辽宁省辽阳市2021届新高考物理第三次押题试卷含解析
辽宁省辽阳市2021届新高考第三次质量检测物理试题含解析
辽宁省辽阳市2021届新高考第三次质量检测物理试题一、单项选择题:本题共6小题,每小题5分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的1.如图所示,将硬导线中间一段折成不封闭的正方形,每边长为l,它在磁感应强度为B、方向如图所示的匀强磁场中匀速转动,转速为n,导线在a、b两处通过电刷与外电路连接,外电路有额定功率为P的小灯泡并正常发光,电路中除灯泡外,其余部分的电阻不计,灯泡的电阻应为()A.B.C.D.【答案】B【解析】单匝正方形线圈绕垂直于磁场方向的轴匀速转动,将产生正弦式电流,则电动势的最大值E m=Bl2ω=2πnBl2,其有效值E==,计算小灯泡的额定功率P要用其有效值,即P=.R==,故只有B选项正确.2.马路施工处警示灯是红色的,除了因为红色光容易引起视觉注意以外,还因为红色光比其它可见光传播范围更广,这是由于红色光()A.更容易发生衍射B.光子的能量大C.更容易发生干涉D.更容易发生光电效应【答案】A【解析】【详解】A.红色光的波长较长,而频率较小,所以比其他可见光更容易发生衍射,A正确.知红光比其他可见光的光子能量更小,B错误.B.由εhνC.发生干涉的条件是两束光同频、同向、同相位,与光的颜色无关,故C错误.D.发生光电效应的条件是入射光的频率大于金属的极限频率,红色光的频率小,不容易发生光电效应,故D错误.故选A.【点睛】本题是物理知识在生活中的应用,考查了光的波长、频率和衍射、光电效应的关系.要知道红色光在可见光中的频率最小,波长最长.3.如图所示,足够长的水平传送带以速度v 逆时针转动,一质量为1kg 的物体以02m /s v =的速度水平向右滑上传送带,经一定的时间后,物体返回到出发点。
已知物体与带之间的动摩擦因数0.2μ=,重力加速度g=10m/s 2。
则在该过程中摩擦力对物体做的功为( )A .0B .2.5JC .6.5JD .12J【答案】A【解析】【详解】 由题意可知,物体在传送带上做匀变速运动,物体先向右做减速运动,速度为零时再向左做加速运动,回到出发点时速度大小12m /s v =,根据动能定理可知摩擦力做功为零,故A 正确,BCD 错误。
2021届高考物理三轮冲刺专练:带电粒子在复合场中的运动 (解析版)
带电粒子在复合场中的运动【原卷】1.如图,足够长的水平虚线MN上方有一匀强电场,方向竖直向下(与纸面平行);下方有一匀强磁场,方向垂直纸面向里.一个带电粒子从电场中的A点以水平初速度v0向右运动,第一次穿过MN时的位置记为P点,第二次穿过MN时的位置记为Q点,P、Q两点间的距离记为d,从P点运动到Q点的时间记为t.不计粒子的重力,若增大v0,则()A.t不变,d不变B.t不变,d变小C.t变小,d变小D.t变小,d不变2.如图所示,在水平线ab的下方有一匀强电场,电场强度为E,方向竖直向下;ab的上方存在匀强磁场,磁感应强度为B、方向垂直纸面向里.磁场中有一内、外半径分别为R、√3R的半圆环形区域,外圆与ab的交点分别为M、N.一质量为m、电荷量为q的带负电粒子在电场中P点静止释放,由M进入磁场,从N射出.不计粒子重力.(1)求粒子从P到M所用的时间t;(2)若粒子从与P在同一水平线上的Q点水平射出,同样能由M进入磁场,从N射出.粒子从M到N的过程中,始终在环形区域中运动,且所用的时间最少,求粒子在Q时速度v0的大小.3.平面直角坐标系xOy中,第Ⅰ象限存在垂直于平面向里的匀强磁场,第Ⅰ象限存在沿y轴负方向的匀强电场,如图所示.一带负电的粒子从电场中的Q点以速度v0沿x轴正方向开始运动,Q点到y 轴的距离为到x轴距离的2倍.粒子从坐标原点O离开电场进入磁场,最终从x轴上的P点射出磁场,P点到y轴距离与Q点到y轴距离相等.不计粒子重力,问:(1)粒子到达O点时速度的大小和方向;(2)电场强度和磁感应强度的大小之比.4.如图所示,与水平面成37°的固定倾斜轨道AC,其延长线在D点与固定半圆轨道DF相切,全部轨道为绝缘材料制成且位于竖直面内,整个空间存在水平向左的匀强电场,MN的右侧存在垂直纸面向里的匀强磁场(C点处于MN边界上).一质量为0.4 kg的带电小m/s,接着沿直线CD运球沿轨道AC下滑,至C点时速度为v C=1007动到D处进入半圆轨道,进入时无动能损失,且恰好能通过F点,在F点的速度为v F=4 m/s(不计空气阻力,g=10 m/s2,cos 37°=0.8).求:(1)小球带何种电荷;(2)小球在半圆轨道部分克服摩擦力所做的功;(3)小球从F点飞出时磁场同时消失,小球离开F点后的运动轨迹与直线AC(或延长线)的交点为G点(未标出),求G点到D点的距离.5.如图所示,水平地面上方、MN边界右侧存在垂直纸面向外的匀强磁场和竖直方向的匀强电场(图中未标出),磁感应强度B=1.0 T.在边界MN离地面高h=3 m处的A点有一个质量m=1×10-3 kg、电量q=1×10-3C的带正电的小球(可视为质点)以速度v0水平进入右侧的匀强磁场和匀强电场的叠加区域,小球进入右侧区域后恰能做匀速圆周运动.g取10 m/s2.求:(1)电场强度的大小和方向;(2)若0<v0≤3 m/s,求小球在磁场中运动的最短时间t1;(3)若0<v0≤3 m/s,求小球落在水平面上的范围.6.如图所示,在竖直平面内建立直角坐标系xOy,其第一象限存在着正交的匀强电场和匀强磁场,电场强度的方向水平向右,磁感应强度的方向垂直纸面向里.一带电荷量为+q、质量为m的微粒从原点出发进入复合场中,初速度方向与x轴正方向的夹角为45°,且正好做直线运动,当微粒运动到A(l,l)时,电场方向突然变为竖直向上(不计电场变化的时间),微粒继续运动一段时间后,正好垂直于y轴穿出复合场.不计一切阻力,求:(1)电场强度E的大小;(2)磁感应强度B的大小;(3)微粒在复合场中的运动时间.7.如图所示,两平行金属板A、B间的电势差为U=5×104 V.在B板的右侧有两个方向不同但宽度相同的有界磁场Ⅰ、Ⅰ,它们的宽度为d1=d2=6.25 m,磁感应强度分别为B1=2.0 T、B2=4.0 T,方向如图中所示.现有一质量m=1.0×10-8 kg、电荷量q=1.6×10-6 C、重力忽略不计的粒子从A板的O点由静止释放,经过加速后恰好从B板的小孔Q处飞出.试求:(1)带电粒子从加速电场中出来时的速度v的大小;(2)带电粒子穿过磁场区域Ⅰ所用的时间t;(3)带电粒子从磁场区域Ⅰ射出时的速度方向与边界面的夹角;(4)若d1的宽度不变,改变d2的宽度,要使粒子不能从Ⅰ区右边界飞出磁场,则d2的宽度至少为多大?8.如图所示,三块挡板围成截面边长L=1.2 m的等边三角形区域,C、P、Q分别是MN、AM和AN中点处的小孔,三个小孔处于同一竖直面内,MN水平,MN上方是竖直向下的匀强电场,场强E=4×10-4N/C.三角形区域内有垂直纸面向里的匀强磁场,磁感应强度为B1;AMN以外区域有垂直纸面向外,磁感应强度大小为B2=3B1的=108C/kg的帯正电的粒子,从O点由静止匀强磁场.现将一比荷qm释放,粒子从MN小孔C进入内部匀强磁场,经内部磁场偏转后直接垂直AN经过Q点进入外部磁场.已知粒子最终回到了O点,OC 相距 2 m.设粒子与挡板碰撞过程中没有动能损失,且电荷量不变,不计粒子重力,不计挡板厚度,取π=3.求:(1)磁感应强度B1的大小;(2)粒子从O点出发,到再次回到O点经历的时间;(3)若仅改变B2的大小,当B2满足什么条件时,粒子可以垂直于MA 经孔P回到O点(若粒子经过A点时立即被吸收).9.一足够长的条状区域内存在匀强电场和匀强磁场,其在xOy平面内的截面如图所示;中间是磁场区域,其边界与y轴垂直,宽度为l,磁感应强度的大小为B,方向垂直于xOy平面;磁场的上、下两侧为电场区域,宽度均为l',电场强度的大小均为E,方向均沿x轴正方向;M、N为条状区域边界上的两点,它们的连线与y轴平行.一带正电的粒子以某一速度从M点沿y轴正方向射入电场,经过一段时间后恰好以从M点入射的速度从N点沿y轴正方向射出.不计重力.(1)定性画出该粒子在电磁场中运动的轨迹;(2)求该粒子从M点入射时速度的大小;(3)若该粒子进入磁场时的速度方向恰好与x轴正方向的夹角为π,6求该粒子的比荷及其从M点运动到N点的时间.10.如图甲所示,相隔一定距离的竖直边界两侧为相同的匀强磁场区,磁场方向垂直纸面向里,在边界上固定两个长为L的平行金属极板MN和PQ,两极板中心各有一小孔S1、S2,两极板间电压的变化规律如图乙所示,正、反向电压的大小均为U0,周期为T0.在t=0时刻将一个质量为m、电荷量为-q(q>0)的粒子由S1静止释放,粒时刻通过S2垂直于边界进入子在电场力的作用下向右运动,在t=T02右侧磁场区.(不计粒子重力,不考虑极板外的电场)甲乙(1)求粒子到达S2时的速度大小v和极板间距d;(2)为使粒子不与极板相撞,求磁感应强度的大小应满足的条件;(3)若已保证了粒子未与极板相撞,为使粒子在t=3T0时刻再次到达S2,且速度恰好为零,求该过程中粒子在磁场内运动的时间和磁感应强度的大小.11.(2020·河南平顶山模拟)如图所示,平面直角坐标系xOy的第二、三象限内有方向沿y轴正向的匀强电场;第一、四象限内有圆形有L,磁场的方向垂直于坐标平面向里,界磁场,有界磁场的半径为√22磁场边界与y轴相切于O点.在x轴上坐标为(-L,0)的P点沿与x 轴正向成θ=45°方向射出一个速度大小为v0的带电粒子,粒子的质量为m、电荷量为q;粒子经电场偏转后垂直y轴射出电场,进入磁场后经磁场偏转以沿y轴负方向的速度射出磁场,不计粒子的重力.