1 牛顿第一定律2 实验:探究加速度与力、质量的关系3 牛顿第二定律4 力学单位制5 牛顿第三定律6 用牛顿定律解决问题(一)7 用牛顿定律解决问题(二)高中物理目录新课标教材•必修2第五章机械能及其守恒定律1 追寻守恒量2 功3 功率4 重力势能5 探究弹性势能的表达式6 探究功与物体速度变化的关系7 动能和动能定理8 机械能守恒定律9 实验:验证机械能守恒定律10 能量守恒定律与能源第六章曲线运动1 曲线运动2 运动的合成与分解3 探究平抛运动的规律4 抛体运动的规律5 圆周运动6 向心加速度7 向心力8 生活中的圆周运动第七章万有引力与航天1 行星的运动2 太阳与行星间的引力3 万有引力定律4 万有引力理论的成就5 宇宙航行6 经典力学的局限性高中物理目录新课标教材•选修1-1 第一章电流1、电荷库仑定律2、电场3、生活中的静电现象4、电流和电源5、电流的热效应第二章磁场1、指南针与远洋航海2、电流的磁场3、磁场对通电导线的作用4、磁声对运动电荷的作用5、磁性材料第三章电磁感应1、电磁感应现象2、法拉第电磁感应定律3、交变电流4、变压器5、高压输电6、自感现象涡流7、课题研究:电在我家中第四章电磁波及其应用1、电磁波的发现2、电磁光谱3、电磁波的发射和接收4、信息化社会5、课题研究:社会生活中的电磁波高中物理目录新课标教材•选修1-2 第一章分子动理论内能1、分子及其热运动2、物体的内能3、固体和液体4、气体第二章能量的守恒与耗散1、能量守恒定律2、热力学第一定律3、热机的工作原理4、热力学第二定律5、有序、无序和熵6、课题研究:家庭中的热机第三章核能1、放射性的发现2、原子核的结构3、放射性的衰变4、裂变和聚变5、核能的利用第四章能源的开发与利用1、热机的发展和应用2、电力和电信的发展与应用3、新能源的开发4、能源与可持续发展5、课题研究:太阳能综合利用的研究高中物理目录新课标教材•选修2-1 第一章电场直流电路1、电场2、电源3、多用电表4、闭合电路的欧姆定律5、电容器第二章磁场1、磁场磁性材料2、安培力与磁电式仪表3、洛伦兹力和显像管第三章电磁感应1、电磁感应现象2、感应电动势3、电磁感应现象在技术中的应用第四章交变电流电机1、交变电流的产生和描述2、变压器3、三相交变电流第五章电磁波通信技术1、电磁场电磁波2、无线电波的发射、接收和传播3、电视移动电话4、电磁波谱第六章集成电路传感器1、晶体管2、集成电路3、电子计算机4、传感器高中物理目录新课标教材•选修2-2 第一章物体的平衡1、共点力平衡条件的应用2、平动和传动3、力矩和力偶4、力矩的平衡条件5、刚体平衡的条件6、物体平衡的稳定性第二章材料与结构1、物体的形变2、弹性形变与范性形变3、常见承重结构第三章机械与传动装置1、常见的传动装置2、能自锁的传动装置3、液压传动4、常用机构5、机械第四章热机1、热机原理热机效率2、活塞式内燃机3、蒸汽轮机燃气轮机4、喷气发动机第五章制冷机1、制冷机的原理2、电冰箱3、空调器高中物理目录新课标教材•选修2-3 第一章光的折射1、光的折射折射率2、全反射光导纤维3、棱镜和透镜4、透镜成像规律5、透镜成像公式第二章常用光学仪器1、眼睛2、显微镜和望远镜。
人教版高中物理选修3-3-第八章《气体》测试题(解析版)
第八章《气体》测试题一、单选题(共15小题)1.下列选项中属于物理学中实物模型的是()A.分子B.电场C.电子D.理想气体2.如图所示为A、B两部分理想气体的V-t图象,设两部分气体是质量相同的同种气体,根据图中所给条件,可知()A.当t=273.15 ℃时,气体的体积A比B大0.2 m3B.当tA=tB时,VA∶VB=3∶1C.当tA=tB时,VA∶VB=1∶3D.A,B两部分气体都作等压变化,它们的压强之比pA∶pB=3∶13.下列有关“温度”的概念的说法中正确的是()A.温度反映了每个分子热运动的剧烈程度B.温度是分子平均动能的标志C.一定质量的某种物质,内能增加,温度一定升高D.温度升高时物体的每个分子的动能都将增大4.对于一定质量的气体,在体积不变时,压强增大到原来的二倍,则气体温度的变化情况是()A.气体的摄氏温度升高到原来的二倍B.气体的热力学温度升高到原来的二倍C.气体的摄氏温度降为原来的一半D.气体的热力学温度降为原来的一半5.如图所示,在均匀U型管两端开口,装有如图所示的水银,今在管的一侧B上端加入同种液体,设缓缓加入且中间不留空隙,则B、C液面高度差将()A.变大B.变小C.不变D.不能确定6.如图所示,质量为M导热性能良好的汽缸由一根平行于斜面的细线系在光滑斜面上.汽缸内有一个质量为m的活塞,活塞与汽缸壁之间无摩擦且不漏气.汽缸内密封有一定质量的理想气体.如果大气压强增大(温度不变),则()A.气体的体积增大B.细线的张力增大C.气体的压强增大D.斜面对汽缸的支持力增大7.温度为27 ℃的一定质量的气体保持压强不变,把体积减为原来的一半时,其温度变为()A. 127 KB. 150 KC. 13.5 ℃D. 23.5 ℃8.如V-T图所示,一定质量的理想气体,从状态A变化到状态B,最后变化到状态C.线段AB平行横轴,线段AC连线过坐标原点.则气体压强p变化情况是()A.不断增大,且pC小于pAB.不断增大,且pC大于pAC.先增大再减小,且pC大于pAD.先增大再减小,且pC与pA相等9.如图所示,一个横截面积为S的圆筒形容器竖直放置,金属圆板的上表面是水平的,下表面是倾斜的,下表面与水平面的夹角为θ,圆板的质量为M,不计圆板与容器内壁的摩擦.若大气压强为p0,则被圆板封闭在容器中的气体的压强等于()A.B.+C.p0+D.p0+10.用活塞气筒向一个容积为V的容器内打气,每次能把体积为V0,压强为p0的空气打入容器内,若容器内原有空气的压强为p,打气过程中温度不变,则打了n次后容器内气体的压强为()A.B.p0+np0C.p+n()D.p0+()n·p011.一个密闭的钢管内装有空气,在温度为20 ℃时,压强为1 atm,若温度上升到80 ℃,管内空气的压强约为()A. 4 atmB.atmC. 1.2 atmD.atm12.一只轮胎容积为V=10 L,已装有p1=1 atm的空气.现用打气筒给它打气,已知打气筒的容积为V0=1 L,要使胎内气体压强达到p2=2.5 atm,应至少打多少次气?(设打气过程中轮胎容积及气体温度维持不变,大气压强p0=1 atm)()A. 8次B. 10次C. 12次D. 15次13.一定质量的理想气体,经历了如图所示的状态变化过程,则这三个状态的温度之比是()A. 1∶3∶5B. 3∶6∶5C. 3∶2∶1D. 5∶6∶314.关于密闭容器中气体的压强,下列说法正确的是()A.是由于气体分子相互作用产生的B.是由于气体分子碰撞容器壁产生的C.是由于气体的重力产生的D.气体温度越高,压强就一定越大15.一定质量的理想气体,经历一膨胀过程,这一过程可以用图中的直线ABC来表示,在A、B、C三个状态上,气体的温度TA、TB、TC相比较,大小关系为()A.TB=TA=TCB.TA>TB>TCC.TB>TA=TCD.TB<TA=TC二、实验题(共3小题)16.如图所示,在“用DIS研究在温度不变时,一定质量的气体压强与体积的关系”实验中,某同学将注射器活塞置于刻度为10 mL处,然后将注射器连接压强传感器并开始实验,气体体积V每增加1 mL测一定压强p,最后得到p和V的乘积逐渐增大.(1)由此可推断,该同学的实验结果可能为图________.(2)图线弯曲的可能原因是在实验过程中______.A.注射器有异物B.连接软管中存在的气体C.注射器内气体温度升高D.注射器内气体温度降低17.用DIS研究一定质量气体在温度不变时,压强与体积关系的实验装置如图1所示,实验步骤如下:①把注射器活塞移至注射器中间位置,将注射器与压强传感器、数据采集器、计算机逐一连接;②移动活塞,记录注射器的刻度值V,同时记录对应的由计算机显示的气体压强值p;③用V-图象处理实验数据,得出如图2所示图线.(1)为了保持封闭气体的质量不变,实验中采取的主要措施是_______________________;(2)为了保持封闭气体的温度不变,实验中采取的主要措施是_______________________和________________________________________________________________________;(3)如果实验操作规范正确,但如图所示的V-图线不过原点,则V0代表___________.18.某小组在“用DIS研究温度不变时一定质量的气体压强与体积的关系”实验.(1)实验过程中,下列哪些操作是正确的()A.推拉活塞时,动作要快,以免气体进入或漏出B.推拉活塞时,手可以握住整个注射器C.压强传感器与注射器之间的连接管脱落后,应立即重新接上,继续实验D.活塞与针筒之间要保持润滑又不漏气(2)该实验小组想利用实验所测得的数据测出压强传感器和注射器的连接管的容积,所测得的压强和注射器的容积(不包括连接管的容积)数据如下表所示:①为了更精确的测量也可以利用图象的方法,若要求出连接管的容积也可以画_______图.A.p-V B.V-pC.p-D.V-②利用上述图线求连接管的容积时是利用图线的________.A.斜率B.纵坐标轴上的截距C.横坐标轴上的截距D.图线下的“面积”三、计算题(共3小题)19.一轻活塞将一定质量的理想气体封闭在水平放置的固定汽缸内,开始时气体体积为V0,温度为27 ℃.在活塞上施加压力,将气体体积压缩到V0,温度升高到47 ℃.设大气压强p0=1.0×105Pa,活塞与汽缸壁的摩擦不计.(1)求此时气体的压强;(2)保持温度不变,缓慢减小施加在活塞上的压力使气体体积恢复到V0,求此时气体的压强.20.一定质量的理想气体经历了温度缓慢升高的变化,如图所示,p-T和V-T图各记录了其部分变化过程,试求:(1)温度600 K时气体的压强;(2)在p-T图象上将温度从400 K升高到600 K的变化过程补充完整.21.如图所示,一导热性能良好、内壁光滑的汽缸竖直放置,在距汽缸底部l=36 cm处有一与汽缸固定连接的卡环,活塞与汽缸底部之间封闭了一定质量的气体.当气体的温度T0=300 K、大气压强p0=1.0×105Pa时,活塞与汽缸底部之间的距离l0=30 cm,不计活塞的质量和厚度.现对汽缸加热,使活塞缓慢上升,求:(1)活塞刚到卡环处时封闭气体的温度T1;(2)封闭气体温度升高到T2=540 K时的压强p2.四、填空题(共3小题)22.在一个坚固的圆筒内,装有100 L压强为1个大气压的空气,现在想使筒内的空气压强增为10个大气压,应向筒内打入_________ L压强为1个大气压的空气.(设温度不变)23.如图所示是医院里给病人输液的示意图,假设药液瓶挂在高处的位置不变,则在输液过程中a、b两处气体的压强的变化是:a处气体的压强________,b处气体的压强________,药液进入人体的速度________.(填“变小”“变大”或“不变”)24.一定质量的理想气体经历如图所示的状态变化,变化顺序为a→b→c→d,图中坐标轴上的符号p指气体压强,V指气体体积,ab线段延长线过坐标原点,cd线段与p轴垂直,da 线段与轴垂直.气体在此状态变化过程中属于等温变化过程的是________,在b→c的变化过程中气体的内能______(填“增大”“减小”或“不变”).五、简答题(共3小题)25.某医院治疗一种疾病的治愈率为10 %,那么,前9个病人都没有治愈,第10个人就一定能治愈吗?26.如图所示为两种不同温度T1、T2下气体分子的麦克斯韦速率分布曲线,横坐标为速率,纵坐标为对应这一速率的分子个数,你能判断T1、T2的大小吗?27.从微观领域解释:一定质量的理想气体,在状态发生变化时,至少有两个状态参量同时发生变化,而不可能只有一个参量发生变化,其他两个参量不变.答案解析1.【答案】D【解析】建立理想化模型的一般原则是首先突出问题的主要因素,忽略问题的次要因素,为了使物理问题简单化,也为了便于研究分析,我们往往把研究的对象、问题简化,忽略次要的因素,抓住主要的因素,建立理想化的模型,电子、电场、分子都是实际的物体,而忽略气体分子的自身体积,将分子看成是有质量的几何点;假设分子间没有相互吸引和排斥,分子之间及分子与器壁之间发生的碰撞是完全弹性的,不造成动能损失,这种气体称为理想气体,故A、B、C错误,D正确.2.