2019-2020年七年级数学上2.6有理数的加减混合运算同步练习含答案.docx

合集下载

北师版七年级数学上册 2.6.1 有理数的加减混合运算 同步练习题

北师版七年级数学上册  2.6.1 有理数的加减混合运算    同步练习题

北师版七年级上册第二章有理数2.6.1 有理数的加法混合运算同步测试一.选择题(共10小题,3*10=30)1.计算(2-3)+(-1)的结果是( )A .-2B .0C .1D .22.-3减去-75与-35的和的结果是( ) A .-195 B .-115C .-5D .-13.已知a =-112,b =-2,c =2,则|a|+|b|-|c|等于( ) A .112 B .-112C .512D .-124.下列计算正确的是( )A .-6+(-3)+(-2)=-1B .7+(-0.5)+2-3=5.5C .-3-3=0D .(-1)-(-34)+(-4)=3345.某天上午6:00虹桥水库的水位为30.4米,到上午11:30水位上涨了5.3米,到下午6:00水位下降了0.9米,则到下午6:00水位为( )A .26米B .34.8米C .35.8米D .36.6米6.在算式-1+7-( )=-3中,括号里应填( )A .+2B .-2C .+9D .-97.设a 是最大的负整数,b 是绝对值最小的有理数,c 是最小的正整数,则b -c +a 的值是( )A.2 B.1C.-1 D.-28.-7,-12,+2的和比它们的绝对值的和小( )A.-38 B.-4C.4 D.389.小明近期几次数学测试成绩如下:第一次88分,第二次比第一次高8分,第三次比第二次低12分,第四次又比第三次高10分,那么小明第四次测试成绩是( )A.93分B.78分C.94分D.84分10. 某超市出售的三种品牌的大米,袋上分别标有质量为(25±0.1) kg,(25±0.2) kg,(25±0.3) kg的字样,从中任意拿两袋大米,它们的质量相差最多是( )A.0.4 kg B.0.5 kgC.0.6 kg D.0.8 kg二.填空题(共8小题,3*8=24)11.计算:(-9)-(+6)+(-8)-(-10)=________ ;1-2+3-4+5-6=_________. 12.若a=5,b=-3,c=-7,则a-b+c的值为_____.13.某地一天早晨的气温是-7 ℃,中午气温上升了11 ℃,下午又下降了9 ℃,晚上又下降了5 ℃,则晚上的温度为___________.14.根据如图所示的程序计算,若输入的值为1,则输出的值为________.15.把(+5)-(+6)-(-9)+(-4)写成省略括号的和的形式是_________________.16.设a是最大的负整数,b是绝对值最小的有理数,c是最小的正整数,则b-c+a的值是________.17. 某气象站每天下午4点需要测量一次气温,下表是某地星期一至星期五气温变化情况,该地上个星期日下午4点的气温是12 ℃.则该地星期五下午4点的气温是________.18.红星队在4场足球赛中的战绩是:第一场3∶1 胜,第二场2∶3 负,第三场0∶0平,第四场2∶5 负,则红星队在这次比赛中总的净胜球数是_______个.三.解答题(共6小题,46分)19. (6分) 计算:(1)13-23+1;(2)(-613)+(-713)-2;(3)-12+(-16)-(-14)-(+23).20. (6分)小明和小红在游戏中规定:长方形表示加,圆形表示减,结果小者为胜,列式计算,小明和小红谁为胜者?小明:小红:(1)313+⎝⎛⎭⎫-237+523+⎝⎛⎭⎫-847;(2)(-103)+(+134)+(-97)+(+100)+(-114);22. (6分) 某摩托车厂本周计划每日生产250辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表:(增加的辆数为正数,减少的辆数为负数)根据记录回答:(1)本周六生产了多少辆摩托车?(2)本周总生产量与计划生产量相比,增减量为多少?(3)产量最多的一天比产量最少的一天多生产多少辆?(1)(-9512)+1534+(-314)+(-22.5)+(-15712);(2)⎣⎡⎦⎤⎝⎛⎭⎫+1317+(-3.5)+(-6)+[(+2.5)+(+6)+⎝⎛⎭⎫+417].24. (8分) 某粮食仓库管理员统计10袋面粉的总质量.以100千克为标准,超过的记为正,不足的记为负.通过称量的记录如下:+3,+4.5,-0.5,-2,-5,-1,+2,+1,-4,+1.请问:(1)第几袋面粉最接近100千克?(2)面粉总计超过或不足多少千克?(3)这10袋面粉总质量是多少千克?25. (8分) 请根据图示的对话解答下列问题.求:(1)a,b的值;(2)8-a+b-c的值.参考答案1-5 ADABB 6-10 CDDCC11. -13,-312. 113. -10 ℃14. -515.5-6+9-416. -217. 12 ℃18. -219. 解:(1) 13-23+1 =-13+1 =23(2)(-613)+(-713)-2 =-613-713-2 =-1-2=-3(3)-12+(-16)-(-14)-(+23) =-612-212+312-812=-1612+312=-131220. 解:小明:原式=-4.5+3.2-1.1+1.4=-1,小红:原式=-8+2-(-6)+(-7)=-7,因为-7<-1,所以小红的结果小,为胜者21.解:(1)313+(-237)+523+(-847) =313+523+⎣⎡⎦⎤(-237)+(-847) =9+(-11)=-2.(2) (-103)+(+134)+(-97)+(+100)+(-114) =[(-103)+(-97)]+⎣⎡⎦⎤(+134)+(-114)+100 =-200+12+100 =-9912. 22. 解:(1)250-9=241所以本周六生产241辆摩托车。

【北师大版】初一数学第一学期2.6有理数的加减混合运算 同步练习

【北师大版】初一数学第一学期2.6有理数的加减混合运算  同步练习

有理数的加减混合运算一.选择题(共10小题)1.(2016秋•仙游县期中)将6﹣(+3)﹣(﹣7)+(﹣2)写成省略加号的和的形式为()A.﹣6﹣3+7﹣2 B.6﹣3﹣7﹣2 C.6﹣3+7﹣2 D.6+3﹣7﹣22.(2017•玉田县一模)一天早晨的气温是﹣7℃,中午上升了11℃,晚上又下降了9℃,晚上的气温是()A.﹣5℃B.﹣6℃C.﹣7℃D.﹣8℃3.(2016秋•兰山区校级月考)1﹣2+3﹣4+5﹣6+…+2005﹣2006的结果是()A.0 B.100 C.﹣1003 D.10034.(2015秋•鄂城区期末)设a为最小的正整数,b为最大的负整数,c是绝对值最小的有理数,则a﹣b+c的值为()A.2 B.﹣2 C.2或﹣2 D.以上都不对5.(2015秋•天水期中)下列交换加数位置的变形中,正确的是()A.1﹣4+5﹣4=1﹣4+4﹣5 B.1﹣2+3﹣4=2﹣1+4﹣3C.4﹣7﹣5+8=4﹣5+8﹣7 D.﹣3+4﹣1﹣2=2+4﹣3﹣16.(2015•历下区模拟)大家都知道,八点五十五可以说成九点差五分,有时这样表达更清楚.这启发人们设计一种新的加减计数法.比如:9写成1,1=10﹣1;198写成20,20=200﹣2;7683写成13,13=10000﹣2320+3总之,数字上画一杠表示减去它,按这个方法请计算53﹣31=()A.1990 B.2068 C.2134 D.30247.(2015秋•耒阳市校级月考)某天上午6:00虹桥水库的水位为30.4米,到上午11:30分水位上涨了5.3米,到下午6:00水位下跌了0.9米.到下午6:00水位为()米.A.26 B.34.8 C.35.8 D.36.68.(2013秋•碑林区校级期中)北京与纽约的时差是+13小时,小亮于当地时间11月2日早8:00乘飞机从纽约到北京,纽约飞到北京需13小时,则到北京的时间为()A.11月2日21:00 B.11月2日10:00 C.11月3日10:00 D.11月3日8:009.(2008•佛山)实际测量一座山的高度时,可在若干个观测点中测量每两个相邻可视观测点的相对高度,然后用这些相对高度计算出山的高度.下表是某次测量数据的部分记录(用A﹣C表示观测点A相对观测点C的高度)根据这次测量的数据,可得观测点A相对观测点B的高度是()米.A﹣C C﹣D E﹣D F﹣E G﹣F B﹣G90米80米﹣60米50米﹣70米40米A.210 B.130 C.390 D.﹣21010.50个连续正奇数的和l+3+5+7+…+99与50个连续正偶数的和:2+4+6+8+…+100,它们的差是()A.0 B.50 C.﹣50 D.5050二.选择题(共5小题)11.(2016秋•惠安县校级期中)将算式(﹣5)﹣(﹣10)+(﹣9)﹣(+2)改写成省略加号的和的形式,应该是.12.(2015秋•栾城区期末)将一根12cm长的木棒和一根9cm长的木棒捆在一起,长度为17cm,则两根木棒的捆绑长度(重叠部分的长度)为cm.13.(2013秋•武侯区期末)计算:=.14.(2016秋•洪泽县期中)规定图形表示运算x+z﹣y﹣w.则=.15.(2014秋•西城区校级期中)“△”表示一种新的运算符号,已知:2△3=2﹣3+4,7△2=7﹣8,3△5=3﹣4+5﹣6+7,…;按此规则,计算:(1)10△3=(2)若x△7=2003,则x=.三.解答题(共5小题)16.(2015秋•胶南市校级月考)解答下列各题:(1)(﹣3.6)+(+2.5)(2)﹣(﹣3)﹣2(3)(﹣49)﹣(+91)﹣(﹣5)+(﹣9)(4)﹣5﹣(﹣11)﹣(﹣)(5)3﹣(﹣)+(﹣)(6)﹣|﹣1|﹣()﹣(﹣2.75)(7)(﹣7)﹣(﹣11)+(﹣9)﹣(+2)(8)(﹣4)﹣(+5)﹣(﹣4)17.(2015秋•衡阳校级期中)兴业银行中山街储蓄所上午在一段时间内办理了5件储蓄业务:存入1080元;取出902元;存入990元;存入1000元;取出1100元,这时银行现款增加了多少元?18.(2016秋•洛龙区校级月考)张华记录了今年雨季钱塘江一周内水位变化的情况如下表(正号表示比前一天高,负号表示比前一天低):星期一二三四五六日水位变化(m)+0.25+0.80﹣0.40+0.03+0.28﹣0.36﹣0.04(1)本周星期水位最高,星期水位最低.(2)与上周末相比,本周日的水位是上升了还是下降了?(写出计算过程)19.(2015秋•永定县校级月考)如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)A→C(,),B→D(,);(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程;(3)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出依次行走停点E、F、M、N的位置.20.(2010秋•东台市校级月考)解答题:(1)已知a,b互为相反数,c,d互为倒数,x的绝对值为1,求a+b+x2﹣cdx.(2)10箱苹果,如果每箱以30千克为准,超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:+2,+1,0,﹣1,﹣1.5,﹣2,+1,﹣1,﹣1,﹣0.5.这10箱苹果的总质量是多少千克?(3)小亮用50元钱买了10枝钢笔,准备以一定的价格出售,如果每枝钢笔以6元的价格为标准,超过的记作正数,不足的记作负数,记录如下:0.5,0.7,﹣1,﹣1.5,0.8,1,﹣1.5,﹣2.1,9,0.9.①这10枝钢笔的最高的售价和最低的售价各是几元?②当小亮卖完钢笔后是盈还是亏?有理数的加减混合运算参考答案与试题解析一.选择题(共10小题)1.C.2.:C.4.A.5.C.6.B.7.B.8.C.9.A.10.C.二.选择题(共5小题)11.﹣5+10﹣9﹣2.12.4.13.﹣1.5.14.﹣2.15.11;2000.三.解答题(共5小题)16.解:(1)(﹣3.6)+(+2.5)=﹣3.6+2.5=﹣1.1(2)﹣(﹣3)﹣2=(﹣2)+(3)=﹣3+4=1(3)(﹣49)﹣(+91)﹣(﹣5)+(﹣9)=(﹣49﹣91﹣9)+5=﹣149+5=﹣144(4)﹣5﹣(﹣11)﹣(﹣)=﹣5+11+=6+3=9(5)3﹣(﹣)+(﹣)=(3﹣)+()=3+3=6(6)﹣|﹣1|﹣()﹣(﹣2.75)=﹣1﹣2+2.75=0.4+2.75﹣(1+2)=3.15﹣3.75=﹣0.6(7)(﹣7)﹣(﹣11)+(﹣9)﹣(+2)=﹣7+11﹣9﹣2=11﹣(7+9+2)=11﹣18=﹣7(8)(﹣4)﹣(+5)﹣(﹣4)=(﹣4)+4﹣5=0﹣5=﹣517.解:存入记为正,则取出记为负.1080+(﹣902)+990+1000+(﹣1100)=(1080+990+1000)+[(﹣902)+(﹣1100)] =3070+(﹣2002)=1068(元).即这时银行现款增加了1068元.18.解:(1)设上周日的水位是a,星期一:a+0.25;星期二:a+0.80+0.25=a+1.05;星期三:a+1.05+(﹣0.40)=a+0.65;星期四:a+0.65+(+0.03)=a+0.68;星期五:a+0.68+(+0.28)=a+0.96;星期六:a+0.96+(﹣0.36)=a+0.60;星期日:a+0.60+(﹣0.04)=a+0.56;∴星期二水位最高;星期一水位最低,故答案为:二,一.解:(2)上周日的水位是a,则这周末的水位是a+0.56,∴(a+0.56)﹣a=0.56>0,即本周日的水位是上升了.19.解:(1)由向上向右走为正,向下向左走为负可得A→C(+3,+4),B→D(+3,﹣2);故答案为:+3,+4,+3,﹣2.(2)甲虫走过的路程为:1+4+2+1+2=10,(3)如图,甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),在图中标出依次行走停点E、F、M、N的位置.20.解:(1)∵a,b互为相反数,c,d互为倒数,∴a+b=0,cd=1,∴a+b+x2﹣cdx=x2﹣x∵|x|=1,∴x=±1∴当x=1时,x2﹣x=0;当x=﹣1时,x2﹣x=2;(2)2+1+0﹣1﹣1.5﹣2+1﹣1﹣1﹣0.5=﹣330×10+(﹣3)=897答:这10箱苹果的总质量是897千克.(3)①最高售价为6+9=15元最低售价为6﹣2.1=3.9元②6×10+0.5+0.7﹣1﹣1.5+0.8+1﹣1.5﹣2.1+9+0.8﹣50=16.3元答:小亮卖完钢笔后盈利16.3元.。

2019-2020浙教版初中数学七年级上册《有理数的运算》专项测试(含答案) (12)

2019-2020浙教版初中数学七年级上册《有理数的运算》专项测试(含答案) (12)