求:(1)粒子从y轴上射出电场的位置坐标;(2)匀强电场的电场强度大小及匀强磁场的磁感应强度大小;(3)粒子从P点射出到射出磁场的运动时间.12.(2020山东潍坊一模)如图所示为竖直平面内的直角坐标系xOy,x轴水平且上方有竖直向下的匀强电场,场强大小为E;在x轴下方有一圆形有界匀强磁场,与x轴相切于坐标原点,半径为R.已知质量为m、电量为q的粒子,在y轴上的(0,R)点无初速度释放,R,-R)点,粒子重力不计,求:粒子恰好经过磁场中(√33(1)磁场的磁感强度B;(2)若将该粒子的释放位置沿y=R直线向左移动一段距离L,将粒子无初速度释放,当L为多大时粒子在磁场中运动的时间最长,最长时间多大?带电粒子在复合场中的运动1.如图,足够长的水平虚线MN上方有一匀强电场,方向竖直向下(与纸面平行);下方有一匀强磁场,方向垂直纸面向里.一个带电粒子从电场中的A点以水平初速度v0向右运动,第一次穿过MN时的位置记为P 点,第二次穿过MN 时的位置记为Q 点,P 、Q 两点间的距离记为d ,从P 点运动到Q 点的时间记为t.不计粒子的重力,若增大v 0,则 ( )A .t 不变,d 不变B .t 不变,d 变小C .t 变小,d 变小D .t 变小,d 不变【答案】 D【解析】 粒子在电场中做类平抛运动,设第一次到达P 点时竖直速度为v 1(大小不变),则粒子进入磁场的速度大小为v=√v 02+v 12,速度方向与MN 的夹角θ的正切值为tan θ=v1v 0;粒子进入磁场后做匀速圆周运动,半径R=mv qB ;第二次经过MN 上的Q 点时,由几何关系可得:d=2R sin θ,又sin θ=√2=1√v 02+v 12,联立解得:d=2mv 1qB ,即当增大v 0时d 不变;运动的时间t=θ2π·2πm qB =θmqB ,则当增大v 0时,tan θ减小,θ减小,t 减小,故D 正确.2.如图所示,在水平线ab 的下方有一匀强电场,电场强度为E ,方向竖直向下;ab的上方存在匀强磁场,磁感应强度为B、方向垂直纸面向里.磁场中有一内、外半径分别为R、√3R的半圆环形区域,外圆与ab的交点分别为M、N.一质量为m、电荷量为q的带负电粒子在电场中P点静止释放,由M进入磁场,从N射出.不计粒子重力.(1)求粒子从P到M所用的时间t;(2)若粒子从与P在同一水平线上的Q点水平射出,同样能由M进入磁场,从N射出.粒子从M到N的过程中,始终在环形区域中运动,且所用的时间最少,求粒子在Q时速度v0的大小.【答案】(1)√3BRE (2)qBRm【解析】(1)设粒子第一次在磁场中运动的速度为v,粒子在磁场中受到的洛伦兹力提供向心力,即:qvB=2√3R解得:v=√3qBRm粒子在电场中受到的电场力为qE,设运动的时间为t,则:qEt=mv-0联立可得:t=√3BRE(2)粒子在磁场中做匀速圆周运动的过程中,其周期T=2πmqB,可知粒子在磁场中运动的周期与其速度、半径都无关;根据t0T =θ2π,可知粒子在磁场中运动的时间由轨迹的圆弧对应的圆心角有关,圆心角越小,则时间越短;所以当轨迹与内圆相切时,所用的时间最短,设粒子此时的半径为r,如图所示.由几何关系可得:(r-R)2+(√3R)2=r2设粒子进入磁场时速度的方向与ab的夹角为θ,则圆弧所对的圆心角为2θ,由几何关系可得:tan θ=√3Rr-R粒子从Q点抛出后做类平抛运动,在电场方向上的分运动与从P 释放后的情况相同,所以粒子进入磁场时,沿竖直方向的分速度同样也为v,在垂直于电场方向的分速度始终为v0,则:tan θ=vv0联立可得:v0=qBRm.3.平面直角坐标系xOy中,第Ⅰ象限存在垂直于平面向里的匀强磁场,第Ⅰ象限存在沿y轴负方向的匀强电场,如图所示.一带负电的粒子从电场中的Q点以速度v0沿x轴正方向开始运动,Q点到y 轴的距离为到x轴距离的2倍.粒子从坐标原点O离开电场进入磁场,最终从x轴上的P点射出磁场,P点到y轴距离与Q点到y轴距离相等.不计粒子重力,问:(1)粒子到达O点时速度的大小和方向;(2)电场强度和磁感应强度的大小之比.【答案】(1)√2v0,方向与x轴正方向成45°角斜向上(2)v02【解析】(1)在电场中,粒子做类平抛运动,设Q点到x轴的距离为L,到y轴的距离为2L,粒子的加速度为a,运动时间为t,有at22L=v0t,L=12设粒子到达O点时沿y轴方向的分速度为v y,有v y=at设粒子到达O点时速度方向与x轴正方向夹角为α,有tan α=v yv0联立可得α=45°即粒子到达O点时速度方向与x轴正方向成45°角斜向上.设粒子到达O点时速度大小为v,由平行四边形定则有v=√v02+v y2联立可得v=√2v0.(2)设电场强度的大小为E,粒子电荷量为q,质量为m,粒子在电场中受到的电场力为F,由牛顿第二定律可得F=ma又F=qE由于v y2=2aL解得E=mv022qL设磁场的磁感应强度大小为B,粒子在磁场中做匀速圆周运动的半径为R,所受的洛伦兹力提供向心力,有qvB=m v 2R 由几何关系可知R=√2L联立可得EB =v0 2.4.如图所示,与水平面成37°的固定倾斜轨道AC,其延长线在D点与固定半圆轨道DF相切,全部轨道为绝缘材料制成且位于竖直面内,整个空间存在水平向左的匀强电场,MN的右侧存在垂直纸面向里的匀强磁场(C点处于MN边界上).一质量为0.4 kg的带电小球沿轨道AC下滑,至C点时速度为v C=1007m/s,接着沿直线CD运动到D处进入半圆轨道,进入时无动能损失,且恰好能通过F点,在F点的速度为v F=4 m/s(不计空气阻力,g=10 m/s2,cos 37°=0.8).求:(1)小球带何种电荷;(2)小球在半圆轨道部分克服摩擦力所做的功;(3)小球从F 点飞出时磁场同时消失,小球离开F 点后的运动轨迹与直线AC (或延长线)的交点为G 点(未标出),求G 点到D 点的距离.【答案】 (1)正电荷 (2)27.6 J (3)2.26 m【解析】 (1)依题意可知小球在CD 间做匀速直线运动,在CD 段受重力、电场力、洛伦兹力且合力为零.若小球带负电,小球受到的合力不为零,因此带电小球应带正电荷. (2)小球在D 点时的速度为v D =v C =1007m/s设重力与电场力的合力为F 1,如图所示,则:F 1=F 洛=qv C B 又F 1=mg cos37°=5 N解得:qB=F1v C =720C·T在F 处由牛顿第二定律可得:qv F B+F 1=mv F 2R把qB=720 C·T 代入得R=1 m设小球在DF 段克服摩擦力做功W f ,从D 到F 的过程由动能定理可得:-W f -2F 1R=12m v F 2-12m v D 2解得:W f≈27.6 J.(3)小球离开F点后做类平抛运动,其加速度为a=F1m由2R=at 22解得:t=√4mRF1=2√25s交点G与D点的距离GD=v F t=8√25m≈2.26 m.5.如图所示,水平地面上方、MN边界右侧存在垂直纸面向外的匀强磁场和竖直方向的匀强电场(图中未标出),磁感应强度B=1.0 T.在边界MN离地面高h=3 m处的A点有一个质量m=1×10-3 kg、电量q=1×10-3C的带正电的小球(可视为质点)以速度v0水平进入右侧的匀强磁场和匀强电场的叠加区域,小球进入右侧区域后恰能做匀速圆周运动.g取10 m/s2.求:(1)电场强度的大小和方向;(2)若0<v0≤3 m/s,求小球在磁场中运动的最短时间t1;(3)若0<v0≤3 m/s,求小球落在水平面上的范围.【答案】(1) 10 V/m,方向竖直向上(2) π2s(3)N点右侧3 m和N点左侧√55m的范围内【解析】(1)小球在叠加场中做匀速圆周运动,则电场力与重力平衡,即:qE=mg解得:E=10 V/m,方向竖直向上.(2)当小球以速度v=3 m/s在磁场中做匀速圆周运动时,由洛伦兹力提供向心力得:qvB=m v 2r解得:r=3 m=h对应小球运动的轨迹如图所示.在0<v0≤3 m/s的速度范围内,此轨迹所对的圆心角最小,即小球在磁场中运动的时间最短.小球做圆周运动的周期:T=2πrv=2π s小球在磁场中运动的最短时间:t1=14T=π2s(3)当小球以3 m/s的速度进入磁场后落在N点的右侧最远,x1=r=3 m当小球的速度较小时,小球会在磁场中运动半周,然后从MN离开磁场而做平抛运动.设小球在磁场中运动的轨道半径为R,则:竖直方向:h-2R=12gt2水平方向:x=vt粒子做圆周运动的轨道半径:R=mvqB解得:x2=√2(h-2R)R2g当R=1 m时x2有最大值,解得:x2max=√55m所以,小球落在N点右侧3 m和N点左侧√55m的范围内.6.如图所示,在竖直平面内建立直角坐标系xOy,其第一象限存在着正交的匀强电场和匀强磁场,电场强度的方向水平向右,磁感应强度的方向垂直纸面向里.一带电荷量为+q、质量为m的微粒从原点出发进入复合场中,初速度方向与x轴正方向的夹角为45°,且正好做直线运动,当微粒运动到A(l,l)时,电场方向突然变为竖直向上(不计电场变化的时间),微粒继续运动一段时间后,正好垂直于y轴穿出复合场.不计一切阻力,求:(1)电场强度E的大小;(2)磁感应强度B的大小;(3)微粒在复合场中的运动时间.【答案】(1)mgq (2)mq√gl(3)(3π4+1)√lg【解析】 (1)微粒到达A (l ,l )之前做匀速直线运动,对微粒受力分析如图甲,可知:Eq=mg 解得:E=mg q.