【答案】B【解析】由图象可知,A、B两部分气体都发生等压变化,由=C知它们在相同温度下体积之比不变.选择0 ℃读数,由y轴可知VA∶VB=3∶1,所以pA∶pB=VB∶VA=1∶3.3.【答案】B【解析】温度是分子平均动能大小的标志,而对某个确定的分子来说,其热运动的情况无法确定,不能用温度反映.故A、D错,B对.温度不升高而仅使分子的势能增加,也可以使物体内能增加,冰熔化为同温度的水就是一个例证,故C错.4.【答案】B【解析】一定质量的气体体积不变时,压强与热力学温度成正比,即=,得T2==2T1,B正确.5.【答案】C【解析】在B端加入水银后,A段水银柱不变,左侧密闭气体的压强不变,则B、C液面高度差不变,故C项正确.6.【答案】C【解析】对活塞受力分析,沿斜面方向可得:pS+mg sinα=p0S,所以p=p0-,若p0增大,则p增大,根据pV=常量,可知V减小;对汽缸和活塞的整体而言,细线的张力F T=(M+m)g sinα,;斜面对汽缸的支持力F=(M+m)g cosα,与大气压强无关,选项C 正确.7.【答案】B【解析】由盖—吕萨克定律得=,所以T2=·T1==K=150 K.8.【答案】D【解析】V-T图象中过原点的直线为等压线,直线斜率越大压强越小,如图可知:过OA的直线斜率大于过OB的直线斜率,故A的压强小于B的压强,由A到B压强增大,由B到C压强减小,AC的直线过原点,故pC与pA相等,D正确.9.【答案】D【解析】为求气体的压强,应以封闭气体的圆板为研究对象,分析其受力,如图所示.由平衡条件得p·cosθ=p0S+Mg解得:p=p0+,所以正确选项为D.10.【答案】C【解析】将n次打气的气体和容器中原有气体分别看成是初态,将打气后容器内气体看成是末态,利用等温分态分式,有pV+np0V0=p′V,得n次打气后容器内气体的压强p′=p+n(),即C正确.11.【答案】C【解析】由查理定律知=,代入数据解得,p2≈1.2 atm,所以C正确.12.【答案】D【解析】本题中,胎内气体质量发生变化,选打入的气体和原来的气体组成的整体为研究对象.设打气次数为n,则V1=V+nV0,由玻意耳定律,p1V1=p2V,解得n=15次.13.【答案】B【解析】由理想气体状态方程得:=C(C为常数),可见pV=TC,即pV的乘积与温度T 成正比,故B项正确.14.【答案】B【解析】气体的压强是由容器内的大量分子撞击器壁产生的,A、C错,B对;气体的压强与温度和体积两个因素有关,温度升高压强不一定增大,故D错.15.【答案】C【解析】由图中各状态的压强和体积的值可知:pA·VA=pC·VC<pB·VB,因为=恒量,可知TA =TC<TB.另外从图中也可知A、C处在同一等温线上,而B处在离原点更远的一条等温线上,所以TB>TA=TC.16.【答案】(1)(a)(2)C【解析】(1)由于“最后得到p和V的乘积逐渐增大”,因此在V-图象中,斜率k=pV逐渐增大,斜率变大,故选(a).(2)注射器有异物不会影响图线的斜率,故A错误.连接软管中存在气体可以视为被封闭的气体总体积较大,不会影响斜率,故B错误.注射器内气体温度升高,由克拉柏龙方程知=c,当T增大时,pV会增大,故C正确,D错误.17.【答案】(1)用润滑油涂活塞(2)缓慢抽动活塞不能用手握住注射器封闭气体部分(3)注射器与压强传感器连接部位的气体体积【解析】(1)为了保证气体的质量不变,要用润滑油涂活塞达到封闭效果.(2)要让气体与外界进行足够的热交换,一要时间长,也就是动作缓慢,二要活塞导热性能好,再者,不能用手握住封闭气体部分的注射器.(3)根据p(V+V0)=C,C为定值,则V=-V0,体积读数值比实际值大V0.18.【答案】(1)D (2)①D②B【解析】19.【答案】(1)1.6×105Pa(2)1.1×105Pa【解析】(1)由理想气体状态方程得:=,所以此时气体的压强为:p1=×=×Pa=1.6×105Pa.(2)由玻意耳定律得:p2V2=p3V3,所以p3==Pa≈1.1×105Pa.20.【答案】(1)1.25×105Pa(2)如图所示【解析】(1)由题图知,p1=1.0×105Pa,V1=2.5 m3,T1=400 Kp2=?,V2=3 m3,T2=600 K由理想气体状态方程得=p2==1.25×105Pa(2)在原p-T图象上补充两段直线21.【答案】(1)360 K(2)1.5×105Pa【解析】(1)设汽缸的横截面积为S.由题意可知,活塞缓慢上升,说明活塞平衡,此过程为等压膨胀由盖—吕萨克定律有=T1=T0=360 K(2)由题意可知,封闭气体后体积保持不变由查理定律有=p2=p0=1.5×105Pa.22.【答案】900【解析】取后来筒中气体为研究对象,根据玻意耳定律得:1 atm×(100 L+V)=100 L×10 atm,从而得V=900 L.23.【答案】变大不变不变【解析】选A管下端液面为研究对象,在大气压强p0(向上)、液柱h1的压强ρgh1(向下)和液柱h1上方液面处压强pa(向下)作用下平衡.因为p0=pa+ρgh1,则有pa=p0-ρgh1,因为输液过程中h1不断减小,所以pa不断增大.再对b处气体上方液面进行受力分析,B管中与A管最低液面在同一水平面处的压强也为p0,则有pb=p0+ρgh2,因为在输液过程中p0、h2不变,所以pb不变,则药液进入人体的速度也不变.24.【答案】a→b增大【解析】根据理想气体状态变化方程=C得p=T,可知当温度不变时p-是一条过原点的倾斜直线,所以a→b是等温变化.由p=T可知图线的斜率表示温度的高低,所以b→c的过程中气体温度升高,又因为理想气体的内能只跟温度有关,所以内能增大.25.【答案】如果把治疗一个病人作为一次试验,这个病人的治愈率是10 %.随着试验次数的增加,即治疗的病人数的增加,大约有10 %的人能够治愈.对于某一次试验来说,其结果是随机的,因此,前9个病人没有治愈是可能的,对第10个人来说,其结果仍然是随机的,既有可能治愈,也可能没有治愈,治愈率仍为10 %.【解析】26.【答案】T2>T1【解析】温度升高分子的热运动加剧,分子的平均速率变大,速率大的分子所占的比例变大,曲线峰值向速率大的一方移动,所以T2>T1.27.【答案】从微观领域分析,气体的压强由气体的分子密度和气体分子的平均动能决定,而温度是平均动能的标志.对一定质量的理想气体,若体积变化,分子的密度必然发生变化,必引起压强变化;若温度变化,则分子的平均动能发生变化,那么气体的压强必然发生变化;若气体的压强发生变化,必然是决定气体压强的因素发生变化,即气体的分子密度或气体分子的平均动能发生变化.所以说气体状态发生变化时,不可能只有一个参量发生变化,其他两个参量不变.【解析】。
人教版高中物理选修3-3-第八章《气体》测试题(解析版)
一、单选题(共15小题)1.下列选项中属于物理学中实物模型的是( )A.分子B.电场C.电子D.理想气体2.如图所示为A、B两部分理想气体的V-t图象,设两部分气体是质量相同的同种气体,根据图中所给条件,可知( )A.当t=℃时,气体的体积A比B大 m3B.当tA=tB时,VA∶VB=3∶1C.当tA=tB时,VA∶VB=1∶3D.A,B两部分气体都作等压变化,它们的压强之比pA∶pB=3∶13.下列有关“温度”的概念的说法中正确的是( )A.温度反映了每个分子热运动的剧烈程度B.温度是分子平均动能的标志C.一定质量的某种物质,内能增加,温度一定升高D.温度升高时物体的每个分子的动能都将增大4.对于一定质量的气体,在体积不变时,压强增大到原来的二倍,则气体温度的变化情况是( )A.气体的摄氏温度升高到原来的二倍B.气体的热力学温度升高到原来的二倍C.气体的摄氏温度降为原来的一半D.气体的热力学温度降为原来的一半5.如图所示,在均匀U型管两端开口,装有如图所示的水银,今在管的一侧B上端加入同种液体,设缓缓加入且中间不留空隙,则B、C液面高度差将( )A.变大B.变小C.不变D.不能确定6.如图所示,质量为M导热性能良好的汽缸由一根平行于斜面的细线系在光滑斜面上.汽缸内有一个质量为m的活塞,活塞与汽缸壁之间无摩擦且不漏气.汽缸内密封有一定质量的理想气体.如果大气压强增大(温度不变),则( )A.气体的体积增大B.细线的张力增大C.气体的压强增大D.斜面对汽缸的支持力增大7.温度为27 ℃的一定质量的气体保持压强不变,把体积减为原来的一半时,其温度变为( )A. 127 KB. 150 KC. 13.5 ℃D. 23.5 ℃8.如V-T图所示,一定质量的理想气体,从状态A变化到状态B,最后变化到状态C.线段AB平行横轴,线段AC连线过坐标原点.则气体压强p变化情况是( )A.不断增大,且pC小于pAB.不断增大,且pC大于pAC.先增大再减小,且pC大于pAD.先增大再减小,且pC与pA相等9.如图所示,一个横截面积为S的圆筒形容器竖直放置,金属圆板的上表面是水平的,下表面是倾斜的,下表面与水平面的夹角为θ,圆板的质量为M,不计圆板与容器内壁的摩擦.若大气压强为p0,则被圆板封闭在容器中的气体的压强等于( )A.B.+C.p0+D.p0+10.用活塞气筒向一个容积为V的容器内打气,每次能把体积为V0,压强为p0的空气打入容器内,若容器内原有空气的压强为p,打气过程中温度不变,则打了n次后容器内气体的压强为( )A.B.p0+np0C.p+n()D.p0+()n·p011.一个密闭的钢管内装有空气,在温度为20 ℃时,压强为1 atm,若温度上升到80 ℃,管内空气的压强约为( )A. 4 atmB.atmC. 1.2 atmD.atm12.一只轮胎容积为V=10 L,已装有p1=1 atm的空气.现用打气筒给它打气,已知打气筒的容积为V0=1 L,要使胎内气体压强达到p2=2.5 atm,应至少打多少次气(设打气过程中轮胎容积及气体温度维持不变,大气压强p0=1 atm)( )A. 8次B. 10次C. 12次D. 15次13.一定质量的理想气体,经历了如图所示的状态变化过程,则这三个状态的温度之比是( )A.1∶3∶5B.3∶6∶5C.3∶2∶1D.5∶6∶314.关于密闭容器中气体的压强,下列说法正确的是( )A.是由于气体分子相互作用产生的B.是由于气体分子碰撞容器壁产生的C.是由于气体的重力产生的D.气体温度越高,压强就一定越大15.一定质量的理想气体,经历一膨胀过程,这一过程可以用图中的直线ABC来表示,在A、B、C三个状态上,气体的温度TA、TB、TC相比较,大小关系为( )A.TB=TA=TCB.TA>TB>TCC.TB>TA=TCD.TB<TA=TC二、实验题(共3小题)16.如图所示,在“用DIS研究在温度不变时,一定质量的气体压强与体积的关系”实验中,某同学将注射器活塞置于刻度为10 mL处,然后将注射器连接压强传感器并开始实验,气体体积V每增加1mL测一定压强p,最后得到p和V的乘积逐渐增大.(1)由此可推断,该同学的实验结果可能为图________.(2)图线弯曲的可能原因是在实验过程中______.A.注射器有异物B.连接软管中存在的气体C.注射器内气体温度升高D.注射器内气体温度降低17.用DIS研究一定质量气体在温度不变时,压强与体积关系的实验装置如图1所示,实验步骤如下:①把注射器活塞移至注射器中间位置,将注射器与压强传感器、数据采集器、计算机逐一连接;②移动活塞,记录注射器的刻度值V,同时记录对应的由计算机显示的气体压强值p;③用V-图象处理实验数据,得出如图2所示图线.(1)为了保持封闭气体的质量不变,实验中采取的主要措施是_______________________;(2)为了保持封闭气体的温度不变,实验中采取的主要措施是_______________________和________________________________________________________________________;(3)如果实验操作规范正确,但如图所示的V-图线不过原点,则V0代表___________.18.某小组在“用DIS研究温度不变时一定质量的气体压强与体积的关系”实验.(1)实验过程中,下列哪些操作是正确的( )A.推拉活塞时,动作要快,以免气体进入或漏出B.推拉活塞时,手可以握住整个注射器C.压强传感器与注射器之间的连接管脱落后,应立即重新接上,继续实验D.