浙教版初中数学试卷2019-2020年浙教版七年级数学上册《有理数的运算》精选试题学校:__________一、选择题1.(2分)下列近似数中,含有3个有效数字的是( ) A .5.430B .65.43010⨯C . 0.5430D .5.43万2.(2分)下列各式中,计算结果为正数的是( ) A .(3)(5)(7)-⨯-⨯- B .101(5)-C .23-D .3(5}(2)-⨯-3.(2分)若-2减去一个有理数的差是-5,则-2乘这个有理数的积是( ) A .10 B .-10 C .6 D .-6 4.(2分)形如dc b a 的式子叫做二阶行列式,它的运算法则用公式表示为dc b a =ad -bc ,依此法则计算4132-的结果为( )A .11B .-11C .5D .-25.(2分)下列计算:①0-(-5)=-5;②(-3)+(-9)=-12;③293()342⨯-=-;④(-36)÷(-9)=-4.其中正确的个数是( ) A .1个B .2个 C .3个D .4个6.(2分)某人第一次向南走 40 km ,第二次向北走30 km ,第三次向北走 40 km.那么最后相当 于这人( )A .向南走 110 kmB .向北走 50 kmC .向南走 30 kmD .向北走30 km 7.(2分) 任何一个有理数的二次幂是( ) A .正数 B .非负数 C .负数D .无法确定8.(2分)432()()()7143-÷-÷-=( )A .169-B .449-C .4D .-49.(2分)7 的相反数的14减去-8 的倒数的 2 倍的差等于( ) A .2B . -2C .112-D .11210.(2分) 下列说法正确的是( ) A .两个负数相加,绝对值相减B. 正数加负数,和为正数;负数加正数,和为负数 C .两正数相加,和为正数;两负数相加,和为负数 D .两个有理数相加等于它们的绝对值相加11.(2分)若 3 个不相等的有理数的代数和为 0,则下面结论正确的是( ) A .3 个加数全为 0 B .最少有 2 个加数是负数 C .至少有 1 个加数是负数 D .最少有 2 个加数是正数 12.(2分)下列说法正确的是( ) A .零减去一个数,仍得这个数 B .减去一个数,等于加上这个数 C .两个相反数相减得0D .有理数的加减法中,和不一定比加数大,差不一定比被减数小二、填空题13.(2分)写出三个有理数,使它们都同时满足:①是负数;②是整数;③能被2、3、5整除. 它们是 .14.(2分)计算:(1)(5)(2)-⨯-= ; (2)136()3÷-= .15.(2分)如果2x =,3y =,且20xy<,那么x y += . 16.(2分)根据如图所示的程序计算,若输入x 的值为1,则输出y 的值为 .17.(2分)根据“二十四点”游戏规则,3,4,—6,10每个数用且只能用一次,用有理数的混合运算方法(加、减、乖、除、乘方)写出一个算式:_______ ______________,使其结果等于24.18.(2分)数轴上A ,B 两点表示的有理数分别是-5和7,则A ,B 两点之间的距离实际是 .19.(2分)把139 500四舍五人取近似数,保留 3个有效数字是 . 20.(2分)如果13a =-,那么a -= ;如果5||2a =,那么a = . 21.(2分)用四舍五入法取l00955的近似数,保留2个有效数字是 ,保留4个有效数字是 .22.(2分)若a 满足2008(2006)1a -=,则a= .23.(2分)41()2-表示的意义是 ,22223333⨯⨯⨯可写成 .24.(2分)某次数学测验,以 90 分为标准,老师公布的成绩为:小明+10 分,小刚 0分,小敏-2 分,则小明的实际得分为 分,小刚的实际得分为 分,小敏的实际得分为 分.25.(2分)计算:(1)5+(-3)= ; (2)(-4)+(-5)= ; (3)(-2)+6= ; (4)11()()23-++= ;(5)1(0.125)()8-+= ;(6)0+ (-9.7)= . 评卷人 得分三、解答题26.(8分)高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米)+17,-9,+7,-15,-3,+11,-6,-8,+5,+16 (1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远? (2)若汽车耗油量为0.04L/km ,则这次养护共耗油多少升?27.(8分)计算:(1) -10+8÷(-2)2-3 ×(-4)-15; (2)321()(8)433-⨯-+-;(3)1313[1()24]524864-+-⨯÷ (4)4211(10.5)[2(3)]3---⨯⨯--28.(8分)在-2.2,-2.02,-2.002,-2.020 2,-2.002 02五个数中,若最大的数除以最小的数的商为x ,求59[1()|10x ÷-的值,并用科学记数法表示出它的结果.29.(8分)若 a-1 的相反数是 2,b 的绝对值是 3,求a-b 的值.30.(8分)求下列每对数在数轴上对应点之间的距离. (1)3 与-2. 2 (2)142与124(3)-4 与-4. 5(4)132-与123你能发现两点之间的距离与这两数的差有什么关系吗?【参考答案】***试卷处理标记,请不要删除一、选择题1.D2.D3.D4.A5.B6.D7.B8.D9.C10.C11.C12.D二、填空题13.答案不唯一,如:-30,-60,-9014.10,-10815.1或-116.答案:417.3×(4-6+10)(答案不惟一)18.1219.51.4010⨯20.13,5 2±21.1.O×1O5,1.OlO×1O522.2007 或 200523.4个(12-)相乘,42()324.100,90,8825.(1)2 (2)-9 (3)4 (4)16- (5)0 (6)-9.7三、解答题26.(1)在出发点的向东方向,距出发点15千米;(2)3.88升 27.(1)3 (2)354(3)5124 (4)1628.这一列数中最大的数是-2.002,最小的数是-2.2,它们的商是 2.002912.2100x -==-, ∴555510991901[1()][1()](1)10011010100100100x ÷-=÷-=÷==⨯ 29.-4或230.(1)5.2 (2)124 (3)0. 5 (4)556两点之间的距离等于两数之差的绝对值。

浙教版数学七年级上册2.6有理数的混合运算同步练习 (2)

浙教版数学七年级上册2.6有理数的混合运算同步练习 (2)

