解分式方程试题(中考经典计算)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解分式方程试题(中考经典计算)

————————————————————————————————作者:————————————————————————————————日期:

2

[键入文字]

一.解答题(共30小题)

1.(2011•自贡)解方程:.

2.(2011•孝感)解关于的方程:.3.(2011•咸宁)解方程.4.(2011•乌鲁木齐)解方程:=+1.5.(2011•威海)解方程:.6.(2011•潼南县)解分式方程:.7.(2011•台州)解方程:.

8.(2011•随州)解方程:.

9.(2011•陕西)解分式方程:.10.(2011•綦江县)解方程:.

11.(2011•攀枝花)解方程:.12.(2011•宁夏)解方程:.13.(2011•茂名)解分式方程:.

14.(2011•昆明)解方程:.

15.(2011•菏泽)(1)解方程:

(2)解不等式组.

16.(2011•大连)解方程:.

17.(2011•常州)①解分式方程;

②解不等式组.

18.(2011•巴中)解方程:.

19.(2011•巴彦淖尔)(1)计算:|﹣2|+(+1)0﹣()﹣1+tan60°;(2)解分式方程:=+1.

20.(2010•遵义)解方程:

21.(2010•重庆)解方程:+=1

22.(2010•孝感)解方程:.

23.(2010•西宁)解分式方程:

24.(2010•恩施州)解方程:

25.(2009•乌鲁木齐)解方程:

26.(2009•聊城)解方程:+=1

27.(2009•南昌)解方程:

28.(2009•南平)解方程:

29.(2008•昆明)解方程:

30.(2007•孝感)解分式方程:.

答案与评分标准

一.解答题(共30小题)

1.(2011•自贡)解方程:.

考点:解分式方程。

专题:计算题。

分析:方程两边都乘以最简公分母y(y﹣1),得到关于y的一元一方程,然后求出方程的解,再把y的值代入最简公分母进行检验.

解答:解:方程两边都乘以y(y﹣1),得

2y2+y(y﹣1)=(y﹣1)(3y﹣1),

2y2+y2﹣y=3y2﹣4y+1,

3y=1,

解得y=,

检验:当y=时,y(y﹣1)=×(﹣1)=﹣≠0,

∴y=是原方程的解,

∴原方程的解为y=.

点评:本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.

2.(2011•孝感)解关于的方程:.

考点:解分式方程。

专题:计算题。

分析:观察可得最简公分母是(x+3)(x﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.

解答:解:方程的两边同乘(x+3)(x﹣1),得

x(x﹣1)=(x+3)(x﹣1)+2(x+3),

整理,得5x+3=0,

解得x=﹣.

检验:把x=﹣代入(x+3)(x﹣1)≠0.

∴原方程的解为:x=﹣.

点评:本题考查了解分式方程.(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.

3.(2011•咸宁)解方程.

考点:解分式方程。

专题:方程思想。

分析:观察可得最简公分母是(x+1)(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.

解答:解:两边同时乘以(x+1)(x﹣2),

得x(x﹣2)﹣(x+1)(x﹣2)=3.(3分)

解这个方程,得x=﹣1.(7分)

检验:x=﹣1时(x+1)(x﹣2)=0,x=﹣1不是原分式方程的解,

∴原分式方程无解.(8分)

点评:考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.

(2)解分式方程一定注意要验根.

4.(2011•乌鲁木齐)解方程:=+1.

考点:解分式方程。

专题:计算题。

分析:观察可得最简公分母是2(x﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.

解答:解:原方程两边同乘2(x﹣1),得2=3+2(x﹣1),

解得x=,

检验:当x=时,2(x﹣1)≠0,

∴原方程的解为:x=.

点评:本题主要考查了解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,解分式方程一定注意要验根,难度适中.

5.(2011•威海)解方程:.

考点:解分式方程。

专题:计算题。

分析:观察可得最简公分母是(x﹣1)(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.

解答:解:方程的两边同乘(x﹣1)(x+1),得

3x+3﹣x﹣3=0,

解得x=0.

检验:把x=0代入(x﹣1)(x+1)=﹣1≠0.

∴原方程的解为:x=0.

点评:本题考查了分式方程和不等式组的解法,注:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.

(2)解分式方程一定注意要验根.(3)不等式组的解集的四种解法:大大取大,小小取小,大小小大中间找,大大小小找不到.

6.(2011•潼南县)解分式方程:.

考点:解分式方程。

分析:观察可得最简公分母是(x+1)(x﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.

解答:解:方程两边同乘(x+1)(x﹣1),

得x(x﹣1)﹣(x+1)=(x+1)(x﹣1)(2分)

化简,得﹣2x﹣1=﹣1(4分)

解得x=0(5分)

检验:当x=0时(x+1)(x﹣1)≠0,

∴x=0是原分式方程的解.(6分)

点评:本题考查了分式方程的解法,注:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.

相关文档
最新文档