活塞与针筒之间要保持润滑又不漏气(2)该实验小组想利用实验所测得的数据测出压强传感器和注射器的连接管的容积,所测得的压强和注射器的容积(不包括连接管的容积)数据如下表所示:①为了更精确的测量也可以利用图象的方法,若要求出连接管的容积也可以画_______图.A.p-V B.V-pC.p-D.V-②利用上述图线求连接管的容积时是利用图线的________.A.斜率B.纵坐标轴上的截距C.横坐标轴上的截距D.图线下的“面积”三、计算题(共3小题)19.一轻活塞将一定质量的理想气体封闭在水平放置的固定汽缸内,开始时气体体积为V0,温度为27 ℃.在活塞上施加压力,将气体体积压缩到V0,温度升高到47 ℃.设大气压强p0=×105Pa,活塞与汽缸壁的摩擦不计.(1)求此时气体的压强;(2)保持温度不变,缓慢减小施加在活塞上的压力使气体体积恢复到V0,求此时气体的压强.20.一定质量的理想气体经历了温度缓慢升高的变化,如图所示,p-T和V-T图各记录了其部分变化过程,试求:(1)温度600 K时气体的压强;(2)在p-T图象上将温度从400 K升高到600 K的变化过程补充完整.21.如图所示,一导热性能良好、内壁光滑的汽缸竖直放置,在距汽缸底部l=36 cm处有一与汽缸固定连接的卡环,活塞与汽缸底部之间封闭了一定质量的气体.当气体的温度T0=300 K、大气压强p0=1.0×105Pa时,活塞与汽缸底部之间的距离l0=30 cm,不计活塞的质量和厚度.现对汽缸加热,使活塞缓慢上升,求:(1)活塞刚到卡环处时封闭气体的温度T1;(2)封闭气体温度升高到T2=540 K时的压强p2.四、填空题(共3小题)22.在一个坚固的圆筒内,装有100 L压强为1个大气压的空气,现在想使筒内的空气压强增为10个大气压,应向筒内打入_________ L压强为1个大气压的空气.(设温度不变)23.如图所示是医院里给病人输液的示意图,假设药液瓶挂在高处的位置不变,则在输液过程中a、b两处气体的压强的变化是:a处气体的压强________,b处气体的压强________,药液进入人体的速度________.(填“变小”“变大”或“不变”)24.一定质量的理想气体经历如图所示的状态变化,变化顺序为a→b→c→d,图中坐标轴上的符号p指气体压强,V指气体体积,ab线段延长线过坐标原点,cd线段与p轴垂直,da线段与轴垂直.气体在此状态变化过程中属于等温变化过程的是________,在b→c的变化过程中气体的内能______(填“增大”“减小”或“不变”).五、简答题(共3小题)25.某医院治疗一种疾病的治愈率为10 %,那么,前9个病人都没有治愈,第10个人就一定能治愈吗26.如图所示为两种不同温度T1、T2下气体分子的麦克斯韦速率分布曲线,横坐标为速率,纵坐标为对应这一速率的分子个数,你能判断T1、T2的大小吗27.从微观领域解释:一定质量的理想气体,在状态发生变化时,至少有两个状态参量同时发生变化,而不可能只有一个参量发生变化,其他两个参量不变.答案解析1.【答案】D【解析】建立理想化模型的一般原则是首先突出问题的主要因素,忽略问题的次要因素,为了使物理问题简单化,也为了便于研究分析,我们往往把研究的对象、问题简化,忽略次要的因素,抓住主要的因素,建立理想化的模型,电子、电场、分子都是实际的物体,而忽略气体分子的自身体积,将分子看成是有质量的几何点;假设分子间没有相互吸引和排斥,分子之间及分子与器壁之间发生的碰撞是完全弹性的,不造成动能损失,这种气体称为理想气体,故A、B、C错误,D正确.2.【答案】B【解析】由图象可知,A、B两部分气体都发生等压变化,由=C知它们在相同温度下体积之比不变.选择0 ℃读数,由y轴可知VA∶VB=3∶1,所以pA∶pB=VB∶VA=1∶3.3.【答案】B【解析】温度是分子平均动能大小的标志,而对某个确定的分子来说,其热运动的情况无法确定,不能用温度反映.故A、D错,B对.温度不升高而仅使分子的势能增加,也可以使物体内能增加,冰熔化为同温度的水就是一个例证,故C错.4.【答案】B【解析】一定质量的气体体积不变时,压强与热力学温度成正比,即=,得T2==2T1,B 正确.5.【答案】C【解析】在B端加入水银后,A段水银柱不变,左侧密闭气体的压强不变,则B、C液面高度差不变,故C项正确.6.【答案】C【解析】对活塞受力分析,沿斜面方向可得:pS+mg sinα=p0S,所以p=p0-,若p0增大,则p增大,根据pV=常量,可知V减小;对汽缸和活塞的整体而言,细线的张力F T=(M+m)g sinα,;斜面对汽缸的支持力F=(M+m)g cosα,与大气压强无关,选项C正确.7.【答案】B【解析】由盖—吕萨克定律得=,所以T2=·T1==K=150 K.8.【答案】D【解析】V-T图象中过原点的直线为等压线,直线斜率越大压强越小,如图可知:过OA的直线斜率大于过OB的直线斜率,故A的压强小于B的压强,由A到B压强增大,由B到C压强减小,AC的直线过原点,故pC与pA相等,D正确.9.【答案】D【解析】为求气体的压强,应以封闭气体的圆板为研究对象,分析其受力,如图所示.由平衡条件得p·cosθ=p0S+Mg解得:p=p0+,所以正确选项为D.10.【答案】C【解析】将n次打气的气体和容器中原有气体分别看成是初态,将打气后容器内气体看成是末态,利用等温分态分式,有pV+np0V0=p′V,得n次打气后容器内气体的压强p′=p+n(),即C正确.11.【答案】C【解析】由查理定律知=,代入数据解得,p2≈1.2 atm,所以C正确.12.【答案】D【解析】本题中,胎内气体质量发生变化,选打入的气体和原来的气体组成的整体为研究对象.设打气次数为n,则V1=V+nV0,由玻意耳定律,p1V1=p2V,解得n=15次.13.【答案】B【解析】由理想气体状态方程得:=C(C为常数),可见pV=TC,即pV的乘积与温度T成正比,故B项正确.14.【答案】B【解析】气体的压强是由容器内的大量分子撞击器壁产生的,A、C错,B对;气体的压强与温度和体积两个因素有关,温度升高压强不一定增大,故D错.15.【答案】C【解析】由图中各状态的压强和体积的值可知:pA·VA=pC·VC<pB·VB,因为=恒量,可知TA=<TB.另外从图中也可知A、C处在同一等温线上,而B处在离原点更远的一条等温线上,所以TB>TA=TC.TC16.【答案】(1)(a) (2)C【解析】(1)由于“最后得到p和V的乘积逐渐增大”,因此在V-图象中,斜率k=pV逐渐增大,斜率变大,故选(a).(2)注射器有异物不会影响图线的斜率,故A错误.连接软管中存在气体可以视为被封闭的气体总体积较大,不会影响斜率,故B错误.注射器内气体温度升高,由克拉柏龙方程知=c,当T增大时,pV会增大,故C正确,D错误.17.【答案】(1)用润滑油涂活塞(2)缓慢抽动活塞不能用手握住注射器封闭气体部分(3)注射器与压强传感器连接部位的气体体积【解析】(1)为了保证气体的质量不变,要用润滑油涂活塞达到封闭效果.(2)要让气体与外界进行足够的热交换,一要时间长,也就是动作缓慢,二要活塞导热性能好,再者,不能用手握住封闭气体部分的注射器.(3)根据p(V+V0)=C,C为定值,则V=-V0,体积读数值比实际值大V0.18.【答案】(1)D (2)①D②B【解析】19.【答案】(1)×105Pa (2)×105Pa【解析】(1)由理想气体状态方程得:=,所以此时气体的压强为:p1=×=×Pa=×105Pa.(2)由玻意耳定律得:p2V2=p3V3,所以p3==Pa≈×105Pa.20.【答案】(1)×105Pa (2)如图所示【解析】(1)由题图知,p1=×105Pa,V1= m3,T1=400 Kp2=,V2=3 m3,T2=600 K由理想气体状态方程得=p2==×105Pa(2)在原p-T图象上补充两段直线21.【答案】(1)360 K (2)1.5×105Pa【解析】(1)设汽缸的横截面积为S.由题意可知,活塞缓慢上升,说明活塞平衡,此过程为等压膨胀由盖—吕萨克定律有=T1=T0=360 K(2)由题意可知,封闭气体后体积保持不变由查理定律有=p2=p0=1.5×105Pa.22.【答案】900【解析】取后来筒中气体为研究对象,根据玻意耳定律得:1 atm×(100 L+V)=100 L×10 atm,从而得V=900 L.23.【答案】变大不变不变【解析】选A管下端液面为研究对象,在大气压强p0(向上)、液柱h1的压强ρgh1(向下)和液柱h1上方液面处压强pa(向下)作用下平衡.因为p0=pa+ρgh1,则有pa=p0-ρgh1,因为输液过程中h1不断减小,所以pa不断增大.再对b处气体上方液面进行受力分析,B管中与A管最低液面在同一水平面处的压强也为p0,则有pb=p0+ρgh2,因为在输液过程中p0、h2不变,所以pb不变,则药液进入人体的速度也不变.24.【答案】a→b增大【解析】根据理想气体状态变化方程=C得p=T,可知当温度不变时p-是一条过原点的倾斜直线,所以a→b是等温变化.由p=T可知图线的斜率表示温度的高低,所以b→c的过程中气体温度升高,又因为理想气体的内能只跟温度有关,所以内能增大.25.【答案】如果把治疗一个病人作为一次试验,这个病人的治愈率是10 %.随着试验次数的增加,即治疗的病人数的增加,大约有10 %的人能够治愈.对于某一次试验来说,其结果是随机的,因此,前9个病人没有治愈是可能的,对第10个人来说,其结果仍然是随机的,既有可能治愈,也可能没有治愈,治愈率仍为10 %.【解析】26.【答案】T2>T1【解析】温度升高分子的热运动加剧,分子的平均速率变大,速率大的分子所占的比例变大,曲线峰值向速率大的一方移动,所以T2>T1.27.【答案】从微观领域分析,气体的压强由气体的分子密度和气体分子的平均动能决定,而温度是平均动能的标志.对一定质量的理想气体,若体积变化,分子的密度必然发生变化,必引起压强变化;若温度变化,则分子的平均动能发生变化,那么气体的压强必然发生变化;若气体的压强发生变化,必然是决定气体压强的因素发生变化,即气体的分子密度或气体分子的平均动能发生变化.所以说气体状态发生变化时,不可能只有一个参量发生变化,其他两个参量不变.【解析】、。
高中物理 第8章 第2节 气体的等容变化和等压变化课件 新人教版选修3-3
如果手表的表盘玻璃是向内爆裂的,则外界的大气压强为 p0=8.4×104Pa+6×104Pa=1.44×105Pa,
大于山脚下的大气压强(即常温下的大气压强),这显然是 不可能的,所以可判断手表的表盘玻璃是向外爆裂的。
(2)当时外界的大气压强为 p0=p2-6.0×104Pa=2.4×104Pa。
答案:2381
解析:设房间体积为 V0,选晚上房间内的空气为研究对象, 在 37℃时体积变为 V1,根据盖·吕萨克定律得
VT11=VT20 273V+1 37=273V+0 7 V1=3218V0 故中午房间内空气质量 m 与晚上房间内空气质量 m0 之比: mm0=ρρVV01=2381。
图象的应用
计算过程。
解析:(1)由图甲可以看出,A 与 B 的连线的延长线过原点 O,所以从 A 到 B 是一个等压变化,即 pA=pB。
根据盖·吕萨克定律可得 VA/TA=VB/TB, 所以 TA=VVATBB=0.4× 0.6300K=200K。
(2)由图甲可以看出,从 B 到 C 是一个等容变化,根据查 理定律得 pB/TB=pC/TC。
越小,如图 p2<p1
• 特别提醒:
• (1)在图象的原点附近要用虚线表示,因为此处实际 不存在,但还要表示出图线过原点。
• (2)如果坐标上有数字则坐标轴上一定要标上单位, 没有数字的坐标轴可以不标单位。
• 如图所示是一定质量的气体从状态A经B到状态C的V -T图象,由图象可知( )
• A.pA>pB B.pC<pB • C.VA<VB D.TA<TB
• (1)通过计算判断手表的表盘玻璃是向外爆裂还是向 内爆裂?
• (2)当时外界的大气压强为多少?
高中物理选修33(人教版)课件:第八章 1气体的等温变化
难点
1.理解气体等温变化 的p-V图象的物理意 义. 2.会用玻意耳定 律计算有关的问题.
知识点一 状态参量和等温变化
提炼知识 1.研究气体的性质时,用温度、体积、压强这三个 物理量来描述气体的状态,这三个物理量被称为气体的 状态参量. 2.等温变化:一定质量的气体在温度不变的情况下, 研究其体积和压强的关系,这种方法叫控制变量法.
