分式及分式方程精典练习题分析

合集下载

(典型题)初中数学八年级数学下册第五单元《分式与分式方程》测试卷(包含答案解析)(1)

(典型题)初中数学八年级数学下册第五单元《分式与分式方程》测试卷(包含答案解析)(1)

一、选择题1.已知一个三角形三边的长分别为5,7,a ,且关于y 的分式方程45233y a ay y ++=--的解是非负数,则符合条件的所有整数a 的和为( )A .24B .15C .12D .72.已知关于x 的分式方程131k x x=+无解,则k 的值为( ) A .0 B .0或-1 C .-1 D .0或133.H7N9病毒直径为30纳米,已知1纳米=0.000 000 001米.用科学记数法表示这个病毒直径的大小,正确的是( ) A .93010-⨯米 B .83.010-⨯米C .103.010-⨯米D .90.310-⨯米4.下列关于分式2x x+的各种说法中,错误的是( ). A .当0x =时,分式无意义 B .当2x >-时,分式的值为负数 C .当2x <-时,分式的值为正数D .当2x =-时,分式的值为05.某市铺设一条长660米的管道,为了尽量减少施工对城市交通造成的影响,实际施工时每天铺设的管道长比计划增加10%,结果提前6天完工,求实际每天铺设管道长度及实际施工天数,小明列出方程:660660(110%)x x -+=6,题中x 表示的量为( ) A .实际每天铺设管道长度 B .实际施工天数C .计划施工天数D .计划每天铺设管道的长度6.如果分式11m m -+的值为零,则m 的值是( ) A .1m =- B .1m = C .1m =± D .0m =7.下列各分式中,最简分式是( )A .6()8()x y x y -+B .22y x x y --C .2222x y x y xy ++ D .222()x y x y -+ 8.如图,若x 为正整数,则表示3211327121(1)(1)543x x x x x x x x x--++--÷++++的值的点落在( ).A .段①B .段②C .段③D .段④9.若x 2y 5=,则x y y+的值为( ) A .25 B .72C .57D .7510.下列计算正确的是( ) A .22a a a ⋅= B .623a a a ÷= C .2222a b ba a b-=- D .3339()28a a-=- 11.将0.50.0110.20.03x x+-=的分母化为整数,得( ) A .0.50.01123x x +-= B .5051003xx +-= C .0.50.01100203x x +-= D .50513xx +-= 12.如果分式2121x x -+的值为0,则x 的值是( )A .1B .0C .1-D .±1二、填空题13.化简2242()44224x xx x x x -+÷++++的结果是_______. 14.若231x x +=-,则11xx _______________________.15.某种病毒的直径为0.0000000028米,用科学记数法表示为______米.16.一艘轮船在静水中的最大航速为60km/h ,它以最大航速沿江顺流航行240km 所用时间与以最大航速逆流航行120km 所用时间相同,则江水的流速为________km/h .17.对于实数a 、b ,定义一种运算“⊗”为:2(1)a ab ab a-⊗=-有下列命题:①1(3)3⊗-=; ②a b b a ⊗=⊗; ③方程1102x的解为12x =; ④若函数(2)y x =-⊗的图象经过(1,)A m -,(3,)B n 两点,则m n <,其中正确命题的序号是__.(把所有正确命题的序号都填上)18.某危险品工厂采用甲型、乙型两种机器人代替人力搬运产品.甲型机器人比乙型机器人每小时多搬运10kg ,甲型机器人搬运800kg 所用时间与乙型机器人搬运600kg 所用时间相等.问乙型机器人每小时搬运多少kg 产品? 根据以上信息,解答下列问题.(1)小华同学设乙型机器人每小时搬运xkg 产品,可列方程为______小惠同学设甲型机器人搬运800kg 所用时间为y 小时,可列方程为____________. (2)乙型机器人每小时搬运产品_______________kg . 19.若()()023248x x ----有意义,则x 的取值范围是______.20.如果13x y =,那么22x xyy -=______. 三、解答题21.一个电器超市购进A ,B 两种型号的电风扇后进行销售,若一台A 种型号的电风扇进价比一台B 种型号的电风扇进价多30元,用2000元购进A 种型号电风扇的数量是用3400元购进B 种型号电风扇的数量的一半.(1)求每台A 种型号电风扇和B 种型号的电风扇进价分别是多少?(2)该超市A 种型号电风扇每台售价260元,B 种型号电风扇每件售价190元,超市根据市场需求,决定再采购这两种型号的电风扇共30台,若本次购进的两种电风扇全部售出后,总获利不少于1400元,求该超市本次购进A 种型号的电风扇至少是多少台? 22.化简:22234122m m m m m --⎛⎫-÷ ⎪--⎝⎭. 23.先化简,再求值:2111224x x x -⎛⎫+÷⎪--⎝⎭,其中3x =. 24.某同学化简分式2221211x x x x x x +⎛⎫÷- ⎪-+-⎝⎭出现了错误,解答过程如下: 原式=22222121121x x x x x x x x x x++÷-÷-+--+=332222(1)(1)x x x x x x -+--- =22(1)2(1)x x x -+- (1)该同学解答过程从第 步开始错误的.(2)写出此题正确的解答过程,并从-2<x <3的范围内选取一个你喜欢的x 值代入求值.25.(1)先化简,再求值:22214244x x x x x x x x +--⎛⎫-÷⎪--+⎝⎭,其中12x =. (2)解不等式组31233112x x x x +<+⎧⎪⎨->-⎪⎩.26.清江山水华府小区物业,将对小区内部非活动区域进行绿化.甲工程队用m 天完成这项工程的三分之一,为加快工程进度,乙工程队参与绿化建设,两队合作用5天完成这一项工程.(1)若10m =,求乙工程队单独完成这项工程所需的时间;(2)求m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据三角形的三边关系确定a 的取值范围,再根据分式方程的解是非负数确定a 的取值范围,从而求出符合条件的所有整数即可得结论. 【详解】解:45233y a ay y++=-- 去分母得:4526y a a y +-=- 移项得:6y a -=-+ ∴6y a =-∵分式方程的解为非负数, ∴60a -≥ ∴6a ≤,且a≠3∵三角形的三边为:5,7,a , ∴212a << ∴26a <≤, 又∵a≠3,且为整数, ∴a 可取4,5,6,和为15. 故选:B. 【点睛】本题考查了三角形的三边关系、分式方程的解,解决本题的关键是根据不等式(组)解集,求出不等式(组)的整数解.2.D解析:D 【分析】此题考查了分式方程的解,始终注意分母不为0这个条件,分式方程去分母转化为整式方程,由分式方程无解确定出k 的值即可. 【详解】解:分式方程去分母得:33x kx k =+ ,即 ()313k x k -=- ,当310k -=,即 13k =时,方程无解; 当x=-1时,-3k+1=-3k ,此时k 无解; 当x=0时,0=-3k ,k=0,方程无解;综上,k 的值为0或 13. 故答案为:D . 【点睛】本题考查了根据分式方程的无解求参数的值,是需要识记的内容.分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.3.B解析:B 【分析】由于1纳米=10-9米,则30纳米=30×10-9米,然后根据幂的运算法则计算即可. 【详解】解:1纳米=0.000 000 001米=10-9米, 30纳米=30×10-9米=3×10-8米. 故选:B . 【点睛】本题考查了科学记数法-表示较小的数:用a×10n (1≤a <10,n 为负整数)表示较小的数.4.B解析:B 【分析】根据分式的定义和性质,对各个选项逐个分析,即可得到答案. 【详解】当0x =时,分式无意义,选项A 正确;当2x >-时,分式的值可能为负数,可能为正数,故选项B 错误; 当2x <-时,20x +<,分式的值为正数,选项C 正确; 当2x =-时,20x +=,分式的值为0,选项D 正确; 故选:B . 【点睛】本题考查了分式的知识;解题的关键是熟练掌握分式的性质,从而完成求解.5.D解析:D 【分析】根据计划所用时间-实际所用时间=6,可知方程中未知数x 所表示的量. 【详解】解:设原计划每天铺设管道x 米,则实际每天铺设管道()110%x +,根据题意,可列方程:6606(110%)660x x-=+,所以小明所列方程中未知数x所表示的量是计划每天铺设管道的长度,故选:D.【点睛】本题主要考查由实际问题抽象出分式方程,解题的关键是依据所给方程还原等量关系.6.B解析:B【分析】先根据分式为零的条件列出关于m的不等式组并求解即可.【详解】解:∵11 mm-+=0∴m-1=0,m+1≠0,解得m=1.故选B.【点睛】本题主要考查了分式为零的条件,掌握分式为零的条件是解答本题的关键,同时分母不等于零是解答本题的易错点.7.C解析:C【分析】分式的分子和分母没有公因式的分式即为最简分式,根据定义解答.【详解】A、6()8()x yx y-+=3()4()x yx y-+,故该项不是最简分式;B、22y xx y--=-x-y,故该项不是最简分式;C、2222x yx y xy++分子分母没有公因式,故该项是最简分式;D、222()x yx y-+=x yx y-+,故该项不是最简分式;故选:C.【点睛】此题考查最简分式定义,化简分式,掌握方法将分式的化简是解题的关键.8.B解析:B【分析】将原式分子分母因式分解,再利用分式的混合运算法则化简,最后根据题意求出化简后分式的取值范围,即可选择. 【详解】原式221(1)71211543(1)x x x x x x x-++=-++++ 1(3)(4)11(1)(4)3xx x x xx x x x -++=-++++ 1111x x x-=-++ 1x x =+ 又因为x 为正整数,所以1121x x ≤<+, 故选B . 【点睛】本题考查分式的化简及分式的混合运算,最后求出化简后的分式的取值范围是解答本题关键.9.D解析:D 【分析】根据同分母分式的加法逆运算得到x y x y y y y +=+,将x 2y 5=代入计算即可. 【详解】解:∵x 2y 5=, ∴x y x y 2y y y 5+=+=+175=, 故选:D . 【点睛】此题考查同分母分式的加减法,已知式子的值求分式的值.10.C解析:C 【分析】A 、B 两项利用同底数幂的乘除法即可求解,C 项利用合并同类项法则计算即可,D 项利用分式的乘方即可得到结果,即可作出判断. 【详解】解:A 、原式=a 3,不符合题意; B 、原式=a 4,不符合题意; C 、原式=-a 2b ,符合题意; D 、原式=3278a - ,不符合题意, 故选:C . 【点睛】此题考查了分式的乘方,合并同类项,以及同底数幂的乘除法,熟练掌握运算法则是解本题的关键.11.D解析:D 【分析】根据分式的基本性质求解. 【详解】解:将0.50.0110.20.03x x +-=的分母化为整数,可得50513x x +-=. 故选:D . 【点睛】本题考查一元一次方程的化简,熟练掌握分式的基本性质解题关键.12.D解析:D 【分析】直接利用分式的值为零的条件,即分子为零,分母不为零,进而得出答案. 【详解】解:∵分式2121x x -+值为0,∴2x+1≠0,210x -=, 解得:x=±1. 故选:D . 【点睛】此题主要考查了分式的值为零的条件,正确把握分子为零分母不为零是解题关键.二、填空题13.2【分析】先约分再算加法然后把除法化为乘法进而即可求解【详解】原式=====2故答案是:2【点睛】本题主要考查分式的化简掌握分式的四则混合运算法则是解题的关键解析:2 【分析】先约分,再算加法,然后把除法化为乘法,进而即可求解. 【详解】原式=2(2)(2)2(2)224x x xx x x ⎡⎤+-+÷⎢⎥+++⎣⎦ =()222222x x x x x -⎡⎤+÷⎢⎥+++⎣⎦ =()222222x x x x x +-⎡⎤+⋅⎢⎥++⎣⎦=()222x x x x+⋅+ =2, 故答案是:2. 【点睛】本题主要考查分式的化简,掌握分式的四则混合运算法则,是解题的关键.14.【分析】先将化为再由得然后代入计算即可【详解】解:先把原式变为:∵∴∴故填:-2【点睛】本题主要考查了代数式求值和分式的加减运算根据题意对已有等式和代数式灵活变形是解答本题的关键 解析:2-【分析】先将11x x 化为211x x x +-+,再由231x x +=-得213x x =--,然后代入计算即可.【详解】解:先把原式变为:211111111x x x x x x x x x ∵231x x +=- ∴213x x =-- ∴22111312111x x x x x x x x .故填:-2. 【点睛】本题主要考查了代数式求值和分式的加减运算,根据题意对已有等式和代数式灵活变形是解答本题的关键.15.【分析】绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10-n 与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:000000 解析:92.810-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】解:0.0000000028=2.8×10-9, 故答案为:92.810-⨯. 【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.16.20【分析】由顺水船速=静水船速+水速逆水船速=静水船速﹣水速设未知数根据两不同航程时间相同列出方程即可求出答案【详解】解:设江水的流速为根据题意可得:解得:经检验:是原方程的根故答案为20【点睛】解析:20 【分析】由顺水船速=静水船速+水速,逆水船速=静水船速﹣水速,设未知数根据两不同航程时间相同列出方程即可求出答案. 【详解】解:设江水的流速为/x km h ,根据题意可得:2401206060x x=+-, 解得:20x,经检验:20x 是原方程的根, 故答案为20. 【点睛】此题主要考查了分式方程的应用,正确得出等量关系是解题关键.17.①④【分析】根据新定义对①②直接进行判断;根据新定义得解得经检验原方程无实数解可对③进行判断;根据新定义得到然后根据一次函数的性质对④进行判断【详解】解:所以①正确;所以②不正确;由于方程所以解得经解析:①④ 【分析】根据新定义对①②直接进行判断;根据新定义得2111210122x xx,解得12x =,经检验原方程无实数解,可对③进行判断;根据新定义得到922y x,然后根据一次函数的性质对④进行判断. 【详解】解:2(11)1(3)1(3)31,所以①正确; 2(1)a a b ab a-⊗=-,2(1)b b a ab b ,所以②不正确; 由于方程1102x ,所以2111210122x x x ,解得12x =,经检验原方程无实数解,所以③错误;函数2(21)9(2)2222y x x x ,因为(1,)A m -,(3,)B n 在函数922y x =-,所以m n <,所以④正确;综上所述,正确的是:①④; 故答案为①④.【点睛】本题考查了命题,新定义下实数的运算,分式方程,一次函数的性质特点,熟悉相关性质是解题的关键.18.【分析】(1)设乙型机器人每小时搬运产品根据甲型机器人搬运所用时间与乙型机器人搬运所用时间相等列方程;设甲型机器人搬运所用时间为小时根据甲型机器人比乙型机器人每小时多搬运列方程;(2)设乙型机器人每解析:80060010x x =+80060010yy =+ 【分析】(1)设乙型机器人每小时搬运xkg 产品,根据甲型机器人搬运800kg 所用时间与乙型机器人搬运600kg 所用时间相等列方程;设甲型机器人搬运800kg 所用时间为y 小时,根据甲型机器人比乙型机器人每小时多搬运10kg 列方程;(2)设乙型机器人每小时搬运xkg 产品,则甲型机器人每小时搬运(x+10)kg ,由题意得80060010x x=+,解方程即可. 【详解】 (1)设乙型机器人每小时搬运xkg 产品,则甲型机器人每小时搬运(x+10)kg ,由题意得 80060010x x=+, 设甲型机器人搬运800kg 所用时间为y 小时,由题意得80060010y y=+, 故答案为:80060010x x=+,80060010y y =+; (2)设乙型机器人每小时搬运xkg 产品,则甲型机器人每小时搬运(x+10)kg ,由题意得80060010x x=+, 解得x=30,经检验,x=30是方程的解,答:乙型机器人每小时搬运产品30kg .故答案为:30.【点睛】此题考查分式方程的实际应用,正确理解题意,利用直接设未知数的方法和间接设未知数的方法列方程解决问题,注意:解分式方程需检验.19.且【分析】根据0指数幂及负整数指数幂有意义的条件列出关于x 的不等式组求出x 的取值范围即可【详解】解:∵(x-3)0-(4x-8)-2有意义∴解得x≠3且x≠2故答案为:x≠3且x≠2【点睛】本题考查解析:2x ≠,且3x ≠【分析】根据0指数幂及负整数指数幂有意义的条件列出关于x 的不等式组,求出x 的取值范围即可.【详解】解:∵(x-3)0-(4x-8)-2有意义,∴30480x x -≠⎧⎨-≠⎩, 解得x≠3且x≠2.故答案为:x≠3且x≠2.【点睛】本题考查的是负整数指数幂,熟知非0数的负整数指数幂等于该数正整数指数幂的倒数是解答此题的关键.20.【分析】先给的分子分母同除然后再代入计算即可【详解】解:给的分子分母同除得=故答案为【点睛】本题考查了代数式求值掌握整体思想是解答本题的关键 解析:29- 【分析】 先给22x xy y-的分子分母同除2y ,然后再代入计算即可. 【详解】 解:给22x xy y-的分子分母同除2y ,得21x x y y ⎛⎫- ⎪⎝⎭=221111233939x x y y ⎛⎫⎛⎫-=-=-=- ⎪ ⎪⎝⎭⎝⎭. 故答案为29-. 【点睛】 本题考查了代数式求值,掌握整体思想是解答本题的关键.三、解答题21.(1)每台A 种型号电风扇的进价为200元,则B 种型号的电风扇进价是170元;(2)20台【分析】(1)合理引进未知数,列分式方程求解即可;(2)把问题转化为不等式问题求解即可.【详解】解:(1)设每台A 种型号电风扇的进价为x 元,则B 种型号的电风扇进价是()30x -元,根据题意可得:200013400230x x =⨯- 解得:200x =,经检验得:200x =是原方程的根,则30170x -=,答:每台A 种型号电风扇的进价为200元,则B 种型号的电风扇进价是170元;(2)设购进A 种型号的电风扇a 台,则设购进B 种型号的电风扇()30a -台,根据题意可得:()()()260200190170301400a a -+--≥解得:20a ≥,答:该超市本次购进A 种型号的电风扇至少是20台.【点睛】本题考查了分式方程,不等式的整数解,熟练掌握分式应用题的求解法,不等式的整数解求解方法是解题的关键.22.1m m + 【分析】先把括号内的进行通分,然后除以一个数等于乘以这个数的倒数,把分子分母因式分解后进行约分计算即可;【详解】()()()22223441222411m m m m m m m m m m m m m ----⎛⎫-÷=⨯= ⎪----++⎝⎭; 【点睛】本题考查了分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则;23.21x +,12. 【分析】 先把括号里的式子通分进行减法计算,再把除法转化成乘法进行计算,最后把x 的值代入计算即可.【详解】 解:原式()()()222212412221111x x x x x x x x x x --+--=⋅=⋅=---++-, 当3x =时,原式2112x ==+. 【点睛】 本题考查分式的化简求值,解题的关键是掌握运算法则进行计算.24.(1)一 ;(2)解答过程见解析,当2x =时,原式=4.【分析】(1)根据除法没有分配律,判断即可;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x 的值代入计算即可求出值.【详解】解:(1)该同学解答过程从第一步开始错误的;故答案为:一;(2)2221211x x x x x x +⎛⎫÷- ⎪-+-⎝⎭ 2(1)2(1)(1)(1)x x x x x x x +--=÷-- 2(1)(1)(1)1x x x x x x +-=⋅-+ 21x x =-, 要使原式有意义,1x ≠,0,1-,则当2x =时,原式22421==-. 【点睛】本题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.25.1)()212x -;49;(2)325x << 【分析】(1)首先把括号里因式进行通分,然后把除法运算转化成乘法运算,进行约分化简,最后代值计算;(2)分别求出各不等式的解集,再求出其公共解集即可.【详解】解:(1)22214244x x x x x x x x +--⎛⎫-÷ ⎪--+⎝⎭=2(2)(2)(2)(2)4x x x x x x x x x +--+--- =24(2)4x x x x x --- =()212x -;当12x =时,原式=22114==913222⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭;(2)31233112x x x x +<+⎧⎪⎨->-⎪⎩①② 解不等式①得,x<2;解不等式②得,x>35; ∴不等式组的解集为:325x << 【点睛】本题考查的是分式的化简求值以及求解一元一次不等式组,熟知运算的法则是解答此题的关键.26.(1)乙工程队单独完成这项工程需要10天;(2) 2.5m >【分析】(1)甲工程队用10天完成这项工程的三分之一,则每天完成130的工程量,设乙工程队单独完成这项工程需要x 天,列分式方程求解即可; (1)甲工程队用m 天完成这项工程的三分之一,则每天完成13m的工程量,设乙工程队单独完成这项工程需要x 天,列分式方程,结合x 和m 都是正数,即可求解.【详解】解:(1)设乙工程队单独完成这项工程需要x天.由题意,得11151 330x⎛⎫++⨯=⎪⎝⎭,解得10x=.经检验10x=是原分式方程的解且符合题意,答:乙工程队单独完成这项工程需要10天;(2)由题意,得11151 33m x⎛⎫++⨯=⎪⎝⎭,解得1525mxm=-.0x,0m>,250m∴->,2.5m∴>.即m的取值范围是 2.5m>.【点睛】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.此题涉及的公式:工作总量=工作效率×工作时间.。