甲 乙(2)由平衡条件得:qvB=√2mg电场方向变化后,微粒所受重力与电场力平衡,微粒在洛伦兹力作用下做匀速圆周运动,轨迹如图乙,则有:qvB=m v 2r由几何知识可得:r=√2l 联立解得:v=√2gl ,B=m q √gl.(3)微粒做匀速直线运动的时间:t 1=√2lv =√l g做匀速圆周运动的时间:t 2=34π·√2l v=3π4√lg故微粒在复合场中的运动时间:t=t 1+t 2=(3π4+1)√lg.7.如图所示,两平行金属板A 、B 间的电势差为U=5×104 V .在B 板的右侧有两个方向不同但宽度相同的有界磁场Ⅰ、Ⅰ,它们的宽度为d 1=d 2=6.25 m ,磁感应强度分别为B 1=2.0 T 、B 2=4.0 T ,方向如图中所示.现有一质量m=1.0×10-8 kg、电荷量q=1.6×10-6 C、重力忽略不计的粒子从A板的O点由静止释放,经过加速后恰好从B板的小孔Q处飞出.试求:(1)带电粒子从加速电场中出来时的速度v的大小;(2)带电粒子穿过磁场区域Ⅰ所用的时间t;(3)带电粒子从磁场区域Ⅰ射出时的速度方向与边界面的夹角;(4)若d1的宽度不变,改变d2的宽度,要使粒子不能从Ⅰ区右边界飞出磁场,则d2的宽度至少为多大?s(3)60°(4)9.375 m 【答案】(1)4.0×103 m/s(2)π1 920【解析】(1)粒子在电场中做匀加速直线运动,由动能定理mv2-0,解得v=4.0×103 m/s.有:qU=12(2)粒子运动轨迹如图甲.设粒子在磁场区域Ⅰ中做匀速圆周运动的半径为r,由洛伦兹力提,代入数据解得r=12.5 m供向心力得:qvB1=mv2r设粒子在Ⅰ区内做圆周运动的圆心角为θ,则 sin θ=d1r =6.25m 12.5m =12,所以θ=30°粒子在Ⅰ区运动的周期T=2πm qB 1则粒子在Ⅰ区运动时间t=θ360°T ,解得t=π1 920s(3)设粒子在Ⅰ区做圆周运动的轨道半径为R ,则qvB 2=mv 2R解得R=6.25 m如图甲所示,由几何关系可知△MO 2P 为等边三角形,所以粒子离开Ⅰ区域时速度方向与边界面的夹角为α=60°.(4)要使粒子不能从Ⅰ区右边界飞出磁场,粒子运动的轨迹与磁场边界相切时,由图乙可知Ⅰ区磁场的宽度至少为:d 2=R+R cos 60°=1.5R=9.375 m .8.如图所示,三块挡板围成截面边长L=1.2 m 的等边三角形区域,C 、P 、Q 分别是MN 、AM 和AN 中点处的小孔,三个小孔处于同一竖直面内,MN 水平,MN 上方是竖直向下的匀强电场,场强E=4×10-4 N/C .三角形区域内有垂直纸面向里的匀强磁场,磁感应强度为B 1;AMN 以外区域有垂直纸面向外,磁感应强度大小为B 2=3B 1的匀强磁场.现将一比荷qm =108 C/kg 的帯正电的粒子,从O 点由静止释放,粒子从MN小孔C进入内部匀强磁场,经内部磁场偏转后直接垂直AN经过Q点进入外部磁场.已知粒子最终回到了O点,OC 相距 2 m.设粒子与挡板碰撞过程中没有动能损失,且电荷量不变,不计粒子重力,不计挡板厚度,取π=3.求:(1)磁感应强度B1的大小;(2)粒子从O点出发,到再次回到O点经历的时间;(3)若仅改变B2的大小,当B2满足什么条件时,粒子可以垂直于MA 经孔P回到O点(若粒子经过A点时立即被吸收).×10-5【答案】(1)6.6×10-6T(2)2.85×10-2s(3)B2'=4k+23T,k=0,1,2,3,….mv2【解析】(1)粒子从O点加速到C点,由动能定理得:qEx=12解得:v=400 m/s带电粒子经内部磁场偏转后直接垂直AN经过Q点进入外部磁场=0.6 m由几何关系可知R1=L2知磁感应强度B1=6.6×10-6T.由qvB1=m v2R1(2)由题可知B2=3B1=2×10-5 T,由qvB2=m v2R2可知:R2=R13=0.2 m粒子从O点出发,到再次回到O点的轨迹如图所示,则粒子进入电场做匀加速运动,则x=12vt1得到t1=0.01 s粒子在磁场B1中的周期为T1=2πmqB1则在磁场B1中的运动时间为t2=T13=3×10-3s在磁场B2中的运动周期为T2=2πmqB2在磁场B2中的运动时间为t3=180°+300°+180°360°T2=5.5×10-3s则粒子从O点出发,到再次回到O点经历的时间t=2t1+t2+t3=2.85×10-2s.(3)设挡板外磁场变为B2',粒子在磁场中的轨迹半径为r,则有qvB2'=m v2r粒子可以垂直于MA经孔P回到O点需满足条件:L2=(2k+1)r,k=0,1,2,3,…解得B2'=4k+23×10-5T,其中k=0,1,2,3,…9.一足够长的条状区域内存在匀强电场和匀强磁场,其在xOy平面内的截面如图所示;中间是磁场区域,其边界与y轴垂直,宽度为l,磁感应强度的大小为B,方向垂直于xOy平面;磁场的上、下两侧为电场区域,宽度均为l',电场强度的大小均为E,方向均沿x轴正方向;M、N为条状区域边界上的两点,它们的连线与y轴平行.一带正电的粒子以某一速度从M点沿y轴正方向射入电场,经过一段时间后恰好以从M点入射的速度从N点沿y轴正方向射出.不计重力.(1)定性画出该粒子在电磁场中运动的轨迹;(2)求该粒子从M点入射时速度的大小;(3)若该粒子进入磁场时的速度方向恰好与x轴正方向的夹角为π6,求该粒子的比荷及其从M点运动到N点的时间.【答案】(1)见解析(2)2El'Bl (3)4√3El'B2l2BlE(1+√3πl18l')【解析】(1)粒子在电场中的轨迹为抛物线,在磁场中的轨迹为圆弧,整个轨迹上下对称,故画出粒子运动的轨迹,如图所示.(2)粒子从电场下边界入射后在电场中做类平抛运动,设粒子从M点射入时速度的大小为v 0,在下侧电场中运动的时间为t ,加速度大小为a ,粒子的电荷量为q 、质量为m ,粒子进入磁场的速度大小为v ,方向与电场方向的夹角为θ,如图所示, 根据牛顿第二定律可得:Eq=ma Ⅰ 速度沿电场方向的分量为:v 1=at Ⅰ 垂直电场方向有:l'=v 0t Ⅰ 根据几何关系可得:v 1=v cos θ Ⅰ粒子在磁场中做匀速圆周运动,利用洛伦兹力提供向心力可得:qvB=m v 2R Ⅰ根据几何关系可得:l=2R cos θ Ⅰ联立ⅠⅠⅠⅠⅠⅠ式可得粒子从M 点入射时速度的大小:v 0=2El 'BlⅠ(3)根据几何关系可得速度沿电场方向的分量:v 1=v 0tanπ6Ⅰ联立ⅠⅠⅠⅠⅠ式可得该粒子的比荷:q m =4√3El 'B 2l 2Ⅰ粒子在磁场中运动的周期:T=2πR v=2πm qBⅠ粒子由M 点到N 点所用的时间:t'=2t+2(π2-π6)2π·T联立ⅠⅠⅠ式可得:t'=BlE (1+√3πl18l').10.如图甲所示,相隔一定距离的竖直边界两侧为相同的匀强磁场区,磁场方向垂直纸面向里,在边界上固定两个长为L的平行金属极板MN和PQ,两极板中心各有一小孔S1、S2,两极板间电压的变化规律如图乙所示,正、反向电压的大小均为U0,周期为T0.在t=0时刻将一个质量为m、电荷量为-q(q>0)的粒子由S1静止释放,粒子在电场力的作用下向右运动,在t=T02时刻通过S2垂直于边界进入右侧磁场区.(不计粒子重力,不考虑极板外的电场)甲乙(1)求粒子到达S2时的速度大小v和极板间距d;(2)为使粒子不与极板相撞,求磁感应强度的大小应满足的条件;(3)若已保证了粒子未与极板相撞,为使粒子在t=3T0时刻再次到达S2,且速度恰好为零,求该过程中粒子在磁场内运动的时间和磁感应强度的大小.【答案】(1)√2qU0m T04√2qU0m(2)B<4L√2mU0q(3)74T08πm 7qT0【解析】(1)粒子由S1到S2的过程,根据动能定理得qU0=12mv2Ⅰ由Ⅰ式得v=√2qU0mⅠ设粒子的加速度大小为a,由牛顿第二定律得q U0d=maⅠ由运动学公式得d=12a(T02)2Ⅰ联立ⅠⅠ式得d=T04√2qU0mⅠ(2)设磁感应强度大小为B,粒子在磁场中做匀速圆周运动的半径为R对粒子在磁场中由牛顿第二定律得qvB=m v 2RⅠ要使粒子在磁场中运动时不与极板相撞,应满足2R>L2Ⅰ联立ⅠⅠⅠ式得B<4L √2mU0qⅠ(3)设粒子在两边界之间无场区向左匀速运动的过程用时为t1,有d=vt1Ⅰ联立ⅠⅠⅠ式得t1=T04Ⅰ若粒子再次到达S2时速度恰好为零,粒子回到极板间做匀减速运动,设匀减速运动的时间为t2,根据运动学公式得d=v2t2联立ⅠⅠ式得t2=T02-t1-t2设粒子在磁场中运动的时间t=3T0-T02联立式得t=7T04则粒子在匀强磁场中做匀速圆周运动的周期为T,由Ⅰ式结合运动学公式得T=2πmqB由题意可知T=t=7T04.联立式得B=8πm7qT011.(2020·河南平顶山模拟)如图所示,平面直角坐标系xOy的第二、三象限内有方向沿y轴正向的匀强电场;第一、四象限内有圆形有L,磁场的方向垂直于坐标平面向里,界磁场,有界磁场的半径为√22磁场边界与y轴相切于O点.在x轴上坐标为(-L,0)的P点沿与x 轴正向成θ=45°方向射出一个速度大小为v0的带电粒子,粒子的质量为m、电荷量为q;粒子经电场偏转后垂直y轴射出电场,进入磁场后经磁场偏转以沿y轴负方向的速度射出磁场,不计粒子的重力.求:(1)粒子从y轴上射出电场的位置坐标;(2)匀强电场的电场强度大小及匀强磁场的磁感应强度大小;(3)粒子从P点射出到射出磁场的运动时间.【答案】(1)(0,12L)(2)mv022qL√2mv02qL(3)Lv0+√2(1+π)L2v0【解析】(1)粒子在电场中的运动为类平抛运动的逆运动水平方向:L=v0cos θ·t1竖直方向:y=v0 sin θ·t1解得:y=12L粒子从y轴上射出电场的位置坐标为(0,12L).(2)粒子在电场中的加速度:a=qEm竖直分位移:y=12a t12解得:E=mv022qL.粒子进入磁场后做匀速圆周运动,粒子以沿y轴负方向的速度射出磁场,粒子的运动轨迹如图所示,由几何知识得:AC与竖直方向的夹角为45°,且AD=√2y=√22L,因此AC刚好为有界磁场边界圆的直径,则粒子在磁场中做圆周运动的轨道半径:r=L粒子在磁场中做圆周运动,由牛顿第二定律得:qvB=m v2r,其中粒子的速度:v=v0cos θ解得:B=√2mv02qL.。