•8、教育技巧的全部诀窍就在于抓住儿童的这种上进心,这种道德上的自勉。要是儿童自己不求上进,不知自勉,任何教育者就都不 能在他的身上培养出好的品质。可是只有在集体和教师首先看到儿童优点的那些地方,儿童才会产生上进心。 2021/11/232021/11/232021/11/232021/11/23
解析:温度不变,对于一定质量的气体,分子的平均 动能不变,分子的平均速率也不会变;但体积和压强可以 发生变化,故选 B、C.
答案:BC
知识点二 玻意耳定律
提炼知识 1.实验:英国玻意耳和法国马略特各自独立发现: 一定质量的某种气体,在温度不变的情况下,压强与体 积成反比,这个规律叫玻意耳定律,也叫玻马定律. 2.公式:pV=C 或 p1V1=p2V2. 3.条件:质量变,温度不变;气体温度不太低, 压强不太大.
判断正误
就必须给瓶内补充空气,插空针头就是使内外空气可 以相通,从而保证瓶内气压为一个大气压值.
1.带活塞气缸压强的求法. (1)气缸开口向上:
对活塞受力平衡:pS=mg+p0S, 则压强:p=p0+mSg.
(2)气缸开口向下:
对活塞受力平衡:p0S=mg+pS, 则压强:p=p0-mSg.
(3)气缸开口水平:
气泡从水底逐渐上升,在上升过程中气泡逐渐变大, 这是什么原因呢?
提示:从水底逐渐上升,温度变化很小可认为是等温 变化,在上升过程中压强逐渐减小,由玻意耳定律知体积 逐渐变大.
高中物理第八章气体3理想气体的状态方程教材梳理素材新人教版选修3_3
3 理想气体的状态方程庖丁巧解牛知识·巧学一、理想气体1.严格遵守气体实验定律的气体叫做理想气体.2.微观模型:①与分子间的距离相比,分子本身的大小可以忽略不计;②除碰撞的瞬间外,分子之间没有相互作用;③具有分子动能而无分子势能,内能由温度和气体物质的量决定,只是温度的函数,内能的变化与温度的变化成正比.3.理想气体是一种经科学的抽象而建立的理想化模型,实际上是不存在的,实际气体,特别是那些不易液化的气体,在压强不太大(和大气压强比较)、温度不太低(和室温比较)的条件下,都可视为理想气体,例如氢气、氧气、氮气、空气等在常温、常压的条件下,都可看作理想气体.深化升华 (1)宏观上讲,理想气体是指在任何条件下始终遵守气体实验定律的气体,实际气体在压强不太大、温度不太低的条件下,可视为理想气体.(2)微观上讲,理想气体应有如下性质:分子间除碰撞外无其他作用力;分子本身没有体积,即它所占据的空间认为都是可以被压缩的空间.显然这样的气体是不存在的,只是实际气体在一定程度上近似.(3)从能量上看,理想气体的微观本质是忽略了分子力,所以其状态无论怎么变化都没有分子力做功,即没有分子势能的变化,于是理想气体的内能只有分子动能,即一定质量的理想气体的内能完全由温度决定.联想发散 理想气体实际上是不存在的,它只是为了研究问题的方便,突出事物的主要因素,忽略次要因素而引入的一种理想化模型,就像力学中引入质点、静电学中的点电荷模型一样,这些理想化模型的引入使我们对物体运动规律的研究大大简化.二、理想气体的状态方程1.状态方程的推导方法一:(1)条件:一定质量的理想气体(2)推导过程:设想气体状态变化过程,即气体由状态Ⅰ先经等温变化使气体体积由V 1变到V 2,然后再经过等容变化到状态Ⅱ,如图8-3-1所示.图8-3-1等温变化过程:p 1V 2=p c V 2p c =211V V p 等容变化过程:1T p C =22T p p C =212T T p 得111T V p =222T V p ,这就是理想的气体状态方程,即T pV =恒量.方法二:推导推导过程:p A 、V A 、T A 、p C 、V C 、T C 的关系首先画出p-V 图象,如图8-3-2所示.图8-3-2由图8-3-2可知,A→B 为等温过程,根据玻意耳定律可得p A V A =p B V B ①从B→C 为等容过程,根据查理定律可得:B B T p =CC T p ② 又T B =T A ,V B =V C联立①②可得1A A A T V p =C C C T V p 上式表明,一定质量的某种理想气体在从一个状态1变化到另一个状态2时,尽管其p 、V 、T 都可能变化,但是压强跟体积与热力温度的比值保持不变,也就是说111T V p =222T V p 或T pV =C (C 为恒量). 学法一得 选定状态变化法设一定质量的气体由状态1(p 1、V 1、T 1)变化到状态2(p 2、V 2、T 2),我们给它选定一个中间过渡状态C ,遵守玻意耳定律,从状态C 至2遵守查理定律,所以p 1V 1=p C V 2,1T p C =22T p ,从两式消去p C 得111T V p =222T V p . 深化升华 中间状态的选定应使这一状态前后的状态变化各自遵守某一实验定律,并注意一定质量气体状态变化时,只有一个状态量变化是不可能的.2.理想气体状态方程(1)内容:一定质量的某种理想气体,从一个状态变化到另一个状态,压强和体积的乘积与热力学温度的比值保持不变.它是一定质量的某种理想气体处于某一状态时,三个状态参量必须满足的关系,即为理想气体的状态方程.(2)表达式一定质量的理想气体的状态方程为T pV =C (恒量)或111T V p =222T V p ①深化升华 (1)把①式两边分别除以被研究气体的质量m ,可以得到方程111T p ρ=222T p ρ② 即某种气体的压强除以这种气体的密度与绝对温度的乘积所得的商是一个常量.②式适用于密度变化的问题,如漏去气体或补充气体的情况,但等式两边所讨论的气体属于同种气体.(2)若理想气体在状态变化过程中,质量为m 的气体分成两个不同状态的部分m 1、m 2,或者由同种气体的若干个不同状态的部分m 1、m 2、…,m n 混合而成,有T pV =111T V p +222T V p +…+nn n T V p ③ ③式表示在总质量不变的前提下,同种气体进行分、合变态过程中各参量之间的关系,很多问题 可用这个来处理,显得较为简便.典题·热题知识点一 理想气体例1 关于理想气体,下列说法正确的是( )A.理想气体能严格遵守气体实验定律B.实际气体在温度不太高,压强不太大的情况下,可看成理想气体C.实际气体在温度不太低,压强不太大的情况下,可看成理想气体D.所有的实际气体在任何情况下,都可以看成理想气体解析:理想气体是在任何温度,任何压强下都能遵守气体实验定律的气体,A 选项正确.理想气体是实际气体在温度不太低,压强不太大情况下的抽象,故C 正确.答案:AC巧妙变式 能遵守气体实验定律的气体就是理想气体吗?不是.知识点二 理想气体的状态方程例2 一个半径为0.1 cm 的气泡,从18 m 深的湖底上升,如果湖底水的温度是8 ℃,湖面的温度是24 ℃,湖面的大气压强是76 cmHg ,那么气泡升至湖面时体积是多少?解析: 气泡从湖底上升过程中气泡的温度随上升而升高,可认为是水的温度.另外,气泡的压强和体积也发生变化.先确定初、末状态,再应用理想气体状态方程进行计算.此题的关键是确定气泡内气体的压强.由题意可知V 1=34πr 3=4.19×10-3 cm 3 p 1=p 0+汞水水p h p =76+6.1310182⨯ cmHg=208 cmHg T 1=273+8 K=281 Kp 2=76 cmHgT 2=273+24 K=297 K根据理想气体的状态方程111T V p =222V V p 得V 2=12211T p T V p =28176297104.19208-3⨯⨯⨯⨯ cm 3=0.012 cm 3. 方法归纳 ①应用理想气体状态方程解题,关键是确定气体初、末状态的参量;②注意单位的换算关系;③用公式111T V p =222T V p 解题时,要求公式两边p 、V 、T 的单位分别一致即可,不一定采用国际单位.例3 用销钉固定的活塞把水平放置的容器分隔成A 、B 两部分,其体积之比为V A ∶V B =2∶1,如图8-3-3所示.起初A 中有温度为27 ℃、压强为1.8×105Pa 的空气,B 中有温度为127 ℃、压强为2×105 Pa 的空气.现拔出销钉,使活塞可以无摩擦地移动(无漏气),由于容器壁缓慢导热,最后气体都变到室温27 ℃,活塞也停止移动,求最后A 中气体的压强.图8-3-3解析:分别对A 、B 两部分气体列气态方程,再由A 、B 体积关系及变化前后体积之和不变、压强相等列方程,联立求解.(1)以A 中气体为研究对象:初态下:p A =1.8×105 Pa ,V A ,T A =300 K.末态下:p A ′=? V A ′=? T A ′=300 K.根据理想气体状态方程:p A V A =p A ′V A ′.(2)以B 中气体为研究对象:初态下:p B =2×105 Pa ,V B ,T B =400 K.末态下:p B ′=? V B ′=? T B ′=300 K.根据理想气体状态方程:B B B T V p ='''B B B T V p . (3)相关条件:V A ∶V B =2∶1,V A ′+V B ′=V A +V B ,p A ′=P B ′联立可解得:p A ′=1.7×105 Pa.方法归纳 本题涉及的两部分气体,虽然它们之间没有气体交换,但它们的压强或体积之间存在着联系,在解题时首先要用隔离法对各部分气体分别列式,再找出它们的压强和体积间的相关条件联立求解.知识点三 关于理想气体和力学知识的综合问题例4 如图8-3-4所示,一根一端封闭、一端开口向上的均匀玻璃管,长l=96 cm ,用一段长h=20 cm 的水银柱封住长h 1=60 cm 的空气柱,温度为27 ℃,大气压强p 0=76 cmHg ,问温度至少要升高到多少度,水银柱才能全部从管中溢出?图8-3-4解析:实际上,整个过程可分为两个阶段.第一阶段,水银柱尚未溢出阶段,加热气体,气体作等压变化,体积增大,温度升高;第二阶段,水银溢出,气体体积增大,但压强却减小,由T pV =C 可知,当p 、V 乘积最大时,温度应为最高. 由于第二个过程中,体积增大,压强减小,则可能出现温度的极值.以封闭气体为研究对象则初始状态下p 1=p 0+h=96 cmHgV 1=h 1S=60S T 1=300 K设管中剩余水银柱长为x cm 时,温度为T 2p 2=(p 0+x) cmHg=(76+x) cmHgV 2=(96-x)S根据理想气体状态方程111T V p =222T V p 有3006096⨯=2x)-x)(96(76T + 显然,要使T 2最大,则(76+x )(96-x )应最大,即x=10 cm 时,T 2有极大值是385.2 K. 温度至少要升至385.2 K ,水银柱才能全部排出.误区警示 当温度升高到T 2时管内水银柱全部排出,则1110)(T h h p +=20T l p T 2=100)(h h p L p +T=6020)(769676⨯+⨯×300 K=380 K 错误地认为温度升高后,水银逐步被排出管外,水银全部被排出时,对应温度最高,起初一看,似乎是合理的,但如果将末状态的压强和体积数值交换,即p 2=96 cmHg,h 2=76 cm ,这时温度仍为380 K ,但水银柱与气体的总和度却是(96-76+76) cm=96 cm ,恰好与管等长,也就是水银柱尚未溢出玻璃管.例5 如图8-3-5所示,粗细均匀的U 形玻璃管如图放置,管的竖直部分长为20 cm ,一端封闭,水平部分长40 cm ,水平段管内长为20 cm 的水银柱封住长35 cm 的气柱.已知所封闭的气体温度为7 ℃,大气压强为75 cmHg ,当管内温度升到351 ℃时管内空气柱的总长度是多少?(弯管部分体积忽略不计)图8-3-5解析:温度升高时,气体体积增加,水银柱可能进入直管也可能溢出,所以要首先分析各临界状态的条件,然后针对具体情况计算.设水银柱刚好与竖直管口平齐而正好不溢出,此时气柱高度为60 cm ,设温度为T 2. 以封闭气体为研究对象:初状态:p 1=p 0=75 cmHg,l 1=35 cm,T 1=280 K末状态:p 2′=95 cmHg,l 2=60 cm,T 2=?根据理想气体状态方程:111T S l p =222T S l p 所以T 2=1122l p l p T 1=35756095⨯⨯×280 K=608 K 即t 2=(608-273) ℃=335 ℃<351 ℃,所以水银柱会溢出.