分式及分式方程精典练习题分析·优选.

分式及分式方程精典练习题分析·优选.

分式及分式方程精典练习题一、填空题:⒈当x 时,分式1223+-x x 有意义;当x 时,分式x x --112的值等于零. ⒉分式ab c 32、bc a 3、acb 25的最简公分母是 ; ⒊化简:242--x x = . ⒋当x 、y 满足关系式________时,)(2)(5y x x y --=-25 ⒌化简=-+-ab b b a a . ⒍分式方程313-=+-x m x x 有增根,则m = . ⒎若121-x 与)4(31+x 互为倒数,则x= . ⒏某单位全体员工在植树节义务植树240棵.原计划每小时植树口棵。

实际每小时植树的棵数是原计划的1.2倍,那么实际比原计划提前了 小时完成任务9、已知关于x 的方程322=-+x m x 的解是正数,则m 的取值范围为_____________. 二、选择题:⒈下列约分正确的是( )A 、326x x x =B 、0=++y x y xC 、x xy x y x 12=++D 、214222=y x xy ⒉用换元法解分式方程13101x x x x --+=-时,如果设1x y x-=,将原方程化为关于y 的整式方程,那么这个整式方程是( )A .230y y +-=B .2310y y -+=C .2310y y -+=D .2310y y --= ⒊下列分式中,计算正确的是( )A 、32)(3)(2+=+++a c b a c bB 、ba b a b a +=++122 C 、1)()(22-=+-b a b a D 、xy y x xy y x -=---1222 ⒋下列各式中,从左到右的变形正确的是( )A 、y x y x y x y x ---=--+-B 、yx y x y x y x +-=--+-C 、y x y x y x y x -+=--+- D 、yx y x y x y x +--=--+- 5.已知2111=-b a ,则ba ab -的值是( ) A.21 B.-21 C.2 D.-2 6.设m >n >0,m 2+n 2=4mn ,则22m n mn -的值等于( )A.B.C. D. 3 三、计算:(2)|1|2004125.02)21(032-++⨯---四、解分式方程:()323331592a a a a ++-++-()1291932x x-++()422x y x x y+--()(用两种方法)52242()x x x x x x --+÷-()11244222x x x x +--=-()22332726x x ++=+五、先化简再求值:1、()x x x x x x x x x x -+⋅+++÷--=-11442412222,其中。

难点详解北师大版八年级数学下册第五章分式与分式方程专题训练练习题(含详解)

难点详解北师大版八年级数学下册第五章分式与分式方程专题训练练习题(含详解)

北师大版八年级数学下册第五章分式与分式方程专题训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一辆汽车开往距离出发地180千米的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来的1.5倍匀速行驶,并比原计划提前40分钟到达目的地.求前一小时的行驶速度.设前一小时的行驶速度为x km/h ,则可列方程( )A .180218013 1.5x x-=+ B .180218013 1.5x x +=+ C .180218013 1.5x x x --=+ D .180218013 1.5x x x ++=+ 2、飞沫一般认为是直径大于5微米(5微米=0.000005米)的含水颗粒.飞沫传播是新型冠状病毒的主要传播途径之一,日常面对面说话、咳嗽、打喷嚏都可能造成飞沫传播.因此有效的预防措施是戴口罩并尽量与他人保持1米以上社交距离.将0.000005用科学记数法表示应为( ).A .50.510-⨯B .60.510-⨯C .5510-⨯D .6510-⨯3、若把分式2x y xy+的x ,y 同时扩大2倍,则分式的值为( ) A .扩大为原来的2倍 B .缩小为原来的14C .不变D .缩小为原来的12 4、如果分式31x x -+的值等于0,那么x 的值是( )A .1x =-B .3x =C .1x ≥-D .3x ≠ 5、若关于x 的方程11ax x =+的解大于0,则a 的取值范围是( ) A .1a >B .1a <C .1a >-D .1a <- 6、分式a a b--可变形为( ) A .a a b -- B .+a a b C .a a b -- D .+a a b- 7、科学家借助电子显微镜发现新型冠状病毒的平均直径约为0.000000125米,则数据0.000000125用科学记数法表示正确的是( )A .1.25×108B .1.25×10﹣8C .1.25×107D .1.25×10﹣78、下列约分正确的是( )A .632x x x = B .22x y x y x y +=++ C .+=+x m x y m y D .1555262-=--b a a b 9、x 满足什么条件时分式211x x --有意义( ). A .1x ≠ B .1x ≠- C .0x ≠ D .1x ≠±10、下列是最简分式的是( )A .26m nB .633mn m n +C .22m nD .2m n mn第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、为了了解某池塘里背蛙的数量,先从池塘里捕捞30只青蛙,作上标记后放回池塘,经过一段吋间后,再从池塘中捕捞出40只青蛙,其中有标记的青蛙有4只,估计这个池塘里大约有 _____只青蛙.2、若分式521x x -+的值为0,则x =________.3、已知分式211xx-+的值为0,那么x的值是_____________.4、甲做360个零件与乙做480个零件所用的时间相同,已知两人每天共做140个零件,若设甲每天做x个零件,则可列方程______.5、若分式1212xx+-有意义,则x的取值范围是 _____.三、解答题(5小题,每小题10分,共计50分)1、2022年元旦及春节来临之际,我市对城市亮化工程招标,按照甲、乙两个工程队的投标书,甲、乙两队施工一天的工程费分别为1.5万元和1.2万元,根据甲乙两队的投标书测算,应有三种施工方案:①甲队单独做这项工程刚好如期完成.②乙队单独做这项工程,要比规定日期多3天完成.③若甲、乙两队合作2天后,余下的工程由乙队单独做,也正好如期完成.(1)求规定如期完成的天数.(2)在确保如期完成的情况下,你认为以上三种方案哪种方案最节省工程款;通过计算说明理由.2、(1)计算:[(x+y)2﹣(x﹣y)2]÷(2xy)(2)化简求值:2281661122x xx x x-+⎛⎫÷-+⎪++⎝⎭,其中x选取﹣2,0,1,4中的一个合适的数.3、计算或因式分解:(1)计算:(a2﹣4)2aa+÷;(2)因式分解:a2(x﹣y)+b2(y﹣x).4、解分式方程:1312xx x-+=+.5、星期六,小明与妈妈到离家12km的张家界市博物馆参观.小明从家骑自行车先走,1h后妈妈骑摩托车从家出发,沿相同路线前往博物馆,结果他们同时到达.已知妈妈骑摩托车的平均速度是小明骑自行车平均速度的3倍,求妈妈骑摩托车的平均速度.-参考答案-一、单选题1、C【分析】根据原计划的时间=实际所用时间+提前的时间可以列出相应的分式方程.【详解】解:设前一小时的行驶速度为x km/h,由题意可得:18040180160 1.5xx x--=+,即180218013 1.5xx x--=+,故选:C.【点睛】本题主要是考查了列分式方程,熟练地根据题意找到等量关系,通过等量关系列出对应的分式方程,这是解题的关键.2、D【分析】将0.000005写成a×10n(1<|a|<10,n为整数)的形式即可.【详解】解:0.000005=5×10-6.【点睛】本题主要考查了科学记数法,将原数写成a ×10n (1<|a |<10,n 为整数)的形式,确定a 、n 的值成为解答本题的关键.3、D【分析】分别用2x 和2y 去代换原分式中的x 和y ,利用分式的基本性质化简即可.【详解】 解:根据题意得:22222x y x y +⨯⋅=2()8x y xy +=1=422x y x y xy xy++⨯, 即把分式2x y xy+的x ,y 同时扩大2倍,则分式的值缩小为原来的12, 故选:D .【点睛】本题主要考查分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.4、B【分析】根据分式的值为0的条件可得30,10x x -=-≠,即可求得答案【详解】 解:分式31x x -+的值等于0, ∴30,10x x -=-≠3x ∴=【点睛】本题考查了分式的值为0的条件,解题的关键是理解分式的值为0的条件是分子为0,分母不为0.5、A【分析】先去分母,求出分式方程的解,进而得到关于a 的不等式组,即可求解.【详解】 解:由11ax x =+,解得:11x a =-, ∴101a >-且a -1≠0, ∴1a >,故选A .【点睛】本题主要考查解分式方程以及不等式,掌握去分母,把分式方程化为整式方程,是解题的关键.6、C【分析】根据分式的基本性质进行分析判断.【详解】 解:==+a a a a b a b a b-----, 故C 的变形符合题意,A 、B 和D 的变形不符合题意,故答案为:C .【点睛】本题考查分式的基本性质,理解分式的基本性质(分式的分子,分母同时乘以或除以同一个不为零的数或式子,分式仍然成立)是解题关键.7、D【分析】科学记数法的表现形式为10n a ⨯的形式,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于1时,n 是正数,当原数绝对值小于1时n 是负数;由此进行求解即可得到答案.【详解】解:70.000000125 1.2510-=⨯故选D .【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.8、D【分析】根据分式分基本性质分式分子分母都乘以(或除以)同一个不为零的整式,分式的值不变,可得答案.【详解】解:A 、分式分基本性质分式分子分母都乘以(或除以)同一个不为零的整式,分式的值不变,642x x x=,故A 错误; B 、分式分基本性质分式分子分母都乘以(或除以)同一个不为零的整式,分式的值不变,原式=22x y x y++,故B 错误; C 、分式分基本性质分式分子分母都乘以(或除以)同一个不为零的整式,分式的值不变,不满足分式基本性质,故C 错误;D 、分式分基本性质分式分子分母都乘以(或除以)同一个不为零的整式,分式的值不变,()()53155526232b a b a a b b a --==----,故D 正确; 故选:D .【点睛】本题考查了分式的基本性质,分式分基本性质分式分子分母都乘以(或除以)同一个不为零的整式,分式的值不变.9、D【分析】直接利用分式有意义的条件解答即可.【详解】 解:要使分式211x x --有意义, ∴210x -≠,解得:1x ≠±,故选:D【点睛】本题考查了分式有意义的条件,熟练掌握分式有意义的条件—分母不等于零,是解题的关键.10、C【详解】解:A 、263m m n n =,不是最简分式,此项不符题意; B 、6233mn mn m n m n=++,不是最简分式,此项不符题意; C 、22m n是最简分式,此项符合题意;D、2m nmmn=,不是最简分式,此项不符题意;故选:C.【点睛】本题考查了最简分式,熟记最简分式的定义(分子与分母没有公因式的分式,叫做最简分式)是解题关键.二、填空题1、300【分析】设池塘大约有x只,根据题意,得到30440x=,计算即可.【详解】设池塘大约有x只,根据题意,得到30440x=,解得x=300,经检验,x=300是原方程的根,故答案为:300.【点睛】本题考查了分式方程的应用,正确列出分式方程是解题的关键.2、5【分析】求出分式的分子等于0且分母不为0时的x的值即可.【详解】解:由题意得:50 210xx-=⎧⎨+≠⎩,解得5x=,故答案为:5.【点睛】本题考查了分式值为零的条件,解答此题的关键是要明确:分式值为零的条件是分子等于零且分母不等于零,注意:“分母不为零”这个条件不能少.3、1【分析】根据分式值为0的条件:分子为0,分母不为0,进行求解即可.【详解】解:∵分式211xx-+的值为0,∴211xx-=+,∴21010xx⎧-=⎨+≠⎩,∴1x=,故答案为:1.【点睛】本题主要考查了分式值为0的条件,熟知分式值为0的条件是解题的关键.4、360480140x x=-【分析】设甲每天做x 个零件,则乙每天做()140x - 个零件,根据“甲做360个零件与乙做480个零件所用的时间相同,”列出方程,即可求解.【详解】解:设甲每天做x 个零件,则乙每天做()140x - 个零件,根据题意得:360480140x x=- . 故答案为:360480140x x=- 【点睛】 本题主要考查了分式方程的应用,明确题意,准确得到等量关系是解题的关键.5、12x ≠【分析】根据分式有意义的条件,即可求解.【详解】解:根据题意得:120x -≠ , 解得:12x ≠ . 故答案为:12x ≠【点睛】本题主要考查了分式有意义的条件,熟练掌握当分式的分母不等于0时分式有意义是解题的关键.三、解答题1、(1)按规定用6天如期完成;(2)方案①最节省工程款且不误期.【分析】(1)设工程期为x 天,则甲队单独完成用x 天,乙队单独完成用(x +3 )天,由“若甲、乙两队合作2天后,余下的工程由乙队单独做,也正好如期完成”列出方程并解答.(2)方案①、③不耽误工期,符合要求,可以求费用,方案②显然不符合要求.【详解】(1)解:设工程期为x 天,则甲队单独完成用x 天,乙队单独完成用(x +3)天.213x x x +=+ 解得x =6,经检验:x =6是原方程的解,且适合题意,答:按规定用6天如期完成;(2)在不耽误工期的情况下,有方案①和方案③两种方案合乎要求,但方案①需工程款1.5×6=9 (万元),方案③需工程款1.5×2+1.2×6=10.2(万元),因为10.2>9,故方案①最节省工程款且不误期.【点睛】此题主要考查了分式方程的应用,找到合适的等量关系是解决问题的关键.在既有工程任务,又有工程费用的情况下.先考虑完成工程任务,再考虑工程费用.2、(1)2;(2)4x,当x =1时,原式=4. 【分析】(1)首先利用完全平方公式和平方差公式化简,然后括号里面合并同类项,最后根据单项式除以单项式运算法则求解即可;(2)首先对分子分母因式分解和括号里面式子通分,然后根据分式的混合运算法则化简,最后代入求解即可.【详解】(1)[(x +y )2﹣(x ﹣y )2]÷(2xy )=(x 2+2xy +y 2﹣x 2+2xy ﹣y 2)÷2xy=4xy ÷2xy=2;(2)解:原式=2(4)(2)x x x -+÷(6222x x x +-++)+1 =2(4)2(2)4x x x x x-++-+1 =4x x -+x x=4x要使分式有意义,()20x x +≠,40x -≠,∴0x ≠,2x ≠-,4x ≠,∴当x =1时,原式=4.【点睛】此题考查了整式的混合运算,分式的化简求值问题,解题的关键是熟练掌握整式的混合运算和分式的混合运算法则.3、(1)22a a +;(2)()()()a b a b x y +--【分析】(1)根据平方差公式和分式的除法计算法则求解即可;(2)利用提取公因式和平方差公式分解因式即可.【详解】解:()224a a a+-÷ ()()222a a a a =+-⋅+ ()2a a =+22a a =+;(2)()()22a x y b y x -+-()()22a x y b x y =---()()22a b x y =--()()()a b a b x y =+--.【点睛】本题主要考查了分解因式,分式与整式的混合运算,熟知相关计算法则是解题的关键.4、1x =【分析】此题只需按照求分式方程的步骤:去分母、去括号、移项、合并同类项、系数化为1,最后进行检验即可.【详解】 解:1312x x x -+=+ 去分母得,(1)(2)3(2)x x x x x -++=+去括号得,22232x x x x x +-+=+移项得,22232x x x x x +--+=合并得,22x =x=系数化为1,得:1x=是原方程的解,经检验,1x=∴原方程的解是:1【点睛】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.5、妈妈骑摩托车的平均速度是24km/h【分析】设小明骑自行车的平均速度为x km/h,则妈妈骑摩托车的平均速度为3x km/h,根据时间=路程÷速度,结合小明比妈妈多用1h,即可得出关于x的分式方程,解之经检验后即可得出结论.【详解】解:设小明自行车的平均速度为x km/h,则妈妈骑摩托车的速度为3x km/h,根据题意得,1212-=,1x x3解得,x=8,经检验,x=8是原方程的根,∴3x=3×8=24(km/h)答:妈妈骑摩托车的平均速度是24km/h.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.。