2021届辽宁省部分市高考物理三模试卷(含答案解析)
2021届辽宁省部分市高考物理三模试卷一、单选题(本大题共7小题,共28.0分)1.如图是做直线运动物体的速度−时间图象,其中表示物体做匀加速直线运动的是图()A. B. C. D.2.关于光的折射现象,下列说法正确的是()A. 光的传播方向发生改变的现象叫光的折射B. 折射定律是托勒密发现的C. 人观察盛水容器的底部,发现水变浅了D. 若光从空气射入液体中,它的传播速度一定增大3.原子核的天然放射现象称为衰变,一静止的铀核放出一个α粒子衰变成钍核,衰变方程为 92238U→90234Tℎ+24He。
下列说法正确的是()A. 衰变后钍核的动能等于α粒子的动能B. 衰变后钍核的动量大小等于α粒子的动量大小C. 衰变过程的能量变化不满足爱因斯坦质能方程D. 衰变后α粒子与钍核的质量之和等于衰变前铀核的质量4.一平行板电容器两极板间距为d、面积为s,电容为ɛ0S,其中ε0是常量.对此电容器充电后断开d电源,此时两板间电压为U,电场强度为E.当两板间距增加到2d时,电容器极板间()E,电压仍为U B. 电场强度仍为E,电压为2UA. 电场强度变为12C. 电场强度仍为E,电压仍为UD. 电场强度变为2E,电压变为2U5.在波的传播方向上,位移时刻相同的两个质点,其平衡位置间的距离为()A. 1波长 B. 半波长的奇数倍4C. 3波长的整数部 D. 半波长的偶数倍46.如图所示的电路中,C2=2C1,R2=R1,①开关处于断开状态,电容器C2的电荷量大于C1的电荷量②开关处于断开状态,电容器C1的电荷量大于C2的电荷量③开关处于接通状态,电容器C2的电荷量大于C1的电荷量④开关处于接通状态,电容器C1的电荷量大于C2的电荷量以上说法都正确的是()A. ①B. ④C. ①③D. ②④7.如图,一光滑小球静置在半圆柱体上,被一垂直于圆柱面的挡板挡住,设挡板跟圆心连线与底面的夹角为θ,小球的半径忽略不计。
现缓慢减小θ,则小球在移动过程中,挡板对小球的支持力F1、半圆柱体对小球的支持力F2的变化情况是()A. F1增大,F2减小B. F1增大,F2增大C. F1减小,F2减小D. F1减小,F2增大二、多选题(本大题共3小题,共18.0分)8.发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3,轨道1、2相切于Q点,轨道2、3相切于P点.如图所示,则卫星分别在1、2、3轨道上运行时,以下说法正确的是()A. 卫星在轨道3上的速率大于在轨道1上的速率B. 卫星在轨道3上的角速度小于在轨道1上的角速度C. 卫星在轨道1上经过Q点时的速度等于它在轨道2上经过Q点时的速度D. 卫星在轨道2上经过P点的加速度等于它在轨道3上经过P点时的加速度9.空间存在一点电荷P,在该点电荷的一条电场线上建立直线坐标系x。
2021年高考物理押题卷3(新课标Ⅰ卷)
2021年高考押题卷3【新课标Ⅱ卷】理科综合·物理(考试时间:60分钟试卷满分:110分)第Ⅰ卷二、选择题:本题共8小题,每小题6分。
在每小题给出的四个选项中,第14~18题只有一项符合题目要求,第19~21题有多项符合题目要求。
全部选对的得6分,选对但不全的得3分,有选错或不答的得0分。
14.原子核的比结合能如图所示。
下列说法正确的是()A.Li核比He核更稳定B.Ba核比Kr核核子数多,比结合能大C.U核比Ba核结合能大,比结合能小D.两个H核结合成He核,需要吸收能量15.甲、乙两质点从同一位置、同时沿同一直线运动,速度随时间变化的v t 图像如图所示,其中甲质点的图像平行于t轴,乙质点的图像在0~3s内为直线,在3s~6s内为曲线。
关于两质点的运动情况,下列说法正确的是()A.乙在0~3s的初、末位置中点的速度大小为2m/sB.乙在3s~6s时间内的加速度一直减小C.乙在3s~6s时间内的平均速度等于1m/sD.在0~3s内,甲、乙之间的最大距离为25m 416.如图甲所示,两段等长轻质细线将质量分别为m、2m的小球A、B(均可视为质点)悬挂在O点,小球A受到水平向右的恒力F1的作用,小球B受到水平向左的恒力F2的作用,当系统处于静止状态时,出现了如图乙所示的状态,小球B刚好位于O点正下方,则F1与F2的大小关系是()A.F1=4F2B.F1=3F2C.2F1=3F2D.2F1=5F217.如图所示为某同学利用传感器研究电容器放电过程的实验电路,实验时先使开关S与1 端相连,电源对电容器充电,待电路稳定后把开关S掷向2端,电容器通过电阻放电,传感器将电流信息传入计算机,屏幕上显示出电流随时间变化的i-t曲线,这个曲线的横坐标是放电时间,纵坐标是放电电流.若其他条件不变,只将电阻R换为阻值更大的定值电阻,现用虚线表示电阻值变大后的i-t曲线,则在下列四个图象中可能正确的是()18.如下图所示,电子质量为m,电荷量为e,从坐标原点O处沿xOy平面射入第一象限,射入时速度方向不同,速度大小均为v,现在某一区域加一方向向外且垂直于xOy平面的匀强磁场,磁感应强度为B,若这些电子穿过磁场后都能垂直射到荧光屏MN上,荧光屏与y轴平行,下列说法正确的是A.所加磁场范围的最小面积是2222 2me B πνB.所加磁场范围的最小面积是()222222me Bπν+C.所加磁场范围的最小面积是()2222324me Bπν+D.所加磁场范围的最小面积是2222 32me B πν19.如图甲所示,质量为M=2kg的长木板静止在光滑水平面上,一质量为m=2kg的小铁块静置于长木板的最右端。
(新高考)2021届高三第三次模拟检测卷 物理(二)
(新高考)2021届高三第三次模拟检测卷物理(二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、单项选择题:本题共8小题,每小题3分,共24分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.2020年11月24日4时30分,我国用长征五号遥五运载火箭成功发射嫦娥五号探测器。
该探测器顺利到达月球表面并取回1.73 kg月壤。
氦3大量存在于月壤中,是未来的清洁能源。
两个氦3聚变的核反应方程是32He+32He→42He+2X+12.86 MeV,已知氦3、氦4和X粒子的质量分别为m1、m2和m3。
下列说法正确的是()A.核裂变比核聚变更为安全、清洁B.X粒子为中子C.由核反应过程质量守恒可知2m1=m2+2m3D.两个轻核结合成质量较大的核,比结合能较聚变前增大2.2020年10月4日世界杯预选赛女子十米跳台决赛在河北奥体中心举行。
如图为跳水运动员从起跳到落水过程的示意图,运动员从最高点到入水前的运动过程记为I,运动员入水后到最低点的运动过程记为II,忽略空气阻力,则运动员()A.过程I的动量改变量等于零B.过程II的动量改变量等于零C.过程I的动量改变量等于重力的冲量D.过程II的动量改变量等于重力的冲量3.关于分子动理论和热力学定律,下列说法中正确的是()A.空调机在制冷过程中,从室内吸收的热量等于向室外放出的热量B.布朗运动是由于分子无规则运动直接形成的,而扩散现象是分子热运动的间接反映C.阿伏加德罗常数是联系微观物理量和宏观物量的桥梁,已知水的摩尔质量和水分子的质量,可以求出该常数D.热传递的自然过程是大量分子从无序程度大的状态向无序程度小的状态转化的过程4.如图所示,长木板A与物体B叠放在水平地面上,物体与木板左端的固定立柱间放置轻质弹簧,在水平外力F作用下,木板和物体都静止不动,弹簧处于压缩状态。
2021辽宁省高考压轴卷-物理-【含解析】
2021辽宁省高考压轴卷物理一、选择题:本题共10小题,共46分。
在每小题给出的四个选项中,第1~7题只有一项符合题目要求,每小题4分;第8~10题有多项符合题目要求,每小题6分,全部选对的得6分,选对但不全的得3分,有选错的得0分。
1.某位同学用筷子将均匀球夹起悬停在空中,如图所示,已知球心O 与两根筷子在同一竖直面内,小球质量为0.1kg ,筷子与竖直方向之间的夹角均为37°,筷子与小球表面间的动摩擦因数为0.875(最大静摩擦力等于滑动摩擦力),取重力加速度210m/s g =,sin370.6︒=,cos370.8︒=。
则每根筷子对小球的压力至少为( )A .5NB .7.5NC .10ND .12.5N2.下列说法中错误的是( )A .若氢原子从n =6能级向n =1能级跃迁时辐射出的光不能使某金属发生光电效应,则氢原子从n =6能级向n =2能级跃迁时辐射出的光也不能使该金属发生光电效应B .原子核发生一次β衰变,该原子外层就一定失去一个电子C .核泄漏事故污染物13755Cs 能够产生对人体有害的辐射,其核反应方程式为1371375556a B x Cs →+,可以判断x 为电子D .质子、中子、α粒子的质量分别是m 1、m 2、m 3,质子和中子结合成一个α粒子,释放的能量是()212322m m m c +-3.某汽车的四冲程内燃机利用奥托循环进行工作该循环由两个绝热过程和两个等容过程组成。