设溢出后,竖直管内仍剩余水银柱长为h cm ,则初状态:p 1=75 cmHg,l 1=35 cm,T 1=280 K末状态:p′2=(75+h) cmHg,l′2=(80-h) cm,T′2=(351+273) K=624 K根据理想气体状态方程得:111T S l p =222T S l p 即28035S 75⨯=624h)S h)(80(75++ h=15 cm故管内空气柱的长度为l 2′=(80-15) cm=65cm.方法归纳 理想气体状态方程的应用要点:(1)选对象:根据题意,选出所研究的某一部分气体,这部分气体在状态变化过程中,其质量必须保持一定.(2)找参量:找出作为研究对象的这部分气体发生状态变化前后的一组p 、V 、T 数值或表达式,压强的确定往往是个关键,常需结合力学知识(如力的平衡条件或牛顿运动定律)才能写出表达式.(3)认过程:过程表示两个状态之间的一种变化方式,除题中条件已直接指明外,在许多情况下,往往需要通过对研究对象跟周围环境的相互关系的分析中才能确定,认清变化过程是正确选用物理规律的前提.(4)列方程:根据研究对象状态变化的具体方式,选用气态方程或某一实验定律,代入具体数值,T 必须用热力学温度,p 、V 的单位统一,最后分析讨论所得结果的合理性及其物理意义.问题 ·探究交流讨论探究问题 为什么实际气体不能严格遵守气体实验定律?探究过程:郝明:分子本身占有一定的体积分子半径的数量级为10-10 m ,把它看成小球,每个分子的固有体积约为4×10-30 m 3,在标准状态下,1 m 3气体中的分子数n 0约为3×1025,分子本身总的体积为n 0V 约为1.2×10-4 m 3,跟气体的体积比较,约为它的万分之一,可以忽略不计.当压强较小时,由于分子本身的体积可以忽略不计,因此实际气体的性质近似于理想气体,能遵守玻意耳定律,当压强很大时,例如p=1 000×105 Pa ,假定玻意耳定律仍能适用,气体的体积将缩小为原来的千分之一,分子本身的总体积约占气体体积的1/10.在这种情况下,分子本身的体积就不能忽略不计了.由于气体能压缩的体积只是分子和分子之间的空隙,分子本身的体积是不能压缩的,就是说气体的可以压缩的体积比它的实际体积小.由于这个原因,实际气体当压强很大时,实测的p-V 值比由玻意耳定律计算出来的理论值偏大. 胡雷:分子间有相互作用力实际气体的分子间都有相互作用,除了分子相距很近表现为斥力外,相距稍远时则表现为引力,距离再大,超过几十纳米(纳米的符号是nm ,1 nm=10-9 m )时,则相互作用力趋于零.当压强较小时,气体分子间距离较大,分子间相互作用力可以不计,因此实际气体的性质近似于理想气体.但当压强很大时,分子间的距离变小,分子间的相互吸引力增大.于是,靠近器壁的气体分子受到指向气体内部的引力,使分子对器壁的压力减小,因而气体对器壁的压强比不存在分子引力时的压强要小,因此,当压强很大时,实际气体的实测p-V 值比由玻意耳定律计算出来的理论值偏小.探究结论:实际气体在压强很大时不能遵守玻意耳定律的原因,从分子运动论的观点来分析,有下述两个方面.(1)分子本身占有一定的体积;(2)分子间有相互作用力.上述两个原因中,一个是使气体的p-V 实验值偏大,一个是使气体的p-V 实验值偏小.在这两个原因中,哪一个原因占优势,就向哪一方面发生偏离.这就是实际气体在压强很大时不能严格遵守玻意耳定律的原因.同样,盖·吕萨克定律和查理定律用于实际气体也有偏差.思想方法探究问题 理想气体状态方程的推导可以有哪些种情况?探究过程:一定质量理想气体初态(p 1、V 1、T 1)变化到末态(p 2、V 2、T 2),因气体遵从三个实验定律,我们可以从三个定律中任意选取其中两个,通过一个中间状态,建立两个方程,解方程消去中间状态参量便可得到气态方程,组成方式有6种,如图8-3-6所示.图8-3-6我们选(1)先等温、后等压来证明从初态→中间态,由玻意耳定律得p 1V 1=p 2V′①从中间态→末态,由盖·吕萨克定律得2'V V =21T T ② 由①②得 111T V p =222T V p其余5组大家可试证明一下.探究结论:先等温后等压;先等压后等温;先等容后等温;先等温后等容;先等压后等容;先等容后等压.。
人教版高中物理选修3-3第八章《气体》检测题(含答案)
B.甲图中,封闭气体压强为
C.乙图中,地面对汽缸的支持力为Mg+p0S
D.乙图中,封闭气体压强为
8.一定质量的气体,温度由-13℃升高到117℃,若保持体积不变,它的压强的增加量是原来压强的
A.0.5倍B. 倍C. 倍D.2倍
9.下列关于分子运动和热现象的说法正确的是( )
C.气体压强是原来的3倍
D.气体压强比原来增加了
6.下列说法正确的.大头针能浮在水面上,是由于水的表面存在张力
C.人感觉到空气湿度大,是因为空气中水蒸气的饱和汽压大
D.气体分子热运动越剧烈,气体压强越大
7.质量为M的汽缸口朝上静置于地面上(如图甲),用质量为m的活塞封闭一定量的气体(气体的质量忽略不计),活塞的截面积为S.将汽缸倒扣在地面上(如图乙),静止时活塞没有接触地面.已知大气压强为p0,取重力加速度为g,不计一切摩擦,则下列分析正确的是
A.气体如果失去了容器的约束就会散开,这是因为气体分子之间存在斥力的缘故
B.一定量100℃的水变成100℃的水蒸气,其分子之间的势能增加
C.一定质量的理想气体,当压强不变而温度由100℃上升到200℃时,其体积增大为原来的2倍
D.如果气体分子总数不变,而气体温度升高,气体分子的平均动能增大,因此压强必然增大
A.A→B过程中,气体对外界做功
B.B→C过程中,气体分子的平均动能增大
C.C→D过程中,单位时间内碰撞单位面积器壁的分子数增多
D.D→A过程中,气体分子的速率分布曲线不发生变化
E. 该循环过程中,气体吸热
12.下列说法正确的是__________
A.用油膜法估测分子直径的实验中,用酒精稀释过的油酸滴在水面上形成单分子层,单分子油膜的厚度就是酒精分子和油酸分子半径的平均值
高中物理 第8章 气体 第3节 理想气体的状态方程课件 新人教版选修3-3
24
解析:(1)对于管道右侧气体,因为气体做等温变化,则有:p0V1=p2V2 V2=23V1 解得 p2=1.5×105 Pa (2)对于管道左侧气体,根据理想气体状态方程, 有p0VT10′ =p2′TV2′ V2′=2V1′ 当活塞 P 移动到最低点时,对活塞 P 受力分析可得出两部分气体的压强 p2′=p2 解得 T=900 K
11
『想一想』 如图所示,某同学用吸管吹出一球形肥皂泡,开始时,气体在口腔中的温 度为 37 ℃,压强为 1.1 标准大气压,吹出后的肥皂泡体积为 0.5 L,温度为 0 ℃, 压强近似等于 1 标准大气压。则这部分气体在口腔内的体积是多少呢?
12
解析:T1=273+37 K=310 K,T2=273 K 由理想气体状态方程pT1V1 1=pT2V2 2 V1=pp2V1T2T2 1=1×1.10.×5×273310 L=0.52 L 答案:0.52 L
2.表达式 pT1V1 1=__p_T2V_2_2__或pTV=__恒__量____ 3.适用条件 一定__质__量____的理想气体。
8
辨析思考 『判一判』 (1)实际气体在温度不太高,压强不太大的情况下,可看成理想气体。( × ) (2)能用气体实验定律来解决的问题不一定能用理想气体状态方程来求解。 (× ) (3)对于不同的理想气体,其状态方程pTV=C(恒量)中的恒量 C 相同。( × )
16
1.理想气体 (1)含义 为了研究方便,可以设想一种气体,在任何温度、任何压强下都遵从气体 实验定律,我们把这样的气体叫做理想气体。 (2)特点 ①严格遵守气体实验定律及理想气体状态方程。 ②理想气体分子本身的大小与分子间的距离相比可以忽略不计,分子可视 为质点。 ③理想气体分子除碰撞外,无相互作用的引力和斥力,故无分子势能,理 想气体的内能等于所有分子热运动动能之和,一定质量的理想气体内能只与温 度有关。
高中物理选修3-3第八章 3 理想气体的状态方程
3 理想气体的状态方程[学习目标] 1.了解理想气体的模型,并知道实际气体看成理想气体的条件.2.掌握理想气体状态方程,知道理想气体状态方程的推导过程.3.能利用理想气体状态方程分析、解决实际问题.一、理想气体1.理想气体:在任何温度、任何压强下都遵从气体实验定律的气体. 2.理想气体与实际气体(1)实际气体在温度不低于零下几十摄氏度、压强不超过大气压的几倍时,可以当成理想气体来处理.(2)理想气体是对实际气体的一种科学抽象,就像质点、点电荷模型一样,是一种理想模型,实际并不存在. 二、理想气体的状态方程1.内容:一定质量的某种理想气体,在从一个状态(p 1、V 1、T 1)变化到另一个状态(p 2、V 2、T 2)时,尽管p 、V 、T 都可能改变,但是压强跟体积的乘积与热力学温度的比值保持不变. 2.表达式:p 1V 1T 1=p 2V 2T 2或pV T =C .3.成立条件:一定质量的理想气体.1.判断下列说法的正误.(1)理想气体在超低温和超高压时,气体的实验定律不适用了.( × )(2)能用气体实验定律来解决的问题不一定能用理想气体状态方程来求解.( × ) (3)对于不同的理想气体,其状态方程pVT=C (恒量)中的恒量C 相同.( × )(4)一定质量的理想气体温度和体积均增大到原来的2倍,压强增大到原来的4倍.( × ) 2.一定质量的某种理想气体的压强为p ,温度为27 ℃时,气体的密度为ρ,当气体的压强增为2p ,温度升为327 ℃时,气体的密度是________. 答案 ρ一、对理想气体的理解气体实验定律对任何气体都适用吗?为什么要引入理想气体的概念?答案由于气体实验定律只在压强不太大,温度不太低的条件下理论结果与实验结果一致,为了使气体在任何温度、任何压强下都遵从气体实验定律,引入了理想气体的概念.1.理想气体严格遵守气体实验定律及理想气体状态方程.2.理想气体分子本身的大小与分子间的距离相比可忽略不计,分子不占空间,可视为质点.3.理想气体分子除碰撞外,无相互作用的引力和斥力.4.理想气体分子无分子势能的变化,内能等于所有分子热运动的动能之和,只和温度有关.例1(多选)下列对理想气体的理解,正确的有()A.理想气体实际上并不存在,只是一种理想模型B.只要气体压强不是很高就可视为理想气体C.一定质量的某种理想气体的内能与温度、体积都有关D.在任何温度、任何压强下,理想气体都遵从气体实验定律答案AD解析理想气体是一种理想模型,温度不太低、压强不太大的实际气体可视为理想气体;理想气体在任何温度、任何压强下都遵从气体实验定律,选项A、D正确,选项B错误.一定质量的理想气体的内能只与温度有关,与体积无关,选项C错误.二、理想气体的状态方程如图1所示,一定质量的某种理想气体从状态A到B经历了一个等温过程,又从状态B到C 经历了一个等容过程,请推导状态A的三个参量p A、V A、T A和状态C的三个参量p C、V C、T C之间的关系.图1答案从A→B为等温变化过程,根据玻意耳定律可得p A V A=p B V B①从B →C为等容变化过程,根据查理定律可得p B T B =p CT C ②由题意可知:T A =T B ③ V B =V C ④联立①②③④式可得p A V A T A =p C V CT C.1.对理想气体状态方程的理解 (1)成立条件:一定质量的理想气体.(2)该方程表示的是气体三个状态参量的关系,与中间的变化过程无关. (3)公式中常量C 仅由气体的种类和质量决定,与状态参量(p 、V 、T )无关.(4)方程中各量的单位:温度T 必须是热力学温度,公式两边中压强p 和体积V 单位必须统一,但不一定是国际单位制中的单位. 2.理想气体状态方程与气体实验定律p 1V 1T 1=p 2V2T2⇒⎩⎪⎨⎪⎧T 1=T 2时,p 1V 1=p 2V 2(玻意耳定律)V 1=V 2时,p 1T 1=p 2T 2(查理定律)p 1=p 2时,V 1T 1=V 2T2(盖—吕萨克定律)例2 关于气体的状态变化,下列说法正确的是( )A .一定质量的理想气体,当压强不变而温度由100 ℃上升到200 ℃时,其体积增大为原来的2倍B .任何气体由状态1变化到状态2时,一定满足方程p 1V 1T 1=p 2V 2T 2C .一定质量的理想气体体积增大到原来的4倍,则气体可能压强减半,热力学温度加倍D .一定质量的理想气体压强增大到原来的4倍,则气体可能体积加倍,热力学温度减半 答案 C解析 一定质量的理想气体压强不变,体积与热力学温度成正比,温度由100 ℃上升到200 ℃时,体积增大为原来的1.27倍,故A 错误;理想气体状态方程成立的条件为气体可看做理想气体且质量不变,故B 错误;由理想气体状态方程pVT =C 可知,C 正确,D 错误.