2.6有理数的混合运算同步练习一.选择题(共12小题)1.算式[﹣5﹣(﹣11)]÷(×4)之值为何?()A.1 B.16 C.﹣ D.﹣2.在算式(﹣1)□(﹣2)的□中填上运算符号,使结果最小,这个运算符号是()A.加号 B.减号 C.乘号 D.除号.3.计算:1﹣1×(﹣3)=()A.0 B.4 C.﹣4 D.54.下列计算正确的是()A.﹣3÷3×3=﹣3 B.﹣3﹣3=0 C.﹣3﹣(﹣3)=﹣6 D.﹣3÷3÷3=﹣3 5.下列算式中,与(﹣3)2相等的是()A.﹣32 B.(﹣3)×2 C.(﹣3)×(﹣3) D.(﹣3)+(﹣3)6.计算2×(﹣3)3+4×(﹣3)的结果等于()A.﹣18 B.﹣27 C.﹣24 D.﹣667.计算8+6÷(﹣2)的结果是()A.﹣7 B.﹣5 C.5 D.78.定义运算a⊗b=a(1﹣b),下面给出的关于这种运算的四个结论中正确的是()A.2⊗(﹣2)=﹣4 B.a⊗b=b⊗aC.(﹣2)⊗2=2 D.若a⊗b=0,则a=09.对于正整数n,定义:其中f(n)表示n的首位数字与末位数字的平方和.例如:f(6)=62=36,f(123)=12+32=10.规定f1(n)=f(n),f k+1(n)=f(f k (n))(k为正整数).例如:f1(123)=f(123)=12+32=10,f2(123)=f(f1(123))=f(10)=1.则f4(4)的值为()A.37 B.58 C.89 D.14510.玲玲利用电脑调整两张相同尺寸照片的大小:第一张照片缩小了60%后感觉偏大,第二张照片缩小了80%后正合适,为使第一张照片也合适,则玲玲将这张照片再缩小的百分比是()A.20% B.30% C.40% D.50%11.如图是一个数值运算的程序,若输出的y值为3,则输入的x值为()A.3.5 B.﹣3.5 C.7 D.﹣712.若a、b、c在数轴上位置如图所示,则必有()A.abc>0 B.ab﹣ac>0 C.(a+b)c>0 D.(a﹣c)b>0二.填空题(共8小题)13.已知(39+)×(40+)=a+b,若a是整数,1<b<2,则a=______.14.计算:﹣3×2+(﹣2)2﹣5=______.15.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔______支.16.高斯函数[x],也称为取整函数,即[x]表示不超过x的最大整数.例如:[2.3]=2,[﹣1.5]=﹣2.则下列结论:①[﹣2.1]+[1]=﹣2;②[x]+[﹣x]=0;③若[x+1]=3,则x的取值范围是2≤x<3;④当﹣1≤x<1时,[x+1]+[﹣x+1]的值为0、1、2.其中正确的结论有______(写出所有正确结论的序号).17.为了缓解城市拥堵,某市对非居民区的公共停车场制定了不同的收费标准(见下表).如果小王某次停车3小时,缴费24元,请你判断小王该次停车所在地区的类别是______(填“一类、二类、三类”中的一个).18.“数21世纪教育网子”高斯从小就善于观察和思考.在他读小学时就能在课堂上快速地计算出1+2+3+…+98+99+100=5050,今天我们可以将高斯的做法归纳如下:令S=1+2+3+…+98+99+100 ①S=100+99+98+…+3+2+1 ②①+②:有2S=(1+100)×100 解得:S=5050请类比以上做法,回答下列问题:若n为正整数,3+5+7+…+(2n+1)=168,则n=______.19.随着北京公交票制票价调整,公交集团更换了新版公交站牌,乘客在乘车时可以通过新版公交站牌计算乘车费用.新版站牌每一个站名上方都有一个对应的数字,将上下车站站名所对应数字相减取绝对值就是乘车路程,再按照其所在计价区段,参照票制规则计算票价.具体来说:乘车路程计价区段0﹣10 11﹣15 16﹣20 …对应票价(元) 2 3 4 …另外,一卡通普通卡刷卡实行5折优惠,学生卡刷卡实行2.5折优惠.小明用学生卡乘车,上车时站名上对应的数字是5,下车时站名上对应的数字是22,那么,小明乘车的费用是______元.20.已知|ab﹣2|+|a﹣1|=0,则++…+=______.三.解答题(共8小题)21.计算(1)﹣8﹣(﹣15)+(﹣9)﹣(﹣12)(2)(3)﹣(3﹣5)+32×(﹣3)(4)(5)|(6).22.已知a、b互为相反数,c、d互为负倒数(即cd=﹣1),x是最小的正整数.试求x2﹣(a+b+cd)x+(a+b)2008+(﹣cd)2008的值.23.(2016春•绍兴校级期中)数学课上老师出了一道题计算:1+21+22+23+24+25+26+27+28+29,老师在教室巡视了一圈,发现同学们都做不出来,于是给出答案:解:令s=1+21+22+23+24+25+26+27+28+29①则2s=2+22+23+24+25+26+27+28+29+210②②﹣①得s=210﹣1根据以上方法请计算:(1)1+2+22+23+…+22015(写出过程,结果用幂表示)(2)1+3+32+33+…+32015=______(结果用幂表示)24.已知x、y为有理数,现规定一种新运算※,满足x※y=xy+1.(1)求2※4的值;(2)求(1※4)※(﹣2)的值;(3)任意选择两个有理数(至少有一个是负数),分别填入下列□和○中,并比较它们的运算结果:□※○和○※□;(4)探索a※(b+c)与a※b+a※c的关系,并用等式把它们表达出来.25.股民小张五买某公司股票1000股,每股14.80元,表为第二周星期一至星期五每日该股票涨跌情况(1)星期三收盘时,每股是多少元?(2)本周内最高价是每股多少元?最低价是每股多少元?(3)已知小张买进股票时付了成交额0.15%的手续费,卖出时付了成交额0.15%的手续费和成交额0.1%的交易税,如果小张在星期五收盘前将全部股票卖出,那么他的收益情况如何?26.今年铁路大提速,小明的爸爸因要出差,于是去火车站查询列车的开行时间.下面是小明的爸爸从火车站带回家的最新时刻表:小明的爸爸找出以前同一车次的时刻表如下:比较了两张时刻表后,小明的爸爸提出了如下问题,请你帮小明解答:(1)请直接写出现在该次列车的运行时间是多少小时?(2)现在该次列车的运行时间比以前缩短了多少小时?(3)若该次列车提速后的平均时速为每小时200千米,那么,该次列车原来的平均时速为多少?(结果精确到个位)27.阅读材料:大数学家高斯在上学读书时曾经研究过这样一个问题:1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+n=n(n+1),其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+…n(n+1)=?观察下面三个特殊的等式:1×2=(1×2×3﹣0×1×2)2×3=(2×3×4﹣1×2×3)3×4=(3×4×5﹣2×3×4)将这三个等式的两边相加,可以得到1×2+2×3+3×4=×3×4×5=20读完这段材料,请你思考后回答:(1)1×2+2×3+…+100×101=______;(2)1×2+2×3+3×4+…+n×(n+1)=______;(3)1×2×3+2×3×4+…+n(n+1)(n+2)=______.(只需写出结果,不必写中间的过程)28.在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答题目后提出的“探究”【提出问题】三个有理数a、b、c满足abc>0,求的值.【解决问题】解:由题意得:a,b,c三个有理数都为正数或其中一个为正数,另两个为负数.①当a,b,c都是正数,即a>0,b>0,c>0时,则:==1+1+3;②当a,b,c有一个为正数,另两个为负数时,设a>0,b<0,c<0,则:==1+(﹣1)+(﹣1)=﹣1所以的值为3或﹣1.【探究】请根据上面的解题思路解答下面的问题:(1)三个有理数a,b,c满足abc<0,求的值;(2)已知|a|=3,|b|=1,且a<b,求a+b的值.2.6有理数的混合运算同步练习参考答案与试题解析一.选择题(共12小题)1.算式[﹣5﹣(﹣11)]÷(×4)之值为何?()A.1 B.16 C.﹣ D.﹣【分析】原式先计算括号中的运算,再计算除法运算即可得到结果.【解答】解:原式=(﹣5+11)÷(3×2)=6÷6=1,故选A【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.2.在算式(﹣1)□(﹣2)的□中填上运算符号,使结果最小,这个运算符号是()A.加号 B.减号 C.乘号 D.除号.【分析】将运算符号填入算式中,计算即可得到结果.【解答】解:(﹣1)+(﹣2)=﹣1﹣2=﹣3;﹣1﹣(﹣2)=﹣1+2=1;(﹣1)×(﹣2)=2;﹣1÷(﹣2)=0.5,﹣3<0.5<1<2,则这个运算符号为加号.故选A【点评】此题考查了有理数的混合运算,以及有理数比较大小,熟练掌握运算法则是解本题的关键.3.计算:1﹣1×(﹣3)=()A.0 B.4 C.﹣4 D.5【分析】先算乘法,再算减法即可求解.【解答】解:1﹣1×(﹣3)=1﹣(﹣3)=4.故选:B.【点评】本题考查了有理数混合运算:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.4.下列计算正确的是()A.﹣3÷3×3=﹣3 B.﹣3﹣3=0 C.﹣3﹣(﹣3)=﹣6 D.﹣3÷3÷3=﹣3 【分析】A、原式从左到右依次计算即可得到结果,即可作出判断;B、原式利用减法法则计算得到结果,即可作出判断;C、原式利用减法法则计算得到结果,即可作出判断;D、原式从左到右依次计算得到结果,即可作出判断.【解答】解:A、原式=﹣1×3=﹣3,正确;B、原式=﹣6,错误;C、原式=﹣3+3=0,错误;D、原式=﹣1÷3=﹣,错误,故选A【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.5.下列算式中,与(﹣3)2相等的是()A.﹣32 B.(﹣3)×2 C.(﹣3)×(﹣3) D.(﹣3)+(﹣3)【分析】原式利用乘方的意义计算出结果,即可作出判断.【解答】解:(﹣3)2=9,A、原式=﹣9,不相等;B、原式=﹣6,不相等;C、原式=9,相等;D、原式=﹣6,不相等,故选C【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.6.计算2×(﹣3)3+4×(﹣3)的结果等于()A.﹣18 B.﹣27 C.﹣24 D.﹣66【分析】原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:原式=2×(﹣27)﹣12=﹣54﹣12=﹣66,故选D.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.7.计算8+6÷(﹣2)的结果是()A.﹣7 B.﹣5 C.5 D.7【分析】根据有理数混合运算的运算顺序,首先计算除法,然后计算加法,即可求出算式8+6÷(﹣2)的结果是多少.【解答】解:8+6÷(﹣2)=8+(﹣3)=8﹣3=5即计算8+6÷(﹣2)的结果是5.故选:C.【点评】此题主要考查了有理数的混合运算,要熟练掌握,解答此题的关键是要明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.8.定义运算a⊗b=a(1﹣b),下面给出的关于这种运算的四个结论中正确的是()A.2⊗(﹣2)=﹣4 B.a⊗b=b⊗aC.(﹣2)⊗2=2 D.若a⊗b=0,则a=0【分析】A:根据新运算a⊗b=a(1﹣b),求出2⊗(﹣2)的值是多少,即可判断出2⊗(﹣2)=﹣4是否正确.B:根据新运算a⊗b=a(1﹣b),求出a⊗b、b⊗a的值各是多少,即可判断出a⊗b=b⊗a 是否正确.C:根据新运算a⊗b=a(1﹣b),求出(﹣2)⊗2的值是多少,即可判断出(﹣2)⊗2=2是否正确.D:根据a⊗b=0,可得a(1﹣b)=0,所以a=0或b=1,据此判断即可.【解答】解:∵2⊗(﹣2)=2×[1﹣(﹣2)]=2×3=6,∴选项A不正确;∵a⊗b=a(1﹣b),b⊗a=b(1﹣a),∴a⊗b=b⊗a只有在a=b时成立,∴选项B不正确;∵(﹣2)⊗2=(﹣2)×(1﹣2)=(﹣2)×(﹣1)=2,∴选项C正确;∵a⊗b=0,∴a(1﹣b)=0,∴a=0或b=1∴选项D不正确.故选:C.【点评】(1)此题主要考查了有理数的混合运算,要熟练掌握,解答此题的关键是要明确:①有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.②进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.(2)此题还考查了对新运算“⊗”的理解和掌握,解答此题的关键是要明确:a⊗b=a(1﹣b).9.对于正整数n,定义:其中f(n)表示n的首位数字与末位数字的平方和.例如:f(6)=62=36,f(123)=12+32=10.规定f1(n)=f(n),f k+1(n)=f(f k (n))(k为正整数).例如:f1(123)=f(123)=12+32=10,f2(123)=f(f1(123))=f(10)=1.则f4(4)的值为()A.37 B.58 C.89 D.145【分析】根据新定义运算法则列出算式并计算.【解答】解:依题意得:则f1(4)=f(4)=02+42=16,f2(4)=f(f1(4))=f(16)=12+62=37.f3(4)=f(f3(4))=f(37)=32+72=58.f4(4)=f(f3(4))=f(58)=52+82=89.故选:C.【点评】本题考查了有理数的混合运算.根据f1(n)=f(n),f k+1(n)=f(f k(n))(k为正整数)求得f4(4)的值.10.玲玲利用电脑调整两张相同尺寸照片的大小:第一张照片缩小了60%后感觉偏大,第二张照片缩小了80%后正合适,为使第一张照片也合适,则玲玲将这张照片再缩小的百分比是()A.20% B.30% C.40% D.50%【分析】首先根据题意,分别求出第一张、第二张照片各变为了原来的百分之几十;然后用第二张照片的尺寸占原来照片的尺寸的分率除以第一张照片的尺寸占原来照片的尺寸的分率,求出玲玲将这张照片再缩小的百分比是多少即可.【解答】解:(1﹣80%)÷(1﹣60%)=20%÷40%=50%所以玲玲将这张照片再缩小的百分比是50%.故选:D.【点评】此题主要考查了有理数的混合运算,要熟练掌握有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.11.如图是一个数值运算的程序,若输出的y值为3,则输入的x值为()A.3.5 B.﹣3.5 C.7 D.﹣7【分析】由题意可得[(﹣x)﹣1]÷2=y,然后令y=3即可得到输入的x的值.【解答】解:由题意可得,[(﹣x)﹣1]÷2=y,当y=3时,[(﹣x)﹣1]÷2=3,解得,x=﹣7,故选D.【点评】本题考查有理数的混合运算,解题的关键是明确题意,根据题意可以列出相应的关系式.12.若a、b、c在数轴上位置如图所示,则必有()A.abc>0 B.ab﹣ac>0 C.(a+b)c>0 D.(a﹣c)b>0【分析】根据图示得知,a<﹣1<0<b<1<c,然后根据有理数的混合运算法则进行计算.【解答】解:根据图示知,a<﹣1,0<b<1,1<c.A、∵a是负数,b、c是正数,∴abc<0.故本选项错误;B、∵b<c,a<0,∴ab>ac,∴ab﹣ac>0.故本选项正确;C、∵a<﹣1,0<b<1,1<c,∴ac<﹣1,0<bc<1,∴ac+bc<0,即(a+b)c<0.故本选项错误;D、∵a<﹣1,0<b<1,1<c,∴a﹣c<﹣2,∴(a﹣c)b<﹣2.故本选项错误.故选B.【点评】本题考查了数轴、有理数的混合运算.解答此题的关键是根据图示找出a、b、c 的取值范围:a<﹣1,0<b<1,1<c.二.填空题(共8小题)13.已知(39+)×(40+)=a+b,若a是整数,1<b<2,则a= 1611 .【分析】首先把原式整理,利用整式的乘法计算,进一步根据b的取值范围得出a的数值即可.【解答】解:(39+)×(40+)=1560+27+24+=1611+∵a是整数,1<b<2,∴a=1611.故答案为:1611.【点评】此题考查有理数的混合运算,掌握运算的方法和数的估算是解决问题的关键.14.(2014•滨州)计算:﹣3×2+(﹣2)2﹣5= ﹣7 .【分析】根据有理数混合运算的顺序进行计算即可.【解答】解:原式=﹣3×2+4﹣5=﹣6+4﹣5=﹣7.故答案为:﹣7.【点评】本题考查的是有理数的混合运算,熟知先算乘方,再算乘除,最后算加减是解答此题的关键.15.某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔352 支.【分析】三月份销售各种水笔的支数比二月份增长了10%,是把二月份销售的数量看作单位“1”,增加的量是二月份的10%,即三月份生产的是二月份的(1+10%),由此得出答案.【解答】解:320×(1+10%)=320×1.1=352(支).答:该文具店三月份销售各种水笔352支.故答案为:352.【点评】此题考查有理数的混合运算,理解题意,列出算式解决问题.16.高斯函数[x],也称为取整函数,即[x]表示不超过x的最大整数.例如:[2.3]=2,[﹣1.5]=﹣2.则下列结论:①[﹣2.1]+[1]=﹣2;②[x]+[﹣x]=0;③若[x+1]=3,则x的取值范围是2≤x<3;④当﹣1≤x<1时,[x+1]+[﹣x+1]的值为0、1、2.其中正确的结论有①③(写出所有正确结论的序号).【分析】根据[x]表示不超过x的最大整数,即可解答.【解答】解:①[﹣2.1]+[1]=﹣3+1=﹣2,正确;②[x]+[﹣x]=0,错误,例如:[2.5]=2,[﹣2.5]=﹣3,2+(﹣3)≠0;③若[x+1]=3,则x的取值范围是2≤x<3,正确;④当﹣1≤x<1时,0≤x+1<2,0<﹣x+1≤2,∴[x+1]=0或1,[﹣x+1]=0或1或2,当[x+1]=0时,[﹣x+1]=2;当[﹣x+1]=1时,[﹣x+1]=1或0;所以[x+1]+[﹣x+1]的值为1、2,故错误.故答案为:①③.【点评】本题考查了有理数的混合运算,解决本题的关键是明确[x]表示不超过x的最大整数.17.为了缓解城市拥堵,某市对非居民区的公共停车场制定了不同的收费标准(见下表).如果小王某次停车3小时,缴费24元,请你判断小王该次停车所在地区的类别是二类(填“一类、二类、三类”中的一个).【分析】根据公共停车场的收费标准,分别求出三个类别停车所在地区的收费,进而求解即可.【解答】解:如果停车所在地区的类别是一类,应该收费:2.5×4+3.75×8=40(元),如果停车所在地区的类别是二类,应该收费:1.5×4+2.25×8=24(元),如果停车所在地区的类别是三类,应该收费:0.5×4+0.75×8=8(元),故答案为二类.【点评】本题考查了实际问题的应用,正确理解公共停车场的收费标准,求出三个类别停车所在地区的收费是解题的关键.18.“数21世纪教育网子”高斯从小就善于观察和思考.在他读小学时就能在课堂上快速地计算出1+2+3+…+98+99+100=5050,今天我们可以将高斯的做法归纳如下:令S=1+2+3+…+98+99+100 ①S=100+99+98+…+3+2+1 ②①+②:有2S=(1+100)×100 解得:S=5050请类比以上做法,回答下列问题:若n为正整数,3+5+7+…+(2n+1)=168,则n= 12 .【分析】根据题目提供的信息,列出方程,然后求解即可.【解答】解:设S=3+5+7+…+(2n+1)=168①,则S=(2n+1)+…+7+5+3=168②,①+②得,2S=n(2n+1+3)=2×168,整理得,n2+2n﹣168=0,即(n﹣12)(n+14)=0,解得n1=12,n2=﹣14(舍去).故答案为:12.【点评】本题考查了有理数的混合运算,读懂题目提供的信息,表示出这列数据的和并列出方程是解题的关键.19.随着北京公交票制票价调整,公交集团更换了新版公交站牌,乘客在乘车时可以通过新版公交站牌计算乘车费用.新版站牌每一个站名上方都有一个对应的数字,将上下车站站名所对应数字相减取绝对值就是乘车路程,再按照其所在计价区段,参照票制规则计算票价.具体来说:乘车路程计价区段0﹣10 11﹣15 16﹣20 …对应票价(元) 2 3 4 …另外,一卡通普通卡刷卡实行5折优惠,学生卡刷卡实行2.5折优惠.小明用学生卡乘车,上车时站名上对应的数字是5,下车时站名上对应的数字是22,那么,小明乘车的费用是 1 元.【分析】首先用下车时站名上对应的数字减去上车时站名上对应的数字,求出小明乘车的路程是多少,进而求出相应的票价是多少;然后用它乘以0.25,求出小明乘车的费用是多少元即可.【解答】解:因为小明乘车的路程是:22﹣5=17,所以小明乘车的费用是:4×0.25=1(元).答:小明乘车的费用是1元.故答案为:1.【点评】此题主要考查了有理数的混合运算,要熟练掌握有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,解答此题的关键是求出小明乘车的路程、相应的票价是多少.20.已知|ab﹣2|+|a﹣1|=0,则++…+= .【分析】由绝对值的结果为非负数,且两非负数之和为0可得两个绝对值同时为0,可得ab=2且a=1,把a=1代入ab=2可求出b的值为2,把求出的a与b代入所求的式子中,利用拆项法把所求式子的各项拆项后,去括号合并即可求出值.【解答】解:∵|ab﹣2|≥0,|a﹣1|≥0,且|ab﹣2|+|a﹣1|=0,∴ab﹣2=0且a﹣1=0,解得ab=2且a=1,把a=1代入ab=2中,解得b=2,则原式=(1﹣)+(﹣)+(﹣)+…+(﹣)=1﹣=.故答案为:【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.三.解答题(共8小题)21.计算(1)﹣8﹣(﹣15)+(﹣9)﹣(﹣12)(2)(3)﹣(3﹣5)+32×(﹣3)(4)(5)|(6).【分析】(1)先化简再计算加减法;根据有理数的加法法则计算即可求解;(2)将除法变为乘法,再约分计算即可求解;(3)(5)(6)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的;(4)直接运用乘法的分配律计算.【解答】解:(1)﹣8﹣(﹣15)+(﹣9)﹣(﹣12)=﹣8+15﹣9+12=﹣17+27=10;(2)=﹣×××=﹣;(3)﹣(3﹣5)+32×(﹣3)=2+9×(﹣3)=2﹣27=﹣25;(4)=30﹣×36﹣×36+×36=30﹣28﹣30+33=5;(5)|=﹣9+×(﹣)+4=﹣9﹣1+4=﹣6;(6)=9﹣7÷7﹣×4=9﹣1﹣1=7.【点评】本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.22.已知a、b互为相反数,c、d互为负倒数(即cd=﹣1),x是最小的正整数.试求x2﹣(a+b+cd)x+(a+b)2008+(﹣cd)2008的值.【分析】根据已知与相反数、倒数、正整数的定义,确定a+b=0,cd=﹣1,x=1,再将a+b、cd、x(其中a+b、cd做为一个整体出现),代入x2﹣(a+b+cd)x+(a+b)2008+(﹣cd)2008求的值.【解答】解:∵a、b互为相反数∴a+b=0∵c、d互为负倒数∴cd=﹣1∵x是最小的正整数∴x=1∴x2﹣(a+b+cd)x+(a+b)2008+(﹣cd)2008=12﹣[0+(﹣1)]×1+02008+[﹣(﹣1)]2008=3.【点评】本题考查相反数、负倒数、正整数的定义,有理数的混合运算.解决本题的关键是首先确定a+b、cd、x的值,再将a+b、cd做为一个整体代入x2﹣(a+b+cd)x+(a+b)2008+(﹣cd)2008,从而使问题得解.23.(2016春•绍兴校级期中)数学课上老师出了一道题计算:1+21+22+23+24+25+26+27+28+29,老师在教室巡视了一圈,发现同学们都做不出来,于是给出答案:解:令s=1+21+22+23+24+25+26+27+28+29①则2s=2+22+23+24+25+26+27+28+29+210②②﹣①得s=210﹣1根据以上方法请计算:(1)1+2+22+23+…+22015(写出过程,结果用幂表示)(2)1+3+32+33+…+32015= (结果用幂表示)【分析】(1)根据题意可以对所求式子变形,从而可以解答本题;(2)根据题意可以对所求式子变形,从而可以解答本题.【解答】解:(1)设s=1+2+22+23+…+22015①,则2s=2+22+23+…+22015+22016②,②﹣①,得s=22016﹣1,即1+2+22+23+…+22015=22016﹣1;(2)设s=1+3+32+33+…+32015①,则3s=3+32+33+…+32015+32016②,②﹣①,得2s=32016﹣1,∴s=,故答案为:.【点评】本题考查有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.24.已知x、y为有理数,现规定一种新运算※,满足x※y=xy+1.(1)求2※4的值;(2)求(1※4)※(﹣2)的值;(3)任意选择两个有理数(至少有一个是负数),分别填入下列□和○中,并比较它们的运算结果:□※○和○※□;(4)探索a※(b+c)与a※b+a※c的关系,并用等式把它们表达出来.【分析】读懂题意,掌握规律,按规律计算每个式子.【解答】解:(1)2※4=2×4+1=9;(2)(1※4)※(﹣2)=(1×4+1)×(﹣2)+1=﹣9;(3)(﹣1)※5=﹣1×5+1=﹣4,5※(﹣1)=5×(﹣1)+1=﹣4;(4)∵a※(b+c)=a(b+c)+1=ab+ac+1,a※b+a※c=ab+1+ac+1=ab+ac+2.∴a※(b+c)+1=a※b+a※c.【点评】解答此类题目的关键是认真观察已知给出的式子的特点,找出其中的规律.25.股民小张五买某公司股票1000股,每股14.80元,表为第二周星期一至星期五每日该股票涨跌情况(1)星期三收盘时,每股是多少元?(2)本周内最高价是每股多少元?最低价是每股多少元?(3)已知小张买进股票时付了成交额0.15%的手续费,卖出时付了成交额0.15%的手续费和成交额0.1%的交易税,如果小张在星期五收盘前将全部股票卖出,那么他的收益情况如何?【分析】(1)由图可以算出每天每股的价格;(2)比较找到本周内最高价是每股多少元?最低价是多少元?;(3)收益=星期五收盘的总收入﹣买进时付了0.15%的手续费﹣卖出时须付成交额0.15%的手续费和0.1%的交易税,代入求值即可.【解答】解:(1)14.8+0.4+0.5﹣0.1=15.6(元),答:每股是15.6元;(2)14.8+0.4+0.5﹣0.1﹣0.2+0.4=15.8(元),14.8+0.4=15.2(元).故本周内最高价是每股15.8元,最低价是每股15.2元;(3)∵买1000张的费用是:1000×14.8=14800(元),星期五全部股票卖出时的总钱数为:1000×15.80=15800(元)15800﹣14800﹣14800×0.15%﹣15800×(0.15%+0.1%)=1000﹣22.2﹣39.5=938.3(元).所以小张赚了938.3元.【点评】本题考查了有理数的混合运算,在运算中应注意:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算;(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.26.今年铁路大提速,小明的爸爸因要出差,于是去火车站查询列车的开行时间.下面是小明的爸爸从火车站带回家的最新时刻表:小明的爸爸找出以前同一车次的时刻表如下:比较了两张时刻表后,小明的爸爸提出了如下问题,请你帮小明解答:(1)请直接写出现在该次列车的运行时间是多少小时?(2)现在该次列车的运行时间比以前缩短了多少小时?(3)若该次列车提速后的平均时速为每小时200千米,那么,该次列车原来的平均时速为多少?(结果精确到个位)【分析】(1)运行时间等于到站时间减去出发时间即可;(2)用以前列车运行时间减去现在列车运行时间即为缩短时间;(3)首先计算路程,然后用路程除以原来运行时间即为来的平均时速.【解答】解:(1)该次列车现在的运行时间为28小时,(2)原来运行时间为42小时,所以该次列车的运行时间比原来缩短了14小时;)(3)因为现在该次列车的速度为每小时200千米,所以始发站到终点站的距离为:28×200=5600千米则原来该次列车的速度为:5600/42≈133千米/小时.答:该次列车原来的速度约为每小时133千米.【点评】题目考查了有理数混合运算的应用,题目利用列车运行为背景,考查学生知识掌握情况,题目整体较简单,适合随堂训练.27.阅读材料:大数学家高斯在上学读书时曾经研究过这样一个问题:1+2+3+…+100=?经过研究,这个问题的一般性结论是1+2+3+…+n=n(n+1),其中n是正整数.现在我们来研究一个类似的问题:1×2+2×3+…n(n+1)=?观察下面三个特殊的等式:1×2=(1×2×3﹣0×1×2)2×3=(2×3×4﹣1×2×3)3×4=(3×4×5﹣2×3×4)将这三个等式的两边相加,可以得到1×2+2×3+3×4=×3×4×5=20读完这段材料,请你思考后回答:(1)1×2+2×3+…+100×101= 343400 ;(2)1×2+2×3+3×4+…+n×(n+1)= n(n+1)(n+2);(3)1×2×3+2×3×4+…+n(n+1)(n+2)= n(n+1)(n+2)(n+3).(只需写出结果,不必写中间的过程)【分析】(1)根据三个特殊等式相加的结果,代入熟记进行计算即可求解;(2)先对特殊等式进行整理,从而找出规律,然后把每一个算式都写成两个两个算式的运算形式,整理即可得解;(3)根据(2)的求解规律,利用特殊等式的计算方法,先把每一个算式分解成两个算式的运算形式,整理即可得解.【解答】解:∵1×2+2×3+3×4=×3×4×5=20,即1×2+2×3+3×4=×3×(3+1)×(3+2)=20∴(1)原式=×100×(100+1)×(100+2)=×100×101×102=343400;(2)原式=n(n+1)(n+2);(3)原式=n(n+1)(n+2)(n+3).故答案为:343400;n(n+1)(n+2);n(n+1)(n+2)(n+3).【点评】考查了有理数的混合运算,能从材料中获取所需的信息和解题方法是需要掌握的基本能力.要注意:连续的整数相乘的进一步变形,即n(n+1)=[n(n+2)﹣n(n+1)(n﹣1)];n(n+1)(n+2)=[n(n+1)(n+2)(n+3)﹣n(n﹣1)(n+1)(n+2)].28.在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答题目后提出的“探究”【提出问题】三个有理数a、b、c满足abc>0,求的值.【解决问题】解:由题意得:a,b,c三个有理数都为正数或其中一个为正数,另两个为负数.①当a,b,c都是正数,即a>0,b>0,c>0时,则:==1+1+3;②当a,b,c有一个为正数,另两个为负数时,设a>0,b<0,c<0,则:==1+(﹣1)+(﹣1)=﹣1所以的值为3或﹣1.【探究】请根据上面的解题思路解答下面的问题:(1)三个有理数a,b,c满足abc<0,求的值;(2)已知|a|=3,|b|=1,且a<b,求a+b的值.【分析】(1)分2种情况讨论:①当a,b,c都是负数,即a<0,b<0,c<0时;②a,b,c有一个为负数,另两个为正数时,设a<0,b>0,c>0,分别求解即可;(2)利用绝对值的代数意义,以及a小于b求出a与b的值,即可确定出a+b的值.【解答】解:(1)∵abc<0,∴a,b,c都是负数或其中一个为负数,另两个为正数,①当a,b,c都是负数,即a<0,b<0,c<0时,则=﹣﹣﹣=﹣1﹣1﹣1=﹣3;②a,b,c有一个为负数,另两个为正数时,设a<0,b>0,c>0,则=﹣++=﹣1+1+1=1.(2)∵|a|=3,|b|=1,且a<b,∴a=﹣3,b=1或﹣1,则a+b=﹣2或﹣4.【点评】本题主要考查了有理数的混合运算,绝对值,有理数的除法,解(1)题的关键是讨论a与ab的取值情况.初中数学试卷。