专题12 分式与分式方程重难点题型分类(解析版)—八年级数学上册重难点题型分类高分必刷题(人教版)

专题12 分式与分式方程重难点题型分类(解析版)—八年级数学上册重难点题型分类高分必刷题(人教版)

专题12分式与分式方程重难点题型分类-高分必刷题(解析版)专题简介:本份资料包含《分式与分式方程》这一章在各次月考、期末中除应用题和压轴题之外的全部主流题型,所选题目源自各名校月考、期末试题中的典型考题,具体包含十一类题型:分式的定义、分式有意义、分式值为0、分式的性质、整体代入法求分式值、最简分式、分式的先化简后求值、整数指数幂计算、解分式方程、含参分式方程中参数的取值范围、分式方程的增根与无解问题。

本专题资料适合于培训机构的老师给学生作复习培训时使用或者学生月考、期末考前刷题时使用。

题型一分式的定义1.(2022·永州)在1x ,13,12x +,21x +,2x x+中分式的个数有()A .2个B .3个C .4个D .5个【详解】解:1x ,21x +,2x x+的分母中含有字母,都是分式,共有3个.故选:B .2.(2022·岳阳)下列代数式①x ,②2a b +,③π,④m n -中,分式有()A .1个B .2个C .3个D .4个【详解】解:①和④分母中含有字母,是分式;②③分母中不含有字母,不是分式,故选:B .3.(2022·永州)有如下式子13+;②31x +;③22x y π-;④2()xyx y +,其中是分式的有()A .①③B .②③C .③④D .②④【详解】解:①13x +,是整式,不是分式,不符合题意;②31x +,是分式,符合题意;③22x y π-,是整式,不符合题意;④2()xyx y +,是分式,符合题意.所以②④是分式故选:D .题型二分式有意义(分母不为0)4.(2021·衡阳)要使分式21x x --有意义,则x 的取值范围是()A .1x =B .2x =C .1x ≠D .2x ≠【详解】解:要使分式21x x --有意义,必须x -1≠0,解得:x ≠1,故选:C .5.(2019·长沙)分式3||1xx -有意义,则x 的取值范围是()A .1x >B .1x <C .11x -<<D .1x ≠±【详解】∵31xx +-有意义,∴||10x -≠,解得:1x ≠±,故选:D .6.(2018·1xx -x 的取值范围是__________【详解】解:由题意得,x≥0且x-1≠0,解得0x ≥且1x ≠,故填:0x ≥且1x ≠.7.(2022··12xx -有意义,那么x 的取值范围是______.【详解】解:根据题意得:1020x x -≥⎧⎨+≠⎩解得1x ≤且2x ≠-,故答案为:1x ≤且2x ≠-.题型三分式值为0(分子=0且分母≠0)8.(2022·洪江)若分式||326x x -+的值为零,则x 的值是()A .3B .﹣3C .±3D .4【详解】解:∵分式||326x x -+的值为零,∴30x -=,且260x +≠,解得3x =.故选:A .9.(博才)如果分式22x --的值为0,那么x 的值为()A .2x =B .0x =C .0x =或2x =D .以上答案都不对【解答】解:由题意,知x(x-2)=0且x -2≠0.解得x =0.故选:B .10.(2022·长沙)若分式242x x -+的值为0,则x =______.【详解】由题意得240x -=,20x +≠,2x ∴=±,2x ≠-,2x ∴=,即当2x =时,分式的值是0.故答案为:2.11.(青竹湖)若分式293x x -+的值为0,则x 的值为____________。

分式的知识点及典型例题分析

分式的知识点及典型例题分析

分式的知识点及典型例题分析1、分式的定义:例:下列式子中, 152 9a 、 5a b 、 3a 2b 2 2 、 1 、 5xy 1 、xy 、8a b 、-23 2x y 4 、2- m 6 x a1 、 x 221 、 3xy 、 3 、 a 1 中分式的个数为()2x y m(A ) 2 (B ) 3 (C ) 4(D) 5 练习题:(1)下列式子中,是分式的有.⑴ 2x 7 ; ⑵ x1 ;⑶ 5a 2;⑷ x 2x 2;⑸2 b 2;⑹xyy 2.x 5 2 3a b 2x 2⑵ 下列式子,哪些是分式?a ;x23; y 3; 7 x ; x xy ; 1 b .54y 8 x 2 y 4 52、分式有、无意义 :( 1)使分式有意义:令分母≠ 0 按解方程的方法去求解; ( 2)使分式无意义:令分母 =0 按解方程的方法去求解;例 1:当 x 时,分式 1 有意义;x 5例 2:分式 2x1中,当 x ____ 时,分式没有意义;2 x例 3:当 x 时,分式 1 有意义;2 1 x例 4:当 x 时,分式 x 有意义;2 1 x 例 5: x , y 满足关系时,分式 xy无意义;x y例 6:无论 x 取什么数时,总是有意义的分式是()A . 2x B. x C. 3xx 52 2x 13 1 D.x 2 x 1 x x 有意义的 x 的取值范围为() 例 7:使分式x 2 A . x 2 B . x2 C . x 2 D . x 2例 8:要是分式x 2没有意义,则 x 的值为()1)( x(x3)A. 2B.-1 或-3C. -1D.33、分式的值为零:使分式值为零:令分子 =0 且分母≠ 0,注意:当分子等于 0 使,看看是否使分母 =0 了,如果使分母 =0 了,那么要舍去。

例 1:当 x 时,分式1 2a的值为 0; a 12 x1例 2:当 x 时,分式的值为 0例 3:如果分式a2的值为为零 , 则 a 的值为 ( ) a 2A.2 B.2 C.2 D. 以上全不对例 4:能使分式 x2x 的值为零的所有 x 的值是() x 21A x 0 Bx 1 C x 0 或 x1 D x 0 或 x1例 5:要使分式x 29的值为 0,则 x 的值为()x 25x 6 A.3 或-3 B.3 C.-3 D 2 例 :若 a1 0 , 则 a 是 ( ) 6 aA. 正数B. 负数C. 零D. 任意有理数4、分式的基本性质的应用:分式的基本性质: 分式的分子与分母同乘或除以一个不等于 0 的整式,分式的值不变。

(典型题)初中数学八年级数学下册第五单元《分式与分式方程》测试题(有答案解析)

(典型题)初中数学八年级数学下册第五单元《分式与分式方程》测试题(有答案解析)