例3 如图2所示,粗细均匀一端封闭一端开口的U 形玻璃管竖直放置,管内水银将一定质量的理想气体封闭在U 形管内,当t 1=31 ℃,大气压强p 0=76 cmHg 时,两管水银面相平,这时左管被封闭的气柱长L 1=8 cm ,则当温度t 2是多少时,左管气柱长L 2为9 cm?图2答案78 ℃解析设玻璃管的横截面积为S,初状态:p1=p0=76 cmHg,V1=L1·S=8 cm·S,T1=304 K;末状态:p2=p0+2 cmHg=78 cmHg,V2=L2·S=9 cm·S,根据理想气体状态方程p1V1T1=p2V2T2代入数据解得:T2=351 K,则t2=(351-273) ℃=78 ℃.应用理想气体状态方程解题的一般步骤1.明确研究对象,即一定质量的理想气体;2.确定气体在初、末状态的参量p1、V1、T1及p2、V2、T2;3.由理想气体状态方程列式求解;4.必要时讨论结果的合理性.例4(2019·唐山市期末)如图3所示,绝热性能良好且足够长的汽缸固定放置,其内壁光滑,开口向右,汽缸中封闭一定质量的理想气体,活塞(绝热)通过水平轻绳跨过轻质滑轮与重物相连,已知活塞的面积S=10 cm2,重物的质量m=2 kg,重力加速度g=10 m/s2,大气压强p0=1.0×105 Pa,滑轮摩擦不计.稳定时,活塞与汽缸底部间的距离为L1=12 cm,汽缸内温度T1=300 K.图3(1)通过电热丝对汽缸内气体加热,气体温度缓慢上升到T2=400 K时停止加热,求加热过程中活塞移动的距离d;(2)停止加热后,在重物的下方加挂一个2 kg的重物,活塞又向右移动4 cm后重新达到平衡,求此时汽缸内气体的温度T3.答案(1)4 cm(2)375 K解析 (1)加热前p 1S +F T =p 0S ,F T =mg 加热后p 2S +F T =p 0S ,F T =mg , 所以p 1=p 2=0.8×105 Pa , 加热过程为等压变化,故有L 1S T 1=(L 1+d )ST 2代入数据解得d =4 cm.(2)加挂重物后p 3S +F T ′=p 0S ,F T ′=(m +m ′)g 由理想气体状态方程p 1L 1S T 1=p 3(L 1+d +d ′)ST 3代入数据解得T 3=375 K.1.(理想气体的理解)(多选)关于理想气体的认识,下列说法正确的是( ) A .它是一种能够在任何条件下都能严格遵守气体实验定律的气体 B .它是一种从实际气体中忽略次要因素,简化抽象出来的理想模型 C .在温度不太高、压强不太低的情况下,气体可视为理想气体 D .被压缩的气体,不能视为理想气体 答案 AB2.(状态参量的关系)一定质量的理想气体,发生状态变化,下列变化不可能的是( ) A .p ↑,V ↑,T ↓ B .p ↑,V ↓,T ↑ C .p ↑,V ↑,T ↑ D .p ↓,V ↓,T ↓答案 A解析 根据理想气体状态方程pVT =C 进行判断.由理想气体状态方程分析可知p ↑,V ↑,则T ↑,故A 不可能发生,C 可能发生;由理想气体状态方程分析可知p ↑,V ↓,则T 可能升高,也可能降低或不变,故B 可能发生;由理想气体状态方程分析可知p ↓,V ↓,则T ↓,故D 可能发生.故选A.3.(理想气体状态方程的应用)(2019·清远市高三上期末)如图4所示,一汽缸竖直固定在水平地面上,活塞质量m =4 kg ,活塞横截面积S =2×10-3 m 2,活塞上面的汽缸内封闭了一定质量的理想气体,下面有气孔O 与外界相通,大气压强p 0=1.0×105 Pa.活塞下面与劲度系数k =2×103 N/m 的竖直轻弹簧相连,当汽缸内气体温度为T 1=400 K 时弹簧为自然长度,此时缸内气柱长度L 1=20 cm ,g 取10 m/s 2,活塞不漏气且与缸壁无摩擦.图4(1)当弹簧为自然长度时,缸内气体压强p 1是多少?(2)当缸内气柱长度L 2=24 cm 时,缸内气体温度T 2为多少K? 答案 (1)8×104 Pa (2)720 K解析 (1)当弹簧为自然长度时,设封闭气体的压强为p 1,对活塞受力分析得: p 1S +mg =p 0S代入数据得:p 1=8×104 Pa(2)当缸内气柱长度L 2=24 cm 时,设封闭气体的压强为p 2,对活塞受力分析得: p 2S +mg =p 0S +F 其中:F =k (L 2-L 1)联立可得:p 2=p 0+k (L 2-L 1)-mgS代入数据得:p 2=1.2×105 Pa 对缸内气体,根据题意得:V 1=20S V 2=24S T 1=400 K根据理想气体状态方程,得:p 1V 1T 1=p 2V 2T 2解得T 2=720 K.4.(理想气体状态方程的应用)如图5所示,U 形管左端封闭,右端开口,左管横截面积为右管横截面积的2倍,在左管内用水银封闭一段长为26 cm 、温度为280 K 的空气柱,左右两管水银面高度差为36 cm ,外界大气压为76 cmHg.若给左管的封闭气体加热,使管内空气柱长度变为30 cm ,(忽略温度对水银体积的影响)则此时左管内气体的温度为多少?图5答案420 K解析以封闭气体为研究对象,设左管横截面积为S,当左管封闭的空气柱长度变为30 cm 时,左管水银柱下降4 cm;右管水银柱上升8 cm,即两端水银柱高度差为:h′=24 cm,由题意得:V1=L1S=26S,p1=p0-p h=76 cmHg-36 cmHg=40 cmHg,T1=280 K,p2=p0-p h′=52 cmHg,V2=L2S=30S.由理想气体状态方程:p1V1T1=p2V2T2,解得T2=420 K.考点一理想气体及理想气体状态方程的理解1.(多选)关于理想气体的性质,下列说法正确的是()A.理想气体是一种假想的物理模型,实际并不存在B.理想气体的存在是一种人为规定,它是一种严格遵守气体实验定律的气体C.一定质量的理想气体,平均动能增大,其温度一定升高D.氦是液化温度最低的气体,任何情况下均可当作理想气体答案ABC2.对于一定质量的理想气体,下列状态变化中可能实现的是()A.使气体体积增加而同时温度降低B.使气体温度升高,体积不变、压强减小C.使气体温度不变,而压强、体积同时增大D.使气体温度升高,压强减小,体积减小答案 A解析由理想气体状态方程pVT=C得A项中若使压强减小就有可能,故A项正确;体积不变,温度与压强应同时变大或同时变小,故B项错误;温度不变,压强与体积成反比,故不能同时增大,故C 项错误;温度升高,压强减小,体积不可能减小,故D 项错误. 3.对于一定质量的理想气体,下列论述正确的是( ) A .当分子热运动变剧烈时,压强必变大 B .当分子热运动变剧烈时,压强可以不变 C .当分子间的平均距离变大时,压强必变小 D .当分子间的平均距离变大时,压强必变大 答案 B解析 分子热运动变剧烈,说明温度T 升高,由pVT =恒量知,pV 要变大,但不知体积变化情况,故无法判定压强变化情况(p 可以不变、变大或变小),因此选项A 错误,B 正确;分子间的平均间距变大,说明体积变大,由pV T =恒量知,pT 要变小,但温度T 的变化情况不确定,故无法确定p 是变大、变小或不变,因此选项C 、D 错误. 考点二 理想气体状态方程的应用4.如图1所示为伽利略设计的一种测温装置示意图,玻璃管的上端与导热良好的玻璃泡连通,下端插入水中,玻璃泡中封闭有一定质量的空气.若玻璃管中水柱上升,则外界大气的变化可能是( )图1A .温度降低,压强增大B .温度升高,压强不变C .温度升高,压强减小D .温度不变,压强减小 答案 A解析 由题意可知,封闭空气温度与大气温度相同,封闭空气体积随水柱的上升而减小,将封闭空气近似看作理想气体,根据理想气体状态方程pVT=常量,若温度降低,体积减小,则压强可能增大、不变或减小,A 正确;若温度升高,体积减小,则压强一定增大,B 、C 错误;若温度不变,体积减小,则压强一定增大,D 错误.5.已知湖水深度为20 m ,湖底水温为4 ℃,水面温度为17 ℃,大气压强为1.0×105 Pa.当一气泡从湖底缓慢升到水面时,其体积约为原来的(取g =10 m/s 2,ρ水=1.0×103 kg/m 3)( ) A .12.8倍 B .8.5倍 C .3.1倍 D .2.1倍 答案 C解析 湖底压强为p 0+ρ水gh =3.0×105 Pa ,即3个大气压强,由理想气体状态方程可得3p 0V 1(4+273.15) K =p 0V 2(17+273.15) K,即V 2=290.15277.15×3V 1≈3.14V 1.所以当一气泡从湖底缓慢升到水面时,其体积约为原来的3.1倍,C 正确.6.(多选)甲、乙两个相同的密闭容器中分别装有等质量的同种气体,已知甲、乙容器中气体的压强分别为p 甲、p 乙,且p 甲<p 乙,则( ) A .甲容器中气体的温度高于乙容器中气体的温度 B .甲容器中气体的温度低于乙容器中气体的温度C .甲容器中气体分子的平均动能小于乙容器中气体分子的平均动能D .甲容器中气体分子的平均动能大于乙容器中气体分子的平均动能 答案 BC解析 甲、乙两容器中的气体由于质量相等,可以看成同一气体的两个不同状态.则p 甲V 甲T 甲=p 乙V 乙T 乙,由于V 甲=V 乙,p 甲<p 乙,所以T 甲<T 乙,B 、C 正确.7.一定质量的理想气体,经历了如图2所示的状态变化过程,则此三个状态的温度之比是( )图2A .1∶3∶5B .3∶6∶5C .3∶2∶1D .5∶6∶3答案 B解析 由理想气体状态方程得:pVT =C (C 为常数),可见pV =TC ,即pV 的乘积与温度T 成正比,故B 项正确.8.我国“蛟龙”号深海探测船载人下潜超过七千米.在某次深潜试验中,“蛟龙”号探测到990 m深处的海水温度为280 K.某同学利用该数据来研究气体状态随海水深度的变化,如图3所示,导热良好的汽缸内封闭一定质量的气体,不计活塞的质量和摩擦,汽缸所处海平面的温度T0=300 K,压强p0=1 atm,封闭气体的体积V0=3 m3.如果将该汽缸下潜至990 m深处,此过程中封闭气体可视为理想气体.求990 m深处封闭气体的体积(1 atm相当于10 m深的海水产生的压强).图3答案 2.8×10-2 m3解析当汽缸下潜至990 m深处时,设封闭气体的压强为p,温度为T,体积为V,由题意知p=100 atm.由理想气体状态方程得p0V0T0=pVT,代入数据得V=2.8×10-2 m3.9.(多选)一定质量的理想气体,处于某一状态,要使它的压强经过变化后仍然回到初始状态的压强,下列过程可以实现的是()A.先保持体积不变,减小压强,再保持温度不变,压缩体积B.先保持体积不变,增大压强,再保持温度不变,压缩体积C.先保持温度不变,使体积膨胀,再保持体积不变,降低温度D.先保持温度不变,压缩体积,再保持体积不变,降低温度答案AD解析先等容变化,p减小,则T减小,再等温变化,V减小,p增大,p可能回到原状态,A正确;先等容变化,p增大,则T升高,再等温变化,V减小,则p又增大,p不可能回到原状态,B错误;先等温变化,V增大,则p减小,再等容变化,T降低,p又减小,p不可能回到原状态,C错误;先等温变化,V减小,则p增大,再等容变化,T降低,则p降低,p可能回到原状态,D正确.10.如图4所示,一根竖直的弹簧支持着一倒立汽缸的活塞,使汽缸悬空而静止.设活塞与缸壁间无摩擦,可以在缸内自由移动,缸壁导热性良好,使缸内气体的温度保持与外界大气温度相同,则下列结论正确的是()图4A .若外界大气压增大,则弹簧将压缩一些B .若外界大气压增大,则汽缸的上底面距地面的高度将增大C .若气温升高,则活塞距地面的高度将减小D .若气温升高,则汽缸的上底面距地面的高度将增大答案 D解析 以活塞和汽缸整体为研究对象可知,重力等于弹簧弹力,跟外界大气压无关,即弹簧压缩量不变,A 错误;因为弹力不变,故活塞距地面的高度不变,C 错误;以汽缸为研究对象,若外界大气压增大,则汽缸内气体体积减小,所以汽缸的上底面距地面的高度将减小,B 错误;若气温升高,汽缸内气体压强不变,故气体的体积增大,所以上底面距地面的高度将增大,D 正确.11.