七年级数学有理数的运算含答案

七年级数学有理数的运算含答案

有理数的运算中考要求重难点1. 理解并掌握加减法法则且能熟练运用法则计算2. 理解并掌握乘除法法则且能熟练运用法则计算3. 能利用有理数的运算法则简化运算4. 能借助数轴比较有理数的大小课前故事古时候,在某个王国里有一位聪明的大臣,他发明了国际象棋,献给了国王,国王从此迷了下棋。

为了对聪明的大臣表示感谢,国王答应满足这个大臣的一个要求。

大臣说:“就在这个棋盘上放一些米粒吧。

第1格放1粒米,第2格放2粒米,第3格放4粒米,然后是8粒、16粒、32粒、......一直到第64格。

”“你真傻!就要这么一点米粒?!”国王哈哈大笑。

大臣说:”就怕您的国库里没有这么多米!“后等于:+++210222……+632=642-1 =18446744073709551615粒 约2200多吨例题精讲模块一、有理数加法运算有理数加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数. 有理数加法的运算步骤:法则是运算的依据,根据有理数加法的运算法则,可以得到加法的运算步骤: ①确定和的符号;②求和的绝对值,即确定是两个加数的绝对值的和或差. 有理数加法的运算律:①两个加数相加,交换加数的位置,和不变.a b b a +=+(加法交换律) ②三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.()()a b c a b c++=++(加法结合律)有理数加法的运算技巧:①分数与小数均有时,应先化为统一形式.②带分数可分为整数与分数两部分参与运算.③多个加数相加时,若有互为相反数的两个数,可先结合相加得零.④若有可以凑整的数,即相加得整数时,可先结合相加.⑤若有同分母的分数或易通分的分数,应先结合在一起.⑥符号相同的数可以先结合在一起.【例1】同号两数相加某人从原点0出发,如果第一次走了5米,第二次接着又走了3米,求两次行走后某人在什么地方?为区别向东还是向西走,这里规定向东走为正,向西走为负.这两数相加有以下三种情况:(1)某人向东走5米,再向东走3米,两次一共走了多少米?(2)某人向西走5米,再向西走3米,两次一共向东走了多少米?总结:__________________________________________________.异号两数相加(3)某人向东走5米,再向西走5米,两次一共向东走了多少米?(4)某人向东走5米,再向西走3米,两次一共向东走了多少米?(5)某人向东走3米,再向西走5米,两次一共向东走了多少米?总结:_______________________________________________________.【难度】1星【解析】利用实际情境来推导加法法则,强调和的符号及和与绝对值的关系,进而总结出加法法则【例2】计算下列各题:(1) (一11)+(一9); (2) (一3.5)+(+7);(3)(一1.08)+0; (4)(23+)+(23-)(5)[(-22)+(-27)]+(+27); (6)(-22)+[(-27)+(+27)].【难度】1星【解析】利用加法法则计算。

中关村一小最新北师大版七年级数学上册第2章《有理数及其运算》同步练习及答案—2.6有理数的减法混合运

中关村一小最新北师大版七年级数学上册第2章《有理数及其运算》同步练习及答案—2.6有理数的减法混合运

8.5 环,而这一周训练的平均成绩
星期







成绩 + 1 + 0.2 -0.5 + 0.3 + 0.2 - 0.7 - 0.1
正号表示比前一天提高,负号表示比前一天下降.
(1)本周哪一天的平均成绩最高,它是多少环? (2)本周哪一天的平均成绩最低,它是多少环? (3)本周日的成绩和上周日的成绩相比是提高了还是下降了,其变动的环数是多少?
2
8
8
5
= 2+ 3+ 2 3 = 7 3 . 55 11
(5)原式= 4 2 44
12 25
5 1 = 2- 8+ 5 1 =
1
.
33 2
22
(6)原式=
5 5 0.375
8
1 3
3 2
1.15 =- 6+ 7=1.
45
10 解:
2
-8
6
4
0
-4
-6
8
-2
11 解: 把往上爬的距离用正数表示,下滑的距离用负数表示,根据题意,蜗牛每次上爬和下
2 答案: 350 点拨: 用甲地的高度减去乙地的高度,即 300- (- 50)= 350(米 ). 3 答案: 回落了 1 点拨: 上升为正,回落为负,即 3-1.5- 2.5=3- 4=- 1(米 ), 所以此时的水位比刚开始的水位回落了 1 米. 4 答案: 71 点拨: 2- 3+ 1-2+ 0+ 4-1= 1(道 ),10×7+ 1= 71(道 ).
11. (创新应用 )一口水井,水面比井口低 3 m,一只蜗牛从水面沿着井壁往井口爬,第一次往 上爬了 0.5 m 后,又往下滑了 0.1 m;第二次往上爬了 0.42 m,却下滑了 0.15 m;第三次往上爬了

2.6有理数的加减混合运算习题

2.6有理数的加减混合运算习题

2.6 有理数的加减混合运算(1)作业 主备人: 侯俊萍1、下列交换加数的位置变形中正确的是( )A.1-4+5-4=1-4+4-5B.1-2+3-4=2-1+4-3C.4-7-5+8=4-5+8-7D.-3+4-1-2=2+4-3-12、a ,b ,c 为三个有理数,下列各式可写成a-b+c 的是( )A.a-(-b)-(+c)B.a-(+b)-(-c)C.a+(-b)+(-c)D.a+(-b)-(+c) 3.下面等式错误的是( )A.21-31-51=21-(31+51) B.-5+2+4=4-(5+2)C.(+3)-(-2)+(-1)=3+2-1D.2-3-4=-(-2)-(+3)+(-4)4、下列结论中,正确的是( )。

A .有理数减法中,被减数不一定比减数大B .减去一个数,等于加上这个数 C. 零减去一个数,仍得这个数 D .两个相反数相减得05、(5)______++= (5)______+-= (5)______-+= (5)______--= 6.小明从家里出发向东行驶2千米,记作+2千米,再向西行驶3千米,记作-3千米,实际结果是_______. 7. (1)-31+41-65+73=_____ (2)31-65+32-61=_____ 8.已知:a =11,b =-12,c =-5 计算:(1)a +b +c =_____ (2)a -b +c =_____ (3)a -(b +c )=_____ (4)b -(a -c )=_____9.已知a 、b 互为相反数,c 是绝对值最小的数,d 是负整数中最大的数,则a +b +c -d =_____. 10、已知三个有理数的和为0,前两个数为7和-3,则第三个数为 。

11.若|2x -3|+|3y +2|=0,则x -y =_____.12.(1)131()77+-- (2)12.54()2-+- (3)111324-++ (4)1241()()()2352+---+-(5)-4.2+5.7-8.4+10; (6)6.1-3.7-4.9+1.8;(7)(—36)—(—25)—(+36)+(+72); (8)12)12()15(5.0-----+-(9)(—8)—(—3)+(+5)—(+9); (10) -341-(-265)+35213.“学雷锋活动月”活动中,对某小组做好事情况进行统计如下表(1)完成上表.(2)谁做的好事最多,谁最少? (3)最多的比最少的多多少?2.6. 有理数的加减混合运算(2)作业 主备人: 侯俊萍1、下列各式计算结果等于-5的是( )A 、|-8|+3B 、-(+9)+(+4)C 、6+(+11)D 、(-2)+(-7)2、某天股票A 开盘价18元,上午11:30跌1.5元,下午收盘时又涨了0.3元,则股票A 这天收盘价为()A .0.3 元 B16.2元 C .16.8元 D 。

七年级上 第3讲 2 《有理数的加减混合运算》同步练习(含答案)

七年级上 第3讲 2 《有理数的加减混合运算》同步练习(含答案)

有理数的加减混合运算一、选择题1.2017·绍兴期中计算6-(+3)-(-7)+(-5)所得的结果是( )A .-7B .-9C .5D .-32.计算0-2+10-7-5的结果为( )A .0B .-4C .6D .-63.下列计算正确的是( )A .-6+(-3)+(-2)=-1B .7+(-0.5)+2-3=5.5C .-3-3=0D .(-1)-⎝⎛⎭⎫-34+(-4)=3344.某天早晨的气温为-3 ℃,中午上升了6 ℃,半夜又下降了7 ℃,则半夜的气温是( )A .-5 ℃B .-4 ℃C .4℃D .-16 ℃5.-15减去5与-215的和,差是( ) A .-3 B .225 C .3 D .3356.设a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的有理数,则a -b +c 的值为( )A .-1B .0C .1D .27.小张今年在银行中办理了7笔储蓄业务:取出9.5万元,存入5万元,取出8万元,存入12万元,存入25万元,取出12.5万元,取出2万元,这时小明在银行的存款 ( )A .增加了12.25万元B .减少了12.25万元C .增加了10万元D .减少了12万元二、填空题8.用算式表示“7与比它的相反数小3的数的差”是__________,结果是________.9.若a b c d =a +b -c -d ,则1 23 4的值是________. 10.-25与-35的和减去-415所得的差是________. 11.分别输入-1,-2,按图K -9-1所示的程序运算,则输出的结果分别是________. 输入→+4→-(-3)→-5→输出图K -9-112.一架飞机在空中做特技表演,起飞后的高度变化是上升4.5 km ,下降3.2 km ,上升1.1 km ,下降1.4 km ,那么此时飞机比起飞点高________km .三、解答题13.计算:(1)23-17-(-7)+(-16); (2)32+⎝⎛⎭⎫-15-1+13; (3)34-72+⎝⎛⎭⎫-16-⎝⎛⎭⎫-23-1.14.用简便方法计算:(1)(-26.54)+(-6.4)-18.54+6.4; (2)13-(+0.25)+(-34)-(-23);(3)-2-⎝⎛⎭⎫+712+⎝⎛⎭⎫-715-⎝⎛⎭⎫-14-⎝⎛⎭⎫-13+715.15.小明和小红在做游戏,两人抽取的数据如图K-9-2.游戏规定:正方形表示对应的数前是正号,圆形表示对应的数前是负号,计算其和,结果小者获胜.请列式计算说明小明和小红谁将获胜.图K-9-216.某检修小组乘汽车检修供电线路,约定前进为正,后退为负.某天该检修小组乘汽车自A地出发到收工时,所走路程(单位:千米)为+22,-3,+4,-2,-8,+17,-2,-3,+12,+7,-5,收工时该检修小组距A地多远?若汽车每千米耗油0.2升,则从A 地出发到收工时,汽车共耗油多少升?1.思维拓展计算下列各题:(1)112-256+3112-41920+5130-64142+7156-87172+9190;(2)⎪⎪⎪⎪15-150559+⎪⎪⎪⎪150559-13-⎪⎪⎪⎪-13.2.新定义运算设[a ]表示不超过a 的最大整数,例如:[2.3]=2,⎣⎡⎦⎤-413=-5,[5]=5. (1)求⎣⎡⎦⎤215+[-3.6]-[-7]的值;(2)求⎣⎡⎦⎤234-[-2.4]+⎣⎡⎦⎤-614.详解详析【课时作业】课堂达标1.[解析]C 6-(+3)-(-7)+(-5)=6-3+7-5=13-8=5.2.[答案]B3.[解析]B A .原式=-6-3-2=-11,错误;B .原式=9-3.5=5.5,正确;C .原式=-6,错误;D .原式=-5+34=-414,错误.故选B . www .czsx .com .cn 4.[答案]B5.[解析]A -15-⎣⎡⎦⎤5+⎝⎛⎭⎫-215=-15-245=-3.故选A . 6.[解析]C 最小的自然数为0,最大的负整数为-1,绝对值最小的有理数为0,由此可得a =0,b =-1,c =0,∴a -b +c =1.7.[解析]C 设取出为负,存入为正,由题意,得-9.5+5-8+12+25-12.5-2=-9.5-8-12.5-2+5+12+25=-32+42=10(万元).故选C .8.[答案] 7-(-7-3) 179.[答案]-410.[答案]-1115[解析] [-25+(-35)]-(-415)=-1+415=-1115. 11.[答案] 1,0[解析]当输入-1时,输出的结果=-1+4-(-3)-5=-1+4+3-5=1;当输入-2时,输出的结果=-2+4-(-3)-5=-2+4+3-5=0.故答案为:1,012.[答案] 1[解析]上升记为正,由题意,得4.5-3.2+1.1-1.4=4.5+1.1+(-3.2-1.4)=1(km ).13.解:(1)-3.(2)1930. (3)原式=34-72-16+23-1 =912-4212-212+812-1 =912+812-4212-212-1 =1712-4412-1 =-134. 14.解:(1)-45.08. (2)0.(3)原式=-2+⎝⎛⎭⎫-712+⎝⎛⎭⎫-715+⎝⎛⎭⎫+14+⎝⎛⎭⎫+13+⎝⎛⎭⎫+715 =-2+⎣⎡⎦⎤⎝⎛⎭⎫-712+⎝⎛⎭⎫+14+⎝⎛⎭⎫+13+ ⎣⎡⎦⎤⎝⎛⎭⎫-715+⎝⎛⎭⎫+715 =-2+0+0=-2.15.解:小明:-4.5+3.2-1.1+1.4=-5.6+4.6=-1;小红:-8+2-(-6)+(-7)=-8+2+6-7=-7.∵-7<-1,∴小红将获胜.16.[导学号:63832195]解:+22-3+4-2-8+17-2-3+12+7-5=(22+4+17+12+7)+(-3-2-8-2-3-5)=62-23=39(千米).|+22|+|-3|+|+4|+|-2|+|-8|+|+17|+|-2|+|-3|+|+12|+|+7|+|-5|=22+3+4+2+8+17+2+3+12+7+5=85(千米),85×0.2=17(升).答:收工时该检修小组距A 地39千米,从A 地出发到收工时,汽车共耗油17升. 素养提升1.[导学号:63832196]解:(1)原式=1+12+16-3+3+112-5+120+5+130-7+142+7+156-9+172+9+190=1+12+16+112+120+130+142+156+172+190=1+12+12-13+13-14+…+19-110=1+12+12-110=1910. (2)原式=⎝⎛⎭⎫150559-15+⎝⎛⎭⎫13-150559-13=-15. 2.[解析] (1)根据新定义,得⎣⎡⎦⎤215=2,[-3.6]=-4,[-7]=-7,再代入计算即可;(2)根据新定义,得⎣⎡⎦⎤234=2,[-2.4]=-3,⎣⎡⎦⎤-614=-7,再代入原式进行计算. 解:(1)⎣⎡⎦⎤215+[-3.6]-[-7]=2+(-4)-(-7)=2-4+7=5. (2)⎣⎡⎦⎤234-[-2.4]+⎣⎡⎦⎤-614=2-(-3)+(-7)=5-7=-2.。

2022-2023学年北师大版七年级数学上册《2-6有理数的加减混合运算》同步练习题(附答案)

2022-2023学年北师大版七年级数学上册《2-6有理数的加减混合运算》同步练习题(附答案)