一、选择题1.为做好校园卫生防控,某校计划购买甲乙两种品牌的消毒液.乙品牌消毒液每桶的价格比甲品牌消毒液每桶价格的2倍少25元,已知用1200元购买甲品牌的数量与用1900元购买乙品牌的数量相同.设甲品牌消毒液每桶的价格是x 元,根据题意可列方程为( ) A .12001900225x x =- B .12001900225x x =+ C .12001900225x x =- D .12001900225x x=+ 2.分式293x x --等于0的条件是( ) A .3x = B .3x =- C .3x =± D .以上均不对 3.在一只不透明的口袋中放入5个红球,4个黑球,n 个黄球,这些球除颜色不同外,其他无任何差别.搅匀后随机从中摸出一个球恰好是黄球的概率为25,则放入口袋中的黄球的个数n 是( )A .6B .5C .4D .3 4.若关于x 的方程121m x -=-的解为正数,则m 的取值范围是( ) A .1m >- B .1m ≠ C .1m D .1m >-且1m ≠ 5.2020年新冠肺炎疫情影响全球,某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的2倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.则甲、乙两厂房每天各生产的口罩箱数为( )A .1200,600B .600,1200C .1600,800D .800,1600 6.下列各式中,正确的是( )A .22a a b b = B .11a a b b +=+ C .2233a b a ab b = D .232131a a b b ++=-- 7.已知2,1x y xy +==,则y x x y +的值是( ) A .0 B .1 C .-1 D .28.a b c 三个有理数满足0a b c <<<,且1a b c ++=,b c M a +=,a c N b +=,a b P c+=,则M ,N ,P 之间的大小关系是( ) A .M P N <<B .M N P <<C .N P M <<D .P M N << 9.已知:x 是整数,12,21x x M N x +==+.设2y N M =+.则符合要求的y 的正整数值共有( )A .1个B .2个C .3个D .4个10.若关于x 的分式方程222x m x x =---的解为正数,则满足条件的正整数m 的值为( )A .1,2,3B .1,2C .2,3D .1,311.如图,在数轴上表示2224411424x x x x x x-++÷-+的值的点是( )A .点PB .点QC .点MD .点N12.某生产小组计划生产3000个口罩,由于采用新技术,实际每小时生产口罩的数量是原计划的2倍,因此提前5小时完成任务,设原计划每小时生产口罩x 个,根据题意,所列方程正确的是( ) A .3000300052x x -=+ B .3000300052x x -= C .3000300052x x -=+ D .3000300052x x-= 二、填空题13.对于实数a 、b ,定义一种新运算“⊗”为:21 a b a b ⊗=-,这里等式右边是实数运算.例如:21113138⊗==--,则方程2(2)14x x ⊗-=--的解是__________. 14.若231x x +=-,则11x x _______________________.15.一艘轮船在静水中的速度为a 千米/时,若A 、B 两个港口之间的距离为50千米,水流的速度为b 千米/时,轮船往返两个港口之间一次需____________小时.16.关于x 的分式方程21122m x x x +-=--有增根,则m =______. 17.新冠疫情期间,口罩成为了人们出行必备的防护工具.某药店抓住商机购进甲、乙、丙三种口罩进行销售.已知销售每件甲种口罩的利润率为30%,每件乙种口罩的利润率为20%,每件丙种口罩的利润率为5%.当售出的甲、乙、丙口罩件数之比为1:3:2时,药店得到的总利润率为20%;当售出的甲、乙、丙口罩件数之比为3:2:2时,药店得到的总利润率为24%.因丙种口罩利润较低,现药店准备只购进甲、乙两种口罩进行销售,若该药店想要获得的总利润率为28%,则该药店应购进甲、乙两种口罩的数量之比是______.18.已知215a a+=,那么2421a a a =++________. 19.若关于x 的分式方程232x m x +=-的解是正数,则实数m 的取值范围是_________ 20.一项工程,甲乙合作b 天能完成,甲单独做需要a 天完成,则乙独做需_____天完成.三、解答题21.一辆汽车开往距离出发地180km 的目的地,出发后第1小时内按原计划的速度匀速行驶,1小时后按原来速度的1.5倍匀速行驶,结果比原计划提前40min 到达目的地. (1)求前1小时这辆汽车行驶的速度;(2)汽车出发时油箱有油7.5升油,到达目的地时还剩4.3升油,若汽车提速后每小时耗油量比原来速度每小时耗油量多0.3升,问这辆汽车要回到出发地,是以原来速度省油还是以提速后的速度省油?22.先化简2454111x x x x x --⎫⎛+-÷ ⎪--⎝⎭,再从22x -≤≤中取一个合适的整数x 代入求值. 23.先化简,再求值:222444142x x x x x x+-++⎛⎫-÷- ⎪-⎝⎭,其中22150x x +-=. 24.解下列方程:(1)322x x=-;(2)214111x x x +-=-- 25.计算: (1)()()()3223m n m n mn ⋅-÷-; (2)()()()22x y x y x y y ⎡⎤+-+-÷⎣⎦; (3)2269243a a a a a-+-⋅--. 26.哈尔滨市松北新区某中学去年购买了一批图书,其中A 类书的单价比B 类书的单价多4元,用1200元购买的A 类书与用800元购买的B 类书数量相等.(1)求去年购买的B 类书和A 类书的单价各是多少元?(2)若今年B 类书的单价比去年提高了25%,A 类书的单价与去年相同,这所中学今年计划再购买A 类书和B 类书共200本,且购买A 类书和B 类书的总费用不超过2300元,这所中学今年至少要购买多少本B 类书?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】设甲品牌消毒液每桶的价格是x 元,乙品牌消毒液每桶的价格(2x-25)元,根据题意列方程即可【详解】解:设甲品牌消毒液每桶的价格是x 元,乙品牌消毒液每桶的价格(2x-25)元,根据用1200元购买甲品牌的数量与用1900元购买乙品牌的数量相同列方程得.12001900225x x =-, 故选:A .【点睛】本题考查了分式方程的应用,解题关键是理清数量关系,找对等量关系列方程. 2.B解析:B【分析】根据分式等于0的条件:分子为0,分母不为0解答.【详解】由题意得:290,30x x -=-≠,解得x=-3,故选:B .【点睛】此题考查分式的值等于0的条件,熟记计算方法是解题的关键. 3.A解析:A【分析】根据摸到黄球的概率已知列式计算即可;【详解】 由题可得:2545nn =++, 解得:6n =;经检验,6n =是原方程的根,故选:A .【点睛】本题主要考查了概率的求解,准确计算是解题的关键.4.D解析:D【分析】分式方程去分母转化为整式方程,表示出解,由解为正数确定出m 的范围即可.【详解】去分母得:m-1=2x-2,解得:x=12+m ,由方程的解为正数,得到12+m >0,且12+m ≠1, 解得:1m >-且1m ≠,故答案为:1m >-且1m ≠【点睛】此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键. 5.A解析:A【分析】先设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩,根据工作时间=工作总量÷工作效率且两厂房各加工6000箱口罩时甲厂房比乙厂房少用5天,可得出关于x 的分式方程,解方程即可得出结论.【详解】解:设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩, 依题意得:6000600052x x-=, 解得:x =600, 经检验,x =600是原分式方程的解,且符合题意,∴2x =1200.故答案选:A .【点睛】该题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 6.C解析:C【分析】利用分式的基本性质变形化简得出答案.【详解】A .22a a b b=,从左边到右边是分子和分母同时平方,不一定相等,故错误; B .11a a b b+=+,从左边到右边分子和分母同时减1,不一定相等,故错误; C .2233a b a ab b=,从左边到右边分子和分母同时除以ab ,分式的值不变,故正确; D .232131a ab b ++=--,从左边到右边分子和分母的部分同时乘以3,不一定相等,故错误. 故选:C .【点睛】 本题考查分式的性质.熟记分式的性质是解题关键,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.7.D解析:D【分析】 将y x x y+进行通分化简,整理出含已知条件形式的分式,即可得出答案. 【详解】 解:2222()2221=21y x y x x y xy x y xy xy ++--⨯+=== 故选D .【点睛】本题考查了分式的混合运算,熟练运用完全平方公式是解题的关键.8.A解析:A【分析】根据a+b+c=1可以把M 、N 、P 分别化为1111,1,1a b c ---,再根据a<0<b<c 得到111,,a b c的大小关系后可以得到解答.【详解】解:∵a+b+c=1, ∴1111,1,1M N P a b c=-=-=-, ∵a<0<b<c , ∴1110,0,c b b c bc a--=>< ∴111a c b<<, ∴M<P<N ,故选A .【点睛】 本题考查分式的大小比较,熟练掌握分式的大小比较方法是解题关键.9.C解析:C【分析】先求出y 的值,再根据x ,y 是整数,得出x +1的取值,然后进行讨论,即可得出y 的正整数值.【详解】解:∵12,21x x M N x +==+∴42222221111x x y x x x x ++=+==+++++. ∵x ,y 是整数, ∴21x +是整数, ∴x +1可以取±1,±2. 当x +1=1,即x =0时2241y =+=>0; 当x +1=−1时,即x =−2时,2201y =+=-(舍去); 当x +1=2时,即x =1时,2232y =+=>0; 当x +1=−2时,即x =−3时,2212y =+=->0; 综上所述,当x 为整数时,y 的正整数值是4或3或1.故选:C .【点睛】此题考查了分式的加减法,熟练掌握分式的加减运算法则,求出y 的值是解题的关键. 10.D解析:D【分析】根据等式的性质,可得整式方程,根据解整式方程,可得答案.【详解】等式的两边都乘以(x - 2),得x = 2(x-2)+ m ,解得x=4-m ,且x≠2,由关于x 的分式方程的解为正数,∴4-m >0,4-m≠2∴m<4且m≠2则满足条件的正整数 m 的值为m=1,m=3,故选: D.【点睛】本题考查了分式方程的解,利用等式的性质得出整式方程是解题关键,注意要检验分式方程的根.11.C解析:C【分析】先进行分式化简,再确定在数轴上表示的数即可.【详解】22424x x x x-+2(2)14(2)(2)(2)x x x x x x -=+⨯+-+, 2422x x x -=+++, 242x x -+=+, 22x x +=+, =1, 在数轴是对应的点是M ,故选:C .【点睛】本题考查了分式化简和数轴上表示的数,熟练运用分式计算法则进行化简是解题关键. 12.D解析:D【分析】找出等量关系:原计划所用时间-实际所用时间=提前5小时,据此即可得出分式方程,得解.【详解】解:设原计划每小时生产口罩x 个,则实际每小时生产口罩2x 个,依题意得:3000300052x x-= 故选:D .【点睛】本题考查了由实际问题抽象出分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.二、填空题13.【分析】根据题中的新运算法则列出分式方程再根据分式方程的解法解答即可【详解】解:∴方程为:去分母得解得:经检验是原方程的解故答案为:x=5【点睛】本题考查了新定义的运算法则的计算分式方程的解法解题的 解析:5x =【分析】根据题中的新运算法则列出分式方程,再根据分式方程的解法解答即可.【详解】2(2)4x x ---∴方程为:12144x x =--- 去分母得124x =-+,解得:5x =,经检验,5x =是原方程的解,故答案为:x=5.【点睛】本题考查了新定义的运算法则的计算、分式方程的解法,解题的关键是理解题中给出的新运算法则及分式方程的解法.14.【分析】先将化为再由得然后代入计算即可【详解】解:先把原式变为:∵∴∴故填:-2【点睛】本题主要考查了代数式求值和分式的加减运算根据题意对已有等式和代数式灵活变形是解答本题的关键解析:2-【分析】 先将11x x 化为211x x x +-+,再由231x x +=-得213x x =--,然后代入计算即可. 【详解】 解:先把原式变为:211111111x x x x xx x x x ∵231x x +=-∴213x x =-- ∴22111312111x x x x x x x x .故填:-2.【点睛】本题主要考查了代数式求值和分式的加减运算,根据题意对已有等式和代数式灵活变形是解答本题的关键.15.【分析】假设A 到B 顺流B 到A 逆流根据流程速度时间的关系可得A 到B 需要花费的时长和B 到A 需要花费的时长两式相加即可求解【详解】解:假设A 到B 顺流B 到A 逆流∵轮船在静水中的速度为千米/时水流的速度为千米 解析:22100a a b - 【分析】假设A 到B 顺流,B 到A 逆流,根据流程、速度、时间的关系可得A 到B 需要花费的时长和B 到A 需要花费的时长,两式相加即可求解.【详解】解:假设A 到B 顺流,B 到A 逆流,∵轮船在静水中的速度为a 千米/时,水流的速度为b 千米/时,A 、B 两个港口之间的距离为50千米∴轮船往返A 到B 需要花费的时长为: 5050a b a b++- ()()()()5050a b a b a b a b -++=+- ()()50505050a b a ba b a b -++=+-22100a a b =- 故答案为:22100a a b -. 【点睛】本题考查列代数式,解题的关键是明确题意,熟练掌握路程、时间、速度三者之间的关系,列出相应的代数式.16.5【分析】根据已知有增根即使分式方程分母为0的根即满足x-2=0;解题中分式方程先通分再去分母化成整式方程后用x 表示出未知参数m 最后将x 的值代入即可求得m 的值【详解】解:分式方程有增根得:x=2通分解析:5【分析】根据已知有增根,即使分式方程分母为0的根,即满足x-2=0;解题中分式方程,先通分,再去分母,化成整式方程后,用x 表示出未知参数m ,最后将x 的值代入即可求得m 的值.【详解】解:分式方程有增根20x ∴-=得:x=221122m x x x +-=-- 通分得:()2112m x x -+=-去分母得:212m x x --=-化简得:31m x =-将x=2代入得m=5故答案为5.【点睛】这道题考察的是分式方程增根的概念和分式方程未知参数的解法.解决这类题的关键在于:确定增根,化分为整,增根代入.17.【分析】设甲乙丙三种口罩的进价分别为xyz 根据题意可分别求出甲乙丙三种口罩的利润再根据当销售出的甲乙丙口罩件数之比为1:3:2时的总利润为20和当销售出的甲乙丙口罩件数之比为3:2:2时的总利润为2 解析:83【分析】设甲、乙、丙三种口罩的进价分别为x 、y 、z ,根据题意可分别求出甲、乙、丙三种口罩的利润.再根据当销售出的甲、乙、丙口罩件数之比为1:3:2时的总利润为20%和当销售出的甲、乙、丙口罩件数之比为3:2:2时的总利润为24%,列出等式,求出x 、y 、z 之间的关系.最后即可求出只购进甲、乙两种口罩,使总利润为28%时的甲、乙两种口罩的数量比.【详解】设甲、乙、丙三种口罩的进价分别为x 、y 、z ,则销售甲口罩的利润为30%x ,乙口罩的利润为20%y ,丙口罩的利润为5%z .当销售出的甲、乙、丙口罩件数之比为1:3:2时,设甲口罩售出a 件,则乙口罩售出3a 件,丙口罩售出2a 件. 根据题意可列等式:30%320%25%20%32a x a y a z a x a y a z++=++, 整理得:x =3z .当销售出的甲、乙、丙口罩件数之比为3:2:2时,设甲口罩售出3b 件,则乙口罩售出2b 件,丙口罩售出2b 件.根据题意可列等式:330%220%25%24%322b x b y b z b x b y b z++=++, 整理得:9x-4y =19z .∴y =2z . 现只购进甲、乙两种口罩,使总利润为28%,设甲口罩售出A 件,乙口罩售出B 件. 则30%20%28%A x B y A x B y +=+,即30%320%228%32A z B z A z B z ⨯⨯+⨯⨯=⨯+⨯. ∴83A B =. 故答案为:83. 【点睛】本题考查分式方程的实际应用.根据题意列出每一步的分式方程是解答本题的关键. 18.【分析】将变形为=5a 根据完全平方公式将原式的分母变形后代入=5a 即可得到答案【详解】∵∴=5a ∴故答案为:【点睛】此题考查分式的化简求值完全平方公式根据已知等式变形为=5a 将所求代数式的分母变形为 解析:124【分析】 将215a a+=变形为21a +=5a ,根据完全平方公式将原式的分母变形后代入21a +=5a ,即可得到答案.【详解】 ∵215a a+=, ∴21a +=5a , ∴2421a a a =++()()2222222221242451a a a a a a a a ===-+- 故答案为:124. 【点睛】此题考查分式的化简求值,完全平方公式,根据已知等式变形为21a +=5a ,将所求代数式的分母变形为22(1)a a +-形式,再代入计算是解题的关键. 19.且m-4【分析】先解方程求出x=m+6根据该方程的解是正数且x-20列得计算即可【详解】2x+m=3(x-2)x=m+6∵该方程的解是正数且x-20∴解得且x-4故答案为:且m-4【点睛】此题考查分解析:6m >-且m ≠-4【分析】先解方程求出x=m+6,根据该方程的解是正数,且x-2≠0列得60620m m +>⎧⎨+-≠⎩,计算即可. 【详解】232x m x +=- 2x+m=3(x-2)x=m+6,∵该方程的解是正数,且x-2≠0,∴60620m m +>⎧⎨+-≠⎩, 解得6m >-且x ≠-4,故答案为:6m >-且m ≠-4.【点睛】此题考查分式的解的情况求字母的取值范围,解题中注意不要忽略分式的分母不等于零的情况.20.【分析】乙独做的天数是1÷()天然后计算化简即可【详解】解:设乙独做需要的天数=(天)故答案为:【点睛】本题考查了分式混合运算的应用正确列式熟练掌握运算法则是解题的关键 解析:ab a b- 【分析】 乙独做的天数是1÷(11b a-)天,然后计算化简即可. 【详解】 解:设乙独做需要的天数=111ab b a a b ⎛⎫÷-=⎪-⎝⎭(天). 故答案为:ab a b-. 【点睛】本题考查了分式混合运算的应用,正确列式、熟练掌握运算法则是解题的关键. 三、解答题21.(1)60km/h ;(2)以提速后的速度行驶更省油【分析】(1)设前1小时行驶的速度为xkm/h ,则1小时后行驶的速度为1.5xkm/h ,根据时间=路程÷速度结合提速后比原计划提前23h (40min )到达目的地,解之经检验后即可得出结论;(2)设以原来速度行驶每小时耗油y 升,则提速后每小时耗油(y+0.3)升,根据总油耗=每小时油耗×运动时间,即可得出关于y 的一元一次方程,解之即可求出y 值,再分别求出返程时按两种速度所需总油耗,比较后即可得出结论.【详解】解:(1)设前1小时行驶的速度为/xkm h ,则1小时后行驶的速度为1.5xkm/h , 依题意,得:18018021.53x x x x ---=, 解得:60x =, 经检验,60x =是原方程的解,且符合题意.答:前1小时行驶的速度为60km/h .(2)设以原来速度行驶每小时耗油y 升,则提速后每小时耗油()0.3y +升, 依题意,得:18060(0.3)7.5 4.3,1.560y y -+⋅+=-⨯ 解得: 1.2y =,∴回来时若以原速度行驶总耗油180 1.2 3.660=⨯=(升), 若以提速后的速度行驶总耗油180(1.20.3)31.560=⨯+=⨯(升). ∵3.63>,∴以提速后的速度行驶更省油.【点睛】 本题考查了一元一次方程的应用以及分式方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.22.22x x -+,-1(x 取-1时值为-3) 【分析】 先按照分式运算的顺序和法则化简,再选取数值代入计算即可.【详解】 解:原式2145111(2)(2)x x x x x x x ⎫⎛---=-⋅⎪ --+-⎝⎭ 2(2)11(2)(2)x x x x x --=⋅-+- 22x x -=+ 22x -≤≤且x 为整数2,1,0,1,2x ∴=-- 又当1x ≠且2x ≠±时,原分式有意义x ∴只能取1-或0①当x 0=时,原式212-==-(或②当x 1=-时,原式331-==-) 【点睛】本题考查分式的化简求值,解题关键是准确应用分式运算法则按照正确的运算顺序进行化简,代入求值时要使分式有意义. 23.242x x +;415【分析】 先根据分式混合运算的法则把原式进行化简,再把22150x x +-=变形为2215x x +=,最后代入化简结果中进行计算即可.【详解】 解:222444142x x x x x x+-++⎛⎫-÷- ⎪-⎝⎭=22(2)4(2)(2)2x x x x x x x+--+÷-+- =22(2)(2)4(2)2x x x x x x x+-+-+⨯-- =242x x x x+++- =22444(2)x x x x x x ++--+ 242x x=+ 22150x x +-=2215x x ∴+=∴原式415=. 【点睛】 本题考查了分式的化简求值,解答本题的关键是明确分式化简求值的方法.24.(1)4x =-;(2)无解.【分析】(1)去分母转化为整式方程,求出整式方程的解,检验即可得到分式方程的解. (2)去分母转化为整式方程,求出整式方程的解,检验即可得到分式方程的解.【详解】(1)解:方程两边同乘()2x x -得:()322x x =-,解得4x =-,检验:当4x =-时,()()24420x x -=-⨯--≠,∴4x =-是原方程的解.(2)解:去分母得:()()()()11411x x x x ++-=+-去括号得:222141x x x ++-=-移项、合并同类项得:22x =解得:1x =当1x =时,()()110x x +-=,∴原方程无解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.25.(1)72m n -;(2)x y +;(3)32a a --+ 【分析】(1)先根据积的乘方和幂的乘方化简原式中的各项后再进行乘除运算即可得到结果; (2)将中括号内的运用完全平方公式和平方差公式把小括号展开合并后,根据多项式除以单项式的运算法则计算出结果即可;(3)把分式中的分子与分母因式分解后约分即可得到答案.【详解】解:(1)()()()3223m n m n mn ⋅-÷- =()63322m n m n m n ⋅-÷=9422m n m n -÷=72m n -;(2)()()()22x y x y x y y ⎡⎤+-+-÷⎣⎦ ()222222x xy y x y y =++-+÷()2222xy y y =+÷x y =+;(3)2269243a a a a a-+-⋅-- ()()()232223a a a a a--=⋅+-- 32a a -=-+. 【点睛】此题主要考查了整式的运算和分式的化简,熟练掌握相关运算法则是解答此题的关键. 26.(1)A 类书的单价是12元,B 类书的单价是8元;(2)50本【分析】(1)设去年购买的B 类书的单价为x 元,则A 类书的单价为(x+4)元,根据数量=总价÷单价结合用1200元购买的A 类书与用800元购买的B 类书数量相等,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设这所中学今年要购买m 本B 类书,则要购买(200-m )本A 类书,根据总价=单价×数量结合总价不超过2300元,即可得出关于m 的一元一次不等式,解之取其中的最小值即可得出结论.【详解】解:(1)设去年购买的B 类书的单价为x 元,则A 类书的单价为(x+4)元, 依题意得:12008004x x=+, 解得:x=8, 经检验,x=8是原方程的解,且符合题意,∴x+4=12.答:去年购买的A 类书的单价为12元,B 类书的单价为8元;(2)设这所中学今年要购买m 本B 类书,则要购买(200-m)本A 类书,依题意得:12(200-m)+8×(1+25%)m≤2300,解得:m≥50.答:这所中学今年至少要购买50本B类书.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.。

中考数学《分式及分式方程》计算题(附答案)

中考数学《分式及分式方程》计算题(附答案)

[键入文字]中考《分式及分式方程》计算题、答案一.解答题(共30小题)1.(2011•自贡)解方程:.2.(2011•孝感)解关于的方程:.3.(2011•咸宁)解方程.4.(2011•乌鲁木齐)解方程:=+1.5.(2011•威海)解方程:.6.(2011•潼南县)解分式方程:.7.(2011•台州)解方程:.8.(2011•随州)解方程:.9.(2011•陕西)解分式方程:.10.(2011•綦江县)解方程:.11.(2011•攀枝花)解方程:.12.(2011•宁夏)解方程:.13.(2011•茂名)解分式方程:.14.(2011•昆明)解方程:.15.(2011•菏泽)(1)解方程:(2)解不等式组.16.(2011•大连)解方程:.17.(2011•常州)①解分式方程;②解不等式组.19.(2011•巴彦淖尔)(1)计算:|﹣2|+(+1)0﹣()﹣1+tan60°;(2)解分式方程:=+1.20.(2010•遵义)解方程:21.(2010•重庆)解方程:+=122.(2010•孝感)解方程:.23.(2010•西宁)解分式方程:24.(2010•恩施州)解方程:25.(2009•乌鲁木齐)解方程:26.(2009•聊城)解方程:+=127.(2009•南昌)解方程:29.(2008•昆明)解方程:30.(2007•孝感)解分式方程:.答案与评分标准一.解答题(共30小题)1.(2011•自贡)解方程:.考点:解分式方程。

专题:计算题。

分析:方程两边都乘以最简公分母y(y﹣1),得到关于y的一元一方程,然后求出方程的解,再把y的值代入最简公分母进行检验.解答:解:方程两边都乘以y(y﹣1),得2y2+y(y﹣1)=(y﹣1)(3y﹣1),2y2+y2﹣y=3y2﹣4y+1,3y=1,解得y=,检验:当y=时,y(y﹣1)=×(﹣1)=﹣≠0,∴y=是原方程的解,∴原方程的解为y=.点评:本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想",把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.2.(2011•孝感)解关于的方程:.考点:解分式方程。

分式方程典型易错点及典型例题分析

分式方程典型易错点及典型例题分析

分式方程典型易错点及典型例题分析一、错用分式的基本性质例1 化简错解:原式分析:分式的基本性质是“分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变”,而此题分子乘以3,分母乘以2,违反了分式的基本性质.正解:原式二、错在颠倒运算顺序例2 计算错解:原式分析:乘除是同一级运算,除在前应先做除,上述错解颠倒了运算顺序,致使结果出现错误.正解:原式三、错在约分例1 当为何值时,分式有意义[错解]原式.由得.∴时,分式有意义.[解析]上述解法错在约分这一步,由于约去了分子、分母的公因式,扩大了未知数的取值范围,而导致错误.[正解]由得且.∴当且,分式有意义.四、错在以偏概全例2 为何值时,分式有意义[错解]当,得.∴当,原分式有意义.[解析]上述解法中只考虑的分母,没有注意整个分母,犯了以偏概全的错误.[正解] ,得,由,得.∴当且时,原分式有意义.五、错在计算去分母例3 计算.[错解]原式=.[解析]上述解法把分式通分与解方程混淆了,分式计算是等值代换,不能去分母,.[正解]原式.六、错在只考虑分子没有顾及分母例4 当为何值时,分式的值为零.[错解]由,得.∴当或时,原分式的值为零.[解析]当时,分式的分母,分式无意义,谈不上有值存在,出错的原因是忽视了分母不能为零的条件.[正解]由由,得.由,得且.∴当时,原分式的值为零.典例分析类型一:分式及其基本性质1.当x为任意实数时,下列分式一定有意义的是()A. B.C.D.2.若分式的值等于零,则x =_______;3.求分式的最简公分母。

【变式1】(1)已知分式的值是零,那么x的值是()A.-1B.0C.1 D.±1(2)当x________时,分式没有意义.【变式2】下列各式从左到右的变形正确的是()A.B.C.D.(一) 通分约分4.化简分式:【变式1】顺次相加法计算:【变式2】整体通分法计算:(二)裂项或拆项或分组运算5.巧用裂项法计算:【变式1】分组通分法计算:【变式2】巧用拆项法计算:类型三:条件分式求值的常用技巧6.参数法已知,求的值.【变式1】整体代入法已知,求的值.【变式2】倒数法:在求代数式的值时,有时出现条件或所求分式不易变形,但当分式的分子、分母颠倒后,变形就非常的容易,这样的问题适合通常采用倒数法.已知:,求的值.【变式3】主元法:当已知条件为两个三元一次方程,而所求的分式的分子与分母是齐次式时,通常我们把三元看作两元,即把其中一元看作已知数来表示其它两元,代入分式求出分式的值.已知:,求的值.解分式方程的基本思想是去分母,课本介绍了在方程两边同乘以最简公分母的去分母的方法,现再介绍几种灵活去分母的技巧.(一)与异分母相关的分式方程7.解方程=【变式1】换元法 解方程:32121---=-xxx (二)与同分母相关的分式方程 8.解方程3323-+=-x x x 【变式1】解方程87178=----xx x 【变式2】解方程125552=-+-xx x9.甲、乙两个小商贩每次都去同一批发商场买进白糖.甲进货的策略是:每次买1000元钱的糖;乙进货的策略是每次买1000斤糖,最近他俩同去买进了两次价格不同的糖,问两人中谁的平均价格低一些?【变式1】 甲开汽车,乙骑自行车,从相距180千米的A 地同时出发到B .若汽车的速度是自行车的速度的2倍,汽车比自行车早到2小时,那么汽车及自行车的速度各是多少【变式2】 A 、B 两地路程为150千米,甲、乙两车分别从A 、B 两地同时出发,相向而行,2小时后相遇,相遇后,各以原来的速度继续行驶,甲车到达B 后,立即沿原路返回,返回时的速度是原来速度的2倍,结果甲、乙两车同时到达A 地,求甲车原来的速度和乙车的速度.【主要公式】1.同分母加减法则:()0b c b ca aaa±±=≠ 2.异分母加减法则:()0,0b d bc da bc da a c ac ac ac ac ±±=±=≠≠; 3.分式的乘法与除法:b d bd a c ac •=,b c b d bda d a c ac÷=•= 4.同底数幂的加减运算法则:实际是合并同类项 5.同底数幂的乘法与除法;a m ● a n =a m+n ; a m ÷ a n =a m -n6.积的乘方与幂的乘方:(ab)m= a m b n , (a m)n= a mn7.负指数幂: a-p=1a0=1pa8.乘法公式与因式分解:平方差与完全平方式(a+b)(a-b)= a2- b2 ;(a±b)2= a2±2ab+b2。