如图所示为一定质量的理想气体所经历的奥托循环,则该气体( )A .在状态a 和c 时的内能可能相等B .在a →b 过程中,外界对其做的功全部用于增加内能C .b →c 过程中增加的内能小于d →a 过程中减少的内能D .在一次循环过程中吸收的热量小于放出的热量4.如图所示是研究光电效应的实验装置,c 为滑动变阻器的中点。
用某种单色光照射光电管,将滑动变阻器的滑片P 移到中点处,此时电流表中有电流,则( )A .将滑片P 向a 端移动,光电流将一直变大B .将滑片P 向a 端移动,光电子的最大初动能一定变大C .将滑片P 向b 端移动,光电流将一直变小D .将滑片P 向b 端移动,光电子的最大初动能一定变小5.均匀带电的球壳在球壳外空间中某点产生的电场可等效为在球心处所带电荷量相同的点电荷产生的电场。
2021届辽宁省辽阳市高考物理三模试卷附答案详解
2021届辽宁省辽阳市高考物理三模试卷一、单选题(本大题共4小题,共24.0分)1.在物理学的发展过程中,许多物理学家都做出了重大贡献,他们也创造出了许多物理学研究方法,下列关于物理学史和物理学方法的叙述中正确的是()A. 牛顿发现了万有引力定律,他被称为“称量地球质量”第一人B. 卡文迪许为了检验万有引力定律的正确性,首次进行了“月−地检验”C. 在不需要考虑物体本身的大小和形状时,用质点来代替物体的方法是等效替代法D. 伽利略对自由落体的研究,在验证自己猜想的实验时,由于实验仪器不能精确测量快速下落物体所需的时间,所以他设想通过斜面落体来“冲淡重力”2.一物体在倾角为30°的斜面上滑下,若以斜面的顶端为坐标原点,其位移与时间的函数关系为s=33.5t2+3t+2,其中s的单位是cm,t的单位是s,则物体与斜面间的动摩擦因数是()A. 0.5B. 0.577C. 0.654D. 0.673.一物体受到瞬间撞击后沿粗糙斜面向上滑动,如图所示,在向上滑动的过程中,物体一直受到的力是()A. 重力、沿斜面向上的冲力、斜面的支持力B. 重力、沿斜面向上的冲力、斜面的支持力、摩擦力C. 重力、沿斜面的下滑力、斜面的支持力、摩擦力D. 重力、摩擦力、斜面的支持力4.两块大小、形状完全相同的金属板平行放置,构成一平行板电容器,与它相连的电路如图所示.接通开关K,电源即给电容器充电()A. 保持K接通,减小两极板间的距离,则两极板间的电场强度减小B. 保持K接通,在两极板间插入一块介质,则极板上的电量增大C. 断开K,减小两极板间的距离,则两极板间的电势差增大D. 断开K,在两极板间插入一块介质,则两极板间的电势差增大二、多选题(本大题共6小题,共33.0分)5.“神舟十一号”载人飞船在酒泉发射中心顺利升空;10月19日凌晨,绕地运行30多圈后与“天宫二号”实验室成功实现自动对接;11月18日14时07分,两名航天员在完成各项试验任务后乘坐返回舱安全顺利返回;本次太空征程首次将人类以外的生物带上太空,并创造了中国航天员在太空驻留时间新纪录。
辽宁省辽阳市2021届新高考第三次模拟物理试题含解析
辽宁省辽阳市2021届新高考第三次模拟物理试题一、单项选择题:本题共6小题,每小题5分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的1.如图所示,U形气缸固定在水平地面上,用重力不计的活塞封闭着一定质量的气体,已知气缸不漏气,活塞移动过程中与气缸内壁无摩擦.初始时,外界大气压强为p0,活塞紧压小挡板.现缓慢升高气缸内气体的温度,则选项图中能反映气缸内气体的压强p随热力学温度T变化的图象是()A.B.C.D.【答案】B【解析】【详解】当缓慢升高缸内气体温度时,气体先发生等容变化,根据查理定律,缸内气体的压强P与热力学温度T成正比,在P-T图象中,图线是过原点的倾斜的直线;当活塞开始离开小挡板(小挡板的重力不计),缸内气体的压强等于外界的大气压,气体发生等压膨胀,在P-T中,图线是平行于T轴的直线.A.该图与结论不相符,选项A错误;B.该图与结论相符,选项B正确;C.该图与结论不相符,选项C错误;D.该图与结论不相符,选项D错误;故选B.【点睛】该题考查了气体状态变化时所对应的P-T图的变化情况,解答该类型的题,要熟练地掌握P-T图线的特点,当体积不变时,图线是通过坐标原点的倾斜直线,压强不变时,是平行于T轴的直线,当温度不变时,是平行于P轴的直线.2.如图所示,在x>0、y>0的空间中有恒定的匀强磁场,磁感应强度的大小为B,方向垂直于xOy平面向里。
现有一质量为m 、电量为q 的带正电粒子,从x 轴上的某点P 沿着与x 轴成30︒角的方向射人磁场。
不计重力影响,则可以确定的物理量是( )A .粒子在磁场中运动的时间B .粒子运动的半径C .粒子从射入到射出的速度偏转角D .粒子做圆周运动的周期【答案】D【解析】【分析】【详解】 AC .粒子在磁场中做圆周运动,由于P 点位置不确定,粒子从x 轴上离开磁场或粒子运动轨迹与y 轴相切时,粒子在磁场中转过的圆心角最大,为max 300α︒=粒子在磁场中的最长运动时间maxmax 3002π5π3603603m m t T qB qB α︒︒︒==⨯= 粒子最小的圆心角为P 点与坐标原点重合,最小圆心角min 120α︒=粒子在磁场中的最短运动时间minmin 12π36033m t T T qB α︒=== 粒子在磁场中运动所经历的时间为2π5π33m m t qB qB≤≤ 说明无法确定粒子在磁场中运动的时间和粒子的偏转角,故AC 错误;B .粒子在磁场中做圆周运动,由于P 点位置不确定,粒子的偏转角不确定,则无法确定粒子的运动半径,故B 错误;D .粒子在磁场中做圆周运动,由洛伦兹力提供向心力,则2v qvB m r=且 2πr v T= 则得2π=m T qB说明可确定粒子做圆周运动的周期,故D 正确。
辽宁省辽阳市2021届新高考物理第三次调研试卷含解析
辽宁省辽阳市2021届新高考物理第三次调研试卷一、单项选择题:本题共6小题,每小题5分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的1.烟雾探测器使用了一种半衰期为432年的放射性元素镅24195Am来探测烟雾。
当正常空气分子穿过探测器时,镅24195Am衰变所释放的射线会将它们电离,从而产生电流。
一旦有烟雾进入探测腔内,烟雾中的微粒会吸附部分射线,导致电流减小,从而触发警报。
则()A.镅24195Am放出的是X射线B.镅24195Am放出的是γ射线C.1mg的镅24195Am经864年将有0.75mg发生衰变D.发生火灾时,烟雾探测器中的镅24195Am因温度升高而半衰期变短【答案】C【解析】【详解】AB.镅24195Am会释放出射线将它们电离,从而产生电流,而三种射线中α射线能使空气电离,故镅24195Am放出的是α射线,故AB错误;C.半衰期为432年,当经864年,发生两次衰变,1mg的镅将衰变掉四分之三即0.75mg,还剩下0.25 mg 没有衰变,故C正确;D.半衰期由原子核本身的性质决定,与物理条件和化学状态均无关,则温度升高而半衰期不变,故D错误。
故选C。
2.图1为沿斜坡向上行驶的汽车,当汽车以牵引力F向上运动时,汽车的机械能E与位移x的关系如图2所示(AB段为曲线),汽车与斜面间的摩擦忽略不计.下列说法正确的是()A.0~x1过程中,汽车所受拉力逐渐增大B .x 1~x 2过程中,汽车速度可达到最大值C .0~x 3过程中,汽车的动能一直增大D .x 1~x 2过程中,汽车以恒定的功率运动 【答案】B 【解析】 【详解】A .设斜板的倾角为α,则汽车的重力势能p sin E mg α=,由动能定理得汽车的动能为k sin E Fx mg α=-,则汽车的机械能为k p =E E E Fx =+,即图线的斜率表示F ,则可知0~x 1过程中汽车的拉力恒定,故A 错误;B .x 1~x 2过程中,拉力逐渐减小,以后随着F 的减小,汽车将做减速运动,当sin F mg α=时,加速度为零,速度达到最大,故B 正确;C .由前面分析知,汽车先向上匀加速运动,然后做加速度逐渐减小的加速运动,再做加速度逐渐增大的减速运动,0~x 3过程中,汽车的速度先增大后减小,即动能先增大后减小,故C 错误;D .x 1~x 2过程中,汽车牵引力逐渐减小,到x 2处为零,则汽车到x 2处的功率为零,故D 错误. 故选B 。
辽宁省辽阳市2021届新高考物理仿真第三次备考试题含解析
辽宁省辽阳市2021届新高考物理仿真第三次备考试题一、单项选择题:本题共6小题,每小题5分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的1.静电计是在验电器的基础上制成的,用其指针张角的大小来定性显示金属球与外壳之间的电势差大小,如图所示,A 、B 是平行板电容器的两个金属极板,G 为静电计。
开始时开关S 闭合,静电计指针张开一定角度,为了使指针张开的角度增大,下列采取的措施可行的是( )A .保持开关S 闭合,将A 、B 两极板靠近 B .断开开关S 后,减小A 、B 两极板的正对面积C .断开开关S 后,将A 、B 两极板靠近D .保持开关S 闭合,将变阻器滑片向右移动 【答案】B 【解析】 【详解】A . 保持开关闭合,电容器两端的电势差不变,与极板间距无关,则指针张角不变,故A 错误;B . 断开电键,电容器带电量不变,减小A 、B 两极板的正对面积,即S 减小,根据4SC kdεπ=知,电容减小,根据QU C=知,电势差增大,指针张角增大,故B 正确; C . 断开电键,电容器带电量不变,将A 、B 两极板靠近,即d 减小,根据4SC kdεπ=知,电容增大,根据QU C=知,电势差减小,指针张角减小,故C 错误; D . 保持开关闭合,电容器两端的电势差不变,变阻器仅仅充当导线功能,滑动触头滑动不会影响指针张角,故D 错误。