2022-2023学年北师大版七年级数学上册《2.6有理数的加减混合运算》同步练习题(附答案)一.选择题1.把(﹣8)﹣(+4)+(﹣5)﹣(﹣2)写成省略加号的形式是()A.﹣8+4﹣5+2B.﹣8﹣4﹣5+2C.﹣8﹣4+5+2D.8﹣4﹣5+2 2.下列各式中与a﹣b+c相等的是()A.a﹣(+b)﹣(+c)B.a﹣(+b)﹣(﹣c)C.a+(﹣b)+(﹣c)D.a+(﹣b)﹣(+c)3.式子﹣5﹣(﹣3)+(+6)﹣(﹣2)写成和的形式是()A.﹣5+(+3)+(+6)+(﹣2)B.﹣5+(﹣3)+(+6)+(+2)C.(﹣5)+(+3)+(+6)+(+2)D.(﹣5)+(+3)+(﹣6)+(+2)4.将式子3﹣5﹣7写成和的形式,正确的是()A.3+5+7B.﹣3+(﹣5)+(﹣7)C.3﹣(+5)﹣(+7)D.3+(﹣5)+(﹣7)5.若a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,则a﹣b+c的值为()A.﹣1B.0C.1D.26.把(﹣3)﹣(﹣7)+4﹣(+5)写成省略加号的和的形式是()A.﹣3﹣7+4﹣5B.﹣3+7+4﹣5C.3+7﹣4+5D.﹣3﹣7﹣4﹣5 7.一只小虫在数轴上先向右爬行3个单位,再向左爬行7个单位,正好停在﹣3的位置,则小虫的起始位置所表示的数是()A.1B.2C.3D.4二.填空题8.若a是最大的负整数,b是最小的正整数,c的相反数等于它本身,则代数式a﹣b+2c =.9.某地星期一上午的温度是﹣7℃,中午上升了8℃,下午由于冷空气南下,到夜间又下降了10℃,则这天夜间的温度是℃.10.规定图形表示运算a﹣b+c,图形表示运算x+z﹣y﹣w,则+=(直接写出答案).11.已知|a+2|+|b﹣1|=0,则(a+b)﹣(b﹣a)=.三.解答题12.计算:(﹣7.3)﹣(﹣6)+|﹣3.3|+1.13.计算:﹣(﹣3)+7﹣|﹣8|.14.计算:(+3)+(﹣2)﹣(﹣5)﹣(+).15.若|a|=2,b=﹣3,c是最大的负整数,求a+b﹣c的值.16.计算:1.5﹣(﹣4)+3.75﹣(+8).17.计算:﹣15﹣(﹣3)+(﹣8).18.计算:(﹣20)+(+3)﹣(﹣5)﹣(+7)19.某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产为正、减产为负):星期一二三四五六日增减+5﹣2﹣4+13﹣10+16﹣9(1)根据记录可知前三天共生产辆;(2)产量最多的一天比产量最少的一天多生产辆;(3)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣15元,那么该厂工人这一周的工资总额是多少?20.高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+18,﹣9,+7,﹣14,﹣3,+11,﹣6,﹣8,+6,+15.(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)养护过程中,最远处离出发点有多远?(3)若汽车行驶每千米耗油量为a升,求这次养护小组的汽车共耗油多少升?参考答案一.选择题1.解:根据有理数的加减混合运算的符号省略法则化简,得,(﹣8)﹣(+4)+(﹣5)﹣(﹣2)=﹣8﹣4﹣5+2.故选:B.2.解:A、a﹣(+b)﹣(+c)=a﹣b﹣c;B、a﹣(+b)﹣(﹣c)=a﹣b+c;C、a+(﹣b)+(﹣c)=a﹣b﹣c;D、a+(﹣b)﹣(+c)=a﹣b﹣c.故选:B.3.解:原式=(﹣5)+(+3)+(+6)+(+2).故选:C.4.解:将式子3﹣5﹣7写成和的形式为:3+(﹣5)+(﹣7).故选:D.5.解:根据题意知a=1,b=﹣1,c=0,则a﹣b+c=1﹣(﹣1)+0=2,故选:D.6.解:(﹣3)﹣(﹣7)+4﹣(+5)=﹣3+7+4﹣5,故选:B.7.解:﹣3+7﹣3=1,故选:A.二.填空题8.解:∵a是最大的负整数,b是最小的正整数,c的相反数等于它本身,∴a=﹣1,b=1,c=0,∴a﹣b+2c=﹣1﹣1+0=﹣2,故答案为:﹣2.9.解:由题意可列算式为:﹣7+8−10=﹣9(℃),即这天夜间的温度是﹣9℃,故答案为:﹣9.10.解:根据题意得:1﹣2+3+4+6﹣5﹣7=0.故答案为:0.11.解:∵|a+2|+|b﹣1|=0,∴a+2=0,b﹣1=0,即a=﹣2,b=1,则原式=a+b﹣b+a=2a=﹣4.故答案为:﹣4.三.解答题12.解:原式=(﹣7.3)﹣(﹣6)+3.3+1=[(﹣7.3)+3.3]+[6+1]=﹣4+8=4.13.解:﹣(﹣3)+7﹣|﹣8|=3+7﹣8=2.14.解:原式=3+5﹣2﹣=9﹣3=6.15.解:∵|a|=2,∴a=±2;∵c是最大的负整数,∴c=﹣1.当a=2时,a+b﹣c=2﹣3﹣(﹣1)=0;当a=﹣2时,a+b﹣c=﹣2﹣3﹣(﹣1)=﹣4.16.解:原式=1++4++3+﹣8﹣=﹣7+8=1.17.解:原式=﹣15+3+(﹣8)=﹣12+(﹣8)=﹣20.18.解:(﹣20)+(+3)﹣(﹣5)﹣(+7)=﹣20+3+5﹣7=﹣27+8=﹣19.19.解:(1)5﹣2﹣4+200×3=599(辆);(2)16﹣(﹣10)=26(辆);(3)5﹣2﹣4+13﹣10+16﹣9=9,(1400+9)×60+9×15=84675(元).故答案为:599,26,84675.20.解:(1)18﹣9+7﹣14﹣3+11﹣6﹣8+6+15=+17.则养护小组最后到达的地方在出发点的东边,17千米处;(2)养护过程中,最远处离出发点是18千米;(3)(18+9+7+14+3+11+6+8+6+15)a=97a.答:这次养护小组的汽车共耗油97a升.。

北师大版七年级上册2.6 有理数的加减混合运算(2)同步练习

北师大版七年级上册2.6  有理数的加减混合运算(2)同步练习

2.6 有理数的加减混合运算(2)(含答案)一.选择题:(四个选项中只有一个正确,选出正确选项填在题目括号内)1.将式子3-5-7写成和的形式,正确的是( )A .3+5+7B .-3+(-5)+(-7)C .3-(+5)-(+7)D .3+(-5)+(-7)2.把+3-(+2)-(-4)+(-1)写成省略括号的和的形式是( )A. -3-2+4-1B. 3-2+4-1C. 3-2-4-1D. 3+2-4-13.下列把有理数加减混合运算统一成有理数加法运算中,正确的是( )A .)2()8()10()7(+--+---=)2()8()10()7(-+-+-+-B .)2()8()10()7(+--+---=)2()8()10()7(-++-++-C .)2()8()10()7(+--+---=)2()8()10()7(+--+++-D .)2()8()10()7(+--+---=)2()8()10()7(-+-+++-4.下列交换加数位置的变形中,正确的是( )A. 1﹣4+5﹣4=1﹣4+4﹣5B. 1﹣2+3﹣4=2﹣1+4﹣3C. 4﹣7﹣5+8=4﹣5+8﹣7D. ﹣3+4﹣1﹣2=2+4﹣3﹣15.在1.17-32-23中把省略的“+”号填上应得到( )A. 1.17+32+23B. -1.17+(-32)+(-23)C. 1.17+(-32)+(-23)D. 1.17-(+32)-236.算式8 - 7 + 3 - 6的正确读法是( )A .8,7,3,6的和B .正8、负7、正3、负6C .8减7加3减6的和D .正8、负7、正3、负6这四个数的和7.下列式子可读作“负10、负6、正3、负7的和”和是( )A .-10+(-6)+(+3)-(-7)B .-10 – 6 + 3 - 7C .-10 -(-6)+(-3)-(-7)D .-10 -(-6)+(+3)+(-7)8.下列各式可以写成c b a +-的是( )A .)()(c b a +-+-B .)()(c b a --+-C .)()(c b a -+-+D .)()(c b a +--+二.填空题:(把正确答案填在题目的横线上)9. 把下列各式写成省略括号的和的形式:(1) (+7)-(+8)+(-1)-(-5)=___________________________;(2) 9-(+5)-(-6)+(-7)=____________________________;(3) -3+(-4)-(-19)+(+11)=_____________________________;10.计算:(1)-5+7-15+4=_________;(2)0.5-4.3+9.6-1.8=_________;11.运用交换律和结合律计算(填符号或运算符号和结果):(1)3-10+7=3_____7______10=______;(2)-6+12-3-5=______6______3______5______12=______;三.解答题:(写出必要的计算步骤,解答过程)12.计算:(1)12(18)(7)15--+--; (2)()()()1251439--+---;(3)206137+-+-; (4)-3-4+19-11;13.计算:(1)()()()4991519----++; (2)1121322332⎛⎫⎛⎫--++- ⎪ ⎪⎝⎭⎝⎭;(3)-0.5-(-314)+2.75-(+712); (4)111131212424⎛⎫⎛⎫+-+-+ ⎪ ⎪⎝⎭⎝⎭;14. 今年一月老王到银行开户,存入1000元钱,以后每月根据收支情况存入一笔钱,下表为老王从二月到七月份存款的情况:请根据记录情况,从二月份到七月份中,回答下列问题:(1)存入的钱最多的月份和存入的钱最少的月份分别是几月?(2)截止到七月份存折上共有多少钱?2.6 有理数的加减混合运算(2)参考答案:1~8 DBDCC DBB9. (1) (+7)-(+8)+(-1)-(-5)=__7-8-1+5__;(2) 9-(+5)-(-6)+(-7)=___9-5+6-7___;(3) -3+(-4)-(-19)+(+11)=__-3-4+19+11___;10.(1)-9;(2)4;11. (1)3-10+7=3_+ 7_-_10=__0__;(2)-6+12-3-5=__-_ 6 _- 3 _-_ 5 _+_ 12=__-2__;12.(1)8;(2)8;(3)20;(4)1;13.(1)0;(2)6;(3)-2;(4)1;14. (1)由题意得:二月份存入:1000-200=800三月份存入:1000-200-300=500四月份存入:1000-200-300+400=900五月份存入:1000-200-300+400+450=1350六月份存入:1000-200-300+400+450-50=1300七月份存入:1000-200-300+400+450-50-600=700 又1350 > 1300 > 900 > 800 > 700 > 500∴存钱最多的是五月,存钱最少的是三月;(2)由(1)得,截止到七月份存折上共有700元.。

最新2019-2020年度人教版七年级数学上册《有理数加减乘除混合运算》综合练习题-经典试题

最新2019-2020年度人教版七年级数学上册《有理数加减乘除混合运算》综合练习题-经典试题

数 学 练 习(一)〔有理数加减法运算练习〕一、加减法法则、运算律的复习。

A .△同号两数相加,取__________________,并把____________________________。

1、(–3)+(–9)2、85+(+15)3、(–361)+(–332) 4、(–3.5)+(–532)△绝对值不相等的异号两数相加,取_________________________,并用____________________ _____________. 互为__________________的两个数相加得0。

1、(–45) +(+23)2、(–1.35)+6.353、412+(–2.25) 4、(–9)+7△ 一个数同0相加,仍得_____________。

1、(–9)+ 0=______________;2、0 +(+15)=_____________。

B .加法交换律:a + b = ___________ 加法结合律:(a + b) + c = _______________1、(–1.76)+(–19.15)+ (–8.24)2、23+(–17)+(+7)+(–13)3、(+ 341)+(–253)+ 543+(–852) 4、52+112+(–52)C .有理数的减法可以转化为_____来进行,转化的“桥梁”是___________。

△减法法则:减去一个数,等于_____________________________。

即a –b = a + ( )1、(–3)–(–5)2、341–(–143) 3、0–(–7)D .加减混合运算可以统一为_______运算。

即a + b –c = a + b + _____________。

1、(–3)–(+5)+(–4)–(–10)2、341–(+5)–(–143)+(–5)△把–2.4–(–3.5)+(–4.6)+ (+3.5)写成省略加号的和的形式是______________,读作:__________________________,也可以读作:__________________________。

七上数学每日一练:有理数的加减乘除混合运算练习题及答案_2020年填空题版

七上数学每日一练:有理数的加减乘除混合运算练习题及答案_2020年填空题版

考点: 有理数的加减乘除混合运算;
答案解析
9. (2018安达.七上期末) 如图所示是计算机某计算程序,若开始输入
,则最后输出的结果是________.
考点: 有理数的加减乘除混合运算;
10. (2018泰州.七上期末) 定义新运算“ 考点: 有理数的加减乘除混合运算;
”,规定
,则
________.
答案解析
5. (2020海淀.七上期中) 计算 考点: 有理数的加减乘除混合运算;
=________.
答案解析
6.
(2019永登.七上期中) 一种“24点”游戏的规则如下:用4个数进行有理数的混合运算(每个数必须用一次而且只能用一
次,可以加括号),使运算结果为24或﹣24,现有四个有理数1,﹣2,4,﹣8,请按照上述规则写出一种算式,使其结果
等于24:________.
考点: 有理数的加减乘除混合运算;
答案解析
7. (2018大连.七上期末) 计算2×3+(-4)的结果为________. 考点: 有理数的加减乘除混合运算;
答案解析
8. (2019永登.七上期末) 小明与小刚规定了一种新运算△:a△b=3a﹣2b.小明计算出2△5=﹣4,请你帮小刚计算2△( ﹣5)=________ .
3. (2019法库.七上期末) 若规定一种运算: 考点: 有理数的加减乘除混合运算;定义新运算;
,则
________.
4. (2019绿园.七上期末) 阅读下面解题过程: 计算:
答案解析 答案解析
解:原式=
(第一步)=(﹣15)÷(﹣25)(第二步)= (第三步)
回答:
(1) 上面解题过程中有两个不符合题意,第一处是第步,错误的原因是,第二处是第步,错误的原因是; (2) 正确的结果是. 考点: 有理数的加减乘除混合运算;

2020年北师大版七年级数学上册练习:第2章6 有理数的加减混合运算 (含答案)

2020年北师大版七年级数学上册练习:第2章6  有理数的加减混合运算 (含答案)

第二章 有理数及其运算6有理数的加减混合运算基础巩固1.(题型一)不改变原式的值,将6-(+3)-(-7)+(-2)写成省略加号的和的形式是( )A.-6-3+7-2B.6-3-7-2C.6-3+7-2D.6+3-7-22.(题型二)某天股票B 的开盘价为10元,上午11:00下跌了1.8元,下午收盘时上涨了1元,则该股票这天的收盘价为( )A .-0.8元B .12.8元C .9.2元D .7.2元3.(题型三)已知|a +2|+|b -1|=0,则(a +b )-(b -a )-a =______.4.(题型一)计算:(1) (-23)-(-38)-(+12)+(+7);(2)16-(+2.8)+(-65)+1.8;(3)-0.5-(-341)+2.75-(+521);(4)|+3118|-|-1127|-|+1119|+|-59|.5.(题型二)为了宣传节约用水的意义,李丽记录了金地庄园小区6月份1~6日每天的用水量,并根据记录结果制成折线统计图,如图2-6-1.请你求出该小区6天的平均用水量是多少吨.图2-6-1能力提升6.(题型一)数学活动课上,王老师给同学们出了一道题,规定一种新运算“☆”,对于任意有理数a和b,a☆b=a-b+1,请你根据新运算,计算[2☆(-3)]☆(-2)的值.7.(题型四)(1)有1,2,3,…,11,12共12个数,请在每两个数之间添上“+”或“-”,使它们的和为0;(2)若有1,2,3,…,2 015,2 016共2 016个数字,请在每两个数之间添上“+”或“-”,使它们的和为0;(3)根据(1)(2)的规律,试判断能否在1,2,3,…,2 016,2 017共2 017个数的每两个数之间添上“+”或“-”,使它们的和为0.若能,请说明添加的方法;若不能,请说明理由.答案1.C 解析:原式=6+(-3)+(+7)+(-2)=6-3+7-2.故选C.2.C 解析:由题意可得,该股票这天的收盘价为10-1.8+1=9.2(元).故选C.3. -2 解析:因为|a +2|+|b -1|=0,所以a +2=0,b -1=0,即a =-2,b =1,则原式=a +b -b +a -a =a =-2.4.解:(1)原式=-23+38-12+7=(-23-12)+(38+7)=-35+45=10.(2)原式=61-2.8-65+1.8=(61-65)+(-2.8+1.8)=-32-1=-132.(3)原式=-0.5+3.25+2.75-5.5=(-0.5-5.5)+(3.25+2.75)=-6+6=0.(4)原式=3118-1027-1119+59=3118-1119-(—1027-59)=2-109=1101.5.解:若选3日的用水量为标准,则这6天的用水量分别为-2吨,+2吨,0吨,+5吨,-4吨,-1吨.所以这6天的平均用水量为[(-2)+(+2)+0+(+5)+(-4)+(-1)]÷6+32=(-2+2+0+5-4-1)÷6+32=32(吨).答:该小区6天的平均用水量是32吨.能力提升6.解:根据新运算法则,得[2☆(-3)]☆(-2)=[2-(-3)+1]☆(-2)=6☆(-2)=6-(-2)+1=6+2+1=9.7.解:(1)答案不唯一,如1+12-2-11+3+10-4-9+5+8-6-7=0.(2)答案不唯一,如1+2 016-2-2 015+3+2 014-4-2 013+…+1 007+ 1 010-1 008-1 009=0.(3)不能.理由如下:因为(1)与(2)是偶数个数,它们的第一个数与最后一个数的和,第二个数与倒数第二个数的和,……中间位置两个数的和都分别相等,在适当的位置添加“+”或“-”其和可以为0,而1,2,3,…,2 016,2 017共2 017个数,中间的数2 009是无法抵消的,所以根据(1)(2)的规律,不能在1,2,3,…,2 016,2 017共2 017个数的每两个数之间添上“+”或“-”,使它们的和为0.。

七上数学每日一练:有理数的加减乘除混合运算练习题及答案_2020年综合题版

七上数学每日一练:有理数的加减乘除混合运算练习题及答案_2020年综合题版

七上数学每日一练:有理数的加减乘除混合运算练习题及答案_2020年综合题版答案解析答案解析答案解析答案解析2020年七上数学:数与式_有理数_有理数的加减乘除混合运算练习题1.(2020长兴.七上期末) 如图,现有5张写着不同数的卡片,请按要求完成下列问题:(1) 从中任选2张卡片,使这2张卡片上的数的乘积最大,则该乘积的最大值是多少?(2) 从中任选4张卡片,用卡片上的数和加、减、乘、除四则运算(可用括号,每个数都要用且只能用一次)列出两个不同的算式(每个算式可选用不同的卡片),使其计算结果为24。