分式与分式方程练习及答案

分式与分式方程练习及答案

分式与分式方程练习及答案1.如果代数式√x+3x 有意义,则实数x 的取值范围是 ( )A .x ≥-3B .x ≠0C .x ≥-3且x ≠0D .x ≥32.如果将分式2x x+y 中的字母x 与y 的值分别扩大为原来的10倍,那么这个分式的值 ( )A .扩大为原来的10倍B .扩大为原来的20倍C .缩小为原来的110D .不改变 3.当分式62x -3的值为正整数时,整数x 的取值可能有 ( ) A .4个B .3个C .2个D .1个 4.计算x+1x -1x ,结果正确的是 ( )A .1B .xC .1xD .x+2x5.一项工作,甲单独完成需要a 天,乙单独完成需要b 天,如果甲、乙二人合作,那么每天的工作效率是 ( )A .a+bB .1+1C .1a+bD .ab a+b 6.已知1m -1n =1,则代数式2m -mn -2n m+2mn -n 的值为( ) A .3 B .1 C .-1D .-3 7.如果a -3b=0,那么代数式a -2ab -b 2a ÷a 2-b 2a 的值是 ( ) A .12 B .-12C .14D .1 8.已知分式满足条件“只含有字母x ,且当x=1时无意义”,请写出一个这样的分式: .9.化简a b -a +b a -b 的结果是 .10.化简:x 2-4x+4x 2+2x ÷4x+2-1= . 11.计算m+2-5m -2÷m -32m -4.12.已知:a 2+3a -2=0,求代数式a -3a 2-2a ÷a+2-5a -2的值.参考答案1.C2.D3.C4.A5.B6.D7.A8.1x -1(答案不唯一)9.-1 [解析] 本题考查了分式的加减法,掌握分式加减法的法则是解题的关键.原式=-a a -b +b a -b =-a+b a -b =-1,故答案为-1.10.2−x x [解析] x 2-4x+4x 2+2x ÷4x+2-1=(x -2)2x(x+2)·x+22−x =2−x x. 11.解:m+2-5m -2÷m -32m -4=(m+2)(m -2)-5m -2·2m -4m -3 =m 2-9m -2·2(m -2)m -3=(m -3)(m+3)m -2·2(m -2)m -3 =2m+6.12.解:原式=a -3a 2-2a ÷[(a+2)(a -2)a -2-5a -2] =a -3a 2-2a ÷a 2-4-5a -2=a -3a(a -2)·a -2(a+3)(a -3)=1a(a+3). ∵a 2+3a -2=0,∴a 2+3a=2,∴原式=1a 2+3a =12.分式方程1.关于x 的方程2x -1=1的解是( )A .x=4B .x=3C .x=2D .x=12.将分式方程1-2x x -1=3x -1去分母,得到正确的整式方程是 ( )A .1-2x=3B .x -1-2x=3C .1+2x=3D .x -1+2x=33.若x=3是分式方程a -2x -1x -2=0的根,则a 的值是 ( )A .5B .-5C .3D .-34.甲、乙两位同学做中国结,已知甲每小时比乙少做6个,甲做30个所用的时间与乙做45个所用的时间相同,求甲每小时做中国结的个数.如果设甲每小时做x 个,那么可列方程为( )A .30x =45x+6B .30x =45x -6C .30x -6=45xD .30x+6=45x5.如果分式x -3x+1的值为0,那么x 的值是 .6.分式方程2x -3=32x的解为 . 7.若关于x 的方程ax+1x -2=-1的解是正数,则a 的取值范围是 . 8.“复兴号”是我国具有完全自主知识产权、达到世界先进水平的动车组列车.“复兴号”的速度比原来列车的速度每小时快50千米,提速后从北京到上海运行时间缩短了30分钟.已知从北京到上海全程约1320千米,求“复兴号”的速度.设“复兴号”的速度为x 千米/时,依题意,可列方程为 .9.解方程:x x -1-2x =1.10.解分式方程:1x -2+2=1+x 2−x .11. 2017年9月21日,我国自主研发的中国标准动车组“复兴号”正式上线运营,运营速度世界第一的桂冠,中国失而复得.现有甲、乙两列高铁列车在不同的时刻分别从北京出发开往上海.已知北京到上海的距离约1320千米,列车甲行驶的平均速度为列车乙行驶平均速度的43倍,全程运行时间比列车乙少1.5小时,求列车甲从北京到上海运行的时间.12.若关于x 的方程x -1=m 无解,则m= .13.设a ,b ,c ,d 为实数,现规定一种新的运算:|a b c d |=ad -bc.则满足等式|2x+123x+11|=1的x 的值为 .参考答案1.B2.B3.A4.A5.36.x=-97.a>-1且a ≠-128.1320x =1320x -50-30609.解:方程两边同乘x (x -1),得x 2-2(x -1)=x (x -1).去括号,得x 2-2x+2=x 2-x.移项,得-x+2=0.解得x=2.检验:当x=2时,x (x -1)≠0,所以x=2是原方程的解.10.解:方程两边同乘(x -2),得1+2(x -2)=-1-x.解得:x=23.检验:当x=23时,x -2≠0.所以,原分式方程的解为x=23.11.解:设列车甲从北京到上海运行的时间为x小时,则列车乙从北京到上海的运行时间为(x+1.5)小时.根据题意,得1320x =1320x+1.5×43,解得x=4.5,经检验,x=4.5是所列方程的解,且符合实际意义.答:列车甲从北京到上海运行的时间为4.5小时.12.-813.-5。

初中数学-《分式与分式方程》测试题含解析

初中数学-《分式与分式方程》测试题含解析

初中数学-《分式与分式方程》测试题班级:___________ 姓名:___________ 得分:___________一.选择题:(每小题3分共36分) 1.在2a b -,x x 1+,5πx +,a ba b+-中,是分式的有( )A .1个B .2个C .3个D .4个2.每千克m 元的糖果x 千克与每千克n 元的糖果y 千克混合成杂拌糖,这样混合后的杂拌糖果每千克的价格为( ) A .y x my nx ++元 B .y x ny mx ++元 C .y x n m ++元 D .12x y m n ⎛⎫+ ⎪⎝⎭元3.当x =2时,下列分式中,值为零的是( ) A .2322+--x x x B .942--x x C .21-x D .12++x x4.下列分式是最简分式的是( ) A .11m m -- B .3xy y xy - C .22x y x y -+ D .6132mm -5.若34y x =,则x yx+的值为( ) A .1 B .47 C .54 D .746.计算⎪⎭⎫⎝⎛-÷-x x x x 11所得的正确结论是( ) A.11x - B.1 C. 11x + D.-1 7.a ÷b ×b 1÷c ×c 1÷d ×d1等于( )A .aB .222dc b a C .d a D .ab 2c 2d 28.计算22193m m m --+的结果为: ( ) A .13m + B .-13m - C .-13m + D .13m - 9.分式121x x +-的分子分母都加1,所得的分式22x x +的值比121x x +-( )A .减小了B .不变C .增大了D .不能确定 10.若241()w 1a 42a+⋅=--,则w=( ) A.a 2(a 2)+≠- B.a 2(a 2)-+≠ C.a 2(a 2)-≠ D.a 2(a 2)--≠- 11.关于x 的方式方程232x mx +=-的解是正数,则m 可能是( ) A .﹣4 B .﹣5 C .﹣6 D .﹣7 12.如果关于x 的方程2435x a x b++=的解不是负值,那么a 与b 的关系是( ) A . a >35b B . b≥35a C .5a≥3b D .5a=3b 二、填空题:(每小题3分共12分)13.化简:23410ab ba = .14.已知31=+a a ,则221a a +的值是 。

八上数学分式方程常考例题讲解

八上数学分式方程常考例题讲解

八上数学分式方程常考例题讲解
1、题目:若关于 x 的分式方程 (x - 2)/(x - 3) - 2 = k/(x - 3) 有增根,则 k = _______.
【分析】
本题考查了增根的定义及分式方程的解法.增根是能整除方程左边的式子的根,然后对方程两边同时乘以(x−3),化简后,再根据增根求出k的值.
【解答】
解:∵分式方程x−3x−2−2=x−3k有增根,
∴x−3=0,
解得x=3,
∴方程两边都乘以(x−3)得,
x−2−2(x−3)=k,
把x=3代入整式方程得,
k=1.
故答案为1.
2、题目:若关于 x 的分式方程 (2x + a)/(x - 1) - 1 = 1 有正数解,则
a 的取值范围是 _______.
【分析】
本题考查了分式方程的解法.解分式方程时,去分母转化为整式方程是解题的关键.先求出分式方程的解,再根据分式方程有正数解求出a的取值范围.
【解答】
解:去分母得:2x+a−x+1=x−1,
解得:x=−a−2,
由题意可知:−a−2>0,且−a−2=1,
解得:a<−2且a=−3.
故答案为a<−2且a=−3.。

分式及分式方程典型题训练及答案

分式及分式方程典型题训练及答案

分式及分式方程一、选择题(将唯一正确的答案填在题后括号内)1.函数y=11x +中自变量x 的取值范围是( ). A.x ≠-1 B.x>-1 C.x ≠1 D.x ≠02.如果把分式x y x+2中x 和y 都扩大10倍,那么分式的值( )A. 扩大10倍B. 缩小10倍C. 扩大2倍D. 不变3.计算:211(1)1mm m +÷⋅--的结果是( ) A .221m m --- B .221m m -+-C .221m m -- D .21m -4. 已知2111=-b a ,则b a ab -的值是( )A.21B.-21C.2D.-25.当分式||33x x -+的值为零时,x 的值为( ). A.0B.3C.-3D.±36.化简2239m mm --的结果是( ) A. 3m m + B.-3m m +C.3mm - D.3mm- 7.化简2129m -+23m +的结果是( )A. 269m m +-B. 23m -C.23m + D. 2299m m +- 8.暑假期间,小荷文学社的全体同学包租一辆面包车前去某景点游览,面包车的租价为180元.出发时又增加了两名同学,结果每个同学比原来少摊了3元车费.若设“文学社”有x 人,则所列方程为( )A.32x 180x 180=-- B.32x 180x 180=+- C.3x1802x 180=-+D.3x1802-x 180=- 9.当x=( ) 时,424xx--的值与54x x --的值相等。

A.-1B.4C.5D.010.化简22424422x x xx x x x ⎛⎫--+÷ ⎪-++-⎝⎭,其结果是( ) A .82x --B .82x -C .82x -+D .82x + 二、填空题11.当x = 时,分式23x -没有意义.12、方程的解是xx 211=- . 13.当x=______时,分式232x x --的值为1. 14.已知a+1a=3,则a 2+21a =_______.15.已知x 1-y 1=3,则分式2322x xy yx xy y+---的值为________. 16.关于x 的分式方程3155ax x +=++有增根,则a=_______ 三、解答题17.化简:(1)(21-x -442+-x x x )÷241x -(2)18. 先化简再求值:19.解方程:(1)120112x xx x-+=+- (2)x x x -=+--2122120.小明从家里骑自行车到学校,每小时骑15km ,可早到10分钟,每小时骑12km 就会迟到5分钟.问他家到学校的路程是多少km?21.在某次捐款活动中,某同学对甲、乙两班捐款情况进行了统计:甲班捐款人数比乙班捐款人数多3人,甲班共捐款2400元,乙班共捐款1800元,乙班平均每人捐款的钱数是甲班平均每人捐款钱数的45倍.求甲、乙两班各有多少人捐款?22.22. 在某年春运期间,我国南方出现大范围冰雪灾害,导致某地电路断电.该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,15分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求这两种车的速度。