故选:B 。
2.光滑水平面上有长为2L 的木板B ,小物块A 置于B 的中点,A 、B 质量均为m ,二者间摩擦因数为μ,重力加速度为g ,A 、B 处于静止状态。
某时刻给B 一向右的瞬时冲量I ,为使A 可以从B 上掉下,冲量I 的最小值为( )A .m gL μB .2m gL μC .2m μgLD .22m gL μ【答案】B 【解析】 【详解】设B 获得冲量后瞬间速度为0v ,物块掉下来的临界条件是A 刚好到达边缘时两者共速,根据动量守恒02mv mv =根据能量守恒22011222mgL mv mv μ=-⨯解得:02v gL μ=根据动量定理,冲量最小值min 02I mv m gL μ==故B 正确,ACD 错误。
辽宁省辽阳市2021届新高考三诊物理试题含解析
辽宁省辽阳市2021届新高考三诊物理试题一、单项选择题:本题共6小题,每小题5分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的1.一质点做匀加速直线运动连续经历了两段相等的时间。
下列对这两个阶段判断正确的是( ) A .位置变化量一定相同B .动能变化量一定相同C .动量变化量一定相同D .合外力做功一定相同【答案】C【解析】【详解】A .匀加速直线运动的物体连续经历了两段相等的时间,根据2012x v t at =+可知位移不相等,位置变化不同,选项A 错误;BD .根据动能定理可知,合外力做功不相等,则动能变化量不相同,选项BD 错误;C .根据动量定理F t p ∆=∆,可知动量变化量一定相同,选项C 正确;故选C 。
2.如图,半径为R 的半球形容器固定在水平转台上,转台绕过容器球心O 的竖直轴线以角速度ω匀速转动。
质量相等的小物块A 、B 随容器转动且相对器壁静止。
A 、B 和球心O 点连线与竖直方向的夹角分别为α、β,α>β,则下列说法正确的是( )A .A 的向心力小于B 的向心力B .容器对A 的支持力一定小于容器对B 的支持力C .若ω缓慢增大,则A 、B 受到的摩擦力一定都增大D .若A 不受摩擦力,则B 受沿容器壁向下的摩擦力【答案】D【解析】【分析】【详解】A .根据向心力公式知2sin F m R ωθ=,质量和角速度相等,A 、B 和球心O 点连线与竖直方向的夹角分别为α、β,αβ>,所以A 的向心力大于B 的向心力,故A 错误;B .根据径向力知,若物块受到的摩擦力恰好为零,靠重力和支持力的合力提供向心力,则由受力情况根据牛顿第二定律得2tan sin mg m R θωθ=解得 cos gR ωθ= 若角速度大于cos g R θ,则会有沿切线向下的摩擦力,若小于cos g R θ,则会有沿切线向上的摩擦力,故容器对A 的支持力不一定小于容器对B 的支持力,故B 错误;C .若缓慢增大,则A 、B 受到的摩擦力方向会发生变化,故摩擦力数值不一定都增大,故C 错误;D .因A 受的静摩擦力为零,则B 有沿容器壁向上滑动的趋势,即B 受沿容器壁向下的摩擦力,故D 正确。
辽宁省辽阳市2021届新高考物理三模试卷含解析
辽宁省辽阳市2021届新高考物理三模试卷一、单项选择题:本题共6小题,每小题5分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的1.中澳美“科瓦里-2019”特种兵联合演练于8月28日至9月4日在澳大利亚举行,中国空军空降兵部队首次派员参加,演习中一名特种兵从空中静止的直升飞机上,抓住一根竖直悬绳由静止开始下滑,运动的速度随时间变化的规律如图所示,2t 时刻特种兵着地,下列说法正确的是( )A .在1t ~2t 时间内,平均速度122v v v +<B .特种兵在0~1t 时间内处于超重状态,1t ~2t 时间内处于失重状态C .在1t ~2t 间内特种兵所受阻力越来越大D .若第一个特种兵开始减速时第二个特种兵立即以同样的方式下滑,则他们在悬绳上的距离先减小后增大 【答案】C 【解析】 【分析】 【详解】A .在t 1-t 2时间内,若特种兵做匀减速直线运动,由v 1减速到v 2,则平均速度为122v v +,根据图线与时间轴围成的面积表示位移可知,特种兵的位移大于匀减速直线运动的位移,则平均速度122v vv +>,故A错误;B .0-t 1时间内,由图线可知,图线的斜率大于零,则加速度方向竖直向下,发生失重;在t 1-t 2时间内,图线的切线的斜率小于零,则加速度方向竖直向上,发生超重;故B 错误;C .在t 1-t 2时间内,根据牛顿第二定律可知 f-mg=ma 解得 f=mg+ma因为曲线的斜率变大,则加速度a 增大,则特种兵所受悬绳的阻力增大,故C 正确;D.若第一个特种兵开始减速时,第二个特种兵立即以同样的方式下滑,由于第一个特种兵的速度先大于第二个特种兵的速度,然后又小于第二个特种兵的速度,所以空中的距离先增大后减小,故D错误;故选C。
2.小朋友队和大人队拔河比赛,小朋友队人数多,重心低,手握绳的位置低,A、B两点间绳倾斜,其余绳不一定水平,此可以简化为如图所示的模型。
辽宁省辽阳市2021届新高考物理模拟试题(3)含解析
辽宁省辽阳市2021届新高考物理模拟试题(3)一、单项选择题:本题共6小题,每小题5分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的1.如图所示为某质点做匀变速运动的位移—时间(x -t )图象,t =4s 时图象的切线交时间轴于t =2s 处,由此可知,t =0时刻质点的速度大小为( )A .0B .0.25m/sC .0.5m/sD .1m/s【答案】A【解析】【详解】由图象可知,t =4s 时质点的速度 62xv t ∆==∆m/s=3m/s01()2x v v t =+求得00v =.A .0,与结论相符,选项A 正确;B .0.25m/s ,与结论不相符,选项B 错误;C .0.5m/s ,与结论不相符,选项C 错误;D .1m/s ,与结论不相符,选项D 错误;故选A.2.在如图所示的电路中,当闭合开关S 后,若将滑动变阻器的滑片P 向下调节,则正确的是()A .电路再次稳定时,电源效率增加B .灯L 2变暗,电流表的示数减小C .灯L 1变亮,电压表的示数减小D.电容器存储的电势能增加【答案】C【解析】【分析】【详解】A.电源的效率=IU U R IE E R rη==+将滑动变阻器的滑片P向下调节,变阻器接入电路的电阻减小,外电路电阻减小,则电源的效率减小,选项A错误;BC.将滑动变阻器的滑片P向下调节,变阻器接入电路的电阻减小,R与灯L2并联的电阻减小,外电路总电阻减小,根据闭合电路欧姆定律分析得知,干路电流I增大,路端电压U减小,则电压表示数减小,灯L1变亮。
R与灯L2并联电路的电压U并=U-U1,U减小,U1增大,U并减小,灯L2变暗。
流过电流表的电流I A=I-I2,I增大,I2减小,I A增大,电流表的示数增大。
故B错误,C正确;D.电容器两端的电压等于并联部分的电压,电压变小,由Q=CU知电容器的电荷量减少,电容器存储的电势能减小,故D错误。
故选C。
3.人们射向未来深空探测器是以光压为动力的,让太阳光垂直薄膜光帆照射并全部反射,从而产生光压.设探测器在轨道上运行时,每秒每平方米获得的太阳光能E=1.5×104J,薄膜光帆的面积S=6.0×102m2,探测器的质量m=60kg,已知光子的动量的计算式hpλ=,那么探测器得到的加速度大小最接近A.0.001m/s2B.0.01m/s2C.0.0005m/s2D.0.005m/s2【答案】A【解析】【分析】【详解】由E=hv,P=hλ以及光在真空中光速c=λv知,光子的动量和能量之间关系为E=Pc.设时间t内射到探测器上的光子个数为n,每个光子能量为E,光子射到探测器上后全部反射,则这时光对探测器的光压最大,设这个压强为p压;每秒每平方米面积获得的太阳光能:p0=nt •E由动量定理得F•tn=2p压强p压=F S对探测器应用牛顿第二定律F=Ma可得a=p S M 压代入数据得a=1.0×10-3m/s2故A正确,BCD错误.故选A.点睛:该题结合光子的相关知识考查动量定理的应用,解答本题难度并不大,但解题时一定要细心、认真,应用动量定理与牛顿第二定律即可解题.4.如图所示,轻质弹簧下端固定,上端与一质量为m的物块A连接,物块A经过P点时速度大小为v,方向竖直向下。
辽宁省辽阳市2021届新高考最新终极猜押物理试题含解析
辽宁省辽阳市2021届新高考最新终极猜押物理试题一、单项选择题:本题共6小题,每小题5分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的1.2019年9月29日下午在第十三届女排世界杯中,中国女子排球队以十一战全胜的战绩卫冕世界杯冠军,如图所示为运动员朱婷在后排强攻。
若运动员朱婷此时正在后排离球网3m 处强攻,速度方向水平。
设矩形排球场的长为2L ,宽为L(实际L 为9m),若排球(排球可视为质点)离开手时正好在3m 线(即3L 线)中点P 的正上方高h 1处,球网高H ,对方运动员在近网处拦网,拦网高度为h 2,且有h 1>h 2 >H ,不计空气阻力。