考点: 有理数的加减乘除混合运算;2.(2020安陆.七上期末) 暖羊羊有5张写着不同数字的卡片,请你按要求选择卡片,完成下列各问题:(1) 从中选择两张卡片,使这两张卡片上数字的乘积最大.这两张卡片上的数字分别是,积为.(2) 从中选择两张卡片,使这两张卡片上数字相除的商最小.这两张卡片上的数字分别是,商为.(3) 从中选择4张卡片,每张卡片上的数字只能用一次,选择加、减、乘、除中的适当方法(可加括号),使其运算结果为24,写出运算式子.(写出一种即可)考点: 有理数的乘法;有理数的除法;有理数的加减乘除混合运算;3.(2020丹江口.七上期末) 对于任意四个有理数,我们规定:,例如:,根据上述规定解决下列问题:(1) 计算;(2) 计算;(3) 若有理数对 ,求的值.(4) 若有理数对 ,求 的值.考点: 有理数的加减乘除混合运算;定义新运算;4.(2020.七上期中) 如图,现有5张写着不同数字的卡片,请按要求完成下列问题:(1) 若从中取出2张卡片,使这2张卡片上数字的乘积最大,则乘积的最大值是.(2) 若从中取出2张卡片,使这2张卡片上数字相除的商最小,则商的最小值是.(3) 若从中取出4张卡片,请运用所学的计算方法,写出两个不同的运算式,使四个数字的计算结果为24.考点: 有理数的乘法;有理数的除法;有理数的加减乘除混合运算;5.(2019杭州.七上期末)某市电力部门对一般照明用电实行“阶梯电价”收费,具体收费标准如下:第一档:月用电量不超过200度的部分的电价为每度元.第二档:月用电量超过200度但不超过400度部分的电价为每度 元.度的部分的电价为每度元月份应交电费元月份小明家用电的平均电价为元,求小明家去年700度月份的用电量少于月份的用电量,两个月的总电价是1.答案:2.答案:3.答案:4.答案:5.答案:。

七年级上有理数混合运算计算题及答案

七年级上有理数混合运算计算题及答案

有理数混合运算计算题1.计算:4318(2)(3)--+-⨯-.2.计算(1)(5)(7)(3)(20)-++---+(2)20195225()(2)(1)65÷⨯-+-⨯-3.计算:(1)1108(2)()2--÷-⨯-;(2)2020313(12(1)468-+-⨯+-.4.计算:201831(1)2(16|2|2-÷⨯-⨯--5.计算2018432111(2)(|0.28|()210-+-⨯--+-6.计算题:(1)(7)(4)(10)-+---;(2)113(1(2344-÷-⨯;(3)(7)(5)90(15)3(1)-⨯--÷-+⨯-;(4)2211(2)(442-⨯---⨯.7.计算:27(3)24(3)284-⨯+⨯--÷.8.计算:2210.5|24|4-+--9.计算:20201124(4)3||(6)3-+÷-+⨯---11.(1)(20)(3)(5)(7)--+---+(2)1(12)(4)(1)5-÷-÷-(3)222(3)4(3)15⨯--⨯--12.计算:201921|2|(1)(3)9-+-+⨯-13.计算:(1)11(21)3(4)(2)+-÷+-⨯-(2)24321117(35)|||1|2422-⨯--÷-+-15.计算(1)814620-+-+(2)135((12)246-+-⨯-16.计算下列各式的值:(1)2151(|05||4|(9)3663-+-+-+-(2)2342()((0.25)34⨯-+-÷-17.计算:(1)5(3)(2)8---+-+(2)23(1)2(2)|4|-⨯+-÷-18.计算:201911(1)8||(6)(43--⨯-+-⨯-19.计算:23(4)(30(6)|3|4-⨯-+÷---20.计算:(1)1108(2)()2--÷-⨯-(2)2211(10.5)[19(5)]3---⨯⨯--21.计算:(1)20(7)(8)+---(2)201921(1)(1)23-⨯-÷22.计算:(1)172()32--÷-+;(2)44(3)(16)9-⨯+-23.计算2019113(1)36()3()324-+⨯--÷-24.计算:201931(1)|16|28-+-÷⨯.25.计算:(1)19(3)(2)--+-(2)23(2)4(1)2-÷+-⨯26.计算:321(1)(10.5)(33)3---⨯⨯-27.计算:(1) 2.4( 3.7) 4.6 5.7-+--+(2)5431(0.25)65-⨯⨯⨯-28.计算:(1)11412()34--⨯-(2)4542(1)2(2)---⨯+-30.计算(1)5548(|63|86⨯-+-+(2)32201912(4)3(1)2-+÷-+⨯-31.计算:3312(10.5)(2)3---÷⨯-32.计算:(1)145(10)8-+--+(2)2312()(2)82-+-÷-⨯33.计算:3242(2)27()73-÷-⨯-.35.计算题(1)3(9)7(9)⨯-+⨯-(2)2020251(5)(|0.81|3-÷-⨯---36.计算:(1)6(14)(16)8-+-+-+(2)2751()(24)126---⨯-37.计算:32(4)18(3)(5)⨯-+÷---.38.计算:4(1)4(0.25)|3|-+÷---.39.(1)计算:8(9)(3)---+-(2)计算:23(3)(2)|1|-+---(3)计算:202011(1)6()23-+⨯-40.计算:33(2)(30(5)|3|4-⨯-+÷---七年级上有理数混合运算计算题参考答案与试题解析一.解答题(共40小题)1.计算:4318(2)(3)--+-⨯-.【分析】先进行乘方运算,再进行乘法运算,最后进行加减运算即可得到答案.【解答】解:4318(2)(3)--+-⨯-18(8)(3)=--+-⨯-924=-+15=.【点评】此题考查了含有乘方的有理数的混合运算.熟练掌握运算法则是解答此题的关键.2.计算(1)(5)(7)(3)(20)-++---+(2)20195225()(2)(1)65÷⨯-+-⨯-【分析】(1)先化简,再计算加减法;(2)先算乘方,再算乘除,最后算加法;同级运算,应按从左到右的顺序进行计算.【解答】解:(1)(5)(7)(3)(20)-++---+57320=-++-2510=-+15=-;(2)20195225()(2)(1)65÷⨯-+-⨯-6225()(2)(1)55=⨯⨯-+-⨯-122=-+10=-.【点评】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.3.计算:(1)1108(2)()2--÷-⨯-;(2)2020313()12(1)468-+-⨯+-.【分析】(1)根据有理数的乘除法和减法可以解答本题;(2)根据乘法分配律和有理数的乘方可以解答本题.【解答】解:(1)1108(2)(2--÷-⨯-1110822=--⨯⨯102=--12=-;(2)2020313()12(1)468-+-⨯+-3131212121468=-⨯+⨯-⨯+99212=-+-+212=-.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.4.计算:201831(1)2(16|2|2-÷⨯-⨯--【分析】先进行乘方运算,再进行乘除运算,最后进行加法运算.【解答】解:原式111()16228=⨯⨯-⨯-111()16228=⨯⨯-⨯-12=--3=-.【点评】本题考查了有理数混合运算:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.5.计算2018432111(2)(|0.28|()210-+-⨯--+-【分析】根据有理数的混合运算和运算顺序进行计算便可.【解答】解:原式11160.280.018=-+⨯-+120.280.01=-+-+10.2820.01=--++1.282.01=-+0.73=【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.6.计算题:(1)(7)(4)(10)-+---;(2)113(1)(2)344-÷-⨯;(3)(7)(5)90(15)3(1)-⨯--÷-+⨯-;(4)2211(2)()442-⨯---⨯.【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式从左到右依次计算即可求出值;(3)原式先计算乘除运算,再计算加减运算即可求出值;(4)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【解答】解:(1)原式74101=--+=-;(2)原式44343949=⨯⨯=;(3)原式356338=+-=;(4)原式1141618742=-⨯+⨯=-+=.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.7.计算:27(3)24(3)284-⨯+⨯--÷.【分析】根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【解答】解:27(3)24(3)284-⨯+⨯--÷492(12)287=⨯+--⨯18(12)16=+--10=-.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.8.计算:2210.5|24|4-+--【分析】先算乘方,后算加减;同级运算,应按从左到右的顺序进行计算;如果有绝对值,要先做绝对值内的运算.【解答】解:2210.5|24|4-+--10.25|44|4=-+--10.2504=-+-0=.【点评】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.9.计算:20201124(4)3||(6)3-+÷-+⨯---【分析】先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有绝对值,要先做绝对值内的运算.【解答】解:20201124(4)3||(6)3-+÷-+⨯---116363=--+⨯+1616=--++0=.【点评】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.10.计算:1004(1)5(2)4|3|-⨯+-÷--【分析】首先计算乘方,然后计算乘法、除法,最后从左向右依次计算,求出算式的值是多少即可.【解答】解:1004(1)5(2)4|3|-⨯+-÷--151643=⨯+÷-543=+-6=【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.11.(1)(20)(3)(5)(7)--+---+(2)1(12)(4)(15-÷-÷-(3)222(3)4(3)15⨯--⨯--【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式利用除法法则变形,约分即可得到结果;(3)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【解答】解:(1)原式20357=--+-232=--25=-;(2)原式151246=-⨯⨯52=-;(3)原式294(9)15=⨯-⨯--183615=+-5415=-39=.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.12.计算:201921|2|(1)(3)9-+-+⨯-【分析】直接利用绝对值的性质以及有理数的混合运算法则计算得出答案.【解答】解:原式12199=-+⨯11=+2=.【点评】此题主要考查了有理数的混合运算,正确掌握相关运算法则是解题关键.13.计算:(1)11(21)3(4)(2)+-÷+-⨯-(2)24321117(35)|||1|2422-⨯--÷-+-【分析】(1)根据有理数的乘除法和加法可以解答本题;(3)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【解答】解:(1)11(21)3(4)(2)+-÷+-⨯-11(7)8=+-+12=;(2)24321117(35)|||1|2422-⨯--÷-+-117(95)8|1|1644=-⨯--⨯+-1342164=-⨯-+13244=--+32=-.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.14.计算:32019(2)4(1)|3|-÷--⨯-.【分析】根据有理数的乘方、有理数的乘除法和减法可以解答本题.【解答】解:32019(2)4(1)|3|-÷--⨯-(8)4(1)3=-÷--⨯(2)3=-+1=.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.15.计算(1)814620-+-+(2)135((12)246-+-⨯-【分析】(1)从左向右依次计算,求出算式的值是多少即可.(2)应用乘法分配律,求出算式的值是多少即可.【解答】解:(1)814620-+-+6620=-+20=(2)135((12)246-+-⨯-135((12)(12)(12)246=-⨯-+⨯--⨯-6910=-+7=【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.16.计算下列各式的值:(1)2151(|05||4|(9)3663-+-+-+-(2)2342()((0.25)34⨯-+-÷-【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘除法和加法可以解答本题.【解答】解:(1)2151()|05||4|(9)3663-+-+-+-2151(54(9)3663=-+++-0=;(2)2342()((0.25)34⨯-+-÷-328()(4)4=-+-⨯-283=-+25=-.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.17.计算:(1)5(3)(2)8---+-+(2)23(1)2(2)|4|-⨯+-÷-【分析】(1)从左向右依次计算,求出算式的值是多少即可.(2)首先计算乘方,然后计算乘法、除法,最后计算加法,求出算式的值是多少即可.【解答】解:(1)5(3)(2)8---+-+228=--+4=(2)23(1)2(2)|4|-⨯+-÷-1284=⨯-÷22=-0=【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.18.计算:201911(1)8||(6)(43--⨯-+-⨯-【分析】先算乘方,再算乘法,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有绝对值,要先做绝对值内的运算.【解答】解:201911(1)8||(6)()43--⨯-+-⨯-11824=--⨯+122=--+1=-.【点评】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.19.计算:23(4)(30(6)|3|4-⨯-+÷---【分析】先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有绝对值,要先做绝对值内的运算.【解答】解:23(4)()30(6)|3|4-⨯-+÷---316()534=⨯---1253=---20=-.【点评】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.20.计算:(1)1108(2)()2--÷-⨯-(2)2211(10.5)[19(5)]3---⨯⨯--【分析】(1)先计算乘除运算,再计算加减可得;(2)先根据有理数的混合运算顺序和运算法则计算可得.【解答】解:(1)原式102=--10(2)=-+-12=-;(2)原式110.5(1925)3=--⨯⨯-110.5(6)3=--⨯⨯-1(1)=---0=.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.21.计算:(1)20(7)(8)+---(2)201921(1)(1)23-⨯-÷【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘方、有理数的乘除法和减法可以解答本题.【解答】解:(1)20(7)(8)+---20(7)8=+-+21=;(2)201921(1)(1)23-⨯-÷21(43=-⨯-÷211()34=-⨯-⨯16=.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.22.计算:(1)172()32--÷-+;(2)44(3)(16)9-⨯+-【分析】(1)原式先计算除法运算,再计算加减运算即可求出值;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【解答】解:(1)原式7430=-++=;(2)原式481163616529=-⨯-=--=-.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:原式1121843=-+-+=-.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.24.计算:201931(1)|16|28-+-÷⨯.【分析】根据有理数的乘方、有理数的乘除法和加法可以解答本题.【解答】解:201931(1)|16|28-+-÷⨯111688=-+÷⨯1128=-+⨯114=-+34=-.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.25.计算:(1)19(3)(2)--+-(2)23(2)4(1)2-÷+-⨯【分析】(1)从左向右依次计算,求出算式的值是多少即可.(2)首先计算乘方,然后计算乘法、除法,最后计算加法,求出算式的值是多少即可.【解答】解:(1)19(3)(2)--+-222=-20=(2)23(2)4(1)2-÷+-⨯44(1)2=÷+-⨯1(2)=+-1=-【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【分析】先算乘方,再算乘法,最后算减法;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解答】解:原式111(39)23=--⨯⨯-11(6)6=--⨯-11=-+0=.【点评】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.27.计算:(1) 2.4( 3.7) 4.6 5.7-+--+(2)5431(0.25) 65-⨯⨯⨯-【分析】(1)变形为( 2.4 4.6)( 3.7 5.7)--+-+简便计算;(2)将带分数变为假分数,小数变为分数,再约分进行计算即可求解.【解答】解:(1) 2.4( 3.7) 4.6 5.7-+--+(2.4 4.6)(3.7 5.7)=--+-+72=-+5=-;(2)5431(0.25) 65-⨯⨯⨯-5913654=-⨯⨯⨯98=-.【点评】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.28.计算:(1)11 412()34 --⨯-(2)4542(1)2(2)---⨯+-【分析】(1)根据乘法分配律简便计算;(2)先算乘方,再算乘法,最后算加减;同级运算,应按从左到右的顺序进行计算.【解答】解:(1)11412(34--⨯-443=--+5=-;(2)4542(1)2(2)---⨯+-161216=-+⨯+16216=-++2=.【点评】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.29.计算:3118[(2)(8)]4÷--⨯-【分析】根据有理数的乘方、有理数的乘除法和减法可以解答本题.【解答】解:3118[(2)(8)]4÷--⨯-18[(8)2]=÷-+18(6)=÷-3=-.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.30.计算(1)5548(|63|86⨯-+-+(2)32201912(4)3(1)2-+÷-+⨯-【分析】(1)原式利用乘法分配律,以及绝对值的代数意义计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:(1)原式304037=-+=-;(2)原式111816333222=-+÷-=-+-=-.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.31.计算:3312(10.5)(2)3---÷⨯-【分析】原式先计算乘方运算,再计算乘除运算,再计算加减运算即可求出值.【解答】解:3312(10.5)(2)3---÷⨯-183(8)2=--⨯⨯-812=-+4=.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.32.计算:(1)145(10)8-+--+(2)2312()(2)82-+-÷-⨯【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘方、有理数的乘除法和加法可以解答本题.【解答】解:(1)145(10)8-+--+145108=-+++9=;(2)2312()(2)82-+-÷-⨯114()(882=-+-⨯-⨯142=-+72=-.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.33.计算:3242(2)27()73-÷-⨯-.【分析】先算乘方,再算乘除,最后算减法.【解答】解:3242(2)27(73-÷-⨯-4482779=-÷-⨯1412=--26=-.【点评】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.34.计算:421(1)[2(3)]6--⨯--【分析】先算乘方,再算乘法,最后算减法;如果有括号,要先做括号内的运算.【解答】解:原式11(29)6=-⨯-11(7)6=-⨯-716=+136=.【点评】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.35.计算题(1)3(9)7(9)⨯-+⨯-(2)2020251(5)(|0.81|3-÷-⨯---【分析】(1)先算乘除,再算加法;(2)先算乘方,再算乘法,最后算减法;同级运算,应按从左到右的顺序进行计算;如果有绝对值,要先做绝对值内的运算.【解答】解:(1)3(9)7(9)⨯-+⨯-2763=--90=-;(2)2020251(5)(|0.81|3-÷-⨯---51125()35=-÷⨯--11155=-215=-.【点评】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.36.计算:(1)6(14)(16)8-+-+-+(2)2751()(24)126---⨯-【分析】(1)先化简,再计算即可求解;(2)先算乘方,再算乘法,最后算法;如果有括号,要先做括号内的运算;注意乘法分配律的运用.【解答】解:(1)6(14)(16)8-+-+-+614168=---+368=-+28=-;(2)2751()(24)126---⨯-11420=-+-7=-.【点评】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.37.计算:32(4)18(3)(5)⨯-+÷---.【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:原式2285333=--+=-.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.38.计算:4(1)4(0.25)|3|-+÷---.【分析】原式先计算乘方及绝对值运算,再计算除法运算,最后算加减运算即可求出值.【解答】解:原式1(16)311918=+---=-.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.39.(1)计算:8(9)(3)---+-(2)计算:23(3)(2)|1|-+---(3)计算:202011(1)6()23-+⨯-【分析】(1)原式利用减法法则变形,计算即可求出值;(2)原式先计算乘方及绝对值运算,再计算加减运算即可求出值;(3)原式利用乘方的意义,以及乘法分配律计算即可求出值.【解答】解:(1)原式8932=-+-=-;(2)原式9810=--=;(3)原式1322=+-=.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.40.计算:33(2)(30(5)|3|4-⨯-+÷---【分析】原式先计算乘方及绝对值运算,再计算乘除运算,最后算加减运算即可求出值.【解答】解:原式38()6366334=-⨯---=--=-.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.。