中考《分式方程》经典例题及解析

中考《分式方程》经典例题及解析

分式方程1.分式方程的概念分母中含有未知数的方程叫做分式方程.注意:“分母中含有未知数”是分式方程与整式方程的根本区别,也是判定一个方程为分式方程的依据.2.分式方程的解法(1)解分式方程的基本思路是将分式方程化为整式方程,具体做法是去分母,即方程两边同乘以各分式的最简公分母.(2)解分式方程的步骤:①找最简公分母,当分母是多项式时,先分解因式;②去分母,方程两边都乘最简公分母,约去分母,化为整式方程;③解整式方程;④验根.注意:解分式方程过程中,易错点有:①去分母时要把方程两边的式子作为一个整体,记得不要漏乘整式项;②忘记验根,最后的结果还要代回方程的最简公分母中,只有最简公分母不是零的解才是原方程的解.3.增根在方程变形时,有时可能产生不适合原方程的根,这种根叫做方程的增根.由于可能产生增根,所以解分式方程要验根,其方法是将根代入最简公分母中,使最简公分母为零的根是增根,否则是原方程的根.注意:增根虽然不是方程的根,但它是分式方程去分母后变形而成的整式方程的根.若这个整式方程本身无解,当然原分式方程就一定无解.4.分式方程的应用(1)分式方程的应用主要涉及工程问题,有工作量问题、行程问题等.每个问题中涉及到三个量的关系,如:工作时间=工作量工作效率,时间=路程速度等.(2)列分式方程解应用题的一般步骤:①设未知数;②找等量关系;③列分式方程;④解分式方程;⑤检验(一验分式方程,二验实际问题);⑥答.经典例题解分式方程1.解方程:2211xx x+=--;【答案】x=0;【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;【解析】解:(1)2211x x x+=-- 去分母得:x 2=2x 2-- 解得x=0, 经检验x=0是分式方程的解;【点睛】本题考查了解分式方程与解不等式组,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解一元一次不等式组要注意不等号的变化.2.代数式31x -与代数式23x -的值相等,则x =_____. 【答案】7【分析】根据题意列出分式方程,去分母,解整式方程,再检验即可得到答案.【解析】解:根据题意得:3213x x =--,去分母得:3x ﹣9=2x ﹣2,解得:x =7, 经检验x =7是分式方程的解.故答案为:7.【点睛】本题考查的是解分式方程,掌握分式方程的解法是解题的关键.1.分式22x x -与282x x -的最简公分母是_______,方程228122-=--x x x x的解是____________. 【答案】()2x x - x=-4【分析】根据最简公分母的定义得出结果,再解分式方程,检验,得解.【解析】解:∵()222x x x x -=-,∴分式22x x -与282x x -的最简公分母是()2x x -, 方程228122-=--x x x x,去分母得:()2282x x x -=-,去括号得:22282x x x -=-, 移项合并得:2280x x +-=,变形得:()()240x x -+=,解得:x=2或-4,∵当x=2时,()2x x -=0,当x=-4时,()2x x -≠0,∴x=2是增根,∴方程的解为:x=-4.【点睛】本题考查了最简公分母和解分式方程,解题的关键是掌握分式方程的解法.2. 解方程:24111x x x =+-- 【答案】x=3.【分析】观察可得方程最简公分母为(x 2-1),去分母,转化为整式方程求解,结果要检验.【解析】解:24111x x x =+--去分母得,2(1)41x x x +=+- 解得,x=3, 经检验,x=3是原方程的根,所以,原方程的根为:x=3.【点睛】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程一定注意要检验.经典例题 分式方程的解1.关于x 的分式方程2m x -﹣32x -=1有增根,则m 的值( ) A .m =2B .m =1C .m =3D .m =﹣3 【答案】D【分析】分式方程去分母转化为整式方程,由分式方程有增根,确定出m 的值即可.【解析】解:去分母得:m +3=x ﹣2,由分式方程有增根,得到x ﹣2=0,即x =2,把x =2代入整式方程得:m +3=0,解得:m =﹣3,故选:D .【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.2.若关于x 的方程2134416x m m x x ++=-+-无解,则m 的值为__. 【答案】-1或5或13-【分析】直接解方程再利用一元一次方程无解和分式方程无解分别分析得出答案.【解析】去分母得:()443x m x m ++-=+,可得:()151m x m +=-,当10m +=时,一元一次方程无解,此时1m =-,当10m +≠时,则5141m x m -==±+, 解得:5m =或13-.故答案为:1-或5或13-.【点睛】此题主要考查了分式方程的解,正确分类讨论是解题关键.1.若关于x 的分式方程33122x m x x +=+--有增根,则m =_________. 【答案】3. 【分析】先把分式方程去分母转化为整式方程,然后由分式方程有增根求出x 的值,代入到转化以后的整式方程中计算即可求出m 的值.【解析】解:去分母得:()332x m x =++-,整理得:21x m =+,∵关于x 的分式方程33122x m x x +=+--有增根,即20x -=,∴2x =, 把2x =代入到21x m =+中得:221m ⨯=+,解得:3m =,故答案为:3.【点睛】本题主要考查了利用增根求字母的值,增根就是使最简公分母为零的未知数的值;解决此类问题的步骤:①化分式方程为整式方程;②让最简公分母等于零求出增根的值;③把增根代入到整式方程中即可求得相关字母的值.2.若分式方程无解,则【答案】±1 【解析】去分母得:x-a=ax+a ,整理得:所以a-1=2a ,解得a=-1;②整式方程无解考点:分式方程的解.1.若关于x 的分式方程32x x -=2m -A .m <﹣10 B .m ≤﹣10 【答案】D【分析】分式方程去分母化为整式方程,【解析】解:去分母得35(x m =-+由方程的解为正数,得到100m +>,且则m 的范围为10m >-且6≠-m ,故选【点睛】本题主要考查了分式方程的计算程的分母不可为零是做对题目的关键.2.已知关于x 的分式方程1x k k x x +-=+【答案】12k >且1k ≠. 分析:分式方程去分母得:()(x k +【解析】∵分式方程解为负数,∴-+由211k -+≠±得0k ≠和1k ≠∴k 的取值考点:1.分式方程的解;2.分式有意义的条1.已知关于x 的分式方程21m x +-A .3B .4【答案】B 【分析】根据解分式方程,可得分式方程的【解析】解:去分母,得:m+2(x-1)=3,的值为 .:(1-a )x=2a ,由于分式方程无解,所以由两种情程无解,即1-a=0,解得a=1;综上a=±1.经典例题x+5的解为正数,则m 的取值范围为( ) C .m ≥﹣10且m ≠﹣6 D .m >﹣10且,表示出方程的解,由分式方程的解为正数求出2)x -,解得102m x +=, 且2x ≠,104m +≠,故选:D .计算,去分母化为整式方程,根据方程的解求出m11-的解为负数,则k 的取值范围是 . )()(211121211x k x x x k k --+=-⇒=-+-+≠±12102k k ⇒. 的取值范围是12k >且1k ≠. 义的条件;3.解不等式;4.分类思想的应用.31x =--的解为非负数,则正整数m 的所有个数为C .5 D .6 方程的解,根据分式方程的解为负数,可得不等式,移项、合并,解得:x=52m -, 两种情况:①分母为0,即x=-1,m ≠﹣6求出m 的范围即可.的范围,其中考虑到分式方).数为( ) 等式,解不等式,即可解题.∵分式方程的解为非负数,∴52m -≥0且52m -≠1,解得:m≤5且m≠3, ∵m 为正整数∴m=1,2,4,5,共4个,故选:B .【点睛】本题考查了分式方程的解,先求出分式方程的解,再求出符合条件的不等式的解.2.已知关于x 的分式方程433x k x x -=--的解为非正数,则k 的取值范围是( ) A .12k ≤-B .12k -≥C .12k >-D .12k <- 【答案】A【分析】表示出分式方程的解,由解为非正数得出关于k 的不等式,解出k 的范围即可.【解析】解:方程433x k x x-=--两边同时乘以(3)x -得:4(3)x x k --=-, ∴412x x k -+=-,∴312x k -=--,∴43k x =+, ∵解为非正数,∴403k +≤,∴12k ≤-,故选:A . 【点睛】本题考查了分式方程的解及解一元一次不等式,熟练掌握分式方程的解法和一元一次不等式的解法是解题的关键.经典例题1.已知关于x 的分式方程2322(2)(3)x k x x x +=+--+的解满足41x -<<-,且k 为整数,则符合条件的所有k 值的乘积为( )A .正数B .负数C .零D .无法确定 【答案】A【分析】先解出关于x 的分式方程得到x=63k -,代入41x -<<-求出k 的取值,即可得到k 的值,故可求解. 【解析】关于x 的分式方程2322(2)(3)x k x x x +=+--+得x=217k -, ∵41x -<<-∴21471k --<<-解得-7<k <14 ∴整数k 为-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,又∵分式方程中x≠2且x≠-3∴k≠35且k≠0∴所有符合条件的k 中,含负整数6个,正整数13个,∴k 值的乘积为正数,故选A .【点睛】此题主要考查分式方程与不等式综合,解题的关键是熟知分式方程的求解方法.1.若关于x 的分式方程21m x x =-有正整数解,则整数m 的值是( ) A .3B .5C .3或5D .3或4 【答案】D 【分析】解带参数m 的分式方程,得到2122m x m m ==+--,即可求得整数m 的值. 【解析】解:21m x x=-,两边同时乘以()1x x -得:()21x m x =-, 去括号得:2x mx m =-,移项得:2x mx m -=-,合并同类项得:()2m x m -=-,系数化为1得:2122m x m m ==+--, 若m 为整数,且分式方程有正整数解,则3m =或4m =,当3m =时,3x =是原分式方程的解;当4m =时,2x =是原分式方程的解;故选:D .【点睛】本题考查分式方程的解,始终注意分式方程的分母不为0这个条件.经典例题 分式方程的应用1.八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x 千米/小时,则所列方程正确的是( )A .10x -102x =20B .102x -10x =20C .10x -102x =13D .102x -10x =13【答案】C【分析】根据八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,可以列出相应的方程,从而可以得到哪个选项是正确的.【解析】由题意可得,10x -102x =13,故选:C . 【点睛】此题考查由实际问题抽象出分式方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程. 2.某体育用品商店出售毽球,有批发和零售两种售卖方式,小明打算为班级购买键球,如果给每个人买一个毽球,就只能按零售价付款,共需80元;如果小明多购买5个毽球,就可以享受批发价,总价是72元.已知按零售价购买40个毽球与按批发价购买50个毽球付款相同,则小明班级共有多少名学生?设班级共有x 名学生,依据题意列方程得( )A .807250405x x ⨯=⨯+ B .807240505x x ⨯=⨯+ C .728040505x x ⨯=⨯- D .728050405x x ⨯=⨯- 【答案】B 【分析】根据“按零售价购买40个毽球与按批发价购买50个毽球付款相同”建立等量关系,分别找到零售价与批发价即可列出方程.【解析】设班级共有x 名学生,依据题意列【点睛】本题主要考查列分式方程,读懂题1.数学家斐波那契编写的《算经》中有如元钱,则第二次每人所得与第一次相同,【答案】10406x x =+ 【分析】根据“第二次每人所得与第一次相【解析】解:根据题意得,1040x x =【点睛】本题主要考查分式方程的实际应用2.如图,著名旅游景区B 位于大山深处增强景区的吸引力,发展壮大旅游经济,BC =100≈1.4等数据(1)公路修建后,从A 地到景区B 旅游可(2)为迎接旅游旺季的到来,修建公路时结果提前50天完成了施工任务.求施工队【答案】(1)从A 地到景区B 旅游可以少【解析】解:(1)过点C 作AB 的垂线在直角△BCD 中,AB ⊥CD ,sin30°=CD ∴CD =BC•sin30°=100×=50(千米)在直角△ACD 中,AD =CD =50(千米∴AB =50+50(千米),∴AC+BC ﹣AB =50+100﹣(50+50答:从A 地到景区B 旅游可以少走35千米(2)设施工队原计划每天修建x 千米,解得x =0.14,经检验x =0.14是原分式方题意列方程得,807240505x x ⨯=⨯+故选:B . 读懂题意找到等量关系是解题的关键.中有如下问题:一组人平分10元钱,每人分得若干,求第一次分钱的人数.设第一次分钱的人数为一次相同,”列分式方程即可得到结论. 06+,故答案为:10406x x =+ 际应用,找出等量关系,列出分式方程,是解题的关深处,原来到此旅游需要绕行C 地,沿折线A→C→B,修建了一条从A 地到景区B 的笔直公路.请结合等数据信息,解答下列问题: 旅游可以少走多少千米? 路时,施工队使用了新的施工技术,实际工作时每天的施工队原计划每天修建多少千米?可以少走35千米;(2)施工队原计划每天修建0.14线CD ,垂足为D ,BC,BC =1000千米, ),BD =BC•cos30°=100×=50(千米),千米),AC ==50(千米), )=50+50﹣50≈35(千米).千米; ,依题意有,﹣=50,分式方程的解. 若干;若再加上6人,平分40数为x 人,则可列方程_____.题的关键.C→B 方可到达.当地政府为了请结合∠A =45°,∠B =30°,每天的工效比原计划增加25%,.14千米. ),答:施工队原计划每天修建0.14千米.点评:(1)过点C作AB的垂线CD,垂足为D,在直角△BCD中,解直角三角形求出CD的长度和BD的长度,在直角△ACD中,解直角三角形求出AD的长度和AC的长度,再求出AB的长度,进而求出从A地到景区B旅游可以少走多少千米;(2)本题先由题意找出等量关系即原计划的工作时间﹣实际的工作时间=50,然后列出方程可求出结果,最后检验并作答.。

分式方程的典型例题解析

分式方程的典型例题解析

分式方程的典型例题解析分式方程是一种含有分式的方程,它的解法可以通过化简分式,通分消去分母,然后根据整式方程的解法进行求解。

在解分式方程时,我们需要注意分式的约分和消去分母的方法,以及解方程过程中可能出现的特殊情况。

下面我们通过几个典型的例题来具体解析分式方程的解法。

例题一:求解方程$\frac{2}{x} + \frac{3}{x+2} = \frac{5}{x^2+2x}$。

解:首先将分式方程中的分式通分,得到$\frac{2(x+2)}{x(x+2)} +\frac{3x}{x(x+2)} = \frac{5}{x(x+2)}$。

然后将分式相加并合并同类项,得到$\frac{2x+4+3x}{x(x+2)} =\frac{5}{x(x+2)}$。

继续化简,得到$\frac{5x+4}{x(x+2)} = \frac{5}{x(x+2)}$。

由于等号两边的分式相等,所以分子相等,即$5x+4=5$。

解得$x=1$。

因此,原方程的解为$x=1$。

例题二:求解方程$\frac{1}{x-1} + \frac{2}{x-2} = \frac{3}{x-3}$。

解:同样地,将方程通分,得到$\frac{x-2}{(x-1)(x-2)} + \frac{2(x-1)}{(x-1)(x-2)} = \frac{3(x-2)}{(x-1)(x-2)}$。