如图5所示,圆柱形汽缸A 中用质量为2m 的活塞封闭了一定质量的理想气体,气体温度为27 ℃,汽缸中的活塞通过滑轮系统悬挂一质量为m 的重物,稳定时活塞与汽缸底部的距离为h ,现在重物m 上加挂一个质量为m 3的小物体,已知大气压强为p 0,活塞横截面积为S ,m =p 0S g,不计一切摩擦,求当气体温度升高到37 ℃且系统重新稳定后,重物m 下降的高度.图5答案 0.24h解析 以汽缸内气体为研究对象,初状态:p 1S +mg =p 0S +2mgV 1=hS ,T 1=300 K末状态:p 2S +43mg =p 0S +2mg V 2=(h +Δh )S ,T 2=310 K由题意知m =p 0S g ,解得p 1=2p 0,p 2=53p 0 根据理想气体状态方程:p 1V 1T 1=p 2V 2T 2解得:Δh =0.24h .12.如图6所示,粗细均匀的U 形管左端封闭,右端开口,左端用水银封闭着长L =15 cm 的理想气体,当温度为27 ℃时,两管水银面的高度差Δh =3 cm ,设外界大气压恒为75 cmHg ,则:图6(1)若对封闭气体缓慢加热,为了使左右两管中的水银面相平,温度需升高到多少?(忽略温度对水银体积的影响)(2)若保持27 ℃不变,为了使左右两管中的水银面相平,需从右管的开口端再缓慢注入的水银柱的长度应为多少?答案 (1)70.75 ℃ (2)4.2 cm解析 (1)设U 形管横截面积为S ,以封闭气体为研究对象初态:p 1=p 0-ρg Δh =72 cmHgV 1=LS ,T 1=300 K末态:p 2=p 0=75 cmHg ,V 2=(L +Δh 2)S 根据理想气体状态方程p 1V 1T 1=p 2V 2T 2, 代入数据得:T 2=343.75 K ,故t 2=70.75 ℃(2)p 3=75 cmHg ,V 3=L ′S根据玻意耳定律有;p 1V 1=p 3V 3,代入数据得:L ′=14.4 cm则需从右管的开口端再缓慢注入的水银柱的长度l =Δh +2(L -L ′)=4.2 cm.13.(2018·全国卷Ⅰ)如图7,容积为V 的汽缸由导热材料制成,面积为S 的活塞将汽缸分成容积相等的上下两部分,汽缸上部通过细管与装有某种液体的容积相连,细管上有一阀门K.开始时,K 关闭,汽缸内上下两部分气体的压强均为p 0.现将K 打开,容器内的液体缓慢地流入汽缸,当流入的液体体积为V 8时,将K 关闭,活塞平衡时其下方气体的体积减小了V 6.不计活塞的质量和体积,外界温度保持不变,重力加速度大小为g .求流入汽缸内液体的质量.图7答案 15p 0S 26g解析 设活塞再次平衡后,活塞上方气体的体积为V 1,压强为p 1;下方气体的体积为V 2,压强为p 2.在活塞下移的过程中,活塞上、下方气体的温度均保持不变,由玻意耳定律得 p 0V 2=p 1V 1(2分) p 0V 2=p 2V 2(1分) 由已知条件得V 1=V 2+V 6-V 8=1324V (2分) V 1=V 2-V 6=V 3(1分) 设活塞上方液体的质量为m ,由力的平衡条件得p 2S =p 1S +mg (2分)联立以上各式得m =15p 0S 26g.(2分)14.竖直平面内有一直角形内径处处相同的细玻璃管,A 端封闭,C 端开口,最初AB 段处于水平状态,中间有一段水银将气体封闭在A 端,各部分尺寸如图8所示.初始时,封闭气体温度为T 1=300 K ,外界大气压强p 0=75 cmHg.求:图8(1)若对封闭气体缓慢加热,当水平管内水银全部进入竖直管内时,气体的温度是多少;(2)若保持(1)问的温度不变,从C端缓慢注入水银,使水银与C端管口平齐,需要注入水银的长度为多少.答案(1)450 K(2)14 cm解析(1)设细管的横截面积为S,以AB段内封闭的气体为研究对象.初态p1=p0+5 cmHg=80 cmHg,V1=30S,T1=300 K当水平管内水银全部进入竖直管内时,此时:p2=p0+15 cmHg=90 cmHg,体积V2=40S,设此时温度为T2,由理想气体状态方程得:p1V1T1=p2V2T2解得T2=450 K.(2)保持温度不变,初态p2=90 cmHg,体积V2=40S,末态p3=p0+25 cmHg=100 cmHg 由玻意耳定律得:p2V2=p3V3解得V3=36S故需要加入的水银长度Δl=(30+20-36) cm=14 cm.。
高中物理 第八章 气体 第3节 理想气体的状态方程练习(含解析)新人教版选修3-3
第3节理想气体的状态方程1.了解理想气体模型,知道实际气体可以近似看成理想气体的条件。
2.能够从气体实验定律推导出理想气体的状态方程。
3.掌握理想气体状态方程的内容、表达式和适用条件,并能应用理想气体的状态方程分析解决实际问题。
一、理想气体1.定义:在任何温度、任何压强下都严格遵从□01气体实验定律的气体。
2.理想气体与实际气体二、理想气体的状态方程1.内容:一定质量的某种理想气体,在从状态1变化到状态2时,尽管p、V、T都可能03热力学温度的比值保持不变。
改变,但是□01压强跟□02体积的乘积与□2.公式:□04pV T =C 或□05p 1V 1T 1=p 2V 2T 2。
3.适用条件:一定质量的□06某种理想气体。
判一判(1)一定质量的理想气体,先等温膨胀,再等压压缩,其体积必小于起始体积。
( ) (2)气体的状态由1变到2时,一定满足方程p 1V 1T 1=p 2V 2T 2。
( ) (3)描述气体的三个状态参量中,可以保持其中两个不变,仅使第三个发生变化。
( ) 提示:(1)× (2)× (3)×课堂任务 对理想气体的理解理想气体的特点1.严格遵守气体实验定律及理想气体状态方程。
2.理想气体分子本身的大小与分子间的距离相比可以忽略不计,分子可视为质点。
3.理想气体分子除碰撞外,无相互作用的引力和斥力,故无分子势能,理想气体的内能等于所有分子热运动动能之和,一定质量的理想气体内能只与温度有关。
例1 (多选)关于理想气体,下面说法哪些是正确的( )A.理想气体是严格遵守气体实验定律的气体模型B.理想气体的分子没有体积C.理想气体是一种理想模型,没有实际意义D.实际气体在温度不太低、压强不太大的情况下,可当成理想气体[规范解答] 理想气体是指严格遵守气体实验三定律的气体,实际的气体在压强不太高、温度不太低时可以认为是理想气体,A、D正确。
理想气体分子间没有分子力,但分子有大小,B错误。
高中物理 8.1《气体的等温变化》教学设计 新人教版选修3-3
《气体的等温变化》教学设计[教材分析]教材首先从日常生活中感知气体的压强、体积、和温度之间有一定的关系,而没有从对气体的三个状态参量进行逐一描述,尝试用科学探究的方法研究物理问题的一个具体实施过程。
教材试图给学生留下必要的时间和空间〔包括心理空间、思维空间〕,并让学生利用这些“空白〞式的自主活动,自己建构、探索知识,逼近真实的探究结论。
但是给出实验的基本思路,以使学生体会探究的基本要素。
对于数据的处理也有提示,给学生一定的自由度但又不撒手不管,这是提高学生实验和探究能力较好的途径。
[教学设计思路]一、为学生创造更大的空间,培养学生的发散思维的探究能力这样学生会在知觉中情不自禁地产生一种紧X的“内驱力〞,并促使大脑积极兴奋地思考活动,从而达到内心的平衡,获得感受的愉悦。
主要从三个方面考虑:1.和谐宽松的课堂气氛,师生平等的交流与学习,使学生带着愉悦的心情探究学习,思维得到最大限度的绽放。
2.是问题的创设,问题设置的越是具体表面上看来学生越是容易回答,但是学生总是在狭窄的思维胡同中去观察和思考,如井底之蛙。
而过分的散乱会使学生很盲从,因此力争做到形散而神不散。
3、实验条件的创设实验条件创设的越是理想,实验结果越是理想。
但是学生感受不到物理学家的探究历程。
感受不到模型与实际的差距。
不利于误差的分析和物理在实际应用中模型的建立。
二、允许接受学生的错误物理定律的建立过程往往经过漫长的过程,无数次的失败。
让学生清楚一个定律的发现不可能通过几次简单的测量就得出的,我们只不过是通过实验对自然规律的探究有所体验。
因此接纳学生失败,共同分析失败和产生误差的原因。
有时没有失败的收获是不牢固的。
三、重视过程和方法知识的东西一生中任何时候均可获得,但方法性的东西获得一生中却有关键时期。
实验的结果重要,但过程的方法更重要。
探究的要素,实验的基本环节,控制变量,物理量转换,团结协作的精神等。
[教学目标]一、知识与技能1.通过实验确定气体的压强与体积之间的关系。
高中物理第八章气体第2节气体的等容变化和等压变化讲义含解析新人教版选修3_3
第2节气体的等容变化和等压变化1.查理定律:一定质量的某种气体,在体积不变的情况下,压强p 与热力学温度T 成正比,即p T=C 。
2.盖-吕萨克定律:一定质量的某种气体,在压强不变的情况下,其体积V 与热力学温度T 成正比,即V T=C 。
3.玻意耳定律、查理定律、盖-吕萨克定律的适用条件均为一定质量的某种气体。
一、气体的等容变化 1.等容变化一定质量的某种气体,在体积不变时,压强随温度的变化。
2.查理定律 (1)内容:一定质量的某种气体,在体积不变的情况下,压强p 与热力学温度T 成正比。
(2)表达式:p T =C 或p 1T 1=p 2T 2。
(3)适用条件:①气体的质量不变;②气体的体积不变。
3.等容线一定质量的气体,在体积不变时,其p T 图像是一条过原点的直线,这条直线叫做等容线。
二、气体的等压变化 1.等压变化一定质量的某种气体,在压强不变时,体积随温度的变化。
2.盖-吕萨克定律 (1)内容:一定质量的某种气体,在压强不变的情况下,体积V 与热力学温度T 成正比。
(2)表达式:V =CT 或V T =C 或V 1T 1=V 2T 2。
(3)适用条件:①气体的质量不变;②气体的压强不变。
3.等压线一定质量的气体,在压强不变时,其V T 图像是一条过原点的直线,这条直线叫做等压线。
1.自主思考——判一判(1)气体的温度升高,气体体积一定增大。
(×)(2)一定质量的气体,在压强不变时体积与温度成正比。
(×)(3)一定质量的某种气体,在压强不变时,其V T 图像是过原点的直线。
(√) (4)一定质量的气体在体积不变的情况下,气体的压强与摄氏温度成正比。
(×) (5)pV =C 、p T =C 、V T=C ,三个公式中的常数C 是同一个值。
(×) 2.合作探究——议一议(1)某登山运动员在一次攀登珠穆朗玛峰的过程中,在接近山顶时他裸露在手腕上的防水手表的表盘玻璃突然爆裂了,而手表没有受到任何撞击,你知道其中的原因吗?提示:手表表壳可以看成一个密闭容器,出厂时封闭着一定质量的气体,登山过程中气体发生等容变化,因为高山山顶附近的压强比山脚处小很多,内外压力差超过表盘玻璃的承受限度,便会发生爆裂。
《第八章-气体——3-理想气体的状态方程课件》高中物理人教版选修3-34115
(1)肥皂泡内、外压强差别不大,均近似等于1标准大气 压。试估算肥皂泡内的气体分子个数;
(2)肥皂泡内压强近似等于1标准大气压。求这部分气体 在口腔内的体积。
一定质量的理想气体的p-t图象如图所示,在状态A变
到状态B的过程中,体积
()
第八章 第三节
成才之路 ·物理 ·人教版 · 选修3-3
A.一定不变 B.一定减小 C.一定增加 D.不能判定怎样变化 答案:D
第八章 第三节
成才之路 ·物理 ·人教版 · 选修3-3
解析:由图可以看出气体从A到B的过程中压强增大、温
解得: pAVA pCVC
TA
TC
二、理想气体的状态方程
1、内容:一定质量的某种理想气体在从一个状态变
化到另一个状态时,尽管p、V、T都可能改变,但是
压强跟体积的乘积与热力学温度的比值保持不变。
2、公式: p1V1 p2V2 或 T1 T2
pV C T
注:恒量C由理想气体的质量和种类决定,
即由理想气体的物质的量决定
第八章 第三节
成才之路 ·物理 ·人教版 · 选修3-3
解析:由ρ=m/V可知,ρ减小,V增大,又由pTV=C可知 A、B、C错,D对。
第八章 第三节
成才之路 ·物理 ·人教版 · 选修3-3
三、一定质量的理想气体的各种图象
图线
类别
特点
pV=CT(其中C为恒
p-V
量),即pV之积越大的 等温线温度越高,线离
第八章 第三节
成才之路 ·物理 ·人教版 · 选修3-3
人教版高中物理选修3-3教学案:第八章 第1节 气体的等温变化-含解析
第1节气体的等温变化1.一定质量的气体,在温度不变的条件下,其压强与体积变化时的关系,叫做气体的等温变化。
2.玻意耳定律:一定质量的某种气体,在温度不变的情况下,压强p 与体积V 成反比,即pV =C 。