人教版七年级数学上册《有理数的加减混合运算》专题训练-附带答案

人教版七年级数学上册《有理数的加减混合运算》专题训练-附带答案

人教版七年级数学上册《有理数的加减混合运算》专题训练-附带答案一.选择题(共10小题 满分20分 每小题2分)1.(2分)(2022·台湾)算式91123722182218⎛⎫+-- ⎪⎝⎭之值为何?( ) A .411 B .910 C .19 D .54【答案】A【完整解答】解:91123722182218⎛⎫+-- ⎪⎝⎭ 91123722182218=+-+ 92311722221818⎛⎫⎛⎫=-++ ⎪ ⎪⎝⎭⎝⎭ 7111=-+ 411=. 故答案为:A.【思路引导】首先根据去括号法则“括号前面是负号 去掉括号和负号 括号内各项都要变号”先去括号 再利用加法的交换律和结合律 将分母相同的加数结合在一起 进而根据有理数的加法法则算出答案.2.(2分)(2021六下·哈尔滨期中)一天早晨的气温为-3℃ 中午上升了7°C 半夜又下降了8℃ 则半夜的气温是( )A .-5°CB .-4°C C .4°CD .-16°C 【答案】B【完整解答】根据题意可得:-3+7-8=-4故答案为:B【思路引导】根据题意可得算式:-3+7-8 计算即可。

3.(2分)(2022·雄县模拟)下面算式与11152234-+的值相等的是( ) A .111324234⎛⎫⎛⎫--+- ⎪ ⎪⎝⎭⎝⎭ B .11133234⎛⎫--+ ⎪⎝⎭C.111227234⎛⎫+-+⎪⎝⎭D.11143234⎛⎫--+⎪⎝⎭【答案】C【完整解答】解:1111115 52527 23423412 -+=+-++=A1111111117 3243243241 23423423412⎛⎫⎛⎫--+-=++-=+++--=⎪ ⎪⎝⎭⎝⎭B 1111111111 3333337 23423423412⎛⎫--+=++=++++=⎪⎝⎭C1111115 2272277 23423412⎛⎫+-+=+--++=⎪⎝⎭D1111111 43438 23423412⎛⎫--+=++++=⎪⎝⎭故答案为:C【思路引导】利用有理数的加减法的运算方法求解即可。

有理数的加减混合运算同步培优题典(解析版)

有理数的加减混合运算同步培优题典(解析版)

七年级数学上册同步培优题典有理数的加减混合运算姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019秋•瑞安市校级月考)下列运算中正确的个数有()(1)(﹣5)+5=0;(2)﹣10+(+7)=﹣3;(3)0+(﹣4)=﹣4;(4)(−27)﹣(+57)=−37.A.1个B.2个C.3个D.4个【分析】根据有理数的加减运算法则分别计算即可.【解析】(1)(﹣5)+5=0,正确;(2)﹣10+(+7)=﹣(10﹣7)=﹣3,正确;(3)0+(﹣4)=﹣4,正确;(4)(−27)﹣(+57)=37.故原结论错误.∴运算中正确的有(1)(2)(3)共3个.故选:C.2.(2018秋•黄陂区期末)将式子(﹣20)+(+3)﹣(﹣5)﹣(+7)省略括号和加号后变形正确的是()A.20﹣3+5﹣7B.﹣20﹣3+5+7C.﹣20+3+5﹣7D.﹣20﹣3+5﹣7【分析】先把加减法统一成加法,再省略括号和加号.【解析】(﹣20)+(+3)﹣(﹣5)﹣(+7)=﹣20+3+5﹣7.故选:C.3.(2019秋•麻城市校级期中)下列各式中,正确的是()A.﹣4﹣2=﹣2B.﹣5﹣4﹣(﹣4)=﹣5C.10+(﹣8)=﹣2D.3﹣(﹣3)=0【分析】根据有理数加减法的运算方法,以及有理数加减混合运算的方法,逐项判断即可.【解析】A、﹣4﹣2=﹣6,故此选项不合题意;B、﹣5﹣4﹣(﹣4)=﹣5,正确,符合题意.C、10+(﹣8)=2,故此选项不合题意;D、3﹣(﹣3)=6,故此选项不合题意.故选:B.4.(2018秋•岳麓区校级月考)小明存折中原有450元,取出260元,又存入150元,现在存折中还有()A.340元B.240元C.540元D.600元【分析】根据有理数的混合运算的方法,用小明存折中原有的钱数减去取出的钱数,再加上又存入的钱数,求出现在存折中还有多少元即可.【解析】450﹣260+150=190+150=340(元)∴现在存折中还有340元.故选:A.5.(2018秋•拱墅区期末)下列计算正确的是()A.5+(﹣6)=﹣11B.﹣1.3+(﹣1.7)=﹣3C.(﹣11)﹣7=﹣4D.(﹣7)﹣(﹣8)=﹣1【分析】根据有理数的加法和减法法则计算可得.【解析】A.5+(﹣6)=﹣1,此选项错误;B.﹣1.3+(﹣1.7)=﹣3,此选项正确;C.(﹣11)﹣7=(﹣11)+(﹣7)=﹣18,此选项错误;D.(﹣7)﹣(﹣8)=(﹣7)+8=1,此选项错误;故选:B.6.(2019秋•新乐市期末)把算式:(﹣5)﹣(﹣4)+(﹣7)﹣(+2)写成省略括号的形式,结果正确的是()A.﹣5﹣4+7﹣2B.5+4﹣7﹣2C.﹣5+4﹣7﹣2D.﹣5+4+7﹣2【分析】根据有理数加减法的运算方法,判断出把算式:(﹣5)﹣(﹣4)+(﹣7)﹣(+2)写成省略括号的形式,结果正确的是哪个即可.【解析】(﹣5)﹣(﹣4)+(﹣7)﹣(+2)=﹣5+4﹣7﹣2=﹣10故选:C .7.(2019秋•江夏区期末)计算:(﹣1434)﹣(﹣1014)+12=( ) A .﹣8 B .﹣7 C .﹣4 D .﹣3 【分析】从左向右依次计算,求出算式的值是多少即可.【解析】(﹣1434)﹣(﹣1014)+12 =﹣412+12 =﹣4故选:C .8.(2019秋•通州区期末)下列运算正确的是( )A .﹣2+(﹣5)=﹣(5﹣2)=﹣3B .(+3)+(﹣8)=﹣(8﹣3)=﹣5C .(﹣9)﹣(﹣2)=﹣(9+2)=﹣11D .(+6)+(﹣4)=+(6+4)=+10【分析】根据有理数的加法法则一一计算即可判断.【解析】A 、﹣2+(﹣5)=﹣(2+5)=﹣7,故本选项不符合题意.B 、(+3)+(﹣8)=﹣(8﹣3)=﹣5,本选项符合题意.C 、(﹣9)﹣(﹣2)=(﹣9)+2=﹣(9﹣2)=﹣7,本选项不符合题意.D 、(+6)+(﹣4)=+(6﹣4)=2,本选项不符合题意,故选:B .9.(2019秋•琼中县期中)如果以海平面为基准,海平面以上记为正,海平面以下记为负.一艘潜艇从海平面开始下沉15m ,再下沉10m ,然后上升7m ,此时潜艇的海拔高度可记为( )A .15mB .7mC .﹣18mD .﹣25m【分析】根据下沉减,上升加,列出算式计算即可解答.【解析】﹣15﹣10+7=﹣18(m ).故此时潜艇的海拔高度可记为﹣18m .故选:C .10.(2019秋•桥西区校级期中)下列式子可读作:“负1,负3,正6,负8的和”的是( )A .﹣1+(﹣3)+(+6)﹣(﹣8)B .﹣1﹣3+6﹣8C.﹣1﹣(﹣3)﹣(﹣6)﹣(﹣8)D.﹣1﹣(﹣3)﹣6﹣(﹣8)【分析】将所列的四个数写成省略加号的形式即可得.【解析】读作“负1,负3,正6,负8的和”的是﹣1﹣3+6﹣8,故选:B.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2019秋•江阴市期中)计算:﹣20+(﹣14)﹣(﹣18)+13=﹣3.【分析】根据有理数的加减法法则计算即可.【解析】﹣20+(﹣14)﹣(﹣18)+13=﹣(20+14)+(18+13)=﹣34+31=﹣3.故答案为:﹣312.(2018秋•北海期末)把(﹣8)+(﹣5)﹣(﹣2)写成省略括号的和的形式是﹣8﹣5+2.【分析】根据有理数的运算法则即可求出答案.【解析】原式=﹣8﹣5+2,故答案为:﹣8﹣5+2.13.(2016秋•渝中区校级期中)规定a﹡b=a+b﹣1,则(﹣4)﹡6的值为1.【分析】根据题中的新定义化简所求式子,计算即可得到结果.【解析】根据题中的新定义得:(﹣4)﹡6=﹣4+6﹣1=1.故答案为:1.14.(2019秋•顺德区期中)计算:(﹣35)+(﹣22)﹣(﹣35)﹣8=﹣30.【分析】直接利用有理数的加减运算法则计算得出答案.【解析】原式=﹣35﹣22+35﹣8=(﹣35+35)﹣(22+8)=﹣30.故答案为:﹣30.15.(2019秋•沙坪坝区校级月考)x是最大负整数,y是最小的正整数,z是最小的自然数,则代数式x﹣y+z 的值为﹣2.【分析】根据题意确定出x,y,z的值,即可代入求出所求式子的值.【解析】∵x 是最大负整数,y 是最小的正整数,z 是最小的自然数,∴x =﹣1,y =1,z =0,∴x ﹣y +z =﹣1﹣1+0=﹣2.故答案为:﹣2.16.(2019秋•南安市校级月考)已知|a |=1,|b |=2,|c |=4,且a >b >c ,则a ﹣b +c = ﹣1或﹣3 .【分析】根据|a |=1,|b |=2,|c |=4,且a >b >c ,可得出c =﹣4,b =﹣2,a =±1,由此可得出答案.【解析】由题意得:a =±1,b =﹣2,c =﹣4,当a =﹣1,b =﹣2,c =﹣4时a ﹣b +c =﹣3;当a =1,b =﹣2,c =﹣4时,a ﹣b +c =﹣1;∴a ﹣b +c =﹣1或﹣3. 故答案为:﹣1或﹣3. 17.(2019秋•新都区期末)若“方框”表示运算x ﹣y +z +w ,则“方框”= ﹣8 .【分析】利用题中的新定义计算即可得到结果.【解析】根据题意得:“方框”=﹣2﹣3+3﹣6=﹣8,故答案为:﹣8. 18.(2019秋•虹口区校级月考)﹣[(﹣1.5)+(﹣512)]﹣16= ﹣9 . 【分析】首先计算括号里面的加法,然后计算括号外面的减法,求出算式的值是多少即可.【解析】﹣[(﹣1.5)+(﹣512)]﹣16 =﹣(﹣7)﹣16=7﹣16=﹣9故答案为:﹣9.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2019秋•城厢区校级月考)计算(1)11﹣18﹣12+19.(2)534−(−13)+(−34)+323.【分析】根据有理数的加减混合运算的法则计算即可.【解析】(1)11﹣18﹣12+19=30﹣30=0.(2)534−(−13)+(−34)+323=534−34+13+323 =5+4=9.20.(2019秋•凉州区校级月考)计算(1)﹣17+(﹣33)﹣10﹣(﹣16).(2)|﹣7|﹣4+(﹣2)﹣|﹣4|+(﹣9)【分析】(1)从左向右依次计算,求出算式的值是多少即可.(2)首先根据绝对值的含义和求法,求出|﹣7|、|﹣4|的值各是多少;然后从左向右依次计算,求出算式的值是多少即可.【解析】(1)﹣17+(﹣33)﹣10﹣(﹣16)=﹣50﹣10+16=﹣44(2)|﹣7|﹣4+(﹣2)﹣|﹣4|+(﹣9)=7﹣4﹣2﹣4﹣9=﹣1221.(2018秋•开福区校级月考)有理数a ,b ,c 在数轴上的位置如图所示,且|a |=|b |.(1)用“>”“<”或“=”填空:b < 0,a +b = 0,a ﹣c > 0,b ﹣c < 0;(2)化简:|a ﹣b |+|b +c |﹣|a |.【分析】(1)根据数轴得出b <c <0<a ,|a |=|b |>|c |,求出b <0,a +b =0,a ﹣c >0,b ﹣c <0即可;(2)先去掉绝对值符号,再合并即可.【解析】(1)∵从数轴可知:b<c<0<a,|a|=|b|>|c|,∴b<0,a+b=0,a﹣c>0,b﹣c<0,故答案为:<,=,>,<;(2)|a﹣b|+|b+c|﹣|a|=a﹣b﹣b﹣c﹣a=﹣2b﹣c.22.(2020春•浦东新区期末)一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录为:+6,﹣5,+9,﹣10,+13,﹣9,﹣4(单位:米).(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远的距离是多少米?(3)守门员全部练习结束后一共跑了多少米?【分析】(1)计算这些数的和,根据和的符号、绝对值得出是否回到原来的位置,(2)计算出每一次离开球门的距离,比较得出答案,(3)计算这些数的绝对值的和即可.【解析】(1)(+6)+(﹣5)+9+(﹣10)+13+(﹣9)+(﹣4)=0,答:守门员回到了球门线的位置;(2)守门员每次离开球门的距离为:6,1,10,0,13,4,0,答:守门员离开球门的位置最远是13米;(3)6+5+9+10+13+9+4=56(米)答:守门员一共走了56米.23.(2019秋•颍州区期末)某粮仓原有大米132吨,某一周该粮仓大米的进出情况如下表:(当天运进大米8吨,记作+8吨;当天运出大米15吨,记作﹣15吨.)若经过这一周,该粮仓存有大米88吨某粮仓大米一周进出情况表(单位:吨)星期一星期二星期三星期四星期五星期六星期日﹣32+26﹣23﹣16m+42﹣21(1)求m的值.(2)若大米进出库的装卸费用为每吨15元,求这一周该粮仓需要支付的装卸总费用.【分析】(1)根据有理数的加法,可得答案;(2)根据单位费用乘以总量,可得答案.【解析】(1)132﹣32+26﹣23﹣16+m+42﹣21=88,解得m=﹣20;(2)(|﹣32|+|+26|+|﹣23|+|﹣16|+|﹣20|+|+42|+|﹣21|)×15=2700答:这一周该粮仓需要支付的装卸总费用为2700元.24.(2019秋•沙坪坝区校级月考)已知买入股票与卖出股票均需支付成交金额的0.2%的交易费,周先生上周星期五在股市收盘价每股18元买进某公司的股票2000股,下表为本周交易日内,该股票每天收盘时每股的涨跌情况:星期星期一星期二星期三星期四星期五每股涨跌元+2+3﹣2.5+3﹣2注:①涨记作“+”,跌记作“﹣”;②表中记录的数据是每天收盘价格与前一天收盘价格的变化量,星期一的数据是与上星期五收盘价格的变化量.(1)直接判断:本周内该股票收盘时,价格最高的是那一天?(2)求本周星期五收盘时,该股票每股多少元?(3)若周先生在本周的星期五以收盘价将全部股票卖出,试求出周先生一共盈利多少钱?【分析】(1)根据表格中数据,可得答案;(2)根据有理数的加法可得答案;(3)根据利用盈利减去卖出股票应支付的交易费计算即可.【解析】(1)价格最高的是星期四;(2)该股票每股为:18+2+3﹣2.5+3﹣2=21.5(元/股);(3)卖出股票应支付的交易费为:(21.5﹣18)×2000﹣18×2000×0.2%﹣21.5×2000×0.2%=6842(元),。

【精编】新人教版七年级数学上册同步练习第1章第3节 有理数加减法含答案.doc

【精编】新人教版七年级数学上册同步练习第1章第3节 有理数加减法含答案.doc

七年级数学(人教版上)同步练习第一章第三节有理数加减法一、教学内容:有理数的加减1. 理解有理数的加减法法则以及减法与加法的转换关系;2. 会用有理数的加减法解决生活中的实际问题.3. 有理数的加减混合运算.二、知识要点:1. 有理数加法的意义(1)在小学我们学过,把两个数合并成一个数的运算叫加法,数的范围扩大到有理数后,有理数的加法所表示的意义仍然是这种运算.(2)两个有理数相加有以下几种情况:①两个正数相加;②两个负数相加;③异号两数相加;④正数或负数或零与零相加.(3)有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加.异号两数相加,绝对值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.一个数同0相加,仍得这个数.注意:①有理数的加法和小学学过的加法有很大的区别,小学学习的加法都是非负数,不考虑符号,而有理数的加法涉及运算结果的符号;②有理数的加法在进行运算时,首先要判断两个加数的符号,是同号还是异号?是否有零?接下来确定用法则中的哪一条;③法则中,都是先强调符号,后计算绝对值,在应用法则的过程中一定要“先算符号”,“再算绝对值”.2. 有理数加法的运算律(1)加法交换律:a+b=b+a;(2)加法结合律:(a+b)+c=a+(b+c).根据有理数加法的运算律,进行有理数的运算时,可以任意交换加数的位置,也可以先把其中的几个数加起来,利用有理数的加法运算律,可使运算简便.3. 有理数减法的意义(1)有理数的减法的意义与小学学过的减法的意义相同.已知两个加数的和与其中一个加数,求另一个加数的运算,叫做减法.减法是加法的逆运算.(2)有理数的减法法则:减去一个数等于加上这个数的相反数.4. 有理数的加减混合运算对于加减混合运算,可以根据有理数的减法法则,将加减混合运算转化为有理数的加法运算。