合并同类项,得到$\frac{x-2+2(x-1)}{(x-1)(x-2)} = \frac{3(x-2)}{(x-1)(x-2)}$。

进一步化简,得到$\frac{x-2+2x-2}{(x-1)(x-2)} = \frac{3x-6}{(x-1)(x-2)}$。

继续化简,得到$\frac{3x-4}{(x-1)(x-2)} = \frac{3x-6}{(x-1)(x-2)}$。

由于等号两边的分式相等,所以分子相等,即$3x-4=3x-6$。

然而,这个方程没有解,因为等号两边的式子相等,无法将方程化简成一个恒等式。

初中数学分式与分式方程真题练习及答案解析

初中数学分式与分式方程真题练习及答案解析

初中数学分式与分式方程真题练习一.选择题(共10小题)1.(2015•南昌)下列运算正确的是()A.(2a2)3=6a6B.﹣a2b2•3ab3=﹣3a2b5C.•=﹣1 D.+=﹣12.(2015•山西)化简﹣的结果是()A.B.C.D.3.(2015•台湾)将甲、乙、丙三个正分数化为最简分数后,其分子分别为6、15、10,其分母的最小公倍数为360.判断甲、乙、丙三数的大小关系为何?()A.乙>甲>丙B.乙>丙>甲C.甲>乙>丙D.甲>丙>乙4.(2015•厦门)2﹣3可以表示为()A. 22÷25B. 25÷22C. 22×25D.(﹣2)×(﹣2)×(﹣2)5.(2015•枣庄)关于x的分式方程=1的解为正数,则字母a的取值范围为()A.a≥﹣1 B.a>﹣1 C.a≤﹣1 D.a<﹣16.(2015•齐齐哈尔)关于x的分式方程=有解,则字母a的取值范围是()A.a=5或a=0 B.a≠0C.a≠5D.a≠5且a≠07.(2015•荆州)若关于x的分式方程=2的解为非负数,则m的取值范围是()A.m>﹣1 B.m≥1C.m>﹣1且m≠1D.m≥﹣1且m≠18.(2015•南宁)对于两个不相等的实数a、b,我们规定符号Max{a,b}表示a、b中的较大值,如:Max{2,4}=4,按照这个规定,方程Max{x,﹣x}=的解为()A. 1﹣B. 2﹣C. 1+或1﹣D. 1+或﹣19.(2015•营口)若关于x的分是方程+=2有增根,则m的值是()A.m=﹣1 B.m=0 C.m=3 D.m=0或m=310.(2015•茂名)张三和李四两人加工同一种零件,每小时张三比李四多加工5个零件,张三加工120个这种零件与李四加工100个这种零件所用时间相等,求张三和李四每小时各加工多少个这种零件?若设张三每小时经过这种零件x个,则下面列出的方程正确的是()A.=B.=C.=D.=二.填空题(共9小题)11.(2015•上海)如果分式有意义,那么x的取值范围是.12.(2015•常德)使分式的值为0,这时x=.13.(2015•梅州)若=+,对任意自然数n都成立,则a=,b;计算:m=+++…+=.14.(2015•黄冈)计算÷(1﹣)的结果是.15.(2015•安徽)已知实数a、b、c满足a+b=ab=c,有下列结论:①若c≠0,则+=1;②若a=3,则b+c=9;③若a=b=c,则abc=0;④若a、b、c中只有两个数相等,则a+b+c=8.其中正确的是(把所有正确结论的序号都选上).16.(2015•毕节市)关于x的方程x2﹣4x+3=0与=有一个解相同,则a=.17.(2015•黑龙江)关于x的分式方程﹣=0无解,则m=.18.(2015•湖北)分式方程﹣=0的解是.19.(2015•通辽)某市为处理污水,需要铺设一条长为5000m的管道,为了尽量减少施工对交通所造成的影响,实际施工时每天比原计划多铺设20m,结果提前15天完成任务.设原计划每天铺设管道x m,则可得方程.三.解答题(共10小题)20.(2015•宜昌)化简:+.21.(2015•南充)计算:(a+2﹣)•.22.(2015•重庆)计算:(1)y(2x﹣y)+(x+y)2;(2)(y﹣1﹣)÷.23.(2015•枣庄)先化简,再求值:(+2﹣x)÷,其中x满足x2﹣4x+3=0.24.(2015•烟台)先化简:÷(﹣),再从﹣2<x<3的范围内选取一个你最喜欢的值代入,求值.25.(2015•河南)先化简,再求值:÷(﹣),其中a=+1,b=﹣1.26.(2015•黔东南州)先化简,再求值:÷,其中m是方程x2+2x﹣3=0的根.27.(2015•哈尔滨)先化简,再求代数式:(﹣)÷的值,其中x=2+tan60°,y=4sin30°.28.(2015•广元)先化简:(﹣)÷,然后解答下列问题:(1)当x=3时,求原代数式的值;(2)原代数式的值能等于﹣1吗?为什么?29.(2015•安顺)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?参考答案:一.选择题(共10小题)1.(2015•南昌)下列运算正确的是()A.(2a2)3=6a6B.﹣a2b2•3ab3=﹣3a2b5C.•=﹣1 D.+=﹣1考点:分式的乘除法;幂的乘方与积的乘方;单项式乘单项式;分式的加减法.专题:计算题.分析:A、原式利用幂的乘方与积的乘方运算法则计算得到结果,即可做出判断;B、原式利用单项式乘以单项式法则计算得到结果,即可做出判断;C、原式约分得到结果,即可做出判断;D、原式变形后,利用同分母分式的减法法则计算,约分即可得到结果.解答:解:A、原式=8a4,错误;B、原式=﹣3a3b5,错误;C、原式=a﹣1,错误;D、原式===﹣1,正确;故选D.点评:此题考查了分式的乘除法,幂的乘方与积的乘方,单项式乘单项式,以及分式的加减法,熟练掌握运算法则是解本题的关键.2.(2015•山西)化简﹣的结果是()A.B.C.D.考点:分式的加减法.专题:计算题.分析:原式第一项约分后,利用同分母分式的减法法则计算,即可得到结果.解答:解:原式=﹣=﹣==,故选A.点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.3.(2015•台湾)将甲、乙、丙三个正分数化为最简分数后,其分子分别为6、15、10,其分母的最小公倍数为360.判断甲、乙、丙三数的大小关系为何?()A.乙>甲>丙B.乙>丙>甲C.甲>乙>丙D.甲>丙>乙考点:分式的混合运算.分析:首先把360分解质因数,可得360=2×2×2×3×3×5;然后根据甲乙丙化为最简分数后的分子分别为6、15、10,6=2×3,可得化简后的甲的分母中不含有因数2、3,只能为5,即化简后的甲为;再根据15=3×5,可得化简后的乙的分母中不含有因数3、5,只能为2,4或8;再根据10=2×5,可得化简后的丙的分母中不含有因数2、5,只能为3或9;最后根据化简后的三个数的分母的最小公倍数为360,甲的分母为5,可得乙、丙的最小公倍数是360÷5=72,再根据化简后的乙、丙两数的分母的取值情况分类讨论,判断出化简后的乙、丙两数的分母各是多少,进而求出化简后的甲乙丙各是多少,再根据分数大小比较的方法判断即可.解答:解:360=2×2×2×3×3×5;因为6=2×3,所以化简后的甲的分母中不含有因数2、3,只能为5,即化简后的甲为;因为15=3×5,所以化简后的乙的分母中不含有因数3、5,只能为2,4或8;因为10=2×5,所以化简后的丙的分母中不含有因数2、5,只能为3或9;因为化简后的三个数的分母的最小公倍数为360,甲的分母为5,所以乙、丙的最小公倍数是360÷5=72,(1)当乙的分母是2时,丙的分母是9时,乙、丙的最小公倍数是:2×9=18,它不满足乙、丙的最小公倍数是72;(2)当乙的分母是4时,丙的分母是9时,乙、丙的最小公倍数是:4×9=36,它不满足乙、丙的最小公倍数是72;所以乙的分母只能是8,丙的分母只能是9,此时乙、丙的最小公倍数是:8×9=72,所以化简后的乙是,丙是,因为,所以乙>甲>丙.故选:A.点评:(1)此题主要考查了最简分数的特征,以及几个数的最小公倍数的求法,考查了分类讨论思想的应用,要熟练掌握,解答此题的关键是分别求出化简后的甲、乙、丙的分母各是多少,进而求出化简后的甲乙丙各是多少.(2)此题还考查了分数大小比较的方法,要熟练掌握.4.(2015•厦门)2﹣3可以表示为()A. 22÷25B. 25÷22C. 22×25D.(﹣2)×(﹣2)×(﹣2)考点:负整数指数幂;有理数的乘方;同底数幂的乘法;同底数幂的除法.分析:根据负整数指数幂、同底数幂的除法,即可解答.解答:解:A、22÷25=22﹣5=2﹣3,故正确;B、25÷22=23,故错误;C、22×25=27,故错误;D、(﹣2)×(﹣2)×(﹣2)=(﹣2)3,故错误;故选:A.点评:本题考查了负整数指数幂、同底数幂的除法,解决本题的关键是熟记负整数指数幂、同底数幂的除法的法则.5.(2015•枣庄)关于x的分式方程=1的解为正数,则字母a的取值范围为()A.a≥﹣1 B.a>﹣1 C.a≤﹣1 D.a<﹣1考点:分式方程的解.专题:计算题.分析:将分式方程化为整式方程,求得x的值然后根据解为正数,求得a的范围,但还应考虑分母x+1≠0即x≠﹣1.解答:解:分式方程去分母得:2x﹣a=x+1,解得:x=a+1,根据题意得:a+1>0且a+1+1≠0,解得:a>﹣1且a≠﹣2.即字母a的取值范围为a>﹣1.故选:B.点评:本题考查了分式方程的解,本题需注意在任何时候都要考虑分母不为0.6.(2015•齐齐哈尔)关于x的分式方程=有解,则字母a的取值范围是()A.a=5或a=0 B.a≠0C.a≠5D.a≠5且a≠0考点:分式方程的解.分析:先解关于x的分式方程,求得x的值,然后再依据“关于x的分式方程=有解”,即x≠0且x≠2建立不等式即可求a的取值范围.解答:解:=,去分母得:5(x﹣2)=ax,去括号得:5x﹣10=ax,移项,合并同类项得:(5﹣a)x=10,∵关于x的分式方程=有解,∴5﹣a≠0,x≠0且x≠2,即a≠5,系数化为1得:x=,∴≠0且≠2,即a≠5,a≠0,综上所述:关于x的分式方程=有解,则字母a的取值范围是a≠5,a≠0,故选:D.点评:此题考查了求分式方程的解,由于我们的目的是求a的取值范围,根据方程的解列出关于a的不等式.另外,解答本题时,容易漏掉5﹣a≠0,这应引起同学们的足够重视.7.(2015•荆州)若关于x的分式方程=2的解为非负数,则m的取值范围是()A.m>﹣1 B.m≥1C.m>﹣1且m≠1D.m≥﹣1且m≠1考点:分式方程的解.专题:计算题.分析:分式方程去分母转化为整式方程,表示出整式方程的解,根据解为非负数及分式方程分母不为0求出m的范围即可.解答:解:去分母得:m﹣1=2x﹣2,解得:x=,由题意得:≥0且≠1,解得:m≥﹣1且m≠1,故选D点评:此题考查了分式方程的解,需注意在任何时候都要考虑分母不为0.8.(2015•南宁)对于两个不相等的实数a、b,我们规定符号Max{a,b}表示a、b中的较大值,如:Max{2,4}=4,按照这个规定,方程Max{x,﹣x}=的解为()A. 1﹣B. 2﹣C. 1+或1﹣D. 1+或﹣1考点:解分式方程.专题:新定义.分析:根据x与﹣x的大小关系,取x与﹣x中的最大值化简所求方程,求出解即可.解答:解:当x<﹣x,即x<0时,所求方程变形得:﹣x=,去分母得:x2+2x+1=0,即x=﹣1;当x>﹣x,即x>0时,所求方程变形得:x=,即x2﹣2x=1,解得:x=1+或x=1﹣(舍去),经检验x=﹣1与x=1+都为分式方程的解.故选D.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.9.(2015•营口)若关于x的分是方程+=2有增根,则m的值是()A.m=﹣1 B.m=0 C.m=3 D.m=0或m=3考点:分式方程的增根.分析:方程两边都乘以最简公分母(x﹣3),把分式方程化为整式方程,再根据分式方程的增根就是使最简公分母等于0的未知数的值求出x的值,然后代入进行计算即可求出m的值.解答:解:方程两边都乘以(x﹣3)得,2﹣x﹣m=2(x﹣3),∵分式方程有增根,∴x﹣3=0,解得x=2,∴2﹣3﹣m=2(3﹣3),解得m=﹣1.故选A.点评:本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.10.(2015•茂名)张三和李四两人加工同一种零件,每小时张三比李四多加工5个零件,张三加工120个这种零件与李四加工100个这种零件所用时间相等,求张三和李四每小时各加工多少个这种零件?若设张三每小时经过这种零件x个,则下面列出的方程正确的是()A.=B.=C.=D.=考点:由实际问题抽象出分式方程.分析:根据每小时张三比李四多加工5个零件和张三每小时加工这种零件x个,可知李四每小时加工这种零件的个数,根据张三加工120个这种零件与李四加工100个这种零件所用时间相等,列出方程即可.解答:解:设张三每小时加工这种零件x个,则李四每小时加工这种零件(x﹣5)个,由题意得,=,故选B.点评:本题考查的是列分式方程解应用题,根据题意准确找出等量关系是解题的关键.二.填空题(共9小题)11.(2015•上海)如果分式有意义,那么x的取值范围是x≠﹣3.考点:分式有意义的条件.分析:根据分式有意义的条件是分母不为0,列出算式,计算得到答案.解答:解:由题意得,x+3≠0,即x≠﹣3,故答案为:x≠﹣3.点评:本题考查的是分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.12.(2015•常德)使分式的值为0,这时x=1.考点:分式的值为零的条件.专题:计算题.分析:让分子为0,分母不为0列式求值即可.解答:解:由题意得:,解得x=1,故答案为1.点评:考查分式值为0的条件;需考虑两方面的情况:分子为0,分母不为0.13.(2015•梅州)若=+,对任意自然数n都成立,则a=,b﹣;计算:m=+++…+=.考点:分式的加减法.专题:计算题.分析:已知等式右边通分并利用同分母分式的加法法则计算,根据题意确定出a与b 的值即可;原式利用拆项法变形,计算即可确定出m的值.解答:解:=+=,可得2n(a+b)+a﹣b=1,即,解得:a=,b=﹣;m=(1﹣+﹣+…+﹣)=(1﹣)=,故答案为:;﹣;.点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.14.(2015•黄冈)计算÷(1﹣)的结果是.考点:分式的混合运算.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.解答:解:原式=÷=•=,故答案为:.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.15.(2015•安徽)已知实数a、b、c满足a+b=ab=c,有下列结论:①若c≠0,则+=1;②若a=3,则b+c=9;③若a=b=c,则abc=0;④若a、b、c中只有两个数相等,则a+b+c=8.其中正确的是①③④(把所有正确结论的序号都选上).考点:分式的混合运算;解一元一次方程.分析:按照字母满足的条件,逐一分析计算得出答案,进一步比较得出结论即可.解答:解:①∵a+b=ab≠0,∴+=1,此选项正确;X k B 1 . c o m②∵a=3,则3+b=3b,b=,c=,∴b+c=+=6,此选项错误;③∵a=b=c,则2a=a2=a,∴a=0,abc=0,此选项正确;④∵a、b、c中只有两个数相等,不妨a=b,则2a=a2,a=0,或a=2,a=0不合题意,a=2,则b=2,c=4,∴a+b+c=8,此选项正确.其中正确的是①③④.故答案为:①③④.点评:此题考查分式的混合运算,一元一次方程的运用,灵活利用题目中的已知条件,选择正确的方法解决问题.16.(2015•毕节市)关于x的方程x2﹣4x+3=0与=有一个解相同,则a=1.考点:分式方程的解;解一元二次方程-因式分解法.分析:利用因式分解法求得关于x的方程x2﹣4x+3=0的解,然后分别将其代入关于x 的方程=,并求得a的值.解答:解:由关于x的方程x2﹣4x+3=0,得(x﹣1)(x﹣3)=0,∴x﹣1=0,或x﹣3=0,解得x1=1,x2=3;当x1=1时,分式方程=无意义;当x2=3时,=,解得a=1,经检验a=1是原方程的解.故答案为:1.点评:本题考查了一元二次方程的解、分式方程的解.解分式方程时,注意:分式的分母不为零.17.(2015•黑龙江)关于x的分式方程﹣=0无解,则m=0或﹣4.考点:分式方程的解.分析:分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.解答:解:方程去分母得:m﹣(x﹣2)=0,解得:x=2+m,∴当x=2时分母为0,方程无解,即2+m=2,∴m=0时方程无解.当m=﹣2时分母为0,方程无解,即2+m=﹣2,∴m=﹣4时方程无解.综上所述,m的值是0或﹣4.故答案为:0或﹣4.点评:本题考查了分式方程无解的条件,是需要识记的内容.18.(2015•湖北)分式方程﹣=0的解是15.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x﹣5﹣10=0,解得:x=15,经检验x=15是分式方程的解.故答案为:15.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.19.(2015•通辽)某市为处理污水,需要铺设一条长为5000m的管道,为了尽量减少施工对交通所造成的影响,实际施工时每天比原计划多铺设20m,结果提前15天完成任务.设原计划每天铺设管道x m,则可得方程﹣=15.考点:由实际问题抽象出分式方程.分析:设原计划每天铺设管道x m,则实际每天铺设管道(x+20)m,根据题意可得,实际比原计划少用15天完成任务,据此列方程即可.解答:解:设原计划每天铺设管道x m,则实际每天铺设管道(x+20)m,由题意得,﹣=15.故答案为:﹣=15.点评:本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.三.解答题(共10小题)20.(2015•宜昌)化简:+.考点:分式的加减法.分析:首先约分,然后根据同分母分式加减法法则,求出算式+的值是多少即可.解答:解:+====1.点评:此题主要考查了分式的加减法,要熟练掌握,解答此题的关键是要明确:(1)同分母分式加减法法则:同分母的分式相加减,分母不变,把分子相加减.(2)异分母分式加减法法则:把分母不相同的几个分式化成分母相同的分式,叫做通分,经过通分,异分母分式的加减就转化为同分母分式的加减法.21.(2015•南充)计算:(a+2﹣)•.考点:分式的混合运算.分析:首先将括号里面通分运算,进而利用分式的性质化简求出即可.解答:解:(a+2﹣)•=[﹣]×=×=﹣2a﹣6.点评:此题主要考查了分式的混合运算,正确进行通分运算是解题关键.22.(2015•重庆)计算:(1)y(2x﹣y)+(x+y)2;(2)(y﹣1﹣)÷.考点:分式的混合运算;整式的混合运算.专题:计算题.分析:(1)原式利用单项式乘以多项式,以及完全平方公式化简,去括号合并即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.解答:解:(1)原式=2xy﹣y2+x2+2xy+y2=4xy+x2;(2)原式=•=.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.23.(2015•枣庄)先化简,再求值:(+2﹣x)÷,其中x满足x2﹣4x+3=0.考点:分式的化简求值;解一元二次方程-因式分解法.分析:通分相加,因式分解后将除法转化为乘法,再将方程的解代入化简后的分式解答.解答:解:原式=÷=•=﹣,解方程x2﹣4x+3=0得,(x﹣1)(x﹣3)=0,x1=1,x2=3.当x=1时,原式无意义;当x=3时,原式=﹣=﹣.点评:本题综合考查了分式的混合运算及因式分解同时考查了一元二次方程的解法.在代入求值时,要使分式有意义.24.(2015•烟台)先化简:÷(﹣),再从﹣2<x<3的范围内选取一个你最喜欢的值代入,求值.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.解答:解:原式=÷=•=,当x=2时,原式=4.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.25.(2015•河南)先化简,再求值:÷(﹣),其中a=+1,b=﹣1.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a与b的值代入计算即可求出值.解答:解:原式=•=,当a=+1,b=﹣1时,原式=2.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.26.(2015•黔东南州)先化简,再求值:÷,其中m是方程x2+2x﹣3=0的根.考点:分式的化简求值;解一元二次方程-因式分解法.分析:首先根据运算顺序和分式的化简方法,化简÷,然后应用因数分解法解一元二次方程,求出m的值是多少;最后把求出的m的值代入化简后的算式,求出算式÷的值是多少即可.解答:解:÷==∵x2+2x﹣3=0,∴(x+3)(x﹣1)=0,解得x1=﹣3,x2=1,∵m是方程x2+2x﹣3=0的根,∴m1=﹣3,m2=1,∵m+3≠0,∴m≠﹣3,∴m=1,所以原式===点评:(1)此题主要考查了分式的化简求值问题,注意化简时不能跨度太大,而缺少必要的步骤.(2)此题还考查了解一元二次方程﹣因式分解法,要熟练掌握,解答此题的关键是要明确因式分解法解一元二次方程的一般步骤:①移项,使方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解就都是原方程的解.27.(2015•哈尔滨)先化简,再求代数式:(﹣)÷的值,其中x=2+tan60°,y=4sin30°.考点:分式的化简求值;特殊角的三角函数值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x与y的值代入计算即可求出值.解答:解:原式=•=,当x=2+,y=4×=2时,原式=.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.28.(2015•广元)先化简:(﹣)÷,然后解答下列问题:(1)当x=3时,求原代数式的值;(2)原代数式的值能等于﹣1吗?为什么?考点:分式的化简求值.分析:(1)这是个分式除法与减法混合运算题,运算顺序是先做括号内的减法,此时要注意把各分子、分母先因式分解,约分后再做减法运算;做除法时要注意先把除法运算转化为乘法运算,然后约分化为最简形式,再将x=3代入计算即可;(2)如果=1,求出x=0,此时除式=0,原式无意义,从而得出原代数式的值不能等于﹣1.解答:解:(1)(﹣)÷=[﹣]•=(﹣)•=•=.当x=3时,原式==2;(2)如果=1,那么x+1=x﹣1,解得x=0,当x=0时,除式=0,原式无意义,故原代数式的值不能等于﹣1.点评:本题考查了分式的化简求值.解这类题的关键是利用分解因式的方法化简分式,熟练掌握运算顺序与运算法则是解题的关键.29.(2015•安顺)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?考点:分式方程的应用.专题:应用题.分析:设第一批盒装花的进价是x元/盒,则第一批进的数量是:,第二批进的数量是:,再根据等量关系:第二批进的数量=第一批进的数量×2可得方程.解答:解:设第一批盒装花的进价是x元/盒,则2×=,解得x=30经检验,x=30是原方程的根.答:第一批盒装花每盒的进价是30元.点评:本题考查了分式方程的应用.注意,分式方程需要验根,这是易错的地方.。

分式方程经典训练题(含答案解析)

分式方程经典训练题(含答案解析)
∵y≠2,
∴ ,
解得a≠4,
∴a的取值范围为-2<a≤7且a≠4,
又∵y为正整数,
∴a=1,7,
满足条件的整数a的和为1+7=8.
故答案为:8.
【点睛】
此题考查了解分式方程以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.
4.
【分析】
根据题意先解分式方程,求得 的值,再根据一次函数图像不经过第二象限确定 的范围,再根据题意求整数解
10.(1)16;(2)10
【分析】
(1)设每本《中国共产党简史》的价格是 元,则每本《论中国共产党历史》的价格为 元,根据题意列出分式方程求解并检验即可;
(2)首先结合(1)的结论求出4月份《简史》和《历史》的价格与数量,再根据题目对5月份购买数量与价格的描述列出一元二次方程,并利用换元思想求解即可.
(2)先求出第二次购入洗手液和消毒液各多少瓶,再结合题意列出关于a的一元一次方程,解出a即可.
【详解】
(1)设一瓶洗手液的价格为x元,则一瓶消毒液的价格为(x+7)元.
根据题意可列方程: ,
解得: ,经检验 是原方程得解.
故一瓶洗手液的价格为8元,一瓶消毒液的价格为8+7=15元.
(2)第二次购入洗手液 瓶,购入消毒液 瓶.
7.轻轨3号线北延伸段渝北空港广场站的一项挖土工程招标时,接到甲、乙两个工程队的投标书,每施工一天,需付甲工程队工程款2.1万元,付乙工程队工程款1.5万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:
(方案一)甲队单独完成这项工程,刚好按规定工期完成;
(方案二)乙队单独完成这项工程要比规定工期多用5天;
根据题意可列等式: .
解得: .