为了使球能落到对方场地且不被对方运动员拦住,则球离开手的速度v 的最大范围是(排球压线不算犯规) ( )A .11432()32L g L g v h H h <≤-B .2211432()322L g L L g v h H h ⎛⎫⎛⎫<≤+ ⎪ ⎪-⎝⎭⎝⎭C .121432()32L g L g v h h h <≤-D .22121432()322L g L L g v h h h ⎛⎫⎛⎫<≤+ ⎪ ⎪-⎝⎭⎝⎭【答案】D【解析】【详解】为了使球能落到对方场地且不被对方运动员拦住,根据21112h gt =得: 112h t g= 平抛运动的最大位移:22max 4()()32L L s =+则平抛运动的最大速度:22221ax 1m 4()()432()()322L L L L g v h +==+g根据212212h h gt -=得: 122)2(h h t g-= 则平抛运动的最小速度:2min 21332()L L g v t h h ==- 球离开手的速度v 的最大范围是:221214()()323()22L g L L g v h h h <≤+-g 故A 、B 、C 错误,D 正确;故选D 。
辽宁省辽阳市2021届新高考物理考前模拟卷(3)含解析
辽宁省辽阳市2021届新高考物理考前模拟卷(3)一、单项选择题:本题共6小题,每小题5分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的1.如图所示,在光滑的水平桌面上有一弹簧振子,弹簧劲度系数为k,开始时,振子被拉到平衡位置O 的右侧A处,此时拉力大小为F,然后释放振子从静止开始向左运动,经过时间t后第一次到达平衡位置O处,此时振子的速度为v,在这个过程中振子的平均速度为A.等于B.大于C.小于D.0【答案】B【解析】【分析】平均速度等于这段位移与所需要的时间的比值.而位移则通过胡克定律由受力平衡来确定。
【详解】根据胡克定律,振子被拉到平衡位置O的右侧A处,此时拉力大小为F,由于经过时间t后第一次到达平衡位置O处,因做加速度减小的加速运动,所以这个过程中平均速度为,故B正确,ACD错误。
【点睛】考查胡克定律的掌握,并运用位移与时间的比值定义为平均速度,注意与平均速率分开,同时强调位移而不是路程。
2.2019年4月21日,我国在西昌卫星发射中心用长征三号乙运载火箭,成功发射第44颗北斗导航卫星。
若组成北斗导航系统的这些卫星在不同高度的转道上都绕地球做匀速圆周运动,其中低轨卫星离地高度低于同步卫星。
关于这些卫星,下列说法正确的是()A.低轨卫星的环绕速率大于7.9km/sB.地球同步卫星可以固定对一个区域拍照C.低轨卫星和地球同步卫星的速率相同D.低轨卫星比同步卫星的向心加速度小【答案】B【解析】【分析】【详解】AC.根据万有引力提供向心力,则有22Mm v G m r r= 解得v = 可知轨道半径越大,运行的速度越小,低轨卫星轨道半径大于近地卫星的半径,故低轨卫星的环绕速率小于7.9km/s ,低轨卫星轨道半径小于同步卫星轨道半径,故低轨卫星的环绕速率大于同步卫星的环绕速率,故A 、C 错误;B .同步卫星的周期与地球的周期相同,相对地球静止,可以固定对一个区域拍照,故B 正确; D .根据万有引力提供向心力,则有2Mm G ma r= 可得 2GM a r =低轨卫星轨道半径小于同步卫星轨道半径,低轨卫星向心加速度大于地球同步卫星的向心加速度,故D 错误;故选B 。
2021届辽宁省辽阳市高三(下)第三次模拟理综物理试题
2020届辽宁省辽阳市高三(下)第三次模拟理综物理试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.在物理学的发展过程中,许多物理学家的科学发现推动了人类历史的进步。
下列表述符合物理学史实的是()A.麦克斯韦为了解释黑体辐射现象,第一次提出了能量量子化理论B.爱因斯坦为了解释光电效应的规律,提出了光子说C.查德威克通过对α粒子散射实验的研究,提出了原子的核式结构模型D.贝克勒尔通过对天然放射性的研究,发现原子核是由质子和中子组成的2.如图所示,用绳OA、OB和OC吊着重物P处于静止状态,其中绳OA水平,绳OB 与水平方向成θ角。
现用水平向右的力F缓慢地将重物P拉起,用F A和F B分别表示绳OA和绳OB的张力,则()A.F A、F B、F均增大B.F A增大,F B减小C.F A不变,F增大D.F B不变,F增大3.如图所示,平行板电容器带有等量异种电荷,与静电计相连,静电计金属外壳和电容器下极板都接地,在两极板间有一个固定点P,以E表示两板间的电场强度,ϕ表示P点的电势,θ表示静电计指针的偏角。
静电计所带电量很小,可以忽略不计,若保持下极板不动,将上极板向下移动一小段距离至图中虚线位置,则正确的是()A.θ增大,E增大,ϕ增大B.θ减小,E不变,ϕ不变C .θ减小,E 减小,ϕ减小D .θ减小,E 不变,ϕ减小二、多选题4.如图所示,以8m/s 匀速行驶的汽车即将通过路口,绿灯还有2 s 将熄灭,此时汽车距离停车线18m .该车加速时最大加速度大小为22m/s ,减速时最大加速度大小为25m/s .此路段允许行驶的最大速度为12.5m/s ,下列说法中正确的有A .如果立即做匀加速运动,在绿灯熄灭前汽车可能通过停车线B .如果立即做匀加速运动,在绿灯熄灭前通过停车线汽车一定超速C .如果立即做匀减速运动,在绿灯熄灭前汽车一定不能通过停车线D .如果距停车线5m 处减速,汽车能停在停车线处5.假设宇宙中有两颗相距无限远的行星A 和B 、A 、B 的半径分别为R A 和R B ,两颗行星各自周围的卫星的轨道半径的三次方(3r )与运行公转周期的平方(T 2)的关系如图所示:T 0为卫星环绕各自行星表面运行的周期。
2021年高考物理押题卷3(辽宁卷)(附参考答案)
2021年高考押题卷03【辽宁卷】物理(考试时间:75分钟 试卷满分:100分)一、选择题:本题共10小题,共46分。
在每小题给出的四个选项中,第1~7题只有一项符合题目要求,每小题4分;第8~10题有多项符合题目要求,每小题6分,全部选对的得6分,选对但不全的得3分,有选错的得0分。
1.宇宙飞船飞临一颗半径为R 的未知行星,在距行星表面也为R 的圆轨道上做匀速圆周运动,周期为T (如图)。
宇宙飞船在A 点沿圆周的切线方向发射一个探测器,使之沿椭圆轨道运动,恰好在B 点掠过行星表面后又能回到A 点。
已知万有引力常量为G ,则( )A .此未知行星的平均密度为23GTπρ=B .探测器沿椭圆轨道运动时,周期33T T '=C .探测器沿椭圆轨道运动时,周期38T T '=D .探测器沿椭圆轨道运动时,在A 点的速率大于在B 点的速率2.水平地面上有质量为1.0kg 的物块,受到大小随时间t 变化的水平拉力F 作用,并测得相应时刻物块所受摩擦力f F 的大小。
F t -和f F t -图像如图所示,取重力加速度210m/s g =。
下列判断正确的是( )A .5s 末物块的动量大小为6N s ⋅B .5s 内拉力对物块的冲量为25N s ⋅C .5s 末物块的动能大小为18JD .5s 内合外力对物块做功为1.125J3.如图所示,在光滑绝缘水平面上有一正方形线框abcd,线框由均匀电阻丝制成,边长为L,总电阻值为r。
两条平行虚线之间存在匀强磁场,磁感应强度大小为B,磁场方向竖直向下。
线框abcd沿垂直于cd方向的速度进入磁场,当对角线ac刚进人磁场时线框的速度大小为v,方向与磁场边界成45︒角,则对角线ac 刚进入磁场时()A.线框产生的感应电动势为2BLv B.线框中的感应电流为BLv rC.线框所受安培力大小为22B L vrD.ac两端的电压为BLv4.如图所示,两平行金属板AB、CD相距为d,板长为6d,M、N是两板中间正对的小孔,AB板电势高于CD板,在保持两极板电量不变的情况下,有一带电粒子(不计重力)从M孔以速率0v沿MN连线方向射入两极之间,结果恰好能到达N点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
辽宁省辽阳市2021届新高考物理第三次押题试卷一、单项选择题:本题共6小题,每小题5分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的1.20世纪中叶以后,移动电话快速发展.移动电话机( )A .既能发射电磁波,也能接收电磁波B .只能发射电磁波,不能接收电磁波C .不能发射电磁波,只能接收电磁波D .既不能发射电磁波,也不能接收电磁波【答案】A【解析】【分析】移动电话能将我们的声音信息用电磁波发射到空中,同时它也能在空中捕获电磁波,得到对方讲话的信息.【详解】因为移动电话能将我们的声音信息用电磁波发射到空中,同时它也能在空中捕获电磁波,得到对方讲话的信息.所以移动电话的声音信息由空间的电磁波来传递,移动电话既能发射电磁波,也能接收电磁波,故A 正确,BCD 错误。
故选A 。
【点睛】本题需要掌握移动电话的电信号通过电磁波进行传递,知道移动电话既是无线电的发射台,又是无线电的接收台.2.一质点做匀加速直线运动时,速度变化v ∆时发生位移1x ,紧接着速度变化同样的v ∆时发生位移2x ,则该质点的加速度为( )A .21211()v x x ⎛⎫∆+ ⎪⎝⎭B .212()2v x x ∆- C .21211()v x x ⎛⎫∆- ⎪⎝⎭D .212()v x x ∆- 【答案】D【解析】【详解】设质点做匀加速直线运动,由A 到B :()220012v v v ax +∆-=由A 到C()()22001222v v v a x x +∆-=+由以上两式解得加速度212()v a x x ∆=- 故选D 。