然后可以运用加法的交换律和结合律简化运算。

三、重点难点:重点:①有理数的加法法则和减法法则;②有理数加法的运算律.难点:①异号两个有理数的加法法则;②将有理数的减法运算转化为加法运算的过程.(这一过程中要同时改变两个符号:一个是运算符号由“-”变为“+”;另一个是减数的性质符号,变为原来的相反数)【典型例题】例1.计算:(1)(-2)+(-5)(2)(-6)+4(3)(-3)+0 (4)-3-(-5)解:(1)(-2)+(-5)(同号两数相加)=-(2+5)(取________的符号,并把绝对值相加)=-7(2)(-6)+4(异号两数相加)=-(6-4)(取_____________加数的符号,并用较大的绝对值减去较小的绝对值)=-2(3)(-3)+0(一个数同零相加)=-3(仍得__________)(4)-3-(-5)(减去一个数)=-3+5(等于加上这个数的__________)=2评析:进行有理数的加减运算时,注意先确定结果的符号,再计算绝对值.例2.计算(-20)+(+3)-(-5)+(-7).分析:这个式子中有加法,也有减法.可以根据有理数减法法则,把它改写成(-20)+(+3)+(+5)+(-7),使问题转化为几个有理数的加法.解:(-20)+(+3)-(-5)+(-7)=(-20)+(+3)+(+5)+(-7)=[(-20)+(-7)]+[(+5)+(+3)]=(-27)+(+8)=-19评析:先将加减混合运算统一成加法,再写成省略加号的形式,形成清晰、条理的解题思路,减少出差错的机会.例3.有10名学生参加数学竞赛,以80分为标准,超过80分记为正,不足80分记为负,评分记录如下:+10,+15,-10,-9,-8,-1,+2,-3,-2,+1,问这10名同学的总分比标准超过或不足多少分?总分为多少?分析:此题用具有相反意义的量来表示各个同学的得分在标准之上还是在标准之下,我们也可以把这些数值相加来表示总分是超出还是不足.解:(+10)+(+15)+(-10)+(-9)+(-8)+(-1)+(+2)+(-3)+(-2)+(+1)=[(+10)+(-10)]+[(-1)+(+1)]+[(+2)+(-2)]+(+15)+[(-3)+(-9)+(-8)]=0+0+0+15+(-20)=-580×10-5=795(分)答:这10名同学的总分比标准不足5分,总分为795分.评析:这10个数中有3对相反数,在运算时我们应先把它们相加,这样可以大大降低运算难度.另外,把实际问题转化为数学问题来解决是学习数学的目的.评析:灵活运用运算律,使运算简化,通常有下列规律:(1)互为相反数的两数可先相加;(2)符号相同的两数可以先相加;(3)分母相同的数可以先相加;(4)几个数相加能得到整数的可以先相加.例5.已知︱a+5︱=1,︱b-2︱=3,求a-b的值.分析:要求a-b的值,首先必须确定a、b的值.因为绝对值等于一个正数的数有两个,一个正、一个负,并且这两个数互为相反数,即︱x︱=m(m>0),则x=m,或x=-m.也就是说求出的a、b的值分别有两个.解:因为︱a+5︱=1,︱b-2︱=3所以a+5=1或a+5=-1,b-2=3或b-2=-3所以a=-4或a=-6,b=5或b=-1当a=-4,b=5时,a-b=-4-5=-9当a=-4,b=-1时,a-b=-4-(-1)=-3当a=-6,b=5时,a-b=-6-5=-11当a=-6,b=-1时,a-b=-6-(-1)=-5评析:(1)已知一个数的绝对值,求这个数的时候,要格外注意解有正负两个值,不要漏掉负值.(2)当确定出a、b的值后,求a-b时,应考虑到可能出现的情况,使解题思维严密.例6. 依次排列4个数:2,11,8,9.对相邻的两个数,都用右边的数减去左边的数,所得之差排在这两个数之间得到一串新的数:2,9,11,-3,8,1,9.这称为一次操作,作二次操作后得到一串新的数:2,7,9,2,11,-14,-3,11,8,-7,1,8,9.这样下去,第100次操作后得到的一串数的和是()A. 737B. 700C. 723D. 730分析:根据题意,解决问题的方法有两种:一是作100次操作,得到第100次操作后的一串数字,然后求和;二是经过前几次操作,推测第100次操作后的结果.显然应该用第二种方法.解:D评析:一些问题看上去非常复杂,是因为我们没有找到解决问题的办法,多动脑、多思考、找到问题的内在规律才是解决问题的根本方法.【方法总结】1. 有理数加减法混合运算的方法是:一般先把减法统一成加法,再进行计算,或先把同号的数相加,再把异号的数相加.2. 解决探究型问题的时候不要急于探寻问题的结果,要从最初的条件开始,分析出其中的规律,用这个规律推断出最后的结果.【模拟试题】(答题时间:45分钟)一. 选择题1.一个数是3,另一个数比它的相反数大3,则这两个数的和为()A. 3B. 0C. -3D. ±32. 计算2-3的结果是()A. 5B. -5C. 1D. -13. 哈市4月份某天的最高气温是5℃,最低气温是-3℃,那么这天的温差(最高气温减最低气温)是()A. -2℃B. 8℃C. -8℃D. 2℃4. 下列说法中正确的是()A. 若两个有理数的和为正数,则这两个数都为正数B. 若两个有理数的和为负数,则这两个数都为负数C. 若两个数的和为零,则这两个数都为零D. 数轴上右边的点所表示的数减去左边的点所表示的数的差是正数*5. 如果x<0,y>0,且︱x︱>︱y︱,那么x+y是()A. 正数B. 负数C. 非正数D. 正、负不能确定*6. 若两个有理数的差是正数,那么()A. 被减数是负数,减数是正数B. 被减数和减数都是正数C. 被减数大于减数D. 被减数和减数不能同为负数**7. 当x<0,y>0时,则x,x+y,x-y,y中最大的是()A. xB. x+yC. x-yD. y二. 填空题1. 计算:-(-2)=__________.2. 2/5+(-3/5)=__________;(-3)+2=__________;-2+(-4)=__________.3. 0-(-6)=__________;1/2-1/3=__________;-3.8-7=__________.4. 一个数是-2,另一个数比-2大-5,则这两个数的和是__________.5. 已知两数之和是16,其中一个加数是-4,则另一个加数是__________.*6. 数轴上到原点的距离不到5并且表示整数的只有__________个,它们对应的数的和是__________.*7. 已知a是绝对值最小的负整数,b是最小正整数的相反数,c是绝对值最小的有理数,则c+b-a =__________.**8. 有依次排列的3个数:3,9,8,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:3,6,9,-1,8,这称为第一次操作;作第二次同样的操作后也可产生一个新数串:3,3,6,3,9,-10,-1,9,8,继续依次操作下去,则从数串3,9,8开始操作第一百次以后所产生的那个新数串的所有数之和是__________.三. 解答题1. 计算:(1)-19-19(2)-18-(-18)(3)26/5-27/3(4)12-(9-10)(5)(5-10)-43. 已知a是7的相反数,b比a的相反数大3,那么b比a大多少?4. 某检修小组乘汽车检修供电线路,约定前进为正,后退为负.某天自A地出发到收工时,所走路程(单位:km)为+22,-3,+4,-2,-8,+17,-2,-3,+12,+7,-5,问收工时距A地多远?若每千米耗油4L,问从A地出发到收工共耗油多少升?5. 如图所示是某地区春季的气温随时间变化的图象.请根据上图回答:(1)何时气温最低?最低气温为多少?(2)当天的最高气温是多少?这一天最大温差是多少?【试题答案】一. 选择题1. A2. D3. B4. D5. B6. C7. D8. A二. 填空题1. 22.-0.25,-1,-63. 6,1/6,-10.84. -95. 206. 9,07. 08. 520三. 解答题1. (1)-38 (2)0 (3)-(4)13 (5)-92. (1)1.25 (2)-2 (3)-2 (4)8 (5)-23. 解:因为a是7的相反数,所以a=-7.因为b比a的相反数大3,所以b-(-a)=3,所以b =3+(-a)=10,所以b-a=10-(-7)=17,即b比a大17.4. 解:收工时距A地的距离是:(+22)+(-3)+(+4)+(-2)+(-8)+(+17)+(-2)+(-3)+(+12)+(+7)+(-5)=22+4+17+12+7-3-2-8-2-3-5=62-(3+2+8+2+3+5)=62-23=39(千米)从A地出发到收工时的耗油量应为该车所走过的所有路程的耗油量,即:(︱+22︱+︱-3︱+︱+4︱+︱-2︱+︱-8︱+︱+17︱+︱-2︱+︱-3︱+︱+12︱+︱+7︱+︱-5︱)×4=(22+3+4+2+8+17+2+3+12+7+5)×4=85×4=340(升)答:收工时汽车距A地39千米,从A地出发到收工共耗油340升.5. (1)2时气温最低,最低气温为-2℃(2)当天的最高气温是10℃,这一天最大温差是10-(-2)=12(℃)。

第二章 2.6有理数的加减混合运算同步练习-2021-2022学年北师大版数学七年级上学期

第二章 2.6有理数的加减混合运算同步练习-2021-2022学年北师大版数学七年级上学期

初中数学北师大版七年级上学期第二章 2.6有理数的加减混合运算一、单选题1.|1﹣2|+3的相反数是()A. 4B. 2C. ﹣4D. ﹣22.老师设计了接力游戏,用合作的方式完成有理数加减运算,规则是:每名同学只能利用前面一个同学的式子,进一步计算,再将结果传给下一个同学,最后解决问题,过程如图所示:接力中,自己负责一步正确的是()A. 甲B. 乙C. 丙D. 丁3.若a+b+c=0,且b<c<0,则下列结论:① a+b>0;② b+c>0;③ c+a>0;④,其中正确的有()A. 1个B. 2个C. 3个D. 4个4.实际测量一座山的高度时,可在若干个观测点中测量每两个相邻可视观测点的相对高度,然后用这些相对高度计算出山的高度.下表是某次测量数据的部分记录(用A-C表示观测点A相对观测点C的高度):A-C C-D E-D F-E G-F B-G90米 80米-60米 50米-70米 40米根据这次测量的数据,可得观测点A相对观测点B的高度是( )A. 210米B. 130米C. 390米D. -210米5.的结果不可能是( )A. 奇数B. 偶数C. 负数D. 整数6.把五个数填入下列方框中,使横、竖三个数的和相等,其中错误的是( )A. B.C. D.二、计算题7.(1)计算2 17﹣3 23﹣5 13+(﹣3 17)(2)某同学做一道数学题:“两个多项式A、B,B=3x2﹣2x﹣6,试求A+B”,这位同学把“A+B”看成“A ﹣B”,结果求出答案是﹣8x2+7x+10,那么A+B的正确答案是多少?8.计算:(-15)+(+7)-(-3).9.计算:10.计算:(1);(2).三、解答题11.某银行办储蓄业务:取出950元,存入500元,取出800元,存入1200元,取出1025元,存入2500元,取出20元,请你计算一下,银行的现款增加了多少?四、综合题12.在抗险救灾中,消防官兵的冲锋舟沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:千米):+14,﹣9,+8,﹣7,+13,﹣6,+10,﹣5.(1)救灾过程中,B地离出发点A有多远?B地在A地什么方向?(2)若冲锋舟每千米耗油0.5升,油箱容量为29升,求途中还需补充多少升油?答案解析部分一、单选题1.【答案】C2.【答案】D3.【答案】B4.【答案】A5.【答案】A6.【答案】B二、计算题7.【答案】(1)解:2 17﹣3 23﹣5 13+(﹣3 17)=2 17﹣3 23﹣5 13﹣3 17=2 17﹣3 17﹣3 23﹣5 13=﹣1﹣9=﹣10.(2)解:∵A﹣B=﹣8x2+7x+10,B=3x2﹣2x﹣6,∴A=(﹣8x2+7x+10)+(3x2﹣2x﹣6)=﹣5x2+5x+4,∴A+B=(﹣5x2+5x+4)+(3x2﹣2x﹣6)=﹣2x2+3x﹣2.8.【答案】解:原式=9.【答案】解: 原式=====10.【答案】(1)解:(2)解:=0.1三、解答题11.【答案】解:-950+500-800+1200-1025+2500-20=1405元答:银行的现款增加了1405元四、综合题12.【答案】(1)解:依题意得+14+(﹣9)+8+(﹣7)+13+(﹣6)+10+(﹣5)=14+8+13+10﹣9﹣7﹣6﹣5=18(千米).故B地离出发点A有18千米远,B地在A地东方(2)解:∵冲锋舟每千米耗油0.5升,油箱容量为29升,∴0.5×(14+9+8+7+13+6+10+5)﹣29=7.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020 年七年级数学上 2.6 有理数的加减混合运算同步练习含答案
A 基 知
1.(2016?泗水期中) 把-2+(+3) -(-5)+(-4)-(+3)写成省略括号和的形式,正确
的是( )
A .-2+3-5-4-3
B . -2+3+5-4+3
C .-2+3+5+4-3
D .-2+3+5-4-3
2.(2016?大 月考) 下列各式可以写成 a-b+c 的是( )
A .a-( +b )-(+c )
B .a-(+b )-( -c )
C .a+(-b )+(-c )
D .a+( -b ) -( +c )
3. (2015?沙河市期末) 算 0-2+4-6+8 所得的 果是( )
A .4
B .-4
C .2
D .-2
4.(2016?南通模 ) 一天早晨的气温是 -7℃,中午上升了 11℃,晚上又下降了
9℃, 晚上的气温是( )
A .-5℃
B .-6℃
C .-7℃
D .-8℃
B 基本技能
1.(2016?海淀月考)式子 -20-5+3+7 作( )
A .20,5,3,7 的和
B .20,5,3,7 的差
C . 20, 5,正 3,正 7 的和
D .3与 7的和及 20与 5的差
2. 下列 算不正确的是( )
A .-(-6)+(-4)=2
B .(-9)-( -4)=-5
C .-|-9|+4=13
D .-9+(-4) =-13
3.(2015?和 期中)在数 1,2,3,4,⋯, 405 前分 加 “ +或”“-”,使所得数字之和
非 数, 所得非 数最小 ( )
A .0
B . 1
C . 2
D . 3
4. (2016? 城月考) -3 减去 7 与 3 的和的 果是 .
5 5
5. 定 形 表示运算 a-b+c , 形 表示运算
x+z-y-w .则=.(直接写出答案).
6.(2016?日照月考)已知 |a+2|+|b-1|=0,则( a+b)-( b-a) =.
7(.2016?苍山质检)某摩托车厂本周内计划每日生产300 辆摩托车,由于工人实行轮休,
每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的车辆数为
正数,减少的车辆数为负数)
( 1)本周三生产了摩托车辆;
(2)本周总生产量与计划生产量相比,是增加还是减少?
(3)产量最多的一天比产量最少的一天多生产了多少辆?
8.(能力提升题)小明在电脑中设置了一个有理数的运算程序:输入数 a,加 * 键,在输入数 b,就可以得到运算: a*b=( a-b)-|b-a|.
(1)求( -3) *2 的值;
(2)求( 3*4 )* (-5)的值.
附答案:
2.6 有理数的加减混合运算
A基础知识训练
1.【解析】选 D.-2+(+3)-(-5)+(-4) -(+3)=-2+3+5-4-3.
2【.解析】 B .根据有理数的加减混合运算的符号省略法 化 ,
得,A 的 果 a-b-c ,
B 的 果 a-b+c ,
C 的 果 a-b-c ,
D 的 果 a-b-c ,
3.【解析】 A .0-2+4-6+8
=0-2-6+4+8
=-8+12
=4,
4.【解析】 A .-7+11-9=-7+11+(-9) =-5.
B 基本技能
1.【解析】 C .式子 -20-5+3+7 作 20, 5,正 3,正 7 的和 .
2.【解析】 C . A 、B 、 D 的 算都正确,而 -|-9|+4=-9+4=-5,不正确.
3.【解析】 B .1+(2-3-4+5)+( 6-7-8+9)+⋯ (402-403-404+405)=1,
4.【解析】由 意得, -3-[(
7 )+( 3 )]=-3-( -2)=-3+2=-1.
5 5 答案: 1
5.【解答】解:根据 意得: 1-2+3+4+6-5-7=0.
答案: 0.
6.【解析】因 |a+2|+|b-1|=0,所以 a+2=0,b-1=0,即 a=-2, b=1,
原式 =(-2+1)-[ 1-(-2)]=-1-3=-4.
答案: -4.
7.解:(1)根据 意得: 300-50-72+35=265( ),
本周三生 了摩托 265 ;
答案: 265;
( 2)根据 意得: -50-72+35+42+10=-35( ), 本周 生
量与 划生 量相比减少了 35 ;
( 3)根据 意得: 42-(-72)=42+72=114( ),
量最多的一天比 量最少的一天多生 114 .
8.解:(1)(-3)*2
=(-3-2) -|2-( -3)|
=-5-5=-10;
( 2)因 3*4
=(3-4)-|4-3|
=-2,
(-2)* (-5)
=[( -2)-(-5)]-|-5-( -2) | =0,
所以( 3*4 )* (-5) =0.。

相关文档
最新文档