分式方程50题 参考答案与试题解析

分式方程50题  参考答案与试题解析

分式方程50题参考答案与试题解析一.解答题(共50小题)1.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:(x+1)2﹣4=x2﹣1,整理得:x2+2x+1﹣4=x2﹣1,解得:x=1,经检验x=1是增根,分式方程无解;(2)去分母得:(x﹣2)2=(x+2)2+16,整理得:x2﹣4x+4=x2+4x+4+16,解得:x=﹣2,经检验x=﹣2是增根,分式方程无解.2.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:3(x﹣1)=2x,去括号得:3x﹣3=2x,解得:x=3,经检验x=3是分式方程的解;(2)去分母得:(x﹣2)2﹣x2+4=16,整理得:x2﹣4x+4﹣x2+4=16,解得:x=﹣2,经检验x=﹣2是增根,分式方程无解.3.【分析】(1)方程两边同乘2(4+x),得关于x的一元一次方程,解方程可求解x值,最后验根即可;(2)方程两边同乘x2﹣1,得关于x的一元一次方程,解方程可求解x值,最后验根即可.【解答】解:(1)方程两边同乘2(4+x),得2(3﹣x)=4+x,解得x=,当x=时,2(4+x)≠0,∴x=是原方程的解.(2)方程两边同乘x2﹣1,得x﹣1+2=0解得x=﹣1,当x=﹣1时,x2﹣1=0,∴x=﹣1是方程的增根,∴原方程无解.4.【分析】分式方程整理后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程整理得:﹣=1﹣,方程两边同乘以(x+3)(x﹣3)得:x+3﹣8x=x2﹣9﹣x(x+3),解这个方程得:x=3,经检验,x=3是原方程的增根,所以原方程无解.5.【分析】(1)原式括号中两项通分并利用同分母分式的减法法则计算,约分即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=•=•=;(2)分式方程整理得:=1+,去分母得:x=2x﹣1+2,解得:x=﹣1,检验:当x=﹣1时,2x﹣1≠0,则分式方程的解为x=﹣1.6.【分析】两方式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:3(x+1)=2(x﹣2),去括号得:3x+3=2x﹣4,解得:x=﹣7,经检验x=﹣7是分式方程的解;(2)去分母得:x2+2x+1=x2﹣1+4,解得:x=1,经检验x=1是增根,分式方程无解.7.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2(x+2)=3(3x﹣1),去括号得:2x+4=9x﹣3,移项合并得:﹣7x=﹣7,解得:x=1,经检验x=1是分式方程的解.8.【分析】分式方程整理后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:原方程可化为:﹣=1,去分母,得3x﹣6=x﹣2,解得:x=2,经检验:x=2是原方程的增根,所以原方程无解.9.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x+3=2x,解得:x=3,检验:把x=3代入得:x(x+3)=18≠0,则分式方程的解为x=3.10.【分析】分式方程整理后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:分式方程整理得:+=4,去分母得:x+4+2=4x﹣12,移项合并得:﹣3x=﹣18,解得:x=6,经检验x=6是分式方程的解.11.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:5x+7﹣2(x+5)=x2+4x﹣5,整理得:x2+x﹣2=0,即(x﹣1)(x+2)=0,解得:x=1或x=﹣2,经检验x=1是增根,则分式方程的解为x=﹣2.12.【分析】根据解分式方程的解法步骤求解即可.【解答】解:去分母得,(x+1)(x﹣2)﹣(x+2)(x﹣2)=3(x+2)去括号得,x2﹣x﹣2﹣x2+4=3x+6移项得,x2﹣x﹣x2﹣3x=6+2﹣4合并同类项得,﹣4x=4系数化为1得,x=﹣1经检验,x=﹣1是原方程的解,所以原方程的解为x=﹣1.13.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:最简公分母为(x﹣2)2,去分母得:x(x﹣2)﹣(x﹣2)2=4,整理得:x2﹣2x﹣x2+4x﹣4=4,解得:x=4,检验:把x=4代入得:(x﹣2)2=4≠0,∴分式方程的解为x=4.14.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到m的值,经检验即可得到方程的解.【解答】解:去分母得:5﹣m=m﹣2﹣3,移项合并得:2m=10,解得:m=5,检验:把m=5代入得:m﹣2=5﹣2=3≠0,∴分式方程的解为m=5.15.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:3+x2﹣9=x(x+3),解得:x=﹣2,检验:当x=﹣2时,x2﹣9≠0,∴原方程的解为x=﹣2.16.【分析】方程两边都乘以x﹣1得出3x+2=5,求出方程的解,再进行检验即可.【解答】解:方程两边都乘以x﹣1得:3x+2=5,解得:x=1,检验:当x=1时,x﹣1=0,所以x=1不是原方程的解,即原方程无解.17.【分析】方程两边都乘以x(x﹣1)得出x﹣8+3x=0,求出方程的解,再进行检验即可.【解答】解:方程两边都乘以x(x﹣1)得:x﹣8+3x=0,解得:x=2,检验:当x=2时,x(x﹣1)≠0,所以x=2是原方程的解,即原方程的解是:x=2.18.【分析】(1)方程两边都乘以x(x+1)得出5x+2=3x,求出方程的解,再进行检验即可;(2)方程两边都乘以2(x﹣1)得出2x=3﹣4(x﹣1),求出方程的解,再进行检验即可.【解答】解:(1)方程两边都乘以x(x+1)得:5x+2=3x,解得:x=﹣1,检验:当x=﹣1时,x(x+1)=0,所以x=﹣1是增根,即原方程无解;(2)方程两边都乘以2(x﹣1)得:2x=3﹣4(x﹣1),解得:x=,检验:当x=时,2(x﹣1)≠0,所以x=是原方程的解,即原方程的解是:x=.19.【分析】方程两边都乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:=+1,方程两边都乘(x﹣1)(x+1),得x(x+1)=4+(x﹣1)(x+1),解得x=3,检验:当x=3时,(x﹣1)(x+1)=8≠0.故x=3是原方程的解.20.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)方程两边同乘x(x﹣1)得:9(x﹣1)=8x,解得:x=9,经检验x=9是分式方程的解;(2)方程两边同乘x﹣2得:x﹣1﹣3(x﹣2)=1,解得:x=2,经检验x=2是增根,分式方程无解.21.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程﹣=1,去分母得:x2﹣4x+4﹣3x=x2﹣2x,解得:x=,经检验x=是分式方程的解.22.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)分式方程整理得:﹣=1,去分母得:1﹣2=x﹣2,解得:x=1,经检验x=1是分式方程的解;(2)去分母得:x2+x﹣x2+1=3,解得:x=2,经检验x=2是分式方程的解.23.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)=,去分母得:x﹣3=2x,解得:x=﹣3,经检验x=﹣3是分式方程的解;(2)方程整理得:﹣1=﹣,去分母得:x﹣2x+1=﹣3,解得:x=4,经检验x=4是分式方程的解.24.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:(x+3)(x﹣1)﹣x2+9=2,整理得:x2+2x﹣3﹣x2+9=2,即2x=﹣4,解得:x=﹣2,经检验x=﹣2是分式方程的解.25.【分析】(1)方程组整理后,利用加减消元法求出解即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)方程组整理得:,①×2+②得:11x=22,解得:x=2,把x=2代入①得:y=3,则方程组的解为;(2)去分母得:3x+3﹣4x=x﹣1,解得:x=2,经检验x=2是分式方程的解.26.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)+=0,去分母得:x﹣2+x+3=0,解得:x=﹣,经检验x=﹣是分式方程的解;(2)﹣=1,去分母得:(x+1)2﹣4=x2﹣1,解得:x=1,经检验x=1是增根,分式方程无解.27.【分析】(1)方程组利用加减消元法求出解即可;(2)分式方程整理后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1),①×2+②得:5x=10,解得:x=2,把x=2代入①得:y=1,则方程组的解为;(2)分式方程整理得:﹣2=﹣,去分母得:3x﹣2(x﹣3)=﹣3,去括号得:3x﹣2x+6=﹣3,解得:x=﹣9,经检验x=﹣9是分式方程的解.28.【分析】分式方程整理后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程整理得:+1=﹣,去分母得:2x﹣4+4x﹣2=﹣3,移项合并得:6x=3,解得:x=,经检验x=是增根,分式方程无解.29.【分析】(1)方程组利用加减消元法求出解即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到y的值,经检验即可得到分式方程的解.【解答】解:(1),①+②得:3x=9,解得:x=3,把x=3代入①得:y=0,则方程组的解为;(2)分式方程=+1,去分母得:3=1+y﹣2,解得:y=4,经检验y=4是分式方程的解.30.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1)=,去分母得:3x=2x﹣2,解得:x=﹣2,经检验x=﹣2是分式方程的解;(2)方程组整理得:,①+②得:6y=6,解得:y=1,把y=1代入①得:x=3,则方程组的解为.31.【分析】(1)方程组利用加减消元法求出解即可;(2)分式方程整理后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1),①+②得:4x=12,解得:x=3,把x=3代入②得:y=1,则方程组的解为;(2)分式方程整理得:﹣=1,去分母得:4﹣3=x﹣2,解得:x=3,经检验x=3是分式方程的解.32.【分析】(1)方程组利用加减消元法求出解即可;(2)分式方程整理后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1),②×2﹣①得:7y=7,解得:y=1,把y=1代入②得:x=2,则方程组的解为;(2)分式方程整理得:﹣=﹣5,去分母得:﹣3=x﹣5(x﹣1),去括号得:﹣3=x﹣5x+5,移项合并得:4x=8,解得:x=2.33.【分析】(1)根据加减消元法解方程即可求解;(2)方程两边都乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:(1).②﹣①×2得:7x=﹣14,解得:y=﹣2,把y=﹣2代入①得:x=2.故方程组的解为;(2)+2=,方程两边都乘(x﹣2)得1﹣x+2(x﹣2)=﹣1,解得x=2,检验:当x=2时,x﹣2=0,是增根.故原方程无解.34.【分析】(1)利用加减消元法解方程组;(2)方程两边乘以(x+1)(x﹣1)得到整式方程,然后解整式方程后进行检验确定原方程的解.【解答】解:(1),②﹣①得4x=28,解得x=7,把x=7代入①得7﹣3y=﹣8,解得y=5,所以方程组的解为;(2)去分母得﹣2=2(x﹣1)﹣(x+1),解得x=1,经检验:原方程的解为x=1.35.【分析】(1)方程两边都乘最简公分母,可以把分式方程转化为整式方程求解;(2)根据加减消元法解方程即可求解.【解答】解:(1)=1+,方程两边都乘(x﹣2)得x=x﹣2+x+1,解得x=1,检验:当x=1时,x﹣2≠0.故x=1是原方程的解;(2),①+②×5得:17x=17,解得:x=1,把x=1代入②得:y=﹣5.故方程组的解为.36.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程+1=,去分母得:2+1+x=4x,解得:x=1,经检验x=1是分式方程的解.37.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:分式方程整理得:﹣1=,去分母得:(x﹣2)2﹣(x2﹣4)=12,整理得:x2﹣4x+4﹣x2+4=12,移项合并得:﹣4x=4,解得:x=﹣1,检验:把x=﹣1代入得:(x+2)(x﹣2)≠0,∴分式方程的解为x=﹣1.38.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:分式方程整理得:﹣=1,去分母得:(x+2)2﹣20=x2﹣4,整理得:x2+4x+4﹣20=x2﹣4,移项合并得:4x=12,解得:x=3,检验:把x=3代入得:(x+2)(x﹣2)≠0,则分式方程的解为x=3.39.【分析】(1)方程组利用加减消元法求出解即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1),①+②得:6x=18,解得:x=3,①﹣②得:4y=8,解得:y=2,则方程组的解为;(2)分式方程整理得:﹣2=,去分母得:x﹣2(x﹣3)=3,去括号得:x﹣2x+6=3,移项合并得:﹣x=﹣3,解得:x=3,检验:把x=3代入得:x﹣3=0,∴x=3是增根,则分式方程无解.40.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程整理得:﹣=1,去分母得:x﹣2﹣4x+8=x2﹣4,即x2+3x﹣10=0,分解因式得:(x﹣2)(x+5)=0,解得:x=2或x=﹣5,经检验x=2是增根,则分式方程的解为x=﹣5.41.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x+1=4(x﹣2),解得:x=3,检验:把x=3代入得:(x﹣2)(x+1)≠0,∴x=3是原方程的解.42.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:4﹣(x+2)=0,解得:x=2,经检验x=2是增根,分式方程无解.43.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3﹣2(x+3)=x﹣3,去括号得:3﹣2x﹣6=x﹣3,移项合并得:﹣3x=0,解得:x=0,经检验x=0是分式方程的解.44.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:3x﹣6﹣2x=0,解得:x=6,经检验x=6是分式方程的解;(2)去分母得:x2+2x+1﹣4=x2﹣1,解得:x=1,经检验x=1是增根,分式方程无解.45.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程两边同时乘以(x+3)(x﹣3)得(x﹣3)+2(x+3)=12,去括号得:x﹣3+2x+6=12,移项得:x+2x=12+3﹣6,合并得:3x=9,解得:x=3,检验:把x=3代入(x+3)(x﹣3)=0,∴x=3是增根,原方程无解.46.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x2+4x+4﹣3x2=2x2+4x,整理得:4x2=4,即x2=1,解得:x=1或x=﹣1,经检验x=1和x=﹣1都为分式方程的解.47.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:2x=3x﹣6,解得:x=6,经检验x=6是分式方程的解;(2)去分母得:x2+2x+1﹣4=x2﹣x,解得:x=1,经检验x=1是增根,则原方程无解.48.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:2=2x﹣1﹣3,解得:x=3,经检验x=3是分式方程的解;(2)去分母得:x﹣3﹣2=1,解得:x=6,经检验x=6是分式方程的解.49.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)方程两边同乘(3+x)(3﹣x),得9(3﹣x)=6(3+x),解这个方程,得x=,检验:当x=时,(3+x)(3﹣x)≠0,则x=是原方程的解;(2)方程两边同乘(x+1)(x﹣1),得4+x2﹣1=(x﹣1)2,解这个方程,得x=﹣1,检验:当x=﹣1时,(x+1)(x﹣1)=0,x=﹣1是增根,则原方程无解.50.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:x+3=5x,解得:x=,经检验x=是分式方程的根;(2)去分母得:3﹣x+1=x﹣4,解得:x=4,经检验x=4是增根,方程无解.。

分式及分式方程综合练习及答案

分式及分式方程综合练习及答案

那么每套售价至少是多少元?(利润率
利润 100% )
成本
26.某工程,甲工程队单独做 40 天完成,若乙工程队单独做 30 天后,甲、乙两 工程队再合作 20 天完成. (1)求乙工程队单独做需要多少天完成?
(2)将工程分两部分, 甲做其中一部分用了 x 天,乙做另一部分用了 y 天, 其中 x、y 均为正整数,且 x<15, y<70,求 x、y. .
精品资料
欢迎下载
分式及分式方程综合练习
一、选择题:
x2 2x 3
1.分式
的值为 0,则 x 的值为
x1
()
A. x=-3 B. x=1 C. x=-3
或 x=3 D. x=-3 或 x=1
2.若关于 x 的方程 x 2 m 有增根,则 m的值与增根 x 的值分别是( ) x2 x2
A.m=-4,x=2 B. m=4,x=2 C. m=-4,x=-2 D. m=4,x=-2
5
x5
x5
1 x2
14 25
∴原式 =
1
1 25
x2
1
1 x2
14 1
25
11
20 、 x2-4x+1=0
1
∴ x+ =4
x
∴ x2+
1 x2
(x
1 )2 - 2 x
14
∴原式
= x2+
1 x2
-2 =14-2 =12
1
b
bc
1 b bc
21 、原式 =
1
b 1 bc bc b 1 1 bc b 1 b bc
,则

2 3 4 3x 2 y z
8.已知 x - 1 x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式及分式方程精典练习题
一、填空题:
⒈当x 时,分式1223+-x x 有意义;当x 时,分式x
x --112的值等于零. ⒉分式ab c 32、bc a 3、ac
b 25的最简公分母是 ; ⒊化简:2
42--x x = . ⒋当x 、y 满足关系式________时,
)(2)(5y x x y --=-25 ⒌化简=-+-a
b b b a a . ⒍分式方程3
13-=+-x m x x 有增根,则m = . ⒎若121-x 与)4(3
1+x 互为倒数,则x= . ⒏某单位全体员工在植树节义务植树240棵.原计划每小时植树口棵。

实际每小时植树的棵数是原计划的1.2倍,那么实际比原计划提前了 小时完成任务
9、已知关于x 的方程32
2=-+x m x 的解是正数,则m 的取值范围为_____________. 二、选择题:
⒈下列约分正确的是( )
A 、326x x x =
B 、0=++y x y x
C 、x xy x y x 12=++
D 、2
14222=y x xy ⒉用换元法解分式方程13101x x x x --+=-时,如果设1x y x
-=,将原方程化为关于y 的整式方程,那么这个整式方程是( )
A .230y y +-=
B .2310y y -+=
C .2310y y -+=
D .2310y y --= ⒊下列分式中,计算正确的是( )
A 、3
2)(3)(2+=+++a c b a c b B 、b a b a b a +=++122 C 、1)()(22-=+-b a b a D 、x
y y x xy y x -=---1222 ⒋下列各式中,从左到右的变形正确的是( )
A 、y x y x y x y x ---=--+-
B 、y
x y x y x y x +-=--+-
C 、
y
x y x y x y x -+=--+- D 、y x y x y x y x +--=--+- 5.已知2111=-b a ,则b
a a
b -的值是( ) A.21 B.-21 C.2 D.-2 6.设m >n >0,m 2+n 2
=4mn ,则22m n mn -的值等于( )
A.
B.
C. D. 3 三、计算:
(2)|1|2004125.02)21(032-++⨯---
四、解分式方程:
()323331592a a a a ++-++-()1291932x x
-++()422x y x x y
+--()(用两种方法)52242()x x x x x x --+÷-()11244222x x x x +--=-()
22332726
x x ++=+
五、先化简再求值:
1、
()x x x x x x x x x x -+⋅+++÷--=-11442412222,其中。

2、221211, 2.1
11x x x x x x x ⎛⎫-+-+÷= ⎪+-+⎝⎭其中
3、⎝ ⎛⎭
⎪⎫1+ 1 x -2÷ x 2-2x +1 x 2-4,其中x =-5.
4、(x -1x -x -2x +1)÷2x 2-x x 2+2x +1
,其中x 满足x 2-x -1=0.
5、先化简22()5525x x x x x x -÷---,然后从不等组23212x x --⎧⎨⎩
≤的解集中,选取一个你认为符合题意....
的x 的值代入求值.
31、 (2009年四川省内江市)某服装厂为学校艺术团生产一批演出服,总成本3200元,售价每套40元,服装厂向25名家庭贫困学生免费提供。

经核算,这25套演出服的成本正好是原定生产这批演出服的利润。

问这批演出服生产了多少套?
32、(2009年长春)某工程队承接了3000米的修路任务,在修好600米后,引进了新设备,工作效率是原来的2倍,一共用30天完成了任务,求引进新设备前平均每天修路多少米?
33、(2009年锦州)根据规划设计,某市工程队准备在开发区修建一条长300米的盲道.铺设了60米后,由于采用新的施工方式,实际每天修建盲道的长度比原计划增加10米,结果共用了8天完成任务,该工程队改进技术后每天铺设盲道多少米?
34、(2009年桂林市)在我市某一城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天;若由甲队先做20天,剩下的工程由甲、乙合做24天可完成.
(1)乙队单独完成这项工程需要多少天?
(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱?还是由甲乙两队全程合作完成该工程省钱?
35、(2009年齐齐哈尔市)某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.
(1)今年三月份甲种电脑每台售价多少元?
(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?
(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少?此时,哪种方案对公司更有利?
36、(2009年哈尔滨)跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售.若每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同.
(1)求每个甲种零件、每个乙种零件的进价分别为多少元?
(2)若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价-进价)超过371元,通过计算求出跃壮五金商店本次从宁云机械厂购进甲、乙两种零件有几种方案?请你设计出来.
37、(2009年广西梧州)由甲、乙两个工程队承包某校校园绿化工程,甲、乙两队单独完成这项工程所需时间比是3︰2,两队合做6天可以完成.
(1)求两队单独完成此项工程各需多少天?
(2)此项工程由甲、乙两队合做6天完成任务后,学校付给他们20000元报酬,若
按各自完成的工程量分配这笔钱,问甲、乙两队各得到多少元?
38、某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.
(1)今年三月份甲种电脑每台售价多少元?
(2)为了增加收入,电脑公司决定再经销乙种型号电脑.已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?
(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少?此时,哪种方案对公司更有利?
39、(2009厦门)22.供电局的电力维修工甲、乙两人要到45千米远的A地进行电力抢修.甲骑摩托车先行,t(t≥0)小时后,乙开抢修车载着所需材料出发.
(1)若t=3
8
(小时),抢修车的速度是摩托车速度的1.5倍,且甲、乙两人同时到
达,求摩托车的速度;
(2)若摩托车的速度是45千米/时,抢修车的速度是60千米/时,且乙不能比甲晚
到,则t的最大值是多少?
40、(2009辽宁朝阳)海峡两岸实现“三通”后,某水果销售公司从台湾采购苹果的成本大幅下降.请你根据两位经理的对话,计算出该公司在实现“三通”前到台湾采购苹果的成本价格.。

相关文档
最新文档