3.如图所示,竖直面内有一光滑半圆,半径为R ,圆心为O 。
一原长为2R 的轻质弹簧两端各固定一个可视为质点的小球P 和Q 置于半圆内,把小球P 固定在半圆最低点,小球Q 静止时,Q 与O的连线与竖直方向成夹角60θ︒=,现在把Q 的质量加倍,系统静止后,PQ 之间距离为( )A .13RB .15RC .25RD .23R 【答案】D【解析】【详解】开始小球Q 处于静止状态,弹簧的形变量2x R R R =-=,弹簧弹力1F kx kR ==,对Q 进行受力分析可知kR mg = Q 的质量加倍后,设OQ 与竖直方向的夹角为α,对Q 进行受力分析,设弹簧的弹力为2F ,根据力的三角形与边的三角形相似有 222sin 2mg R F R α= 又222sin 2F k R R α⎛⎫=- ⎪⎝⎭ 联立解得1sin23α= 则PQ 之间距离22sin23L R R α== 故选D 。
4.如图所示,水平地面上堆放着原木,关于原木P 在支撑点M 、N 处受力的方向,下列说法正确的是( )A .M 处受到的支持力竖直向上B .N 处受到的支持力竖直向上C .M 处受到的静摩擦力沿MN 方向D .N 处受到的静摩擦力沿水平方向【答案】A【解析】M 处受到的支持力的方向与地面垂直向上,即竖直向上,故A 正确;N 处受到的支持力的方向与原木P 垂直向上,不是竖直向上,故B 错误;原木相对于地有向左运动的趋势,则在M 处受到的摩擦力沿地面向右,故C 错误;因原木P 有沿原木向下的运动趋势,所以N 处受到的摩擦力沿MN 方向,故D 错误.故选A .5.下列说法正确的是( ) A .β衰变所释放的电子是原子核外电子电离形成的B .贝克勒尔通过实验发现了中子C .原子从a 能级状态跃迁到b 能级状态时吸收波长为λ1的光子;原子从b 能级状态跃迁到c 能级状态时发射波长为λ2的光子,已知λ1>λ2,那么原子从a 能级状态跃迁到c 能级状态时将要吸收波长为212λλλ-的光子D .赫兹首次用实验证实了电磁波的存在【答案】D【解析】【分析】【详解】A .β衰变的本质是原子核内的一个中子释放一个电子变为质子,故A 错误;B .根据物理学史可知,查德威克通过α粒子轰击铍核的实验,发现了中子的存在,故B 错误;C.光子的能量hc Eλ=,由题12λλ>,则12E E<,从a能级状态跃迁到b能级状态时吸收波长为λ1的光子,原子从b能级状态跃迁到c能级状态时发射波长为λ2的光子,根据玻尔理论,a能级的能量值大于c能级的能量值223hc hc hcλλλ-=所以原子从a能级状态跃迁到c能级状态时将要辐射波长为1212λλλλ-的光子,故C错误;D.根据物理学史可知,赫兹首次用实验证实了电磁波的存在,故D正确。
故选:D。
6.如图所示,一直角三角形acd在竖直平面内,同一竖直面内的a、b两点关于水平边cd对称,点电荷Q1、Q2固定在c、d两点上。
一质量为m、带负电的小球P在a点处于静止状态,取重力加速度为g,下列说法正确的是()A.Q2对P3B.Q1、Q23C.将P从a点移到b点,电场力做正功D.将P从a点沿直线移到b点,电势能先增大后减小【答案】B【解析】【分析】【详解】A.由于P处于平衡状态,可知Q2对P的静电力大小为21cos602F mg mg==o选项A错误;B.同理可知Q1对P的静电力大小为13cos30F mg mg==o设ac=L,则ad = 由库仑定律112Q q F kL= 2223Q q F k L = 联立解得Q 1、Q 2的电荷量之比为123Q Q = 选项B 正确;CD .将P 从a 点移到b 点,电场力先做正功,后做负功,电势能先减小后增加,选项CD 错误; 故选B 。
二、多项选择题:本题共6小题,每小题5分,共30分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,选对但不全的得3分,有选错的得0分7.长为l 直导线中通有恒定电流I ,静置于绝缘水平桌面上,现在给导线所在空间加匀强磁场,调整磁场方向使得导线对桌面的压力最小,并测得此压力值为N 1,保持其他条件不变,仅改变电流的方向,测得导线对桌面的压力变为N 2。
则通电导线的质量和匀强磁场的磁感应强度分别为( )A .12N N m g +=B .122N N m g +=C .212N N B Il -=D .122N N B Il-= 【答案】BC【解析】【分析】【详解】对导线受力分析,可知导线受重力、支持力和安培力作用,当安培力方向竖直向上时,支持力最小,则导线对桌面的压力最小,根据平衡条件有1N BIl mg +=当仅改变电流方向时,安培力方向向下,根据平衡有2N mg BIl =+联立解得122N N m g +=,212N N B Il-= 故BC 正确,AD 错误。
故选BC 。
8.下列说法正确的是 。
A.物体的摄氏温度变化了1℃,其热力学温度变化了1KB.气体放出热量时,其分子的平均动能一定减小C.气体之所以能充满整个空间,是因为气体分子间相互作用的引力和斥力十分微弱D.如果气体分子间的相互作用力小到可以忽略不计,则气体的内能只与温度有关E.密闭有空气的薄塑料瓶因降温而变扁,此过程中瓶内空气(不计分子势能)向外界释放热量,而外界对其做功【答案】ACE【解析】【分析】【详解】A.由热力学温度与摄氏温度的关系:T=t+273,可知摄氏温度变化1℃,热力学温度变化1K,故A正确;B.气体放出热量时,若外界对气体做功,则气体的温度也可能升高,其分子的平均动能增加,选项B错误;C.无论是气体,液体还是固体,其分子间都存在间距,但气体的间距最大,由于分子间存在较大的间距,气体分子间相互作用的引力和斥力十分微弱,气体分子可以在空间自由运动,所以气体能充满整个空间,C正确;D.气体的内能除分子势能、分子平均动能有关外,还与气体的质量有关。
对于气体分子间作用力可以忽略时,气体的内能只由温度和质量决定。
分子越多,总的能量越大,所以D错误;E.不计分子势能时,气体温度降低,则内能减小,向外界释放热量;薄塑料瓶变扁,气体体积减小,外界对其做功,故E正确。
故选ACE。
9.下列说法正确的是()A.布朗运动只能在液体里发生,且温度越高,布朗运动越激烈B.分子间距离增大,分子间作用力对外表现可能为斥力C.分子动能与分子势能的和叫作这个分子的内能D.滴进水中的墨水微粒能做扩散运动,说明分子间有空隙E.外界对某理想气体做功6⨯,则气体温度升高1.010J2.010J⨯,气体对外放热6【答案】BDE【解析】【详解】A.布朗运动是悬浮在液体或气体中固体小颗粒的无规则运动;布朗运动可以在液体里发生,也可以在气体里发生,且温度越高,布朗运动越激烈,故A错误。
B.在分子间距离r<r0范围内,即使距离增大,分子间作用力表现为斥力,故B正确;C.所有分子动能与分子势能的总和叫做物体的内能,单个分子的内能没有意义,故C 错误;D.滴进水中的墨水微粒能做扩散运动,说明分子间有空隙,故D 正确;E.外界对某理想气体做功W=2.0×105J ,气体对外放热Q=-1.0×105J ,根据热力学第一定律,则气体的内能变化n E=W+Q=2.0×105J-1.0×105J=1.0×105J所以气体的内能增大,温度升高,故E 正确。
故选BDE 。
10.如图所示,水平转台上有一个质量为m 的物块,用长为L 的细线将物块连接在转轴上,细线与竖直转轴的夹角为θ,此时细线中张力为零,物块与转台间的动摩擦因数为μ(tan μθ<),最大静摩擦力等于滑动摩擦力,物块随转台由静止开始缓慢加速转动,则下列说法正确的是( )A .转台一开始转动,细线立即绷直对物块施加拉力B .当细线中出现拉力时,转台对物块做的功为1sin 2mgL μθ C 2cos g L θD .当转台对物块的支持力刚好为零时,转台对物块做的功为2sin 2cos mgL θθ【答案】BD【解析】【详解】AB .转台刚开始转动,细线未绷紧,此时静摩擦力提供向心力,当转动到某一角速度ω1时,静摩擦力达到最大值,根据牛顿第二定律,有21sin mg mL μθω=此时物块线速度大小为1sin v L θω=从开始运动到细线中将要出现拉力过程中,设转台对物块做的功为W ,对物块由动能定理,可得 212W mv =1sin 2W mgL μθ= 故A 错误,B 正确;CD .当转台对物块支持力恰好为零时,竖直方向cos mg T θ=水平方向22sin sin T mL θθω=联立解得2cos g L ωθ= 此时物块的线速度大小为22sin v L θω=从开始运动到转台对物块的支持力刚好为零过程中,设转台对物块做的功为W 2,对物块由动能定理,可得22212W mv = 联立解得22sin 2cos mgL W θθ= 故C 错误,D 正确。
故选BD 。
11.如图所示,实线为一列简谐横波在某时刻的波形图,虚线为该时刻之后7s 的波形图,已知该波的周期为4s,则下列判断中正确的是( )A .这列波沿x 轴正方向传播B .这列波的振幅为4cmC .这列波的波速为2m/sD .该时刻x=2m 处的质点沿y 轴负方向运动E.该时刻x=3m 处质点的加速度最大【答案】BDE【详解】A .该波的周期为4s ,因为37s 14T =,故波沿x 轴负方向传播,A 错误;B .波的振幅为4cm ,B 正确;C .波速 1m /s v T λ==C 错误:D .波沿x 轴负方向传播,2m x =处的质点离开平衡位置向下运动,D 正确;E .该时刻3m x =处的质点在波谷位置,离开平衡位置的距离最大,加速度最大,E 正确。