3.等温线:在p -V 图像中,用来表示温度不变时,压强和体积关系的图像,它们是一些双曲线。
在p -1V 图像中,等温线是倾斜直线。
一、探究气体等温变化的规律 1.状态参量研究气体性质时,常用气体的温度、体积、压强来描述气体的状态。
2.实验探究二、玻意耳定律1.内容一定质量的某种气体,在温度不变的情况下,压强与体积成反比。
2.公式pV=C或p1V1=p2V2。
3.条件气体的质量一定,温度不变。
4.气体等温变化的p -V图像气体的压强p随体积V的变化关系如图8-1-1所示,图线的形状为双曲线,它描述的是温度不变时的p -V关系,称为等温线。
一定质量的气体,不同温度下的等温线是不同的。
图8-1-11.自主思考——判一判(1)一定质量的气体压强跟体积成反比。
(×)(2)一定质量的气体压强跟体积成正比。
(×)(3)一定质量的气体在温度不变时,压强跟体积成反比。
(√)(4)在探究气体压强、体积、温度三个状态参量之间关系时采用控制变量法。
(√)(5)玻意耳定律适用于质量不变、温度变化的气体。
(×)(6)在公式pV=C中,C是一个与气体无关的参量。
(×)2.合作探究——议一议(1)用注射器对封闭气体进行等温变化的实验时,在改变封闭气体的体积时为什么要缓慢进行?提示:该实验的条件是气体的质量一定,温度不变,体积变化时封闭气体自身的温度会发生变化,为保证温度不变,应给封闭气体以足够的时间进行热交换,以保证气体的温度不变。
(2)玻意耳定律成立的条件是气体的温度不太低、压强不太大,那么为什么在压强很大、温度很低的情况下玻意耳定律就不成立了呢?提示:①在气体的温度不太低、压强不太大时,气体分子之间的距离很大,气体分子之间除碰撞外可以认为无作用力,并且气体分子本身的大小也可以忽略不计,这样由玻意耳定律计算得到的结果与实际的实验结果基本吻合,玻意耳定律成立。
高中物理选修3-3第八章《理想气体状态方程》
教学过态参量p c或p′c均可得到:这就是理想气体状态方程。
它说明:一定质量的理想气体的压强、体积的乘积与热力例题1 一水银气压计中混进了空气,因而在27℃,外界大气压为758毫米汞柱时,这个水银气压计的读数为738毫米汞柱,此时管中水银面距管顶80毫米,当温度降至-3℃时,这个气压计的读数为743毫米汞柱,求此时的实际大气压值为多少毫米汞柱?教师引导学生按以下步骤解答此题:(1)该题研究对象是什么?(2)画出该题两个状态的示意图:(3)分别写出两个状态的状态参量:p1=758-738=20mmHg V1=80Smm3(S是管的横截面积)。
T1=273+27=300 Kp2=p-743mmHg V2=(738+80)S-743S=75Smm3T2=273+(-3)=270K解得p=762.2 mmHg完成例题1,并总结此类问题的解题思路(5分钟)学习札记:课堂达标练习1、对于理想气体下列哪些说法是不正确的()A、理想气体是严格遵守气体实验定律的气体模型B、理想气体的分子间没有分子力C、理想气体是一种理想模型,没有实际意义D、实际气体在温度不太低,压强不太大的情况下,可当成理想气体2、一定质量的理想气体,从状态P1、V1、T1变化到状态P2、V2、T2。
下述过程不可能的是()A、P2>P1,V2>V1,T2>T1B、P2>P1,V2>V1,T2<T1C、P2>P1,V2<V1,T2>T1D、P2>P1,V2<V1,T2<T13、如图8—24所示,表示一定质量的理想气体沿从a到b到c到d再到a的方向发生状态变化的过程,则该气体压强变化情况是()ArrayA、从状态c到状态d,压强减小,内能减小B、从状态d到状态a,压强增大,内能减小C、从状态a到状态b,压强增大,内能增大D、从状态b到状态c,压强不变,内能增大4、密封的体积为2L的理想气体,压强为2atm,温度为270C。
加热后,压强和体积各增加20%,则它的最后温度是5、用活塞气筒向一个容积为V的容器内打气,每次能把体积为V0、压强为P0的空气打入容器内。
人教版高中物理选修3-3课程目录与教学计划表
人教版高中物理选修3-3课程目录与教学计划表
教材课本目录是一本书的纲领,是教与学的路线图。
不管是做教学计划、实施教学活动,还是做复习安排、工作总结,都离不开目录。
目录是一本书的知识框架,要做到心中有书、胸有成竹,就从目录开始吧!
课程目录教学计划、进度、课时安排
第七章分子动理论
1物体是由大量分子组成的【
2分子的热运动
3分子间的作用力
4温度和温标
5内能【
第八章气体
1气体的等温变化
2气体的等容变化和等压变化
3理想气体的状态方程~
4气体热现象的微观意义
第九章固体、液体和物态变化
1固体
2液体<
3饱和汽与饱和汽压
4物态变化中的能量交换
第十章热力学定律
1功和内能。
2热和内能
3热力学第一定律能量守恒定律
4热力学第二定律
5热力学第二定律的微观解释. 6能源和可持续发展
课题研究
总复习。
高中物理第8章气体3理想气体的状态方程课件新人教版选修3_3
【解析】 理想气体是一种理想化模型,温度不太低,压强不太大的实际 气体可视为理想气体;只有理想气体才遵循气体的实验定律,选项 A、D 正确, 选项 B 错误.一定质量的理想气体的内能完全由温度决定,与体积无关,选项 C 错误.
【答案】 ADE
3.如图所示,五个两端封闭、粗细均匀的玻璃管内的空气被一段水银柱隔 开,按图中标明的条件,当玻璃管水平放置时,水银柱处于静止状态.如果管 内两端的空气都升高相同的温度,则水银柱向左移动的是( )
图 8-3-4
②T 一定时,在 p -V1图象中,等温线是延长线过坐标原点的直线,直线的斜 率越大,温度越高,如图 8-3-4 乙所示.
(2)等容变化 ①V 一定时,在 p -T 图象中,等容线为一簇延长线过坐标原点的直线,直 线的斜率越小,体积越大,如图 8-3-5 甲所示.
甲
乙
图 8-3-5 ②V 一定时,在 p -t 图象中,等容线与 t 轴的交点是-273.15 ℃,是一条倾
理想气体的内能仅与温度有关 1.对于一切物体而言,物体的内能包括分子动能和分子势能. 2.对于理想气体而言,其微观本质是忽略了分子力,即不存在分子势能, 只有分子动能,故一定质量的理想气体的内能完全由温度决定.
理想气体的状态方程
[先填空] 1.内容 一定质量的某种理想气体,在从状态 1 变化到状态 2 时,尽管 p、V、T 都 可能改变,但是__压__强___跟__体___积的乘积与热___力__学___温__度__的比值保持不变.
编后语
有的同学听课时容易走神,常常听着听着心思就不知道溜到哪里去了;有的学生,虽然留心听讲,却常常“跟不上步伐”,思维落后在老师的讲解后。这两种情况都 不能达到理想的听课效果。听课最重要的是紧跟老师的思路,否则,教师讲得再好,新知识也无法接受。如何跟上老师饭思路呢?以下的听课方法值得同学们学习:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单元测试题
一、选择题
1.对一定质量的理想气体, 下列变化中, 不可能发生的是 ( ).
A. 它的状态发生了变化, 但它的温度可以不变
B. 它的压强变化了, 但它的体积和温度都没改变
C. 它的体积、压强、温度都发生了变化, 但体积压强的乘积与热力学
温度的比值并不改变
D. 它的压强、体积都增大, 但它的内能不变化
3.两端封闭的等臂U型管中, 两边的空气柱a和b被水银柱隔开, 当U形管竖直放置时, 两空气柱的长度差为h, 现将这个U型管平放, 使两臂位于同一水平面上, 稳定后两空气柱的长度差为l, 若温度不变化, 则( ).
A. l >h
B. l=h
C. l=0
D. l<h (l≠0)
4.一定质量的气体可经不同的过程从状态(p1, V1, T1)变至状态 (p2, V2, T2), 已知T2>T1, 则在这些过程中 ( ).
A. 气体一定都从外界吸收热量
B. 气体与外界交换的热量都相等
C. 外界对气体做的功都相等
D. 气体内能的变化量都相等
5.一个粗细均匀的圆筒, b端用塞子塞紧, 用12N的压力方可将塞子推出. A处有一个小孔距b端30cm, 圆筒的面积S=0.8cm2, 外界大气压为1×105Pa, 当缓慢推动活塞距b端多远时, 塞子将被推出 ( ).
A. 20cm
B. 18cm
C. 12cm
D. 10cm
6.两端封闭的绝热气缸, 内有一绝热的活塞将气缸分为左、右两部分, 当活塞左侧部分充入77℃的气体, 右侧部分充入27℃的气体时, 活塞恰好静止不动. 现让两部分气体同时升高或降低相同温度, 那么活塞将 ( ).
A. 无论升高或降低相同温度, 活塞均向右移动
B. 无论升高或降低相同温度, 活塞均向左移动
C. 升高相同温度活塞向右移动, 降低相同温度活塞向左移动
D. 升高相同温度活塞向左移动, 降低相同温度活塞向右移动
7.一定质量的理想气体, 在某一变化过程中, 其内能增量恰好等于它从外界吸收的热量, 这个变化过程可能是 ( ).
A. 等温过程
B. 等压过程
C. 等容过程
D. 以上三个过程都不可能
8.p–T图中a、b、c、d表示一定质量的理想气体状态变化过程中的四个状态. 图中ab线和cd线平行于横坐标轴, bc线垂直于横坐标轴, ad 线延长线通过原点. 下列判断中错误的是 ( ).
A. 由b到c气体不吸热也不放热
B. 由a到b气体对外做功
C. 由c到d气体放热
D. 由d到a气体吸热
9.在《验证玻意耳一马略特定律》的实验中, 假定某位同学对气柱初始状态的观察、测量、计算都正确无误, 并得到一组pV值, 改变气柱状态后又得到一组p&127; V&127; 值, 但p&127; V&127; 却显著小于pV值, 这可能是在实验过程中 ( ).
A. 有气体漏出
B. 温度升高了
C. 温度降低了
D. 砝码对管塞的压力方向不不沿轴线, 使摩擦增加了
E. 弹簧秤拉力方向不沿轴线, 使摩擦增加了
10.一只贮有空气的烧瓶连一根玻璃管, 用橡皮管把它跟一个水银压强计连在一起, 压强计两管内水银面在同一水平面上, 若降低烧瓶内温度, 同时移动压强计右臂, 使压强计左管水银面仍保持原位置, 则压强计两管中水银面高度差h与所降低的温度t之间的关系是 ( ). (k为常数)
A. h = kt
B. h =2kt
C. h = k
D. h =kt
二、填空题
11.A端空气被一段水银柱封住, 试判断在下列情况下水银柱移动是朝着A端, 还是远离A端:
(1) 以开口端为轴心在水平面上以角速度ω匀速转动时, 水
银 .
(2)竖直开口朝下时, 水银 .
(3)开口端竖直向下插入水银槽时, ;然后从槽中提取玻璃管, 但开
口端不离开水银槽, 则水银 .
12.某一玻璃瓶中空气温度为7℃, 敞开加热到77℃后, 加盖封闭, 然后再冷却到7℃, 则瓶中气体压强为外界大气压的倍, 瓶中质量为原来
的倍 (此时外界压强为1大气压).
13.空气在标准状态下的密度为1.29g/L, 当温度升为87℃, 压强增加到2大气压时, 空气密度是 .
15.有大小两个球形容器, 容积分别为V1、V2, 两容器由装有阀门k 的导管相连, 已知容器内装有同温同种气体, 且V1= 2V2, 压强p1=2.4大气压, p2=1.2大气压, 打开阀门k后保持温度不变, 则容器内气体的压强
是 .
三、计算题
16.使一定质量的理想气体的状态按图甲中箭头所示的顺序变化, 图线BC是一以两轴为渐近线的双曲线. 若A态时的温度T A = 200开, 请将气体由A变到D的过程在图乙中描给出来.
17.两端封闭的均匀细玻璃管中, 装一段水银, 水平放置时, 水银柱恰在管口中央, 两头气柱长度相同, 压强均为72cm汞柱, 当竖直放置时, 上部气柱长为下部的1.5倍, 求水银柱长度.
18.密闭的圆柱形绝热容器中有27℃、1大气压的理想气体, 容器中间有两个绝热而且能自由滑动的光滑活塞将容器分成a、b、c三个相等部分, 每部分体积都为V0 = 1.4L. 当a部分气体加热到227℃, b部分气体加热到327℃时, c部分气体的体积是多少?
答案:
一、1. B、D 2. A 3. A 4. D 5. A 6.D 7. C 8. A 9. A、C、E 10. A
二、11. (1) 朝着A端移动 (2) 远离A端移动 (3) 朝着A端移动, 远离A端移动 12. 4/5 4/5 13. 1.96g·L–1 14.4个 1:3 15. 2大气压
三、16. 如图答–6 17. L =30cm 18. Vc = 0.9L。